Sample records for performing ct scan

  1. Routine postoperative CT-scans after burr hole trepanation for chronic subdural hematoma - better before or after drainage removal?

    PubMed

    Brokinkel, Benjamin; Ewelt, Christian; Holling, Markus; Hesselmann, Volker; Heindel, Walter Leonard; Stummer, Walter; Fischer, Bernhard Robert

    2013-01-01

    To evaluate timing of scheduled CT-scans after burr hole trepanation for chronic subdural hematoma (cSDH). 131 patients with primary cSDH were included. Scheduled CT-scans were performed after burr hole trepanation and placement of a subdural drain. The influence of CT-scanning with or without indwelling drain was analysed regarding subsequent surgery and CT-scans, duration of hospitalization, short- and middle-term follow up by single factor analyses. Subgroup analyses were performed for patients receiving anticoagulant drugs. Median age was 74 years. Routine CT-scans with indwelling drainage were not shown to be beneficial regarding subsequent burr hole trepanations (p=0.243), craniotomies (p=1.000) and outcome at discharge (p=0.297). Mean duration of hospitalization (11 vs. 8 days, p=0.013) was significantly longer and number of subsequent CT-scans was higher when CT scan was performed with indwelling drain (2.3 vs. 1.4, p=0.001). In middle-term follow-up, beneficial effects of CT-scanning with inlaying drainage could neither be shown. Moreover, advantageous effects of CT-scans with indwelling drains could neither be shown for patients receiving anticoagulant drugs. Scheduled postoperative cranial imaging with indwelling drains was not shown to be beneficial and misses information of intracranial damage inflicted by removal of drains. We thus recommend CT-scanning after drainage removal.

  2. Are facilities following best practices of pediatric abdominal CT scans?

    PubMed

    Nosek, Amy E; Hartin, Charles W; Bass, Kathryn D; Glick, Philip L; Caty, Michael G; Dayton, Merril T; Ozgediz, Doruk E

    2013-05-01

    Established guidelines for pediatric abdominal CT scans include reduced radiation dosage to minimize cancer risk and the use of intravenous (IV) contrast to obtain the highest-quality diagnostic images. We wish to determine if these practices are being used at nonpediatric facilities that transfer children to a pediatric facility. Children transferred to a tertiary pediatric facility over a 16-mo period with abdominal CT scans performed for evaluation of possible appendicitis were retrospectively reviewed for demographics, diagnosis, radiation dosage, CT contrast use, and scan quality. If CT scans were repeated, the radiation dosage between facilities was compared using Student t-test. Ninety-one consecutive children transferred from 29 different facilities had retrievable CT scan images and clinical information. Half of CT scans from transferring institutions used IV contrast. Due to poor quality or inconclusive CT scans, 19 patients required a change in management. Children received significantly less radiation at our institution compared to the referring adult facility for the same body area scanned on the same child (9.7 mSv versus 19.9 mSv, P = 0.0079). Pediatric facilities may be using less radiation per CT scan due to a heightened awareness of radiation risks and specific pediatric CT scanning protocols. The benefits of IV contrast for the diagnostic yield of pediatric CT scans should be considered to obtain the best possible image and to prevent additional imaging. Every facility performing pediatric CT scans should minimize radiation exposure, and pediatric facilities should provide feedback and education to other facilities scanning children. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. [Performance evaluation of CT automatic exposure control on fast dual spiral scan].

    PubMed

    Niwa, Shinji; Hara, Takanori; Kato, Hideki; Wada, Yoichi

    2014-11-01

    The performance of individual computed tomography automatic exposure control (CT-AEC) is very important for radiation dose reduction and image quality equalization in CT examinations. The purpose of this study was to evaluate the performance of CT-AEC in conventional pitch mode (Normal spiral) and fast dual spiral scan (Flash spiral) in a 128-slice dual-source CT scanner. To evaluate the response properties of CT-AEC in the 128-slice DSCT scanner, a chest phantom was placed on the patient table and was fixed at the center of the field of view (FOV). The phantom scan was performed using Normal spiral and Flash spiral scanning. We measured the effective tube current time product (Eff. mAs) of simulated organs in the chest phantom along the longitudinal (z) direction, and the dose dependence (distribution) of in-plane locations for the respective scan modes was also evaluated by using a 100-mm-long pencil-type ionization chamber. The dose length product (DLP) was evaluated using the value displayed on the console after scanning. It was revealed that the response properties of CT-AEC in Normal spiral scanning depend on the respective pitches and Flash spiral scanning is independent of the respective pitches. In-plane radiation dose of Flash spiral was lower than that of Normal spiral. The DLP values showed a difference of approximately 1.7 times at the maximum. The results of our experiments provide information for adjustments for appropriate scanning parameters using CT-AEC in a 128-slice DSCT scanner.

  4. Computed tomography scan to detect traumatic arthrotomies and identify periarticular wounds not requiring surgical intervention: an improvement over the saline load test.

    PubMed

    Konda, Sanjit R; Davidovitch, Roy I; Egol, Kenneth A

    2013-09-01

    To report our experience with computed tomography (CT) scans to detect traumatic arthrotomies of the knee (TAK) joint based on the presence of intra-articular air. Retrospective review. Level I trauma center. Sixty-two consecutive patients (63 knees) underwent a CT scan of the knee in the emergency department and had a minimum of 14 days follow-up. Cohort of 37 patients (37 knees) from the original 62 patients who underwent a saline load test (SLT). CT scan and SLT. Positive traumatic arthrotomy of the knee (+TAK) was defined as operating room (OR) confirmation of an arthrotomy or no intra-articular air on CT scan (-iaCT) (and -SLT if performed) with follow-up revealing a septic knee. Periarticular wound equivalent to no traumatic arthrotomy (pw = (-TAK)) was defined as OR evaluation revealing no arthrotomy or -iaCT (and -SLT if performed) with follow-up revealing no septic knee. All 32 knees with intra-articular air on CT scan (+iaCT) had OR confirmation of a TAK and none of these patients had a knee infection at a mean follow-up of 140.0 ± 279.6 days. None of the 31 patients with -iaCT had a knee infection at a mean follow-up of 291.0 ± 548.1 days. Based on these results, the sensitivity and specificity of the CT scan to detect +TAK and pw = (-TAK) was 100%. In a subgroup of 37 patients that received both a CT scan and the conventional SLT, the sensitivity and specificity of the CT scan was 100% compared with 92% for the SLT (P < 0.001). CT scan performs better than the conventional SLT to detect traumatic knee arthrotomies and identify periarticular knee wounds that do not require surgical intervention and should be considered a valid diagnostic test in the appropriate clinical setting. Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  5. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy.

    PubMed

    Chen, Alexander; Pastis, Nicholas; Furukawa, Brian; Silvestri, Gerard A

    2015-05-01

    Electromagnetic navigation has improved the diagnostic yield of peripheral bronchoscopy for pulmonary nodules. For these procedures, a thin-slice chest CT scan is performed prior to bronchoscopy at full inspiration and is used to create virtual airway reconstructions that are used as a map during bronchoscopy. Movement of the lung occurs with respiratory variation during bronchoscopy, and the location of pulmonary nodules during procedures may differ significantly from their location on the initial planning full-inspiratory chest CT scan. This study was performed to quantify pulmonary nodule movement from full inspiration to end-exhalation during tidal volume breathing in patients undergoing electromagnetic navigation procedures. A retrospective review of electromagnetic navigation procedures was performed for which two preprocedure CT scans were performed prior to bronchoscopy. One CT scan was performed at full inspiration, and a second CT scan was performed at end-exhalation during tidal volume breathing. Pulmonary lesions were identified on both CT scans, and distances between positions were recorded. Eighty-five pulmonary lesions were identified in 46 patients. Average motion of all pulmonary lesions was 17.6 mm. Pulmonary lesions located in the lower lobes moved significantly more than upper lobe nodules. Size and distance from the pleura did not significantly impact movement. Significant movement of pulmonary lesions occurs between full inspiration and end-exhalation during tidal volume breathing. This movement from full inspiration on planning chest CT scan to tidal volume breathing during bronchoscopy may significantly affect the diagnostic yield of electromagnetic navigation bronchoscopy procedures.

  6. Low-dose head computed tomography in children: a single institutional experience in pediatric radiation risk reduction: clinical article.

    PubMed

    Morton, Ryan P; Reynolds, Renee M; Ramakrishna, Rohan; Levitt, Michael R; Hopper, Richard A; Lee, Amy; Browd, Samuel R

    2013-10-01

    In this study, the authors describe their experience with a low-dose head CT protocol for a preselected neurosurgical population at a dedicated pediatric hospital (Seattle Children's Hospital), the largest number of patients with this protocol reported to date. All low-dose head CT scans between October 2011 and November 2012 were reviewed. Two different low-dose radiation dosages were used, at one-half or one-quarter the dose of a standard head CT scan, based on patient characteristics agreed upon by the neurosurgery and radiology departments. Patient information was also recorded, including diagnosis and indication for CT scan. Six hundred twenty-four low-dose head CT procedures were performed within the 12-month study period. Although indications for the CT scans varied, the most common reason was to evaluate the ventricles and catheter placement in hydrocephalic patients with shunts (70%), followed by postoperative craniosynostosis imaging (12%). These scans provided adequate diagnostic imaging, and no patient required a follow-up full-dose CT scan as a result of poor image quality on a low-dose CT scan. Overall physician comfort and satisfaction with interpretation of the images was high. An additional 2150 full-dose head CT scans were performed during the same 12-month time period, making the total number of CT scans 2774. This value compares to 3730 full-dose head CT scans obtained during the year prior to the study when low-dose CT and rapid-sequence MRI was not a reliable option at Seattle Children's Hospital. Thus, over a 1-year period, 22% of the total CT scans were able to be converted to low-dose scans, and full-dose CT scans were able to be reduced by 42%. The implementation of a low-dose head CT protocol substantially reduced the amount of ionizing radiation exposure in a preselected population of pediatric neurosurgical patients. Image quality and diagnostic utility were not significantly compromised.

  7. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alva-Sánchez, Héctor, E-mail: halva@ciencias.unam.mx; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guidemore » provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.« less

  8. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  9. Impact of adaptive statistical iterative reconstruction on radiation dose in evaluation of trauma patients.

    PubMed

    Maxfield, Mark W; Schuster, Kevin M; McGillicuddy, Edward A; Young, Calvin J; Ghita, Monica; Bokhari, S A Jamal; Oliva, Isabel B; Brink, James A; Davis, Kimberly A

    2012-12-01

    A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP) reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol (17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol (61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality. Therapeutic study, level IV.

  10. Impact of adaptive statistical iterative reconstruction on radiation dose in evaluation of trauma patients

    PubMed Central

    Maxfield, Mark W.; Schuster, Kevin M.; McGillicuddy, Edward A.; Young, Calvin J.; Ghita, Monica; Bokhari, S.A. Jamal; Oliva, Isabel B.; Brink, James A.; Davis, Kimberly A.

    2013-01-01

    BACKGROUND A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. METHODS We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP)reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. RESULTS For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol(17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol(61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. CONCLUSION Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality. PMID:23147183

  11. Radiation from CT scans in paediatric trauma patients: Indications, effective dose, and impact on surgical decisions.

    PubMed

    Livingston, Michael H; Igric, Ana; Vogt, Kelly; Parry, Neil; Merritt, Neil H

    2014-01-01

    The purpose of this study was to determine the effective dose of radiation due to computed tomography (CT) scans in paediatric trauma patients at a level 1 Canadian paediatric trauma centre. We also explored the indications and actions taken as a result of these scans. We performed a retrospective review of paediatric trauma patients presenting to our centre from January 1, 2007 to December 31, 2008. All CT scans performed during the initial trauma resuscitation, hospital stay, and 6 months afterwards were included. Effective dose was calculated using the reported dose length product for each scan and conversion factors specific for body region and age of the patient. 157 paediatric trauma patients were identified during the 2-year study period. Mean Injury Severity Score was 22.5 (range 12-75). 133 patients received at least one CT scan. The mean number of scans per patient was 2.6 (range 0-16). Most scans resulted in no further action (56%) or additional imaging (32%). A decision to perform a procedure (2%), surgery (8%), or withdrawal of life support (2%) was less common. The average dose per patient was 13.5mSv, which is 4.5 times the background radiation compared to the general population. CT head was the most commonly performed type of scan and was most likely to be repeated. CT body, defined as a scan of the chest, abdomen, and/or pelvis, was associated with the highest effective dose. CT is a significant source of radiation in paediatric trauma patients. Clinicians should carefully consider the indications for each scan, especially when performing non-resuscitation scans. There is a need for evidence-based treatment algorithms to assist clinicians in selecting appropriate imaging for patients with severe multisystem trauma. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Clinical importance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography in the management of patients with bronchoalveolar carcinoma: Role in the detection of recurrence.

    PubMed

    Skoura, Evangelia; Datseris, Ioannis E; Exarhos, Dimitrios; Chatziioannou, Sophia; Oikonomopoulos, Georgios; Samartzis, Alexandros; Giannopoulou, Chariklia; Syrigos, Konstantinos N

    2013-05-01

    [ 18 F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been reported to have a low sensitivity in the initial diagnosis of bronchoalveolar carcinoma (BAC) due to BAC's low metabolic activity. The aim of this study was to assess the value of [ 18 F]FDG-PET/CT in the detection of BAC recurrence. Between February 2007 and September 2011, the [ 18 F]FDG-PET/CT scans that were performed on patients with known, histologically proven BAC were studied. A total of 24 [ 18 F]FDG-PET/CT scans were performed in 22 patients, including 16 males and 6 females, with a mean age of 65±9 years. Among the scans, 15 were performed to assess for possible recurrence with equivocal findings in conventional imaging methods and 9 for restaging post-therapy. In all cases conventional imaging studies (CT and MRI) were performed 5-30 days prior to PET/CT. Among the 24 [ 18 F]FDG-PET/CT scans, 18 were positive and 6 negative. Among the 15 [ 18 F]FDG-PET/CT scans performed for suspected recurrence, 34 lesions were detected and the mean maximum standardized uptake value (SUVmax) was 6.8±3.26. In nine scans, upstaging was observed, while two were in agreement with the findings of the conventional modalities. A greater number of lesions were detected in two scans and fewer lesions were detected in one, with no change in staging. Only one scan was negative. By contrast, in patients examined for restaging, there were only five lesions with a mean SUVmax of 4.86±3.18. Agreement between the findings of [ 18 F]FDG-PET/CT and the conventional modalities was observed in 8 out of 9 cases. Although [ 18 F]FDG-PET/CT has been reported to have a low sensitivity in the initial diagnosis of BAC, the present results indicate that when there is recurrence, the lesions become [ 18 F]FDG avid. [ 18 F]FDG-PET/CT may provide further information in patients evaluated for recurrence and thus improve patient management.

  13. WE-EF-207-09: Single-Scan Dual-Energy CT Using Primary Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrongolo, M; Zhu, L

    Purpose: Compared with conventional CT, dual energy CT (DECT) provides better material differentiation but requires projection data with two different effective x-ray spectra. Current DECT scanners use either a two-scan setting or costly imaging components, which are not feasible or available on open-gantry cone-beam CT systems. We propose a hardware-based method which utilizes primary modulation to enable single-scan DECT on a conventional CT scanner. The CT imaging geometry of primary modulation is identical to that used in our previous method for scatter removal, making it possible for future combination with effective scatter correction on the same CT scanner. Methods: Wemore » insert an attenuation sheet with a spatially-varying pattern - primary modulator-between the x-ray source and the imaged object. During the CT scan, the modulator selectively hardens the x-ray beam at specific detector locations. Thus, the proposed method simultaneously acquires high and low energy data. High and low energy CT images are then reconstructed from projections with missing data via an iterative CT reconstruction algorithm with gradient weighting. Proof-of-concept studies are performed using a copper modulator on a cone-beam CT system. Results: Our preliminary results on the Catphan(c) 600 phantom indicate that the proposed method for single-scan DECT is able to successfully generate high-quality high and low energy CT images and distinguish different materials through basis material decomposition. By applying correction algorithms and using all of the acquired projection data, we can reconstruct a single CT image of comparable image quality to conventional CT images, i.e., without primary modulation. Conclusion: This work shows great promise in using a primary modulator to perform high-quality single-scan DECT imaging. Future studies will test method performance on anthropomorphic phantoms and perform quantitative analyses on image qualities and DECT decomposition accuracy. We will use simulations to optimize the modulator material and geometry parameters.« less

  14. Lung PET scan

    MedlinePlus

    ... PET - chest; PET - lung; PET - tumor imaging; PET/CT - lung; Solitary pulmonary nodule - PET ... minutes. PET scans are performed along with a CT scan. This is because the combined information from ...

  15. Different methods for anatomical targeting.

    PubMed

    Iacopino, D G; Conti, A; Angileri, F F; Tomasello, F

    2003-03-01

    Several procedures are used in the different neurosurgical centers in order to perform stereotactic surgery for movement disorders. At the moment no procedure can really be considered superior to the other. We contribute with our experience of targeting method. Ten patients were selected, in accordance to the guidelines for the treatment of Parkinson disease, and operated by several methods including pallidotomy, bilateral insertion of chronic deep brain electrodes within the internal pallidum and in the subthalamic nucleus (18 procedures). in each patient an MR scan was performed the day before surgery. Scans were performed axially parallel to the intercommissural line. The operating day a contrast CT scan was performed under stereotactic conditions. after digitalization of the MRI images, it was possible to visualize the surgical target and to relate it to parenchimal and vascular anatomic structures readable at the CT examination. The CT scan obtained was confronted with the MR previously performed, the geometrical relation between the different parenchimal and vascular structures and the selected targets were obtained. Stereotactic coordinates were obtained on the CT examination. It was possible to calculate the position of the subthalamic nucleus and of the internal pallidum on the CT scan, not only relating to the intercommissural line, but considering also the neurovascular structures displayed both on the MRI and the CT scans. The technique that our group presents consist in an integration between information derived from the CT and the MR techniques, so that we can benefit from the advantages of both methods and overcome the disadvantages.

  16. Value of repeat CT scans in low back pain and radiculopathy.

    PubMed

    Schroeder, Josh E; Barzilay, Yair; Kaplan, Leon; Itshayek, Eyal; Hiller, Nurith

    2016-02-01

    We assessed the clinical value of repeat spine CT scan in 108 patients aged 18-60 years who underwent repeat lumbar spine CT scan for low back pain or radiculopathy from January 2008 to December 2010. Patients with a neoplasm or symptoms suggesting underlying disease were excluded from the study. Clinical data was retrospectively reviewed. Index examinations and repeat CT scan performed at a mean of 24.3 ± 11.3 months later were compared by a senior musculoskeletal radiologist. Disc abnormalities (herniation, sequestration, bulge), spinal stenosis, disc space narrowing, and bony changes (osteophytes, fractures, other changes) were documented. Indications for CT scan were low back pain (60 patients, 55%), radiculopathy (46 patients, 43%), or nonspecific back pain (two patients, 2%). A total of 292 spine pathologies were identified in 98 patients (90.7%); in 10 patients (9.3%) no spine pathology was seen on index or repeat CT scan. At repeat CT scan, 269/292 pathologies were unchanged (92.1%); 10/292 improved (3.4%), 8/292 worsened (2.8%, disc herniation or spinal stenosis), and five new pathologies were identified. No substantial therapeutic change was required in patients with worsened or new pathology. Added diagnostic value from repeat CT scan performed within 2-3 years was rare in patients suffering chronic or recurrent low back pain or radiculopathy, suggesting that repeat CT scan should be considered only in patients with progressive neurologic deficits, new neurologic complaints, or signs implying serious underlying conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Quality of pediatric abdominal CT scans performed at a dedicated children's hospital and its referring institutions: a multifactorial evaluation.

    PubMed

    Snow, Aisling; Milliren, Carly E; Graham, Dionne A; Callahan, Michael J; MacDougall, Robert D; Robertson, Richard L; Taylor, George A

    2017-04-01

    Pediatric patients requiring transfer to a dedicated children's hospital from an outside institution may undergo CT imaging as part of their evaluation. Whether this imaging is performed prior to or after transfer has been shown to impact the radiation dose imparted to the patient. Other quality variables could also be affected by the pediatric experience and expertise of the scanning institution. To identify differences in quality between abdominal CT scans and reports performed at a dedicated children's hospital, and those performed at referring institutions. Fifty consecutive pediatric abdominal CT scans performed at outside institutions were matched (for age, gender and indication) with 50 CT scans performed at a dedicated freestanding children's hospital. We analyzed the scans for technical parameters, report findings, correlation with final clinical diagnosis, and clinical utility. Technical evaluation included use of intravenous and oral contrast agents, anatomical coverage, number of scan phases and size-specific dose estimate (SSDE) for each scan. Outside institution scans were re-reported when the child was admitted to the children's hospital; they were also re-interpreted for this study by children's hospital radiologists who were provided with only the referral information given in the outside institution's report. Anonymized original outside institutional reports and children's hospital admission re-reports were analyzed by two emergency medicine physicians for ease of understanding, degree to which the clinical question was answered, and level of confidence in the report. Mean SSDE was lower (8.68) for children's hospital scans, as compared to outside institution scans (13.29, P = 0.03). Concordance with final clinical diagnosis was significantly lower for original outside institution reports (38/48, 79%) than for both the admission and study children's hospital reports (48/50, 96%; P = 0.005). Children's hospital admission reports were rated higher than outside institution reports for completeness, ease of understanding, answering of clinical question, and level of confidence of the report (P < 0.001). Pediatric abdominal CT scans performed and interpreted at a dedicated children's hospital are associated with higher technical quality, lower radiation dose and a more clinically useful report than those performed at referring institutions.

  18. The Effect of the Presence of EEG Leads on Image Quality in Cerebral Perfusion SPECT and FDG PET/CT.

    PubMed

    Zhang, Lulu; Yen, Stephanie P; Seltzer, Marc A; Thomas, George P; Willis, Kristen; Siegel, Alan

    2018-06-08

    Rationale: Cerebral perfusion SPECT and 18 F-FDG PET/CT are commonly performed diagnostic procedures for patients suffering from epilepsy. Individuals receiving these tests are often in-patients undergoing examinations with EEG leads. We have routinely removed these leads before these tests due to concerns that they would lead to imaging artifacts. The leads would then be replaced at the conclusion of the scan. The goal of our study was to determine if the EEG leads actually do cause artifacts that could lead to erroneous scan interpretation or make the scan uninterpretable. Methods: PET/CT with 18 F-FDG and SPECT with technetium-99m ECD were performed on a two dimensional brain phantom. The phantom was scanned with standard leads, CT/MR compatible leads and with no leads. The scans were interpreted by three experienced nuclear medicine physicians who were asked to rank the images by quality and then to determine if they could differentiate each of the scans from a scan in which it was indicated that no leads were present. Results: No differences could be detected between SPECT or PET scans performed without leads or with either set of leads. The standard EEG leads did create an artifact in the CT portion of the PET/CT while the CT/MR compatible leads did not. Conclusion: This phantom study suggest that EEG leads, standard or CT/MR compatible do not need to be removed for SPECT or for PET. Further study evaluating the effect on patients scan would be of value to support this conclusion. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. [Preoperative CT Scan in middle ear cholesteatoma].

    PubMed

    Sethom, Anissa; Akkari, Khemaies; Dridi, Inès; Tmimi, S; Mardassi, Ali; Benzarti, Sonia; Miled, Imed; Chebbi, Mohamed Kamel

    2011-03-01

    To compare preoperative CT scan finding and per-operative lesions in patients operated for middle ear cholesteatoma, A retrospective study including 60 patients with cholesteatoma otitis diagnosed and treated within a period of 5 years, from 2001 to 2005, at ENT department of Military Hospital of Tunis. All patients had computed tomography of the middle and inner ear. High resolution CT scan imaging was performed using millimetric incidences (3 to 5 millimetres). All patients had surgical removal of their cholesteatoma using down wall technic. We evaluated sensitivity, specificity and predictive value of CT-scan comparing otitic damages and CT finding, in order to examine the real contribution of computed tomography in cholesteatoma otitis. CT scan analysis of middle ear bone structures shows satisfaction (with 83% of sensibility). The rate of sensibility decrease (63%) for the tympanic raff. Predictive value of CT scan for the diagnosis of cholesteatoma was low. However, we have noticed an excellent sensibility in the analysis of ossicular damages (90%). Comparative frontal incidence seems to be less sensible for the detection of facial nerve lesions (42%). But when evident on CT scan findings, lesions of facial nerve were usually observed preoperatively (spécificity 78%). Predictive value of computed tomography for the diagnosis of perilymphatic fistulae (FL) was low. In fact, CT scan imaging have showed FL only for four patients among eight. Best results can be obtained if using inframillimetric incidences with performed high resolution computed tomography. Preoperative computed tomography is necessary for the diagnosis and the evaluation of chronic middle ear cholesteatoma in order to show extending lesion and to detect complications. This CT analysis and surgical correlation have showed that sensibility, specificity and predictive value of CT-scan depend on the anatomic structure implicated in cholesteatoma damages.

  20. Vomiting--is this a good indication for CT head scans in patients with minor head injury?

    PubMed

    Bainbridge, J; Khirwadkar, H; Hourihan, M D

    2012-02-01

    The National Institute for Health and Clinical Excellence head injury guidelines advise CT imaging within 1 h if there is more than one episode of vomiting post-head injury in adults and three or more episodes in children. Since the guideline publication, studies have found that, following head injury, vomiting alone is associated with an abnormal CT head scan in 13-45% of cases. CT head scan requests referred from the emergency department between 1 May 2009 and 30 April 2010 were retrospectively reviewed. Patients with vomiting as the sole indication for an "immediate" CT head scan performed within 1 h were included in the study. Reports produced by experienced neuroradiologists were reviewed and the detection of significant head injury was noted. There were 1264 CT head scans performed during our study period. 151 (124 adults, 27 children) were indicated owing to vomiting following head injury. 5 of the 124 adult scans and 1 of the 27 paediatric scans showed an abnormal finding, giving positive predictive values (PPV) of 4% and 3.7%, respectively. None of these patients required either acute or delayed neurosurgical intervention. In our experience, vomiting alone has a PPV of 4% for significant head injury in adults. However, none of these injuries were serious enough to warrant acute or delayed intervention. Given these findings, vomiting following head injury is a reasonable indication for a CT head scan; however, as none of the patients required acute intervention, we suggest that these scans do not usually need to be performed within 1 h of request.

  1. An open library of CT patient projection data

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-03-01

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms.

  2. Positive Enteric Contrast Material for Abdominal and Pelvic CT with Automatic Exposure Control: What Is the Effect On Patient Radiation Exposure?

    PubMed Central

    Wang, Zhen J.; Chen, Katherine S.; Gould, Robert; Coakley, Fergus V.; Fu, Yanjun; Yeh, Benjamin M.

    2014-01-01

    Objective To assess the effect of positive enteric contrast administration on automatic exposure control (AEC) CT radiation exposure in 1) a CT phantom, and 2) a retrospective review of patients. Materials and Methods We scanned a CT phantom containing simulated bowel that was sequentially filled with water and positive enteric contrast, and recorded the mean volume CT dose index (CTDIvol). We also identified 17 patients who had undergone 2 technically comparable CT scans of the abdomen and pelvis, one with positive enteric contrast and the other with oral water. Paired student t-tests were used to compare the mean CTDIvol between scans performed with and without positive enteric contrast. Both the phantom and patient CT scans were performed using AEC with a fixed noise index. Results The mean CTDIvol for the phantom with simulated bowel containing water and positive enteric contrast were 8.2 ± 0.2 mGy, and 8.7 ± 0.1 mGy (6.1% higher than water, p=0.02), respectively. The mean CTDIvol for patients scanned with oral water and with positive enteric contrast were 11.8mGy and 13.1mGy, respectively (p=0.003). This corresponded to a mean CTDIvol which was 11.0% higher (range: 0.0–20.7% higher) in scans with positive enteric contrast than those with oral water in patients. Conclusions When automatic exposure control is utilized for abdominopelvic CT, the radiation exposure, as measured by CTDIvol, is higher for scans performed with positive enteric contrast than those with oral water. PMID:21493028

  3. Accuracy of limited four-slice CT-scan in diagnosis of chronic rhinosinusitis.

    PubMed

    Zojaji, R; Nekooei, S; Naghibi, S; Mazloum Farsi Baf, M; Jalilian, R; Masoomi, M

    2015-12-01

    Chronic rhinosinusitis (CRS) is a common chronic health condition worldwide. Standard CT-scan is the method of choice for diagnosis of CRS but its high price and considerable radiation exposure have limited its application. The main goal of this study was to evaluate the accuracy of limited four-slice coronal CT-scan in the diagnosis of CRS. This cross-sectional study was conducted on 46 patients with CRS, for one year, based on American Society of Head and Neck Surgery criteria. All patients received the preoperative standard and four-slice CT-scans, after which endoscopic sinus surgery was performed. Findings of four-slice CT-scans were compared with those of conventional CT-scan and the sensitivity and specificity of four-slice CT-scan and its agreement with conventional CT-scan was calculated. In this study, 46 patients including 32 males (69.6%) and 14 females (30.46%) with a mean age of 33 and standard deviation of 9 years, were evaluated. Sensitivity and specificity of four-slice CT-scan were 97.5% and 100%, respectively. Also, positive predictive value (PPV) and negative predictive value (NPV) of four-slice CT was 100% and 85.71%, respectively. There was a strong agreement between four-slice CT and conventional CT findings. Considering the high sensitivity and specificity of four-slice CT-scan and strong agreement with conventional CT-scan in the diagnosis of CRS and the lower radiation exposure and cost, application of this method is suggested for both diagnosis and treatment follow-up in CRS. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. [Mobile CT: technical aspects of prehospital stroke imaging before intravenous thrombolysis].

    PubMed

    Gierhake, D; Weber, J E; Villringer, K; Ebinger, M; Audebert, H J; Fiebach, J B

    2013-01-01

    To reduce the time from symptom onset to treatment with tissue plasminogen activator (tPA) in ischemic stroke, an ambulance was equipped with a CT scanner. We analyzed process and image quality of CT scanning during the pilot study regarding image quality and safety issues. The pilot study of a stroke emergency mobile unit (STEMO) ran over a period of 12 weeks on 5 weekdays from 7a.m. to 6:30 p.m. A teleradiological service for the justifying indication and reporting was established. The radiographer was responsible for the performance of the CT scan on the ambulance. 64 cranial CT scans and 1 intracranial CT angiography were performed. We compared times from ambulance alarm to treatment decision (time of last brain scan) with a cohort of 50 consecutive tPA treatments before implementation of STEMO. 62 (95%) of the 65 scans performed had sufficient quality for reading. Technical quality was not optimal in 45 cases (69%) mainly caused by suboptimal positioning of patient or eye lens protection. Motion artefacts were observed in 8 exams (12%). No safety issues occurred for team or patients. 23 patients were treated with thrombolysis. Time from alarm to last CT scan was 18 minutes shorter than in the tPA cohort before STEMO implementation. A teleradiological support for primary stroke imaging by CT on-site is feasible, quality-wise of diagnostic value and has not raised safety issues. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Computed tomography versus water-soluble contrast swallow in the detection of intrathoracic anastomotic leak complicating esophagogastrectomy (Ivor Lewis): a prospective study in 97 patients.

    PubMed

    Strauss, Christiane; Mal, Frederic; Perniceni, Thierry; Bouzar, Nadia; Lenoir, Stephane; Gayet, Brice; Palau, Robert

    2010-04-01

    Water-soluble contrast swallow (CS) is usually performed before refeeding for anastomosis assessment after esophagectomy with intrathoracic anastomosis but the sensitivity of CS is low. Another diagnostic approach is based on analysis of computed tomography (CT) scan with oral contrast and of CT mediastinal air images. We undertook to compare them prospectively. Ninety-seven patients with an esophageal carcinoma operated by intrathoracic anastomosis were included prospectively in a study based on a CT scan at postoperative day 3 (without oral and intravenous contrast) and CT scan and CS at day 7. CT scan analysis consisted of assessing contrast and air leakage. In case of doubt, an endoscopy was done. A diagnosis of anastomotic leak was made in 13 patients (13.4%), in 2 cases before day 7 and in 3 beyond day 7. At day 3, 94 CT scans were performed, but the diagnostic value was poor. In 95 patients with both CS and CT scan at day 7, CS disclosed a leak in 5 of 11, and CT scan was abnormal in 8 of 11. Leakage of contrast and/or presence of mediastinal gas had the best negative predictive value (95.8%). Endoscopy was done in 16 patients with only mediastinal gas at day 7 CT scan. It disclosed a normal anastomosis in 11, fibrin deposits in 4, and a leak in 1. In comparison with CS only, CT at day 7 improves the sensitivity and negative predictive value for diagnosing an anastomotic leak. In case of doubt endoscopy is advisable. This approach provides an accurate assessment of the anastomosis before refeeding.

  6. The Beatles, the Nobel Prize, and CT scanning of the chest.

    PubMed

    Goodman, Lawrence R

    2010-01-01

    From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.

  7. Effect of staff training on radiation dose in pediatric CT.

    PubMed

    Hojreh, Azadeh; Weber, Michael; Homolka, Peter

    2015-08-01

    To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p<0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p>0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Effect of emergency department CT on neuroimaging case volume and positive scan rates.

    PubMed

    Oguz, Kader Karli; Yousem, David M; Deluca, Tom; Herskovits, Edward H; Beauchamp, Norman J

    2002-09-01

    The authors performed this study to determine the effect a computed tomographic (CT) scanner in the emergency department (ED) has on neuroimaging case volume and positive scan rates. The total numbers of ED visits and neuroradiology CT scans requested from the ED were recorded for 1998 and 2000, the years before and after the installation of a CT unit in the ED. For each examination type (brain, face, cervical spine), studies were graded for major findings (those that affected patient care), minor findings, and normal findings. The CT utilization rates and positive study rates were compared for each type of study performed for both years. There was a statistically significant increase in the utilization rate after installation of the CT unit (P < .001). The fractions of studies with major findings, minor findings, and normal findings changed significantly after installation of the CT unit for facial examinations (P = .002) but not for brain (P = .12) or cervical spine (P = .24) examinations. In all types of studies, the percentage of normal examinations increased. In toto, there was a significant decrease in the positive scan rate after installation of the CT scanner (P = .004). After installation of a CT scanner in the ED, there was increased utilization and a decreased rate of positive neuroradiologic examinations, the latter primarily due to lower positive rates for facial CT scans.

  9. Optimising μCT imaging of the middle and inner cat ear.

    PubMed

    Seifert, H; Röher, U; Staszyk, C; Angrisani, N; Dziuba, D; Meyer-Lindenberg, A

    2012-04-01

    This study's aim was to determine the optimal scan parameters for imaging the middle and inner ear of the cat with micro-computertomography (μCT). Besides, the study set out to assess whether adequate image quality can be obtained to use μCT in diagnostics and research on cat ears. For optimisation, μCT imaging of two cat skull preparations was performed using 36 different scanning protocols. The μCT-scans were evaluated by four experienced experts with regard to the image quality and detail detectability. By compiling a ranking of the results, the best possible scan parameters could be determined. From a third cat's skull, a μCT-scan, using these optimised scan parameters, and a comparative clinical CT-scan were acquired. Afterwards, histological specimens of the ears were produced which were compared to the μCT-images. The comparison shows that the osseous structures are depicted in detail. Although soft tissues cannot be differentiated, the osseous structures serve as valuable spatial orientation of relevant nerves and muscles. Clinical CT can depict many anatomical structures which can also be seen on μCT-images, but these appear a lot less sharp and also less detailed than with μCT. © 2011 Blackwell Verlag GmbH.

  10. Radiation exposure - how do CT scans for appendicitis compare between a free standing children's hospital and non-dedicated pediatric facilities?

    PubMed

    Sharp, Nicole E; Raghavan, Maneesha U; Svetanoff, Wendy J; Thomas, Priscilla T; Sharp, Susan W; Brown, James C; Rivard, Douglas C; St Peter, Shawn D; Holcomb, George W

    2014-06-01

    We compare the amount of radiation children receive from CT scans performed at non-dedicated pediatric facilities (OH) versus those at a dedicated children's hospital (CH). Using a retrospective chart review, all children undergoing CT scanning for appendicitis at an OH were compared to children undergoing CT imaging for appendicitis at a CH between January 2011 and November 2012. One hundred sixty-three children underwent CT scans at 42 different OH. Body mass index was similar between the two groups (21.00±6.49kg/m(2), 19.58±5.18kg/m(2), P=0.07). Dose length product (DLP) was 620±540.3 at OH and 253.78±211.08 at CH (P < 0.001). OH CT scans accurately diagnosed appendicitis in 81%, while CT scans at CH were accurate in 95% (P=0.026). CTDIvol was recorded in 65 patients with subset analysis showing CTDIvol of 16.98±15.58 and 4.89±2.64, a DLP of 586.25±521.59 and 143.54±41.19, and size-specific dose estimate (SSDE) of 26.71±23.1 and 3.81±2.02 at OH and CH, respectively (P<0.001). Using SSDE as a marker for radiation exposure, children received 86% less radiation and had improved diagnostic accuracy when CT scans are performed at a CH. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Systematic review on the value of CT scanning in the diagnosis of anastomotic leakage after colorectal surgery.

    PubMed

    Kornmann, Verena N N; Treskes, Nikki; Hoonhout, Lilian H F; Bollen, Thomas L; van Ramshorst, Bert; Boerma, Djamila

    2013-04-01

    Timely diagnosis of anastomotic leakage after colorectal surgery and adequate treatment is important to reduce morbidity and mortality. Abdominal computed tomography (CT) scanning is the diagnostic tool of preference, but its value may be questionable in the early postoperative period. The accuracy of CT scanning for the detection of anastomotic leakage and its role in timing of intervention was evaluated. A systematic literature search was performed. Relevant publications were identified from four electronic databases between 1990 and 2011. Inclusion criteria were human studies, studies published in English or Dutch, colorectal surgery with primary anastomosis, and abdominal CT scan with reported outcome for the detection of anastomotic leakage. Exclusion criteria were cohort of fewer than five patients, other gastrointestinal surgery, no anastomosis, and radiological imaging other than CT. Eight studies, including 221 abdominal CT scans, fulfilled the inclusion criteria. Overall, the methodological quality of the studies was poor. The overall sensitivity of CT scanning to diagnose leakage was 0.68 (95 % confidence interval 0.59-0.75) for colonic resection. Data on the sequelae of false-negative CT scanning was not available. There is limited good-quality evidence to determine the value of CT scans in the detection of anastomotic leakage. To prevent delay in diagnosis and appropriate treatment of anastomotic leakage, the relatively low sensitivity of CT scanning must be taken into account.

  12. CT scanning in stroke patients: meeting the challenge in the remote and rural district general hospital.

    PubMed

    Todd, A W; Anderson, E M

    2009-05-01

    National audit data allow crude comparison between centres and indicate that most Scottish hospitals fail to meet current guidelines for CT scanning of the brain in stroke patients. This study identifies some of the reasons for delay in performing CT scans in a largely rural population. This audit study assesses the delays from onset of symptoms, time of admission and request received to CT scan in stroke patients for three different in-patient groups as well as those managed in the community. The reasons for delay in CT scanning varied between different patient groups but for one group of in-patients, changes in booking procedure and introduction of a second CT scanner increased the proportion scanned within 48 hours of request from 65% to 96%. Further developments including the introduction of Saturday and Sunday routine CT scanning, radiologist reporting from home and additional CT scanners placed in remote hospitals may be expected to improve these figures further. Target times of three hours from onset of symptoms to scan to allow thrombolysis may however be impossible to meet for all stroke patients in rural areas.

  13. The value of FDG PET/CT for follow-up of patients with melanoma: a retrospective analysis

    PubMed Central

    Vensby, Philip H; Schmidt, Grethe; Kjær, Andreas; Fischer, Barbara M

    2017-01-01

    The incidence of melanoma (MM) is among the fastest rising cancers in the western countries. Positron Emission Tomography with Computed Tomography (PET/CT) is a valuable non-invasive tool for the diagnosis and staging of patients with MM. However, research on the value of PET/CT in follow-up of melanoma patients is limited. This study assesses the diagnostic value of PET/CT for follow-up after melanoma surgery. This retrospective study includes patients with MM who performed at least one PET/CT scan after initial surgery and staging. PET/CT findings were compared to histology, MRI or fine needle aspiration (FNA) to estimate the diagnostic accuracy. The diagnostic performance of PET/CT performed in patients with and without a clinical suspicion of relapse was compared. 238 patients (526 scans) were included. Of the 526 scans 130 (25%) scans were PET-positive, 365 (69%) PET-negative, and 28 (5%) had equivocal findings. Sensitivity was 89% [0.82-0.94], specificity 92% [0.89-0.95], positive and negative predictive values of 78% [0.70-0.84] and 97% [0.94-0.98] respectively. When stratified for reason of referral there was no statistical significant difference in the diagnostic accuracy of PET/CT between patients referred with or without a clinical suspicion of relapse. This study demonstrates that PET/CT despite a moderate sensitivity has a high negative predictive value in the follow-up of melanoma patients. Thus, a negative PET/CT-scan essentially rules out relapse. However, the frequency of false positive findings is relatively high, especially among patients undergoing a “routine” PET/CT with no clinical suspicion of relapse, potentially causing anxiety and leading to further diagnostic procedures. PMID:29348980

  14. The value of FDG PET/CT for follow-up of patients with melanoma: a retrospective analysis.

    PubMed

    Vensby, Philip H; Schmidt, Grethe; Kjær, Andreas; Fischer, Barbara M

    2017-01-01

    The incidence of melanoma (MM) is among the fastest rising cancers in the western countries. Positron Emission Tomography with Computed Tomography (PET/CT) is a valuable non-invasive tool for the diagnosis and staging of patients with MM. However, research on the value of PET/CT in follow-up of melanoma patients is limited. This study assesses the diagnostic value of PET/CT for follow-up after melanoma surgery. This retrospective study includes patients with MM who performed at least one PET/CT scan after initial surgery and staging. PET/CT findings were compared to histology, MRI or fine needle aspiration (FNA) to estimate the diagnostic accuracy. The diagnostic performance of PET/CT performed in patients with and without a clinical suspicion of relapse was compared. 238 patients (526 scans) were included. Of the 526 scans 130 (25%) scans were PET-positive, 365 (69%) PET-negative, and 28 (5%) had equivocal findings. Sensitivity was 89% [0.82-0.94], specificity 92% [0.89-0.95], positive and negative predictive values of 78% [0.70-0.84] and 97% [0.94-0.98] respectively. When stratified for reason of referral there was no statistical significant difference in the diagnostic accuracy of PET/CT between patients referred with or without a clinical suspicion of relapse. This study demonstrates that PET/CT despite a moderate sensitivity has a high negative predictive value in the follow-up of melanoma patients. Thus, a negative PET/CT-scan essentially rules out relapse. However, the frequency of false positive findings is relatively high, especially among patients undergoing a "routine" PET/CT with no clinical suspicion of relapse, potentially causing anxiety and leading to further diagnostic procedures.

  15. Assessing stapes piston position using computed tomography: a cadaveric study.

    PubMed

    Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary

    2009-02-01

    Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.

  16. An audit of imaging test utilization for the management of lymphoma in an oncology hospital: implications for resource planning?

    PubMed

    Schwartz, A; Gospodarowicz, M K; Khalili, K; Pintilie, M; Goddard, S; Keller, A; Tsang, R W

    2006-02-01

    The purpose of this study was to assist with resource planning by examining the pattern of physician utilization of imaging procedures for lymphoma patients in a dedicated oncology hospital. The proportion of imaging tests ordered for routine follow up with no specific clinical indication was quantified, with specific attention to CT scans. A 3-month audit was performed. The reasons for ordering all imaging procedures (X-rays, CT scans, ultrasound, nuclear scan and MRI) were determined through a retrospective chart review. 411 lymphoma patients had 686 assessments (sets of imaging tests) and 981 procedures (individual imaging tests). Most procedures were CT scans (52%) and chest radiographs (30%). The most common reasons for ordering imaging were assessing response (23%), and investigating new symptoms (19%). Routine follow up constituted 21% of the assessments (142/686), and of these, 82% were chest radiographs (116/142), while 24% (34/142) were CT scans. With analysis restricted to CT scans (296 assessments in 248 patients), the most common reason for ordering CT scans were response evaluation (40%), and suspicion of recurrence and/or new symptom (23%). Follow-up CT scans done with no clinical indication comprised 8% (25/296) of all CT assessments. Staging CT scans were under-represented at 6% of all assessments. Imaging with CT scans for follow up of asymptomatic patients is infrequent. However, scans done for staging new lymphoma patients were unexpectedly low in frequency, due to scans done elsewhere prior to referral. This analysis uncovered utilization patterns, helped resource planning and provided data to reduce unnecessary imaging procedures.

  17. Variations in the intensive use of head CT for elderly patients with hemorrhagic stroke.

    PubMed

    Bekelis, Kimon; Fisher, Elliott S; Labropoulos, Nicos; Zhou, Weiping; Skinner, Jonathan

    2015-04-01

    To investigate the variability in head computed tomographic (CT) scanning in patients with hemorrhagic stroke in U.S. hospitals, its association with mortality, and the number of different physicians consulted. The study was approved by the Committee for the Protection of Human Subjects at Dartmouth College. A retrospective analysis of the Medicare fee-for-service claims data was performed for elderly patients admitted for hemorrhagic stroke in 2008-2009, with 1-year follow-up through 2010. Risk-adjusted primary outcome measures were mean number of head CT scans performed and high-intensity use of head CT (six or more head CT scans performed in the year after admission). We examined the association of high-intensity use of head CT with the number of different physicians consulted and mortality. A total of 53 272 patients (mean age, 79.6 years; 31 377 women [58.9%]) with hemorrhagic stroke were identified in the study period. The mean number of head CT scans conducted in the year after admission for stroke was 3.4; 8737 patients (16.4%) underwent six or more scans. Among the hospitals with the highest case volume (more than 50 patients with hemorrhagic stroke), risk-adjusted rates ranged from 8.0% to 48.1%. The correlation coefficient between number of physicians consulted and rates of high-intensity use of head CT was 0.522 (P < .01) for all hospitals and 0.50 (P < .01) for the highest-volume hospitals. No improvement in 1-year mortality was found for patients undergoing six or more head CT scans (odds ratio, 0.84; 95% confidence interval: 0.69, 1.02). High rates of head CT use for patients with hemorrhagic stroke are frequently observed, without an association with decreased mortality. A higher number of physicians consulted was associated with high-intensity use of head CT. © RSNA, 2014 Online supplemental material is available for this article.

  18. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression.

    PubMed

    Blokhuis, Gijsbert J; Bleeker-Rovers, Chantal P; Diender, Marije G; Oyen, Wim J G; Draaisma, Jos M Th; de Geus-Oei, Lioe-Fee

    2014-10-01

    Fever of unknown origin (FUO) and unexplained fever during immune suppression in children are challenging medical problems. The aim of this study is to investigate the diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET combined with computed tomography (FDG-PET/CT) in children with FUO and in children with unexplained fever during immune suppression. All FDG-PET/(CT) scans performed in the Radboud university medical center for the evaluation of FUO or unexplained fever during immune suppression in the last 10 years were reviewed. Results were compared with the final clinical diagnosis. FDG-PET/(CT) scans were performed in 31 children with FUO. A final diagnosis was established in 16 cases (52 %). Of the total number of scans, 32 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in these patients was 80 % and 78 %, respectively. FDG-PET/(CT) scans were performed in 12 children with unexplained fever during immune suppression. A final diagnosis was established in nine patients (75 %). Of the total number of these scans, 58 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in children with unexplained fever during immune suppression was 78 % and 67 %, respectively. FDG-PET/CT appears a valuable imaging technique in the evaluation of children with FUO and in the diagnostic process of children with unexplained fever during immune suppression. Prospective studies of FDG-PET/CT as part of a structured diagnostic protocol are warranted to assess the additional diagnostic value.

  19. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    PubMed

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. Blend Sign on Computed Tomography: Novel and Reliable Predictor for Early Hematoma Growth in Patients With Intracerebral Hemorrhage.

    PubMed

    Li, Qi; Zhang, Gang; Huang, Yuan-Jun; Dong, Mei-Xue; Lv, Fa-Jin; Wei, Xiao; Chen, Jian-Jun; Zhang, Li-Juan; Qin, Xin-Yue; Xie, Peng

    2015-08-01

    Early hematoma growth is not uncommon in patients with intracerebral hemorrhage and is an independent predictor of poor functional outcome. The purpose of our study was to report and validate the use of our newly identified computed tomographic (CT) blend sign in predicting early hematoma growth. Patients with intracerebral hemorrhage who underwent baseline CT scan within 6 hours after onset of symptoms were included. The follow-up CT scan was performed within 24 hours after the baseline CT scan. Significant hematoma growth was defined as an increase in hematoma volume of >33% or an absolute increase of hematoma volume of >12.5 mL. The blend sign on admission nonenhanced CT was defined as blending of hypoattenuating area and hyperattenuating region with a well-defined margin. Univariate and multivariable logistic regression analyses were performed to assess the relationship between the presence of the blend sign on nonenhanced admission CT and early hematoma growth. A total of 172 patients were included in our study. Blend sign was observed in 29 of 172 (16.9%) patients with intracerebral hemorrhage on baseline nonenhanced CT scan. Of the 61 patients with hematoma growth, 24 (39.3%) had blend sign on admission CT scan. Interobserver agreement for identifying blend sign was excellent between the 2 readers (κ=0.957). The multivariate logistic regression analysis demonstrated that the time to baseline CT scan, initial hematoma volume, and presence of blend sign on baseline CT scan to be independent predictors of early hematoma growth. The sensitivity, specificity, positive and negative predictive values of blend sign for predicting hematoma growth were 39.3%, 95.5%, 82.7%, and 74.1%, respectively. The CT blend sign could be easily identified on regular nonenhanced CT and is highly specific for predicting hematoma growth. © 2015 American Heart Association, Inc.

  1. Projected cancer risks potentially related to past, current, and future practices in paediatric CT in the United Kingdom, 1990-2020.

    PubMed

    Journy, Neige M Y; Lee, Choonsik; Harbron, Richard W; McHugh, Kieran; Pearce, Mark S; Berrington de González, Amy

    2017-01-03

    To project risks of developing cancer and the number of cases potentially induced by past, current, and future computed tomography (CT) scans performed in the United Kingdom in individuals aged <20 years. Organ doses were estimated from surveys of individual scan parameters and CT protocols used in the United Kingdom. Frequencies of scans were estimated from the NHS Diagnostic Imaging Dataset. Excess lifetime risks (ELRs) of radiation-related cancer were calculated as cumulative lifetime risks, accounting for survival probabilities, using the RadRAT risk assessment tool. In 2000-2008, ELRs ranged from 0.3 to 1 per 1000 head scans and 1 to 5 per 1000 non-head scans. ELRs per scan were reduced by 50-70% in 2000-2008 compared with 1990-1995, subsequent to dose reduction over time. The 130 750 scans performed in 2015 in the United Kingdom were projected to induce 64 (90% uncertainty interval (UI): 38-113) future cancers. Current practices would lead to about 300 (90% UI: 230-680) future cancers induced by scans performed in 2016-2020. Absolute excess risks from single exposures would be low compared with background risks, but even small increases in annual CT rates over the next years would substantially increase the number of potential subsequent cancers.

  2. Contribution of CT scan and CT-guided aspiration in the management of retropharyngeal abscess in children based on a series of 18 cases.

    PubMed

    Martin, C A; Gabrillargues, J; Louvrier, C; Saroul, N; Mom, T; Gilain, L

    2014-11-01

    This study was designed to analyse the contribution of CT scan to the management of retropharyngeal abscess in children and the place of CT-guided percutaneous aspiration as an alternative to surgical drainage. Retrospective study including 18 children with a mean age of 38 months [range: 5-67 months] presenting with retropharyngeal infection between 2006 and 2011. All cases were initially assessed by contrast-enhanced CT scan of the neck. Clinical, radiological treatment and bacteriological data were collected. Radiological results were correlated with surgical and percutaneous aspiration findings (presence or absence of an abscess). The initial CT scan detected 14 abscesses, 3 cases of non-suppurative lymphadenitis and one case of retropharyngeal oedema. One case of non-suppurative lymphadenitis progressed to abscess after failure of antibiotic therapy and was treated surgically. Surgical drainage revealed a purulent collection in 11 cases and no collection in 3 cases. Four CT-guided percutaneous aspirations were successfully performed. Three cases were treated by antibiotics alone (2 cases of lymphadenitis and 1 case of retropharyngeal oedema). Bacteriological examinations revealed the presence of Streptococcus pyogenes in 78.5% of cases. The positive predictive value of the initial CT scan was 78.8% in our series. Contrast-enhanced neck CT scan confirmed the diagnosis of retropharyngeal abscess and the indication for surgical drainage. It must be performed urgently, on admission. When it is decided to treat the patient with antibiotics alone, follow-up imaging should be performed in the absence of improvement 24 to 48 hours after starting antibiotics. CT-guided percutaneous aspiration is both a diagnostic modality confirming abscess formation of an inflammatory lesion of the retropharyngeal space as well as a therapeutic tool, sometimes avoiding the need for surgical drainage. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction.

    PubMed

    Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R

    2012-04-01

    To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P < .01). CNR values were also significantly higher at ASIR levels of ≥40% (P < .01). Blinded qualitative review demonstrated significant improvements in perceived image noise, artifacts, and GM-WM differentiation at ASIR levels ≥60% (P < .01). These results demonstrate that the use of ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.

  4. Computed tomographic-based quantification of emphysema and correlation to pulmonary function and mechanics.

    PubMed

    Washko, George R; Criner, Gerald J; Mohsenifar, Zab; Sciurba, Frank C; Sharafkhaneh, Amir; Make, Barry J; Hoffman, Eric A; Reilly, John J

    2008-06-01

    Computed tomographic based indices of emphysematous lung destruction may highlight differences in disease pathogenesis and further enable the classification of subjects with Chronic Obstructive Pulmonary Disease. While there are multiple techniques that can be utilized for such radiographic analysis, there is very little published information comparing the performance of these methods in a clinical case series. Our objective was to examine several quantitative and semi-quantitative methods for the assessment of the burden of emphysema apparent on computed tomographic scans and compare their ability to predict lung mechanics and function. Automated densitometric analysis was performed on 1094 computed tomographic scans collected upon enrollment into the National Emphysema Treatment Trial. Trained radiologists performed an additional visual grading of emphysema on high resolution CT scans. Full pulmonary function test results were available for correlation, with a subset of subjects having additional measurements of lung static recoil. There was a wide range of emphysematous lung destruction apparent on the CT scans and univariate correlations to measures of lung function were of modest strength. No single method of CT scan analysis clearly outperformed the rest of the group. Quantification of the burden of emphysematous lung destruction apparent on CT scan is a weak predictor of lung function and mechanics in severe COPD with no uniformly superior method found to perform this analysis. The CT based quantification of emphysema may augment pulmonary function testing in the characterization of COPD by providing complementary phenotypic information.

  5. Chest CT scan findings in World Trade Center workers.

    PubMed

    de la Hoz, Rafael E; Weber, Jonathan; Xu, Dongming; Doucette, John T; Liu, Xiaoyu; Carson, Deborah A; Celedón, Juan C

    2018-03-15

    We examined the chest CT scans of 1,453 WTC responders using the International Classification of High-resolution CT for Occupational and Environmental Respiratory Diseases. Univariate and bivariate analyses of potential work-related pleural abnormalities were performed with pre-WTC and WTC-related occupational exposure data, spirometry, demographics and quantitative CT measurements. Logistic regression was used to evaluate occupational predictors of those abnormalities. Chest CT scans were performed first at a median of 6.8 years after 9/11/2001. Pleural abnormalities were the most frequent (21.1%) across all occupational groups In multivariable analyses, significant pre-WTC occupational asbestos exposure, and work as laborer/cleaner were predictive of pleural abnormalities, with prevalence being highest for the Polish subgroup (n = 237) of our population. Continued occupational lung disease surveillance is warranted in this cohort.

  6. Is appendiceal CT scan overused for evaluating patients with right lower quadrant pain?

    PubMed

    Safran, D B; Pilati, D; Folz, E; Oller, D

    2001-05-01

    Reports citing excellent sensitivity, specificity, and predictive accuracy of focused appendiceal computed tomography (CT) and showing an overall reduction in resource use and nontherapeutic laparotomies have led to increasing use of that imaging modality. Diagnostic algorithms have begun to incorporate appendiceal CT for patients presenting to the emergency department with right lower quadrant pain. We present a series of 4 cases in which use of appendiceal CT ultimately led to increased cost, resource use, and complexity in patient care. The results of these cases support an argument against unbridled use of appendiceal CT scanning and reinforce the need for clinical evaluation by the operating surgeon before routine performance of appendiceal CT scan.

  7. High pitch third generation dual-source CT: Coronary and Cardiac Visualization on Routine Chest CT

    PubMed Central

    Sandfort, Veit; Ahlman, Mark; Jones, Elizabeth; Selwaness, Mariana; Chen, Marcus; Folio, Les; Bluemke, David A.

    2016-01-01

    Background Chest CT scans are frequently performed in radiology departments but have not previously contained detailed depiction of cardiac structures. Objectives To evaluate myocardial and coronary visualization on high-pitch non-gated CT of the chest using 3rd generation dual-source computed tomography (CT). Methods Cardiac anatomy of patients who had 3rd generation, non-gated high pitch contrast enhanced chest CT and who also had prior conventional (low pitch) chest CT as part of a chest abdomen pelvis exam was evaluated. Cardiac image features were scored by reviewers blinded to diagnosis and pitch. Paired analysis was performed. Results 3862 coronary segments and 2220 cardiac structures were evaluated by two readers in 222 CT scans. Most patients (97.2%) had chest CT for oncologic evaluation. The median pitch was 2.34 (IQR 2.05, 2.65) in high pitch and 0.8 (IQR 0.8, 0.8) in low pitch scans (p<0.001). High pitch CT showed higher image visualization scores for all cardiovascular structures compared with conventional pitch scans (p<0.0001). Coronary arteries were visualized in 9 coronary segments per exam in high pitch scans versus 2 segments for conventional pitch (p<0.0001). Radiation exposure was lower in the high pitch group compared with the conventional pitch group (median CTDIvol 10.83 vs. 12.36 mGy and DLP 790 vs. 827 mGycm respectively, p <0.01 for both) with comparable image noise (p=0.43). Conclusion Myocardial structure and coronary arteries are frequently visualized on non-gated 3rd generation chest CT. These results raise the question of whether the heart and coronary arteries should be routinely interpreted on routine chest CT that is otherwise obtained for non-cardiac indications. PMID:27133589

  8. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration.

    PubMed

    Wolthaus, J W H; Sonke, J J; van Herk, M; Damen, E M F

    2008-09-01

    lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods < 0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of "shape differences" was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning.

  9. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less

  10. Optimization of the scan protocols for CT-based material extraction in small animal PET/CT studies

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Ching; Yu, Jhih-An; Yang, Bang-Hung; Wu, Tung-Hsin

    2013-12-01

    We investigated the effects of scan protocols on CT-based material extraction to minimize radiation dose while maintaining sufficient image information in small animal studies. The phantom simulation experiments were performed with the high dose (HD), medium dose (MD) and low dose (LD) protocols at 50, 70 and 80 kVp with varying mA s. The reconstructed CT images were segmented based on Hounsfield unit (HU)-physical density (ρ) calibration curves and the dual-energy CT-based (DECT) method. Compared to the (HU;ρ) method performed on CT images acquired with the 80 kVp HD protocol, a 2-fold improvement in segmentation accuracy and a 7.5-fold reduction in radiation dose were observed when the DECT method was performed on CT images acquired with the 50/80 kVp LD protocol, showing the possibility to reduce radiation dose while achieving high segmentation accuracy.

  11. With "big data" comes big responsibility: outreach to North Carolina Medicaid patients with 10 or more computed tomography scans in 12 months.

    PubMed

    Biola, Holly; Best, Randall M; Lahlou, Rita M; Burke, Lauren M; Dewar, Charles; Jackson, Carlos T; Broder, Joshua; Grey, Linda; Semelka, Richard C; Dobson, Allen

    2014-01-01

    Patients are being exposed to increasing levels of ionizing radiation, much of it from computed tomography (CT) scans. Adults without a cancer diagnosis who received 10 or more CT scans in 2010 were identified from North Carolina Medicaid claims data and were sent a letter in July 2011 informing them of their radiation exposure; those who had undergone 20 or more CT scans in 2010 were also telephoned. The CT scan exposure of these high-exposure patients during the 12 months following these interventions was compared with that of adult Medicaid patients without cancer who had at least 1 CT scan but were not in the intervention population. The average number of CT scans per month for the high-exposure population decreased over time, but most of that reduction occurred 6-9 months before our interventions took place. At about the same time, the number of CT scans per month also decreased in adult Medicaid patients without cancer who had at least 1 CT scan but were not in the intervention population. Our data do not include information about CT scans that may have been performed during times when patients were not covered by Medicaid. Some of our letters may not have been received or understood. Some high-exposure patients were unintentionally excluded from our study because organization of data on Medicaid claims varies by setting of care. Our patient education intervention was not temporally associated with significant decreases in subsequent CT exposure. Effecting behavior change to reduce exposure to ionizing radiation requires more than an educational letter or telephone call.

  12. Pediatric Emergency CT Scans at a Children's Hospital and at Community Hospitals: Radiation Technical Factors Are an Important Source of Radiation Exposure.

    PubMed

    Agarwal, Saurabh; Jokerst, Clinton; Siegel, Marilyn J; Hildebolt, Charles

    2015-08-01

    This article compares the technical factors-in particular, tube current and voltage-and the resultant exposure to radiation associated with CT examinations performed at a children's hospital and at more general community hospital emergency departments (EDs). CT scans obtained at community hospital EDs were retrospectively reviewed and compared with CT scans obtained at a children's hospital, to assess differences in kilovoltage, tube current, and volume CT dose index (CTDIvol) used. The number of scans obtained during the contrast-enhanced phase was also assessed. Parametric and nonparametric statistical analyses were used to test differences. A total of 233 body CT examinations were performed at community hospitals, and 287 were performed at a children's hospital. At both types of hospital, the median patient age was 12 years (p = 0.66). Of the body CT scans obtained at community hospitals that focused on the care of adult patients, 194 of 233 (83%) used a tube voltage of 120 kVp, 29 of 233 (12%) used 100 kVp, and two of 233 (< 1%) used 80 kVp. Of the body CT scans obtained at the children's hospital, 121 of 287 (42%) used a tube voltage of 120 kVp, 129 of 287 (45%) used 100 kVp, and 36 of 287 (13%) used 80 kVp. The median tube current was also lower at the children's hospital (110 vs 125 mA) (p < 0.001). At the community hospitals, 11 of 233 studies were multiphasic, whereas at the children's hospital, there were no multiphasic studies. For all CT types, the median CTDIvol was 4.9 mGy (range, 2.5-8.2 mGy) at the children's hospital and 8.6 mGy (range, 6.0-14.4 mGy) at the community hospitals (p < 0.001). The results of this study suggest that a large proportion of children who undergo CT at community hospitals receive relatively higher radiation doses than children who undergo CT at children's hospitals. This finding is related to the higher tube settings (in particular, kilovoltage) used at community hospitals.

  13. WE-AB-BRA-04: Evaluation of the Tumor Registration Error in Biopsy Procedures Performed Under Real Time PET/CT Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanchon, L; INSERM U1101, Brest; Apte, A

    2015-06-15

    Purpose: PET/CT guidance is used for biopsies of metabolically active lesions, which are not well seen on CT alone or to target the metabolically active tissue in tumor ablations. It has also been shown that PET/CT guided biopsies provide an opportunity to verify the location of the lesion border at the place of needle insertion. However the error in needle placement with respect to the metabolically active region may be affected by motion between the PET/CT scan performed at the start of the procedure and the CT scan performed with the needle in place and this error has not beenmore » previously quantified. Methods: Specimens from 31 PET/CT guided biopsies were investigated and correlated to the intraoperative PET scan under an IRB approved HIPAA compliant protocol. For 4 of the cases in which larger motion was suspected a second PET scan was obtained with the needle in place. The CT and the PET images obtained before and after the needle insertion were used to calculate the displacement of the voxels along the needle path. CTpost was registered to CTpre using a free form deformable registration and then fused with PETpre. The shifts between the PET image contours (42% of SUVmax) for PETpre and PETpost were obtained at the needle position. Results: For these extreme cases the displacement of the CT voxels along the needle path ranged from 2.9 to 8 mm with a mean of 5 mm. The shift of the PET image segmentation contours (42% of SUVmax) at the needle position ranged from 2.3 to 7 mm between the two scans. Conclusion: Evaluation of the mis-registration between the CT with the needle in place and the pre-biopsy PET can be obtained using deformable registration of the respective CT scans and can be used to indicate the need of a second PET in real-time. This work is supported in part by a grant from Biospace Lab, S.A.« less

  14. Relevance of early head CT scans following neurosurgical procedures: an analysis of 892 intracranial procedures at Rush University Medical Center.

    PubMed

    Fontes, Ricardo B V; Smith, Adam P; Muñoz, Lorenzo F; Byrne, Richard W; Traynelis, Vincent C

    2014-08-01

    Early postoperative head CT scanning is routinely performed following intracranial procedures for detection of complications, but its real value remains uncertain: so-called abnormal results are frequently found, but active, emergency intervention based on these findings may be rare. The authors' objective was to analyze whether early postoperative CT scans led to emergency surgical interventions and if the results of neurological examination predicted this occurrence. The authors retrospectively analyzed 892 intracranial procedures followed by an early postoperative CT scan performed over a 1-year period at Rush University Medical Center and classified these cases according to postoperative neurological status: baseline, predicted neurological change, unexpected neurological change, and sedated or comatose. The interpretation of CT results was reviewed and unexpected CT findings were classified based on immediate action taken: Type I, additional observation and CT; Type II, active nonsurgical intervention; and Type III, surgical intervention. Results were compared between neurological examination groups with the Fisher exact test. Patients with unexpected neurological changes or in the sedated or comatose group had significantly more unexpected findings on the postoperative CT (p < 0.001; OR 19.2 and 2.3, respectively) and Type II/III interventions (p < 0.001) than patients at baseline. Patients at baseline or with expected neurological changes still had a rate of Type II/III changes in the 2.2%-2.4% range; however, no patient required an immediate return to the operating room. Over a 1-year period in an academic neurosurgery service, no patient who was neurologically intact or who had a predicted neurological change required an immediate return to the operating room based on early postoperative CT findings. Obtaining early CT scans should not be a priority in these patients and may even be cancelled in favor of MRI studies, if the latter have already been planned and can be performed safely and in a timely manner. Early postoperative CT scanning does not assure an uneventful course, nor should it replace accurate and frequent neurological checks, because operative interventions were always decided in conjunction with the neurological examination.

  15. Computed tomography has an important role in hollow viscus and mesenteric injuries after blunt abdominal trauma.

    PubMed

    Tan, Ker-Kan; Liu, Jody Zhiyang; Go, Tsung-Shyen; Vijayan, Appasamy; Chiu, Ming-Terk

    2010-05-01

    Computed tomographic (CT) scans have become invaluable in the management of patients with blunt abdominal trauma. No clear consensus exists on its role in hollow viscus injuries (HVI) and mesenteric injuries (MI). The aim of this study was to correlate operative findings of HVI and MI to findings on pre-operative CT. All patients treated for blunt abdominal trauma at Tan Tock Seng Hospital from January 2003 to January 2008 were reviewed. CT scans were only performed if the patients were haemodynamically stable and indicated. All scans were performed with intravenous contrast using a 4-slice CT scanner from 2003 to December 2004 and a 64-slice CT scanner from January 2005 onwards. All cases with documented HVI/MI that underwent both CT scans and exploratory laparotomy were analysed. Thirty-one patients formed the study group, with median age of 40 (range, 22-65) years and a significant male (83.9%) predominance. Vehicular-related incidents accounted for 67.7% of the injuries and the median Injury Severity Score (ISS) was 13 (4-50). The 2 commonest findings on CT scans were extra-luminal gas (35.5%) and free fluid without significant solid organ injuries (93.5%). During exploratory laparotomy, perforation of hollow viscus (51.6%) occurred more frequently than suspected from the initial CT findings of extra-luminal gas. Other notable findings included haemoperitoneum (64.5%), and mesenteric tears (67.7%). None of our patients with HVI and MI had a normal pre-operative CT scan. Our study suggests that patients with surgically confirmed HVI and MI found at laparotomy were very likely to have an abnormal pre-operative CT scan. Unexplained free fluid was a very common finding in blunt HVI/MI and is one major indication to consider exploratory laparotomy. (c) 2009 Elsevier Ltd. All rights reserved.

  16. Effects of Iterative Reconstruction Algorithms on Computer-assisted Detection (CAD) Software for Lung Nodules in Ultra-low-dose CT for Lung Cancer Screening.

    PubMed

    Nomura, Yukihiro; Higaki, Toru; Fujita, Masayo; Miki, Soichiro; Awaya, Yoshikazu; Nakanishi, Toshio; Yoshikawa, Takeharu; Hayashi, Naoto; Awai, Kazuo

    2017-02-01

    This study aimed to evaluate the effects of iterative reconstruction (IR) algorithms on computer-assisted detection (CAD) software for lung nodules in ultra-low-dose computed tomography (ULD-CT) for lung cancer screening. We selected 85 subjects who underwent both a low-dose CT (LD-CT) scan and an additional ULD-CT scan in our lung cancer screening program for high-risk populations. The LD-CT scans were reconstructed with filtered back projection (FBP; LD-FBP). The ULD-CT scans were reconstructed with FBP (ULD-FBP), adaptive iterative dose reduction 3D (AIDR 3D; ULD-AIDR 3D), and forward projected model-based IR solution (FIRST; ULD-FIRST). CAD software for lung nodules was applied to each image dataset, and the performance of the CAD software was compared among the different IR algorithms. The mean volume CT dose indexes were 3.02 mGy (LD-CT) and 0.30 mGy (ULD-CT). For overall nodules, the sensitivities of CAD software at 3.0 false positives per case were 78.7% (LD-FBP), 9.3% (ULD-FBP), 69.4% (ULD-AIDR 3D), and 77.8% (ULD-FIRST). Statistical analysis showed that the sensitivities of ULD-AIDR 3D and ULD-FIRST were significantly higher than that of ULD-FBP (P < .001). The performance of CAD software in ULD-CT was improved by using IR algorithms. In particular, the performance of CAD in ULD-FIRST was almost equivalent to that in LD-FBP. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  17. Projected cancer risks potentially related to past, current, and future practices in paediatric CT in the United Kingdom, 1990–2020

    PubMed Central

    Journy, Neige M Y; Lee, Choonsik; Harbron, Richard W; McHugh, Kieran; Pearce, Mark S; Berrington de González, Amy

    2017-01-01

    Background: To project risks of developing cancer and the number of cases potentially induced by past, current, and future computed tomography (CT) scans performed in the United Kingdom in individuals aged <20 years. Methods: Organ doses were estimated from surveys of individual scan parameters and CT protocols used in the United Kingdom. Frequencies of scans were estimated from the NHS Diagnostic Imaging Dataset. Excess lifetime risks (ELRs) of radiation-related cancer were calculated as cumulative lifetime risks, accounting for survival probabilities, using the RadRAT risk assessment tool. Results: In 2000–2008, ELRs ranged from 0.3 to 1 per 1000 head scans and 1 to 5 per 1000 non-head scans. ELRs per scan were reduced by 50–70% in 2000–2008 compared with 1990–1995, subsequent to dose reduction over time. The 130 750 scans performed in 2015 in the United Kingdom were projected to induce 64 (90% uncertainty interval (UI): 38–113) future cancers. Current practices would lead to about 300 (90% UI: 230–680) future cancers induced by scans performed in 2016–2020. Conclusions: Absolute excess risks from single exposures would be low compared with background risks, but even small increases in annual CT rates over the next years would substantially increase the number of potential subsequent cancers. PMID:27824812

  18. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices.

    PubMed

    Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca

    2017-06-01

    Radiation doses for computed tomography (CT) vary substantially across institutions. To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After the audit and meeting, head CT doses varied less, although some institutions increased and some decreased mean head CT doses and the proportion above benchmarks. Reviewing institutional doses and sharing dose-optimization best practices resulted in lower radiation doses for chest and abdominal CT and more consistent doses for head CT.

  19. Medical conditions associated with the use of CT in children and young adults, Great Britain, 1995–2008

    PubMed Central

    McHugh, Kieran; Harbron, Richard W; Pearce, Mark S; Berrington De Gonzalez, Amy

    2016-01-01

    Objective: To describe the medical conditions associated with the use of CT in children or young adults with no previous cancer diagnosis. Methods: Radiologist reports for scans performed in 1995–2008 in non-cancer patients less than 22 years of age were collected from the radiology information system in 44 hospitals of Great Britain. By semantic search, an automated procedure identified 185 medical conditions within the radiologist reports. Manual validation of a subsample by a paediatric radiologist showed a satisfactory performance of the automatic coding procedure. Results: Medical information was extracted for 37,807 scans; 19.5% scans were performed in children less than 5 years old; 52.0% scans were performed in 2000 or after. Trauma, diseases of the nervous (mainly hydrocephalus) or the circulatory system were each mentioned in 25–30% of scans. Hydrocephalus was mentioned in 19% of all scans, 59% of scans repeated ≥5 times in a year, and was the most frequent condition in children less than 5 years of age. Congenital diseases/malformations, disorders of the musculoskeletal system/connective tissues and infectious or respiratory diseases were each mentioned in 5–10% of scans. Suspicionor diagnosis of benign or malignant tumour was identified in 5% of scans. Conclusion: This study describes the medical conditions that likely underlie the use of CT in children in Great Britain. It shows that patients with hydrocephalus may receive high cumulative radiation exposures from CT in early life, i.e. at ages when they are most sensitive to radiation. Advances in knowledge: The majority of scans were unrelated to cancer suspicion. Repeated scans over time were mainly associated with the management of hydrocephalus. PMID:27767331

  20. Medical conditions associated with the use of CT in children and young adults, Great Britain, 1995-2008.

    PubMed

    Journy, Neige M; McHugh, Kieran; Harbron, Richard W; Pearce, Mark S; Berrington De Gonzalez, Amy

    2016-12-01

    To describe the medical conditions associated with the use of CT in children or young adults with no previous cancer diagnosis. Radiologist reports for scans performed in 1995-2008 in non-cancer patients less than 22 years of age were collected from the radiology information system in 44 hospitals of Great Britain. By semantic search, an automated procedure identified 185 medical conditions within the radiologist reports. Manual validation of a subsample by a paediatric radiologist showed a satisfactory performance of the automatic coding procedure. Medical information was extracted for 37,807 scans; 19.5% scans were performed in children less than 5 years old; 52.0% scans were performed in 2000 or after. Trauma, diseases of the nervous (mainly hydrocephalus) or the circulatory system were each mentioned in 25-30% of scans. Hydrocephalus was mentioned in 19% of all scans, 59% of scans repeated ≥5 times in a year, and was the most frequent condition in children less than 5 years of age. Congenital diseases/malformations, disorders of the musculoskeletal system/connective tissues and infectious or respiratory diseases were each mentioned in 5-10% of scans. Suspicionor diagnosis of benign or malignant tumour was identified in 5% of scans. This study describes the medical conditions that likely underlie the use of CT in children in Great Britain. It shows that patients with hydrocephalus may receive high cumulative radiation exposures from CT in early life, i.e. at ages when they are most sensitive to radiation. Advances in knowledge: The majority of scans were unrelated to cancer suspicion. Repeated scans over time were mainly associated with the management of hydrocephalus.

  1. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    PubMed

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some differences in texture details. Moreover, quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation indicate that the short- and half-scan configurations yield results in close agreement with the ground-truth information and that of the full-scan configuration. The one-step method considered can compensate effectively for the nonlinear spectral response in full- and partial-angular-scan dual-energy CT. It can be exploited for enabling partial-angular-scan configurations on standard CT scanner without involving additional hardware. Visual inspection and quantitative studies reveal that, with the one-step method, partial-angular-scan configurations considered can perform at a level comparable to that of the full-scan configuration, thus suggesting the potential of the two partial-angular-scan configurations in reducing imaging dose and scan time in the standard single-kVp-switch full-scan CT in which two full rotations are performed. The work also yields insights into the investigation and design of other nonstandard scan configurations of potential practical significance in dual-energy CT. © 2018 American Association of Physicists in Medicine.

  2. A CT scan protocol for the detection of radiographic loosening of the glenoid component after total shoulder arthroplasty

    PubMed Central

    2014-01-01

    Background and purpose It is difficult to evaluate glenoid component periprosthetic radiolucencies in total shoulder arthroplasties (TSAs) using plain radiographs. This study was performed to evaluate whether computed tomography (CT) using a specific patient position in the CT scanner provides a better method for assessing radiolucencies in TSA. Methods Following TSA, 11 patients were CT scanned in a lateral decubitus position with maximum forward flexion, which aligns the glenoid orientation with the axis of the CT scanner. Follow-up CT scanning is part of our routine patient care. Glenoid component periprosthetic lucency was assessed according to the Molé score and it was compared to routine plain radiographs by 5 observers. Results The protocol almost completely eliminated metal artifacts in the CT images and allowed accurate assessment of periprosthetic lucency of the glenoid fixation. Positioning of the patient within the CT scanner as described was possible for all 11 patients. A radiolucent line was identified in 54 of the 55 observed CT scans and osteolysis was identified in 25 observations. The average radiolucent line Molé score was 3.4 (SD 2.7) points with plain radiographs and 9.5 (SD 0.8) points with CT scans (p = 0.001). The mean intra-observer variance was lower in the CT scan group than in the plain radiograph group (p = 0.001). Interpretation The CT scan protocol we used is of clinical value in routine assessment of glenoid periprosthetic lucency after TSA. The technique improves the ability to detect and monitor radiolucent lines and, therefore, possibly implant loosening also. PMID:24286563

  3. Hyoid bone development: An assessment of optimal CT scanner parameters and 3D volume rendering techniques

    PubMed Central

    Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.

    2015-01-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349

  4. Hyoid Bone Development: An Assessment Of Optimal CT Scanner Parameters and Three-Dimensional Volume Rendering Techniques.

    PubMed

    Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K

    2015-08-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.

  5. 18F-FDG PET/CT in Detecting Metastatic Infection in Children.

    PubMed

    Kouijzer, Ilse J E; Blokhuis, Gijsbert J; Draaisma, Jos M T; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Bleeker-Rovers, Chantal P

    2016-04-01

    Metastatic infection is a severe complication of bacteremia with high morbidity and mortality. The aim of this study was to investigate the diagnostic value of 18F-FDG PET combined with CT (FDG PET/CT) in children suspected of having metastatic infection. The results of FDG PET/CT scans performed in children because of suspected metastatic infection from September 2003 to June 2013 were analyzed retrospectively. The results were compared with the final clinical diagnosis. FDG PET/CT was performed in 13 children with suspected metastatic infection. Of the total number of FDG PET/CT scans, 38% were clinically helpful. Positive predictive value of FDG PET/CT was 71%, and negative predictive value was 100%. FDG PET/CT appears to be a valuable diagnostic technique in children with suspected metastatic infection. Prospective studies of FDG PET/CT as part of a structured diagnostic protocol are needed to assess the exact additional diagnostic value.

  6. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT.

    PubMed

    Pan, Tinsu

    2005-02-01

    We proposed a data sufficiency condition (DSC) for four-dimensional-CT (4D-CT) imaging on a multislice CT scanner, designed a pitch factor for a helical 4D-CT, and compared the acquisition time, slice sensitivity profile (SSP), effective dose, ability to cope with an irregular breathing cycle, and gating technique (retrospective or prospective) of the helical 4D-CT and the cine 4D-CT on the General Electric (GE) LightSpeed RT (4-slice), Plus (4-slice), Ultra (8-slice) and 16 (16-slice) multislice CT scanners. To satisfy the DSC, a helical or cine 4D-CT acquisition has to collect data at each location for the duration of a breathing cycle plus the duration of data acquisition for an image reconstruction. The conditions for the comparison were 20 cm coverage in the cranial-caudal direction, a 4 s breathing cycle, and half-scan reconstruction. We found that the helical 4D-CT has the advantage of a shorter scan time that is 10% shorter than that of the cine 4D-CT, and the disadvantages of 1.8 times broadening of SSP and requires an additional breathing cycle of scanning to ensure an adequate sampling at the start and end locations. The cine 4D-CT has the advantages of maintaining the same SSP as slice collimation (e.g., 8 x 2.5 mm slice collimation generates 2.5 mm SSP in the cine 4D-CT as opposed to 4.5 mm in the helical 4D-CT) and a lower dose by 4% on the 8- and 16-slice systems, and 8% on the 4-slice system. The advantage of faster scanning in the helical 4D-CT will diminish if a repeat scan at the location of a breathing irregularity becomes necessary. The cine 4D-CT performs better than the helical 4D-CT in the repeat scan because it can scan faster and is more dose efficient.

  7. Use of the initial trauma CT scan to aid in diagnosis of open pelvic fractures.

    PubMed

    Scolaro, John A; Wilson, David J; Routt, Milton Lee Chip; Firoozabadi, Reza

    2015-10-01

    Open pelvic disruptions represent high-energy injuries. The prompt identification and management of these injuries decreases their associated morbidity and mortality. Computed tomography (CT) scans are routinely obtained in the initial evaluation of patients with pelvic injuries. The purpose of this study is to identify the incidence and source of air densities noted on computed tomography (CT) scans of the abdominal and pelvic region in patients with pelvic fractures and evaluate the use of initial CT imaging as an adjunctive diagnostic tool to identify open injuries. A retrospective review of a prospectively collected database was performed at a single institution. Seven hundred and twenty-two consecutive patients with a pelvic disruption over a two-year period were included. Review of initial injury CT scans was performed using bone and lung viewing algorithms to identify the presence of extra-luminal air. The primary outcome was the presence, location and source of air identified on pre-operative CT scans. Secondary measurements were identification of air by plain radiograph and correlation between identified air densities on CT and clinically diagnosed open pelvic fractures. Ninety-eight patients were identified as having extra-luminal air densities on CT scans. Eighty-one patients were included in the final analysis following application of inclusion and exclusion criteria. Air was noted by the radiologist in forty-five (55.6%) instances. Six patients (7.4%) were clinically diagnosed with an open pelvic ring disruption; in two patients (2.4%) this diagnosis was delayed. In all patients, the CT was able to track air from its origin. In patients with pelvic disruptions, the injury CT should also be evaluated for the presence and source of extra-luminal air. In some patients, this finding may represent an open pelvic ring disruption. A complete physical exam and CT evaluation should be used to decrease the missed or delayed diagnosis of an open pelvic ring injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma.

    PubMed

    Giovanella, Luca; Trimboli, Pierpaolo; Verburg, Frederik A; Treglia, Giorgio; Piccardo, Arnoldo; Foppiani, Luca; Ceriani, Luca

    2013-06-01

    To assess the relationship between serum thyroglobulin (Tg) levels, Tg doubling time (Tg-DT) and the diagnostic performance of (18)F-FDG PET/CT in detecting recurrences of (131)I-negative differentiated thyroid carcinoma (DTC). Included in the present study were 102 patients with DTC. All patients were treated by thyroid ablation (e.g. thyroidectomy and (131)I), and underwent (18)F-FDG PET/CT due to detectable Tg levels and negative conventional imaging. Consecutive serum Tg measurements performed before the (18)F-FDG PET/CT examination were used for Tg-DT calculation. The (18)F-FDG PET/CT results were assessed as true or false after histological and/or clinical follow-up. Serum Tg levels were higher in patients with a positive (18)F-FDG PET/CT scan (median 6.7 ng/mL, range 0.7-73.6 ng/mL) than in patients with a negative scan (median 1.8 ng/mL, range 0.5-4.9 ng/mL; P < 0.001). In 43 (88 %) of 49 patients with a true-positive (18)F-FDG PET/CT scan, the Tg levels were >5.5 ng/mL, and in 31 (74 %) of 42 patients with a true-negative (18)F-FDG PET/CT scan, the Tg levels were ≤5.5 ng/mL. A Tg-DT of <1 year was found in 46 of 49 patients (94 %) with a true-positive (18)F-FDG PET/CT scan, and 40 of 42 patients (95 %) with a true-negative scan had a stable or increased Tg-DT. Moreover, combining Tg levels and Tg-DT as selection criteria correctly distinguished between patients with a positive and a negative scan (P<0.0001). The accuracy of (18)F-FDG PET/CT significantly improves when the serum Tg level is above 5.5 ng/mL during levothyroxine treatment or when the Tg-DT is less than 1 year, independent of the absolute value.

  9. Computed tomography of patients with head trauma following road traffic accident in Benin City, Nigeria.

    PubMed

    Eze, K C; Mazeli, F O

    2011-01-01

    The outcome of head trauma as a result of road accident rests with increased use of CT scan and other radiological imaging modalities for prompt diagnosis is important. To find out the time of presentation for CT scan, symptoms for referral for CT scan and pattern of injuries in patients with cranial CT scan following road traffic accidents. Retrospective analysis of cranial computed tomography (CT) films, request cards, duplicate copy of radiology reports, soft copy CT images and case notes of 61 patients who underwent cranial CT scan on account of road traffic accidents. The study CT scans were performed at the radiology department of University Teaching Hospital between 1st January 2002 and 31st December 2004. 51 patients (83.6%) were male while 10 (16.4%) were female with male to female ratio of 5:1. Thirty - eight (62.3%) patients were aged 20-39 years. Forty two patients (68.9%) presented after one week of injury. No patient presented within the first six hours of injury. The symptoms needing referral for CT scan included head injury 30 (49.2%), seizures 10 16.4%), skull fractures 8 (13.1%) and persistent headache 6 (5.6%). A total of 113 lesions were seen as some patients presented with more than one lesion. The findings on CT scan included 10 patients with normal findings , 21 (34.4%) skull fractures , 21 (34.4%) intra-cerebral haemorrhage , 19 (31.2%) brain contusion , 18 (29.5%) paranasal sinus collection,11 (18.0%) cerebral oedema, 10 (16.4%) subdural haematoma and 5 (8.2%) epidural haematoma. Over 80% of the subdural and epidural haematomas were associated with skull fractures. The yield from plain radiography was poor being positive in only 8 (13.1%) while CT scan was positive in 51 (83.61%). Also 75 (about 66%) of the 113 lesions seen on CT scan were treatable surgically. CT scan is an effective imaging modality of patient with road traffic accident and should be promptly requested in symptomatic patients who sustain trauma to the head toward identification of lesions that are amenable to surgical treatment.

  10. Potential for adult-based epidemiological studies to characterize overall cancer risks associated with a lifetime of CT scans.

    PubMed

    Shuryak, Igor; Lubin, Jay H; Brenner, David J

    2014-06-01

    Recent epidemiological studies have suggested that radiation exposure from pediatric CT scanning is associated with small excess cancer risks. However, the majority of CT scans are performed on adults, and most radiation-induced cancers appear during middle or old age, in the same age range as background cancers. Consequently, a logical next step is to investigate the effects of CT scanning in adulthood on lifetime cancer risks by conducting adult-based, appropriately designed epidemiological studies. Here we estimate the sample size required for such studies to detect CT-associated risks. This was achieved by incorporating different age-, sex-, time- and cancer type-dependent models of radiation carcinogenesis into an in silico simulation of a population-based cohort study. This approach simulated individual histories of chest and abdominal CT exposures, deaths and cancer diagnoses. The resultant sample sizes suggest that epidemiological studies of realistically sized cohorts can detect excess lifetime cancer risks from adult CT exposures. For example, retrospective analysis of CT exposure and cancer incidence data from a population-based cohort of 0.4 to 1.3 million (depending on the carcinogenic model) CT-exposed UK adults, aged 25-65 in 1980 and followed until 2015, provides 80% power for detecting cancer risks from chest and abdominal CT scans.

  11. Are CT scans obtained at referring institutions justified prior to transfer to a pediatric trauma center?

    PubMed

    Benedict, Leo Andrew; Paulus, Jessica K; Rideout, Leslie; Chwals, Walter J

    2014-01-01

    To assess whether pediatric trauma patients initially evaluated at referring institutions met Massachusetts statewide trauma field triage criteria for stabilization and immediate transfer to a Pediatric Trauma Center (PTC) without pre-transfer CT imaging. A 3-year retrospective cohort study was completed at our level 1 PTC. Patients with CT imaging at referring institutions were classified according to a triage scheme based on Massachusetts statewide trauma field triage criteria. Demographic data and injury profile characteristics were abstracted from patient medical records and our pediatric trauma registry. A total of 262 patients with 413 CT scans were reviewed from 2008 to 2011. 172 patients scanned (66%, 95% CI: 60%, 71%) met criteria for immediate transfer to a pediatric trauma center. Notably, 110 scans (27% of the total performed at referring institutions) were duplicated within four hours upon arrival to our PTC. GCS score <14 (45%) was the most common requirement for transfer, and CT scan of the head was the most frequent scan obtained (53%). The majority of pediatric trauma patients were subjected to CT scans at referring institutions despite meeting Massachusetts trauma triage guidelines that call for stabilization and immediate transfer to a pediatric trauma center without any CT imaging. © 2014.

  12. Dynamic CT for Parathyroid Adenoma Detection: How Does Radiation Dose Compare With Nuclear Medicine?

    PubMed

    Czarnecki, Caroline A; Einsiedel, Paul F; Phal, Pramit M; Miller, Julie A; Lichtenstein, Meir; Stella, Damien L

    2018-05-01

    Dynamic CT is increasingly used for preoperative localization of parathyroid adenomas, but concerns remain about the radiation effective dose of CT compared with that of 99m Tc-sestamibi scintigraphy. The purpose of this study was to compare the radiation dose delivered by three-phase dynamic CT with that delivered by 99m Tc-sestamibi SPECT/CT performed in accordance with our current protocols and to assess the possible reduction in effective dose achieved by decreasing the scan length (i.e., z-axis) of two phases of the dynamic CT protocol. The effective dose of a 99m Tc-sestamibi nuclear medicine parathyroid study performed with and without coregistration CT was calculated and compared with the effective dose of our current three-phase dynamic CT protocol as well as a proposed protocol involving CT with reduced scan length. The median effective dose for a 99m Tc-sestamibi nuclear medicine study was 5.6 mSv. This increased to 12.4 mSv with the addition of coregistration CT, which is higher than the median effective dose of 9.3 mSv associated with the dynamic CT protocol. Reducing the scan length of two phases in the dynamic CT protocol could reduce the median effective dose to 6.1 mSv, which would be similar to that of the dose from the 99m Tc-sestamibi study alone. Dynamic CT used for the detection of parathyroid adenoma can deliver a lower radiation dose than 99m Tc-sestamibi SPECT/CT. It may be possible to reduce the dose further by decreasing the scan length of two of the phases, although whether this has an impact on accuracy of the localization needs further investigation.

  13. Evaluation of Efficacy of Bone Scan With SPECT/CT in the Management of Low Back Pain: A Study Supported by Differential Diagnostic Local Anesthetic Blocks.

    PubMed

    Jain, Anuj; Jain, Suruchi; Agarwal, Anil; Gambhir, Sanjay; Shamshery, Chetna; Agarwal, Amita

    2015-12-01

    Conventional radiologic modalities provide details only about the anatomic aspect of the various structures of the spine. Frequently the structures that show abnormal morphology may not be the cause of low back pain (LBP). Functional imaging in the form of bone scan along with single photon emission computerized tomography (SPECT/CT) may be helpful in identifying structures causing pain, whether morphologically normal or not. The objective of this study is to evaluate the role of bone scan with SPECT/CT in management of patients with LBP. This is randomized double-blinded controlled study performed on 80 patients with LBP aged 20 to 80 years, ASA physical status I to III. Patients were randomized into bone scan and control groups consisting of 40 patients each. On the basis of the clinical features and radiologic findings a clinical diagnosis was made. After making a clinical diagnosis, the patients in bone scan group were subjected to bone scan with SPECT/CT. On the basis of the finding of the bone scan and SPECT/CT, a new working diagnosis was made and intervention was performed according to the new working diagnosis. Diagnostic blocks in the control group were given based on clinical diagnosis. Controlled comparative diagnostic blocks were performed with local anesthetic. The pain score just after the diagnostic block and at the time of discharge (approximately 4 h later) was recorded; the pain relief was recorded in percentage. In both the groups, sacroilitis was the most common diagnosis followed by facet joint arthropathy. The number of patients obtaining pain relief of >50% was significantly higher in the bone scan-positive group as compared with the control group. Three new clinical conditions were identified in the bone scan group. These conditions were multiple myeloma, avascular necrosis of the femoral head, and ankylosing spondylitis. Bone scan with SPECT/CT was found to complement the clinical workup of patients with LBP. Inclusion of bone scan with SPECT/CT in LBP management protocol can help in making a correct diagnosis. At times it might bring out some new information that may be vital for further management of the patients with LBP.

  14. Effect of topogram-tube angle combination on CT radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Shim, J.; Yoon, M.

    2017-09-01

    This study assessed the ability of various types of topograms, when used with an automatic tube current modulation (ATCM) technique, to reduce radiation dose from computed tomography (CT) scans. Three types of topograms were used with the ATCM technique: (i) anteroposterior (AP) topograms alone, (ii) AP topograms followed by lateral topograms, and (iii) lateral topograms followed by AP topograms. Various regions (chest, abdomen and whole-body) of a humanoid phantom were scanned at several tube voltages (80, 100 and 120 kVp) with the selected topograms. Although the CT dose depended on the order of topograms, the CT dose with respect to patient positioning depended on the number of topograms performed. The magnitude of the difference in CT dose between number and order of topograms was greater for the scans of the abdomen than the chest. These results suggest that, for the Siemens SOMATOM Definition AS CT scanner, choosing the right combination of CT scan conditions with the ATCM technique can minimize radiation dose to a patient.

  15. Leukemia and brain tumors among children after radiation exposure from CT scans: design and methodological opportunities of the Dutch Pediatric CT Study.

    PubMed

    Meulepas, Johanna M; Ronckers, Cécile M; Smets, Anne M J B; Nievelstein, Rutger A J; Jahnen, Andreas; Lee, Choonsik; Kieft, Mariëtte; Laméris, Johan S; van Herk, Marcel; Greuter, Marcel J W; Jeukens, Cécile R L P N; van Straten, Marcel; Visser, Otto; van Leeuwen, Flora E; Hauptmann, Michael

    2014-04-01

    Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation.

  16. 18F-Choline PET/CT scan in staging and biochemical recurrence in prostate cancer patients: Changes in classification and radiotherapy planning.

    PubMed

    Cardona Arboniés, J; Rodríguez Alfonso, B; Mucientes Rasilla, J; Martínez Ballesteros, C; Zapata Paz, I; Prieto Soriano, A; Carballido Rodriguez, J; Mitjavila Casanovas, M

    To evaluate the role of the 18 F-Choline PET/CT in prostate cancer management when detecting distant disease in planning radiotherapy and staging and to evaluate the therapy changes guided by PET/TC results. A retrospective evaluation was performed on 18 F-Choline PET/CT scans of patients with prostate cancer. Staging and planning radiotherapy scans were selected in patients with at least 9 months follow up. There was a total of 56 studies, 33 (58.93%) for staging, and 23 (41.07%) for planning radiotherapy. All scans were obtained using a hybrid PET/CT scanner. The PET/CT acquisition protocol consisted of a dual-phase procedure after the administration of an intravenous injection of 296-370MBq of 18 F-Choline. There were 43 out of 56 (76.8%) scans considered as positive, and 13 (23.2%) were negative. The TNM staging was changed in 13 (23.2%) scans. The PET/CT findings ruled out distant disease in 4 out of 13 scans, and unknown distant disease was detected in 9 (69.3%) scans. 18 F-Choline PET/CT is a useful technique for detecting unknown distant disease in prostate cancer when staging and planning radiotherapy. The inclusion of 18 F-choline PET/CT should be considered in prostate cancer management protocols. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  17. Medical thoracoscopy vs CT scan-guided Abrams pleural needle biopsy for diagnosis of patients with pleural effusions: a randomized, controlled trial.

    PubMed

    Metintas, Muzaffer; Ak, Guntulu; Dundar, Emine; Yildirim, Huseyin; Ozkan, Ragip; Kurt, Emel; Erginel, Sinan; Alatas, Fusun; Metintas, Selma

    2010-06-01

    In cases of pleural effusion, tissue samples can be obtained through Abrams needle pleural biopsy (ANPB), thoracoscopy, or cutting-needle pleural biopsy under the guidance of CT scan (CT-CNPB) for histopathologic analysis. This study aimed to compare the diagnostic efficiency and reliability of ANPB under CT scan guidance (CT-ANPB) with that of medical thoracoscopy in patients with pleural effusion. Between January 2006 and January 2008, 124 patients with exudative pleural effusion that could not be diagnosed by cytologic analysis were included in the study. All patients were randomized after the CT scan was performed. Patients either underwent CT-ANPB or thoracoscopy. The two groups were compared in terms of diagnostic sensitivity and complications associated with the methods used. Of the 124 patients, malignant mesothelioma was diagnosed in 33, metastatic pleural disease in 47, benign pleural disease in 42, and two were of indeterminate origin. In the CT-ANPB group, the diagnostic sensitivity was 87.5%, as compared with 94.1% in the thoracoscopy group; the difference was not statistically significant (P = .252). No difference was identified between the sensitivities of the two methods based on the cause, the CT scan findings, and the degree of pleural thickening. Complication rates were low and acceptable. We recommend the use of CT-ANPB as the primary method of diagnosis in patients with pleural thickening or lesions observed by CT scan. In patients with only pleural fluid appearance on CT scan and in those who may have benign pleural pathologies other than TB, the primary method of diagnosis should be medical thoracoscopy. clinicaltrials.gov; Identifier: NCT00720954.

  18. Mild brain injury and anticoagulants: Less is enough.

    PubMed

    Campiglio, Laura; Bianchi, Francesca; Cattalini, Claudio; Belvedere, Daniela; Rosci, Chiara Emilia; Casellato, Chiara Livia; Secchi, Manuela; Saetti, Maria Cristina; Baratelli, Elena; Innocenti, Alessandro; Cova, Ilaria; Gambini, Chiara; Romano, Luca; Oggioni, Gaia; Pagani, Rossella; Gardinali, Marco; Priori, Alberto

    2017-08-01

    Despite the higher theoretical risk of traumatic intracranial hemorrhage (ICH) in anticoagulated patients with mild head injury, the value of sequential head CT scans to identify bleeding remains controversial. This study evaluated the utility of 2 sequential CT scans at a 48-hour interval (CT1 and CT2) in patients with mild head trauma (Glasgow Coma Scale 13-15) taking oral anticoagulants. We retrospectively evaluated the clinical records of all patients on chronic anticoagulation treatment admitted to the emergency department for mild head injury. A total of 344 patients were included, and 337 (97.9%) had a negative CT1. CT2 was performed on 284 of the 337 patients with a negative CT1 and was positive in 4 patients (1.4%), but none of the patients developed concomitant neurologic worsening or required neurosurgery. Systematic routine use of a second CT scan in mild head trauma in patients taking anticoagulants is expensive and clinically unnecessary.

  19. (11)C-Choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series.

    PubMed

    Graziani, Tiziano; Ceci, Francesco; Castellucci, Paolo; Polverari, Giulia; Lima, Giacomo Maria; Lodi, Filippo; Morganti, Alessio Giuseppe; Ardizzoni, Andrea; Schiavina, Riccardo; Fanti, Stefano

    2016-10-01

    To evaluate (11)C-choline PET/CT as a diagnostic tool for restaging prostate cancer (PCa), in a large, homogeneous and clinically relevant population of patients with biochemical recurrence (BCR) of PCa after primary therapy. The secondary aim was to assess the best timing for performing (11)C-choline PET/CT during BCR. We retrospectively analysed 9,632 (11)C-choline PET/CT scans performed in our institution for restaging PCa from January 2007 to June 2015. The inclusion criteria were: (1) proven PCa radically treated with radical prostatectomy (RP) or with primary external beam radiotherapy (EBRT); (2) PSA serum values available; (3) proven BCR (PSA >0.2 ng/mL after RP or PSA >2 ng/mL above the nadir after primary EBRT with rising PSA levels). Finally, 3,203 patients with recurrent PCa matching all the inclusion criteria were retrospectively enrolled and 4,426 scans were analysed. Overall, 52.8 % of the (11)C-choline PET/CT scans (2,337/4,426) and 54.8 % of the patients (1,755/3,203) were positive. In 29.4 % of the scans, at least one distant finding was observed. The mean and median PSA values were, respectively, 4.9 and 2.1 ng/mL at the time of the scan (range 0.2 - 50 ng/mL). In our series, 995 scans were performed in patients with PSA levels between 1 and 2 ng/mL. In this subpopulation the positivity rate in the 995 scans was 44.7 %, with an incidence of distant findings of 19.2 % and an incidence of oligometastatic disease (one to three lesions) of 37.7 %. The absolute PSA value at the time of the scan and ongoing androgen deprivation therapy were associated with an increased probability of a positive (11)C-choline PET/CT scan (p < 0.0001). In the ROC analysis, a PSA value of 1.16 ng/mL was the optimal cut-off value. In patients with a PSA value <1.16 ng/mL, 26.8 % of 1,426 (11)C-choline PET/CT scans were positive, with oligometastatic disease in 84.7 % of positive scans. In a large cohort of patients, the feasibility of (11)C-choline PET/CT for detecting the sites of metastatic disease in PCa patients with BCR was confirmed. The PSA level was the main predictor of a positive scan with 1.16 ng/mL as the optimal cut-off value. In the majority of positive scans oligometastatic disease, potentially treatable with salvage therapies, was observed.

  20. A rare adult renal neuroblastoma better imaged by 18F-FDG than by 68Ga-dotanoc in the PET/CT scan.

    PubMed

    Jain, Tarun Kumar; Singh, Sharwan Kumar; Sood, Ashwani; Ashwathanarayama, Abhiram Gj; Basher, Rajender Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2017-01-01

    Primary renal neuroblastoma is an uncommon tumor in children and extremely rare in adults. We present a case of a middle aged female having a large retroperitoneal mass involving the right kidney with features of neuroblastoma on pre-operative histopathology. Whole-body fluorine-18-fluoro-deoxyglucose positron emission tomography ( 18 F-FDG PET/CT) and 68 Ga-dotanoc PET/CT scans performed for staging and therapeutic potential revealed a tracer avid mass replacing the right kidney and also pelvic lymph nodes. The 18 F-FDG PET/CT scan showed better both the primary lesion and the metastases in the pelvic lymph nodes than the 68 Ga-dotanoc scan supporting diagnosis and treatment planning.

  1. [Is computed tomography scanning necessary in every case of minor head trauma? Clinical and tomographic analysis of a cohort of patients].

    PubMed

    Zyluk, Andrzej; Mazur, Agnieszka; Piotuch, Bernard

    2015-01-01

    The objective of the study was an assessment of the occurrence of traumatic cerebral lesions and skull fractures in patients with mild head trauma. A total of 171 patients' notes, 89 male (52%) and 82 female (48%), mean age 48 years, were subjected to analysis. Of the 171 patients, in 58 (34%) CT scanning of the head was not performed for various reasons, and these patients were discharged home. Of the remaining 113 persons, who had head CT performed, in 99 (88%) no abnormalities were found; in 10 (9%) CT scans revealed pathological findings unrelated to the trauma: most frequently cortical-subcortical atrophy followed by old post-stroke foci, and in 4 patients (3%) post-traumatic pathologies: skull fractures in 2 and facial bone fractures in 2. Diagnosis of these fractures did not change the conservative treatment of these patients, but only prolonged in-patient stay for 2-3 days. All skull and facial bone fractures occurred in patients who were alcohol intoxicated, were lying, could not maintain vertical position, or who had the "racoon eyes" sign. The results of our study show that lack of abnormalities in neurological examination in patients after mild head injury is a reliable indicator for omitting CT scanning, because the risk of overlooking brain injuries in these patients is minimal. However, patients who are intoxicated, have problems with maintaining a vertical position and have the "racoon eyes" sign, are likely to have skull or facial fractures, and CT scanning is therefore justified. Considering these precursors (guidelines) and the use of clinical decision rules described in the article may reduce the number of head CT scans performed "just in a case".

  2. SU-F-I-31: Reproducibility of An Automatic Exposure Control Technique in the Low-Dose CT Scan of Cardiac PET/CT Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Rosica, D; Agarwal, V

    Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984more » pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.« less

  3. SU-F-I-32: Organ Doses from Pediatric Head CT Scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liu, Q; Qiu, J

    Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the topmore » of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)« less

  4. Trends and patterns of computed tomography scan use among children in The Netherlands: 1990-2012.

    PubMed

    Meulepas, Johanna M; Smets, Anne M J B; Nievelstein, Rutger A J; Gradowska, Patrycja; Verbeke, Jonathan; Holscher, Herma C; Rutten, Matthieu J C M; Kieft, Mariëtte; Ronckers, Cécile M; Hauptmann, Michael

    2017-06-01

    To evaluate trends and patterns in CT usage among children (aged 0-17 years) in The Netherlands during the period 1990-2012. Lists of electronically archived paediatric CT scans were requested from the Radiology Information Systems (RIS) of Dutch hospitals which reported >10 paediatric CT scans annually in a survey conducted in 2010. Data included patient identification, birth date, gender, scan date and body part scanned. For non-participating hospitals and for years prior to electronic archiving in some participating hospitals, data were imputed by calendar year and hospital type (academic, general with <500 beds, general with ≥ 500 beds). Based on 236,066 CT scans among 146,368 patients performed between 1990 and 2012, estimated annual numbers of paediatric CT scans in The Netherlands increased from 7,731 in 1990 to 26,023 in 2012. More than 70 % of all scans were of the head and neck. During the last decade, substantial increases of more than 5 % per year were observed in general hospitals with fewer than 500 beds and among children aged 10 years or older. The estimated number of paediatric CT scans has more than tripled in The Netherlands during the last two decades. • Paediatric CT in The Netherlands has tripled during the last two decades. • The number of paediatric CTs increased through 2012 in general hospitals. • Paediatric CTs continued to increase among children aged 10 years or older.

  5. MRI vs. CT for orthodontic applications: comparison of two MRI protocols and three CT (multislice, cone-beam, industrial) technologies.

    PubMed

    Detterbeck, Andreas; Hofmeister, Michael; Hofmann, Elisabeth; Haddad, Daniel; Weber, Daniel; Hölzing, Astrid; Zabler, Simon; Schmid, Matthias; Hiller, Karl-Heinz; Jakob, Peter; Engel, Jens; Hiller, Jochen; Hirschfelder, Ursula

    2016-07-01

    To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest. Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies-multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)-and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis. Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies. On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.

  6. A rigid motion correction method for helical computed tomography (CT)

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Nuyts, J.; Kyme, A.; Kuncic, Z.; Fulton, R.

    2015-03-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data.

  7. The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: A retrospective study

    PubMed Central

    Servello, Domenico; Zekaj, Edvin; Saleh, Christian; Pacchetti, Claudio; Porta, Mauro

    2016-01-01

    Background: Deep brain stimulation (DBS) is an established therapy for movement disorders, such as Parkinson's disease (PD), dystonia, and tremor. The efficacy of DBS depends on the correct lead positioning. The commonly adopted postoperative radiological evaluation is performed with computed tomography (CT) scan and/or magnetic resonance imaging (MRI). Methods: We conducted a retrospective study on 202 patients who underwent DBS from January 2009 to October 2013. DBS indications were PD, progressive supranuclear palsy, tremor, dystonia, Tourette syndrome, obsessive compulsive disorder, depression, and Huntington's disease. Preoperatively, all patients underwent brain MRI and brain CT scan with the stereotactic frame positioned. The lead location was confirmed intraoperatively with CT. The CT images were subsequently transferred to the Stealth Station Medtronic and merged with the preoperative planning. On the first or second day after, implantation we performed a brain MRI to confirm the correct position of the lead. Results: In 14 patients, leads were in suboptimal position after intraoperative CT scan positioning. The cases with alteration in the Z-axis were corrected immediately under fluoroscopic guidance. In all the 14 patients, an immediate repositioning was done. Conclusions: Based on our data, intraoperative CT scan is fast, safe, and a useful tool in the evaluation of the position of the implanted lead. It also reduces the patient's discomfort derived from the transfer of the patient from the operating room to the radiological department. However, intraoperative CT should not be considered as a substitute for postoperative MRI. PMID:27583182

  8. Complications in CT-guided procedures: do we really need postinterventional CT control scans?

    PubMed

    Nattenmüller, Johanna; Filsinger, Matthias; Bryant, Mark; Stiller, Wolfram; Radeleff, Boris; Grenacher, Lars; Kauczor, Hans-Ullrich; Hosch, Waldemar

    2014-02-01

    The aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans. Retrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only. The complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % in drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21). Complications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.

  9. Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis.

    PubMed

    Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A

    2011-08-01

    To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.

  10. Staging and follow-up of lacrimal gland carcinomas by 18F-FDG PET/CT imaging.

    PubMed

    Tafti, Bashir Akhavan; Shaba, Wisam; Li, Yuxin; Yevdayev, Ella; Berenji, Gholam Reza

    2012-10-01

    A 74-year-old man with right eye proptosis, diplopia, and orbital discomfort for 3 to 4 months underwent biopsy, the specimen of which showed transitional cell carcinoma of the lacrimal gland. 18F-FDG PET/CT was also performed for staging purposes. Six months after orbital exenteration, a follow-up CT scan demonstrated soft tissue thickening along the nasal bridge but could not differentiate between postsurgical changes and cancer recurrence. A concurrent PET/CT scan did not show any evidence of abnormal metabolic activity, further emphasizing the higher accuracy of PET/CT in staging and restaging of head and neck cancers. An annual follow-up scan was still negative for active disease.

  11. Portable head computed tomography scanner--technology and applications: experience with 3421 scans.

    PubMed

    Carlson, Andrew P; Yonas, Howard

    2012-10-01

    The use of head computed tomography (CT) is standard in the management of acute brain injury; however, there are inherent risks of transport of critically ill patients. Portable CT can be brought to the patient at any location. We describe the clinical use of a portable head CT scanner (CereTom: NeuroLogica: Danvers, MA) that can be brought to the patient's bedside or to other locations such as the operating room or angiography suite. Between June of 2006 and December of 2009, a total of 3421 portable CTs were performed. A total of 3278 (95.8%) were performed in the neuroscience intensive care unit (ICU) for an average of 2.6 neuroscience ICU CT scans per day. Other locations where CTs were performed included other ICUs (n = 97), the operating room (n = 53), the emergency department (n = 1), and the angiography suite (n = 2). Most studies were non-contrasted head CT, though other modalities including xenon/CT, contrasted CT, and CT angiography were performed. Portable head CT can reliably and consistently be performed at the patient's bedside. This should lead to decreased transportation-related morbidity and improved rapid decision making in the ICU, OR, and other locations. Further studies to confirm this clinical advantage are needed. Copyright © 2011 by the American Society of Neuroimaging.

  12. Computer tomographic imaging and anatomic correlation of the human brain: A comparative atlas of thin CT-scan sections and correlated neuro-anatomic preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plets, C.; Baert, A.L.; Nijs, G.L.

    1986-01-01

    It is of the greatest importance to the radiologist, the neurologist and the neurosurgeon to be able to localize topographically a pathological brain process on the CT scan as precisely as possible. For that purpose, the identification of as many anatomical structures as possible on the CT scan image are necessary and indispensable. In this atlas a great number of detailed anatomical data on frontal horizontal CT scan sections, each being only 2 mm thick, are indicated, e.g. the cortical gyri, the basal ganglia, details of the white matter, extracranial muscles and blood vessels, parts of the base and themore » vault of the skull, etc. The very precise topographical description of the numerous CT scan images was realized by the author by confrontation of these images with the corresponding anatomical sections of the same brain specimen, performed by an original technique.« less

  13. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  14. Comparison of CT and MRI in diagnosis of cerebrospinal leak induced by multiple fractures of skull base

    PubMed Central

    Wang, Xuhui; Xu, Minhui; Liang, Hong; Xu, Lunshan

    2011-01-01

    Background Multiple basilar skull fracture and cerebrospinal leak are common complications of traumatic brain injury, which required a surgical repair. But due to the complexity of basilar skull fracture after severe trauma, preoperatively an exact radiological location is always difficult. Multi-row spiral CT and MRI are currently widely applied in the clinical diagnosis. The present study was performed to compare the accuracy of cisternography by multi-row spiral CT and MRI in the diagnosis of cerebrospinal leak. Methods A total of 23 patients with multiple basilar skull fracture after traumatic brain injury were included. The radiological and surgical data were retrospectively analyzed. 64-row CT (mm/row) scan and three-dimensional reconstruction were performed in 12 patients, while MR plain scan and cisternography were performed in another 11 patients. The location of cerebrospinal leak was diagnosed by 2 experienced physicians majoring neurological radiology. Surgery was performed in all patients. The cerebrospinal leak location was confirmed and repaired during surgery. The result was considered as accurate when cerebrospinal leak was absent after surgery. Results According to the surgical exploration, the preoperative diagnosis of the active cerebrospinal leak location was accurate in 9 out of 12 patients with CT scan. The location could not be confirmed by CT because of multiple fractures in 2 patients and the missed diagnosis occurred in 1 patient. The preoperative diagnosis was accurate in 10 out of 11 patients with MRI examination. Conclusions MRI cisternography is more advanced than multi-row CT scan in multiple basilar skull fracture. The combination of the two examinations may increase the diagnostic ratio of active cerebrospinal leak. PMID:22933941

  15. Results from a Prototype Proton-CT Head Scanner

    NASA Astrophysics Data System (ADS)

    Johnson, R. P.; Bashkirov, V. A.; Coutrakon, G.; Giacometti, V.; Karbasi, P.; Karonis, N. T.; Ordoñez, C. E.; Pankuch, M.; Sadrozinski, H. F.-W.; Schubert, K. E.; Schulte, R. W.

    We are exploring low-dose proton radiography and computed tomography (pCT) as techniques to improve the accuracy of proton treatment planning and to provide artifact-free images for verification and adaptive therapy at the time of treatment. Here we report on comprehensive beam test results with our prototype pCT head scanner. The detector system and data acquisition attain a sustained rate of more than a million protons individually measured per second, allowing a full CT scan to be completed in six minutes or less of beam time. In order to assess the performance of the scanner for proton radiography as well as computed tomography, we have performed numerous scans of phantoms at the Northwestern Medicine Chicago Proton Center including a custom phantom designed to assess the spatial resolution, a phantom to assess the measurement of relative stopping power, and a dosimetry phantom. Some images, performance, and dosimetry results from those phantom scans are presented together with a description of the instrument, the data acquisition system, and the calibration methods.

  16. CT scans in young people in Northern England: trends and patterns 1993–2002

    PubMed Central

    Pearce, Mark S.; Salotti, Jane A.; McHugh, Kieran; Metcalf, Wenhua; Kim, Kwang P.; Craft, Alan W.; Parker, Louise; Ron, Elaine

    2014-01-01

    Background Although CT can be greatly beneficial, its relatively high radiation doses have caused public health concerns. Objective To assess patterns in CT usage among patients aged less than 22 years in Northern England during the period 1993–2002. Materials and methods Electronic data were obtained from radiology information systems of all nine National Health Service trusts in the region. Results A total of 38,681 scans had been performed in 20,483 patients aged less than 22 years. The number of CT examinations rose, with the steepest increase between 1997 and 2000. The number of patients scanned per year increased less dramatically, with 2.24/1,000 population aged less than 22 years having one scan or more in 1993 compared to 3.54/1,000 in 2002. This reflects an increase in the median number of scans per patient, which rose from 1 in 1993 to 2 by 1999. More than 70% of CT examinations were of the head, with the number of head examinations varying with time and patient age. Conclusion The frequency of CT scans in this population more than doubled during the study period. This is partly, but not wholly, explained by an increase in the number of scans per patient. PMID:21594548

  17. Advantages and limitations of computed tomography scans for treatment planning of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mira, J.G.; Potter, J.L.; Fullerton, G.D.

    1982-09-01

    Forty-five Chest computed tomography (CT) scans performed on patients with lung carcinoma (LC) were evaluated in an attempt to understand the pattern of intrathoracic tumor spread and the advantages and limitations this technique offers for treatment planning when compared to planning done by conventional X rays. The following findings can help treatment planning. (1) When regular X rays do not show location (i.e., hemithorax opacification), CT scan will show it in 68% of patients. If regular X rays show a well localized mass, unsuspected tumor extensions were disclosed in 78% of these patients. Hence, CT scans should be done inmore » all LC patients prior to treatment planning; (2) Mediastinal masses frequently spread anteriorly toward the sternum and posteriorly around the vertebral bodies toward the cord and costal pleura. This should be considered for radiotherapy boost techniques; (3) Lung masses spread in one third of cases toward the lateral costal pleura. Thus, the usual 1-2cm of safety margin around the LC are not sufficient in some cases; (4) Tumor size can appear much smaller in regular X rays than in CT scans. Hence, CT scans are necessary for accurate staging and evaluation of tumor response. Some CT scan limitations are: (1) Atelectasis blends with tumor in approximately half of the patients, thus obscuring tumor boundaries; (2) CT numbers and contrast enhancement did not help to differentiate between these two structures; and (3) Limited definition of CT scan prevents investigation of suspected microscopic spread around tumor masses.« less

  18. Patient characteristics associated with differences in radiation exposure from pediatric abdomen-pelvis CT scans: a quantile regression analysis.

    PubMed

    Cooper, Jennifer N; Lodwick, Daniel L; Adler, Brent; Lee, Choonsik; Minneci, Peter C; Deans, Katherine J

    2017-06-01

    Computed tomography (CT) is a widely used diagnostic tool in pediatric medicine. However, due to concerns regarding radiation exposure, it is essential to identify patient characteristics associated with higher radiation burden from CT imaging, in order to more effectively target efforts towards dose reduction. Our objective was to identify the effects of various demographic and clinical patient characteristics on radiation exposure from single abdomen/pelvis CT scans in children. CT scans performed at our institution between January 2013 and August 2015 in patients under 16 years of age were processed using a software tool that estimates patient-specific organ and effective doses and merges these estimates with data from the electronic health record and billing record. Quantile regression models at the 50th, 75th, and 90th percentiles were used to estimate the effects of patients' demographic and clinical characteristics on effective dose. 2390 abdomen/pelvis CT scans (median effective dose 1.52mSv) were included. Of all characteristics examined, only older age, female gender, higher BMI, and whether the scan was a multiphase exam or an exam that required repeating for movement were significant predictors of higher effective dose at each quantile examined (all p<0.05). The effects of obesity and multiphase or repeat scanning on effective dose were magnified in higher dose scans. Older age, female gender, obesity, and multiphase or repeat scanning are all associated with increased effective dose from abdomen/pelvis CT. Targeted efforts to reduce dose from abdominal CT in these groups should be undertaken. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparison of Conventional Versus Spiral Computed Tomography with Three Dimensional Reconstruction in Chronic Otitis Media with Ossicular Chain Destruction.

    PubMed

    Naghibi, Saeed; Seifirad, Sirous; Adami Dehkordi, Mahboobeh; Einolghozati, Sasan; Ghaffarian Eidgahi Moghadam, Nafiseh; Akhavan Rezayat, Amir; Seifirad, Soroush

    2016-01-01

    Chronic otitis media (COM) can be treated with tympanoplasty with or without mastoidectomy. In patients who have undergone middle ear surgery, three-dimensional spiral computed tomography (CT) scan plays an important role in optimizing surgical planning. This study was performed to compare the findings of three-dimensional reconstructed spiral and conventional CT scan of ossicular chain study in patients with COM. Fifty patients enrolled in the study underwent plane and three dimensional CT scan (PHILIPS-MX 8000). Ossicles changes, mastoid cavity, tympanic cavity, and presence of cholesteatoma were evaluated. Results of the two methods were then compared and interpreted by a radiologist, recorded in questionnaires, and analyzed. Logistic regression test and Kappa coefficient of agreement were used for statistical analyses. Sixty two ears with COM were found in physical examination. A significant difference was observed between the findings of the two methods in ossicle erosion (11.3% in conventional CT vs. 37.1% in spiral CT, P = 0.0001), decrease of mastoid air cells (82.3% in conventional CT vs. 93.5% in spiral CT, P = 0.001), and tympanic cavity opacity (12.9% in conventional CT vs. 40.3% in spiral CT, P=0.0001). No significant difference was observed between the findings of the two methods in ossicle destruction (6.5% conventional CT vs. 56.4% in spiral CT, P = 0.125), and presence of cholesteatoma (3.2% in conventional CT vs. 42% in spiral CT, P = 0.172). In this study, spiral CT scan demonstrated ossicle dislocation in 9.6%, decrease of mastoid air cells in 4.8%, and decrease of volume in the tympanic cavity in 1.6%; whereas, none of these findings were reported in the patients' conventional CT scans. Spiral-CT scan is superior to conventional CT in the diagnosis of lesions in COM before operation. It can be used for detailed evaluation of ossicular chain in such patients.

  20. Is It Better to Enter a Volume CT Dose Index Value before or after Scan Range Adjustment for Radiation Dose Optimization of Pediatric Cardiothoracic CT with Tube Current Modulation?

    PubMed Central

    2018-01-01

    Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p < 0.0001). Image noise (4.6 ± 0.5 Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p < 0.01) with the CTDIvol before and after the CT scan. The CTDIvol after CT scan showed modest positive correlation (r = 0.49; p ≤ 0.001) with image noise in group 1 but no significant correlation (p > 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.

  1. Is there a trend in CT scanning scaphoid nonunions for deformity assessment?-A systematic review.

    PubMed

    Ten Berg, Paul W L; de Roo, Marieke G A; Maas, Mario; Strackee, Simon D

    2017-06-01

    The effect of scaphoid nonunion deformity on wrist function is uncertain due to the lack of reliable imaging tools. Advanced three-dimensional (3-D) computed tomography (CT)-based imaging techniques may improve deformity assessment by using a mirrored image of the contralateral intact wrist as anatomic reference. The implementation of such techniques depends on the extent to which conventional CT is currently used in standard practice. The purpose of this systematic review of medical literature was to analyze the trend in CT scanning scaphoid nonunions, either unilaterally or bilaterally. Using Medline and Embase databases, two independent reviewers searched for original full-length clinical articles describing series with at least five patients focusing on reconstructive surgery of scaphoid nonunions with bone grafting and/or fixation, from the years 2000-2015. We excluded reports focusing on only nonunions suspected for avascular necrosis and/or treated with vascularized bone grafting, as their workup often includes magnetic resonance imaging. For data analysis, we evaluated the use of CT scans and distinguished between uni- and bilateral, and pre- and postoperative scans. Seventy-seven articles were included of which 16 were published between 2000 and 2005, 19 between 2006 and 2010, and 42 between 2011 and 2015. For these consecutive intervals, the rates of articles describing the use of pre- and postoperative CT scans increased from 13%, to 16%, to 31%, and from 25%, to 32%, to 52%, respectively. Hereof, only two (3%) articles described the use of bilateral CT scans. There is an evident trend in performing unilateral CT scans before and after reconstructive surgery of a scaphoid nonunion. To improve assessment of scaphoid nonunion deformity using 3-D CT-based imaging techniques, we recommend scanning the contralateral wrist as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Magnetic resonance imaging in facial injuries and digital fusion CT/MRI].

    PubMed

    Kozakiewicz, Marcin; Olszycki, Marek; Arkuszewski, Piotr; Stefańczyk, Ludomir

    2006-01-01

    Magnetic resonance images [MRI] and their digital fusion with computed tomography [CT] data, observed in patients affected with facial injuries, are presented in this study. The MR imaging of 12 posttraumatic patients was performed in the same plains as their previous CT scans. Evaluation focused on quality of the facial soft tissues depicting, which was unsatisfactory in CT. Using the own "Dental Studio" programme the digital fusion of the both modalities was performed. Pathologic dislocations and injures of facial soft tissues are visualized better in MRI than in CT examination. Especially MRI properly reveals disturbances in intraorbital soft structures. MRI-based assessment is valuable in patients affected with facial soft tissues injuries, especially in case of orbita/sinuses hernia. Fusion CT/MRI scans allows to evaluate simultaneously bone structure and soft tissues of the same region.

  3. Influence of androgen deprivation therapy on choline PET/CT in recurrent prostate cancer.

    PubMed

    Dost, Rutger J; Glaudemans, Andor W J M; Breeuwsma, Anthonius J; de Jong, Igle J

    2013-07-01

    Recurrent prostate cancer is usually treated by combining radiotherapy and androgen deprivation therapy. To stage the cancer, choline positron emission tomography (PET)/CT can be performed. It is generally thought that androgen deprivation therapy does not influence choline PET/CT. In this article we focus on the molecular backgrounds of choline and androgens, and the results of preclinical and clinical studies performed using PET/CT. Using PubMed, we looked for the relevant articles about androgen deprivation therapy and choline PET/CT. During ADT, a tendency of decreased uptake of choline in prostate cancer was observed, in particular in hormone-naïve patients. We conclude that in order to prevent false-negative choline PET/CT scans androgen deprivation should be withheld prior to scanning, especially in hormone-naïve patients.

  4. Reduction in radiation doses from paediatric CT scans in Great Britain.

    PubMed

    Lee, Choonsik; Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy

    2016-01-01

    Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. We retrieved 1073 CT film sets from 36 hospitals. The patients were 0-19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current-time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0-4, 5-9, 10-14 and 15-19 years) and scan year (<1990, 1990-1994, 1995-1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0-4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0-4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. We found that mAs for head and trunk CTs was approximately halved starting around 1990, and age-specific mAs was generally used for paediatric scans after this date. These changes will have substantially reduced the radiation exposure to children from CT scans in Great Britain. The study shows that mAs and major organ doses for paediatric CT scans in Great Britain began to decrease around 1990.

  5. Reduction in radiation doses from paediatric CT scans in Great Britain

    PubMed Central

    Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy

    2016-01-01

    Objective: Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. Methods: We retrieved 1073 CT film sets from 36 hospitals. The patients were 0–19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current–time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0–4, 5–9, 10–14 and 15–19 years) and scan year (<1990, 1990–1994, 1995–1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. Results: For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0–4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0–4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. Conclusion: We found that mAs for head and trunk CTs was approximately halved starting around 1990, and age-specific mAs was generally used for paediatric scans after this date. These changes will have substantially reduced the radiation exposure to children from CT scans in Great Britain. Advances in knowledge: The study shows that mAs and major organ doses for paediatric CT scans in Great Britain began to decrease around 1990. PMID:26864156

  6. Parotid Incidentaloma Identified by Positron Emission/Computed Tomography: When to Consider Diagnoses Other than Warthin Tumor

    PubMed Central

    Bothe, Carolina; Fernandez, Alejandro; Garcia, Jacinto; Lopez, Montserrat; León, Xavier; Quer, Miquel; Lop, Joan

    2014-01-01

    Introduction Parotid gland incidentalomas (PGIs) are unexpected hypermetabolic foci in the parotid region that can be found when scanning with whole-body positron emission/computed tomography (PET/CT). These deposits are most commonly due to benign lesions such as Warthin tumor. Objective The aim of this study was to determine the prevalence of PGIs identified in PET/CT scans and to assess the role of smoking in their etiology. Methods We retrospectively reviewed all PET/CT scans performed at our center in search of PGIs and identified smoking status and standardized uptake value (SUVmax) in each case. We also analyzed the database of parotidectomies performed in our department in the previous 10 years and focused on the pathologic diagnosis and the presence or absence of smoking in each case. Results Sixteen cases of PGIs were found in 4,250 PET/CT scans, accounting for 0.4%. The average SUVmax was 6.5 (range 2.8 to 16). Cytology was performed in five patients; it was benign in four cases and inconclusive in one case. Thirteen patients had a history of smoking. Of the parotidectomies performed in our center with a diagnosis of Warthin tumor, we identified a history of smoking in 93.8% of those patients. Conclusions The prevalence of PGIs on PET/CT was similar to that reported by other authors. Warthin tumor is frequently diagnosed among PGIs on PET/CT, and it has a strong relationship with smoking. We suggest that a diagnosis other than Warthin tumor should be considered for PGIs in nonsmokers. PMID:25992164

  7. Parotid incidentaloma identified by positron emission/computed tomography: when to consider diagnoses other than warthin tumor.

    PubMed

    Bothe, Carolina; Fernandez, Alejandro; Garcia, Jacinto; Lopez, Montserrat; León, Xavier; Quer, Miquel; Lop, Joan

    2015-04-01

    Introduction Parotid gland incidentalomas (PGIs) are unexpected hypermetabolic foci in the parotid region that can be found when scanning with whole-body positron emission/computed tomography (PET/CT). These deposits are most commonly due to benign lesions such as Warthin tumor. Objective The aim of this study was to determine the prevalence of PGIs identified in PET/CT scans and to assess the role of smoking in their etiology. Methods We retrospectively reviewed all PET/CT scans performed at our center in search of PGIs and identified smoking status and standardized uptake value (SUVmax) in each case. We also analyzed the database of parotidectomies performed in our department in the previous 10 years and focused on the pathologic diagnosis and the presence or absence of smoking in each case. Results Sixteen cases of PGIs were found in 4,250 PET/CT scans, accounting for 0.4%. The average SUVmax was 6.5 (range 2.8 to 16). Cytology was performed in five patients; it was benign in four cases and inconclusive in one case. Thirteen patients had a history of smoking. Of the parotidectomies performed in our center with a diagnosis of Warthin tumor, we identified a history of smoking in 93.8% of those patients. Conclusions The prevalence of PGIs on PET/CT was similar to that reported by other authors. Warthin tumor is frequently diagnosed among PGIs on PET/CT, and it has a strong relationship with smoking. We suggest that a diagnosis other than Warthin tumor should be considered for PGIs in nonsmokers.

  8. TU-C-12A-11: Comparisons Between Cu-ATSM PET and DCE-CT Kinetic Parameters in Canine Sinonasal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Fontaine, M; Bradshaw, T; Kubicek, L

    2014-06-15

    Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial})more » on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding: R01 CA136927.« less

  9. 68Ga-PSMA PET/CT in patients with recurrent prostate cancer after radical treatment: prospective results in 314 patients.

    PubMed

    Caroli, Paola; Sandler, Israel; Matteucci, Federica; De Giorgi, Ugo; Uccelli, Licia; Celli, Monica; Foca, Flavia; Barone, Domenico; Romeo, Antonino; Sarnelli, Anna; Paganelli, Giovanni

    2018-06-19

    We studied the usefulness of 68 Ga-prostate-specific membrane antigen (PSMA) PET/CT for detecting relapse in a prospective series of patients with biochemical recurrence (BCR) of prostate cancer (PCa) after radical treatment. Patients with BCR of PCa after radical surgery and/or radiotherapy with or without androgen-deprivation therapy were included in the study. 68 Ga-PSMA PET/CT scans performed from the top of the head to the mid-thigh 60 min after intravenous injection of 150 ± 50 MBq of 68 Ga-PSMA were interpreted by two nuclear medicine physicians. The results were correlated with prostate-specific antigen (PSA) levels at the time of the scan (PSApet), PSA doubling time, Gleason score, tumour stage, postsurgery tumour residue, time from primary therapy to BCR, and patient age. When available, 68 Ga-PSMA PET/CT scans were compared with negative 18 F-choline PET/CT scans routinely performed up to 1 month previously. From November 2015 to October 2017, 314 PCa patients with BCR were evaluated. Their median age was 70 years (range 44-92 years) and their median PSApet was 0.83 ng/ml (range 0.003-80.0 ng/ml). 68 Ga-PSMA PET/CT was positive (one or more suspected PCa lesions detected) in 197 patients (62.7%). Lesions limited to the pelvis, i.e. the prostate/prostate bed and/or pelvic lymph nodes (LNs), were detected in 117 patients (59.4%). At least one distant lesion (LNs, bone, other organs, separately or combined with local lesions) was detected in 80 patients (40.6%). PSApet was higher in PET-positive than in PET-negative patients (P < 0.0001). Of 88 patients negative on choline PET/CT scans, 59 (67%) were positive on 68 Ga-PSMA PET/CT. We confirmed the value of 68 Ga-PSMA PET/CT in restaging PCa patients with BCR, highlighting its superior performance and safety compared with choline PET/CT. Higher PSApet was associated with a higher relapse detection rate.

  10. Hybrid detection of lung nodules on CT scan images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.

    Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithmsmore » were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.« less

  11. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veiga, Catarina; Janssens, Guillaume; Teng, Ching-Ling

    2016-05-01

    Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account formore » anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.« less

  12. SU-F-T-403: Impact of Dose Reduction for Simulation CT On Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Q; Shah, P; Li, S

    Purpose: To investigate the feasibility of applying ALARA principles to current treatment planning CT scans. The study aims to quantitatively verify lower dose scans does not alter treatment planning. Method: Gammex 467 tissue characterization phantom with inserts of 14 different materials was scanned at seven different mA levels (30∼300 mA). CT numbers of different inserts were measured. Auto contouring for bone and lung in treatment planning system (Pinnacle) was used to evaluate the effect of CT number accuracy from treatment planning aspect, on the 30 and 300 mA-scanned images. A head CT scan intended for a 3D whole brain radiationmore » treatment was evaluated. Dose calculations were performed on normal scanned images using clinical protocol (120 kVP, Smart mA, maximum 291 mA), and the images with added simulating noise mimicking a 70 mA scan. Plan parameters including isocenter, beam arrangements, block shapes, dose grid size and resolution, and prescriptions were kept the same for these two plans. The calculated monitor units (MUs) for these two plans were compared. Results: No significant degradation of CT number accuracy was found at lower dose levels from both the phantom scans, and the patient images with added noise. The CT numbers kept consistent when mA is higher than 60 mA. The auto contoured volumes for lung and cortical bone show 0.3% and 0.12% of differences between 30 mA and 300 mA respectively. The two forward plans created on regular and low dose images gave the same calculated MU, and 98.3% of points having <1% of dose difference. Conclusion: Both phantom and patient studies quantitatively verified low dose CT provides similar quality for treatment planning at 20–25% of regular scan dose. Therefore, there is the potential to optimize simulation CT scan protocol to fulfil the ALARA principle and limit unnecessary radiation exposure to non-targeted tissues.« less

  13. A new contrast agent for radiological and dissection studies of the arterial network of anatomic specimens.

    PubMed

    Bulla, A; Casoli, C; Farace, F; Mazzarello, V; De Luca, L; Rubino, C; Montella, A

    2014-01-01

    The aim of the present study is to propose a new contrast agent that can be easily applied both to CT and dissection studies to replace lead oxide based formulas for comparative anatomical analyses of the vascularisation of cadaveric specimens. The infusion material was an epoxy resin, especially modified by the addition of barium sulphate to enhance its radiopacity. The final copolymer was toxicologically safe. To test the properties of the new material, several cadaveric limb injections were performed. The injected specimens were both CT scanned to perform 3D vascular reconstructions and dissected by anatomical planes. There was a perfect correspondence between the image studies and the dissections: even the smallest arteries on CT scan can be identified on the specimen and vice versa. The properties of the epoxy allowed an easy dissection of the vessels. The new imaging techniques available today, such as CT scan, can evaluate the vascular anatomy in high detail and 3D. This new contrast agent may help realising detailed vascular studies comparing CT scan results with anatomical dissections. Moreover, it may be useful for teaching surgical skills in the field of plastic surgery.

  14. Accuracy and Radiation Dose Reduction of Limited-Range CT in the Evaluation of Acute Appendicitis in Pediatric Patients.

    PubMed

    Jin, Michael; Sanchez, Thomas R; Lamba, Ramit; Fananapazir, Ghaneh; Corwin, Michael T

    2017-09-01

    The purpose of this article is to determine the accuracy and radiation dose reduction of limited-range CT prescribed from the top of L2 to the top of the pubic symphysis in children with suspected acute appendicitis. We performed a retrospective study of 210 consecutive pediatric patients from December 11, 2012, through December 11, 2014, who underwent abdominopelvic CT for suspected acute appendicitis. Two radiologists independently reviewed the theoretic limited scans from the superior L2 vertebral body to the top of the pubic symphysis, to assess for visualization of the appendix, acute appendicitis, alternative diagnoses, and incidental findings. Separately, the same parameters were assessed on the full scan by the same two reviewers. Whole-body effective doses were determined for the full- and limited-range scans and were compared using the paired t test. The appendix or entire cecum was visualized on the limited scan in all cases, and no cases of acute appendicitis were missed on the simulated limited scan compared with the full scan. Two alternative diagnoses were missed with the limited scan: one case of hydronephrosis and one of acute acalculous cholecystitis. The mean effective dose for the original scan was 5.6 mSv and that for the simulated limited scan was 3.0 mSv, resulting in a dose reduction of 46.4% (p < 0.001). A limited-range CT examination performed from the top of L2 to the top of the pubic symphysis is as accurate as a full-range abdominopelvic CT in evaluating pediatric patients with suspected appendicitis and reduces the dose by approximately 46%.

  15. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients.

    PubMed

    Afshar-Oromieh, Ali; Holland-Letz, Tim; Giesel, Frederik L; Kratochwil, Clemens; Mier, Walter; Haufe, Sabine; Debus, Nils; Eder, Matthias; Eisenhut, Michael; Schäfer, Martin; Neels, Oliver; Hohenfellner, Markus; Kopka, Klaus; Kauczor, Hans-Ulrich; Debus, Jürgen; Haberkorn, Uwe

    2017-08-01

    Since the clinical introduction of 68 Ga-PSMA-11 PET/CT, this imaging method has rapidly spread and is now regarded as a significant step forward in the diagnosis of recurrent prostate cancer (PCa). The aim of this study was to analyse the influence of several variables with possible influence on PSMA ligand uptake in a large cohort. We performed a retrospective analysis of 1007 consecutive patients who were scanned with 68 Ga-PSMA-11 PET/CT (1 h after injection) from January 2014 to January 2017 to detect recurrent disease. Patients with untreated primary PCa or patients referred for PSMA radioligand therapy were excluded. The possible effects of different variables including PSA level and PSA doubling time (PSA DT ), PSA velocity (PSA Vel ), Gleason score (GSC, including separate analysis of GSC 7a and 7b), ongoing androgen deprivation therapy (ADT), patient age and amount of injected activity were evaluated. In 79.5% of patients at least one lesion with characteristics suggestive of recurrent PCa was detected. A pathological (positive) PET/CT scan was associated with PSA level and ADT. GSC, amount of injected activity, patient age, PSA DT and PSA Vel were not associated with a positive PET/CT scan in multivariate analysis. 68 Ga-PSMA-11 PET/CT detects tumour lesions in a high percentage of patients with recurrent PCa. Tumour detection is clearly associated with PSA level and ADT. Only a tendency for an association without statistical significance was found between higher GSC and a higher probability of a pathological PET/CT scan. No associations were found between a pathological 68 Ga-PSMA-11 PET/CT scan and patient age, amount of injected activity, PSA DT or PSA Vel.

  16. Reducing Head CT Use for Children With Head Injuries in a Community Emergency Department.

    PubMed

    Jennings, Rebecca M; Burtner, Jennifer J; Pellicer, Joseph F; Nair, Deepthi K; Bradford, Miranda C; Shaffer, Michele; Uspal, Neil G; Tieder, Joel S

    2017-04-01

    Clinical decision rules have reduced use of computed tomography (CT) to evaluate minor pediatric head injury in pediatric emergency departments (EDs). CT use remains high in community EDs, where the majority of children seek medical care. We sought to reduce the rate of CT scans used to evaluate pediatric head injury from 29% to 20% in a community ED. We evaluated a quality improvement (QI) project in a community ED aimed at decreasing the use of head CT scans in children by implementing a validated head trauma prediction rule for traumatic brain injury. A multidisciplinary team identified key drivers of CT use and implemented decision aids to improve the use of prediction rules. The team identified and mitigated barriers. An affiliated children's hospital offered Maintenance of Certification credit and QI coaching to participants. We used statistical process control charts to evaluate the effect of the intervention on monthly CT scan rates and performed a Wald test of equivalence to compare preintervention and postintervention CT scan proportions. The baseline period (February 2013-July 2014) included 695 patients with a CT scan rate of 29.2% (95% confidence interval, 25.8%-32.6%). The postintervention period (August 2014-October 2015) included 651 patients with a CT scan rate of 17.4% (95% confidence interval, 14.5%-20.2%, P < .01). Barriers included targeting providers with variable pediatric experience and parental imaging expectations. We demonstrate that a Maintenance of Certification QI project sponsored by a children's hospital can facilitate evidence-based pediatric care and decrease the rate of unnecessary CT use in a community setting. Copyright © 2017 by the American Academy of Pediatrics.

  17. SU-C-206-07: A Practical Sparse View Ultra-Low Dose CT Acquisition Scheme for PET Attenuation Correction in the Extended Scan Field-Of-View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, J; Fan, J; Gopinatha Pillai, A

    Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less

  18. Unit Cost Analysis of PET-CT at an Apex Public Sector Health Care Institute in India.

    PubMed

    Gajuryal, S H; Daga, A; Siddharth, V; Bal, C S; Satpathy, S

    2017-01-01

    PET/CT scan service is one of the capital intensive and revenue-generating centres of a tertiary care hospital. The cost associated with the provisioning of PET services is dependent upon the unit costs of the resources consumed. The study aims to determine the cost of providing PET/CT Scan services in a hospital. This descriptive and observational study was conducted in the Department of Nuclear Medicine at a tertiary apex teaching hospital in New Delhi, India in the year 2014-15. Traditional costing methodology was used for calculating the unit cost of PET/CT scan service. The cost was calculated under two heads that is capital and operating cost. Annualized cost of capital assets was calculated using methodology prescribed by WHO and operating costs was taken on an actual basis. Average number of PET/CT scan performed in a day is 30. The annual cost of providing PET/CT scan services was calculated to be 65,311,719 Indian Rupees (INR) (US$ 1,020,496), while the unit cost of PET scan was calculated to be 9625.92 INR (US$ 150). 3/4th cost was spent on machinery and equipment (75.3%) followed by healthcare personnel (11.37%), electricity (5%), consumables and supplies (4%) engineering maintenance (3.24%), building, furniture and HVAC capital cost (0.76%), and manifold cost (0.05%). Of the total cost, 76% was capital cost while the remaining was operating cost. Total cost for establishing PET/CT scan facility with cyclotron and chemistry module and PET/CT scan without cyclotron and chemistry module was calculated to be INR 610,873,517 (US$9944899) and 226,745,158 (US$3542893), respectively. (US$ 1=INR 64).

  19. Metastatic Neuroblastoma in Adult Patient, Presenting as a Super Scan on 68Ga-DOTANOC PET/CT Imaging.

    PubMed

    Malik, Dharmender; Jois, Abhiram; Singh, Harmandeep; Bora, Girdhar S; Basher, Rajender Kumar; Mittal, Bhagwant Rai

    2017-09-01

    We report a case of 23-year-old man who presented with complaints of progressive abdominal distension for the past 3 months along with the loss of appetite and weight and had a large solid cystic mass in the left half of the abdominal cavity revealed on ultrasonography and contrast-enhanced CT of the abdomen. Subsequent biopsy and histopathology revealed it to be neuroblastoma. Ga-DOTANOC PET/CT scan performed to rule out distant metastasis showed intense radiotracer uptake distributed throughout the skeleton, mimicking a super scan.

  20. Evaluating the effect of increased pitch, iterative reconstruction and dual source CT on dose reduction and image quality.

    PubMed

    Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier

    2018-06-14

    To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.

  1. SU-E-I-13: Evaluation of Metal Artifact Reduction (MAR) Software On Computed Tomography (CT) Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, V; Kohli, K

    2015-06-15

    Purpose: A new commercially available metal artifact reduction (MAR) software in computed tomography (CT) imaging was evaluated with phantoms in the presence of metals. The goal was to assess the ability of the software to restore the CT number in the vicinity of the metals without impacting the image quality. Methods: A Catphan 504 was scanned with a GE Optima RT 580 CT scanner (GE Healthcare, Milwaukee, WI) and the images were reconstructed with and without the MAR software. Both datasets were analyzed with Image Owl QA software (Image Owl Inc, Greenwich, NY). CT number sensitometry, MTF, low contrast, uniformity,more » noise and spatial accuracy were compared for scans with and without MAR software. In addition, an in-house made phantom was scanned with and without a stainless steel insert at three different locations. The accuracy of the CT number and metal insert dimension were investigated as well. Results: Comparisons between scans with and without MAR algorithm on the Catphan phantom demonstrate similar results for image quality. However, noise was slightly higher for the MAR algorithm. Evaluation of the CT number at various locations of the in-house made phantom was also performed. The baseline HU, obtained from the scan without metal insert, was compared to scans with the stainless steel insert at 3 different locations. The HU difference between the baseline scan versus metal scan was improved when the MAR algorithm was applied. In addition, the physical diameter of the stainless steel rod was over-estimated by the MAR algorithm by 0.9 mm. Conclusion: This work indicates with the presence of metal in CT scans, the MAR algorithm is capable of providing a more accurate CT number without compromising the overall image quality. Future work will include the dosimetric impact on the MAR algorithm.« less

  2. Management of minor head injury in patients receiving oral anticoagulant therapy: a prospective study of a 24-hour observation protocol.

    PubMed

    Menditto, Vincenzo G; Lucci, Moira; Polonara, Stefano; Pomponio, Giovanni; Gabrielli, Armando

    2012-06-01

    Patients receiving warfarin who experience minor head injury are at risk of intracranial hemorrhage, and optimal management after a single head computed tomography (CT) scan is unclear. We evaluate a protocol of 24-hour observation followed by a second head CT scan. In this prospective case series, we enrolled consecutive patients receiving warfarin and showing no intracranial lesions on a first CT scan after minor head injury treated at a Level II trauma center. We implemented a structured clinical pathway, including 24-hour observation and a CT scan performed before discharge. We then evaluated the frequency of death, admission, neurosurgery, and delayed intracranial hemorrhage. We enrolled and observed 97 consecutive patients. Ten refused the second CT scan and were well during 30-day follow-up. Repeated CT scanning in the remaining 87 patients revealed a new hemorrhage lesion in 5 (6%), with 3 subsequently hospitalized and 1 receiving craniotomy. Two patients discharged after completing the study protocol with 2 negative CT scan results were admitted 2 and 8 days later with symptomatic subdural hematomas; neither received surgery. Two of the 5 patients with delayed bleeding at 24 hours had an initial international normalized ratio greater than 3.0, as did both patients with delayed bleeding beyond 24 hours. The relative risk of delayed hemorrhage with an initial international normalized ratio greater than 3.0 was 14 (95% confidence interval 4 to 49). For patients receiving warfarin who experience minor head injury and have a negative initial head CT scan result, a protocol of 24-hour observation followed by a second CT scan will identify most occurrences of delayed bleeding. An initial international normalized ratio greater than 3 suggests higher risk. Copyright © 2011 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  3. Predictors of positive 18F-FDG PET/CT-scan for large vessel vasculitis in patients with persistent polymyalgia rheumatica.

    PubMed

    Prieto-Peña, Diana; Martínez-Rodríguez, Isabel; Loricera, Javier; Banzo, Ignacio; Calderón-Goercke, Mónica; Calvo-Río, Vanesa; González-Vela, Carmen; Corrales, Alfonso; Castañeda, Santos; Blanco, Ricardo; Hernández, José L; González-Gay, Miguel Á

    2018-05-18

    Polymyalgia rheumatica (PMR) is often the presenting manifestation of giant cell arteritis (GCA). Fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) scan often discloses the presence of large vessel vasculitis (LVV) in PMR patients. We aimed to identify predictive factors of a positive PET/CT scan for LVV in patients classified as having isolated PMR according to well-established criteria. A set of consecutive patients with PMR from a single hospital were assessed. All of them underwent PET/CT scan between January 2010 and February 2018 based on clinical considerations. Patients with PMR associated to other diseases, including those with cranial features of GCA, were excluded. The remaining patients were categorized in classic PMR (if fulfilled the 2012 EULAR/ACR classification criteria at disease diagnosis; n = 84) or atypical PMR (who did not fulfill these criteria; n = 16). Only information on patients with classic PMR was assessed. The mean age of the 84 patients (51 women) with classic PMR was 71.4 ± 9.2 years. A PET/CT scan was positive in 51 (60.7%). Persistence of classic PMR symptoms was the most common reason to perform a PET/CT scan. Nevertheless, patients with positive PET/CT scan often had unusual symptoms. The best set of predictors of a positive PET/CT scan were bilateral diffuse lower limb pain (OR = 8.8, 95% CI: 1.7-46.3; p = 0.01), pelvic girdle pain (OR = 4.9, 95% CI: 1.50-16.53; p = 0.01) and inflammatory low back pain (OR = 4.7, 95% CI: 1.03-21.5; p = 0.04). Inflammatory low back pain, pelvic girdle and diffuse lower limb pain are predictors of positive PET/CT scan for LVV in PMR. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. A fully automated non-external marker 4D-CT sorting algorithm using a serial cine scanning protocol.

    PubMed

    Carnes, Greg; Gaede, Stewart; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-04-07

    Current 4D-CT methods require external marker data to retrospectively sort image data and generate CT volumes. In this work we develop an automated 4D-CT sorting algorithm that performs without the aid of data collected from an external respiratory surrogate. The sorting algorithm requires an overlapping cine scan protocol. The overlapping protocol provides a spatial link between couch positions. Beginning with a starting scan position, images from the adjacent scan position (which spatial match the starting scan position) are selected by maximizing the normalized cross correlation (NCC) of the images at the overlapping slice position. The process was continued by 'daisy chaining' all couch positions using the selected images until an entire 3D volume was produced. The algorithm produced 16 phase volumes to complete a 4D-CT dataset. Additional 4D-CT datasets were also produced using external marker amplitude and phase angle sorting methods. The image quality of the volumes produced by the different methods was quantified by calculating the mean difference of the sorted overlapping slices from adjacent couch positions. The NCC sorted images showed a significant decrease in the mean difference (p < 0.01) for the five patients.

  5. Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Yamada, Kazuma; Kojima, Takuya; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2018-02-01

    The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.

  6. Normalization of CT scans reconstructed with different kernels to reduce variability in emphysema measurements

    NASA Astrophysics Data System (ADS)

    Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.

    2013-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.

  7. Investigating the necessity of computed tomographic scans in children with headaches: a retrospective review.

    PubMed

    Gandhi, Rohit; Lewis, Evan Cole; Evans, Jeanette W; Sell, Erick

    2015-03-01

    Headaches are a common problem in the pediatric population. In 2002, the American Academy of Neurology (AAN) developed guidelines on neuroimaging for patients presenting with headache. Our objective was to determine the frequency of computed tomographic (CT) scanning ordered by a range of medical practitioners for pediatric patients presenting with primary headache. A retrospective chart review was conducted at the Children's Hospital of Eastern Ontario (CHEO), a tertiary care centre in Ontario. One hundred fifty-one records of patients referred to the outpatient neurology clinic at CHEO with ''headache'' or ''migraine'' as the primary complaint from 2004 to 2009 were randomly selected. Ninety-nine patients with normal neurologic examinations were ultimately included. Thirty-four patients (34%; 95% CI 25-45) had undergone CT scanning. None of the 34 CT scans (0%; 95% CI 0-10) showed significant findings, and none changed the headache diagnosis or management. Eleven (32%) of the CT scans were ordered by CHEO neurologists, 15 (44%) by community physicians, and 8 (24%) by CHEO emergency physicians. A high proportion of children presenting with primary headaches and a normal neurologic examination undergo CT scanning, despite well-established AAN guidelines regarding neuroimaging. Most of these CT scans do not appear to alter diagnosis and management. A variety of non-evidencebased factors may be encouraging physicians to overinvestigate this population and, as a result, increasing the risk of adverse events due to radiation exposure. Implementing initiatives at a site-based level that promote the use of established guidelines before performing CT scanning in this population may be beneficial.

  8. Eye lens radiation exposure and repeated head CT scans: A problem to keep in mind.

    PubMed

    Michel, Morgane; Jacob, Sophie; Roger, Gilles; Pelosse, Béatrice; Laurier, Dominique; Le Pointe, Hubert Ducou; Bernier, Marie-Odile

    2012-08-01

    The deterministic character of radiation-induced cataract is being called into question, raising the possibility of a risk in patients, especially children, exposed to ionizing radiation in case of repeated head CT-scans. This study aims to estimate the eye lens doses of a pediatric population exposed to repeated head CTs and to assess the feasibility of an epidemiological study. Children treated for a cholesteatoma, who had had at least one CT-scan of the middle ear before their tenth birthday, were included. Radiation exposure has been assessed from medical records and telephone interviews. Out of the 39 subjects contacted, 32 accepted to participate. A total of 76 CT-scans were retrieved from medical records. At the time of the interview (mean age: 16 years), the mean number of CT per child was 3. Cumulative mean effective and eye lens doses were 1.7mSv and 168mGy, respectively. A relatively high lens radiation dose was observed in children exposed to repeated CT-scans. Due to that exposure and despite the difficulties met when trying to reach patients' families, a large scale epidemiological study should be performed in order to assess the risk of radiation-induced cataracts associated with repeated head CT. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine.

    PubMed

    Madero Orozco, Hiram; Vergara Villegas, Osslan Osiris; Cruz Sánchez, Vianey Guadalupe; Ochoa Domínguez, Humberto de Jesús; Nandayapa Alfaro, Manuel de Jesús

    2015-02-12

    Lung cancer is a leading cause of death worldwide; it refers to the uncontrolled growth of abnormal cells in the lung. A computed tomography (CT) scan of the thorax is the most sensitive method for detecting cancerous lung nodules. A lung nodule is a round lesion which can be either non-cancerous or cancerous. In the CT, the lung cancer is observed as round white shadow nodules. The possibility to obtain a manually accurate interpretation from CT scans demands a big effort by the radiologist and might be a fatiguing process. Therefore, the design of a computer-aided diagnosis (CADx) system would be helpful as a second opinion tool. The stages of the proposed CADx are: a supervised extraction of the region of interest to eliminate the shape differences among CT images. The Daubechies db1, db2, and db4 wavelet transforms are computed with one and two levels of decomposition. After that, 19 features are computed from each wavelet sub-band. Then, the sub-band and attribute selection is performed. As a result, 11 features are selected and combined in pairs as inputs to the support vector machine (SVM), which is used to distinguish CT images containing cancerous nodules from those not containing nodules. The clinical data set used for experiments consists of 45 CT scans from ELCAP and LIDC. For the training stage 61 CT images were used (36 with cancerous lung nodules and 25 without lung nodules). The system performance was tested with 45 CT scans (23 CT scans with lung nodules and 22 without nodules), different from that used for training. The results obtained show that the methodology successfully classifies cancerous nodules with a diameter from 2 mm to 30 mm. The total preciseness obtained was 82%; the sensitivity was 90.90%, whereas the specificity was 73.91%. The CADx system presented is competitive with other literature systems in terms of sensitivity. The system reduces the complexity of classification by not performing the typical segmentation stage of most CADx systems. Additionally, the novelty of the algorithm is the use of a wavelet feature descriptor.

  10. Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.

    PubMed

    van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. First installation of a dual-room IVR-CT system in the emergency room.

    PubMed

    Wada, Daiki; Nakamori, Yasushi; Kanayama, Shuji; Maruyama, Shuhei; Kawada, Masahiro; Iwamura, Hiromu; Hayakawa, Koichi; Saito, Fukuki; Kuwagata, Yasuyuki

    2018-03-05

    Computed tomography (CT) embedded in the emergency room has gained importance in the early diagnostic phase of trauma care. In 2011, we implemented a new trauma workflow concept with a sliding CT scanner system with interventional radiology features (IVR-CT) that allows CT examination and emergency therapeutic intervention without relocating the patient, which we call the Hybrid emergency room (Hybrid ER). In the Hybrid ER, all life-saving procedures, CT examination, damage control surgery, and transcatheter arterial embolisation can be performed on the same table. Although the trauma workflow realized in the Hybrid ER may improve mortality in severe trauma, the Hybrid ER can potentially affect the efficacy of other in/outpatient diagnostic workflow because one room is occupied by one severely injured patient undergoing both emergency trauma care and CT scanning for long periods. In July 2017, we implemented a new trauma workflow concept with a dual-room sliding CT scanner system with interventional radiology features (dual-room IVR-CT) to increase patient throughput. When we perform emergency surgery or interventional radiology for a severely injured or ill patient in the Hybrid ER, the sliding CT scanner moves to the adjacent CT suite, and we can perform CT scanning of another in/outpatient. We believe that dual-room IVR-CT can contribute to the improvement of both the survival of severely injured or ill patients and patient throughput.

  12. Assessment of the relationship between renal volume and renal function after minimally-invasive partial nephrectomy: the role of computed tomography and nuclear renal scan.

    PubMed

    Bertolo, Riccardo; Fiori, Cristian; Piramide, Federico; Amparore, Daniele; Barrera, Monica; Sardo, Diego; Veltri, Andrea; Porpiglia, Francesco

    2018-05-14

    To evaluate the correlation between the loss of renal function as assessed by Tc99MAG-3 renal scan and the loss of renal volume as calculated by volumetric assessment on CT-scan in patients who underwent minimally-invasive partial nephrectomy (PN). PN prospectively-maintained database was retrospectively queried for patients who underwent minimally-invasive PN (2012-2017) for renal mass

  13. Fifth-year surveillance computed tomography scanning after potentially curative resections for colorectal cancer.

    PubMed

    Walter, Catherine J; Al-Allak, Asmaa; Borley, Neil; Goodman, Anthony; Wheeler, James M D

    2013-02-01

    Optimal follow-up after colorectal resection for adenocarcinoma is yet to be determined. The aim of this study was to examine the role of a fifth-year surveillance Computed Tomography (CT) scan in detecting recurrence in our population. A retrospective analysis of all patients who had undergone potentially curative resections of colorectal adenocarcinomas between 2003 and 2004 was performed using electronic and casenote records. Data analysis was performed using Microsoft Office Excel 2007 and GnuPSPP statistical software. Two hundred and seven patients (111 male and 96 female) with a median age of 74 years (IQR 66-80) undergoing colorectal resections were studied. One hundred and twenty-one patients (58%) were alive and disease free at 5 years of whom 81 (67%) had received a fifth-year surveillance CT scan. Fifth-year scanning did not demonstrate any new colorectal metastases. However 6 (7%) scans revealed new, undiagnosed, non-colorectal malignancies. Thirty-four patients developed metastatic disease. All metastasis were diagnosed by 3½ years of follow-up. Eleven of these 34 cases presented after their second-year surveillance CT scan. Those patients with asymptomatic metastasis at the time of their discovery demonstrated improved likelihood of five year survival. This study showed no role for a fifth-year surveillance CT scan in the detection of resectable metastases, however there was a 7% pick up rate for detecting new malignancies. CT scanning beyond 2 years was needed to identify about one-third of the recurrences reported in this study. Copyright © 2012 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  14. Incidence of Brain Metastases on Follow-up 18F-FDG PET/CT Scans of Non-Small Cell Lung Cancer Patients: Should We Include the Brain?

    PubMed

    Nia, Emily S; Garland, Linda L; Eshghi, Naghmehossadat; Nia, Benjamin B; Avery, Ryan J; Kuo, Phillip H

    2017-09-01

    The brain is the most common site of distant metastasis from lung cancer. Thus, MRI of the brain at initial staging is routinely performed, but if this examination is negative a follow-up examination is often not performed. This study evaluates the incidence of asymptomatic brain metastases in non-small cell lung cancer patients detected on follow-up 18 F-FDG PET/CT scans. Methods: In this Institutional Review Board-approved retrospective review, all vertex to thigh 18 F-FDG PET/CT scans in patients with all subtypes of lung cancer from August 2014 to August 2016 were reviewed. A total of 1,175 18 F-FDG PET/CT examinations in 363 patients were reviewed. Exclusion criteria included brain metastases on initial staging, histologic subtype of small-cell lung cancer, and no follow-up 18 F-FDG PET/CT examinations. After our exclusion criteria were applied, a total of 809 follow-up 18 F-FDG PET/CT scans in 227 patients were included in the final analysis. The original report of each 18 F-FDG PET/CT study was reviewed for the finding of brain metastasis. The finding of a new brain metastasis prompted a brain MRI, which was reviewed to determine the accuracy of the 18 F-FDG PET/CT. Results: Five of 227 patients with 809 follow-up 18 F-FDG PET/CT scans reviewed were found to have incidental brain metastases. The mean age of the patients with incidental brain metastasis was 68 y (range, 60-77 y). The mean time from initial diagnosis to time of detection of incidental brain metastasis was 36 mo (range, 15-66 mo). When MRI was used as the gold standard, our false-positive rate was zero. Conclusion: By including the entire head during follow-up 18 F-FDG PET/CT scans of patients with non-small cell lung cancer, brain metastases can be detected earlier while still asymptomatic. But, given the additional scan time, radiation, and low incidence of new brain metastases in asymptomatic patients, the cost-to-benefit ratio should be weighed by each institution. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  15. Determination of dosimetric quantities in pediatric abdominal computed tomography scans*

    PubMed Central

    Jornada, Tiago da Silva; da Silva, Teógenes Augusto

    2014-01-01

    Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103

  16. Three-dimensional monochromatic x-ray CT

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Ktsuyuki; Uyama, Chikao

    1995-08-01

    In this paper, we describe a 3D computed tomography (3D CT) using monochromatic x-rays generated by synchrotron radiation, which performs a direct reconstruction of 3D volume image of an object from its cone-beam projections. For the develpment of 3D CT, scanning orbit of x-ray source to obtain complete 3D information about an object and corresponding 3D image reconstruction algorithm are considered. Computer simulation studies demonstrate the validities of proposed scanning method and reconstruction algorithm. A prototype experimental system of 3D CT was constructed. Basic phantom examinations and specific material CT image by energy subtraction obtained in this experimental system are shown.

  17. Infrared needle mapping to assist biopsy procedures and training.

    PubMed

    Shar, Bruce; Leis, John; Coucher, John

    2018-04-01

    A computed tomography (CT) biopsy is a radiological procedure which involves using a needle to withdraw tissue or a fluid specimen from a lesion of interest inside a patient's body. The needle is progressively advanced into the patient's body, guided by the most recent CT scan. CT guided biopsies invariably expose patients to high dosages of radiation, due to the number of scans required whilst the needle is advanced. This study details the design of a novel method to aid biopsy procedures using infrared cameras. Two cameras are used to image the biopsy needle area, from which the proposed algorithm computes an estimate of the needle endpoint, which is projected onto the CT image space. This estimated position may be used to guide the needle between scans, and results in a reduction in the number of CT scans that need to be performed during the biopsy procedure. The authors formulate a 2D augmentation system which compensates for camera pose, and show that multiple low-cost infrared imaging devices provide a promising approach.

  18. Efficient digitalization method for dental restorations using micro-CT data

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong

    2017-03-01

    The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method.

  19. SU-E-J-97: Evaluation of Multi-Modality (CT/MR/PET) Image Registration Accuracy in Radiotherapy Planning.

    PubMed

    Sethi, A; Rusu, I; Surucu, M; Halama, J

    2012-06-01

    Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.

  20. Abdominal Pediatric Cancer Surveillance using Serial CT: Evaluation of Organ Absorbed Dose and Effective Dose

    PubMed Central

    Lam, Diana; Wootton-Gorges, Sandra L.; McGahan, John P.; Stern, Robin; Boone, John M.

    2012-01-01

    Computed tomography (CT) is used extensively in cancer diagnosis, staging, evaluation of response to treatment, and in active surveillance for cancer reoccurrence. A review of CT technology is provided, at a level of detail appropriate for a busy clinician to review. The basis of x-ray CT dosimetry is also discussed, and concepts of absorbed dose and effective dose are distinguished. Absorbed dose is a physical quantity (measured in milliGray) equal to the x-ray energy deposited in a mass of tissue, whereas effective dose utilizes an organ-specific weighting method which converts organ doses to effective dose measured in milliSieverts. The organ weighting values carry with them a measure of radiation risk, and so effective dose (in mSv) is not a physical dose metric but rather is one that conveys radiation risk. The use of CT in a cancer surveillance protocol was used as an example of a pediatric patient who had kidney cancer, with surgery and radiation therapy. The active use of CT for cancer surveillance along with diagnostic CT scans led to a total of 50 CT scans performed on this child in a 7 year period. It was estimated that the patient received an average organ dose of 431 mGy from these CT scans. By comparison, the radiation therapy was performed and delivered 50.4 Gy to the patient’s abdomen. Thus, the total dose from CT represented only 0.8% of the patients radiation dose. PMID:21362521

  1. Cadaver-specific CT scans visualized at the dissection table combined with virtual dissection tables improve learning performance in general gross anatomy.

    PubMed

    Paech, Daniel; Giesel, Frederik L; Unterhinninghofen, Roland; Schlemmer, Heinz-Peter; Kuner, Thomas; Doll, Sara

    2017-05-01

    The purpose of this study was to quantify the benefit of the incorporation of radiologic anatomy (RA), in terms of student training in RA seminars, cadaver CT scans and life-size virtual dissection tables on the learning success in general anatomy. Three groups of a total of 238 students were compared in a multiple choice general anatomy exam during first-year gross anatomy: (1) a group (year 2015, n 1  = 50) that received training in radiologic image interpretation (RA seminar) and additional access to cadaver CT scans (CT + seminar group); (2) a group (2011, n 2  = 90) that was trained in the RA seminar only (RA seminar group); (3) a group (2011, n 3  = 98) without any radiologic image interpretation training (conventional anatomy group). Furthermore, the students' perception of the new curriculum was assessed qualitatively through a survey. The average test score of the CT + seminar group (21.8 ± 5.0) was significantly higher when compared to both the RA seminar group (18.3 ± 5.0) and the conventional anatomy group (17.1 ± 4.7) (p < 0.001). The incorporation of cadaver CT scans and life-size virtual dissection tables significantly improved the performance of medical students in general gross anatomy. Medical imaging and virtual dissection should therefore be considered to be part of the standard curriculum of gross anatomy. • Students provided with cadaver CT scans achieved 27 % higher scores in anatomy. • Radiological education integrated into gross anatomy is highly appreciated by medical students. • Simultaneous physical and virtual dissection provide unique conditions to study anatomy.

  2. Dual-time point scanning of integrated FDG PET/CT for the evaluation of mediastinal and hilar lymph nodes in non-small cell lung cancer diagnosed as operable by contrast-enhanced CT.

    PubMed

    Kasai, Takami; Motoori, Ken; Horikoshi, Takuro; Uchiyama, Katsuhiro; Yasufuku, Kazuhiro; Takiguchi, Yuichi; Takahashi, Fumiaki; Kuniyasu, Yoshio; Ito, Hisao

    2010-08-01

    To evaluate whether dual-time point scanning with integrated fluorine-18 fluorodeoxyglucose ((18)F-FDG) positron emission tomography and computed tomography (PET/CT) is useful for evaluation of mediastinal and hilar lymph nodes in non-small cell lung cancer diagnosed as operable by contrast-enhanced CT. PET/CT data and pathological findings of 560 nodal stations in 129 patients with pathologically proven non-small cell lung cancer diagnosed as operable by contrast-enhanced CT were reviewed retrospectively. Standardized uptake values (SUVs) on early scans (SUVe) 1h, and on delayed scans (SUVd) 2h after FDG injection of each nodal station were measured. Retention index (RI) (%) was calculated by subtracting SUVe from SUVd and dividing by SUVe. Logistic regression analysis was performed with seven kinds of models, consisting of (1) SUVe, (2) SUVd, (3) RI, (4) SUVe and SUVd, (5) SUVe and RI, (6) SUVd and RI, and (7) SUVe, SUVd and RI. The seven derived models were compared by receiver-operating characteristic (ROC) analysis. k-Fold cross-validation was performed with k values of 5 and 10. p<0.05 was considered statistically significant. Model (1) including the term of SUVe showed the largest area under the ROC curve among the seven models. The cut-off probability of metastasis of 3.5% with SUVe of 2.5 revealed a sensitivity of 78% and a specificity of 81% on ROC analysis, and approximately 60% and 80% on k-fold cross-validation. Single scanning of PET/CT is sufficiently useful for evaluating mediastinal and hilar nodes for metastasis. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  3. An Efficient Pipeline for Abdomen Segmentation in CT Images.

    PubMed

    Koyuncu, Hasan; Ceylan, Rahime; Sivri, Mesut; Erdogan, Hasan

    2018-04-01

    Computed tomography (CT) scans usually include some disadvantages due to the nature of the imaging procedure, and these handicaps prevent accurate abdomen segmentation. Discontinuous abdomen edges, bed section of CT, patient information, closeness between the edges of the abdomen and CT, poor contrast, and a narrow histogram can be regarded as the most important handicaps that occur in abdominal CT scans. Currently, one or more handicaps can arise and prevent technicians obtaining abdomen images through simple segmentation techniques. In other words, CT scans can include the bed section of CT, a patient's diagnostic information, low-quality abdomen edges, low-level contrast, and narrow histogram, all in one scan. These phenomena constitute a challenge, and an efficient pipeline that is unaffected by handicaps is required. In addition, analysis such as segmentation, feature selection, and classification has meaning for a real-time diagnosis system in cases where the abdomen section is directly used with a specific size. A statistical pipeline is designed in this study that is unaffected by the handicaps mentioned above. Intensity-based approaches, morphological processes, and histogram-based procedures are utilized to design an efficient structure. Performance evaluation is realized in experiments on 58 CT images (16 training, 16 test, and 26 validation) that include the abdomen and one or more disadvantage(s). The first part of the data (16 training images) is used to detect the pipeline's optimum parameters, while the second and third parts are utilized to evaluate and to confirm the segmentation performance. The segmentation results are presented as the means of six performance metrics. Thus, the proposed method achieves remarkable average rates for training/test/validation of 98.95/99.36/99.57% (jaccard), 99.47/99.67/99.79% (dice), 100/99.91/99.91% (sensitivity), 98.47/99.23/99.85% (specificity), 99.38/99.63/99.87% (classification accuracy), and 98.98/99.45/99.66% (precision). In summary, a statistical pipeline performing the task of abdomen segmentation is achieved that is not affected by the disadvantages, and the most detailed abdomen segmentation study is performed for the use before organ and tumor segmentation, feature extraction, and classification.

  4. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye CT scans do expose you to more radiation ...

  5. Shoulder CT scan

    MedlinePlus

    CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye Birth defect if done during pregnancy CT scans ...

  6. Incorporating Radiology into Medical Gross Anatomy: Does the Use of Cadaver CT Scans Improve Students' Academic Performance in Anatomy?

    ERIC Educational Resources Information Center

    Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.

    2010-01-01

    Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with…

  7. Automated image quality assessment for chest CT scans.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  8. The effects of misinterpretation of an artefact on multidetector row CT scans in children.

    PubMed

    du Plessis, Anne-Marie; Theron, Salomine; Andronikou, Savvas

    2009-02-01

    Artefacts reflect problems with radiographic technique rather than true pathology. These may be misinterpreted as pathology with serious consequences. An artefact caused such problems in one paediatric imaging department. To determine the incidence, and consequences of misinterpretation, of a CT artefact in a paediatric imaging department. A retrospective review of images and reports of paediatric CT scans over a set period with a known artefact was performed. Reports were correlated with reviewers' evaluation of the presence of artefact and reviewed for correct identification of artefact, misinterpretation as pathology, and action taken as a result. A total of 74 CT scans had been performed over the study period and an artefact detected by reviewers on 32 (43%). Six (18.75%) of these were misinterpreted as pathology, of which three (9.4%) were reported as tuberculous granulomas, two (6.2%) as haemorrhages and one (3.1%) as an unknown hyperdensity. Two patients (6.2%) had subsequent MRI studies performed, and treatment for tuberculosis was continued in one patient (3.1%). No initial report identified the artefact. One-fifth of the scans with the artefact were misinterpreted as pathology and half of these misinterpretations led to further action. Artefacts result in false diagnoses and unnecessary investigations; vigilance is needed.

  9. TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T; Zhu, L

    Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction frommore » very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.« less

  10. Avoiding CT scans in children with single-suture craniosynostosis.

    PubMed

    Schweitzer, T; Böhm, H; Meyer-Marcotty, P; Collmann, H; Ernestus, R-I; Krauß, J

    2012-07-01

    During the last decades, computed tomography (CT) has become the predominant imaging technique in the diagnosis of craniosynostosis. In most craniofacial centers, at least one three-dimensional (3D) computed tomographic scan is obtained in every case of suspected craniosynostosis. However, with regard to the risk of radiation exposure particularly in young infants, CT scanning and even plain radiography should be indicated extremely carefully. Our current diagnostic protocol in the management of single-suture craniosynostosis is mainly based on careful clinical examination with regard to severity and degree of the abnormality and on ophthalmoscopic surveillance. Imaging techniques consist of ultrasound examination in young infants while routine plain radiographs are usually postponed to the date of surgery or the end of the first year. CT and magnetic resonance imaging (MRI) are confined to special diagnostic problems rarely encountered in isolated craniosynostosis. The results of this approach were evaluated retrospectively in 137 infants who were referred to our outpatient clinic for evaluation and/or treatment of suspected single suture craniosynostosis or positional deformity during a 2-year period (2008-2009). In 133 (97.1%) of the 137 infants, the diagnosis of single-suture craniosynostosis (n = 110) or positional plagiocephaly (n = 27) was achieved through clinical analysis only. Two further cases were classified by ultrasound, while the remaining two cases needed additional digital radiographs. In no case was CT scanning retrospectively considered necessary for establishing the diagnosis. Yet in 17.6% of cases, a cranial CT scan had already been performed elsewhere (n = 16) or had been definitely scheduled (n = 8). CT scanning is rarely necessary for evaluation of single-suture craniosynostosis. Taking into account that there is a quantifiable risk of developing cancer in further lifetime, every single CT scan should be carefully indicated.

  11. Sinus CT scan

    MedlinePlus

    CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... Risks for a CT scan includes: Being exposed to radiation Allergic reaction to contrast dye CT scans expose you to more radiation than regular ...

  12. Sensitivity and Specificity of Emergency Physicians and Trainees for Identifying Internally Concealed Drug Packages on Abdominal Computed Tomography Scan: Do Lung Windows Improve Accuracy?

    PubMed

    Asha, Stephen Edward; Cooke, Andrew

    2015-09-01

    Suspected body packers may be brought to emergency departments (EDs) close to international airports for abdominal computed tomography (CT) scanning. Senior emergency clinicians may be asked to interpret these CT scans. Missing concealed drug packages have important clinical and forensic implications. The accuracy of emergency clinician interpretation of abdominal CT scans for concealed drugs is not known. Limited evidence suggests that accuracy for identification of concealed packages can be increased by viewing CT images on "lung window" settings. To determine the accuracy of senior emergency clinicians in interpreting abdominal CT scans for concealed drugs, and to determine if this accuracy was improved by viewing scans on both abdominal and lung window settings. Emergency clinicians blinded to all patient identifiers and the radiology report interpreted CT scans of suspected body packers using standard abdominal window settings and then with the addition of lung window settings. The reference standard was the radiologist's report. Fifty-five emergency clinicians reported 235 CT scans. The sensitivity, specificity, and accuracy of interpretation using abdominal windows was 89.9% (95% confidence interval [CI] 83.0-94.7), 81.9% (95% CI 73.7-88.4), and 86.0% (95% CI 81.5-90.4), respectively, and with both window settings was 94.1% (95% CI 88.3-97.6), 76.7% (95% CI 68.0-84.1), 85.5% (95% CI 81.0-90.0), respectively. Diagnostic accuracy was similar regardless of the clinician's experience. Interrater reliability was moderate (kappa 0.46). The accuracy of interpretation of abdominal CT scans performed for the purpose of detecting concealed drug packages by emergency clinicians is not high enough to safely discharge these patients from the ED. The use of lung windows improved sensitivity, but at the expense of specificity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  13. 18F-FDG uptake and its clinical relevance in primary gastric lymphoma.

    PubMed

    Yi, Jun Ho; Kim, Seok Jin; Choi, Joon Young; Ko, Young Hyeh; Kim, Byung-Tae; Kim, Won Seog

    2010-06-01

    We studied the clinical relevance of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in patients with primary gastric lymphoma underwent positron emission tomography (PET)/ computed tomography (CT) scan. Forty-two patients with primary gastric lymphoma were analysed: 32 diffuse large B-cell lymphomas (DLBCL) and 10 extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas). The PET/CT scans were compared with clinical and pathologic features, and the results of CT and endoscopy. Nine patients were up-staged based on the results of their PET/CT scan compared to CT (seven DLBCLs, two MALT lymphomas) while six patients were down-staged by the PET/CT scan. The standard uptake value (SUV) was used as an indicator of a lesion with a high metabolic rate. The high SUVmax group, defined as an SUVmax >or= median value, was significantly associated with an advanced Lugano stage (p < 0.001). Three patients with DLBCL, who showed an initially high SUVmax, died of disease progression. Among 24 patients for whom follow-up PET/CT scan with endoscopy was performed, 11 patients with ulcerative or mucosal lesions showed residual (18)F-FDG uptake. All of these gastric lesions were grossly and pathologically benign lesions without evidence of lymphoma cells. In conclusion, PET/CT scan can be used in staging patients with primary gastric lymphoma; however, the residual (18)F-FDG uptake observed during follow-up should be interpreted cautiously and should be combined with endoscopy and multiple biopsies of the stomach. (c) 2009 John Wiley & Sons, Ltd.

  14. [Development of Audio Indicator System for Respiratory Dynamic CT Imaging].

    PubMed

    Muramatsu, Shun; Moriya, Hiroshi; Tsukagoshi, Shinsuke; Yamada, Norikazu

    We created the device, which can conduct a radiological technologist's voice to a subject during CT scanning. For 149 lung cancer, dynamic respiratory CT were performed. 92 cases were performed using this device, the others were without this device. The respiratory cycle and respiratory amplitude were analyzed from the lung density. A stable respirating cycle was obtained by using the audio indicator system. The audio indicator system is useful for respiratory dynamic CT.

  15. A 51-Year-Old Woman With an Increasing Chest Wall Mass Years After Resection of an Early Stage Lung Cancer.

    PubMed

    Dhakal, Ajay; Chen, Hongbin; Dexter, Elisabeth U

    2017-12-01

    A 51-year-old woman was found to have a new 14 × 6 mm soft tissue mass under the right serratus muscle on a CT scan of the chest performed for routine surveillance due to her history of stage I lung cancer. A follow-up CT scan performed 4 months later showed that the mass had increased in size to 22 × 8 mm. The patient presents to the oncology clinic to discuss the results of the CT scan. She has no pain or swelling on the right lateral chest and no cough, fever, or shortness of breath. She is at her baseline health with good appetite and functional status. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  16. Reproducibility of geometrical acquisition of intra-thoracic organs of children on CT scans.

    PubMed

    Coulongeat, François; Jarrar, Mohamed-Salah; Serre, Thierry; Thollon, Lionel

    2011-08-01

    This paper analyses geometry of intra-thoracic organs from computed tomography (CT) scans performed on 20 children aged from 4 months to 16 years. A set of two measurements on lungs and heart were performed by the same observer. A third set was performed by a second observer. Thus, the intra- and inter-observer relative deviation of measurements was analysed. Multiple regressions were used in order to study the relationship between the CT properties (scanner, voltage, dose, pixel size, slice increment) and the relative deviation of measurements. There is a very low systematic intra- and inter-observer bias in measurements except for the volume of the heart. None of the CT data properties has a significant influence on the relative deviation of measurement. In the present paper, the measurements and 3D reconstruction protocol described can be applied to characterise the growth of the intra-thoracic organs.

  17. Audit of radiation dose delivered in time-resolved four-dimensional computed tomography in a radiotherapy department.

    PubMed

    Hubbard, Patricia; Callahan, Jason; Cramb, Jim; Budd, Ray; Kron, Tomas

    2015-06-01

    To review the dose delivered to patients in time-resolved computed tomography (4D CT) used for radiotherapy treatment planning. 4D CT is used at Peter MacCallum Cancer Centre since July 2007 for radiotherapy treatment planning using a Philips Brilliance Wide Bore CT scanner (16 slice, helical 4D CT acquisition). All scans are performed at 140 kVp and reconstructed in 10 datasets for different phases of the breathing cycle. Dose records were analysed retrospectively for 387 patients who underwent 4D CT procedures between 2007 and 2013. A total of 444 4D CT scans were acquired with the majority of them (342) being for lung cancer radiotherapy. Volume CT dose index (CTDIvol) as recorded over this period was fairly constant at approximately 20 mGy for adults. The CTDI for 4D CT for lung cancers of 19.6 ± 9.3 mGy (n = 168, mean ± 1SD) was found to be 63% higher than CTDIs for conventional CT scans for lung patients that were acquired in the same period (CTDIvol 12 ± 4 mGy, sample of n = 25). CTDI and dose length product (DLP) increased with increasing field of view; however, no significant difference between DLPs for different indications (breast, kidney, liver and lung) could be found. Breathing parameters such as breathing rate or pattern did not affect dose. 4D CT scans can be acquired for radiotherapy treatment planning with a dose less than twice the one required for conventional CT scanning. © 2015 The Royal Australian and New Zealand College of Radiologists.

  18. The Value of 18F-FDG PET/CT in Diagnosis and During Follow-up in 273 Patients with Chronic Q Fever.

    PubMed

    Kouijzer, Ilse J E; Kampschreur, Linda M; Wever, Peter C; Hoekstra, Corneline; van Kasteren, Marjo E E; de Jager-Leclercq, Monique G L; Nabuurs-Franssen, Marrigje H; Wegdam-Blans, Marjolijn C A; Ammerlaan, Heidi S M; Buijs, Jacqueline; Geus-Oei, Lioe-Fee de; Oyen, Wim J G; Bleeker-Rovers, Chantal P

    2018-01-01

    In 1%-5% of all acute Q fever infections, chronic Q fever develops, mostly manifesting as endocarditis, infected aneurysms, or infected vascular prostheses. In this study, we investigated the diagnostic value of 18 F-FDG PET/CT in chronic Q fever at diagnosis and during follow-up. Methods: All adult Dutch patients suspected of chronic Q fever who were diagnosed since 2007 were retrospectively included until March 2015, when at least one 18 F-FDG PET/CT scan was obtained. Clinical data and results from 18 F-FDG PET/CT at diagnosis and during follow-up were collected. 18 F-FDG PET/CT scans were prospectively reevaluated by 3 nuclear medicine physicians using a structured scoring system. Results: In total, 273 patients with possible, probable, or proven chronic Q fever were included. Of all 18 F-FDG PET/CT scans performed at diagnosis, 13.5% led to a change in diagnosis. Q fever-related mortality rate in patients with and without vascular infection based on 18 F-FDG PET/CT was 23.8% and 2.1%, respectively ( P = 0.001). When 18 F-FDG PET/CT was added as a major criterion to the modified Duke criteria, 17 patients (1.9-fold increase) had definite endocarditis. At diagnosis, 19.6% of 18 F-FDG PET/CT scans led to treatment modification. During follow-up, 57.3% of 18 F-FDG PET/CT scans resulted in treatment modification. Conclusion: 18 F-FDG PET/CT is a valuable technique in diagnosis of chronic Q fever and during follow-up, often leading to a change in diagnosis or treatment modification and providing important prognostic information on patient survival. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  19. Radiation dose in the thyroid and the thyroid cancer risk attributable to CT scans for pediatric patients in one general hospital of China.

    PubMed

    Su, Yin-Ping; Niu, Hao-Wei; Chen, Jun-Bo; Fu, Ying-Hua; Xiao, Guo-Bing; Sun, Quan-Fu

    2014-03-07

    To quantify the radiation dose in the thyroid attributable to different CT scans and to estimate the thyroid cancer risk in pediatric patients. The information about pediatric patients who underwent CT scans was abstracted from the radiology information system in one general hospital between 1 January 2012 and 31 December 2012. The radiation doses were calculated using the ImPACT Patient Dosimetry Calculator and the lifetime attributable risk (LAR) of thyroid cancer incidence was estimated based on the National Academies Biologic Effects of Ionizing Radiation VII model. The subjects comprised 922 children, 68% were males, and received 971 CT scans. The range of typical radiation dose to the thyroid was estimated to be 0.61-0.92 mGy for paranasal sinus CT scans, 1.10-2.45 mGy for head CT scans, and 2.63-5.76 mGy for chest CT scans. The LAR of thyroid cancer were as follows: for head CT, 1.1 per 100,000 for boys and 8.7 per 100,000 for girls; for paranasal sinus CT scans, 0.4 per 100,000 for boys and 2.7 per 100,000 for girls; for chest CT scans, 2.2 per 100,000 for boys and 14.2 per 100,000 for girls. The risk of thyroid cancer was substantially higher for girls than for the boys, and from chest CT scans was higher than that from head or paransal sinus CT scans. Chest CT scans caused higher thyroid dose and the LAR of thyroid cancer incidence, compared with paransal sinus or head CT scans. Therefore, physicians should pay more attention to protect the thyroid when children underwent CT scans, especially chest CT scans.

  20. Minor head injury in children.

    PubMed

    Klig, Jean E; Kaplan, Carl P

    2010-06-01

    This review will examine mild closed head injury (CHI) and the current evidence on head computed tomography (CT) imaging risks in children, prediction rules to guide decisions on CT scan use, and issues of concussion after initial evaluation. The current literature offers preliminary evidence on the risks of radiation exposure from CT scans in children. A recent study introduces a validated prediction rule for use in mild CHI, to limit the number of CT scans performed. Concurrent with this progress, fast (or short sequence) MRI represents an emerging technology that may prove to be a viable alternative to CT scan use in certain cases of mild CHI where imaging is desired. The initial emergency department evaluation for mild CHI is the start point for a sequence of follow-up to assure that postconcussive symptoms fully resolve. The literature on sports-related concussion offers some information that may be used for patients with non-sports-related concussion. It is clear that CT scan use should be as safe and limited in scope as possible for children. Common decisions on the use of CT imaging for mild head injury can now be guided by a prediction rule for clinically important traumatic brain injury. Parameters for the follow-up care of patients with mild CHI after emergency department discharge are needed in the future to assure that postconcussive symptoms are adequately screened for full resolution.

  1. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience with Phantom Scans

    PubMed Central

    Johnson, Robert P.; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F.; Piersimoni, Pierluigi; Plautz, Tia E.; Sadrozinski, Hartmut F.-W.; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy

    2016-01-01

    We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials. PMID:27127307

  2. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience with Phantom Scans.

    PubMed

    Johnson, Robert P; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F; Piersimoni, Pierluigi; Plautz, Tia E; Sadrozinski, Hartmut F-W; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy

    2016-02-01

    We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials.

  3. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience With Phantom Scans

    NASA Astrophysics Data System (ADS)

    Johnson, Robert P.; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F.; Piersimoni, Pierluigi; Plautz, Tia E.; Sadrozinski, Hartmut F.-W.; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy

    2016-02-01

    We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360 ° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360 ° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials.

  4. Abdomen after a Puestow procedure: postoperative CT appearance, complications, and potential pitfalls.

    PubMed

    Freed, K S; Paulson, E K; Frederick, M G; Keogan, M T; Pappas, T N

    1997-06-01

    To evaluate the postoperative computed tomographic (CT) appearance, complications, and potential pitfalls after a Puestow procedure (lateral side-to-side pancreaticojejunostomy). Forty CT examinations were performed after the Puestow procedure in 20 patients. Images were retrospectively reviewed by three radiologists. The pancreaticojejunal anastomosis was identified at 30 examinations and was immediately anterior to the pancreatic body or tail. The anastomosis contained fluid or gas on 11 scans and oral contrast material on four scans. On 15 scans, the anastomosis appeared as collapsed bowel without gas, fluid, or oral contrast material. The Roux-en-Y loop was identified on 28 (70%) scans and contained fluid or gas on 16 scans and oral contrast material on six scans. The Roux-en-Y loop appeared as collapsed bowel on six scans. When the anastomosis or Roux-en-Y loop contained fluid and gas, the appearance mimicked that of a pancreatic or parapancreatic abscess. Peripancreatic stranding was present on 28 scans and was due to either ongoing pancreatitis or postoperative change. Complications included 15 transient fluid collections, three abscesses, four pseudocysts, one hematoma, and one small-bowel and Roux-en-Y obstruction. Knowledge of the anatomy after a Puestow procedure is essential for accurate interpretation of CT scans.

  5. 18F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection.

    PubMed

    Bagrosky, Brian M; Hayes, Kari L; Koo, Phillip J; Fenton, Laura Z

    2013-08-01

    Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using (18)F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in patients with suspected spinal hardware infection. Because pneumonia was diagnosed as often as spinal hardware infection, initial chest radiography should also be performed.

  6. Automated volumetry of temporal horn of lateral ventricle for detection of Alzheimer's disease in CT scan

    NASA Astrophysics Data System (ADS)

    Takahashi, Noriyuki; Kinoshita, Toshibumi; Ohmura, Tomomi; Matsuyama, Eri; Toyoshima, Hideto

    2018-02-01

    The rapid increase in the incidence of Alzheimer's disease (AD) has become a critical issue in low and middle income countries. In general, MR imaging has become sufficiently suitable in clinical situations, while CT scan might be uncommonly used in the diagnosis of AD due to its low contrast between brain tissues. However, in those countries, CT scan, which is less costly and readily available, will be desired to become useful for the diagnosis of AD. For CT scan, the enlargement of the temporal horn of the lateral ventricle (THLV) is one of few findings for the diagnosis of AD. In this paper, we present an automated volumetry of THLV with segmentation based on Bayes' rule on CT images. In our method, first, all CT data sets are normalized into an atlas by using linear affine transformation and non-linear wrapping techniques. Next, a probability map of THLV is constructed in the normalized data. Then, THLV regions are extracted based on Bayes' rule. Finally, the volume of the THLV is evaluated. This scheme was applied to CT scans from 20 AD patients and 20 controls to evaluate the performance of the method for detecting AD. The estimated THLV volume was markedly increased in the AD group compared with the controls (P < .0001), and the area under the receiver operating characteristic curve (AUC) was 0.921. Therefore, this computerized method may have the potential to accurately detect AD on CT images.

  7. CT radiation profile width measurement using CR imaging plate raw data

    PubMed Central

    Yang, Chang‐Ying Joseph

    2015-01-01

    This technical note demonstrates computed tomography (CT) radiation profile measurement using computed radiography (CR) imaging plate raw data showing it is possible to perform the CT collimation width measurement using a single scan without saturating the imaging plate. Previously described methods require careful adjustments to the CR reader settings in order to avoid signal clipping in the CR processed image. CT radiation profile measurements were taken as part of routine quality control on 14 CT scanners from four vendors. CR cassettes were placed on the CT scanner bed, raised to isocenter, and leveled. Axial scans were taken at all available collimations, advancing the cassette for each scan. The CR plates were processed and raw CR data were analyzed using MATLAB scripts to measure collimation widths. The raw data approach was compared with previously established methodology. The quality control analysis scripts are released as open source using creative commons licensing. A log‐linear relationship was found between raw pixel value and air kerma, and raw data collimation width measurements were in agreement with CR‐processed, bit‐reduced data, using previously described methodology. The raw data approach, with intrinsically wider dynamic range, allows improved measurement flexibility and precision. As a result, we demonstrate a methodology for CT collimation width measurements using a single CT scan and without the need for CR scanning parameter adjustments which is more convenient for routine quality control work. PACS numbers: 87.57.Q‐, 87.59.bd, 87.57.uq PMID:26699559

  8. Software Development for Estimating the Conversion Factor (K-Factor) at Suitable Scan Areas, Relating the Dose Length Product to the Effective Dose.

    PubMed

    Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Suzuki, Syouichi; Koshida, Kichiro; Matsunaga, Yuta; Kawaguchi, Ai; Haba, Tomonobu; Toyama, Hiroshi; Kato, Ryouichi

    2017-05-01

    We developed a k-factor-creator software (kFC) that provides the k-factor for CT examination in an arbitrary scan area. It provides the k-factor from the effective dose and dose-length product by Imaging Performance Assessment of CT scanners and CT-EXPO. To assess the reliability, we compared the kFC-evaluated k-factors with those of the International Commission on Radiological Protection (ICRP) publication 102. To confirm the utility, the effective dose determined by coronary computed tomographic angiography (CCTA) was evaluated by a phantom study and k-factor studies. In the CCTA, the effective doses were 5.28 mSv in the phantom study, 2.57 mSv (51%) in the k-factor of ICRP, and 5.26 mSv (1%) in the k-factor of the kFC. Effective doses can be determined from the kFC-evaluated k-factors in suitable scan areas. Therefore, we speculate that the flexible k-factor is useful in clinical practice, because CT examinations are performed in various scan regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Volumetric gain of the human pancreas after left partial pancreatic resection: A CT-scan based retrospective study.

    PubMed

    Phillip, Veit; Zahel, Tina; Danninger, Assiye; Erkan, Mert; Dobritz, Martin; Steiner, Jörg M; Kleeff, Jörg; Schmid, Roland M; Algül, Hana

    2015-01-01

    Regeneration of the pancreas has been well characterized in animal models. However, there are conflicting data on the regenerative capacity of the human pancreas. The aim of the present study was to assess the regenerative capacity of the human pancreas. In a retrospective study, data from patients undergoing left partial pancreatic resection at a single center were eligible for inclusion (n = 185). Volumetry was performed based on 5 mm CT-scans acquired through a 256-slice CT-scanner using a semi-automated software. Data from 24 patients (15 males/9 females) were included. Mean ± SD age was 68 ± 11 years (range, 40-85 years). Median time between surgery and the 1st postoperative CT was 9 days (range, 0-27 days; IQR, 7-13), 55 days (range, 21-141 days; IQR, 34-105) until the 2nd CT, and 191 days (range, 62-1902; IQR, 156-347) until the 3rd CT. The pancreatic volumes differed significantly between the first and the second postoperative CT scans (median volume 25.6 mL and 30.6 mL, respectively; p = 0.008) and had significantly increased further by the 3rd CT scan (median volume 37.9 mL; p = 0.001 for comparison with 1st CT scan and p = 0.003 for comparison with 2nd CT scan). The human pancreas shows a measurable and considerable potential of volumetric gain after partial resection. Multidetector-CT based semi-automated volume analysis is a feasible method for follow-up of the volume of the remaining pancreatic parenchyma after partial pancreatectomy. Effects on exocrine and endocrine pancreatic function have to be evaluated in a prospective manner. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  10. Use of PET/CT instead of CT-only when planning for radiation therapy does not notably increase life years lost in children being treated for cancer.

    PubMed

    Kornerup, Josefine S; Brodin, Patrik; Birk Christensen, Charlotte; Björk-Eriksson, Thomas; Kiil-Berthelsen, Anne; Borgwardt, Lise; Munck Af Rosenschöld, Per

    2015-04-01

    PET/CT may be more helpful than CT alone for radiation therapy planning, but the added risk due to higher doses of ionizing radiation is unknown. To estimate the risk of cancer induction and mortality attributable to the [F-18]2-fluoro-2-deoxyglucose (FDG) PET and CT scans used for radiation therapy planning in children with cancer, and compare to the risks attributable to the cancer treatment. Organ doses and effective doses were estimated for 40 children (2-18 years old) who had been scanned using PET/CT as part of radiation therapy planning. The risk of inducing secondary cancer was estimated using the models in BEIR VII. The prognosis of an induced cancer was taken into account and the reduction in life expectancy, in terms of life years lost, was estimated for the diagnostics and compared to the life years lost attributable to the therapy. Multivariate linear regression was performed to find predictors for a high contribution to life years lost from the radiation therapy planning diagnostics. The mean contribution from PET to the effective dose from one PET/CT scan was 24% (range: 7-64%). The average proportion of life years lost attributable to the nuclear medicine dose component from one PET/CT scan was 15% (range: 3-41%). The ratio of life years lost from the radiation therapy planning PET/CT scans and that of the cancer treatment was on average 0.02 (range: 0.01-0.09). Female gender was associated with increased life years lost from the scans (P < 0.001). Using FDG-PET/CT instead of CT only when defining the target volumes for radiation therapy of children with cancer does not notably increase the number of life years lost attributable to diagnostic examinations.

  11. Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nattenmüller, Johanna, E-mail: johanna.nattenmueller@med.uni-heidelberg.de; Filsinger, Matthias, E-mail: Matthias_filsinger@web.de; Bryant, Mark, E-mail: mark.bryant@med.uni-heidelberg.de

    2013-06-19

    PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % inmore » drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.« less

  12. Alcohol-related hospitalisations of trauma patients in Southern Taiwan: a cross-sectional study based on a trauma registry system

    PubMed Central

    Rau, Cheng-Shyuan; Liu, Hang-Tsung; Hsu, Shiun-Yuan; Cho, Tzu-Yu; Hsieh, Ching-Hua

    2014-01-01

    Objectives To provide an overview of the demographic characteristics of patients with positive blood alcohol concentration (BAC) and to investigate the performance of brain CT scans in these patients. Design Cross-sectional study. Setting Taiwan. Participants 2192 patients who had undergone a test for blood alcohol of 13 233 patients registered in the Trauma Registry System between 1 January 2009 and 31 December 2012. A BAC level of 50 mg/dL was defined as the cut-off value. Detailed information was retrieved from the patients with positive BAC (n=793) and was compared with information from those with a negative BAC (n=1399). Main outcome measures Glasgow Coma Scale (GCS) and Injury Severity Score (ISS) as well as the performance and findings of obtained brain CT scans. Results Patients with positive BAC had a higher rate of face injury, but a lower GCS score, a lower rate of head and neck injury, a lower ISS and New Injury Severity Score. Alcohol use was associated with a shorter length of hospital stay (8.6 vs 11.4 days, p=0.000) in patients with an ISS of <16. Of 496 patients with positive BAC who underwent brain CT, 164 (33.1%) showed positive findings on CT scan. In contrast, of 891 patients with negative BAC who underwent brain CT, 389 (43.7%) had positive findings on CT scan. The lower percentage of positive CT scan findings in patients with positive BAC was particularly evident in patients with an ISS <16 (18.0% vs 28.8%, p=0.001). Conclusions Patients who consumed alcohol tended to have a low GCS score and injuries that were less severe. However, given the significantly low percentage of positive findings, brain CT might be overused in these patients with less severe injuries. PMID:25361838

  13. Clotrimazole-cyclodextrin based approach for the management and treatment of Candidiasis - A formulation and chemistry-based evaluation.

    PubMed

    Mohammed, Noorullah Naqvi; Pandey, Pankaj; Khan, Nayaab S; Elokely, Khaled M; Liu, Haining; Doerksen, Robert J; Repka, Michael A

    2016-08-01

    Clotrimazole (CT) is a poorly soluble antifungal drug that is most commonly employed as a topical treatment in the management of vaginal candidiasis. The present work focuses on a formulation approach to enhance the solubility of CT using cyclodextrin (CD) complexation. A CT-CD complex was prepared by a co-precipitation method. Various characterization techniques such as differential scanning calorimetry, infrared (IR) and X-ray spectroscopy, scanning electron microscopy and nuclear magnetic resonance (NMR) spectroscopy were performed to evaluate the complex formation and to understand the interactions between CT and CD. Computational molecular modeling was performed using the Schrödinger suite and Gaussian 09 program to understand structural conformations of the complex. The phase solubility curve followed an AL-type curve, indicating formation of a 1:1 complex. Molecular docking studies supported the data obtained through NMR and IR studies. Enthalpy changes confirmed that complexation was an exothermic and enthalpically favorable phenomenon. The CT-CD complexes were formulated in a gel and evaluated for release and antifungal activity. The in vitro release studies performed using gels demonstrated a sustained release of CT from the CT-CD complex with the complex exhibiting improved release relative to the un-complexed CT. Complexed CT-CD exhibited better fungistatic activity toward different Candida species than un-complexed CT.

  14. New scoring system for intra-abdominal injury diagnosis after blunt trauma.

    PubMed

    Shojaee, Majid; Faridaalaee, Gholamreza; Yousefifard, Mahmoud; Yaseri, Mehdi; Arhami Dolatabadi, Ali; Sabzghabaei, Anita; Malekirastekenari, Ali

    2014-01-01

    An accurate scoring system for intra-abdominal injury (IAI) based on clinical manifestation and examination may decrease unnecessary CT scans, save time, and reduce healthcare cost. This study is designed to provide a new scoring system for a better diagnosis of IAI after blunt trauma. This prospective observational study was performed from April 2011 to October 2012 on patients aged above 18 years and suspected with blunt abdominal trauma (BAT) admitted to the emergency department (ED) of Imam Hussein Hospital and Shohadaye Hafte Tir Hospital. All patients were assessed and treated based on Advanced Trauma Life Support and ED protocol. Diagnosis was done according to CT scan findings, which was considered as the gold standard. Data were gathered based on patient's history, physical exam, ultrasound and CT scan findings by a general practitioner who was not blind to this study. Chi-square test and logistic regression were done. Factors with significant relationship with CT scan were imported in multivariate regression models, where a coefficient (β) was given based on the contribution of each of them. Scoring system was developed based on the obtained total β of each factor. Altogether 261 patients (80.1% male) were enrolled (48 cases of IAI). A 24-point blunt abdominal trauma scoring system (BATSS) was developed. Patients were divided into three groups including low (score<8), moderate (8≤score<12) and high risk (score≥12). In high risk group immediate laparotomy should be done, moderate group needs further assessments, and low risk group should be kept under observation. Low risk patients did not show positive CT-scans (specificity 100%). Conversely, all high risk patients had positive CT-scan findings (sensitivity 100%). The receiver operating characteristic curve indicated a close relationship between the results of CT scan and BATSS (sensitivity=99.3%). The present scoring system furnishes a high precision and reproducible diagnostic tool for BAT detection and has the potential to reduce unnecessary CT scan and cut unnecessary costs.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsalafoutas, Ioannis A.; Varsamidis, Athanasios; Thalassinou, Stella

    Purpose: To investigate the utility of the nested polymethylacrylate (PMMA) phantom (which is available in many CT facilities for CTDI measurements), as a tool for the presentation and comparison of the ways that two different CT automatic exposure control (AEC) systems respond to a phantom when various scan parameters and AEC protocols are modified.Methods: By offsetting the two phantom's components (the head phantom and the body ring) half-way along their longitudinal axis, a phantom with three sections of different x-ray attenuation was created. Scan projection radiographs (SPRs) and helical scans of the three-section phantom were performed on a Toshiba Aquilionmore » 64 and a Philips Brilliance 64 CT scanners, with different scan parameter selections [scan direction, pitch factor, slice thickness, and reconstruction interval (ST/RI), AEC protocol, and tube potential used for the SPRs]. The dose length product (DLP) values of each scan were recorded and the tube current (mA) values of the reconstructed CT images were plotted against the respective Z-axis positions on the phantom. Furthermore, measurements of the noise levels at the center of each phantom section were performed to assess the impact of mA modulation on image quality.Results: The mA modulation patterns of the two CT scanners were very dissimilar. The mA variations were more pronounced for Aquilion 64, where changes in any of the aforementioned scan parameters affected both the mA modulations curves and DLP values. However, the noise levels were affected only by changes in pitch, ST/RI, and AEC protocol selections. For Brilliance 64, changes in pitch affected the mA modulation curves but not the DLP values, whereas only AEC protocol and SPR tube potential selection variations affected both the mA modulation curves and DLP values. The noise levels increased for smaller ST/RI, larger weight category AEC protocol, and larger SPR tube potential selection.Conclusions: The nested PMMA dosimetry phantom can be effectively utilized for the comprehension of CT AEC systems performance and the way that different scan conditions affect the mA modulation patterns, DLP values, and image noise. However, in depth analysis of the reasons why these two systems exhibited such different behaviors in response to the same phantom requires further investigation which is beyond the scope of this study.« less

  16. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    NASA Astrophysics Data System (ADS)

    Panetta, Daniele; Belcari, Nicola; Tripodi, Maria; Burchielli, Silvia; Salvadori, Piero A.; Del Guerra, Alberto

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI100 has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R2>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  17. The Use of CT Scan in Hemodynamically Stable Children with Blunt Abdominal Trauma: Look before You Leap.

    PubMed

    Nellensteijn, David R; Greuter, Marcel J; El Moumni, Moustafa; Hulscher, Jan B

    2016-08-01

    We set out to determine the diagnostic value of computed tomographic (CT) scans in relation to the radiation dose, tumor incidence, and tumor mortality by radiation for hemodynamically stable pediatric patients with blunt abdominal injury. We focused on the changes in management because of new information obtained by CT. CT scans for suspected pediatric abdominal injury performed in our accident and emergency department were retrieved from the radiology registry and analyzed for: injury and hemodynamic parameters, changes in therapy, and radiological interventions. The dose length product (DLP) was used to calculate the effective dose (ED) and with the BEIR VII report we calculated the estimated induced lifetime tumor and mortality risk. Seventy-two patients underwent abdominal CT scanning for suspicion of abdominal injury and eight patients were excluded for hemodynamic instability, leaving 64 hemodynamically stable patients. Four patients died (6%). On the remaining 60 patients, only one laparotomy was performed for suspicion of duodenal perforation. Only in three out of the 64 hemodynamically stable cases (5%), a CT scan brought forward an indication for intervention or change in management. One patient was suspected of a duodenal perforation and underwent a laparotomy. A grade II hepatic laceration, but no duodenal, injury was found. Two patients underwent embolization of the splenic artery. One for an arterial blush caused by splenic laceration as was observed on the contrast enhanced-CT. Patient remained stable and during the angiogram the blush had disappeared. The second patient underwent (prophylactic) selective arterial embolization for having sustained a grade V splenic injury. The median radiation dosage was 11.43 mSv (range 1.19-23.76 mSv) in our patients. The use of the BEIR VII methodology results in an estimated increase in the lifetime tumor incidence of 0.17% (range, 0.05-0.67%) and an estimated increase in lifetime tumor incidence of 0.08% (0.02-0.28%). The results of our data suggest that the use of CT scans can largely be avoided in hemodynamically stable children with blunt abdominal injury. Georg Thieme Verlag KG Stuttgart · New York.

  18. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  19. A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Chellamuthu, Karthik; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald M.

    2018-02-01

    Pericardial effusion on CT scans demonstrates very high shape and volume variability and very low contrast to adjacent structures. This inhibits traditional automated segmentation methods from achieving high accuracies. Deep neural networks have been widely used for image segmentation in CT scans. In this work, we present a two-stage method for pericardial effusion localization and segmentation. For the first step, we localize the pericardial area from the entire CT volume, providing a reliable bounding box for the more refined segmentation step. A coarse-scaled holistically-nested convolutional networks (HNN) model is trained on entire CT volume. The resulting HNN per-pixel probability maps are then threshold to produce a bounding box covering the pericardial area. For the second step, a fine-scaled HNN model is trained only on the bounding box region for effusion segmentation to reduce the background distraction. Quantitative evaluation is performed on a dataset of 25 CT scans of patient (1206 images) with pericardial effusion. The segmentation accuracy of our two-stage method, measured by Dice Similarity Coefficient (DSC), is 75.59+/-12.04%, which is significantly better than the segmentation accuracy (62.74+/-15.20%) of only using the coarse-scaled HNN model.

  20. Validation of calculation algorithms for organ doses in CT by measurements on a 5 year old paediatric phantom

    NASA Astrophysics Data System (ADS)

    Dabin, Jérémie; Mencarelli, Alessandra; McMillan, Dayton; Romanyukha, Anna; Struelens, Lara; Lee, Choonsik

    2016-06-01

    Many organ dose calculation tools for computed tomography (CT) scans rely on the assumptions: (1) organ doses estimated for one CT scanner can be converted into organ doses for another CT scanner using the ratio of the Computed Tomography Dose Index (CTDI) between two CT scanners; and (2) helical scans can be approximated as the summation of axial slices covering the same scan range. The current study aims to validate experimentally these two assumptions. We performed organ dose measurements in a 5 year-old physical anthropomorphic phantom for five different CT scanners from four manufacturers. Absorbed doses to 22 organs were measured using thermoluminescent dosimeters for head-to-torso scans. We then compared the measured organ doses with the values calculated from the National Cancer Institute dosimetry system for CT (NCICT) computer program, developed at the National Cancer Institute. Whereas the measured organ doses showed significant variability (coefficient of variation (CoV) up to 53% at 80 kV) across different scanner models, the CoV of organ doses normalised to CTDIvol substantially decreased (12% CoV on average at 80 kV). For most organs, the difference between measured and simulated organ doses was within  ±20% except for the bone marrow, breasts and ovaries. The discrepancies were further explained by additional Monte Carlo calculations of organ doses using a voxel phantom developed from CT images of the physical phantom. The results demonstrate that organ doses calculated for one CT scanner can be used to assess organ doses from other CT scanners with 20% uncertainty (k  =  1), for the scan settings considered in the study.

  1. Characterization of the nanoDot OSLD dosimeter in CT.

    PubMed

    Scarboro, Sarah B; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C; Zhang, Di; McNitt-Gray, Michael; Kry, Stephen F

    2015-04-01

    The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80-140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.

  2. Automatic identification of IASLC-defined mediastinal lymph node stations on CT scans using multi-atlas organ segmentation

    NASA Astrophysics Data System (ADS)

    Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.

    2015-03-01

    Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.

  3. Performance of Glial Fibrillary Acidic Protein (GFAP) in Detecting Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Head Trauma

    PubMed Central

    Papa, Linda; Zonfrillo, Mark; Ramirez, Jose; Silvestri, Salvatore; Giordano, Philip; Braga, Carolina F.; Tan, Ciara N.; Ameli, Neema J.; Lopez, Marco; Mittal, Manoj K.

    2015-01-01

    Objectives This study examined the performance of serum glial fibrillary acidic protein (GFAP) in detecting traumatic intracranial lesions on computed tomography (CT) scan in children and youth with mild and moderate traumatic brain injury (TBI), and assessed its performance in trauma control patients without head trauma. Methods This prospective cohort study enrolled children and youth presenting to three Level I trauma centers following blunt head trauma with Glasgow Coma Scale (GCS) scores of 9 to 15, as well as trauma control patients with GCS scores of 15 who did not have blunt head trauma. The primary outcome measure was the presence of intracranial lesions on initial CT scan. Blood samples were obtained in all patients within six hours of injury and measured by ELISA for GFAP (ng/ml). Results A total of 257 children and youth were enrolled in the study and had serum samples drawn within 6 hours of injury for analysis: 197 had blunt head trauma and 60 were trauma controls. CT scan of the head was performed in 152 patients and traumatic intracranial lesions on CT scan were evident in 18 (11%), all of whom had GCS scores of 13 to 15. When serum levels of GFAP were compared in children and youth with traumatic intracranial lesions on CT scan to those without CT lesions, median GFAP levels were significantly higher in those with intracranial lesions (1.01, IQR 0.59 to 1.48) than those without lesions (0.18, IQR 0.06 to 0.47). The area under the receiver operating characteristic (ROC) curve (AUC) for GFAP in detecting children and youth with traumatic intracranial lesions on CT was 0.82 (95% CI = 0.71 to 0.93). In those presenting with GCS scores of 15, the AUC for detecting lesions was 0.80 (95% CI = 0.68 to 0.92). Similarly, in children under five years old the AUC was 0.83 (95% CI = 0.56 to 1.00). Performance for detecting intracranial lesions at a GFAP cutoff level of 0.15 ng/ml yielded a sensitivity of 94%, a specificity of 47%, and a negative predictive value of 98%. Conclusions In children and youth of all ages, GFAP measured within 6 hours of injury was associated with traumatic intracranial lesions on CT and with severity of TBI. Further study is required to validate these findings before clinical application. PMID:26469937

  4. SU-F-I-33: Estimating Radiation Dose in Abdominal Fat Quantitative CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, K; Liu, B

    Purpose: To compare size-specific dose estimate (SSDE) in abdominal fat quantitative CT with another dose estimate D{sub size,L} that also takes into account scan length. Methods: This study complied with the requirements of the Health Insurance Portability and Accountability Act. At our institution, abdominal fat CT is performed with scan length = 1 cm and CTDI{sub vol} = 4.66 mGy (referenced to body CTDI phantom). A previously developed CT simulation program was used to simulate single rotation axial scans of 6–55 cm diameter water cylinders, and dose integral of the longitudinal dose profile over the central 1 cm length wasmore » used to predict the dose at the center of one-cm scan range. SSDE and D{sub size,L} were assessed for 182 consecutive abdominal fat CT examinations with mean water-equivalent diameter (WED) of 27.8 cm ± 6.0 (range, 17.9 - 42.2 cm). Patient age ranged from 18 to 75 years, and weight ranged from 39 to 163 kg. Results: Mean SSDE was 6.37 mGy ± 1.33 (range, 3.67–8.95 mGy); mean D{sub size,L} was 2.99 mGy ± 0.85 (range, 1.48 - 4.88 mGy); and mean D{sub size,L}/SSDE ratio was 0.46 ± 0.04 (range, 0.40 - 0.55). Conclusion: The conversion factors for size-specific dose estimate in AAPM Report No. 204 were generated using 15 - 30 cm scan lengths. One needs to be cautious in applying SSDE to small length CT scans. For abdominal fat CT, SSDE was 80–150% higher than the dose of 1 cm scan length.« less

  5. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT.

    PubMed

    Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; van der Stelt, Paul; Wismeijer, Daniel

    2015-01-01

    The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the accuracy of cone beam computed tomography (CBCT) in evaluating trabecular bone density and microstructure using MSCT and micro-CT, respectively, as reference gold standards. Twenty partially edentulous human mandibular cadavers were scanned by three types of CT modalities: MSCT (Philips, Best, the Netherlands), CBCT (3D Accuitomo 170, J Morita, Kyoto, Japan), and micro-CT (SkyScan 1173, Kontich, Belgium). Image analysis was performed using Amira (v4.1, Visage Imaging Inc., Carlsbad, CA, USA), 3Diagnosis (v5.3.1, 3diemme, Cantu, Italy), Geomagic (studio(®) 2012, Morrisville, NC, USA), and CTAn (v1.11, SkyScan). MSCT, CBCT, and micro-CT scans of each mandible were matched to select the exact region of interest (ROI). MSCT HU, micro-CT BV/TV, and CBCT gray value and bone volume fraction of each ROI were derived. Statistical analysis was performed to assess the correlations between corresponding measurement parameters. Strong correlations were observed between CBCT and MSCT density (r = 0.89) and between CBCT and micro-CT BV/TV measurements (r = 0.82). Excellent correlation was observed between MSCT HU and micro-CT BV/TV (r = 0.91). However, significant differences were found between all comparisons pairs (P < 0.001) except for mean measurement between CBCT BV/TV and micro-CT BV/TV (P = 0.147). An excellent correlation exists between bone volume fraction and bone density as assessed on micro-CT and MSCT, respectively. This suggests that bone density measurements could be used to estimate bone microstructural parameters. A strong correlation also was found between CBCT gray values and BV/TV and their gold standards, suggesting the potential of this modality in bone quality assessment at implant site. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Impact of intravenous contrast used in computed tomography on radiation dose to carotid arteries and thyroid in intensity-modulated radiation therapy planning for nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Victor Ho Fun, E-mail: vhflee@hku.hk; Ng, Sherry Chor Yi; Kwong, Dora Lai Wan

    The aim of this study was to investigate if intravenous contrast injection affected the radiation doses to carotid arteries and thyroid during intensity-modulated radiation therapy (IMRT) planning for nasopharyngeal carcinoma (NPC). Thirty consecutive patients with NPC underwent plain computed tomography (CT) followed by repeated scanning after contrast injection. Carotid arteries (common, external, internal), thyroid, target volumes, and other organs-at-risk (OARs), as well as IMRT planning, were based on contrast-enhanced CT (CE-CT) images. All these structures and the IMRT plans were then copied and transferred to the non–contrast-enhanced CT (NCE-CT) images, and dose calculation without optimization was performed again. The radiationmore » doses to the carotid arteries and the thyroid based on CE-CT and NCE-CT were then compared. Based on CE-CT, no statistical differences, despite minute numeric decreases, were noted in all dosimetric parameters (minimum, maximum, mean, median, D05, and D01) of the target volumes, the OARs, the carotid arteries, and the thyroid compared with NCE-CT. Our results suggested that compared with NCE-CT planning, CE-CT scanning should be performed during IMRT for better target and OAR delineation, without discernible change in radiation doses.« less

  7. Use of Video Goggles to Distract Patients During PET/CT Studies of School-Aged Children.

    PubMed

    Gelfand, Michael J; Harris, Jennifer M; Rich, Amanda C; Kist, Chelsea S

    2016-12-01

    This study was designed to evaluate the effectiveness of video goggles in distracting children undergoing PET/CT and to determine whether the goggles create CT and PET artifacts. Video goggles with small amounts of internal radioopaque material were used. During whole-body PET/CT imaging, 30 nonsedated patients aged 4-13 y watched videos of their choice using the goggles. Fifteen of the PET/CT studies were performed on a scanner installed in 2006, and the other 15 were performed on a scanner installed in 2013. The fused scans were reviewed for evidence of head movement, and the individual PET and CT scans of the head were reviewed for the presence and severity of streak artifact. The CT exposure settings were recorded for each scan at the anatomic level at which the goggles were worn. Only one of the 30 scans had evidence of significant head motion. Two of the 30 had minor coregistration problems due to motion, and 27 of the 30 had very good to excellent coregistration. For the 2006 scanner, 2 of the 14 evaluable localization CT scans of the head demonstrated no streak artifact in brain tissue, 6 of the 14 had mild streak artifact in brain tissue, and 6 of the 14 had moderate streak artifact in brain tissue. Mild streak artifact in bone was noted in 2 of the 14 studies. For the 2013 scanner, 7 of 15 studies had mild streak artifact in brain tissue and 8 of 15 had no streak artifact in brain tissue, whereas none of the 15 had streak artifact in bone. There were no artifacts attributable to the goggles on the 18 F-FDG PET brain images of any of the 29 evaluable studies. The average CT exposure parameters at the level of the orbits were 36% lower on the 2013 scanner than on the 2006 scanner. Video goggles may be used successfully to distract children undergoing PET with localization CT. The goggles cause no significant degradation of the PET brain images or the CT skull images. The degree of artifact on brain tissue images varies from none to moderate and depends on the CT equipment used. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Prediction value of the Canadian CT head rule and the New Orleans criteria for positive head CT scan and acute neurosurgical procedures in minor head trauma: a multicenter external validation study.

    PubMed

    Bouida, Wahid; Marghli, Soudani; Souissi, Sami; Ksibi, Hichem; Methammem, Mehdi; Haguiga, Habib; Khedher, Sonia; Boubaker, Hamdi; Beltaief, Kaouthar; Grissa, Mohamed Habib; Trimech, Mohamed Naceur; Kerkeni, Wiem; Chebili, Nawfel; Halila, Imen; Rejeb, Imen; Boukef, Riadh; Rekik, Noureddine; Bouhaja, Bechir; Letaief, Mondher; Nouira, Semir

    2013-05-01

    The New Orleans Criteria and the Canadian CT Head Rule have been developed to decrease the number of normal computed tomography (CT) results in mild head injury. We compare the performance of both decision rules for identifying patients with intracranial traumatic lesions and those who require an urgent neurosurgical intervention after mild head injury. This was an observational cohort study performed between 2008 and 2011 on patients with mild head injury who were aged 10 years or older. We collected prospectively clinical head CT scan findings and outcome. Primary outcome was need for neurosurgical intervention, defined as either death or craniotomy, or the need of intubation within 15 days of the traumatic event. Secondary outcome was the presence of traumatic lesions on head CT scan. New Orleans Criteria and Canadian CT Head Rule decision rules were compared by using sensitivity specifications and positive and negative predictive value. We enrolled 1,582 patients. Neurosurgical intervention was performed in 34 patients (2.1%) and positive CT findings were demonstrated in 218 patients (13.8%). Sensitivity and specificity for need for neurosurgical intervention were 100% (95% confidence interval [CI] 90% to 100%) and 60% (95% CI 44% to 76%) for the Canadian CT Head Rule and 82% (95% CI 69% to 95%) and 26% (95% CI 24% to 28%) for the New Orleans Criteria. Negative predictive values for the above-mentioned clinical decision rules were 100% and 99% and positive values were 5% and 2%, respectively, for the Canadian CT Head Rule and New Orleans Criteria. Sensitivity and specificity for clinical significant head CT findings were 95% (95% CI 92% to 98%) and 65% (95% CI 62% to 68%) for the Canadian CT Head Rule and 86% (95% CI 81% to 91%) and 28% (95% CI 26% to 30%) for the New Orleans Criteria. A similar trend of results was found in the subgroup of patients with a Glasgow Coma Scale score of 15. For patients with mild head injury, the Canadian CT Head Rule had higher sensitivity than the New Orleans Criteria, with higher negative predictive value. The question of whether the use of the Canadian CT Head Rule would have a greater influence on head CT scan reduction requires confirmation in real clinical practice. Copyright © 2012 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  9. Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters

    NASA Astrophysics Data System (ADS)

    Cho, K. H.; Cho, S. J.; Lee, S.; Lee, S. H.; Min, C. K.; Kim, Y. H.; Moon, S. K.; Kim, E. S.; Chang, A. R.; Kwon, S. I.

    2012-05-01

    The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41±0.04 HGy-1. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the γ-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.

  10. Radiation Dose in the Thyroid and the Thyroid Cancer Risk Attributable to CT Scans for Pediatric Patients in One General Hospital of China

    PubMed Central

    Su, Yin-Ping; Niu, Hao-Wei; Chen, Jun-Bo; Fu, Ying-Hua; Xiao, Guo-Bing; Sun, Quan-Fu

    2014-01-01

    Objective: To quantify the radiation dose in the thyroid attributable to different CT scans and to estimate the thyroid cancer risk in pediatric patients. Methods: The information about pediatric patients who underwent CT scans was abstracted from the radiology information system in one general hospital between 1 January 2012 and 31 December 2012. The radiation doses were calculated using the ImPACT Patient Dosimetry Calculator and the lifetime attributable risk (LAR) of thyroid cancer incidence was estimated based on the National Academies Biologic Effects of Ionizing Radiation VII model. Results: The subjects comprised 922 children, 68% were males, and received 971 CT scans. The range of typical radiation dose to the thyroid was estimated to be 0.61–0.92 mGy for paranasal sinus CT scans, 1.10–2.45 mGy for head CT scans, and 2.63–5.76 mGy for chest CT scans. The LAR of thyroid cancer were as follows: for head CT, 1.1 per 100,000 for boys and 8.7 per 100,000 for girls; for paranasal sinus CT scans, 0.4 per 100,000 for boys and 2.7 per 100,000 for girls; for chest CT scans, 2.1 per 100,000 for boys and 14.1 per 100,000 for girls. The risk of thyroid cancer was substantially higher for girls than for the boys, and from chest CT scans was higher than that from head or paransal sinus CT scans. Conclusions: Chest CT scans caused higher thyroid dose and the LAR of thyroid cancer incidence, compared with paransal sinus or head CT scans. Therefore, physicians should pay more attention to protect the thyroid when children underwent CT scans, especially chest CT scans. PMID:24608902

  11. Cost-effectiveness and accuracy of the tests used in the differential diagnosis of Cushing's syndrome.

    PubMed

    Puig, J; Wägner, A; Caballero, A; Rodríguez-Espinosa, J; Webb, S M

    1999-01-01

    Establish the minimal biochemical and radiological examinations necessary and their cost-effectiveness to accurately diagnose the etiology of Cushing's syndrome (CS). In 71 patients with CS followed between 1982 and 1997 biochemical studies (basal ACTH, 8 mg dexamethasone suppression test-HDST-, metyrapone stimulation test-MST-, or inferior petrosal sinus catheterization-IPSC-) and radiological investigations (abdominal CT scan, pituitary CT scan or MRI) were performed. Once pathology confirmed the diagnosis (48 pituitary Cushing's disease-CD, 17 adrenal neoplasms, 2 bilateral macronodular hyperplasia-BMH-, and 4 ectopic ACTH syndrome-ES-), the sensitivity, specificity, positive and negative predictive value of the different studies was calculated to establish the most accurate and cost-effective diagnostic protocol. In ACTH-independent CS (ACTH < or = 9 pg/ml; normal 9 to 54) a unilateral tumor was identified on abdominal CT scanning in 17, and BMH in 1; the other BMH had detectable ACTH (43.2 pg/ml). In ACTH-dependent CS, ACTH was > 9 pg/ml and IPSC (performed in 22) correctly identified 20 patients with CD and differentiated them from 2 with an ES (100% specificity and sensitivity). Pituitary MRI or CT did not disclose an adenoma in 41.7% of patients with CD, and was reported to exhibit a microadenoma in 2 of the 4 patients with ES. HDST and MST were of no additional use in the differentiation between CD and ES. Once CS is diagnosed low ACTH and an abdominal CT scan correctly identified all patients of adrenal origin. In ACTH-dependent CS IPSC was the best predictive test to differentiate CD from ES. BMH may behave as ACTH-dependent or independent. The other biochemical and radiological studies performed are not cost-effective and may even be misleading, and should not be routinely performed.

  12. Emergency medicine summary code for reporting CT scan results: implementation and survey results.

    PubMed

    Lam, Joanne; Coughlin, Ryan; Buhl, Luce; Herbst, Meghan; Herbst, Timothy; Martillotti, Jared; Coughlin, Bret

    2018-06-01

    The purpose of the study was to assess the emergency department (ED) providers' interest and satisfaction with ED CT result reporting before and after the implementation of a standardized summary code for all CT scan reporting. A summary code was provided at the end of all CTs ordered through the ED from August to October of 2016. A retrospective review was completed on all studies performed during this period. A pre- and post-survey was given to both ED and radiology providers. A total of 3980 CT scans excluding CTAs were ordered with 2240 CTs dedicated to the head and neck, 1685 CTs dedicated to the torso, and 55 CTs dedicated to the extremities. Approximately 74% CT scans were contrast enhanced. Of the 3980 ED CT examination ordered, 69% had a summary code assigned to it. Fifteen percent of the coded CTs had a critical or diagnostic positive result. The introduction of an ED CT summary code did not show a definitive improvement in communication. However, the ED providers are in consensus that radiology reports are crucial their patients' management. There is slightly increased satisfaction with the providers with less than 5 years of experience with the ED CT codes compared to more seasoned providers. The implementation of a user-friendly summary code may allow better analysis of results, practice improvement, and quality measurements in the future.

  13. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.

    2014-04-15

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample sizemore » required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence.« less

  14. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    PubMed Central

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.

    2014-01-01

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence. PMID:24694150

  15. Selected PET radiomic features remain the same.

    PubMed

    Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko

    2018-04-17

    We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.

  16. Physical analysis of breast cancer using dual-source computed tomography

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Cho, J. H.

    2014-12-01

    This study was aimed to analyze various physical characteristics of breast cancer using dual-source computed tomography (CT). A phantom study and a clinical trial were performed in order and a 64-multidetector CT device was used for the examinations. In the phantom study, single-source (SS) CT was set up with a conventional scanning condition that is usually applied for breast CT examination and implementation was done at tube voltage of 120 kVp. Dual-source CT acquired images by irradiating X-ray sources with fast switching between two kilovoltage settings (80 and 140 kVp). After scanning, Hounsfield Unit (HU) values and radiation doses in a region of interest were measured and analyzed. In the clinical trial, the HU values were measured and analyzed after single-source computed tomography (SSCT) and dual-source CT in patients diagnosed with breast cancer. Also, the tumor size measured by dual-source CT was compared with the actual tumor size. The phantom study determined that the tumor region was especially measured by dual-source CT, while nylon fiber and specks region were especially measured by SSCT. The radiation dose was high with dual-source CT. The clinical trial showed a higher HU value of cancerous regions when scanned by dual-source CT compared with SSCT.

  17. Roles of posttherapy 18F-FDG PET/CT in patients with advanced squamous cell carcinoma of the uterine cervix receiving concurrent chemoradiotherapy.

    PubMed

    Liu, Feng-Yuan; Su, Tzu-Pei; Wang, Chun-Chieh; Chao, Angel; Chou, Hung-Hsueh; Chang, Yu-Chen; Yen, Tzu-Chen; Lai, Chyong-Huey

    2018-07-01

    To assess the clinical roles of [ 18 F]fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) performed 2-3 months after completion of concurrent chemoradiotherapy (CCRT), along with pretherapy characteristics, in patients with advanced squamous cell carcinoma of the uterine cervix enrolled in a prospective randomized clinical trial. Posttherapy PET/CT in patients with advanced FIGO stage or positive pelvic or para-aortic lymph node (PALN) defined on pretherapy PET/CT was classified as positive, equivocal, or negative. Overall survival (OS) rates between patients with different PET/CT results are compared. Pretherapy characteristics are examined for association with posttherapy PET/CT results and for prognostic significance in patients with equivocal or negative PET/CT. PET/CT scans (n = 55) were positive, equivocal and negative in 9, 13 and 33 patients, respectively. All patients with positive scans were confirmed to have residual or metastatic disease and died despite salvage therapies. There is a significant OS difference between patients with positive and equivocal scans (P < .001) but not between patients with equivocal and negative scans (P = .411). Positive pretherapy PALN is associated with positive posttherapy PET/CT (P = .033) and predicts a poorer survival in patients with equivocal or negative posttherapy PET/CT (P < .001). Positive PET/CT 2-3 months posttherapy implies treatment failure and novel therapy is necessary to improve outcomes for such patients. A more intense posttherapy surveillance may be warranted in patients with positive pretherapy PALN.

  18. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... An abdominal CT scan makes detailed pictures of the structures inside your belly very quickly. This test may be used to look ...

  19. Hemispheric Chronic Subdural Hematoma Concealing Subdural Metastases: Terrible Surprise Behind Routine Emergency Department Consultation.

    PubMed

    Caruso, Riccardo; Pesce, Alessandro; Martines, Valentina

    2017-10-01

    The patient is a 79-year-old male, suffering from advanced metastatic prostate cancer, who developed a progressively worsening ideomotor slowing and was therefore referred to the emergency department of our institution. A plain axial computed tomography (CT) scan revealed a vast hemispheric subdural fluid collection, apparently a subdural hematoma. On closer inspection, and most of all, in hindsight, a tenuously isohyperdense signal irregularity at the frontal aspect of the fluid collection appears. Because of the declined general medical conditions and the paucity of the neurologic impairment, a high-dose, corticosteroid-based conservative strategy was performed. The total body CT scan for the routine oncologic follow-up of the prostate cancer scan fell at 20 days from the first CT of the emergency department. A second contrast-enhanced axial CT scan demonstrated the presence of 2 subdural metastases, presumably the initial pathogenesis of the subdural fluid collection. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. CT dose minimization using personalized protocol optimization and aggressive bowtie

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yin, Zhye; Jin, Yannan; Wu, Mingye; Yao, Yangyang; Tao, Kun; Kalra, Mannudeep K.; De Man, Bruno

    2016-03-01

    In this study, we propose to use patient-specific x-ray fluence control to reduce the radiation dose to sensitive organs while still achieving the desired image quality (IQ) in the region of interest (ROI). The mA modulation profile is optimized view by view, based on the sensitive organs and the ROI, which are obtained from an ultra-low-dose volumetric CT scout scan [1]. We use a clinical chest CT scan to demonstrate the feasibility of the proposed concept: the breast region is selected as the sensitive organ region while the cardiac region is selected as IQ ROI. Two groups of simulations are performed based on the clinical CT dataset: (1) a constant mA scan adjusted based on the patient attenuation (120 kVp, 300 mA), which serves as baseline; (2) an optimized scan with aggressive bowtie and ROI centering combined with patient-specific mA modulation. The results shows that the combination of the aggressive bowtie and the optimized mA modulation can result in 40% dose reduction in the breast region, while the IQ in the cardiac region is maintained. More generally, this paper demonstrates the general concept of using a 3D scout scan for optimal scan planning.

  1. Pseudocalcification on chest CT scan.

    PubMed

    Tiruvoipati, R; Balasubramanian, S K; Entwisle, J J; Firmin, R K; Peek, G J

    2007-07-01

    Liquid ventilation with perfluorocarbons is used in severe respiratory failure that cannot be managed by conventional methods. Very little is known about the use of liquid ventilation in paediatric patients with respiratory failure and there are no reports describing the distribution and excretion of perfluorocarbons in paediatric patients with severe respiratory failure. The aim of this report is to highlight the prolonged retention of perfluorocarbons in a paediatric patient, mimicking pulmonary calcification and misleading the interpretation of the chest CT scan. A 10-year-old girl was admitted to our intensive care unit with severe respiratory failure due to miliary tuberculosis. Extracorporeal membrane oxygenation (ECMO) was used to support gas exchange and partial liquid ventilation (PLV) with perfluorodecalin was used to aid in oxygenation, lavage the lungs and clear thick secretions. The patient developed a pneumothorax (fluorothorax) on the next day and PLV was discontinued. Multiple bronchoalveolar lavages were performed to clear thick secretions. With no improvement in lung function over the next month a CT scan of the chest was performed. This revealed extensive pulmonary fibrosis and multiple high attenuation lesions suggestive of pulmonary calcification. To exclude perfluorodecalin as the cause for high attenuation lesions, a sample of perfluorodecalin was scanned to estimate the Hounsfield unit density, which was similar to the density of high attenuation lesions on chest CT scan. High-density opacification should be interpreted with caution, especially following liquid ventilation.

  2. Cervical spine CT scan

    MedlinePlus

    ... cervical spine; Computed tomography scan of cervical spine; CT scan of cervical spine; Neck CT scan ... table that slides into the center of the CT scanner. Once you are inside the scanner, the ...

  3. Quality control of CT systems by automated monitoring of key performance indicators: a two-year study.

    PubMed

    Nowik, Patrik; Bujila, Robert; Poludniowski, Gavin; Fransson, Annette

    2015-07-08

    The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two-year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service.

  4. SU-F-J-131: Reproducibility of Positioning Error Due to Temporarily Indwelled Urethral Catheter for Urethra-Sparing Prostate IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, K; Takai, Y; Southern Tohoku BNCT Research Center, Koriyama

    2016-06-15

    Purpose: The purpose of this study was to prospectively assess the reproducibility of positioning errors due to temporarily indwelled catheter in urethra-sparing image-guided (IG) IMRT. Methods: Ten patients received urethra-sparing prostate IG-IMRT with implanted fiducials. After the first CT scan was performed in supine position, 6-Fr catheter was indwelled into urethra, and the second CT images were taken for planning. While the PTV received 80 Gy, 5% dose reduction was applied for the urethral PRV along the catheter. Additional CT scans were also performed at 5th and 30th fraction. Positions of interests (POIs) were set on posterior edge of prostatemore » at beam isocenter level (POI1) and cranial and caudal edge of prostatic urethra on the post-indwelled CT images. POIs were copied into the pre-indwelled, 5th and 30th fraction’s CT images after fiducial matching on these CT images. The deviation of each POI between pre- and post-indwelled CT and the reproducibility of prostate displacement due to catheter were evaluated. Results: The deviation of POI1 caused by the indwelled catheter to the directions of RL/AP/SI (mm) was 0.20±0.27/−0.64±2.43/1.02±2.31, respectively, and the absolute distances (mm) were 3.15±1.41. The deviation tends to be larger if closer to the caudal edge of prostate. Compared with the pre-indwelled CT scan, a median displacement of all POIs (mm) were 0.3±0.2/2.2±1.1/2.0±2.6 in the post-indwelled, 0.4±0.4/3.4±2.1/2.3±2.6 in 5th, and 0.5±0.5/1.7±2.2/1.9±3.1 in 30th fraction’s CT scan with a similar data distribution. There were 6 patients with 5-mm-over displacement in AP and/or CC directions. Conclusion: Reproducibility of positioning errors due to temporarily indwelling catheter was observed. Especially in case of patients with unusually large shifts by indwelling catheter at the planning process, treatment planning should be performed by using the pre-indwelled CT images with transferred contour of the urethra identified by post-indwelled CT images.« less

  5. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  6. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Healing problems or scar tissue following surgery A CT scan may also be used to guide a surgeon ...

  7. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR)

    NASA Astrophysics Data System (ADS)

    Wang, Tonghe; Zhu, Lei

    2016-09-01

    Conventional dual-energy CT (DECT) reconstruction requires two full-size projection datasets with two different energy spectra. In this study, we propose an iterative algorithm to enable a new data acquisition scheme which requires one full scan and a second sparse-view scan for potential reduction in imaging dose and engineering cost of DECT. A bilateral filter is calculated as a similarity matrix from the first full-scan CT image to quantify the similarity between any two pixels, which is assumed unchanged on a second CT image since DECT scans are performed on the same object. The second CT image from reduced projections is reconstructed by an iterative algorithm which updates the image by minimizing the total variation of the difference between the image and its filtered image by the similarity matrix under data fidelity constraint. As the redundant structural information of the two CT images is contained in the similarity matrix for CT reconstruction, we refer to the algorithm as structure preserving iterative reconstruction (SPIR). The proposed method is evaluated on both digital and physical phantoms, and is compared with the filtered-backprojection (FBP) method, the conventional total-variation-regularization-based algorithm (TVR) and prior-image-constrained-compressed-sensing (PICCS). SPIR with a second 10-view scan reduces the image noise STD by a factor of one order of magnitude with same spatial resolution as full-view FBP image. SPIR substantially improves over TVR on the reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 6.18% to 1.33%, and outperforms TVR at 50 and 20-view scans on spatial resolution with a higher frequency at the modulation transfer function value of 10% by an average factor of 4. Compared with the 20-view scan PICCS result, the SPIR image has 7 times lower noise STD with similar spatial resolution. The electron density map obtained from the SPIR-based DECT images with a second 10-view scan has an average error of less than 1%.

  8. Automated assessment of breast tissue density in non-contrast 3D CT images without image segmentation based on a deep CNN

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Kano, Takuya; Koyasu, Hiromi; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    This paper describes a novel approach for the automatic assessment of breast density in non-contrast three-dimensional computed tomography (3D CT) images. The proposed approach trains and uses a deep convolutional neural network (CNN) from scratch to classify breast tissue density directly from CT images without segmenting the anatomical structures, which creates a bottleneck in conventional approaches. Our scheme determines breast density in a 3D breast region by decomposing the 3D region into several radial 2D-sections from the nipple, and measuring the distribution of breast tissue densities on each 2D section from different orientations. The whole scheme is designed as a compact network without the need for post-processing and provides high robustness and computational efficiency in clinical settings. We applied this scheme to a dataset of 463 non-contrast CT scans obtained from 30- to 45-year-old-women in Japan. The density of breast tissue in each CT scan was assigned to one of four categories (glandular tissue within the breast <25%, 25%-50%, 50%-75%, and >75%) by a radiologist as ground truth. We used 405 CT scans for training a deep CNN and the remaining 58 CT scans for testing the performance. The experimental results demonstrated that the findings of the proposed approach and those of the radiologist were the same in 72% of the CT scans among the training samples and 76% among the testing samples. These results demonstrate the potential use of deep CNN for assessing breast tissue density in non-contrast 3D CT images.

  9. Ultrasound detection of pneumothorax compared with chest X-ray and computed tomography scan.

    PubMed

    Nagarsheth, Khanjan; Kurek, Stanley

    2011-04-01

    Pneumothorax after trauma can be a life threatening injury and its care requires expeditious and accurate diagnosis and possible intervention. We performed a prospective, single blinded study with convenience sampling at a Level I trauma center comparing thoracic ultrasound with chest X-ray and CT scan in the detection of traumatic pneumothorax. Trauma patients that received a thoracic ultrasound, chest X-ray, and chest CT scan were included in the study. The chest X-rays were read by a radiologist who was blinded to the thoracic ultrasound results. Then both were compared with CT scan results. One hundred and twenty-five patients had a thoracic ultrasound performed in the 24-month period. Forty-six patients were excluded from the study due to lack of either a chest X-ray or chest CT scan. Of the remaining 79 patients there were 22 positive pneumothorax found by CT and of those 18 (82%) were found on ultrasound and 7 (32%) were found on chest X-ray. The sensitivity of thoracic ultrasound was found to be 81.8 per cent and the specificity was found to be 100 per cent. The sensitivity of chest X-ray was found to be 31.8 per cent and again the specificity was found to be 100 per cent. The negative predictive value of thoracic ultrasound for pneumothorax was 0.934 and the negative predictive value for chest X-ray for pneumothorax was found to be 0.792. We advocate the use of chest ultrasound for detection of pneumothorax in trauma patients.

  10. Chest ultrasonography in health surveillance of asbestos-related lung diseases.

    PubMed

    Smargiassi, Andrea; Pasciuto, Giuliana; Pedicelli, Ilaria; Lo Greco, Erminia; Calvello, Mariarosaria; Inchingolo, Riccardo; Schifino, Gioacchino; Capoluongo, Patrizio; Patriciello, Pasquale; Manno, Maurizio; Cirillo, Alfonso; Corbo, Giuseppe Maria; Soldati, Gino; Iavicoli, Ivo

    2017-06-01

    Exposure to asbestos fibers can lead to different lung diseases, such as pleural thickening and effusion, asbestosis, mesothelioma, and lung cancer. These diseases are expected to peak in the next few years. The aim of the study was to validate ultrasonography (US) as a diagnostic tool in the management of lung diseases in subjects with a history of occupational exposure to asbestos. Fifty-nine retired male workers previously exposed to asbestos were enrolled in the study. Chest US was performed in all the subjects. The US operator was blinded to earlier performed computed tomography (CT) scan reports and images. The sonographic pathological findings were pleural thickening (with or without calcifications), peripheral lung consolidation, and focal sonographic interstitial syndrome and diffuse pneumogenic sonographic interstitial syndrome (pulmonary asbestosis). Significant US findings were recorded, stored, and subsequently compared with CT scans. With some patients falling into more than one category, on CT scan, pleural thickening was reported in 33 cases (56%, 26 with calcifications), focal interstitial peripheral alterations in 23 (39%), asbestosis in 6 (10%), and peripheral lung consolidation in 13 cases (22%). Comparing each pathological condition to CT scan reports, US findings had high levels of sensitivity, specificity, positive, and negative predictive values. US did not prove effective for the detection of central lung nodules or diaphragmatic pleural thickenings. Chest US was considered to be the best technique to detect minimal pleural effusions (six subjects, 10%). Chest US might be considered an additional tool to follow up subjects occupationally exposed to asbestos who have already undergone CT scan examination and whose pathology is detectable by US as well.

  11. SU-E-J-251: Incorporation of Pre-Therapy 18F-FDG Uptake with CT Texture Features in a Predictive Model for Radiation Pneumonitis Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, G; Cunliffe, A; Armato, S

    2015-06-15

    Purpose: To determine whether the addition of standardized uptake value (SUV) statistical variables to CT lung texture features can improve a predictive model of radiation pneumonitis (RP) development in patients undergoing radiation therapy. Methods: Anonymized data from 96 esophageal cancer patients (18 RP-positive cases of Grade ≥ 2) were retrospectively collected including pre-therapy PET/CT scans, pre-/posttherapy diagnostic CT scans and RP status. Twenty texture features (firstorder, fractal, Laws’ filter and gray-level co-occurrence matrix) were calculated from diagnostic CT scans and compared in anatomically matched regions of the lung. The mean, maximum, standard deviation, and 50th–95th percentiles of the SUV valuesmore » for all lung voxels in the corresponding PET scans were acquired. For each texture feature, a logistic regression-based classifier consisting of (1) the average change in that texture feature value between the pre- and post-therapy CT scans and (2) the pre-therapy SUV standard deviation (SUV{sub SD}) was created. The RP-classification performance of each logistic regression model was compared to the performance of its texture feature alone by computing areas under the receiver operating characteristic curves (AUCs). T-tests were performed to determine whether the mean AUC across texture features changed significantly when SUV{sub SD} was added to the classifier. Results: The AUC for single-texturefeature classifiers ranged from 0.58–0.81 in high-dose (≥ 30 Gy) regions of the lungs and from 0.53–0.71 in low-dose (< 10 Gy) regions. Adding SUVSD in a logistic regression model using a 50/50 data partition for training and testing significantly increased the mean AUC by 0.08, 0.06 and 0.04 in the low-, medium- and high-dose regions, respectively. Conclusion: Addition of SUVSD from a pre-therapy PET scan to a single CT-based texture feature improves RP-classification performance on average. These findings demonstrate the potential for more accurate prediction of RP using information from multiple imaging modalities. Supported, in part, by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under grant number T32 EB002103; SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. HA receives royalties through the University of Chicago for computer-aided diagnosis technology.« less

  12. A prototype table-top inverse-geometry volumetric CT system.

    PubMed

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N Robert; Mazin, Samuel R; Solomon, Edward G; Fahrig, Rebecca; Pelc, Norbert J

    2006-06-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single-rotation volumetric scanning free from cone-beam artifacts.

  13. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher

    2013-01-15

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and amore » 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT examinations on the Siemens SOMATOM Sensation 16 scanner.« less

  14. Software platform for simulation of a prototype proton CT scanner.

    PubMed

    Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W

    2017-03-01

    Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.

  15. Water as neutral oral contrast agent in abdominopelvic CT: comparing effectiveness with Gastrografin in the same patient.

    PubMed

    Lee, C H; Gu, H Z; Vellayappan, B A; Tan, C H

    2016-12-01

    Positive oral contrast is no longer deemed necessary for abdominopelvic computed tomography (CT) scans. Studies have shown water to be an equally effective oral contrast agent. However, to our knowledge no study has compared effectiveness between gastrografin and water in the same patient, which will provide a more objective evaluation of the two oral contrast agents. We aim to make a head-to-head comparison of water as neutral oral contrast (OC) against gastrografin as positive OC for abdominopelvic CT scans in the same patient. A retrospective review of 206 abdominopelvic CT scans of 103 patients was performed. The scans were reviewed in consensus by two blinded radiologists. The ability to visualise each abdominopelvic organ, contrastassociated artefacts and small bowel wall delineation, was qualitatively scored on a 5-point scale. Each patient had two sets of scores, one with water and another with gastrografin as OC. Paired scores from the two OCs were evaluated by Wilcoxon signed rank test to determine any significant difference in performance between the two OCs for visualisation of abdominopelvic anatomy on CT. There was significantly better delineation of duodenal wall (p<0.001) and overall visualisation of the duodenum (p=0.011) using water as OC compared to gastrografin. No statistically significant differences were demonstrated between water and gastrografin for visualisation of the rest of the abdominopelvic organs, walldelineation of the rest small bowel and contrast-associated artefacts. Water can be used in place of gastrografin as oral contrast in abdominopelvic CT without compromising visualization of abdominopelvic organs.

  16. Chest CT scans are frequently abnormal in asymptomatic patients with newly diagnosed acute myeloid leukemia.

    PubMed

    Vallipuram, Janaki; Dhalla, Sidika; Bell, Chaim M; Dresser, Linda; Han, Heekyung; Husain, Shahid; Minden, Mark D; Paul, Narinder S; So, Miranda; Steinberg, Marilyn; Vallipuram, Mayuran; Wong, Gary; Morris, Andrew M

    2017-04-01

    Chest computed tomography (CT) findings of nodules, ground glass opacities, and consolidations are often interpreted as representing invasive fungal infection in individuals with febrile neutropenia. We assessed whether these CT findings were present in asymptomatic individuals with acute myeloid leukemia (AML) at low risk of invasive fungal disease. A retrospective study of consecutive asymptomatic adult patients with newly diagnosed AML over a 2-year period was performed at a tertiary care oncology center. Radiology reports of baseline chest CTs were reviewed. Of 145 CT scans, the majority (88%) had pulmonary abnormalities. Many (70%) had one or both of unspecified opacities (52%) and nodules (49%). Ground glass opacities (18%) and consolidations (12%) occurred less frequently. Radiologists suggested pneumonia as a possible diagnosis in 32% (n = 47) of scans. Chest CT may result in over-diagnosis of invasive fungal disease in individuals with febrile neutropenia if interpreted without correlation to the patients' clinical status.

  17. Body CT (CAT Scan)

    MedlinePlus

    ... Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses ... of CT Scanning of the Body? What is CT Scanning of the Body? Computed tomography, more commonly ...

  18. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    PubMed

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  19. Operation of the Preclinical Head Scanner for Proton CT.

    PubMed

    Sadrozinski, H F-W; Geoghegan, T; Harvey, E; Johnson, R P; Plautz, T E; Zatserklyaniy, A; Bashkirov, V; Hurley, R F; Piersimoni, P; Schulte, R W; Karbasi, P; Schubert, K E; Schultze, B; Giacometti, V

    2016-09-21

    We report on the operation and performance tests of a preclinical head scanner developed for proton computed tomography (pCT). After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. In order to assess the performance of the scanner, we have performed CT scans with 200 MeV protons from both the synchrotron of the Loma Linda University Medical Center (LLUMC) and the cyclotron of the Northwestern Medicine Chicago Proton Center (NMCPC). The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 7 minutes. The reconstruction of various phantoms verified accurate reconstruction of the proton relative stopping power (RSP) and the spatial resolution in a variety of materials. The dose for an image with better than 1% uncertainty in the RSP is found to be close to 1 mGy.

  20. Evaluation of the rate of decompression in anterior cervical corpectomy using an intra-operative computerized tomography scan (O-Arm system).

    PubMed

    Costa, Francesco; Tomei, Massimo; Sassi, Marco; Cardia, Andrea; Ortolina, Alessandro; Servello, Domenico; Fornari, Maurizio

    2012-02-01

    The purpose of this study was to evaluate the efficacy of intra-operative computerized tomography (CT) scanning in the analysis of bone removal accuracy during anterior cervical corpectomy, in order to allow any necessary immediate correction in the event of inadequate bone removal. From September 2009 to December 2010 we performed an intra-operative (CT) scan using the O-Arm(™) Image system to assess the rate of central and lateral decompression in all patients treated for cervical spondylotic myelopathy by anterior cervical corpectomy and fusion. Out of a population of 187 patients admitted to our department, with a diagnosis of myelopathy due to spondylotic degenerative cervical stenosis, 15 patients underwent a surgical treatment with anterior cervical corpectomy and fusion. There were nine males (60%) and six females (40%); the mean age was 52.4 years, ranging from 41 to 57 years. The pre-operative radiologic investigations (MRI and CT scans) revealed in the nine patients (60%) the extent of the compression to one vertebral body (C4 one case, C5 four cases, C6 four cases), while in the six cases (40%) the compression regarded two vertebral body (C3 and C4 one case, C4 and C5 two cases, C5 and C6 three cases). During surgery, when the decompression was judged completely, a CT scan was performed: in 11 cases (73.3%) the decompression was considered adequate, while in four cases (26.7%) it was deemed insufficient and the surgical strategy was changed in order to optimize the bone removal. In these cases an additional scan was taken to prove the efficacy of decompression, achieved in all patients. Intra-operative CT scan performed during cervical corpectomy is a really useful tool in helping to ensure complete bone removal and the adequacy of surgery. The O-arm(™) Image system grants optimal image quality, allowing correctly assessing the rate of decompression and, in any case of doubt, allows an intra-operative evaluation of the final correct positioning of the graft.

  1. Computed tomography of infantile hepatic hemangioendothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucaya, J.; Enriquez, G.; Amat, L.

    1985-04-01

    Computed tomography (CT) was performed on five infants with hepatic hemangioendothelioma. Precontrast scans showed solitary or multiple, homogeneous, circumscribed areas with reduced attenuation values. Tiny tumoral calcifications were identified in two patients. Serial scans, after injection of a bolus of contrast material, showed early massive enhancement, which was either diffuse or peripheral. On delayed scans, multinocular tumors became isodense with surrounding liver, while all solitary ones showed varied degrees of centripetal enhancement and persistent central cleftlike unenhanced areas. The authors believe that these CT features are characteristic and obviate arteriographic confirmation.

  2. Value of initial radiological investigations in patients admitted to hospital with appendicitis, acute gallbladder disease or acute pancreatitis.

    PubMed

    Bhangu, Aneel; Richardson, Charlotte; Winter, Hannah; Bleetman, Anthony

    2010-10-01

    To determine the value of abdominal radiography (AXR) for investigating patients attending hospital with a first episode of appendicitis (requiring appendicectomy), acute gallbladder disease or acute pancreatitis, and to identify if early (within 18 h) ultrasound or CT scanning reduces the use of AXR. Setting Two acute teaching hospitals during August-September 2008 and February-March 2009. Audit of 355 patients (179 patients (50%) who underwent appendicectomy, 128 (36%) admitted with acute gallbladder disease and 48 (14%) with acute pancreatitis). AXR was performed in 53 patients (30%) who underwent appendicectomy, 73 (57%) with acute gallstone disease and 38 (78%) with acute pancreatitis. The useful abnormality pick-up rate was low; 9% (n=5), 5% (n=4) and 0% (n=0), respectively. When used, ultrasound confirmed the diagnosis in 84% (140/166) and CT scanning (either after AXR or as first line) in 97% (34/35). 42 patients underwent early ultrasound (n=27) or CT scanning (n=15), which together reduced the rate of AXR usage by 34% (14/42 early vs 107/159 delayed, p<0.001). AXR does not aid diagnosis of these conditions but is still performed. Early ultrasound or CT scanning reduces the use of AXR and are more sensitive; methods of providing these should be explored.

  3. A Method for the Automatic Exposure Control in Pediatric Abdominal CT: Application to the Standard Deviation Value and Tube Current Methods by Using Patient's Age and Body Size.

    PubMed

    Furuya, Ken; Akiyama, Shinji; Nambu, Atushi; Suzuki, Yutaka; Hasebe, Yuusuke

    2017-01-01

    We aimed to apply the pediatric abdominal CT protocol of Donnelly et al. in the United States to the pediatric abdominal CT-AEC. Examining CT images of 100 children, we found that the sectional area of the hepatic portal region (y) was strongly correlated with the body weight (x) as follows: y=7.14x + 84.39 (correlation coefficient=0.9574). We scanned an elliptical cone phantom that simulates the human body using a pediatric abdominal CT scanning method of Donnelly et al. in, and measured SD values. We further scanned the same phantom under the settings for adult CT-AEC scan and obtained the relationship between the sectional areas (y) and the SD values. Using these results, we obtained the following preset noise factors for CT-AEC at each body weight range: 6.90 at 4.5-8.9 kg, 8.40 at 9.0-17.9 kg, 8.68 at 18.0-26.9 kg, 9.89 at 27.0-35.9 kg, 12.22 at 36.0-45.0 kg, 13.52 at 45.1-70.0 kg, 15.29 at more than 70 kg. From the relation between age, weight and the distance of liver and tuber ischiadicum of 500 children, we obtained the CTDI vol values and DLP values under the scanning protocol of Donnelly et al. Almost all of DRL from these values turned out to be smaller than the DRL data of IAEA and various countries. Thus, by setting the maximum current values of CT-AEC to be the Donnelly et al.'s age-wise current values, and using our weight-wise noise factors, we think we can perform pediatric abdominal CT-AEC scans that are consistent with the same radiation safety and the image quality as those proposed by Donnelly et al.

  4. MO-E-17A-03: Monte Carlo CT Dose Calculation: A Comparison Between Experiment and Simulation Using ARCHER-CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Du, X; Su, L

    2014-06-15

    Purpose: To compare the CT doses derived from the experiments and GPU-based Monte Carlo (MC) simulations, using a human cadaver and ATOM phantom. Methods: The cadaver of an 88-year old male and the ATOM phantom were scanned by a GE LightSpeed Pro 16 MDCT. For the cadaver study, the Thimble chambers (Model 10×5−0.6CT and 10×6−0.6CT) were used to measure the absorbed dose in different deep and superficial organs. Whole-body scans were first performed to construct a complete image database for MC simulations. Abdomen/pelvis helical scans were then conducted using 120/100 kVps, 300 mAs and a pitch factor of 1.375:1. Formore » the ATOM phantom study, the OSL dosimeters were used and helical scans were performed using 120 kVp and x, y, z tube current modulation (TCM). For the MC simulations, sufficient particles were run in both cases such that the statistical errors of the results by ARCHER-CT were limited to 1%. Results: For the human cadaver scan, the doses to the stomach, liver, colon, left kidney, pancreas and urinary bladder were compared. The difference between experiments and simulations was within 19% for the 120 kVp and 25% for the 100 kVp. For the ATOM phantom scan, the doses to the lung, thyroid, esophagus, heart, stomach, liver, spleen, kidneys and thymus were compared. The difference was 39.2% for the esophagus, and within 16% for all other organs. Conclusion: In this study the experimental and simulated CT doses were compared. Their difference is primarily attributed to the systematic errors of the MC simulations, including the accuracy of the bowtie filter modeling, and the algorithm to generate voxelized phantom from DICOM images. The experimental error is considered small and may arise from the dosimeters. R01 grant (R01EB015478) from National Institute of Biomedical Imaging and Bioengineering.« less

  5. Computed tomography-assisted laparoscopic removal of intraabdominally migrated levonorgestrel-releasing intrauterine systems.

    PubMed

    Mahmoud, Mohamad S; Merhi, Zaher O

    2010-04-01

    To report three cases of migrated levonorgestrel intrauterine device (LNG-IUS) into the pelvic/abdominal cavity removed laparoscopically with the aid of preoperative computed tomography (CT) scan imaging. Three patients presenting with a missing LNG-IUS on examination and pelvic ultrasound are presented. A preoperative CT scan was performed, what helped in a successful removal of the LNG-IUS. The patients were discharged home the same day of the procedure. Our cases reinforce, besides the diagnosis of a migrated LNG-IUS by ultrasound, the fact that preoperative CT scan imaging assists in the diagnosis of the precise location of a migrated LNG-IUS into the pelvic/abdominal cavity and helps the physician in the prediction of the difficulty of the laparoscopic removal.

  6. Evaluation of Cervical Spine Clearance by Computed Tomographic Scan Alone in Intoxicated Patients With Blunt Trauma.

    PubMed

    Bush, Lisa; Brookshire, Robert; Roche, Breanna; Johnson, Amelia; Cole, Frederic; Karmy-Jones, Riyad; Long, William; Martin, Matthew J

    2016-09-01

    Current trauma guidelines dictate that the cervical spine should not be cleared in intoxicated patients, resulting in prolonged immobilization or additional imaging. Modern computed tomography (CT) technology may obviate this and allow for immediate clearance. To analyze cervical spine clearance practices and the utility of CT scans of the cervical spine in intoxicated patients with blunt trauma. We performed a prospective observational study of 1668 patients with blunt trauma aged 18 years and older who underwent cervical spine CT scans from March 2014 to March 2015 at an American College of Surgeons-verified Level I trauma center. Intoxication was determined by serum alcohol levels and urine drug screens. Physical examination and CT scan findings were evaluated for cervical spine injuries (CSI) and the incidence of missed injuries. Clinically relevant CSIs requiring cervical stabilization. The hypotheses formed prior to data collection were that cervical CT scans are sensitive and specific enough to diagnose CSIs that require stabilization and that normal CT scans are sufficient to clear CSIs in intoxicated patients. Of 1668 patients, 1103 (66.1%) were male, with a mean (SD) age of 49 (20) years and a mean (SD) Injury Severity Score of 10 (9). Vehicular (734 [44.0%]) and falls (579 [34.7%]) were the most common mechanisms for hospitalization. Intoxication was identified in 632 of 1429 of patients tested (44.2%; 425 [29.7%] by serum alcohol levels and 350 [24.5%] by urine drug screens). Half (316 [50.0%]) were admitted with cervical spine immobilization, and 38 (12%) of these were solely owing to the presence of intoxication. There were 65 abnormal CT scans (10.3%) in the intoxicated group. Among 567 normal CT scans, 4 (0.7%) had central cord syndrome found on initial physical examination, and 1 (0.2%) had a symptomatic unstable ligament injury that was misread as normal on CT scan but was abnormal on magnetic resonance imaging. The 316 patients kept in a cervical collar for intoxication had no missed CSIs but were kept immobilized for a mean (SD) of 12 (19) hours. Computed tomographic scans had an overall negative predictive value of 99.2% for patients with CSIs and a negative predictive value of 99.8% for ruling out CSIs that required immobilization or stabilization. In this study, alcohol or drug intoxication was common and resulted in significant delays to cervical spine clearance. Computed tomographic scans were highly reliable for identifying all clinically significant CSIs. Spine clearance based on a normal CT scan among intoxicated patients with no gross motor deficits appears to be safe and avoids prolonged and unnecessary immobilization.

  7. SU-E-I-09: The Impact of X-Ray Scattering On Image Noise for Dedicated Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K; Gazi, P; Boone, J

    2015-06-15

    Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantifymore » image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to optimize the scanning geometry for dedicated breast CT. This work was supported by a grant from the National Institute for Biomedical Imaging and Bioengineering (R01 EB002138)« less

  8. Automated coronary artery calcification detection on low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Cham, Matthew D.; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and low-dose un-gated scans of the same patient. The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 180HU within the mask region are considered as CAC candidates. The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off.

  9. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Jason A., E-mail: jason.dowling@csiro.au; University of Newcastle, Callaghan, New South Wales; Sun, Jidi

    Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1wmore » flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.« less

  10. Transcatheter Arterial Embolization with N-Butyl-2-Cyanoacrylate in the Management of Spontaneous Hematomas.

    PubMed

    Ozyer, Umut

    2017-01-01

    Spontaneous hematoma refractory to conservative management is a potentially serious condition that requires prompt diagnosis and intervention. The purpose of this study was to evaluate the performance of computed tomography (CT) in the treatment planning and to report the effectiveness of transcatheter embolization with N-butyl-2-cyanoacrylate (NBCA). Forty-one interventions in 38 patients within a 12-year period were evaluated. CT and angiograms were reviewed for the location of the hematoma, the presence of extravasation, and the correlation of CT and angiography findings. Arterial extravasation was present on 34/39 CT scans. Angiograms confirmed the CT scans in 29 cases. Angiograms revealed extravasation in four cases which CT showed venous bleeding (n = 2) or no bleeding (n = 2). Five patients with arterial and 1 patient with venous extravasation on CT images had no extravasation on angiograms. Embolization was performed to all arteries with extravasation on angiograms. Empiric embolization of the corresponding artery on the CT was performed when there was no extravasation on angiograms. Embolization procedures were performed with 15 % NBCA diluted with iodized oil. Technical success was achieved in 40/41 (97.6 %) interventions. Clinical success was achieved in 35 patients with a single, in 1 patient with 2, and in 1 patient with 3 interventions. No complications related to embolization procedure occurred. None of the patients died due to a progression of the hematoma. NBCA is an effective and safe embolic agent to treat hematoma refractory to conservative management. Contrast-enhanced CT may provide faster and more effective intervention. Retrospective.

  11. Low-dose dynamic myocardial perfusion CT image reconstruction using pre-contrast normal-dose CT scan induced structure tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Gong, Changfei; Han, Ce; Gan, Guanghui; Deng, Zhenxiang; Zhou, Yongqiang; Yi, Jinling; Zheng, Xiaomin; Xie, Congying; Jin, Xiance

    2017-04-01

    Dynamic myocardial perfusion CT (DMP-CT) imaging provides quantitative functional information for diagnosis and risk stratification of coronary artery disease by calculating myocardial perfusion hemodynamic parameter (MPHP) maps. However, the level of radiation delivered by dynamic sequential scan protocol can be potentially high. The purpose of this work is to develop a pre-contrast normal-dose scan induced structure tensor total variation regularization based on the penalized weighted least-squares (PWLS) criteria to improve the image quality of DMP-CT with a low-mAs CT acquisition. For simplicity, the present approach was termed as ‘PWLS-ndiSTV’. Specifically, the ndiSTV regularization takes into account the spatial-temporal structure information of DMP-CT data and further exploits the higher order derivatives of the objective images to enhance denoising performance. Subsequently, an effective optimization algorithm based on the split-Bregman approach was adopted to minimize the associative objective function. Evaluations with modified dynamic XCAT phantom and preclinical porcine datasets have demonstrated that the proposed PWLS-ndiSTV approach can achieve promising gains over other existing approaches in terms of noise-induced artifacts mitigation, edge details preservation, and accurate MPHP maps calculation.

  12. F-18 sodium fluoride PET/CT does not effectively image myocardial inflammation due to suspected cardiac sarcoidosis.

    PubMed

    Weinberg, Richard L; Morgenstern, Rachelle; DeLuca, Albert; Chen, Jennifer; Bokhari, Sabahat

    2017-12-01

    Sarcoidosis is an inflammatory disorder of unknown etiology that can involve the heart. While effective in imaging cardiac sarcoidosis, F-18 fluorodeoxyglucose (FDG) PET/CT often shows non-specific myocardial uptake. F-18 sodium fluoride (NaF) has been used to image inflammation in coronary artery plaques and has low background myocardial uptake. Here, we evaluated whether F-18 NaF can image myocardial inflammation due to clinically suspected cardiac sarcoidosis. We performed a single institution pilot study testing if F-18 NaF PET/CT can detect myocardial inflammation in patients with suspected cardiac sarcoidosis. Patients underwent cardiac PET/CT with F-18 FDG as part of their routine care and subsequently received an F-18 NaF PET/CT scan. Three patients underwent F-18 FDG and F-18 NaF imaging. In all patients, there was F-18 FDG uptake consistent with cardiac sarcoidosis. The F-18 NaF PET/CT scans showed no myocardial uptake. In this small preliminary study, PET/CT scan using F-18 NaF does not appear to detect myocardial inflammation caused by suspected cardiac sarcoidosis.

  13. The Necessity of Follow-Up Brain Computed-Tomography Scans: Is It the Pathology Itself Or Our Fear that We Should Overcome?

    PubMed Central

    Öğrenci, Ahmet; Koban, Orkun; Ekşi, Murat; Yaman, Onur; Dalbayrak, Sedat

    2017-01-01

    AIM: This study aimed to make a retrospective analysis of pediatric patients with head traumas that were admitted to one hospital setting and to make an analysis of the patients for whom follow-up CT scans were obtained. METHODS: Pediatric head trauma cases were retrospectively retrieved from the hospital’s electronic database. Patients’ charts, CT scans and surgical notes were evaluated by one of the authors. Repeat CT scans for operated patients were excluded from the total number of repeat CT scans. RESULTS: One thousand one hundred and thirty-eight pediatric patients were admitted to the clinic due to head traumas. Brain CT scan was requested in 863 patients (76%) in the cohort. Follow-up brain CT scans were obtained in 102 patients. Additional abnormal finding requiring surgical intervention was observed in only one patient (isolated 4th ventricle hematoma) on the control CTs (1% of repeat CT scans), who developed obstructive hydrocephalus. None of the patients with no more than 1 cm epidural hematoma in its widest dimension and repeat CT scans obtained 1.5 hours after the trauma necessitated surgery. CONCLUSION: Follow-up CT scans changed clinical approach in only one patient in the present series. When ordering CT scan in the follow-up of pediatric traumas, benefits and harms should be weighted based upon time interval from trauma onset to initial CT scan and underlying pathology. PMID:29104682

  14. SU-E-I-48: The Behavior of AEC in Scan Regions Outside the Localizer Radiograph FOV: An In Phantom Study of CT Systems From Four Vendors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, M; Bevins, N

    Purpose: This review of scanners from 4 major manufacturers examines the clinical impact of performing CT scans that extend into areas of the body that were not acquired in the CT localizer radiograph. Methods: Anthropomorphic chest and abdomen phantoms were positioned together on the tables of CT scanners from 4 different vendors. All of the scanners offered an Automatic Exposure Control (AEC) option with both lateral and axial tube current modulation. A localizer radiograph was taken covering the entire extent of both phantoms and then the scanner's Chest-Abdomen-Pelvis (CAP) study was performed with the clinical AEC settings employed and themore » scan and reconstruction range extending from the superior portion of the chest phantom through the inferior portion of the abdomen phantom. A new study was then initiated with a localizer radiograph extending the length of the chest phantom (not covering the abdomen phantom). The same CAP protocol and AEC settings were then used to scan and reconstruct the entire length of both phantoms. Scan parameters at specific locations in the abdomen phantom from both studies were investigated using the information contained in the DICOM metadata of the reconstructed images. Results: The AEC systems on all scanners utilized different tube current settings in the abdomen phantom for the scan completed without the full localizer radiograph. The AEC system behavior was also scanner dependent with the default manual tube current, the maximum tube current and the tube current at the last known position observed as outcomes. Conclusion: The behavior of the AEC systems of CT scanners in regions not covered by the localizer radiograph is vendor dependent. To ensure optimal image quality and radiation exposure it is important to include the entire planned scan region in the localizer radiograph.« less

  15. Reconstruction of paediatric organ doses from axial CT scans performed in the 1990s - range of doses as input to uncertainty estimates.

    PubMed

    Olerud, Hilde M; Toft, Benthe; Flatabø, Silje; Jahnen, Andreas; Lee, Choonsik; Thierry-Chef, Isabelle

    2016-09-01

    To assess the range of doses in paediatric CT scans conducted in the 1990s in Norway as input to an international epidemiology study: the EPI-CT study, http://epi-ct.iarc.fr/ . National Cancer Institute dosimetry system for Computed Tomography (NCICT) program based on pre-calculated organ dose conversion coefficients was used to convert CT Dose Index to organ doses in paediatric CT in the 1990s. Protocols reported from local hospitals in a previous Norwegian CT survey were used as input, presuming these were used without optimization for paediatric patients. Large variations in doses between different scanner models and local scan parameter settings are demonstrated. Small children will receive a factor of 2-3 times higher doses compared with adults if the protocols are not optimized for them. For common CT examinations, the doses to the active bone marrow, breast tissue and brain may have exceeded 30 mGy, 60 mGy and 100 mGy respectively, for the youngest children in the 1990s. The doses children received from non-optimised CT examinations during the 1990s are of such magnitude that they may provide statistically significant effects in the EPI-CT study, but probably do not reflect current practice. • Some organ doses from paediatric CT in the 1990s may have exceeded 100 mGy. • Small children may have received doses 2-3 times higher compared with adults. • Different scanner models varied by a factor of 2-3 in dose to patients. • Different local scan parameter settings gave dose variations of a factor 2-3. • Modern CTs and age-adjusted protocols will give much lower paediatric doses.

  16. Sci-Thur AM: YIS – 08: Automated Imaging Quality Assurance for Image-Guided Small Animal Irradiators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Chris; Bazalova-Carter, Magdalena

    Purpose: To develop quality assurance (QA) standards and tolerance levels for image quality of small animal irradiators. Methods: A fully automated in-house QA software for image analysis of a commercial microCT phantom was created. Quantitative analyses of CT linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, modulation transfer function (MTF), and CT number evaluation was performed. Phantom microCT scans from seven institutions acquired with varying parameters (kVp, mA, time, voxel size, and frame rate) and five irradiator units (Xstrahl SARRP, PXI X-RAD 225Cx, PXI X-RAD SmART, GE explore CT/RT 140, and GE Explore CT 120) were analyzed. Multi-institutional datamore » sets were compared using our in-house software to establish pass/fail criteria for each QA test. Results: CT linearity (R2>0.996) was excellent at all but Institution 2. Acceptable SNR (>35) and noise levels (<55HU) were obtained at four of the seven institutions, where failing scans were acquired with less than 120mAs. Acceptable MTF (>1.5 lp/mm for MTF=0.2) was obtained at all but Institution 6 due to the largest scan voxel size (0.35mm). The geometric accuracy passed (<1.5%) at five of the seven institutions. Conclusion: Our QA software can be used to rapidly perform quantitative imaging QA for small animal irradiators, accumulate results over time, and display possible changes in imaging functionality from its original performance and/or from the recommended tolerance levels. This tool will aid researchers in maintaining high image quality, enabling precise conformal dose delivery to small animals.« less

  17. Value of a step-up diagnosis plan: CRP and CT-scan to diagnose and manage postoperative complications after major abdominal surgery.

    PubMed

    Straatman, Jennifer; Cuesta, Miguel A; Gisbertz, Suzanne S; Van der Peet, Donald L

    2014-12-01

    Postoperative complications frequently follow major abdominal surgery and are associated with increased morbidity and mortality. Early diagnosis and treatment of complications is associated with improved patient outcome. In this study we assessed the value of a step-up diagnosis plan by C-reactive protein and CT-scan (computed tomography-scan) imaging for detection of postoperative complications following major abdominal surgery.An observational cohort study was conducted of 399 consecutivepatients undergoing major abdominal surgery between January 2009 and January 2011. Indication for operation, type of surgery, postoperative morbidity, complications according to the Clavien-Dindo classification and mortality were recorded. Clinical parameters were recorded until 14 days postoperatively or until discharge. Regular C-reactive protein (CPR) measurements in peripheral blood and on indication -enhanced CT-scans were performed.Eighty-three out of 399 (20.6 %) patients developed a major complication in the postoperative course after a median of seven days (IQR 4-9 days). One hundred and thirty two patients received additional examination consisting of enhanced CT-scan imaging, and treatment by surgical reintervention or intensive care observation. CRP levels were significantly higher in patients with postoperative complications. On the second postoperative dayCRP levels were on average 197.4 mg/L in the uncomplicated group, 220.9 mg/L in patients with a minor complication and 280.1 mg/L in patients with major complications (p < 0,001).CT-scan imaging showed a sensitivity of 91.7 % and specificity of 100 % in diagnosis of major complications. Based on clinical deterioration and the increase of CRP, an additional enhanced CT-scan offered clear discrimination between patients with major abdominal complications and uncomplicated patients. Adequate treatment could then be accomplished.

  18. Combined endeavor of Neutrosophic Set and Chan-Vese model to extract accurate liver image from CT scan.

    PubMed

    Siri, Sangeeta K; Latte, Mrityunjaya V

    2017-11-01

    Many different diseases can occur in the liver, including infections such as hepatitis, cirrhosis, cancer and over effect of medication or toxins. The foremost stage for computer-aided diagnosis of liver is the identification of liver region. Liver segmentation algorithms extract liver image from scan images which helps in virtual surgery simulation, speedup the diagnosis, accurate investigation and surgery planning. The existing liver segmentation algorithms try to extort exact liver image from abdominal Computed Tomography (CT) scan images. It is an open problem because of ambiguous boundaries, large variation in intensity distribution, variability of liver geometry from patient to patient and presence of noise. A novel approach is proposed to meet challenges in extracting the exact liver image from abdominal CT scan images. The proposed approach consists of three phases: (1) Pre-processing (2) CT scan image transformation to Neutrosophic Set (NS) and (3) Post-processing. In pre-processing, the noise is removed by median filter. The "new structure" is designed to transform a CT scan image into neutrosophic domain which is expressed using three membership subset: True subset (T), False subset (F) and Indeterminacy subset (I). This transform approximately extracts the liver image structure. In post processing phase, morphological operation is performed on indeterminacy subset (I) and apply Chan-Vese (C-V) model with detection of initial contour within liver without user intervention. This resulted in liver boundary identification with high accuracy. Experiments show that, the proposed method is effective, robust and comparable with existing algorithm for liver segmentation of CT scan images. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Performance characteristics and relationship of PSA value/kinetics on carbon-11 acetate PET/CT imaging in biochemical relapse of prostate cancer.

    PubMed

    Almeida, Fabio D; Yen, Chi-Kwan; Scholz, Mark C; Lam, Richard Y; Turner, Jeffrey; Bans, Larry L; Lipson, Robert

    2017-01-01

    An elevated serum prostate-specific antigen (PSA) level alone cannot distinguish between local-regional recurrences and distant metastases after treatment with curative intent. With available salvage treatments, it has become important to localize the site of recurrence. 11 C-Acetate PET/CT was performed in patients with rising PSA, with statistical analysis of detection rates, sites/location of detection, PSA kinetics and comparison with other tracers (FDG and Choline). Correlation to biopsy, subsequent imaging and PSA response to focal treatment was also performed. 88% (637) of 721 11 C-Acetate PET/CT scans performed were positive. There was a statistically significant difference in PSA values between the positive and negative scans (P < 0.001 for mean difference) with the percentage of positive scans and PSA having a positive correlation. A PSA of 1.09 ng/mL was found to be an optimal cutoff. PSAdT was significantly correlated with a positive scan only when the PSA was < 1.0 ng/mL. For this subgroup, a PSAdT of < 3.8 months appeared significant (P < 0.05) as an optimal cutoff point. 11 C-Acetate PET/CT demonstrates a high detection rate for the site of recurrence/metastasis in biochemical relapsed prostate cancer (88% overall detection rate, PPV 90.8%). This analysis suggests an optimal PSA threshold of > 1.09 ng/mL or a PSAdT of < 3.8 months when the PSA is below 1.0 ng/mL as independent predictors of positive findings.

  20. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  1. Effect of CT contrast on volumetric arc therapy planning (RapidArc and helical tomotherapy) for head and neck cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Alan J.; Vora, Nayana; Suh, Steve

    2015-04-01

    The objectives of the study were to evaluate the effect of intravenous contrast in the dosimetry of helical tomotherapy and RapidArc treatment for head and neck cancer and determine if it is acceptable during the computed tomography (CT) simulation to acquire only CT with contrast for treatment planning of head and neck cancer. Overall, 5 patients with head and neck cancer (4 men and 1 woman) treated on helical tomotherapy were analyzed retrospectively. For each patient, 2 consecutive CT scans were performed. The first CT set was scanned before the contrast injection and secondary study set was scanned 45 secondsmore » after contrast. The 2 CTs were autoregistered using the same Digital Imaging and Communications in Medicine coordinates. Tomotherapy and RapidArc plans were generated on 1 CT data set and subsequently copied to the second CT set. Dose calculation was performed, and dose difference was analyzed to evaluate the influence of intravenous contrast media. The dose matrix used for comparison included mean, minimum and maximum doses of planning target volume (PTV), PTV dose coverage, and V{sub 45} {sub Gy}, V{sub 30} {sub Gy}, and V{sub 20} {sub Gy} organ doses. Treatment planning on contrasted images generally showed a lower dose to both organs and target than plans on noncontrasted images. The doses for the points of interest placed in the organs and target rarely changed more than 2% in any patient. In conclusion, treatment planning using a contrasted image had insignificant effect on the dose to the organs and targets. In our opinion, only CT with contrast needs to be acquired during the CT simulation for head and neck cancer. Dose calculations performed on contrasted images can potentially underestimate the delivery dose slightly. However, the errors of planning on a contrasted image should not affect the result in clinically significant way.« less

  2. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-08-01

    The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level "step-dose" pattern. With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a "cupping" artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.

  3. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.

    Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.« less

  4. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.

    PubMed

    Tomita, Naofumi; Cheung, Yvonne Y; Hassanpour, Saeed

    2018-07-01

    Osteoporotic vertebral fractures (OVFs) are prevalent in older adults and are associated with substantial personal suffering and socio-economic burden. Early diagnosis and treatment of OVFs are critical to prevent further fractures and morbidity. However, OVFs are often under-diagnosed and under-reported in computed tomography (CT) exams as they can be asymptomatic at an early stage. In this paper, we present and evaluate an automatic system that can detect incidental OVFs in chest, abdomen, and pelvis CT examinations at the level of practicing radiologists. Our OVF detection system leverages a deep convolutional neural network (CNN) to extract radiological features from each slice in a CT scan. These extracted features are processed through a feature aggregation module to make the final diagnosis for the full CT scan. In this work, we explored different methods for this feature aggregation, including the use of a long short-term memory (LSTM) network. We trained and evaluated our system on 1432 CT scans, comprised of 10,546 two-dimensional (2D) images in sagittal view. Our system achieved an accuracy of 89.2% and an F1 score of 90.8% based on our evaluation on a held-out test set of 129 CT scans, which were established as reference standards through standard semiquantitative and quantitative methods. The results of our system matched the performance of practicing radiologists on this test set in real-world clinical circumstances. We expect the proposed system will assist and improve OVF diagnosis in clinical settings by pre-screening routine CT examinations and flagging suspicious cases prior to review by radiologists. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Utility of CT-compatible EEG electrodes in critically ill children.

    PubMed

    Abend, Nicholas S; Dlugos, Dennis J; Zhu, Xiaowei; Schwartz, Erin S

    2015-04-01

    Electroencephalographic monitoring is being used with increasing frequency in critically ill children who may require frequent and sometimes urgent brain CT scans. Standard metallic disk EEG electrodes commonly produce substantial imaging artifact, and they must be removed and later reapplied when CT scans are indicated. To determine whether conductive plastic electrodes caused artifact that limited CT interpretation. We describe a retrospective cohort of 13 consecutive critically ill children who underwent 17 CT scans with conductive plastic electrodes during 1 year. CT images were evaluated by a pediatric neuroradiologist for artifact presence, type and severity. All CT scans had excellent quality images without artifact that impaired CT interpretation except for one scan in which improper wire placement resulted in artifact. Conductive plastic electrodes do not cause artifact limiting CT scan interpretation and may be used in critically ill children to permit concurrent electroencephalographic monitoring and CT imaging.

  6. Burkitt lymphoma

    MedlinePlus

    The health care provider will perform a physical exam. Tests include: Bone marrow biopsy Chest x-ray CT scan of the chest, abdomen, and pelvis Complete blood count (CBC) Examination of the spinal fluid Lymph node biopsy PET scan

  7. Confounding of the Association between Radiation Exposure from CT Scans and Risk of Leukemia and Brain Tumors by Cancer Susceptibility Syndromes.

    PubMed

    Meulepas, Johanna M; Ronckers, Cécile M; Merks, Johannes; Weijerman, Michel E; Lubin, Jay H; Hauptmann, Michael

    2016-01-01

    Recent studies linking radiation exposure from pediatric computed tomography (CT) to increased risks of leukemia and brain tumors lacked data to control for cancer susceptibility syndromes (CSS). These syndromes might be confounders because they are associated with an increased cancer risk and may increase the likelihood of CT scans performed in children. We identify CSS predisposing to leukemia and brain tumors through a systematic literature search and summarize prevalence and risk estimates. Because there is virtually no empirical evidence in published literature on patterns of CT use for most types of CSS, we estimate confounding bias of relative risks (RR) for categories of radiation exposure based on expert opinion about the current and previous patterns of CT scans among CSS patients. We estimate that radiation-related RRs for leukemia are not meaningfully confounded by Down syndrome, Noonan syndrome, or other CSS. In contrast, RRs for brain tumors may be overestimated due to confounding by tuberous sclerosis complex (TSC) while von Hippel-Lindau disease, neurofibromatosis type 1, or other CSS do not meaningfully confound. Empirical data on the use of CT scans among CSS patients are urgently needed. Our assessment indicates that associations with leukemia reported in previous studies are unlikely to be substantially confounded by unmeasured CSS, whereas brain tumor risks might have been overestimated due to confounding by TSC. Future studies should identify TSC patients in order to avoid overestimation of brain tumor risks due to radiation exposure from CT scans. ©2015 American Association for Cancer Research.

  8. Technical note: estimating absorbed doses to the thyroid in CT.

    PubMed

    Huda, Walter; Magill, Dennise; Spampinato, Maria V

    2011-06-01

    To describe a method for estimating absorbed doses to the thyroid in patients undergoing neck CT examinations. Thyroid doses in anthropomorphic phantoms were obtained for all 23 scanner dosimetry data sets in the ImPACT CT patient dosimetry calculator. Values of relative thyroid dose [R(thy)(L)], defined as the thyroid dose for a given scan length (L) divided by the corresponding thyroid dose for a whole body scan, were determined for neck CT scans. Ratios of the maximum thyroid dose to the corresponding CTDI(vol) and [D'(thy)], were obtained for two phantom diameters. The mass-equivalent water cylinder of any patient can be derived from the neck cross-sectional area and the corresponding average Hounsfield Unit, and compared to the 16.5-cm diameter water cylinder that models the ImPACT anthropomorphic phantom neck. Published values of relative doses in water cylinders of varying diameter were used to adjust thyroid doses in the anthropomorphic phantom to those of any sized patient. Relative thyroid doses R(thy)(L) increase to unity with increasing scan length and with very small difference between scanners. A 10-cm scan centered on the thyroid would result in a dose that is, nearly 90% of the thyroid dose from a whole body scan when performed using the constant radiographic techniques. At 120 kV, the average value of D'(thy) for the 16-cm diameter was 1.17 +/- 0.05 and was independent of CT vendor and year of CT scanner, and choice of x-ray tube voltage. The corresponding average value of D'(thy) in the 32-cm diameter phantom was 2.28 +/- 0.22 and showed marked variations depending on vendor, year of introduction into clinical practice as well as x-ray tube voltage. At 120 kV, a neck equivalent to a 10-cm diameter cylinder of water would have thyroid doses 36% higher than those in the ImPACT phantom, whereas a neck equivalent to a 25-cm cylinder diameter would have thyroid doses 35% lower. Patient thyroid doses can be estimated by taking into account the amount of radiation used to perform the CT examination (CTDI(vol)) and accounting for scan length and patient anatomy (i.e., neck diameter) at the thyroid location.

  9. Computed tomography use among children presenting to emergency departments with abdominal pain.

    PubMed

    Fahimi, Jahan; Herring, Andrew; Harries, Aaron; Gonzales, Ralph; Alter, Harrison

    2012-11-01

    To evaluate trends in and factors associated with computed tomography (CT) use among children presenting to the emergency department (ED) with abdominal pain. This study was a cross-sectional, secondary analysis of the National Hospital Ambulatory Medical Care Survey data from 1998 to 2008. We identified ED patients aged <19 years with abdominal pain and collected patient demographic and hospital characteristics, and outcomes related to imaging, hospital admission, and diagnosis of appendicitis. Trend analysis was performed over the study period for the outcomes of interest, and a multivariate regression model was used to identify factors associated with CT use. Of all pediatric ED visits, 6.0% were for abdominal pain. We noted a rise in the proportion of these patients with CT use, from 0.9% in 1998 to 15.4% in 2008 (P < .001), with no change in ultrasound/radiograph use, diagnosis of appendicitis, or hospital admission. Older and male patients were more likely to have a CT scan, whereas black children were one-half as likely to undergo a CT scan compared with white children (odds ratio: 0.50 [95% confidence interval: 0.31-0.81]). Admitted children had much higher odds of undergoing a CT scan (odds ratio: 4.11 [95% confidence interval: 2.66-6.35]). There was a plateau in CT use in 2006 to 2008. There was a dramatic increase in the utilization of CT imaging in the ED evaluation of pediatric patients with abdominal pain. Some groups of children may have a differential likelihood of receiving CT scans.

  10. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...

  11. Crohn's Disease

    MedlinePlus

    ... causes, such as infection. You may also undergo flexible sigmoidoscopy, colonoscopy, body CT, body MRI, MR enterography, upper GI, small ... Flexible sigmoidoscopy , performed by inserting a sigmoidoscope (a flexible tube ... can also sometimes be seen. Body CT scan , a special type of x-ray ...

  12. Trends of CT utilisation in an emergency department in Taiwan: a 5-year retrospective study

    PubMed Central

    Hu, Sung-Yuan; Hsieh, Ming-Shun; Lin, Meng-Yu; Hsu, Chiann-Yi; Lin, Tzu-Chieh; How, Chorng-Kuang; Wang, Chen-Yu; Tsai, Jeffrey Che-Hung; Wu, Yu-Hui; Chang, Yan-Zin

    2016-01-01

    Objectives To investigate the association between the trends of CT utilisation in an emergency department (ED) and changes in clinical imaging practice and patients' disposition. Setting A hospital-based retrospective observational study of a public 1520-bed referral medical centre in Taiwan. Participants Adult ED visits (aged ≥18 years) during 2009–2013, with or without receiving CT, were enrolled as the study participants. Main outcome measures For all enrolled ED visits, we retrospectively analysed: (1) demographic characteristics, (2) triage categories, (3) whether CT was performed and the type of CT scan, (4) further ED disposition, (5) ED cost and (6) ED length of stay. Results In all, 269 239 adult ED visits (148 613 male patients and 120 626 female patients) were collected during the 5-year study period, comprising 38 609 CT scans. CT utilisation increased from 11.10% in 2009 to 17.70% in 2013 (trend test, p<0.001). Four in 5 types of CT scan (head, chest, abdomen and miscellaneous) were increasingly utilised during the study period. Also, CT was increasingly ordered annually in all age groups. Although ED CT utilisation rates increased markedly, the annual ED visits did not actually increase. Moreover, the subsequent admission rate, after receiving ED CT, declined (59.9% in 2009 to 48.2% in 2013). Conclusions ED CT utilisation rates increased significantly during 2009–2013. Emergency physicians may be using CT for non-emergent studies in the ED. Further investigation is needed to determine whether increasing CT utilisation is efficient and cost-effective. PMID:27279477

  13. A machine learning approach for classification of anatomical coverage in CT

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Lo, Pechin; Ramakrishna, Bharath; Goldin, Johnathan; Brown, Matthew

    2016-03-01

    Automatic classification of anatomical coverage of medical images is critical for big data mining and as a pre-processing step to automatically trigger specific computer aided diagnosis systems. The traditional way to identify scans through DICOM headers has various limitations due to manual entry of series descriptions and non-standardized naming conventions. In this study, we present a machine learning approach where multiple binary classifiers were used to classify different anatomical coverages of CT scans. A one-vs-rest strategy was applied. For a given training set, a template scan was selected from the positive samples and all other scans were registered to it. Each registered scan was then evenly split into k × k × k non-overlapping blocks and for each block the mean intensity was computed. This resulted in a 1 × k3 feature vector for each scan. The feature vectors were then used to train a SVM based classifier. In this feasibility study, four classifiers were built to identify anatomic coverages of brain, chest, abdomen-pelvis, and chest-abdomen-pelvis CT scans. Each classifier was trained and tested using a set of 300 scans from different subjects, composed of 150 positive samples and 150 negative samples. Area under the ROC curve (AUC) of the testing set was measured to evaluate the performance in a two-fold cross validation setting. Our results showed good classification performance with an average AUC of 0.96.

  14. Does intravenous contrast-enhanced computed tomography cause acute kidney injury? Protocol of a systematic review of the evidence

    PubMed Central

    2014-01-01

    Background Contrast-induced acute kidney injury is a common cause of iatrogenic acute kidney injury (AKI). Most of the published estimates of AKI after contrast use originate from the cardiac catheterization literature despite contrast-enhanced computed tomography (CT) scans being the more common setting for contrast use. This systematic review aims to summarize the current evidence about (1)the risk of AKI following intravenous (IV) contrast-enhanced CT scans and(2) the risk of clinical outcomes (i.e. death, hospitalization and need for renal replacement therapy) due to IV contrast-enhanced CT scans. Methods/Design A systematic literature search for published studies will be performed using MEDLINE, EMBASE and The COCHRANE Library databases. Unpublished studies will be identified by searching through grey literature. No language restriction will be applied. The review will consider all studies that have examined the association between IV contrast media and AKI. To be selected, the study should include two arms: one group of exposed patients who received IV contrast material before CT scans and one group of unexposed group who did not receive contrast material before CT scans. Two authors will independently screen titles and abstracts obtained from electronic databases, extract data and will assess the quality of the studies selected using the Cochrane's ‘Risk of Bias’ assessment tool for randomized trials and the Newcastle-Ottawa Scale for observational studies. A random-effects meta-analysis will be performed if there is no remarkable heterogeneity between studies. Discussion This systematic review will provide synthesis of current evidence around the effect of IV contrast material on AKI and other clinical outcomes. Results will be helpful for making evidence-based recommendations and guidelines for clinical and radiologic settings. Systematic review registration PROSPERO CRD42013003799. PMID:25148933

  15. Improving Echo-Guided Procedures Using an Ultrasound-CT Image Fusion System.

    PubMed

    Diana, Michele; Halvax, Peter; Mertz, Damien; Legner, Andras; Brulé, Jean-Marcel; Robinet, Eric; Mutter, Didier; Pessaux, Patrick; Marescaux, Jacques

    2015-06-01

    Image fusion between ultrasound (US) and computed tomography (CT) scan or magnetic resonance can increase operator accuracy in targeting liver lesions, particularly when those are undetectable with US alone. We have developed a modular gel to simulate hepatic solid lesions for educational purposes in imaging and minimally invasive ablation techniques. We aimed to assess the impact of image fusion in targeting artificial hepatic lesions during the hands-on part of 2 courses (basic and advanced) in hepatobiliary surgery. Under US guidance, 10 fake tumors of various sizes were created in the livers of 2 pigs, by percutaneous injection of a biocompatible gel engineered to be hyperdense on CT scanning and barely detectable on US. A CT scan was obtained and a CT-US image fusion was performed using the ACUSON S3000 US system (Siemens Healthcare, Germany). A total of 12 blinded course attendants, were asked in turn to perform a 10-minute liver scan with US alone followed by a 10-minute scan using image fusion. Using US alone, the expert managed to identify all lesions successfully. The true positive rate for course attendants with US alone was 14/36 and 2/24 in the advanced and basic courses, respectively. The total number of false positives identified was 26. With image fusion, the rate of true positives significantly increased to 31/36 (P < .001) in the advanced group and 16/24 in the basic group (P < .001). The total number of false positives, considering all participants, decreased to 4 (P < .001). Image fusion significantly increases accuracy in targeting hepatic lesions and might improve echo-guided procedures. © The Author(s) 2015.

  16. Characterization of the nanoDot OSLD dosimeter in CT

    PubMed Central

    Scarboro, Sarah B.; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C.; Zhang, Di; Kry, Stephen F.

    2015-01-01

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD. PMID:25832070

  17. Characterization of the nanoDot OSLD dosimeter in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarboro, Sarah B.; Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030; The Methodist Hospital, Houston, Texas 77030

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dosemore » linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.« less

  18. [18F-Fluorocholine PET-CT for localization of parathyroid adenomas].

    PubMed

    Kluijfhout, Wouter P; Vriens, Menno R; Borel Rinkes, Inne H M; Valk, Gerlof D; de Klerk, John M H; de Keizer, Bart

    2015-01-01

    18F-fluorocholine PET-CT is a new imaging modality for the localization of pathological parathyroid glands in patients with primary hyperparathyroidism. The PET-CT is a combination scan that uses both the physiological information from the PET and the anatomical information from the CT. Uptake of the radio-isotope 18F-fluorocholine is increased in pathological parathyroid glands. 18F-fluorocholine PET-CT helps clinicians to localize the pathological parathyroid glands where conventional modalities fail to do so. This enables surgeons to carry out targeted minimal invasive surgery. It may also prevent the patient having to undergo a more extensive exploration, with its associated risks, and alleviate the necessity of taking medications with side effects. Although the literature on this subject is still scarce, preliminary results are promising. As any hospital with a PET-CT can perform the scan, we expect that its use in patients with hyperparathyroidism will increase over the next few years.

  19. NEOadjuvant therapy monitoring with PET and CT in Esophageal Cancer (NEOPEC-trial)

    PubMed Central

    2008-01-01

    Background Surgical resection is the preferred treatment of potentially curable esophageal cancer. To improve long term patient outcome, many institutes apply neoadjuvant chemoradiotherapy. In a large proportion of patients no response to chemoradiotherapy is achieved. These patients suffer from toxic and ineffective neoadjuvant treatment, while appropriate surgical therapy is delayed. For this reason a diagnostic test that allows for accurate prediction of tumor response early during chemoradiotherapy is of crucial importance. CT-scan and endoscopic ultrasound have limited accuracy in predicting histopathologic tumor response. Data suggest that metabolic changes in tumor tissue as measured by FDG-PET predict response better. This study aims to compare FDG-PET and CT-scan for the early prediction of non-response to preoperative chemoradiotherapy in patients with potentially curable esophageal cancer. Methods/design Prognostic accuracy study, embedded in a randomized multicenter Dutch trial comparing neoadjuvant chemoradiotherapy for 5 weeks followed by surgery versus surgery alone for esophageal cancer. This prognostic accuracy study is performed only in the neoadjuvant arm of the randomized trial. In 6 centers, 150 consecutive patients will be included over a 3 year period. FDG-PET and CT-scan will be performed before and 2 weeks after the start of the chemoradiotherapy. All patients complete the 5 weeks regimen of neoadjuvant chemoradiotherapy, regardless the test results. Pathological examination of the surgical resection specimen will be used as reference standard. Responders are defined as patients with < 10% viable residual tumor cells (Mandard-score). Difference in accuracy (area under ROC curve) and negative predictive value between FDG-PET and CT-scan are primary endpoints. Furthermore, an economic evaluation will be performed, comparing survival and costs associated with the use of FDG-PET (or CT-scan) to predict tumor response with survival and costs of neoadjuvant chemoradiotherapy without prediction of response (reference strategy). Discussion The NEOPEC-trial could be the first sufficiently powered study that helps justify implementation of FDG-PET for response-monitoring in patients with esophageal cancer in clinical practice. Trial registration ISRCTN45750457 PMID:18671847

  20. Fragmentation of care and the use of head computed tomography in patients with ischemic stroke.

    PubMed

    Bekelis, Kimon; Roberts, David W; Zhou, Weiping; Skinner, Jonathan S

    2014-05-01

    Computed tomographic (CT) scans are central diagnostic tests for ischemic stroke. Their inefficient use is a negative quality measure tracked by the Centers for Medicare and Medicaid Services. We performed a retrospective analysis of Medicare fee-for-service claims data for adults admitted for ischemic stroke from 2008 to 2009, with 1-year follow-up. The outcome measures were risk-adjusted rates of high-intensity CT use (≥4 head CT scans) and risk- and price-adjusted Medicare expenditures in the year after admission. The average number of head CT scans in the year after admission, for the 327 521 study patients, was 1.94, whereas 11.9% had ≥4. Risk-adjusted rates of high-intensity CT use ranged from 4.6% (Napa, CA) to 20.0% (East Long Island, NY). These rates were 2.6% higher for blacks than for whites (95% confidence interval, 2.1%-3.1%), with considerable regional variation. Higher fragmentation of care (number of different doctors seen) was associated with high-intensity CT use. Patients living in the top quintile regions of fragmentation experienced a 5.9% higher rate of high-intensity CT use, with the lowest quintile as reference; the corresponding odds ratio was 1.77 (95% confidence interval, 1.71-1.83). Similarly, 1-year risk- and price-adjusted expenditures exhibited considerable regional variation, ranging from $31 175 (Salem, MA) to $61 895 (McAllen, TX). Regional rates of high-intensity CT scans were positively associated with 1-year expenditures (r=0.56; P<0.01). Rates of high-intensity CT use for patients with ischemic stroke reflect wide practice patterns across regions and races. Medicare expenditures parallel these disparities. Fragmentation of care is associated with high-intensity CT use. © 2014 American Heart Association, Inc.

  1. Comparative effectiveness of using computed tomography alone to exclude cervical spine injuries in obtunded or intubated patients: meta-analysis of 14,327 patients with blunt trauma.

    PubMed

    Panczykowski, David M; Tomycz, Nestor D; Okonkwo, David O

    2011-09-01

    The current standard of practice for clearance of the cervical spine in obtunded patients suffering blunt trauma is to use CT and an adjuvant imaging modality (such as MR imaging). The objective of this study was to determine the comparative effectiveness of multislice helical CT alone to diagnose acute unstable cervical spine injury following blunt trauma. The authors performed a meta-analysis of studies comparing modern CT with adjunctive imaging modalities and required that studies present acute traumatic findings as well as treatment for unstable injuries. Study quality, population characteristics, diagnostic protocols, and outcome data were extracted. Positive disease status included all injuries necessitating surgical or orthotic stabilization identified on imaging and/or clinical follow-up. Seventeen studies encompassing 14,327 patients met the inclusion criteria. Overall, the sensitivity and specificity for modern CT were both > 99.9% (95% CI 0.99-1.00 and 0.99-1.00, respectively). The negative likelihood ratio of an unstable cervical injury after a CT scan negative for acute injury was < 0.001 (95% CI 0.00-0.01), while the negative predictive value of a normal CT scan was 100% (95% CI 0.96-1.00). Global severity of injury, CT slice thickness, and study quality did not significantly affect accuracy estimates. Modern CT alone is sufficient to detect unstable cervical spine injuries in trauma patients. Adjuvant imaging is unnecessary when the CT scan is negative for acute injury. Results of this meta-analysis strongly show that the cervical collar may be removed from obtunded or intubated trauma patients if a modern CT scan is negative for acute injury.

  2. [Diagnosis of septic loosening of hip prosthesis with LeukoScan. SPECT scan with 99mTc-labeled monoclonal antibodies].

    PubMed

    Kaisidis, A; Megas, P; Apostolopoulos, D; Spiridonidis, T; Koumoundourou, D; Zouboulis, P; Lambiris, E; Vassilakos, P

    2005-05-01

    Diagnosis of septic loosening of hip endoprosthesis with antigranulocyte scintigraphy (AGS) was analysed. Twenty-one hip prostheses were studied using laboratory tests and, in cases of elevated values, three-phase bone scan (BS) and AGS. Elective SPECT/CT scans were performed. Histologic and microbiologic exams verified the diagnosis. The AGS analysis revealed sensitivity, specificity and accuracy of value 1, while positive and negative predictive values were also 1. BS showed sensitivity of 1 and specificity of 0.33. In three cases, SPECT/CT scans corroborated the AGS interpretation. This diagnostic algorithm proved effective in the detection of septic loosening of hip prostheses. AGS can be avoided without risk of infection being overlooked.

  3. SU-F-I-36: In-Utero Dose Measurements Within Postmortem Subjects for Estimating Fetal Doses in Pregnant Patients Examined with Pulmonary Embolism, Trauma, and Appendicitis CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnharski, I; Quails, N; Carranza, C

    Purpose: The imaging of pregnant patients is medically necessary in certain clinical situations. The purpose of this work was to directly measure uterine doses in a cadaver scanned with CT protocols commonly performed on pregnant patients in order to estimate fetal dose and assess potential risk. Method: One postmortem subject was scanned on a 320-slice CT scanner with standard pulmonary embolism, trauma, and appendicitis protocols. All protocols were performed with the scan parameters and ranges currently used in clinical practice. Exams were performed both with and without iterative reconstruction to highlight the dose savings potential. Optically stimulated luminescent dosimeters (OSLDs)more » were inserted into the uterus in order to approximate fetal doses. Results: In the pulmonary embolism CT protocol, the uterus is outside of the primary beam, and the dose to the uterus was under 1 mGy. In the trauma and appendicitis protocols, the uterus is in the primary beam, the fetal dose estimates were 30.5 mGy for the trauma protocol, and 20.6 mGy for the appendicitis protocol. Iterative reconstruction reduced fetal doses by 30%, with uterine doses at 21.3 for the trauma and 14.3 mGy for the appendicitis protocol. Conclusion: Fetal doses were under 1 mGy when exposed to scatter radiation, and under 50 mGy when exposed to primary radiation with the trauma and appendicitis protocols. Consistent with the National Council on Radiation Protection & Measurements (NCRP) and the International Commission on Radiological Protection (ICRP), these doses exhibit a negligible risk to the fetus, with only a small increased risk of cancer. Still, CT scans are not recommended during pregnancy unless the benefits of the exam clearly outweigh the potential risk. Furthermore, when possible, pregnant patients should be examined on CT scanners equipped with iterative reconstruction in order to keep patient doses as low as reasonable achievable.« less

  4. Using Image Processing to Determine Emphysema Severity

    NASA Astrophysics Data System (ADS)

    McKenzie, Alexander; Sadun, Alberto

    2010-10-01

    Currently X-rays and computerized tomography (CT) scans are used to detect emphysema, but other tests are required to accurately quantify the amount of lung that has been affected by the disease. These images clearly show if a patient has emphysema, but are unable by visual scan alone, to quantify the degree of the disease, as it presents as subtle, dark spots on the lung. Our goal is to use these CT scans to accurately diagnose and determine emphysema severity levels in patients. This will be accomplished by performing several different analyses of CT scan images of several patients representing a wide range of severity of the disease. In addition to analyzing the original CT data, this process will convert the data to one and two bit images and will then examine the deviation from a normal distribution curve to determine skewness. Our preliminary results show that this method of assessment appears to be more accurate and robust than the currently utilized methods, which involve looking at percentages of radiodensities in the air passages of the lung.

  5. Effect of androgen deprivation therapy on intraprostatic tumour volume identified on 18F choline PET/CT for prostate dose painting radiotherapy.

    PubMed

    Chan, Joachim; Carver, Antony; Brunt, John N H; Vinjamuri, Sobhan; Syndikus, Isabel

    2017-03-01

    Prostate dose painting radiotherapy requires the accurate identification of dominant intraprostatic lesions (DILs) to be used as boost volumes; these can be identified on multiparametric MRI (mpMRI) or choline positron emission tomography (PET)/CT. Planning scans are usually performed after 2-3 months of androgen deprivation therapy (ADT). We examine the effect of ADT on choline tracer uptake and boost volumes identified on choline PET/CT. Fluoroethylcholine ( 18 F choline) PET/CT was performed for dose painting radiotherapy planning in patients with intermediate- to high-risk prostate cancer. Initially, they were performed at planning. Owing to low visual tracer uptake, PET/CT for subsequent patients was performed at staging. We compared these two approaches on intraprostatic lesions obtained on PET using both visual and automatic threshold methods [prostate maximum standardized uptake value (SUV max ) 60%] when compared with mpMRI. PET/CT was performed during ADT in 11 patients (median duration of 85 days) and before ADT in 29 patients. ADT significantly reduced overall prostate volume by 17%. During ADT, prostate SUV max was lower although it did not reach statistical significance (4.2 vs 6.6, p = 0.06); three patients had no visually identifiable PET DIL; and visually defined PET DILs were significantly smaller than corresponding mpMRI DILs (p = 0.03). However, all patients scanned before ADT had at least one visually identifiable PET DIL, with no significant size difference between MRI and visually defined PET DILs. In both groups, threshold PET produced larger DILs than visual PET. Both PET methods have moderate sensitivity (0.50-0.68) and high specificity (0.85-0.98) for identifying MRI-defined disease. For visual contouring of boost volumes in prostate dose painting radiotherapy, 18 F choline PET/CT should be performed before ADT. For threshold contouring of boost volumes using our PET/CT scanning protocol, threshold levels of above 60% prostate SUV max may be more suitable. Additional use of PET with MRI for radiotherapy planning can significantly change the overall boost volumes compared with using MRI alone. Advances in knowledge: For prostate dose painting radiotherapy, the additional use of 18 F choline PET with MRI can significantly change the overall boost volumes, and PET should be performed before hormone therapy, especially if boost volumes are visually identified.

  6. Small-animal CT: Its difference from, and impact on, clinical CT

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.

    2007-10-01

    For whole-body computed tomography (CT) images of small rodents, a voxel resolution of at least 10 -3 mm 3 is needed for scale-equivalence to that currently achieved in clinical CT scanners (˜1 mm 3) in adult humans. These "mini-CT" images generally require minutes rather than seconds to complete a scan. The radiation exposure resulting from these mini-CT scans, while higher than clinical CT scans, is below the level resulting in acute tissue damage. Hence, these scans are useful for performing clinical-type diagnostic and monitoring scans for animal models of disease and their response to treatment. "Micro-CT", with voxel size <10 -5 mm 3, has been useful for imaging isolated, intact organs at an almost cellular level of resolution. Micro-CT has the great advantage over traditional microscopic methods in that it generates detailed three-dimensional images in relatively large, opaque volumes such as an intact rodent heart or kidney. The radiation exposure needed in these scans results in acute tissue damage if used in living animals. Experience with micro-CT is contributing to exploration of new applications for clinical CT imaging by providing insights into different modes of X-ray image formation as follows: Spatial resolution should be sufficient to detect an individual Basic Functional Unit (BFU, the smallest collection of diverse cells, such as hepatic lobule, that behaves like the organ), which requires voxels ˜10 -3 mm 3 in volume, so that the BFUs can be counted. Contrast resolution sufficient to allow quantitation of: New microvascular growth, which manifests as increased tissue contrast due to X-ray contrast agent in those vessels' lumens during passage of injected contrast agent in blood. Impaired endothelial integrity which manifests as increased opacification and delayed washout of contrast from tissues. Discrimination of pathological accumulations of metals such as Fe and Ca, which occur in the arterial wall following hemorrhage or tissue damage. Micro-CT can also be used as a test bed for exploring the utility of several modes of X-ray image formation, such as the use of dual-energy X-ray subtraction, X-ray scatter, phase delay and refraction-based imaging for increasing the contrast amongst soft tissue components. With the recent commercial availability of high speed, multi-slice CT scanners which can be operated in dual-energy mode, some of these micro-CT scanner capabilities and insights are becoming implementable in those CT scanners. As a result, the potential diagnostic spectrum that can be addressed with those scanners is broadened considerably.

  7. Estimating Radiation Dose Metrics for Patients Undergoing Tube Current Modulation CT Scans

    NASA Astrophysics Data System (ADS)

    McMillan, Kyle Lorin

    Computed tomography (CT) has long been a powerful tool in the diagnosis of disease, identification of tumors and guidance of interventional procedures. With CT examinations comes the concern of radiation exposure and the associated risks. In order to properly understand those risks on a patient-specific level, organ dose must be quantified for each CT scan. Some of the most widely used organ dose estimates are derived from fixed tube current (FTC) scans of a standard sized idealized patient model. However, in current clinical practice, patient size varies from neonates weighing just a few kg to morbidly obese patients weighing over 200 kg, and nearly all CT exams are performed with tube current modulation (TCM), a scanning technique that adjusts scanner output according to changes in patient attenuation. Methods to account for TCM in CT organ dose estimates have been previously demonstrated, but these methods are limited in scope and/or restricted to idealized TCM profiles that are not based on physical observations and not scanner specific (e.g. don't account for tube limits, scanner-specific effects, etc.). The goal of this work was to develop methods to estimate organ doses to patients undergoing CT scans that take into account both the patient size as well as the effects of TCM. This work started with the development and validation of methods to estimate scanner-specific TCM schemes for any voxelized patient model. An approach was developed to generate estimated TCM schemes that match actual TCM schemes that would have been acquired on the scanner for any patient model. Using this approach, TCM schemes were then generated for a variety of body CT protocols for a set of reference voxelized phantoms for which TCM information does not currently exist. These are whole body patient models representing a variety of sizes, ages and genders that have all radiosensitive organs identified. TCM schemes for these models facilitated Monte Carlo-based estimates of fully-, partially- and indirectly-irradiated organ dose from TCM CT exams. By accounting for the effects of patient size in the organ dose estimates, a comprehensive set of patient-specific dose estimates from TCM CT exams was developed. These patient-specific organ dose estimates from TCM CT exams will provide a more complete understanding of the dose impact and risks associated with modern body CT scanning protocols.

  8. Quantifying the impact of µCT-scanning of human fossil teeth on ESR age results.

    PubMed

    Duval, Mathieu; Martín-Francés, Laura

    2017-05-01

    Fossil human teeth are nowadays systematically CT-scanned by palaeoanthropologists prior to any further analysis. It has been recently demonstrated that this noninvasive technique has, in most cases, virtually no influence on ancient DNA preservation. However, it may have nevertheless an impact on other techniques, like Electron Spin Resonance (ESR) dating, by artificially ageing the apparent age of the sample. To evaluate this impact, we µCT-scanned several modern enamel fragments following the standard analytical procedures employed by the Dental Anthropology Group at CENIEH, Spain, and then performed ESR dose reconstruction for each of them. The results of our experiment demonstrate that the systematic high-resolution µCT-scanning of fossil hominin remains introduces a nonnegligible X-ray dose into the tooth enamel, equivalent to 15-30 Gy depending on the parameters used. This dose may be multiplied by a factor of ∼8 if no metallic filter is used. However, this dose estimate cannot be universally extrapolated to any µCT-scan experiment but has instead to be specifically assessed for each device and set of parameters employed. The impact on the ESR age results is directly dependent on the magnitude of the geological dose measured in fossil enamel but could potentially lead to an age overestimation up to 40% in case of Late Pleistocene samples, if not taken into consideration. © 2017 Wiley Periodicals, Inc.

  9. Chest CT scanning for clinical suspected thoracic aortic dissection: beware the alternate diagnosis.

    PubMed

    Thoongsuwan, Nisa; Stern, Eric J

    2002-11-01

    The aim of the study was retrospectively to evaluate the spectrum of chest diseases in patients presenting with clinical suspicion of thoracic aortic dissection in the emergency department. We performed a retrospective medical records review of 86 men and 44 women (ages ranging between 23 and 106 years) with clinically suspected aortic dissection, for CT scan findings and final clinical diagnoses dating between January 1996 and September 2001. All images were obtained by using a standard protocol for aortic dissection. We found aortic dissection in 32 patients (24.6%), 22 of which were Stanford classification type A and 10 Stanford type B. In 70 patients (53.9%), chest pain could not be explained by the CT scan findings. However, in 28 patients (21.5%), CT scanning did reveal an alternate diagnosis that, along with the clinical impression, probably explained the patients' presenting symptoms, including: hiatal hernia (7), pneumonia (5), intrathoracic mass (4), pericardial effusion/hemopericardium (3), esophageal mass/rupture (2), aortic aneurysm without dissection (2), pulmonary embolism (2), pleural effusion (1), aortic rupture (1), and pancreatitis (1). In cases where there is clinical suspicion of aortic dissection, CT scan findings of an alternate diagnosis for the presenting symptoms are only slightly less common than the finding of aortic dissection itself. Although the spectrum of findings will vary depending upon your patient population, beware the alternate diagnosis.

  10. Multislice CT of the head and body routine scans: Are scanning protocols adjusted for paediatric patients?

    PubMed Central

    Sun, Z; Al Ghamdi, KS; Baroum, IH

    2012-01-01

    Purpose: To investigate whether the multislice CT scanning protocols of head, chest and abdomen are adjusted according to patient’s age in paediatric patients. Materials and Methods: Multislice CT examination records of paediatric patients undergoing head, chest and abdomen scans from three public hospitals during a one-year period were retrospectively reviewed. Patients were categorised into the following age groups: under 4 years, 5–8 years, 9–12 years and 13–16 years, while the tube current was classified into the following ranges: < 49 mA, 50–99 mA, 100–149 mA, 150–199 mA, > 200 mA and unknown. Results: A total of 4998 patient records, comprising a combination of head, chest and abdomen CT scans, were assessed, with head CT scans representing nearly half of the total scans. Age-based adjusted CT protocols were observed in most of the scans with higher tube current setting being used with increasing age. However, a high tube current (150–199 mA) was still used in younger patients (0–8 years) undergoing head CT scans. In one hospital, CT protocols remained constant across all age groups, indicating potential overexposure to the patients. Conclusion: This analysis shows that paediatric CT scans are adjusted according to the patient’s age in most of the routine CT examinations. This indicates increased awareness regarding radiation risks associated with CT. However, high tube current settings are still used in younger patient groups, thus, optimisation of paediatric CT protocols and implementation of current guidelines, such as age-and weight-based scanning, should be recommended in daily practice. PMID:22970059

  11. The usefulness of fluorine-18 fluorodeoxyglucose PET in the detection of recurrence in patients with differentiated thyroid cancer with elevated thyroglobulin and negative radioiodine whole-body scan.

    PubMed

    Stangierski, Adam; Kaznowski, Jaroslaw; Wolinski, Kosma; Jodlowska, Elzbieta; Michaliszyn, Piotr; Kubiak, Katarzyna; Czepczynski, Rafal; Ruchala, Marek

    2016-09-01

    PET/computed tomography (CT) using fluorine-18 fluorodeoxyglucose (F-FDG) has been used in the diagnosis of recurrence and metastases of differentiated thyroid cancer (DTC) in cases of negative whole-body scan (WBS) despite elevated concentrations of stimulated thyroglobulin (Tg). To assess the utility of PET/CT in the detection of recurrence among patients with DTC with increased Tg levels and negative results of WBS. PET/CT results were retrospectively analyzed in patients with DTC with increased Tg and negative results of WBS as well as negative cervical ultrasonography and chest radiography. PET-CT was performed 1-2 weeks after recent diagnostics under conditions of endogenous or exogenous thyroid-stimulating hormone stimulation. PET/CT was performed using a Discovery ST scanner 1 h after an intravenously F-FDG injection (activity 4-5 MBq/kg). To determine the cutoff value of Tg, receiver operating characteristic curves were analyzed. Sixty-nine patients with DTC (48 women, 21 men) aged 22-83 years (mean 50.9±17.5 years) were qualified. In 44 patients (63.8%), PET/CT indicated lesions of DTC. Thirty (43.5%) patients had F-FDG positive findings. In the remaining 14 patients (20.3%), lesions were found in CT only. Patients with a positive PET/CT scan had significantly higher Tg values than patients with a negative PET/CT (mean 143.8 vs. 26.5 ng/ml, P=0.03). The cutoff value of Tg concentration measured with the receiver operating characteristic analysis was 32.9 ng/ml. PET/CT is a useful tool in the detection of recurrence among thyroid cancer patients in cases of conflicting results of standard procedures, particularly for those with high Tg levels and negative WBS. The probability of obtaining a positive PET-CT result increases with the level of Tg.

  12. Digital volume tomography in the diagnosis of peri-implant defects: an in vitro study on native pig mandibles.

    PubMed

    Mengel, Reiner; Kruse, Björn; Flores-de-Jacoby, Lavin

    2006-07-01

    The aim of this study of native pig mandibles was to investigate the accuracy and quality of the representation of peri-implant defects by intraoral radiography (IR), panoramic radiography (PR), computer tomography (CT), and digital volume tomography (DVT). The examination was carried out on 19 native pig mandibles. In the toothless sections of the mandibles, one or two implants were inserted. Following the standardized preparation of peri-implant defects (11 each of dehiscences, fenestrations, and 2- to 3-walled intrabony defects), IR, PR, CT, and DVT were performed. The peri-implant defects were measured using appropriate software on the digitized IR and PR image programs. As a control method, the peri-implant bone defects were measured directly using a reflecting stereomicroscope with measuring ocular. The statistical comparison between the measurements of the radiographic scans and those of the direct readings of the peri-implant defects was performed with Pearson's correlation coefficient. The quality of the radiographic scans was determined through the subjective perception and detectability of the peri-implant defects by five independent observers. In the DVT and CT scans, it was possible to measure all the bone defects in three planes. Comparison with the direct peri-implant defect measurements yielded a mean deviation of 0.17+/-0.11 mm for the DVT scans and 0.18+/-0.12 mm for the CT scans. On the IR and PR images, the defects could be detected only in the mesio-distal and cranio-caudal planes. In comparison with the direct measurements of the peri-implant defects, the IR images revealed a mean deviation of 0.34+/-0.30 mm, and the PR images revealed a mean deviation of 0.41+/-0.35 mm. The quality rating of the radiographic images was highest for the DVT scans. Overall, the CT and DVT scans displayed only a slight deviation in the extent of the peri-implant defects. Both radiographic imaging techniques permitted imaging of peri-implant defects in three planes, true to scale, and without overlay or distortion. The DVT scans showed the best imaging quality.

  13. Anastomotic leaks: what is the best diagnostic imaging study?

    PubMed

    Nicksa, G A; Dring, R V; Johnson, K H; Sardella, W V; Vignati, P V; Cohen, J L

    2007-02-01

    Postoperative anastomotic leaks are one of the most devastating consequences of colorectal surgery. Diagnostic imaging for upper gastrointestinal anastomotic leaks has been evaluated and reported on extensively. No study has compared the utility and effectiveness of CT scans and water-soluble enemas for the identification of postoperative lower gastrointestinal anastomotic leaks. The present study was designed to evaluate and compare these two common radiographic imaging modalities in detecting lower gastrointestinal anastomotic leaks. A retrospective chart review was performed that identified 36 patients during a seven-year period who underwent reoperative surgery for a lower gastrointestinal anastomotic leak. Patient's imaging studies were classified as positive if extravasation of contrast material was demonstrated. When negative, a study was retrospectively reviewed in an attempt to identify findings suggestive of an anastomotic leak. There were 36 patients identified with a postoperative lower gastrointestinal leak requiring surgical intervention. There were 28 of 36 patients (78 percent) re-explored on the basis of a radiologic study demonstrating an anastomotic leak. A total of 27 CT scans were performed, of which 4 (14.8 percent) were considered positive for an anastomotic leak. On review of the remaining negative CT scans, nine (33.3 percent) were considered descriptive positive with a large amount of fluid or air in the peritoneal cavity but without obvious extravasation of contrast. Eighteen patients were evaluated with a water-soluble enema and 15 (83.3 percent) demonstrated extravasation of contrast material. In the 26 patients with a distal anastomotic leak, 17 water-soluble enemas were performed, with 15 (88 percent) demonstrating a leak. In contrast, only 2 of 17 (12 percent) CT scans were positive in this group of patients (P < 0.001). There were ten patients who initially had a CT scan followed by a water-soluble enema. Of these patients, eight of nine (88 percent) initially had a negative CT scan but were considered to be clinically suspicious of having an anastomotic leak and subsequently had a leak demonstrated on a water-soluble enema. Early intervention in patients who develop an anastomotic leak can be shown to improve the ultimate outcome, especially with respect to mortality. It is usually necessary to obtain objective tests of anastomotic integrity because of the nonspecificity of clinical signs. Our study supported the superiority of water-soluble enema to CT imaging in patients in whom both modalities were used. This difference was most pronounced for distal anastomotic leaks, whereas no radiologic imaging study proved effective in evaluating proximal anastomoses.

  14. Low Yield of Paired Head and Cervical Spine Computed Tomography in Blunt Trauma Evaluation.

    PubMed

    Graterol, Joseph; Beylin, Maria; Whetstone, William D; Matzoll, Ashleigh; Burke, Rennie; Talbott, Jason; Rodriguez, Robert M

    2018-06-01

    With increased computed tomography (CT) utilization, clinicians may simultaneously order head and neck CT scans, even when injury is suspected only in one region. We sought to determine: 1) the frequency of simultaneous ordering of a head CT scan when a neck CT scan is ordered; 2) the yields of simultaneously ordered head and neck CT scans for clinically significant injury (CSI); and 3) whether injury in one region is associated with a higher rate of injury in the other. This was a retrospective study of all adult patients who received neck CT scans (and simultaneously ordered head CT scans) as part of their blunt trauma evaluation at an urban level 1 trauma center in 2013. An expert panel determined CSI of head and neck injuries. We defined yield as number of patients with injury/number of patients who had a CT scan. Of 3223 patients who met inclusion criteria, 2888 (89.6%) had simultaneously ordered head and neck CT scans. CT yield for CSI in both the head and neck was 0.5% (95% confidence interval [CI] 0.3-0.8%), and the yield for any injury in both the head and neck was 1.4% (95% CI 1.0-1.8%). The yield for CSI in one region was higher when CSI was seen in the other region. The yield of CT for CSI in both the head and neck concomitantly is very low. When injury is seen in one region, there is higher likelihood of injury in the other. These findings argue against paired ordering of head and neck CT scans and suggest that CT scans should be ordered individually or when injury is detected in one region. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Quality control of CT systems by automated monitoring of key performance indicators: a two‐year study

    PubMed Central

    Bujila, Robert; Poludniowski, Gavin; Fransson, Annette

    2015-01-01

    The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two‐year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service PACS numbers: 87.57.C‐, 87.57.N‐, 87.57.Q‐ PMID:26219012

  16. Three-dimensional model of the skull and the cranial bones reconstructed from CT scans designed for rapid prototyping process.

    PubMed

    Skrzat, Janusz; Spulber, Alexandru; Walocha, Jerzy

    This paper presents the effects of building mesh models of the human skull and the cranial bones from a series of CT-scans. With the aid of computer so ware, 3D reconstructions of the whole skull and segmented cranial bones were performed and visualized by surface rendering techniques. The article briefly discusses clinical and educational applications of 3D cranial models created using stereolitographic reproduction.

  17. Frequencies of micronucleated reticulocytes, a dosimeter of DNA double-strand breaks, in infants receiving computed tomography or cardiac catheterization.

    PubMed

    Khattab, Mona; Walker, Dale M; Albertini, Richard J; Nicklas, Janice A; Lundblad, Lennart K A; Vacek, Pamela M; Walker, Vernon E

    2017-08-01

    The use of computed tomography (CT scans) has increased dramatically in recent decades, raising questions about the long-term safety of CT-emitted x-rays especially in infants who are more sensitive to radiation-induced effects. Cancer risk estimates for CT scans typically are extrapolated from models; therefore, new approaches measuring actual DNA damage are needed for improved estimations. Hence, changes in a dosimeter of DNA double-strand breaks, micronucleated reticulocytes (MN-RETs) measured by flow cytometry, were investigated in mice and infants exposed to CT scans. In male C57BL/6N mice (6-8 weeks-of-age), there was a dose-related increase in MN-RETs in blood samples collected 48h after CT scans delivering targeted exposures of 1-130 cGy x-rays (n=5-10/group, r=0.994, p=0.01), with significant increases occurring at exposure levels as low as 0.83 cGy x-rays compared to control mice (p=0.002). In paired blood specimens from infants with no history of a prior CT scan, there was no difference in MN-RET frequencies found 2h before (mean, 0.10±0.07%) versus 48h after (mean, 0.11±0.05%) a scheduled CT scan/cardiac catheterization. However, in infants having prior CT scan(s), MN-RET frequencies measured at 48h after a scheduled CT scan (mean=0.22±0.12%) were significantly higher than paired baseline values (mean, 0.17±0.07%; p=0.032). Increases in baseline (r=0.722, p<0.001) and 48-h post exposure (r=0.682, p<0.001) levels of MN-RETs in infants with a history of prior CT scans were significantly correlated with the number of previous CT scans. These preliminary findings suggest that prior CT scans increase the cellular responses to subsequent CT exposures. Thus, further investigation is needed to characterize the potential cancer risk from single versus repeated CT scans or cardiac catheterizations in infants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Transcatheter Arterial Embolization with N-Butyl-2-Cyanoacrylate in the Management of Spontaneous Hematomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozyer, Umut, E-mail: umutozyer@gmail.com

    IntroductionSpontaneous hematoma refractory to conservative management is a potentially serious condition that requires prompt diagnosis and intervention. The purpose of this study was to evaluate the performance of computed tomography (CT) in the treatment planning and to report the effectiveness of transcatheter embolization with N-butyl-2-cyanoacrylate (NBCA).Materials and MethodsForty-one interventions in 38 patients within a 12-year period were evaluated. CT and angiograms were reviewed for the location of the hematoma, the presence of extravasation, and the correlation of CT and angiography findings.ResultsArterial extravasation was present on 34/39 CT scans. Angiograms confirmed the CT scans in 29 cases. Angiograms revealed extravasation inmore » four cases which CT showed venous bleeding (n = 2) or no bleeding (n = 2). Five patients with arterial and 1 patient with venous extravasation on CT images had no extravasation on angiograms. Embolization was performed to all arteries with extravasation on angiograms. Empiric embolization of the corresponding artery on the CT was performed when there was no extravasation on angiograms. Embolization procedures were performed with 15 % NBCA diluted with iodized oil. Technical success was achieved in 40/41 (97.6 %) interventions. Clinical success was achieved in 35 patients with a single, in 1 patient with 2, and in 1 patient with 3 interventions. No complications related to embolization procedure occurred. None of the patients died due to a progression of the hematoma.ConclusionNBCA is an effective and safe embolic agent to treat hematoma refractory to conservative management. Contrast-enhanced CT may provide faster and more effective intervention.Level of Evidence IIIRetrospective.« less

  19. Microvascular transplants in head and neck reconstruction: 3D evaluation of volume loss.

    PubMed

    Bittermann, Gido; Thönissen, Philipp; Poxleitner, Philipp; Zimmerer, Ruediger; Vach, Kirstin; Metzger, Marc C

    2015-10-01

    Despite oversized latissimus dorsi free flap reconstruction in the head and neck area, esthetic and functional problems continue to exist due to the well-known occurrence of transplant shrinkage. The purpose of this study was to acquire an estimation of the volume and time of the shrinkage process. The assessment of volume loss was performed using a 3D evaluation of two postoperative CT scans. A retrospective review was conducted on all latissimus dorsi free flap reconstructions performed between 2004 and 2013. Inclusion criteria for the assessment were: resection of an oral carcinoma and microsurgical defect coverage with latissimus dorsi free flap; a first postoperative CT (CT1) performed between 3 weeks and a maximum of 3 months after reconstruction surgery; and an additional CT scan (CT2) performed at least one year postoperatively. The exclusion criterion was surgical intervention in the local area between the acquisition of CT1 and CT2. The effect of adjuvant radiation therapy was considered. Volume determination of the transplant was carried out in CT1 and CT2 by manual segmentation of the graft. Fifteen patients were recruited. 3D evaluation showed an average volume loss of 34.4%. In the consideration of postoperative radiotherapy the volume reduction was 39.2% in patients with radiotherapy and 31.3% in patients without radiotherapy. The reconstruction flap volume required for overcorrection of the surgical defect was investigated. This study indicates that a volume loss of more than 30% could be expected one or more years after latissimus dorsi free flap reconstruction. Clinical trial number DRKS00007534. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. A Survey of Pediatric CT Protocols and Radiation Doses in South Korean Hospitals to Optimize the Radiation Dose for Pediatric CT Scanning

    PubMed Central

    Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung

    2015-01-01

    Abstract Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2–5 years), 23.5 to 44.1 (6–10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2–5 years), 3.9 to 9.3 (6–10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2–5 years), 5.7 to 12.4 (6–10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in certain age groups. PMID:26683922

  1. The diagnosis of acute appendicitis in a pediatric population: to CT or not to CT.

    PubMed

    Stephen, Antonia E; Segev, Dorry L; Ryan, Daniel P; Mullins, Mark E; Kim, Samuel H; Schnitzer, Jay J; Doody, Daniel P

    2003-03-01

    The aim of this study was to determine if focused appendiceal computed tomography with colon contrast (FACT-CC) increases the accuracy of the preoperative diagnosis of acute appendicitis in children. A 5-year retrospective review was conducted of a university hospital database of 283 patients (age 0.8 to 19.3 years; mean, 11.3 years) treated with appendectomy for presumed acute appendicitis. Of the 283 patients in whom appendectomies were performed, 268 were confirmed by pathologic analysis of the specimen to have acute appendicitis for a diagnostic accuracy in our institution of 94.7%. Ninety-six patients (34%) underwent FACT-CC scans as part of their preoperative evaluation. The sensitivity of the computed tomography (CT) scan was 94.6%, and the positive predictive value was 95.6%. In girls older than 10 years, CT imaging was not significantly more accurate in predicting appendicitis than examination alone (93.9% v. 87.5%; P =.46). Preoperative FACT-CC did not increase the accuracy in diagnosing appendicitis when compared with patients diagnosed by history, physical examination and laboratory studies. If there was a strong suspicion of appendicitis, a negative CT scan did not exclude the diagnosis of appendicitis. However, focused appendiceal CT scan is a sensitive test with a high positive predictive value and may be useful in a patient with an atypical history or examination. Copyright 2003, Elsevier Science (USA). All rights reserved.

  2. Management of paediatric periorbital cellulitis: Our experience of 243 children managed according to a standardised protocol 2012-2015.

    PubMed

    Crosbie, Robin A; Nairn, Jonathan; Kubba, Haytham

    2016-08-01

    Paediatric periorbital cellulitis is a common condition. Accurate assessment can be challenging and appropriate use of CT imaging is essential. We audited admissions to our unit over a four year period, with reference to CT scanning and adherence to our protocol. Retrospective audit of paediatric patients admitted with periorbital cellulitis, 2012-2015. Total of 243 patients included, mean age 4.7 years with slight male predominance, the median length of admission was 2 days. 48/243 (20%) underwent CT during admission, 25 (52%) of these underwent surgical drainage. As per protocol, CT brain performed with all orbital scans; no positive intracranial findings on any initial scan. Three children developed intracranial complications subsequently; all treated with antibiotics. Our re-admission rate within 30 days was 2.5%. Our audit demonstrates benefit of standardising practice and the low CT rate, with high percentage taken to theatre and no missed abscesses, supports the protocol. There may be an argument to avoid CT brain routinely in all initial imaging sequences in those children without neurological signs or symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Diagnostic accuracy of laparoscopy following computed tomography (CT) scanning for assessing the resectability with curative intent in pancreatic and periampullary cancer.

    PubMed

    Allen, Victoria B; Gurusamy, Kurinchi Selvan; Takwoingi, Yemisi; Kalia, Amun; Davidson, Brian R

    2016-07-06

    Surgical resection is the only potentially curative treatment for pancreatic and periampullary cancer. A considerable proportion of patients undergo unnecessary laparotomy because of underestimation of the extent of the cancer on computed tomography (CT) scanning. Laparoscopy can detect metastases not visualised on CT scanning, enabling better assessment of the spread of cancer (staging of cancer). This is an update to a previous Cochrane Review published in 2013 evaluating the role of diagnostic laparoscopy in assessing the resectability with curative intent in people with pancreatic and periampullary cancer. To determine the diagnostic accuracy of diagnostic laparoscopy performed as an add-on test to CT scanning in the assessment of curative resectability in pancreatic and periampullary cancer. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via PubMed, EMBASE via OvidSP (from inception to 15 May 2016), and Science Citation Index Expanded (from 1980 to 15 May 2016). We included diagnostic accuracy studies of diagnostic laparoscopy in people with potentially resectable pancreatic and periampullary cancer on CT scan, where confirmation of liver or peritoneal involvement was by histopathological examination of suspicious (liver or peritoneal) lesions obtained at diagnostic laparoscopy or laparotomy. We accepted any criteria of resectability used in the studies. We included studies irrespective of language, publication status, or study design (prospective or retrospective). We excluded case-control studies. Two review authors independently performed data extraction and quality assessment using the QUADAS-2 tool. The specificity of diagnostic laparoscopy in all studies was 1 because there were no false positives since laparoscopy and the reference standard are one and the same if histological examination after diagnostic laparoscopy is positive. The sensitivities were therefore meta-analysed using a univariate random-effects logistic regression model. The probability of unresectability in people who had a negative laparoscopy (post-test probability for people with a negative test result) was calculated using the median probability of unresectability (pre-test probability) from the included studies, and the negative likelihood ratio derived from the model (specificity of 1 assumed). The difference between the pre-test and post-test probabilities gave the overall added value of diagnostic laparoscopy compared to the standard practice of CT scan staging alone. We included 16 studies with a total of 1146 participants in the meta-analysis. Only one study including 52 participants had a low risk of bias and low applicability concern in the patient selection domain. The median pre-test probability of unresectable disease after CT scanning across studies was 41.4% (that is 41 out of 100 participants who had resectable cancer after CT scan were found to have unresectable disease on laparotomy). The summary sensitivity of diagnostic laparoscopy was 64.4% (95% confidence interval (CI) 50.1% to 76.6%). Assuming a pre-test probability of 41.4%, the post-test probability of unresectable disease for participants with a negative test result was 0.20 (95% CI 0.15 to 0.27). This indicates that if a person is said to have resectable disease after diagnostic laparoscopy and CT scan, there is a 20% probability that their cancer will be unresectable compared to a 41% probability for those receiving CT alone.A subgroup analysis of people with pancreatic cancer gave a summary sensitivity of 67.9% (95% CI 41.1% to 86.5%). The post-test probability of unresectable disease after being considered resectable on both CT and diagnostic laparoscopy was 18% compared to 40.0% for those receiving CT alone. Diagnostic laparoscopy may decrease the rate of unnecessary laparotomy in people with pancreatic and periampullary cancer found to have resectable disease on CT scan. On average, using diagnostic laparoscopy with biopsy and histopathological confirmation of suspicious lesions prior to laparotomy would avoid 21 unnecessary laparotomies in 100 people in whom resection of cancer with curative intent is planned.

  4. Precision of quantitative computed tomography texture analysis using image filtering: A phantom study for scanner variability.

    PubMed

    Yasaka, Koichiro; Akai, Hiroyuki; Mackin, Dennis; Court, Laurence; Moros, Eduardo; Ohtomo, Kuni; Kiryu, Shigeru

    2017-05-01

    Quantitative computed tomography (CT) texture analyses for images with and without filtration are gaining attention to capture the heterogeneity of tumors. The aim of this study was to investigate how quantitative texture parameters using image filtering vary among different computed tomography (CT) scanners using a phantom developed for radiomics studies.A phantom, consisting of 10 different cartridges with various textures, was scanned under 6 different scanning protocols using four CT scanners from four different vendors. CT texture analyses were performed for both unfiltered images and filtered images (using a Laplacian of Gaussian spatial band-pass filter) featuring fine, medium, and coarse textures. Forty-five regions of interest were placed for each cartridge (x) in a specific scan image set (y), and the average of the texture values (T(x,y)) was calculated. The interquartile range (IQR) of T(x,y) among the 6 scans was calculated for a specific cartridge (IQR(x)), while the IQR of T(x,y) among the 10 cartridges was calculated for a specific scan (IQR(y)), and the median IQR(y) was then calculated for the 6 scans (as the control IQR, IQRc). The median of their quotient (IQR(x)/IQRc) among the 10 cartridges was defined as the variability index (VI).The VI was relatively small for the mean in unfiltered images (0.011) and for standard deviation (0.020-0.044) and entropy (0.040-0.044) in filtered images. Skewness and kurtosis in filtered images featuring medium and coarse textures were relatively variable across different CT scanners, with VIs of 0.638-0.692 and 0.430-0.437, respectively.Various quantitative CT texture parameters are robust and variable among different scanners, and the behavior of these parameters should be taken into consideration.

  5. Implementation of a CT Scan Practice Guideline for Pediatric Trauma Patients Reduces Unnecessary Scans Without Impacting Outcomes.

    PubMed

    McGrew, Patrick R; Chestovich, Paul J; Fisher, Jay D; Kuhls, Deborah A; Fraser, Douglas R; Patel, Purvi P; Katona, Chad W; Saquib, Syed; Fildes, John J

    2018-05-04

    Computed Tomography (CT) scans are useful in the evaluation of trauma patients, but are costly and pose risks from ionizing radiation in children. Recent literature has demonstrated the utility of CT scan guidelines in the management of pediatric trauma. This study objective is to review our treatment of pediatric blunt trauma patients and evaluate CT utilization before and after CT-guideline implementation. Our Pediatric Level 2 Trauma Center (TC) implemented a CT scan practice guideline for pediatric trauma patients in March 2014. The guideline recommended for or against CT of the head and abdomen/pelvis utilizing published criteria from the Pediatric Emergency Care and Research Network (PECARN). There was no chest CT guideline. We reviewed all pediatric trauma patients for CT scans obtained during initial evaluation before and after guideline implementation, excluding inpatient scans. The Trauma Registry Database was queried to include all pediatric (age<15) trauma patients seen in our TC from 2010-2016, excluding penetrating mechanism and deaths in the TC. Scans were considered positive if organ injury was detected. Primary outcome was the proportion of patients undergoing CT and percent positive CTs. Secondary outcomes were hospital length of stay (LOS), readmissions, and mortality. Categorical and continuous variables were analyzed with Chi-square and Wilcoxon rank-sum tests, respectively. P<0.05 was considered significant. We identified 1934 patients: 1106 pre- and 828 post-guideline. Absolute reductions in head, chest, and abdomen/pelvis CT scans were 17.7%, 11.5%, and 18.8% respectively (p<0.001). Percent positive head CTs were equivalent, but percent positive chest and abdomen CT increased after implementation. Secondary outcomes were unchanged. Implementation of a pediatric CT guideline significantly decreases CT utilization, reducing the radiation exposure without a difference in outcome. Trauma centers treating pediatric patients should adopt similar guidelines to decrease unnecessary CT scans in children. Level IV, Therapeutic Study.

  6. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

    PubMed

    Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R

    2010-05-01

    Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  7. Is the routine CT head scan justified for psychiatric patients? A prospective study.

    PubMed Central

    Ananth, J; Gamal, R; Miller, M; Wohl, M; Vandewater, S

    1993-01-01

    Thirty-four psychiatric patients, assessed for a physical illness that was missed during diagnosis, underwent a CT scan. After investigation, the diagnosis of 14 patients changed from a functional to an organic illness. In nine patients, the CT scan was reported to be abnormal, and yet only two were diagnosed as having an organic syndrome. In seven patients, the CT scan was normal but the patients had an undisputed organic brain syndrome. These findings indicate that the use of CT scans should be restricted to cases in which the diagnosis is seriously in question. The clinical findings should dictate the use of CT scans either to clarify or to complement them. PMID:8461285

  8. Reproducibility of 18F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    PubMed Central

    Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L

    2015-01-01

    Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069

  9. Impact of number of repeated scans on model observer performance for a low-contrast detection task in computed tomography.

    PubMed

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2016-04-01

    Channelized Hotelling observer (CHO) models have been shown to correlate well with human observers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large number of repeated scans were used to achieve an accurate estimate of the model's template. The purpose of this study is to investigate how the experimental and CHO model parameters affect the minimum required number of repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detectability, quantified as the area under receiver operating characteristic curve, [Formula: see text], was calculated using a previously validated CHO with randomly selected subsets of scans, ranging from 10 to 100. Using [Formula: see text] from the 100 scans as the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast detectability decreased. This study provides a basis for the experimental design of task-based image quality assessment in clinical CT using CHO.

  10. Impact of number of repeated scans on model observer performance for a low-contrast detection task in computed tomography

    PubMed Central

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2016-01-01

    Abstract. Channelized Hotelling observer (CHO) models have been shown to correlate well with human observers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large number of repeated scans were used to achieve an accurate estimate of the model’s template. The purpose of this study is to investigate how the experimental and CHO model parameters affect the minimum required number of repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detectability, quantified as the area under receiver operating characteristic curve, Az, was calculated using a previously validated CHO with randomly selected subsets of scans, ranging from 10 to 100. Using Az from the 100 scans as the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast detectability decreased. This study provides a basis for the experimental design of task-based image quality assessment in clinical CT using CHO. PMID:27284547

  11. CT scans for pulmonary surveillance may be overused in lower-grade sarcoma.

    PubMed

    Miller, Benjamin J; Carmody Soni, Emily E; Reith, John D; Gibbs, C Parker; Scarborough, Mark T

    2012-01-01

    Chest CT scans are often used to monitor patients after excision of a sarcoma. Although sensitive, CT scans are more expensive than chest radiographs and are associated with possible health risks from a higher radiation dose. We hypothesized that a program based upon limited CT scans in lower-grade sarcoma could be efficacious and less expensive. We retrospectively assigned patients to a high-risk or low-risk hypothetical protocol. Eighty-three low- or intermediate-grade soft tissue sarcomas met our inclusion criteria. Eight patients had pulmonary metastasis. A protocol based on selective CT scans for high-risk patients would have identified seven out of eight lesions. The incremental cost-effectiveness ratio for routine CT scans was $731,400. A program based upon selective CT scans for higher-risk patients is accurate, spares unnecessary radiation to many patients, and is less expensive.

  12. Barium Sulfate

    MedlinePlus

    ... and intestine using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses a ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate enema, ...

  13. A comparison between intrastomal 3D ultrasonography, CT scanning and findings at surgery in patients with stomal complaints.

    PubMed

    Näsvall, P; Wikner, F; Gunnarsson, U; Rutegård, J; Strigård, K

    2014-10-01

    Since there are no reliable investigative tools for imaging parastomal hernia, new techniques are needed. The aim of this study was to assess the validity of intrastomal three-dimensional ultrasonography (3D) as an alternative to CT scanning for the assessment of stomal complaints. Twenty patients with stomal complaints, indicating surgery, were examined preoperatively with a CT scan in the supine position and 3D intrastomal ultrasonography in the supine and erect positions. Comparison with findings at surgery, considered to be the true state, was made. Both imaging methods, 3D ultrasonography and CT scanning, showed high sensitivity (ultrasound 15/18, CT scan 15/18) and specificity (ultrasound 2/2, CT scan 1/2) when judged by a dedicated radiologist. Corresponding values for interpretation of CT scans in routine clinical practice was for sensitivity 17/18 and for specificity 1/2. 3D ultrasonography has a high validity and is a promising alternative to CT scanning in the supine position to distinguish a bulge from a parastomal hernia.

  14. Demand for CT scans increases during transition from paediatric to adult care: an observational study from 2009 to 2015.

    PubMed

    Thurley, Pete; Crookdake, Jonathan; Norwood, Mark; Sturrock, Nigel; Fogarty, Andrew W

    2018-02-01

    Avoiding unnecessary radiation exposure is a clinical priority in children and young adults. We aimed to explore demand for CT scans in a busy general hospital with particular interest in the period of transition from paediatric to adult medical care. We used an observational epidemiological study based in a teaching hospital. Data were obtained on numbers and rates of CT scans from 2009 to 2015. The main outcome was age-stratified rates of receiving a CT scan. There were a total of 262,221 CT scans. There was a large step change in the rate of CT scans over the period of transition from paediatric to adult medical care. Individuals aged 10-15 years experienced 6.7 CT scans per 1000 clinical episodes, while those aged 19-24 years experienced 19.8 CT scans per 1000 clinical episodes (p < 0.001). This difference remained significant for all sensitivity analyses. There is almost a threefold increase in rates of CT scans in the two populations before and after the period of transition from paediatric to adult medical care. While we were unable to adjust for case mix or quantify radiation exposure, paediatricians' diagnostic strategies to minimize radiation exposure may have clinical relevance for adult physicians, and hence enable reductions in ionizing radiation to patients. Advances in knowledge: A large increase in rates of CT scans occurs during adolescence, and considering paediatricians' strategies to minimize radiation exposure may enable reductions to all patients.

  15. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad

    2005-12-15

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less

  16. Quantitative analysis of titanium-induced artifacts and correlated factors during micro-CT scanning.

    PubMed

    Li, Jun Yuan; Pow, Edmond Ho Nang; Zheng, Li Wu; Ma, Li; Kwong, Dora Lai Wan; Cheung, Lim Kwong

    2014-04-01

    To investigate the impact of cover screw, resin embedment, and implant angulation on artifact of microcomputed tomography (micro-CT) scanning for implant. A total of twelve implants were randomly divided into 4 groups: (i) implant only; (ii) implant with cover screw; (iii) implant with resin embedment; and (iv) implants with cover screw and resin embedment. Implants angulation at 0°, 45°, and 90° were scanned by micro-CT. Images were assessed, and the ratio of artifact volume to total volume (AV/TV) was calculated. A multiple regression analysis in stepwise model was used to determine the significance of different factors. One-way ANOVA was performed to identify which combination of factors could minimize the artifact. In the regression analysis, implant angulation was identified as the best predictor for artifact among the factors (P < 0.001). Resin embedment also had significant effect on artifact volume (P = 0.028), while cover screw had not (P > 0.05). Non-embedded implants with the axis parallel to X-ray source of micro-CT produced minimal artifact. Implant angulation and resin embedment affected the artifact volume of micro-CT scanning for implant, while cover screw did not. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Trends of CT utilisation in an emergency department in Taiwan: a 5-year retrospective study.

    PubMed

    Hu, Sung-Yuan; Hsieh, Ming-Shun; Lin, Meng-Yu; Hsu, Chiann-Yi; Lin, Tzu-Chieh; How, Chorng-Kuang; Wang, Chen-Yu; Tsai, Jeffrey Che-Hung; Wu, Yu-Hui; Chang, Yan-Zin

    2016-06-08

    To investigate the association between the trends of CT utilisation in an emergency department (ED) and changes in clinical imaging practice and patients' disposition. A hospital-based retrospective observational study of a public 1520-bed referral medical centre in Taiwan. Adult ED visits (aged ≥18 years) during 2009-2013, with or without receiving CT, were enrolled as the study participants. For all enrolled ED visits, we retrospectively analysed: (1) demographic characteristics, (2) triage categories, (3) whether CT was performed and the type of CT scan, (4) further ED disposition, (5) ED cost and (6) ED length of stay. In all, 269 239 adult ED visits (148 613 male patients and 120 626 female patients) were collected during the 5-year study period, comprising 38 609 CT scans. CT utilisation increased from 11.10% in 2009 to 17.70% in 2013 (trend test, p<0.001). Four in 5 types of CT scan (head, chest, abdomen and miscellaneous) were increasingly utilised during the study period. Also, CT was increasingly ordered annually in all age groups. Although ED CT utilisation rates increased markedly, the annual ED visits did not actually increase. Moreover, the subsequent admission rate, after receiving ED CT, declined (59.9% in 2009 to 48.2% in 2013). ED CT utilisation rates increased significantly during 2009-2013. Emergency physicians may be using CT for non-emergent studies in the ED. Further investigation is needed to determine whether increasing CT utilisation is efficient and cost-effective. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. CT-guided brachytherapy of prostate cancer: reduction of effective dose from X-ray examination

    NASA Astrophysics Data System (ADS)

    Sanin, Dmitriy B.; Biryukov, Vitaliy A.; Rusetskiy, Sergey S.; Sviridov, Pavel V.; Volodina, Tatiana V.

    2014-03-01

    Computed tomography (CT) is one of the most effective and informative diagnostic method. Though the number of CT scans among all radiographic procedures in the USA and European countries is 11% and 4% respectively, CT makes the highest contribution to the collective effective dose from all radiographic procedures, it is 67% in the USA and 40% in European countries [1-5]. Therefore it is necessary to understand the significance of dose value from CT imaging to a patient . Though CT dose from multiple scans and potential risk is of great concern in pediatric patients, this applies to adults as well. In this connection it is very important to develop optimal approaches to dose reduction and optimization of CT examination. International Commission on Radiological Protection (ICRP) in its publications recommends radiologists to be aware that often CT image quality is higher than it is necessary for diagnostic confidence[6], and there is a potential to reduce the dose which patient gets from CT examination [7]. In recent years many procedures, such as minimally invasive surgery, biopsy, brachytherapy and different types of ablation are carried out under guidance of computed tomography [6;7], and during a procedures multiple CT scans focusing on a specific anatomic region are performed. At the Clinics of MRRC different types of treatment for patients with prostate cancer are used, incuding conformal CT-guided brachytherapy, implantation of microsources of I into the gland under guidance of spiral CT [8]. So, the purpose of the study is to choose optimal method to reduce radiation dose from CT during CT-guided prostate brachytherapy and to obtain the image of desired quality.

  19. Growth characterisation of intra-thoracic organs of children on CT scans.

    PubMed

    Coulongeat, François; Jarrar, Mohamed-Salah; Thollon, Lionel; Serre, Thierry

    2013-01-01

    This paper analyses the geometry of intra-thoracic organs from computed tomography (CT) scans performed on 20 children aged from 4 months to 16 years. The aim is to find the most reliable measurements to characterise the growth of heart and lungs from CT data. Standard measurements available on chest radiographies are compared with original measurements only available on CT scans. These measurements should characterise the growth of organs as well as the changes in their position relative to the thorax. Measurements were considered as functions of age. Quadratic regression models were fitted to the data. Goodness of fit of the models was then evaluated. Positions of organs relative to the thorax have a high variability compared with their changes with age. The length and volume of the heart and lungs as well as the diameter of the thorax fit well to the models of growth. It could be interesting to study these measurements with a larger sample size in order to define growth standards.

  20. Endoscopic ultrasonography in chronic pancreatitis: a comparative prospective study with conventional ultrasonography, computed tomography, and ERCP.

    PubMed

    Buscail, L; Escourrou, J; Moreau, J; Delvaux, M; Louvel, D; Lapeyre, F; Tregant, P; Frexinos, J

    1995-04-01

    The usefulness and accuracy rate of endoscopic ultrasonography (EUS) in the diagnosis of chronic pancreatitis (CP) were prospectively evaluated in 81 patients with suspected pancreatic disease. All underwent EUS, abdominal ultrasonography (AUS), and computed tomography (CT), and endoscopic retrograde cholangiopancreatography (ERCP) was performed in 55 of the cases. The diagnosis of CP was established in 44 patients (CP group) including 24 with a calcified form. No pancreatic disease was observed in 18 patients (control group), and 19 patients had a pancreatic tumor. In the CP group AUS was less accurate than EUS in visualizing the pancreas, performances of CT scan being identical to EUS in this respect. A good correlation was observed between EUS and ERCP for visualization and measurement of the Wirsung duct. The most significant changes observed by EUS in the CP group were dilatation of the main pancreatic duct, heterogeneous echogenicity of the pancreatic parenchyma, and cysts < 20 mm in size even in noncalcified CP or with normal pancreatograms. Sensitivity of EUS for diagnosis of CP was 88% (AUS, 58%; ERCP, 74%; CT scan, 75%), the specificity being 100% for ERCP and EUS, 95% for CT scan, and 75% for AUS. The good performances of EUS allow early diagnosis of CP in symptomatic patients since heterogeneous echogenicity of the pancreatic parenchyma seems to be almost specifically associated with the disease.

  1. New prospective 4D-CT for mitigating the effects of irregular respiratory motion

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu; Martin, Rachael M.; Luo, Dershan

    2017-08-01

    Artifact caused by irregular respiration is a major source of error in 4D-CT imaging. We propose a new prospective 4D-CT to mitigate this source of error without new hardware, software or off-line data-processing on the GE CT scanner. We utilize the cine CT scan in the design of the new prospective 4D-CT. The cine CT scan at each position can be stopped by the operator when an irregular respiration occurs, and resumed when the respiration becomes regular. This process can be repeated at one or multiple scan positions. After the scan, a retrospective reconstruction is initiated on the CT console to reconstruct only the images corresponding to the regular respiratory cycles. The end result is a 4D-CT free of irregular respiration. To prove feasibility, we conducted a phantom and six patient studies. The artifacts associated with the irregular respiratory cycles could be removed from both the phantom and patient studies. A new prospective 4D-CT scanning and processing technique to mitigate the impact of irregular respiration in 4D-CT has been demonstrated. This technique can save radiation dose because the repeat scans are only at the scan positions where an irregular respiration occurs. Current practice is to repeat the scans at all positions. There is no cost to apply this technique because it is applicable on the GE CT scanner without new hardware, software or off-line data-processing.

  2. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, Kurtis H., E-mail: kdekker2@uwo.ca

    Purpose: The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using amore » scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. Methods: A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level “step-dose” pattern. Results: With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a “cupping” artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. Conclusions: The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.« less

  3. Is triple contrast computed tomographic scanning useful in the selective management of stab wounds to the back?

    PubMed

    McAllister, E; Perez, M; Albrink, M H; Olsen, S M; Rosemurgy, A S

    1994-09-01

    We devised a protocol to prospectively manage stab wounds to the back with the hypothesis that the triple contrast computed tomographic (CT) scan is an effective means of detecting occult injury in these patients. All wounds to the back in hemodynamically stable adults were locally explored. All patients with muscular fascial penetration underwent triple contrast CT scanning utilizing oral, rectal, and IV contrast. Patients did not undergo surgical exploration if their CT scan was interpreted as negative or if the CT scan demonstrated injuries not requiring surgical intervention. Fifty-three patients were entered into the protocol. The time to complete the triple contrast CT scan ranged from 3 to 6 hours at a cost of $1050 for each scan. In 51 patients (96%), the CT scan either had negative findings (n = 31) or showed injuries not requiring exploration (n = 20). These patients did well with nonsurgical management. Two CT scans documented significant injury and led to surgical exploration and therapeutic celiotomies. Although triple contrast CT scanning was able to detect occult injury in patients with stab wounds to the back it did so at considerable cost and the results rarely altered clinical care. Therefore, its routine use in these patients is not recommended.

  4. Radiation exposure from Chest CT: Issues and Strategies

    PubMed Central

    Maher, Michael M.; Rizzo, Stefania; Kanarek, David; Shephard, Jo-Anne O.

    2004-01-01

    Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest. PMID:15082885

  5. Assessment of cerebral perfusion in childhood strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, G.F.; Fishman, L.S.; Segall, H.D.

    1982-11-01

    Thirty-three children who had strokes were studied by dynamic and static scintigraphy, 29 by CT scanning, and 10 by cerebral angiography. The accuracy of dynamic scintigraphy in stroke detection during the first week of clinical symptoms was 94% while CT scanning was 60% accurate and static scintigraphy 11% accurate. During the second week the accuracy of CT scanning increased to 100%, but static scintigraphy improved to only 50%. Fifty percent of scintiangiograms performed during the first week showed either luxuriant perfusion or flip-flop patterns. In some patients these two flow patterns changed to that of cerebral hemispheric ischemia after goingmore » through a phase during which perfusion appeared to be equal in the two hemispheres. Dynamic scintigraphy is believed to be the test of choice for stroke detection in children during the first week.« less

  6. SU-E-T-541: Measurement of CT Density Model Variations and the Impact On the Accuracy of Monte Carlo (MC) Dose Calculation in Stereotactic Body Radiation Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, H; Li, B; Behrman, R

    2015-06-15

    Purpose: To measure the CT density model variations between different CT scanners used for treatment planning and impact on the accuracy of MC dose calculation in lung SBRT. Methods: A Gammex electron density phantom (RMI 465) was scanned on two 64-slice CT scanners (GE LightSpeed VCT64) and a 16-slice CT (Philips Brilliance Big Bore CT). All three scanners had been used to acquire CT for CyberKnife lung SBRT treatment planning. To minimize the influences of beam hardening and scatter for improving reproducibility, three scans were acquired with the phantom rotated 120° between scans. The mean CT HU of each densitymore » insert, averaged over the three scans, was used to build the CT density models. For 14 patient plans, repeat MC dose calculations were performed by using the scanner-specific CT density models and compared to a baseline CT density model in the base plans. All dose re-calculations were done using the same plan beam configurations and MUs. Comparisons of dosimetric parameters included PTV volume covered by prescription dose, mean PTV dose, V5 and V20 for lungs, and the maximum dose to the closest critical organ. Results: Up to 50.7 HU variations in CT density models were observed over the baseline CT density model. For 14 patient plans examined, maximum differences in MC dose re-calculations were less than 2% in 71.4% of the cases, less than 5% in 85.7% of the cases, and 5–10% for 14.3% of the cases. As all the base plans well exceeded the clinical objectives of target coverage and OAR sparing, none of the observed differences led to clinically significant concerns. Conclusion: Marked variations of CT density models were observed for three different CT scanners. Though the differences can cause up to 5–10% differences in MC dose calculations, it was found that they caused no clinically significant concerns.« less

  7. Contribution of postmortem multidetector CT scanning to identification of the deceased in a mass disaster: Experience gained from the 2009 Victorian bushfires.

    PubMed

    O'Donnell, C; Iino, M; Mansharan, K; Leditscke, J; Woodford, N

    2011-02-25

    CT scanning of the deceased is an established technique performed on all individuals admitted to VIFM over the last 5 years. It is used primarily to assist pathologists in determining cause and manner of death but is also invaluable for identification of unknown deceased individuals where traditional methods are not possible. Based on this experience, CT scanning was incorporated into phase 2 of the Institute's DVI process for the 2009 Victorian bushfires. All deceased individuals and fragmented remains admitted to the mortuary were CT scanned in their body bags using established protocols. Images were reviewed by 2 teams of 2 radiologists experienced in forensic imaging and the findings transcribed onto a data sheet constructed specifically for the DVI exercise. The contents of 255 body bags were examined in the 28 days following the fires. 164 missing persons were included in the DVI process with 163 deceased individuals eventually identified. CT contributed to this identification in 161 persons. In 2 cases, radiologists were unable to recognize commingled remains. CT was utilized in the initial triage of each bag's contents. If radiological evaluation determined that bodies were incomplete then this information was provided to search teams who revisited the scenes of death. CT was helpful in differentiation of human from non-human remains in 8 bags, recognition of human/animal commingling in 10 bags and human commingling in 6 bags. In 61% of cases gender was able to be determined on CT using a novel technique of genitalia detection and in all but 2 cases this was correct. Age range was able to be determined on CT in 94% with an accuracy of 76%. Specific identification features detected on CT included the presence of disease (14 disease entities in 13 cases), medical devices (26 devices in 19 cases) and 274 everyday metallic items associated with the remains of 135 individuals. CT scanning provided useful information prior to autopsy by flagging likely findings including the presence of non-human remains, at the time of autopsy by assisting in the localization of identifying features in heavily disfigured bodies, and after autopsy by retrospective review of images for clarification of issues that arose at the time of pathologist case review. In view of the success of CT scanning in this mass disaster, DVI administrators should explore the incorporation of CT services into their disaster plans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Multi-slice computed tomography 5-minute delayed scan is superior to immediate scan after contrast media application in characterization of intracranial tuberculosis.

    PubMed

    Hou, Dailun; Qu, Huifang; Zhang, Xu; Li, Ning; Liu, Cheng; Ma, Xiangxing

    2014-09-02

    The aim of this study was to determine whether the diagnosis of intracranial tuberculosis (TB) can be improved when multi-slice computed tomography (MSCT) scans are taken with a 5-min delay after contrast media application. Pre- and post-contrast CT scans of the head were obtained from 30 patients using a 16-slice spiral CT. Dual-phase acquisition was performed immediately and 5 min after contrast agent injection. Diagnostic values of different images were compared using a scoring system applied by 2 experienced radiologists. We found 526 lesions in 30 patients, including 22 meningeal thickenings, 235 meningeal tuberculomas/tubercles, and 269 parenchymal tuberculomas/tubercles. Images obtained with 5-min delayed scan time were superior in terms of lesion size and meningeal thickening outlining in all disease types (P<0.01). The ability to distinguish between vascular sections from the cerebral sulcus and tubercle was also improved (P<0.01). Image acquisition with 5-min delay after contrast agent injection should be performed as a standard scanning protocol to diagnose intracranial TB.

  9. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    PubMed Central

    2011-01-01

    Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476

  10. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement.

    PubMed

    Yunus, Barunawaty

    2011-06-01

    This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.

  11. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  12. A case of lung abscess successfully treated by transbronchial drainage using a guide sheath.

    PubMed

    Izumi, Hiroki; Kodani, Masahiro; Matsumoto, Shingo; Kawasaki, Yuji; Igishi, Tadashi; Shimizu, Eiji

    2017-05-01

    A 51-year-old man was diagnosed with colon cancer in September 2011, and a solitary pulmonary nodule was detected by computed tomography (CT) scan. We performed a transbronchial biopsy with endobronchial ultrasonography using a guide sheath (GS) and diagnosed lung metastasis of colon cancer. The patient experienced remittent fever after the biopsy in spite of intravenous antibiotic therapies. Moreover, his CT scan showed a large lung abscess at the biopsy site. We performed transbronchial drainage using a GS as salvage therapy. The bloody pus was successfully aspirated, and chest X-ray following the procedure showed dramatic shrinkage of the abscess.

  13. Denoising of polychromatic CT images based on their own noise properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Hye; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr

    Purpose: Because of high diagnostic accuracy and fast scan time, computed tomography (CT) has been widely used in various clinical applications. Since the CT scan introduces radiation exposure to patients, however, dose reduction has recently been recognized as an important issue in CT imaging. However, low-dose CT causes an increase of noise in the image and thereby deteriorates the accuracy of diagnosis. In this paper, the authors develop an efficient denoising algorithm for low-dose CT images obtained using a polychromatic x-ray source. The algorithm is based on two steps: (i) estimation of space variant noise statistics, which are uniquely determinedmore » according to the system geometry and scanned object, and (ii) subsequent novel conversion of the estimated noise to Gaussian noise so that an existing high performance Gaussian noise filtering algorithm can be directly applied to CT images with non-Gaussian noise. Methods: For efficient polychromatic CT image denoising, the authors first reconstruct an image with the iterative maximum-likelihood polychromatic algorithm for CT to alleviate the beam-hardening problem. We then estimate the space-variant noise variance distribution on the image domain. Since there are many high performance denoising algorithms available for the Gaussian noise, image denoising can become much more efficient if they can be used. Hence, the authors propose a novel conversion scheme to transform the estimated space-variant noise to near Gaussian noise. In the suggested scheme, the authors first convert the image so that its mean and variance can have a linear relationship, and then produce a Gaussian image via variance stabilizing transform. The authors then apply a block matching 4D algorithm that is optimized for noise reduction of the Gaussian image, and reconvert the result to obtain a final denoised image. To examine the performance of the proposed method, an XCAT phantom simulation and a physical phantom experiment were conducted. Results: Both simulation and experimental results show that, unlike the existing denoising algorithms, the proposed algorithm can effectively reduce the noise over the whole region of CT images while preventing degradation of image resolution. Conclusions: To effectively denoise polychromatic low-dose CT images, a novel denoising algorithm is proposed. Because this algorithm is based on the noise statistics of a reconstructed polychromatic CT image, the spatially varying noise on the image is effectively reduced so that the denoised image will have homogeneous quality over the image domain. Through a simulation and a real experiment, it is verified that the proposed algorithm can deliver considerably better performance compared to the existing denoising algorithms.« less

  14. Optimal sequence of tests for the mediastinal staging of non-small cell lung cancer.

    PubMed

    Luque, Manuel; Díez, Francisco Javier; Disdier, Carlos

    2016-01-26

    Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer and the most difficult to predict. When there are no distant metastases, the optimal therapy depends mainly on whether there are malignant lymph nodes in the mediastinum. Given the vigorous debate among specialists about which tests should be used, our goal was to determine the optimal sequence of tests for each patient. We have built an influence diagram (ID) that represents the possible tests, their costs, and their outcomes. This model is equivalent to a decision tree containing millions of branches. In the first evaluation, we only took into account the clinical outcomes (effectiveness). In the second, we used a willingness-to-pay of € 30,000 per quality adjusted life year (QALY) to convert economic costs into effectiveness. We assigned a second-order probability distribution to each parameter in order to conduct several types of sensitivity analysis. Two strategies were obtained using two different criteria. When considering only effectiveness, a positive computed tomography (CT) scan must be followed by a transbronchial needle aspiration (TBNA), an endobronchial ultrasound (EBUS), and an endoscopic ultrasound (EUS). When the CT scan is negative, a positron emission tomography (PET), EBUS, and EUS are performed. If the TBNA or the PET is positive, then a mediastinoscopy is performed only if the EBUS and EUS are negative. If the TBNA or the PET is negative, then a mediastinoscopy is performed only if the EBUS and the EUS give contradictory results. When taking into account economic costs, a positive CT scan is followed by a TBNA; an EBUS is done only when the CT scan or the TBNA is negative. This recommendation of performing a TBNA in certain cases should be discussed by the pneumology community because TBNA is a cheap technique that could avoid an EBUS, an expensive test, for many patients. We have determined the optimal sequence of tests for the mediastinal staging of NSCLC by considering sensitivity, specificity, and the economic cost of each test. The main novelty of our study is the recommendation of performing TBNA whenever the CT scan is positive. Our model is publicly available so that different experts can populate it with their own parameters and re-examine its conclusions. It is therefore proposed as an evidence-based instrument for reaching a consensus.

  15. Low-dose computed tomography scans with automatic exposure control for patients of different ages undergoing cardiac PET/CT and SPECT/CT.

    PubMed

    Yang, Ching-Ching; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin; Liu, Shu-Hsin

    2017-06-01

    This study aimed to evaluate the efficacy of automatic exposure control (AEC) in order to optimize low-dose computed tomography (CT) protocols for patients of different ages undergoing cardiac PET/CT and single-photon emission computed tomography/computed tomography (SPECT/CT). One PET/CT and one SPECT/CT were used to acquire CT images for four anthropomorphic phantoms representative of 1-year-old, 5-year-old and 10-year-old children and an adult. For the hybrid systems investigated in this study, the radiation dose and image quality of cardiac CT scans performed with AEC activated depend mainly on the selection of a predefined image quality index. Multiple linear regression methods were used to analyse image data from anthropomorphic phantom studies to investigate the effects of body size and predefined image quality index on CT radiation dose in cardiac PET/CT and SPECT/CT scans. The regression relationships have a coefficient of determination larger than 0.9, indicating a good fit to the data. According to the regression models, low-dose protocols using the AEC technique were optimized for patients of different ages. In comparison with the standard protocol with AEC activated for adult cardiac examinations used in our clinical routine practice, the optimized paediatric protocols in PET/CT allow 32.2, 63.7 and 79.2% CT dose reductions for anthropomorphic phantoms simulating 10-year-old, 5-year-old and 1-year-old children, respectively. The corresponding results for cardiac SPECT/CT are 8.4, 51.5 and 72.7%. AEC is a practical way to reduce CT radiation dose in cardiac PET/CT and SPECT/CT, but the AEC settings should be determined properly for optimal effect. Our results show that AEC does not eliminate the need for paediatric protocols and CT examinations using the AEC technique should be optimized for paediatric patients to reduce the radiation dose as low as reasonably achievable.

  16. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging.

    PubMed

    Lauzier, Pascal Theriault; Tang, Jie; Speidel, Michael A; Chen, Guang-Hong

    2012-07-01

    To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI.

  17. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauzier, Pascal Theriault; Tang Jie; Speidel, Michael A.

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise andmore » streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. Conclusions: (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI.« less

  18. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    PubMed Central

    Lauzier, Pascal Thériault; Tang, Jie; Speidel, Michael A.; Chen, Guang-Hong

    2012-01-01

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. Conclusions: (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI. PMID:22830741

  19. MO-FG-204-08: Optimization-Based Image Reconstruction From Unevenly Distributed Sparse Projection Views

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Huiqiao; Yang, Yi; Tang, Xiangyang

    2015-06-15

    Purpose: Optimization-based reconstruction has been proposed and investigated for reconstructing CT images from sparse views, as such the radiation dose can be substantially reduced while maintaining acceptable image quality. The investigation has so far focused on reconstruction from evenly distributed sparse views. Recognizing the clinical situations wherein only unevenly sparse views are available, e.g., image guided radiation therapy, CT perfusion and multi-cycle cardiovascular imaging, we investigate the performance of optimization-based image reconstruction from unevenly sparse projection views in this work. Methods: The investigation is carried out using the FORBILD and an anthropomorphic head phantoms. In the study, 82 views, whichmore » are evenly sorted out from a full (360°) axial CT scan consisting of 984 views, form sub-scan I. Another 82 views are sorted out in a similar manner to form sub-scan II. As such, a CT scan with sparse (164) views at 1:6 ratio are formed. By shifting the two sub-scans relatively in view angulation, a CT scan with unevenly distributed sparse (164) views at 1:6 ratio are formed. An optimization-based method is implemented to reconstruct images from the unevenly distributed views. By taking the FBP reconstruction from the full scan (984 views) as the reference, the root mean square (RMS) between the reference and the optimization-based reconstruction is used to evaluate the performance quantitatively. Results: In visual inspection, the optimization-based method outperforms the FBP substantially in the reconstruction from unevenly distributed, which are quantitatively verified by the RMS gauged globally and in ROIs in both the FORBILD and anthropomorphic head phantoms. The RMS increases with increasing severity in the uneven angular distribution, especially in the case of anthropomorphic head phantom. Conclusion: The optimization-based image reconstruction can save radiation dose up to 12-fold while providing acceptable image quality for advanced clinical applications wherein only unevenly distributed sparse views are available. Research Grants: W81XWH-12-1-0138 (DoD), Sinovision Technologies.« less

  20. Analysis of pulmonary pure ground-glass nodule in enhanced dual energy CT imaging for predicting invasive adenocarcinoma: comparing with conventional thin-section CT imaging

    PubMed Central

    Zhang, Ying; Tang, Jian; Xu, Jianrong

    2017-01-01

    Background To investigate the value of dual energy computed tomography (DECT) parameters (including iodine concentration and monochromatic CT numbers) for predicting pure ground-glass nodules (pGGNs) of invasive adenocarcinoma (IA). Methods A total of 55 resected pGGNs evaluated with both unenhanced thin-section CT (TSCT) and enhanced DECT scans were included. Correlations between histopathology [adenocarcinoma in situ (AIS), minimally IA (MIA), and IA] and CT scan characteristics were examined. CT scan and clinicodemographic data were investigated by univariate and multivariate analysis to identify features that helped distinguish IA from AIS or MIA. Results Both normalized iodine concentration (NIC) of IA and slope of spectral curve [slope(k)] were not significantly different between IA and AIS or MIA. Size, performance of pleural retraction and enhanced monochromatic CT attenuation values of 120–140 keV were significantly higher for IA. In multivariate regression analysis, size and enhanced monochromatic CT number of 140 keV were independent predictors for IA. Using the two parameters together, the diagnostic capacity of IA could be improved from 0.697 or 0.635 to 0.713. Conclusions DECT could help demonstrate blood supply and indicate invasion extent of pGGNs, and monochromatic CT number of higher energy (especially 140 keV) would be better for diagnosing IA than lower energies. Together with size of pGGNs, the diagnostic capacity of IA could be better. PMID:29312701

  1. Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Hashim, S.; Karim, M. K. A.; Bahruddin, N. A.; Salehhon, N.; Musa, Y.

    2017-05-01

    The widespread use of computed tomography (CT) has increased the medical radiation exposure and cancer risk. We aimed to evaluate the impact of AIDR 3D in CT abdomen-pelvic examinations based on image quality and radiation dose in low dose (LD) setting compared to standard dose (STD) with filtered back projection (FBP) reconstruction. We retrospectively reviewed the images of 40 patients who underwent CT abdomen-pelvic using a 80 slice CT scanner. Group 1 patients (n=20, mean age 41 ± 17 years) were performed at LD with AIDR 3D reconstruction and Group 2 patients (n=20, mean age 52 ± 21 years) were scanned with STD using FBP reconstruction. Objective image noise was assessed by region of interest (ROI) measurements in the liver and aorta as standard deviation (SD) of the attenuation value (Hounsfield Unit, HU) while subjective image quality was evaluated by two radiologists. Statistical analysis was used to compare the scan length, CT dose index volume (CTDIvol) and image quality of both patient groups. Although both groups have similar mean scan length, the CTDIvol significantly decreased by 38% in LD CT compared to STD CT (p<0.05). Objective and subjective image quality were statistically improved with AIDR 3D (p<0.05). In conclusion, AIDR 3D enables significant dose reduction of 38% with superior image quality in LD CT abdomen-pelvis.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Sweet Ping, E-mail: sweet.ng@petermac.org; David, Steven; Alamgeer, Muhammad

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scansmore » were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary staging for LABC.« less

  3. 320-Row wide volume CT significantly reduces density heterogeneity observed in the descending aorta: comparisons with 64-row helical CT.

    PubMed

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    The aim of this study was to compare density heterogeneity on wide volume (WV) scans with that on helical CT scans. 22 subjects underwent chest CT using 320-WV and 64-helical modes. Density heterogeneity of the descending aorta was evaluated quantitatively and qualitatively. At qualitative assessment, the heterogeneity was judged to be smaller on WV scans than on helical scans (p<0.0001). Mean changes in aortic density between two contiguous slices were 1.64 HU (3.40%) on WV scans and 2.29 HU (5.19%) on helical scans (p<0.0001). CT density of thoracic organs is more homogeneous and reliable on WV scans than on helical scans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Gray Matter-White Matter De-Differentiation on Brain Computed Tomography Predicts Brain Death Occurrence.

    PubMed

    Vigneron, C; Labeye, V; Cour, M; Hannoun, S; Grember, A; Rampon, F; Cotton, F

    2016-01-01

    Previous studies have shown that a loss of distinction between gray matter (GM) and white matter (WM) on unenhanced CT scans was predictive of poor outcome after cardiac arrest. The aim of this study was to identify a marker/predictor of imminent brain death. In this retrospective study, 15 brain-dead patients after anoxia and cardiac arrest were included. Patients were paired (1:1) with normal control subjects. Only patients' unenhanced CT scans performed before brain death and during the 24 hours after initial signs were analyzed. WM and GM densities were measured in predefined regions of interest (basal ganglia level, centrum semi-ovale level, high convexity level, brainstem level). At each level, GM and WM density and GM/WM ratio for brain-dead patients and normal control subjects were compared using the Wilcoxon signed-rank test. At each level, a lower GM/WM ratio and decreased GM and WM densities were observed in brain-dead patients' CT scans when compared with normal control subject CT scans. A cut-off value of 1.21 at the basal ganglia level was identified, below which brain death systematically occurred. GM/WM dedifferentiation on unenhanced CT scan is measurable before the occurrence of brain death, highlighting its importance in brain death prediction. The mechanism of GM/WM differentiation loss could be explained by the lack of oxygen caused by ischemia initially affecting the mitochondrial system. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Trends and patterns in the use of computed tomography in children and young adults in Catalonia - results from the EPI-CT study.

    PubMed

    Bosch de Basea, Magda; Salotti, Jane A; Pearce, Mark S; Muchart, Jordi; Riera, Luis; Barber, Ignasi; Pedraza, Salvador; Pardina, Marina; Capdevila, Antoni; Espinosa, Ana; Cardis, Elisabeth

    2016-01-01

    Although there are undeniable diagnostic benefits of CT scanning, its increasing use in paediatric radiology has become a topic of concern regarding patient radioprotection. To assess the rate of CT scanning in Catalonia, Spain, among patients younger than 21 years old at the scan time. This is a sub-study of a larger international cohort study (EPI-CT, the International pediatric CT scan study). Data were retrieved from the radiological information systems (RIS) of eight hospitals in Catalonia since the implementation of digital registration (between 1991 and 2010) until 2013. The absolute number of CT scans annually increased 4.5% between 1991 and 2013, which was less accentuated when RIS was implemented in most hospitals. Because the population attending the hospitals also increased, however, the rate of scanned patients changed little (8.3 to 9.4 per 1,000 population). The proportions of patients with more than one CT and more than three CTs showed a 1.51- and 2.7-fold increase, respectively, over the 23 years. Gradual increases in numbers of examinations and scanned patients were observed in Catalonia, potentially explained by new CT scanning indications and increases in the availability of scanners, the number of scans per patient and the size of the attended population.

  6. CT scan

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003330.htm CT scan To use the sharing features on this page, please enable JavaScript. A computed tomography (CT) scan is an imaging method that uses x- ...

  7. Computed Tomography (CT) - Spine

    MedlinePlus

    ... Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is ... of CT Scanning of the Spine? What is CT Scanning of the Spine? Computed tomography, more commonly ...

  8. Clinical Decision Rules for Paediatric Minor Head Injury: Are CT Scans a Necessary Evil?

    PubMed

    Thiam, Desmond Wei; Yap, Si Hui; Chong, Shu Ling

    2015-09-01

    High performing clinical decision rules (CDRs) have been derived to predict which head-injured child requires a computed tomography (CT) of the brain. We set out to evaluate the performance of these rules in the Singapore population. This is a prospective observational cohort study of children aged less than 16 who presented to the emergency department (ED) from April 2014 to June 2014 with a history of head injury. Predictor variables used in the Canadian Assessment of Tomography for Childhood Head Injury (CATCH), Children's Head Injury Algorithm for the Prediction of Important Clinical Events (CHALICE) and Pediatric Emergency Care Applied Research Network (PECARN) CDRs were collected. Decisions on CT imaging and disposition were made at the physician's discretion. The performance of the CDRs were assessed and compared to current practices. A total of 1179 children were included in this study. Twelve (1%) CT scans were ordered; 6 (0.5%) of them had positive findings. The application of the CDRs would have resulted in a significant increase in the number of children being subjected to CT (as follows): CATCH 237 (20.1%), CHALICE 282 (23.9%), PECARN high- and intermediate-risk 456 (38.7%), PECARN high-risk only 45 (3.8%). The CDRs demonstrated sensitivities of: CATCH 100% (54.1 to 100), CHALICE 83.3% (35.9 to 99.6), PECARN 100% (54.1 to 100), and specificities of: CATCH 80.3% (77.9 to 82.5), CHALICE 76.4% (73.8 to 78.8), PECARN high- and intermediate-risk 61.6% (58.8 to 64.4) and PECARN high-risk only 96.7% (95.5 to 97.6). The CDRs demonstrated high accuracy in detecting children with positive CT findings but direct application in areas with low rates of significant traumatic brain injury (TBI) is likely to increase unnecessary CT scans ordered. Clinical observation in most cases may be a better alternative.

  9. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT.

    PubMed

    Wallace, Adam N; Vyhmeister, Ross; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; Ramirez-Giraldo, Juan Carlos; McKinstry, Robert C

    2015-06-01

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality.

  10. Neuroblastoma with intracranial involvement: an ENSG Study.

    PubMed

    Shaw, P J; Eden, T

    1992-01-01

    We report the experience of the European Neuroblastoma Study Group (ENSG) with central nervous system (CNS) involvement of neuroblastoma. Among this series of intensively treated patients, CNS neuroblastoma was diagnosed by computerised tomography (CT) scanning, rather than by autopsy. Cranial disease occurred in 5% of ENSG patients. Of 11 patients with intracranial disease, 4 had disease in the posterior fossa, a site rarely reported previously. Furthermore, 5 cases had CNS metastases at a time when there was no detectable disease elsewhere, rather than as part of extensive relapse. The pattern of disease we observed, at least for those with parenchymal disease, is in keeping with arterial spread. Although CT scanning is the optimal modality for identifying CNS disease, 2 cases had normal head CT scans prior to the onset of CNS disease. As most patients had symptoms of raised intracranial pressure (RICP) at the time the CNS disease was diagnosed, there does not seem to be any indication for routine CT scanning of the head at diagnosis, but this should be performed as soon as any symptoms or signs appear. With patients living longer with their disease, vigilance must be maintained during follow-up.

  11. [Spiral CT of the head-neck area: the advantages of the early arterial phase in the detection of squamous-cell carcinomas].

    PubMed

    Conrad, R; Pauleit, D; Layer, G; Kandyba, J; Kohlbecher, R; Hortling, N; Baselides, P; Schild, H

    1999-07-01

    To determine if scanning in the arterial phase improves detection of squamous cell carcinomas in the pharynx and larynx. In a prospective clinical study 20 patients with a pharyngeal or laryngeal carcinoma were examined with by spiral CT. 80 ml lopromid were intravenously injected as a bolus with a rate of 3 ml/sec. Two consecutive spiral CT scans were performed with start-delay times of 20 and 70 seconds respectively. Delineation and contrast enhancement of tumours, cervical lymph nodes and vessels were evaluated. The radiodensities (HU) of tumors, lymph nodes vessels, pharyngeal wall and muscle were measured. Comparing early and late start delay time scans tumor assessment in the early phase was better in 58%, less in 16% and equal in both scans in 26%. 82% of the pathologic lymph nodes had more peripheral enhancement than surrounding muscle tissue. During the arterial phase the measured radiodensities of the common carotid artery and jugular vein were significantly higher than in the second phase. Contrast-enhanced special CT permits accurate morphologic assessment (size, infiltration) of pharyngeal and supraglottic laryngeal squamous cell carcinoma, while pathologic lymph nodes already have a sufficient contrast enhancement for the detection.

  12. Scope for energy improvement for hospital imaging services in the USA.

    PubMed

    Esmaeili, Amin; Twomey, Janet M; Overcash, Michael R; Soltani, Seyed A; McGuire, Charles; Ali, Kamran

    2015-04-01

    To aid radiologists by measuring the carbon footprint of CT scans by quantifying in-hospital and out-of-hospital energy use and to assess public health impacts. The study followed a standard life cycle assessment protocol to measure energy from a CT scan then expanding to all hospital electrical energy related to CT usage. In addition, all the fuel energy used to generate electricity and to manufacture the CT consumables was measured. The study was conducted at two hospitals. The entire life cycle energy for a CT scan was 24-34 kWh of natural resource energy per scan. The actual active patient scan energy that produces the images is only about 1.6% of this total life cycle energy. This large multiplier to get total CT energy is a previously undocumented environmental response to the direct radiology order for a patient CT scan. The CT in-hospital energy related to idle periods, where the machine is on but no patients are being scanned and is 14-30-fold higher than the energy used for the CT image. The in-hospital electrical energy of a CT scan makes up only about 25% of the total energy footprint. The rest is generated outside the hospital: 54-62% for generation and transmission of the electricity, while 13-22% is for all the energy to make the consumables. Different CT scanners have some influences on the results and could help guide purchase of CT equipment. The transparent, detailed life cycle approach allows the data from this study to be used by radiologists to examine details of both direct and of unseen energy impacts of CT scans. The public health (outside-the-hospital) impact (including the patients receiving a CT) needs to be measured and included. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Performance analysis of model based iterative reconstruction with dictionary learning in transportation security CT

    NASA Astrophysics Data System (ADS)

    Haneda, Eri; Luo, Jiajia; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno

    2016-05-01

    In this study, we implement and compare model based iterative reconstruction (MBIR) with dictionary learning (DL) over MBIR with pairwise pixel-difference regularization, in the context of transportation security. DL is a technique of sparse signal representation using an over complete dictionary which has provided promising results in image processing applications including denoising,1 as well as medical CT reconstruction.2 It has been previously reported that DL produces promising results in terms of noise reduction and preservation of structural details, especially for low dose and few-view CT acquisitions.2 A distinguishing feature of transportation security CT is that scanned baggage may contain items with a wide range of material densities. While medical CT typically scans soft tissues, blood with and without contrast agents, and bones, luggage typically contains more high density materials (i.e. metals and glass), which can produce severe distortions such as metal streaking artifacts. Important factors of security CT are the emphasis on image quality such as resolution, contrast, noise level, and CT number accuracy for target detection. While MBIR has shown exemplary performance in the trade-off of noise reduction and resolution preservation, we demonstrate that DL may further improve this trade-off. In this study, we used the KSVD-based DL3 combined with the MBIR cost-minimization framework and compared results to Filtered Back Projection (FBP) and MBIR with pairwise pixel-difference regularization. We performed a parameter analysis to show the image quality impact of each parameter. We also investigated few-view CT acquisitions where DL can show an additional advantage relative to pairwise pixel difference regularization.

  14. Colonic metastasis from breast carcinoma: a case report.

    PubMed

    Tsujimura, Kazuma; Teruya, Tsuyoshi; Kiyuna, Masaya; Higa, Kuniki; Higa, Junko; Iha, Kouji; Chinen, Kiyoshi; Asato, Masaya; Takushi, Yasukatsu; Ota, Morihito; Dakeshita, Eijirou; Nakachi, Atsushi; Gakiya, Akira; Shiroma, Hiroshi

    2017-07-05

    Colonic metastasis from breast carcinoma is very rare. Here, we report a case of colonic metastasis from breast carcinoma. The patient was a 51-year-old woman. She had upper abdominal pain, vomiting, and diarrhea, repeatedly. We performed abdominal contrast-enhanced computed tomography (CT) to investigate these symptoms. The CT scan revealed a tumor in the ascending colon with contrast enhancement and showed an expanded small intestine. For further investigation of this tumor, we performed whole positron emission tomography-computed tomography (PET-CT). The PET-CT scan revealed fluorodeoxyglucose uptake in the ascending colon, mesentery, left breast, and left axillary region. Analysis of biopsy samples obtained during colonoscopy revealed signet ring cell-like carcinoma. Moreover, biopsy of the breast tumor revealed invasive lobular carcinoma. Therefore, the preoperative diagnosis was colonic metastasis from breast carcinoma. Open ileocecal resection was performed. The final diagnosis was multiple metastatic breast carcinomas, and the TNM classification was T2N1M1 Stage IV. We presented a rare case of colonic metastasis from breast carcinoma. PET-CT may be useful in the diagnosis of metastatic breast cancer. When analysis of biopsy samples obtained during colonoscopy reveals signet ring cell-like carcinoma, the possibility of breast cancer as the primary tumor should be considered.

  15. Automated extraction of radiation dose information from CT dose report images.

    PubMed

    Li, Xinhua; Zhang, Da; Liu, Bob

    2011-06-01

    The purpose of this article is to describe the development of an automated tool for retrieving texts from CT dose report images. Optical character recognition was adopted to perform text recognitions of CT dose report images. The developed tool is able to automate the process of analyzing multiple CT examinations, including text recognition, parsing, error correction, and exporting data to spreadsheets. The results were precise for total dose-length product (DLP) and were about 95% accurate for CT dose index and DLP of scanned series.

  16. Heart CT scan

    MedlinePlus

    ... Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agatston ... table that slides into the center of the CT scanner. You will lie on your back with ...

  17. Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification

    PubMed Central

    Böker, Sarah M.; Bender, Yvonne Y.; Diederichs, Gerd; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R.

    2017-01-01

    Objectives To determine the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conventional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as a reference standard. Methods 384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT scan of the brain between January 2014 and October 2016 were retrospectively evaluated. 346 patients were included in the analysis, of which 214 showed PGC on CT scans. To assess correlation between imaging modalities, the maximum calcification diameter was used. Sensitivity and specificity and intra- and interobserver reliability were calculated for SWMR and conventional MRI sequences. Results SWMR reached a sensitivity of 95% (95% CI: 91%-97%) and a specificity of 96% (95% CI: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity of 43% (95% CI: 36%-50%) and a specificity of 96% (95% CI: 91%-99%). Detection rates for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%, p<0.001). Diameter measurements between SWMR and CT showed a close correlation (R2 = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5 mm ± 2.5; CT: 5.9 mm ± 2.4, p = 0.02). Interobserver-agreement for diameter measurements was excellent on SWMR (ICC = 0.984, p < 0.0001). Conclusions Combining SWMR magnitude and phase information enables the accurate detection of PGC and offers a better diagnostic performance than conventional MRI with CT as a reference standard. PMID:28278291

  18. Validation of Bedside Ultrasound of Muscle Layer Thickness of the Quadriceps in the Critically Ill Patient (VALIDUM Study).

    PubMed

    Paris, Michael T; Mourtzakis, Marina; Day, Andrew; Leung, Roger; Watharkar, Snehal; Kozar, Rosemary; Earthman, Carrie; Kuchnia, Adam; Dhaliwal, Rupinder; Moisey, Lesley; Compher, Charlene; Martin, Niels; Nicolo, Michelle; White, Tom; Roosevelt, Hannah; Peterson, Sarah; Heyland, Daren K

    2017-02-01

    In critically ill patients, muscle atrophy is associated with long-term disability and mortality. Bedside ultrasound may quantify muscle mass, but it has not been validated in the intensive care unit (ICU). Here, we compared ultrasound-based quadriceps muscle layer thickness (QMLT) with precise quantifications of computed tomography (CT)-based muscle cross-sectional area (CSA). Patients ≥18 years old with abdominal CT scans performed for clinical reasons were recruited from 9 ICUs for an ultrasound assessment of the quadriceps. CT scans of the third lumbar vertebra, performed <24 hours before or <72 hours after ICU admission, were analyzed for CSA. Low muscularity was defined as 170 cm 2 for men and 110 cm 2 for women. The ultrasound probe was maximally compressed against the skin and QMLT was measured on 2 sites of each quadriceps <72 hours of the CT scan. Mean CT-derived muscle CSA was 109 ± 25 cm 2 for women and 168 ± 37 cm 2 for men, where 58% of patients exhibited low muscularity; only 2.7% patients were underweight according to body mass index. QMLT was positively correlated with CT CSA ( r = 0.45, P < .001). Based on logistic regression to predict low muscularity, QMLT independently generated a concordance index ( c) of 0.67 ( P < .002), which increased to 0.77 ( P < .001) when age, sex, body mass index, Charlson Comorbidity Index, and admission type (surgical vs medical) were added. Our results suggest that QMLT alone with our current protocol may not accurately identify patients with low muscle mass.

  19. Diagnostic Performance of 11C-choline PET/CT and FDG PET/CT in Prostate Cancer.

    PubMed

    Kitajima, Kazuhiro; Yamamoto, Shingo; Odawara, Soichi; Kobayashi, Kaoru; Fujiwara, Masayuki; Kamikonya, Norihiko; Fukushima, Kazuhito; Nakanishi, Yukako; Hashimoto, Takahiko; Yamada, Yusuke; Suzuki, Toru; Kanematsu, Akihiro; Nojima, Michio; Yamakado, Koichiro

    2018-06-01

    We compared 11C-choline and FDG PET/CT scan findings for the staging and restaging of prostate cancer. Twenty Japanese prostate cancer patients underwent 11C-choline and FDG PET/CT before (n=5) or after (n=15) treatment. Using a five-point scale, we compared these scanning modalities regarding patient- and lesion-based diagnostic performance for local recurrence, untreated primary tumor, and lymph node and bony metastases. Of the 20 patients, documented local lesions, and node and bony metastases were present in 11 (55.0%), 9 (45.0%), and 13 (65.0%), respectively. The patient-based sensitivity/specificity/accuracy/area under the receiver-operating-characteristic curve (AUC) values for 11C-choline-PET/CT for diagnosing local lesions were 90.9% /100%/ 95.0% / 1.0, whereas those for FDG-PET/CT were 45.5% /100%/ 75.0% / 0.773. Those for 11C-choline-PET/CT for node metastasis were 88.9% /100%/ 95.0% / 0.944, and those for FDG-PET/CT were 44.4%/100%/75.0%/0.722. Those for 11C-choline-PET/CT for bone metastasis were 84.6%/100%/90.0%/0.951, and those for FDG-PET/CT were 76.9% /100%/ 85.0% / 0.962. The AUCs for local lesion and node metastasis differed significantly (p=0.0039, p=0.011, respectively). The lesion-based detection rates of 11C-choline compared to FDG PET/CT for local lesion, and node and bone metastases were 91.7% vs. 41.7%, 92.0% vs. 32.0%, and 94.8% vs. 83.0% (p=0.041, p=0.0030, p<0.0001), respectively. 11C-choline-PET/CT is more useful for the staging and restaging of prostate cancer than FDG-PET/CT in Japanese men.

  20. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  1. WE-AB-204-03: A Novel 3D Printed Phantom for 4D PET/CT Imaging and SIB Radiotherapy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soultan, D; Murphy, J; Moiseenko, V

    Purpose: To construct and test a 3D printed phantom designed to mimic variable PET tracer uptake seen in lung tumor volumes. To assess segmentation accuracy of sub-volumes of the phantom following 4D PET/CT scanning with ideal and patient-specific respiratory motion. To plan, deliver and verify delivery of PET-driven, gated, simultaneous integrated boost (SIB) radiotherapy plans. Methods: A set of phantoms and inserts were designed and manufactured for a realistic representation of lung cancer gated radiotherapy steps from 4D PET/CT scanning to dose delivery. A cylindrical phantom (40x 120 mm) holds inserts for PET/CT scanning. The novel 3D printed insert dedicatedmore » to 4D PET/CT mimics high PET tracer uptake in the core and lower uptake in the periphery. This insert is a variable density porous cylinder (22.12×70 mm), ABS-P430 thermoplastic, 3D printed by uPrint SE Plus with inner void volume (5.5×42 mm). The square pores (1.8×1.8 mm2 each) fill 50% of outer volume, resulting in a 2:1 SUV ratio of PET-tracer in the void volume with respect to porous volume. A matching in size cylindrical phantom is dedicated to validate gated radiotherapy. It contains eight peripheral holes matching the location of the porous part of the 3D printed insert, and one central hole. These holes accommodate adaptors for Farmer-type ion chamber and cells vials. Results: End-to-end test were performed from 4D PET/CT scanning to transferring data to the planning system and target volume delineation. 4D PET/CT scans were acquired of the phantom with different respiratory motion patterns and gating windows. A measured 2:1 18F-FDG SUV ratio between inner void and outer volume matched the 3D printed design. Conclusion: The novel 3D printed phantom mimics variable PET tracer uptake typical of tumors. Obtained 4D PET/CT scans are suitable for segmentation, treatment planning and delivery in SIB gated treatments of NSCLC.« less

  2. Radiation dose reduction to the breast in thoracic CT: Comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jia; Duan Xinhui; Christner, Jodie A.

    2011-11-15

    Purpose: The purpose of this work was to evaluate dose performance and image quality in thoracic CT using three techniques to reduce dose to the breast: bismuth shielding, organ-based tube current modulation (TCM) and global tube current reduction. Methods: Semi-anthropomorphic thorax phantoms of four different sizes (15, 30, 35, and 40 cm lateral width) were used for dose measurement and image quality assessment. Four scans were performed on each phantom using 100 or 120 kV with a clinical CT scanner: (1) reference scan; (2) scan with bismuth breast shield of an appropriate thickness; (3) scan with organ-based TCM; and (4)more » scan with a global reduction in tube current chosen to match the dose reduction from bismuth shielding. Dose to the breast was measured with an ion chamber on the surface of the phantom. Image quality was evaluated by measuring the mean and standard deviation of CT numbers within the lung and heart regions. Results: Compared to the reference scan, dose to the breast region was decreased by about 21% for the 15-cm phantom with a pediatric (2-ply) shield and by about 37% for the 30, 35, and 40-cm phantoms with adult (4-ply) shields. Organ-based TCM decreased the dose by 12% for the 15-cm phantom, and 34-39% for the 30, 35, and 40-cm phantoms. Global lowering of the tube current reduced breast dose by 23% for the 15-cm phantom and 39% for the 30, 35, and 40-cm phantoms. In phantoms of all four sizes, image noise was increased in both the lung and heart regions with bismuth shielding. No significant increase in noise was observed with organ-based TCM. Decreasing tube current globally led to similar noise increases as bismuth shielding. Streak and beam hardening artifacts, and a resulting artifactual increase in CT numbers, were observed for scans with bismuth shields, but not for organ-based TCM or global tube current reduction. Conclusions: Organ-based TCM produces dose reduction to the breast similar to that achieved with bismuth shielding for both pediatric and adult phantoms. However, organ-based TCM does not affect image noise or CT number accuracy, both of which are adversely affected by bismuth shielding. Alternatively, globally decreasing the tube current can produce the same dose reduction to the breast as bismuth shielding, with a similar noise increase, yet without the streak artifacts and CT number errors caused by the bismuth shields. Moreover, globally decreasing the tube current reduces the dose to all tissues scanned, not simply to the breast.« less

  3. Improving ultrasound quality to reduce computed tomography use in pediatric appendicitis: the Safe and Sound campaign.

    PubMed

    Kotagal, Meera; Richards, Morgan K; Chapman, Teresa; Finch, Lisa; McCann, Bessie; Ormazabal, Amaya; Rush, Robert J; Goldin, Adam B

    2015-05-01

    Safety concerns about the use of radiation-based imaging such as computed tomography (CT) in children have resulted in national recommendations to use ultrasound (US) for the diagnosis of appendicitis when possible. We evaluated the trends in CT and US use in a statewide sample and the accuracy of these modalities. Patients less than or equal to 18 years undergoing appendectomy in Washington State from 2008 to 2013 were evaluated for preoperative US/CT use, as well as imaging/pathology concordance using data from the Surgical Care and Outcomes Assessment Program. Among 3,353 children, 98.3% underwent preoperative imaging. There was a significant increase in the use of US first over the study period (P < .001). The use of CT at any time during the evaluation decreased. Despite this, in 2013, over 40% of the children still underwent CT imaging. Concordance between US imaging and pathology varied between 40% and 75% at hospitals performing greater than or equal to 10 appendectomies in 2013. Over one third (34.9%) of CT scans performed in the evaluation of children with appendicitis were performed after an indeterminate US. Although the use of US as the first imaging modality to diagnose pediatric appendicitis has increased over the past 5 years, over 40% of children still undergo a CT scan during their preoperative evaluation. Causality for this persistence of CT use is unclear, but could include variability in US accuracy, lack of training, and lack of awareness of the risks of radiation-based imaging. Developing a campaign to focus on continued reduction in CT and increased use of high-quality US should be pursued. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Safe cervical spine clearance in adult obtunded blunt trauma patients on the basis of a normal multidetector CT scan--a meta-analysis and cohort study.

    PubMed

    Raza, Mushahid; Elkhodair, Samer; Zaheer, Asif; Yousaf, Sohail

    2013-11-01

    A true gold standard to rule out a significant cervical spine injury in subset of blunt trauma patients with altered sensorium is still to be agreed upon. The objective of this study is to determine whether in obtunded adult patients with blunt trauma, a clinically significant injury to the cervical spine be ruled out on the basis of a normal multidetector cervical spine computed tomography. Comprehensive database search was conducted to include all the prospective and retrospective studies on blunt trauma patients with altered sensorium undergoing cervical spine multidetector CT scan as core imaging modality to "clear" the cervical spine. The studies used two main gold standards, magnetic resonance imaging of the cervical spine and/or prolonged clinical follow-up. The data was extracted to report true positive, true negatives, false positives and false negatives. Meta-analysis of sensitivity, specificity, negative and positive predictive values was performed using Meta Analyst Beta 3.13 software. We also performed a retrospective investigation comparing a robust clinical follow-up and/or cervical spine MR findings in 53 obtunded blunt trauma patients, who previously had undergone a normal multidetector CT scan of the cervical spine reported by a radiologist. A total of 10 studies involving 1850 obtunded blunt trauma patients with initial cervical spine CT scan reported as normal were included in the final meta-analysis. The cumulative negative predictive value and specificity of cervical spine CT of the ten studies was 99.7% (99.4-99.9%, 95% confidence interval). The positive predictive value and sensitivity was 93.7% (84.0-97.7%, 95% confidence interval). In the retrospective review of our obtunded blunt trauma patients, none was later diagnosed to have significant cervical spine injury that required a change in clinical management. In a blunt trauma patient with altered sensorium, a normal cervical spine CT scan is conclusive to safely rule out a clinically significant cervical spine injury. The results of this meta-analysis strongly support the removal of cervical precautions in obtunded blunt trauma patient after normal cervical spine computed tomography. Any further imaging like magnetic resonance imaging of the cervical spine should be performed on case-to-case basis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Accuracy of epicardial electroanatomic mapping and ablation of sustained ventricular tachycardia merged with heart CT scan in chronic Chagasic cardiomyopathy.

    PubMed

    Valdigem, Bruno Pereira; da Silva, Nilton José Carneiro; Dietrich, Cristiano Oliveira; Moreira, Dalmo; Sasdelli, Roberto; Pinto, Ibraim M; Cirenza, Claudio; de Paola, Angelo Amato Vincenzo

    2010-11-01

    As damage to coronary arteries is a potential complication of epicardial RF catheter ablation (EPRFCA), the procedure must be associated with coronary angiography. Chronic Chagasic cardiomiopathy (CCC) is a disease where epicardial VT are common. Eletroanatomic mapping merged with computed totmography (CT) scan data is a useful tool for mapping the endocardium, and its accuracy in guiding ablation on the epicardium was not adequately evaluated so far. Compare electronatomic map merged with Heart CT to fluoroscopy for epicardial ablation of CCC. Describe the distribution of the scars on CCC. We performed epicardial and endocardial mapping and ablation using CARTO XP V8 on eight patients and merged the map with coronary arteries CT scan using at least three landmarks. To compare the 3D image obtained with CARTO MERGE and the 2D fluoroscopic image obtained during the ablation procedure, we used computer graphic software (Inkscape™) in order to prove that the images were equivalent and to compare the distance between the catheter tip on fluoroscopy to catheter tip on 3D EA map. EPRFCA was successfully performed in all patients and they did not present recurrence for at least 3-month follow-up. The mean difference between the tip of the catheter on fluoroscopy and on the 3D model was 6.03 ± 2.09 mm. Scars were present in the epicardium and endocardium and most of patients presented with posterior wall scars and RV scar. The combination of electroanatomic map and CT coronary artery scan data is feasible and can be an important tool for EPRFCA in patients with CCC and VT.

  6. [Suprasellar arachnoid cyst--report of a case (author's transl)].

    PubMed

    Takahashi, T; Kawai, S; Kaminoh, T; Hiramatsu, K; Maekawa, M; Yuasa, T; Miyamoto, N; Hattori, Y

    1982-04-01

    A 4-year-old boy with suprasellar arachnoid cyst was reported. At the age of 30-month-old his aunt was aware of his squint. During the observation by ophthalmologists from the age of 1y. to 3y., enlargement of the head and impairment of the visual acuity were manifested. Cranial CT scan revealed the enlargement of the ventricular system and a round low density area located superior to the sella. Absorption coefficient of the lesion was similar to that of the cerebrospinal fluid. No abnormal contrast enhancement was seen. Examination revealed the head circumference of 53.3 cm larger than doubled standard deviation, the right external strabismus, impaired vision (R:0.03, L:0.3) and optic atrophy but no other neurological signs. Cerebral angiography showed suprasellar mass lesion. After the ventriculography with water-soluble contrast medium, V-P shunt operation was performed and then the patient was transferred to the CT room. CSF enhanced CT scan showed no communication between the ventricles and the cyst. By frontotemporal approach, microsurgical removal of the cystwall was performed and the histological diagnosis was arachnoid membrane. Several days after the operation, bilateral subdural effusion was seen on CT scan and was treated with bilateral S-P shunt and the removal of V-P shunt. Follow up CT scan disclosed the disappearance of the subdural effusion and the suprasellar cyst. The visual acuity was improved well and the endocrinological study was normal. Analysis of the 45 reported cases of suprasellar arachnoid cyst suggested that direct removal of the cyst wall is better than the V-P shunt operation and the cyst shunting is advisable for repeat recurrence of the cyst. Removal of the ventricular shunting system may be effective for the prevention of the subdural effusion as a complication after direct operation.

  7. TU-F-CAMPUS-I-04: A Novel Phantom to Evaluate Longitudinal and Angular Automatic Tube Current Modulation (ATCM) in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzan, D; Bujila, R; Nowik, P

    Purpose: To manufacture a phantom specifically designed for the purpose of evaluating the performance of the longitudinal and angular automatic tube current modulation (ATCM) on modern CT scanners. Methods: In order to evaluate angular ATCM, the phantom has an elliptical cross section (aspect ratio 3:2). To evaluate longitudinal ATCM, the phantom consists of 3 sections, with different major axes (25 cm, 30 cm and 35 cm). Each section is 15 cm long in the longitudinal direction. Between each section is a smooth transition. The phantom was milled from a solid block of PMMA. ATCM performance is evaluated by 1) analyzingmore » the applied tube current for each slice of the phantom and 2) analyzing the distribution of image noise (σ) along the scan direction at different positions in the phantom. A demonstration of the ATCM performance evaluation is given by investigating the effects of miscentering during a CT scan. Results: The developed phantom has proven useful for evaluating both the longitudinal and angular ATCM on modern CT scanners (spiral collimations ≥ 4 cm). Further benefits are the smooth transitions between the sections that prevent abnormal responses in the ATCM and the invariant sections that provide a means for investigating the stability of image noise. The homogeneity of the phantom makes image noise at different positions along the scan direction easy to quantify, which is crucial to understand how well the applied ATCM can produce a desired image quality. Conclusion: It is important to understand how the ATCM functions on CT scanners as it can directly affect dose and image quality. The phantom that has been developed is a most valuable tool to understand how different variables during a scan can affect the outcome of the longitudinal and angular ATCM.« less

  8. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans.

    PubMed

    Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les

    2015-12-01

    We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.

  9. Dual energy CT of the chest: how about the dose?

    PubMed

    Schenzle, Jan C; Sommer, Wieland H; Neumaier, Klement; Michalski, Gisela; Lechel, Ursula; Nikolaou, Konstantin; Becker, Christoph R; Reiser, Maximilian F; Johnson, Thorsten R C

    2010-06-01

    New generation Dual Source computed tomography (CT) scanners offer different x-ray spectra for Dual Energy imaging. Yet, an objective, manufacturer independent verification of the dose required for the different spectral combinations is lacking. The aim of this study was to assess dose and image noise of 2 different Dual Energy CT settings with reference to a standard chest scan and to compare image noise and contrast to noise ratios (CNR). Also, exact effective dose length products (E/DLP) conversion factors were to be established based on the objectively measured dose. An anthropomorphic Alderson phantom was assembled with thermoluminescent detectors (TLD) and its chest was scanned on a Dual Source CT (Siemens Somatom Definition) in dual energy mode at 140 and 80 kVp with 14 x 1.2 mm collimation. The same was performed on another Dual Source CT (Siemens Somatom Definition Flash) at 140 kVp with 0.8 mm tin filter (Sn) and 100 kVp at 128 x 0.6 mm collimation. Reference scans were obtained at 120 kVp with 64 x 0.6 mm collimation at equivalent CT dose index of 5.4 mGy*cm. Syringes filled with water and 17.5 mg iodine/mL were scanned with the same settings. Dose was calculated from the TLD measurements and the dose length products of the scanner. Image noise was measured in the phantom scans and CNR and spectral contrast were determined in the iodine and water samples. E/DLP conversion factors were calculated as ratio between the measured dose form the TLDs and the dose length product given in the patient protocol. The effective dose measured with TLDs was 2.61, 2.69, and 2.70 mSv, respectively, for the 140/80 kVp, the 140 Sn/100 kVp, and the standard 120 kVp scans. Image noise measured in the average images of the phantom scans was 11.0, 10.7, and 9.9 HU (P > 0.05). The CNR of iodine with optimized image blending was 33.4 at 140/80 kVp, 30.7 at 140Sn/100 kVp and 14.6 at 120 kVp. E/DLP conversion factors were 0.0161 mSv/mGy*cm for the 140/80 kVp protocol, 0.0181 mSv/mGy*cm for the Sn140/100 kVp mode and 0.0180 mSv/mGy*cm for the 120 kVp examination. Dual Energy CT is feasible without additional dose. There is no significant difference in image noise, while CNR can be doubled with optimized dual energy CT reconstructions. A restriction in collimation is required for dose-neutrality at 140/80 kVp, whereas this is not necessary at 140 Sn/100 kVp. Thus, CT can be performed routinely in Dual Energy mode without additional dose or compromises in image quality.

  10. Incidental Detection of Urinary Leakage on FDG PET/CT Imaging for Staging of Gastric Cancer.

    PubMed

    Kim, Dae-Weung; Kim, Myoung Hyoun; Kim, Chang Guhn

    2016-03-01

    A 71-year-old woman presented to the emergency department with right flank pain and dysuria. An abdominal CT scan detected a gastric malignancy and hydronephrosis with urinary leakage of the right kidney. Percutaneous nephrostomy was performed on the right kidney. F-FDG PET/CT for staging the gastric malignancy revealed additional urinary leakage of the contralateral kidney. The interest in this case is the incidental detection of unexpected urinary leakage during an oncologic assessment with FDG PET/CT.

  11. CT vs. MRCP in choledocholithiasis jaundice.

    PubMed

    Petrescu, I; Bratu, A M; Petrescu, S; Popa, B V; Cristian, D; Burcos, T

    2015-01-01

    Obstructive jaundice can raise problems to diagnostic imaging. The radiologist must choose the most appropriate examination that delivers the most important diagnostic information because the differences between a lithiasic obstruction and a tumoral one are vital. This information helps the surgeon speed up the process of decision-making, because the treatment may be very different in relation to the nature of the obstruction. This study tries to demonstrate the diagnostic accuracy of computed tomography (CT) and magnetic resonance cholangiopancreatography (MRCP) in detecting the obstacle in the common bile duct (CBD) and the possibility of establishing the lithiasic nature of the obstruction. A retrospective analysis was analyzed during an interval of 18 months that included jaundice patients admitted in the General Surgery Department of "Coltea" Clinical Hospital. They were examined by CT scanning and by MRCP, being suspected of choledocholithiasis. 63 patients were included in the study, 34 females and 29 males. 33 CT scans and 30 MRCP exams were performed. CT scan is useful in detecting residual or iterative choledocholithiasis in patients after cholecystectomy, contrast enhanced CT (CECT), being able to differentiate between lithiasic and non-lithiasic obstruction. MRCP delivers important anatomic details of the biliary tree; it is superior to CT in diagnosing the hepatocholedochal lithiasis; MRCP tends to replace endoscopic retrograde cholangiopancreatography (ERCP)--the diagnostic "gold standard" reducing the number of unnecessary invasive diagnostic procedures.

  12. Aortic valve calcification - a commonly observed but frequently ignored finding during CT scanning of the chest.

    PubMed

    Raju, Prashanth; Sallomi, David; George, Bindu; Patel, Hitesh; Patel, Nikhil; Lloyd, Guy

    2012-06-01

    To describe the frequency and severity of Aortic valve calcification (AVC) in an unselected cohort of patients undergoing chest CT scanning and to assess the frequency with which AVC was being reported in the radiology reports. Consecutive CT scan images of the chest and the radiological reports (December 2009 to May 2010) were reviewed at the district general hospital (DGH). AVC on CT scan was visually graded on a scale ranging from 0 to IV (0 = no calcification, IV = severe calcification). Total of 416 (232 male; 184 female) CT chest scans [Contrast enhanced 302 (72%), unenhanced 114 (28%)] were reviewed. Mean age was 70.55 ± 11.48 years. AVC in CT scans was identified in 95 of the 416 patients (22.83%). AVC classification was as follows: Grade I: 60 (63.15%), Grade II: 22 (23.15%), Grade III: 9 (9.47%), Grade IV: 4 (4.21%). Only one CT report mentioned AVC. Only 31 of 95 AVC had Transthoracic echocardiogram (TTE). The interval time between CT scan and TTE was variable.   Aortic valve calcification in CT chest scans is a common finding and studies have shown that it is strongly related to the presence and severity of aortic valve disease. As CT scans are considered as a valuable additional screening tool for detection of aortic stenosis, AVC should always be commented upon in the radiology reports. Furthermore, patients with at least Grade III and IV AVC should be sent for TTE. © 2012 Blackwell Publishing Ltd.

  13. Dynamic contrast enhanced CT in nodule characterization: How we review and report.

    PubMed

    Qureshi, Nagmi R; Shah, Andrew; Eaton, Rosemary J; Miles, Ken; Gilbert, Fiona J

    2016-07-18

    Incidental indeterminate solitary pulmonary nodules (SPN) that measure less than 3 cm in size are an increasingly common finding on computed tomography (CT) worldwide. Once identified there are a number of imaging strategies that can be performed to help with nodule characterization. These include interval CT, dynamic contrast enhanced computed tomography (DCE-CT), (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET-CT). To date the most cost effective and efficient non-invasive test or combination of tests for optimal nodule characterization has yet to be determined.DCE-CT is a functional test that involves the acquisition of a dynamic series of images of a nodule before and following the administration of intravenous iodinated contrast medium. This article provides an overview of the current indications and limitations of DCE- CT in nodule characterization and a systematic approach to how to perform, analyse and interpret a DCE-CT scan.

  14. Diagnostic value of 64-slice spiral computed tomography imaging of the urinary tract during the excretory phase for urinary tract obstruction.

    PubMed

    Zhao, De-Li; Jia, Guang-Sheng; Chen, Peng; Liu, Xin-Ding; Shu, Sheng-Jie; Ling, Zai-Sheng; Fan, Ting-Ting; Shen, Xiu-Fen; Zhang, Jin-Ling

    2017-11-01

    The present study aimed to assess the diagnostic value of 64-slice spiral computed tomography (CT) imaging of the urinary tract during the excretory phase for urinary tract obstruction. CT imaging of the urinary tract during the excretory phase was performed in 46 patients that had been diagnosed with urinary tract obstruction by B-mode ultrasound imaging or clinical manifestations. It was demonstrated that out of the 46 patients, 18 had pelvic and ureteral calculi, 12 cases had congenital malformations, 3 had ureteral stricture caused by urinary tract infection and 13 cases had malignant tumors of the urinary tract. The average X-ray dose planned for the standard CT scan of the urinary tract group 1 was 14.11±5.45 mSv, while the actual X-ray dose administered for the CT scan during the excretory phase group 2 was 9.01±4.56 mSv. The difference between the two groups was statistically significant (t=15.36; P<0.01). The results of the present study indicate that CT scanning of the urinary tract during the excretory phase has a high diagnostic value for urinary tract obstruction.

  15. Clostridium perfringens's necrotizing acute pancreatitis: a case of success

    PubMed Central

    Mendes, Joana; Amaral, Luís; Quintanilha, Rui; Rama, Tiago; Melo, António

    2017-01-01

    Abstract The authors report a case of a 62-year-old man with upper abdominal pain with few hours of onset and vomits. The initial serum amylase was 2306 U/L. The first CT showed signs of a non-complicated acute pancreatitis. He suffered clinical deterioration and for this reason he was admitted on the intensive care unit where he progressed to multiple organ failure in <24 h. A new CT scan was performed that showed pneumoperitoneum and pneumoretroperitoneum. He underwent an exploratory laparotomy and pancreatic necrosectomy and vacuum pack laparostomy were performed. Intraoperative peritoneal fluid culture was positive for Clostridium perfringens confirming the diagnosis. He was discharged from hospital after 61 days. According to our research this is the second case reported in literature of a spontaneous acute necrotizing pancreatitis caused by C. perfringens, with pneumoretroperitoneum and pneumoperitoneum on evaluation by CT scan, that survived after surgical treatment and vigorous resuscitation. PMID:28702167

  16. Relative location prediction in CT scan images using convolutional neural networks.

    PubMed

    Guo, Jiajia; Du, Hongwei; Zhu, Jianyue; Yan, Ting; Qiu, Bensheng

    2018-07-01

    Relative location prediction in computed tomography (CT) scan images is a challenging problem. Many traditional machine learning methods have been applied in attempts to alleviate this problem. However, the accuracy and speed of these methods cannot meet the requirement of medical scenario. In this paper, we propose a regression model based on one-dimensional convolutional neural networks (CNN) to determine the relative location of a CT scan image both quickly and precisely. In contrast to other common CNN models that use a two-dimensional image as an input, the input of this CNN model is a feature vector extracted by a shape context algorithm with spatial correlation. Normalization via z-score is first applied as a pre-processing step. Then, in order to prevent overfitting and improve model's performance, 20% of the elements of the feature vectors are randomly set to zero. This CNN model consists primarily of three one-dimensional convolutional layers, three dropout layers and two fully-connected layers with appropriate loss functions. A public dataset is employed to validate the performance of the proposed model using a 5-fold cross validation. Experimental results demonstrate an excellent performance of the proposed model when compared with contemporary techniques, achieving a median absolute error of 1.04 cm and mean absolute error of 1.69 cm. The time taken for each relative location prediction is approximately 2 ms. Results indicate that the proposed CNN method can contribute to a quick and accurate relative location prediction in CT scan images, which can improve efficiency of the medical picture archiving and communication system in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry I: design and development

    NASA Astrophysics Data System (ADS)

    Ramm, Daniel

    2018-02-01

    Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.

  18. Individualized Margins in 3D Conformal Radiotherapy Planning for Lung Cancer: Analysis of Physiological Movements and Their Dosimetric Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germain, Francois; Beaulieu, Luc; Fortin, Andre

    2008-04-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generatemore » individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.« less

  19. Is distal femoral torsion the same in both of a patient's legs? Morphometric CT study.

    PubMed

    Beranger, J-S; Dujardin, D; Taburet, J-F; Boisrenoult, P; Steltzlen, C; Beaufils, P; Pujol, N

    2018-04-18

    The rotational position of the femoral component is a primary driver of success in total knee arthroplasty. However, distal femoral torsion (DFT) varies greatly between individuals. Measuring DFT preoperatively by CT in combination with computer-assisted surgery can significantly improve the rotational positioning of the femoral component. However, a preoperative CT scan is costly and exposes the patient to radiation. These are doubled when the patient is undergoing bilateral arthroplasty. The aim of this study was to determine the DFT in both knees of a patient undergoing bilateral arthroplasty. We hypothesized that DFT was symmetric between a patient's two knees and was independent of frontal alignment. In this retrospective study of TKA cases performed between December 2008 and March 2015, 82 patients (mean age 73years) who underwent two-stage bilateral TKA (164 knees) were included. A preoperative CT scan of each knee was performed to measure the DFT using the surgical posterior condylar angle (PCA) described by Yoshioka. Two observers performed the measurements twice each, to allow calculation of the intraclass and interclass correlation coefficients. The mean PCA was 5.4° (±1.48) in the right knee and 5.4° (±1.45) in the left knee, with a left/right difference ranging from 0 to 2.2° (p=0.8). In the entire cohort, 84.6% of patients had a left/right difference of less than 1°. We found no significant differences in DFT in knees with large or small frontal deformity (deformity<10°, p=0.7; deformity>10°, p=0.5) or the presence of varus or valgus (p=0.9). The intraclass correlation coefficient was excellent (94%) and the interclass correlation coefficient was moderate to good (60% for left knees, 53% for right knees). Based on CT scan measurements, the DFT in both knees of an arthritic patient is comparable and this measurement is reproducible. This means that a single, unilateral preoperative CT scan is sufficient for planning purposes. IV (retrospective cohort study). Copyright © 2018. Published by Elsevier Masson SAS.

  20. Evaluation of efficacy of metal artefact reduction technique using contrast media in Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yusob, Diana; Zukhi, Jihan; Aziz Tajuddin, Abd; Zainon, Rafidah

    2017-05-01

    The aim of this study was to evaluate the efficacy of metal artefact reduction using contrasts media in Computed Tomography (CT) imaging. A water-based abdomen phantom of diameter 32 cm (adult body size) was fabricated using polymethyl methacrylate (PMMA) material. Three different contrast agents (iodine, barium and gadolinium) were filled in small PMMA tubes and placed inside a water-based PMMA adult abdomen phantom. The orthopedic metal screw was placed in each small PMMA tube separately. These two types of orthopedic metal screw (stainless steel and titanium alloy) were scanned separately. The orthopedic metal crews were scanned with single-energy CT at 120 kV and dual-energy CT at fast kV-switching between 80 kV and 140 kV. The scan modes were set automatically using the current modulation care4Dose setting and the scans were set at different pitch and slice thickness. The use of the contrast media technique on orthopedic metal screws were optimised by using pitch = 0.60 mm, and slice thickness = 5.0 mm. The use contrast media can reduce the metal streaking artefacts on CT image, enhance the CT images surrounding the implants, and it has potential use in improving diagnostic performance in patients with severe metallic artefacts. These results are valuable for imaging protocol optimisation in clinical applications.

  1. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying

    2015-06-15

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimatemore » average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical measurements were 0.97 ± 0.03 and 1.10 ± 0.13, respectively, indicating that the accuracy of the Monte Carlo simulation was adequate. The normalized AGD with VOI field scans was substantially reduced by a factor of about 2 over the VOI region and by a factor of 18 over the entire breast for both 25% and 50% VGF simulated breasts compared with the normalized AGD with full field scans. The normalized AGD for the VOI breast CT technique can be kept the same as or lower than that for a full field scan with the exposure level for the VOI field scan increased by a factor of as much as 12. Conclusions: The authors’ Monte Carlo estimates of normalized AGDs for the VOI breast CT technique show that this technique can be used to markedly increase the dose to the breast and thus the visibility of the VOI region without increasing the dose to the breast. The results of this investigation should be helpful for those interested in using VOI breast CT technique to image small calcifications with dose concern.« less

  2. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    PubMed Central

    Lai, Chao-Jen; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.

    2015-01-01

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm2 field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical measurements were 0.97 ± 0.03 and 1.10 ± 0.13, respectively, indicating that the accuracy of the Monte Carlo simulation was adequate. The normalized AGD with VOI field scans was substantially reduced by a factor of about 2 over the VOI region and by a factor of 18 over the entire breast for both 25% and 50% VGF simulated breasts compared with the normalized AGD with full field scans. The normalized AGD for the VOI breast CT technique can be kept the same as or lower than that for a full field scan with the exposure level for the VOI field scan increased by a factor of as much as 12. Conclusions: The authors’ Monte Carlo estimates of normalized AGDs for the VOI breast CT technique show that this technique can be used to markedly increase the dose to the breast and thus the visibility of the VOI region without increasing the dose to the breast. The results of this investigation should be helpful for those interested in using VOI breast CT technique to image small calcifications with dose concern. PMID:26127058

  3. A variable resolution x-ray detector for computed tomography: II. Imaging theory and performance.

    PubMed

    DiBianca, F A; Zou, P; Jordan, L M; Laughter, J S; Zeman, H D; Sebes, J

    2000-08-01

    A computed tomography (CT) imaging technique called variable resolution x-ray (VRX) detection provides variable image resolution ranging from that of clinical body scanning (1 cy/mm) to that of microscopy (100 cy/mm). In this paper, an experimental VRX CT scanner based on a rotating subject table and an angulated storage phosphor screen detector is described and tested. The measured projection resolution of the scanner is > or = 20 lp/mm. Using this scanner, 4.8-s CT scans are made of specimens of human extremities and of in vivo hamsters. In addition, the system's projected spatial resolution is calculated to exceed 100 cy/mm for a future on-line CT scanner incorporating smaller focal spots (0.1 mm) than those currently used and a 1008-channel VRX detector with 0.6-mm cell spacing.

  4. Unusual Presentation of Bladder Paraganglioma: Comparison of (131)I MIBG SPECT/CT and (68)Ga DOTANOC PET/CT.

    PubMed

    Jain, Tarun Kumar; Basher, Rajender Kumar; Gupta, Nitin; Shukla, Jaya; Singh, Shrawan Kumar; Mittal, Bhagwant Rai

    2016-01-01

    Extraadrenal chromaffin cell-related tumors or paragangliomas are rare, especially in the bladder, accounting for less than 1% of cases. We report a 16-year-old boy who presented with hematuria and paroxysmal headache and was found to have a prostatic growth infiltrating the urinary bladder on anatomical imaging. Iodine-131 ((131)I) metaiodobenzylguanidine (MIBG) whole-body scanning and subsequently gallium-68 ((68)Ga) DOTANOC positron emission tomography/computed tomography (PET/CT) were performed. The MIBG scan revealed a non-tracer-avid soft-tissue mass, while DOTANOC PET/CT revealed a tracer-avid primary soft-tissue mass involving the urinary bladder and prostate with metastasis to the iliac lymph nodes. He underwent surgical management; histopathology of the surgical specimen revealed a bladder paraganglioma, whereas the prostate was found to be free of tumor.

  5. The characteristics of dose at mass interface on lung cancer Stereotactic Body Radiotherapy (SBRT) simulation

    NASA Astrophysics Data System (ADS)

    Wulansari, I. H.; Wibowo, W. E.; Pawiro, S. A.

    2017-05-01

    In lung cancer cases, there exists a difficulty for the Treatment Planning System (TPS) to predict the dose at or near the mass interface. This error prediction might influence the minimum or maximum dose received by lung cancer. In addition to target motion, the target dose prediction error also contributes in the combined error during the course of treatment. The objective of this work was to verify dose plan calculated by adaptive convolution algorithm in Pinnacle3 at the mass interface against a set of measurement. The measurement was performed using Gafchromic EBT 3 film in static and dynamic CIRS phantom with amplitudes of 5 mm, 10 mm, and 20 mm in superior-inferior motion direction. Static and dynamic phantom were scanned with fast CT and slow CT before planned. The results showed that adaptive convolution algorithm mostly predicted mass interface dose lower than the measured dose in a range of -0,63% to 8,37% for static phantom in fast CT scanning and -0,27% to 15,9% for static phantom in slow CT scanning. In dynamic phantom, this algorithm was predicted mass interface dose higher than measured dose up to -89% for fast CT and varied from -17% until 37% for slow CT. This interface of dose differences caused the dose mass decreased in fast CT, except for 10 mm motion amplitude, and increased in slow CT for the greater amplitude of motion.

  6. TU-C-12A-12: Differentiating Bone Lesions and Degenerative Joint Disease in NaF PET/CT Scans Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perk, T; Bradshaw, T; Muzahir, S

    2014-06-15

    Purpose: [F-18]NaF PET can be used to image bone metastases; however, tracer uptake in degenerative joint disease (DJD) often appears similar to metastases. This study aims to develop and compare different machine learning algorithms to automatically identify regions of [F-18]NaF scans that correspond to DJD. Methods: 10 metastatic prostate cancer patients received whole body [F-18]NaF PET/CT scans prior to treatment. Image segmentation resulted in 852 ROIs, 69 of which were identified by a nuclear medicine physician as DJD. For all ROIs, various PET and CT textural features were computed. ROIs were divided into training and testing sets used to trainmore » eight different machine learning classifiers. Classifiers were evaluated based on receiver operating characteristics area under the curve (AUC), sensitivity, specificity, and positive predictive value (PPV). We also assessed the added value of including CT features in addition to PET features for training classifiers. Results: The training set consisted of 37 DJD ROIs with 475 non-DJD ROIs, and the testing set consisted of 32 DJD ROIs with 308 non-DJD ROIs. Of all classifiers, generalized linear models (GLM), decision forests (DF), and support vector machines (SVM) had the best performance. AUCs of GLM (0.929), DF (0.921), and SVM (0.889) were significantly higher than the other models (p<0.001). GLM and DF, overall, had the best sensitivity, specificity, and PPV, and gave a significantly better performance (p<0.01) than all other models. PET/CT GLM classifiers had higher AUC than just PET or just CT. GLMs built using PET/CT information had superior or comparable sensitivities, specificities and PPVs to just PET or just CT. Conclusion: Machine learning algorithms trained with PET/CT features were able to identify some cases of DJD. GLM outperformed the other classification algorithms. Using PET and CT information together was shown to be superior to using PET or CT features alone. Research supported by the Prostate Cancer Foundation.« less

  7. [Etiology and diagnostic methods in vocal cord paralysis].

    PubMed

    Jørgensen, Gita; Clausen, Eva Wiinstedt; Mantoni, Margit Y; Misciattelli, Lorenzo; Balle, Viggo

    2003-02-10

    The etiology of vocal cord paralysis (VCP) is varied. There is lack of consensus regarding the choice of investigations to be used in the evaluation of VCP. The aim of this study was to establish the etiology, assess the diagnostic methods used in the evaluation, and outline an algorithm for future evaluation of unilateral vocal cord paralysis (UVCP). Charts of all patients (n = 94) with the diagnostic code of VCP were reviewed, and reexaminations were performed of patients in whom no etiology was found after the initial symptoms. The etiology of UVCP was neoplasm in 34%, surgical trauma in 12%, and miscellaneous causes in 54%. The etiology of bilateral vocal cord paralysis (BVCP) was neoplasm in 24%, surgical trauma in 24%, and miscellaneous causes in 52%. The reexaminations did not reveal any cancer diseases in the patients concerned. The most effective diagnostic method was CT-scanning while the least effective was thyroid scanning. Because cancer is a common cause of VCP a thorough evaluation is necessary. For UVCP we recommend history and physical examination, X-ray of the chest, ultrasonography of the neck, and CT-scanning of the superior mediastinum. If these prove negative, panendoscopy should be performed. Workup of patients with idiopathic VCP should include examination, X-ray of the chest at 6-month intervals, and annual CT-scanning for two years.

  8. Computed tomography of calcaneal fractures: anatomy, pathology, dosimetry, and clinical relevance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guyer, B.H.; Levinsohn, E.M.; Fredrickson, B.E.

    1985-11-01

    Eighteen CT examinations were performed in 10 patients for the evaluation of acute intraarticular fractures and their follow-up. Fractures comparable to those in the patients were created in cadavers. The normal anatomy and the traumatically altered anatomy of the calcaneus in the axial, coronal, and sagittal planes are demonstrated by CT and corresponding anatomic sections. Scanning was performed in the axial plane, with subsequent reconstruction in the coronal and sagittal planes. The axial scans show disruption of the inferior part of the posterior facet, calcaneocuboid joint involvement, and widening of the calcaneus. The coronal scans show disruption of the superiormore » part of the posterior facet, sustentaculum tali depression (involvement of middle and anterior facets), peroneal and flexor hallucis longus tendon impingement, and widening and height loss of the calcaneus. The sagittal scans show disruption of the posterior facet, calcaneocuboid joint involvement, and height loss of the calcaneus and allow the evaluation of Boehler's and Gissane's angles. All three planes show the position of major fracture fragments. Radiation dose to the foot was measured to be 0.1 rad (0.001 Gy) for plain film radiography (five exposures), 18 rad (0.18 Gy) for conventional tomography (20 cuts), and 2.6 rad (0.026 Gy) for axial CT examination.« less

  9. Full-Body CT Scans - What You Need to Know

    MedlinePlus

    ... Medical Imaging Medical X-ray Imaging Full-Body CT Scans - What You Need to Know Share Tweet ... new service for health-conscious people: "Whole-body CT screening." This typically involves scanning the body from ...

  10. Evaluation of the dependence of the exposure dose on the attenuation correction in brain PET/CT scans using 18F-FDG

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong

    2014-01-01

    This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.

  11. A biological phantom for evaluation of CT image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.

    2014-03-01

    In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.

  12. SU-E-J-133: Evaluation of Inter- and Intra-Fractional Pancreas Tumor Residual Motions with Abdominal Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Shi, F; Tian, Z

    2014-06-01

    Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motionmore » pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable to motion ranges.« less

  13. A multicenter, randomized controlled trial of immediate total-body CT scanning in trauma patients (REACT-2)

    PubMed Central

    2012-01-01

    Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients. If immediate total-body CT scanning is found to be the best imaging strategy in severely injured trauma patients it could replace conventional imaging supplemented with CT in this specific group. Trial Registration ClinicalTrials.gov: (NCT01523626). PMID:22458247

  14. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.« less

  15. Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: An experimental evaluation using an oncology and brain phantom.

    PubMed

    Mansor, Syahir; Pfaehler, Elisabeth; Heijtel, Dennis; Lodge, Martin A; Boellaard, Ronald; Yaqub, Maqsood

    2017-12-01

    In longitudinal oncological and brain PET/CT studies, it is important to understand the repeatability of quantitative PET metrics in order to assess change in tracer uptake. The present studies were performed in order to assess precision as function of PET/CT system, reconstruction protocol, analysis method, scan duration (or image noise), and repositioning in the field of view. Multiple (repeated) scans have been performed using a NEMA image quality (IQ) phantom and a 3D Hoffman brain phantom filled with 18 F solutions on two systems. Studies were performed with and without randomly (< 2 cm) repositioning the phantom and all scans (12 replicates for IQ phantom and 10 replicates for Hoffman brain phantom) were performed at equal count statistics. For the NEMA IQ phantom, we studied the recovery coefficients (RC) of the maximum (SUV max ), peak (SUV peak ), and mean (SUV mean ) uptake in each sphere as a function of experimental conditions (noise level, reconstruction settings, and phantom repositioning). For the 3D Hoffman phantom, the mean activity concentration was determined within several volumes of interest and activity recovery and its precision was studied as function of experimental conditions. The impact of phantom repositioning on RC precision was mainly seen on the Philips Ingenuity PET/CT, especially in the case of smaller spheres (< 17 mm diameter, P < 0.05). This effect was much smaller for the Siemens Biograph system. When exploring SUV max , SUV peak , or SUV mean of the spheres in the NEMA IQ phantom, it was observed that precision depended on phantom repositioning, reconstruction algorithm, and scan duration, with SUV max being most and SUV peak least sensitive to phantom repositioning. For the brain phantom, regional averaged SUVs were only minimally affected by phantom repositioning (< 2 cm). The precision of quantitative PET metrics depends on the combination of reconstruction protocol, data analysis methods and scan duration (scan statistics). Moreover, precision was also affected by phantom repositioning but its impact depended on the data analysis method in combination with the reconstructed voxel size (tissue fraction effect). This study suggests that for oncological PET studies the use of SUV peak may be preferred over SUV max because SUV peak is less sensitive to patient repositioning/tumor sampling. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  16. 99mTc-MAA/ 90Y-Bremsstrahlung SPECT/CT after simultaneous Tc-MAA/90Y-microsphere injection for immediate treatment monitoring and further therapy planning for radioembolization.

    PubMed

    Ahmadzadehfar, Hojjat; Sabet, Amir; Muckle, Marianne; Wilhelm, Kai; Reichmann, Karl; Biersack, Hans-Jürgen; Ezziddin, Samer

    2011-07-01

    An angiographic evaluation combined with (99m)Tc-macroaggregated albumin (Tc-MAA) scanning should precede the treatment of any selected candidates for radioembolization (RE) of the liver. If the tumours in one liver lobe have not been targeted in the test angiogram, it should be repeated. However, in a few cases treatment of one liver lobe or at least some segments is safe and feasible and performing a repeated test angiogram with Tc-MAA (Re-MAA) in a separate session leads to more radiation exposure and could be time consuming. Our aim was to evaluate the feasibility of concurrent RE of a part of the liver and therapy planning for another region by simultaneous injection of the Tc-MAA and (90)Y-microspheres in two different locations in the therapy session. Tc-MAA and bremsstrahlung (BS) single photon emission computed tomography (SPECT)/CT were performed separately in an effort to distinguish between the distributions of these two different radiopharmaceuticals. RE was combined with a simultaneous second test angiogram of another lobe or segments in the same session in six patients [44-70 years; five women (83%)]. Five patients suffered from colorectal carcinoma (CRC) and one from ovarian cancer. Tc-MAA and BS SPECT/CT were performed for all cases. Post-therapeutic Tc-MAA SPECT/CT showed in all patients only the distribution of Tc-MAA without any detectable BS. Evaluation of (90)Y-microsphere distribution was not always possible in the post-therapeutic BS scan performed 24 h later due to remaining Tc-MAA radiation. However, scans performed at 48 h post-intervention no longer showed any Tc-MAA "contamination". Combining RE and Re-MAA is feasible in appropriately selected patients.

  17. Enteral Contrast in the Computed Tomography Diagnosis of Appendicitis

    PubMed Central

    Drake, Frederick Thurston; Alfonso, Rafael; Bhargava, Puneet; Cuevas, Carlos; Dighe, Manjiri K.; Florence, Michael G.; Johnson, Morris G.; Jurkovich, Gregory J.; Steele, Scott R.; Symons, Rebecca Gaston; Thirlby, Richard C.; Flum, David R.

    2014-01-01

    Objective Our goal was to perform a comparative effectiveness study of intravenous (IV)-only versus IV + enteral contrast in computed tomographic (CT) scans performed for patients undergoing appendectomy across a diverse group of hospitals. Background Small randomized trials from tertiary centers suggest that enteral contrast does not improve diagnostic performance of CT for suspected appendicitis, but generalizability has not been demonstrated. Eliminating enteral contrast may improve efficiency, patient comfort, and safety. Methods We analyzed data for adult patients who underwent nonelective appendectomy at 56 hospitals over a 2-year period. Data were obtained directly from patient charts by trained abstractors. Multivariate logistic regression was utilized to adjust for potential confounding. The main outcome measure was concordance between final radiology interpretation and final pathology report. Results A total of 9047 adults underwent appendectomy and 8089 (89.4%) underwent CT, 54.1% of these with IV contrast only and 28.5% with IV + enteral contrast. Pathology findings correlated with radiographic findings in 90.0% of patients who received IV + enteral contrast and 90.4% of patients scanned with IV contrast alone. Hospitals were categorized as rural or urban and by their teaching status. Regardless of hospital type, there was no difference in concordance between IV-only and IV + enteral contrast. After adjusting for age, sex, comorbid conditions, weight, hospital type, and perforation, odds ratio of concordance for IV + enteral contrast versus IV contrast alone was 0.95 (95% CI: 0.72–1.25). Conclusions Enteral contrast does not improve CT evaluation of appendicitis in patients undergoing appendectomy. These broadly generalizable results from a diverse group of hospitals suggest that enteral contrast can be eliminated in CT scans for suspected appendicitis. PMID:24598250

  18. A comparison of three methods to assess body composition.

    PubMed

    Tewari, Nilanjana; Awad, Sherif; Macdonald, Ian A; Lobo, Dileep N

    2018-03-01

    The aim of this study was to compare the accuracy of measurements of body composition made using dual x-ray absorptiometry (DXA), analysis of computed tomography (CT) scans at the L3 vertebral level, and bioelectrical impedance analysis (BIA). DXA, CT, and BIA were performed in 47 patients recruited from two clinical trials investigating metabolic changes associated with major abdominal surgery or neoadjuvant chemotherapy for esophagogastric cancer. DXA was performed the week before surgery and before and after commencement of neoadjuvant chemotherapy. BIA was performed at the same time points and used with standard equations to calculate fat-free mass (FFM). Analysis of CT scans performed within 3 mo of the study was used to estimate FFM and fat mass (FM). There was good correlation between FM on DXA and CT (r 2  = 0.6632; P < 0.0001) and FFM on DXA and CT (r 2  = 0.7634; P < 0.0001), as well as FFM on DXA and BIA (r 2  = 0.6275; P < 0.0001). Correlation between FFM on CT and BIA also was significant (r 2  = 0.2742; P < 0.0001). On Bland-Altman analysis, average bias for FM on DXA and CT was 0.2564 with 95% limits of agreement (LOA) of -9.451 to 9.964. For FFM on DXA and CT, average bias was -0.1477, with LOA of -8.621 to 8.325. For FFM on DXA and BIA, average bias was -3.792, with LOA of -15.52 to 7.936. For FFM on CT and BIA, average bias was -2.661, with LOA of -22.71 to 17.39. Although a systematic error underestimating FFM was demonstrated with BIA, it may be a useful modality to quantify body composition in the clinical situation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Rationale for Modernising Imaging in Advanced Prostate Cancer.

    PubMed

    Padhani, Anwar R; Lecouvet, Frederic E; Tunariu, Nina; Koh, Dow-Mu; De Keyzer, Frederik; Collins, David J; Sala, Evis; Fanti, Stefano; Vargas, H Alberto; Petralia, Giuseppe; Schlemmer, Heinz Peter; Tombal, Bertrand; de Bono, Johann

    2017-04-01

    To effectively manage patients with advanced prostate cancer (APC), it is essential to have accurate, reproducible, and validated methods for detecting and quantifying the burden of bone and soft tissue metastases and for assessing their response to therapy. Current standard of care imaging with bone and computed tomography (CT) scans have significant limitations for the assessment of bone metastases in particular. We aimed to undertake a critical comparative review of imaging methods used for diagnosis and disease monitoring of metastatic APC from the perspective of their availability and ability to assess disease presence, extent, and response of bone and soft tissue disease. An expert panel of radiologists, nuclear medicine physicians, and medical physicists with the greatest experience of imaging in advanced prostate cancer prepared a review of the practicalities, performance, merits, and limitations of currently available imaging methods. Meta-analyses showed that positron emission tomography (PET)/CT with different radiotracers and whole-body magnetic resonance imaging (WB-MRI) are more accurate for bone lesion detection than CT and bone scans (BSs). At a patient level, the pooled sensitivities for bone disease by using choline (CH)-PET/CT, WB-MRI, and BS were 91% (95% confidence interval [CI], 83-96%), 97% (95% CI, 91-99%), and 79% (95% CI, 73-83%), respectively. The pooled specificities for bone metastases detection using CH-PET/CT, WB-MRI, and BS were 99% (95% CI, 93-100%), 95% (95% CI, 90-97%), and 82% (95% CI, 78-85%), respectively. The ability of PET/CT and WB-MRI to assess therapeutic benefits is promising but has not been comprehensively evaluated. There is variability in the cost, availability, and quality of PET/CT and WB-MRI. Standardisation of acquisition, interpretation, and reporting of WB-MRI and PET/CT scans is required to assess the performance of these techniques in clinical trials of treatment approaches in APC. PET/CT and whole-body MRI scans have the potential to improve detection and to assess response to treatment of all states of advanced prostate cancer. Consensus recommendations on quality standards, interpretation, and reporting are needed but will require validation in clinical trials of established and new treatment approaches. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  20. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia

    2017-09-01

    Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.

  1. [Chance fracture missed by convencional CT: Presentation of a clinical course].

    PubMed

    Pérez Suárez, Esther; Carceller, Fernando; García Salido, Alberto; Serrano, Ana; Casado, Juan

    2011-02-01

    Bending-disruption fractures of the vertebral body are called Chance fracture. In some cases these fractures may not be noticeable with a CT scan. A 9 years-old boy suffered a frontal collision while traveling in the back seat of a car. The child was secured by the safetybelt, without a child car seat or elevator adapted to his height. He had abdominal skin lesions in the physical exploration compatible with a belt mark. Conventional thoraco- abdominal CT scan did not show any vertebral fracture. As the clinical suspicion persisted, lateral plain radiography of the lumbar column was performed showing a Chance fracture in L2, confirmed by MRI. Chance fracture is typically seen in children under 12 years less than 135 cm height and with injuries associated with the belt after a traffic accident. This type of fractures may go unnoticed in a conventional CT scan so clinical suspicion must lead us to further work-up. The MRI is the gold standard for the diagnosis. This case remarks the importance of the use of homologated elevated seat devices in older children.

  2. [Radiation exposure during spiral-CT of the paranasal sinuses].

    PubMed

    Dammann, F; Momino-Traserra, E; Remy, C; Pereira, P L; Baumann, I; Koitschev, A; Claussen, C D

    2000-03-01

    Determination of the radiation doses in spiral CT of the paranasal sinuses using a variety of mAs values and scan protocols. CT examinations of the paranasal sinuses were performed using an Alderson-Rando phantom. Radiation dose was determined by LiF-TLD at the level of high risk organs in the head and neck region for combinations of different scan parameters (2/3, 3/3, 3/4 mm) and decreasing charges (200, 150, 100, 50, 25 mAs) on a spiral CT. Additional measurements were performed on three other CT scanners using the 2/3 mm protocol at 50 mAs, and a single slice technique (5/5 mm) on one scanner. The lowest dose values found were 1.88 mGy for the eye lenses, 1.35 mGy for the parotid gland, 0.03 mGy for the thyroid gland and 0.1 mGy for the medulla oblongata using 2 mm collimation and 3 mm table feed at 25 mAs. Maximal dose values resulted using the 3/3 mm protocol at 200 mAs (31.00 mGy for the eye lense, 0.65 mGy for the thyroid gland). There were no significant differences found between the different CT scanners. Using up-to-date CT scanners, radiation exposure may be reduced by a factor of 15-20 compared to that of conventional CT technique. Thus, the exposure of the eye lens comes to only a thousandth of the value supposedly inducing a cataract, as published by the ICRP.

  3. Chest CT in children: anesthesia and atelectasis.

    PubMed

    Newman, Beverley; Krane, Elliot J; Gawande, Rakhee; Holmes, Tyson H; Robinson, Terry E

    2014-02-01

    There has been an increasing tendency for anesthesiologists to be responsible for providing sedation or anesthesia during chest CT imaging in young children. Anesthesia-related atelectasis noted on chest CT imaging has proven to be a common and troublesome problem, affecting image quality and diagnostic sensitivity. To evaluate the safety and effectiveness of a standardized anesthesia, lung recruitment, controlled-ventilation technique developed at our institution to prevent atelectasis for chest CT imaging in young children. Fifty-six chest CT scans were obtained in 42 children using a research-based intubation, lung recruitment and controlled-ventilation CT scanning protocol. These studies were compared with 70 non-protocolized chest CT scans under anesthesia taken from 18 of the same children, who were tested at different times, without the specific lung recruitment and controlled-ventilation technique. Two radiology readers scored all inspiratory chest CT scans for overall CT quality and atelectasis. Detailed cardiorespiratory parameters were evaluated at baseline, and during recruitment and inspiratory imaging on 21 controlled-ventilation cases and 8 control cases. Significant differences were noted between groups for both quality and atelectasis scores with optimal scoring demonstrated in the controlled-ventilation cases where 70% were rated very good to excellent quality scans compared with only 24% of non-protocol cases. There was no or minimal atelectasis in 48% of the controlled ventilation cases compared to 51% of non-protocol cases with segmental, multisegmental or lobar atelectasis present. No significant difference in cardiorespiratory parameters was found between controlled ventilation and other chest CT cases and no procedure-related adverse events occurred. Controlled-ventilation infant CT scanning under general anesthesia, utilizing intubation and recruitment maneuvers followed by chest CT scans, appears to be a safe and effective method to obtain reliable and reproducible high-quality, motion-free chest CT images in children.

  4. Digital volume tomography in the diagnosis of periodontal defects: an in vitro study on native pig and human mandibles.

    PubMed

    Mengel, Reiner; Candir, Muhsin; Shiratori, Kiyoshi; Flores-de-Jacoby, Lavin

    2005-05-01

    The aim of this study of native pig and human mandibles was to investigate the accuracy and quality of the representation of periodontal defects by intraoral radiography (IR), panoramic radiography (PR), computed tomography (CT), and digital volume tomography (DVT) in comparison with histologic specimens. Following the standardized preparation of periodontal defects (14 dehiscences, fenestrations, 2- to 3-walled intrabony defects, respectively; Class I, II, and III furcation involvement) in six pig and seven human mandibles, IR, PR, CT, and DVT were performed. The histologic specimens were produced by cutting blocks with the individual defects out of the mandibles, embedding them in acrylic, and producing sagittal and axial microsections. The intrabony defects were measured using appropriate software on the digitized IR and PR images programs. The histologic sections were measured by reflecting stereomicroscopy. The statistical comparison between the measurements of the radiographic images and those of the histologic specimens was performed with Pearson's correlation coefficient. The quality of the radiographic images was determined through the subjective perception and detectability of the intrabony defects by five independent observers. All intrabony defects could be measured in three planes in the CT and DVT scans. Comparison with the histologic specimens yielded a mean deviation of 0.16 +/- 0.10 mm for the CT scans and 0.19 +/- 0.11 mm for the DVT scans. On the IR and PR images, the defects could be detected only in the mesio-distal and craniocaudal planes. In comparison with the histologic specimens, the IR images revealed a mean deviation of 0.33 +/- 0.18 mm and the PR images a mean deviation of 1.07 +/- 0.62 mm. The quality rating of the radiographic images was highest for the DVT scans. Overall, the CT and DVT scans displayed only a slight deviation in the extent of the periodontal defects in comparison with the histologic specimens. Both radiographic imaging techniques permitted imaging of anatomic osseous structures in three planes, true to scale, and without overlay or distortion. The DVT scans showed the best imaging quality.

  5. Intrafractional gastric motion and interfractional stomach deformity using CT images.

    PubMed

    Watanabe, Miho; Isobe, Koichi; Uno, Takashi; Harada, Rintarou; Kobayashi, Hiroyuki; Ueno, Naoyuki; Ito, Hisao

    2011-01-01

    To evaluate the intra- and interfractional gastric motion using repeated CT scans, six consecutive patients with gastric lymphoma treated at our institution between 2006 and 2008 were included in this study. We performed a simulation and delivered RT before lunch after an overnight fast to minimize the stomach volume. These patients underwent repeated CT scanning at mild inhale and exhale before their course of treatment. The repeated CT scans were matched on bony anatomy to the planning scan. The center of stomach was determined in the X (lateral), Y (superior-inferior), and Z (ventro-dorsal) coordinate system to evaluate the intra- and interfractional motion of the stomach on each CT scan. We then calculated the treatment margins. Each patient was evaluated four to five times before their course of RT. The average intrafractional motions were -12.1, 2.4 and 4.6 mm for the superior-inferior (SI), lateral (LAT), and ventro-dorsal (VD) direction. The average interfractional motions of the center of the stomach were -4.1, 1.9 and 1.5 mm for the SI, LAT and VD direction. The average of the vector length was 13.0 mm. The systematic and random errors in SI direction were 5.1, and 4.6 mm, respectively. The corresponding figures in LAT and VD directions were 10.9, 5.4, 10.0, and 6.5 mm, respectively. Thus, the 15.9, 31.0 and 29.6 mm of margins are required for the SI, LAT, and VD directions, respectively. We have demonstrated not only intrafractional stomach motion, but also interfractional motion is considerable.

  6. How Is Testicular Cancer Diagnosed?

    MedlinePlus

    ... patients with non-seminoma. Many centers have special machines that can do both a PET and CT scan at the same time (PET/CT scan). This lets the doctor compare areas of higher radioactivity on the PET with the more detailed images of the CT. Bone scan A bone scan can help show if a ... Information, ...

  7. Correction for human head motion in helical x-ray CT

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Sun, T.; Alcheikh, A. R.; Kuncic, Z.; Nuyts, J.; Fulton, R.

    2016-02-01

    Correction for rigid object motion in helical CT can be achieved by reconstructing from a modified source-detector orbit, determined by the object motion during the scan. This ensures that all projections are consistent, but it does not guarantee that the projections are complete in the sense of being sufficient for exact reconstruction. We have previously shown with phantom measurements that motion-corrected helical CT scans can suffer from data-insufficiency, in particular for severe motions and at high pitch. To study whether such data-insufficiency artefacts could also affect the motion-corrected CT images of patients undergoing head CT scans, we used an optical motion tracking system to record the head movements of 10 healthy volunteers while they executed each of the 4 different types of motion (‘no’, slight, moderate and severe) for 60 s. From these data we simulated 354 motion-affected CT scans of a voxelized human head phantom and reconstructed them with and without motion correction. For each simulation, motion-corrected (MC) images were compared with the motion-free reference, by visual inspection and with quantitative similarity metrics. Motion correction improved similarity metrics in all simulations. Of the 270 simulations performed with moderate or less motion, only 2 resulted in visible residual artefacts in the MC images. The maximum range of motion in these simulations would encompass that encountered in the vast majority of clinical scans. With severe motion, residual artefacts were observed in about 60% of the simulations. We also evaluated a new method of mapping local data sufficiency based on the degree to which Tuy’s condition is locally satisfied, and observed that areas with high Tuy values corresponded to the locations of residual artefacts in the MC images. We conclude that our method can provide accurate and artefact-free MC images with most types of head motion likely to be encountered in CT imaging, provided that the motion can be accurately determined.

  8. Pulmonary Venous Anatomy Imaging with Low-Dose, Prospectively ECG-Triggered, High-Pitch 128-Slice Dual Source Computed Tomography

    PubMed Central

    Thai, Wai-ee; Wai, Bryan; Lin, Kaity; Cheng, Teresa; Heist, E. Kevin; Hoffmann, Udo; Singh, Jagmeet; Truong, Quynh A.

    2012-01-01

    Background Efforts to reduce radiation from cardiac computed tomography (CT) are essential. Using a prospectively triggered, high-pitch dual source CT (DSCT) protocol, we aim to determine the radiation dose and image quality (IQ) in patients undergoing pulmonary vein (PV) imaging. Methods and Results In 94 patients (61±9 years, 71% male) who underwent 128-slice DSCT (pitch 3.4), radiation dose and IQ were assessed and compared between 69 patients in sinus rhythm (SR) and 25 in atrial fibrillation (AF). Radiation dose was compared in a subset of 19 patients with prior retrospective or prospectively triggered CT PV scans without high-pitch. In a subset of 18 patients with prior magnetic resonance imaging (MRI) for PV assessment, PV anatomy and scan duration were compared to high-pitch CT. Using the high-pitch protocol, total effective radiation dose was 1.4 [1.3, 1.9] mSv, with no difference between SR and AF (1.4 vs 1.5 mSv, p=0.22). No high-pitch CT scans were non-diagnostic or had poor IQ. Radiation dose was reduced with high-pitch (1.6 mSv) compared to standard protocols (19.3 mSv, p<0.0001). This radiation dose reduction was seen with SR (1.5 vs 16.7 mSv, p<0.0001) but was more profound with AF (1.9 vs 27.7 mSv, p=0.039). There was excellent agreement of PV anatomy (kappa 0.84, p<0.0001), and a shorter CT scan duration (6 minutes) compared to MRI (41 minutes, p<0.0001). Conclusions Using a high-pitch DSCT protocol, PV imaging can be performed with minimal radiation dose, short scan acquisition, and excellent IQ in patients with SR or AF. This protocol highlights the success of new cardiac CT technology to minimize radiation exposure, giving clinicians a new low-dose imaging alternative to assess PV anatomy. PMID:22586259

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ching-Ching, E-mail: cyang@tccn.edu.tw; Liu, Shu-Hsin; Mok, Greta S. P.

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate riskmore » estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.« less

  10. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    PubMed

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  11. Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.

    2015-01-01

    The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.

  12. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose.

    PubMed

    Lell, M M; May, M S; Brand, M; Eller, A; Buder, T; Hofmann, E; Uder, M; Wuest, W

    2015-07-01

    CT is the imaging technique of choice in the evaluation of midface trauma or inflammatory disease. We performed a systematic evaluation of scan protocols to optimize image quality and radiation exposure on third-generation dual-source CT. CT protocols with different tube voltage (70-150 kV), current (25-300 reference mAs), prefiltration, pitch value, and rotation time were systematically evaluated. All images were reconstructed with iterative reconstruction (Advanced Modeled Iterative Reconstruction, level 2). To individually compare results with otherwise identical factors, we obtained all scans on a frozen human head. Conebeam CT was performed for image quality and dose comparison with multidetector row CT. Delineation of important anatomic structures and incidental pathologic conditions in the cadaver head was evaluated. One hundred kilovolts with tin prefiltration demonstrated the best compromise between dose and image quality. The most dose-effective combination for trauma imaging was Sn100 kV/250 mAs (volume CT dose index, 2.02 mGy), and for preoperative sinus surgery planning, Sn100 kV/150 mAs (volume CT dose index, 1.22 mGy). "Sn" indicates an additional prefiltration of the x-ray beam with a tin filter to constrict the energy spectrum. Exclusion of sinonasal disease was possible with even a lower dose by using Sn100 kV/25 mAs (volume CT dose index, 0.2 mGy). High image quality at very low dose levels can be achieved by using a Sn100-kV protocol with iterative reconstruction. The effective dose is comparable with that of conventional radiography, and the high image quality at even lower radiation exposure favors multidetector row CT over conebeam CT. © 2015 by American Journal of Neuroradiology.

  13. Ceftriaxone-associated pancreatitis captured on serial computed tomography scans.

    PubMed

    Nakagawa, Nozomu; Ochi, Nobuaki; Yamane, Hiromichi; Honda, Yoshihiro; Nagasaki, Yasunari; Urata, Noriyo; Nakanishi, Hidekazu; Kawamoto, Hirofumi; Takigawa, Nagio

    2018-02-01

    A 74-year-old man was treated with ceftriaxone for 5 days and subsequently experienced epigastric pain. Computed tomography (CT) was performed 7 and 3 days before epigastralgia. Although the first CT image revealed no radiographic signs in his biliary system, the second CT image revealed dense radiopaque material in the gallbladder lumen. The third CT image, taken at symptom onset, showed high density in the common bile duct and enlargement of the pancreatic head. This is a very rare case of pseudolithiasis involving the common bile duct, as captured on a series of CT images.

  14. [Application of computed tomography (CT) examination for forensic medicine].

    PubMed

    Urbanik, Andrzej; Chrzan, Robert

    2013-01-01

    The aim of the study is to present a own experiences in usage of post mortem CT examination for forensic medicine. With the help of 16-slice CT scanner 181 corpses were examined. Obtained during acquisition imaging data are later developed with dedicated programmes. Analyzed images were extracted from axial sections, multiplanar reconstructions as well as 3D reconstructions. Gained information helped greatly when classical autopsy was performed by making it more accurate. A CT scan images recorded digitally enable to evaluate corpses at any time, despite processes of putrefaction or cremation. If possible CT examination should precede classical autopsy.

  15. Functional imaging in differentiating bronchial masses: an initial experience with a combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan.

    PubMed

    Kumar, Arvind; Jindal, Tarun; Dutta, Roman; Kumar, Rakesh

    2009-10-01

    To evaluate the role of combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in differentiating bronchial tumors observed in contrast enhanced computed tomography scan of chest. Prospective observational study. Place of study: All India Institute of Medical Sciences, New Delhi, India. 7 patients with bronchial mass detected in computed tomography scan of the chest were included in this study. All patients underwent (18)F-FDG PET-CT scan, (68)Ga DOTA-TOC PET-CT scan and fiberoptic bronchoscope guided biopsy followed by definitive surgical excision. The results of functional imaging studies were analyzed and the results are correlated with the final histopathology of the tumor. Histopathological examination of 7 bronchial masses revealed carcinoid tumors (2 typical, 1 atypical), inflammatory myofibroblastic tumor (1), mucoepidermoid carcinoma (1), hamartoma (1), and synovial cell sarcoma (1). The typical carcinoids had mild (18)F-FDG uptake and high (68)Ga DOTA-TOC uptake. Atypical carcinoid had moderate uptake of (18)F-FDG and high (68)Ga DOTA-TOC uptake. Inflammatory myofibroblastic tumor showed high uptake of (18)F-FDG and no uptake of (68)Ga DOTA-TOC. Mucoepidermoid carcinoma showed mild (18)F-FDG uptake and no (68)Ga DOTA-TOC uptake. Hamartoma showed no uptake on either scans. Synovial cell sarcoma showed moderate (18)F-FDG uptake and mild focal (68)Ga DOTA-TOC uptake. This initial experience with the combined use of (18)F-FDG and (68)Ga DOTA-TOC PET-CT scan reveals different uptake patterns in various bronchial tumors. Bronchoscopic biopsy will continue to be the gold standard; however, the interesting observations made in this study merits further evaluation of the utility of the combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in larger number of patients with bronchial masses.

  16. Selecting children for head CT following head injury

    PubMed Central

    Kemp, A; Nickerson, E; Trefan, L; Houston, R; Hyde, P; Pearson, G; Edwards, R; Parslow, RC; Maconochie, I

    2016-01-01

    Objective Indicators for head CT scan defined by the 2007 National Institute for Health and Care Excellence (NICE) guidelines were analysed to identify CT uptake, influential variables and yield. Design Cross-sectional study. Setting Hospital inpatient units: England, Wales, Northern Ireland and the Channel Islands. Patients Children (<15 years) admitted to hospital for more than 4 h following a head injury (September 2009 to February 2010). Interventions CT scan. Main outcome measures Number of children who had CT, extent to which NICE guidelines were followed and diagnostic yield. Results Data on 5700 children were returned by 90% of eligible hospitals, 84% of whom were admitted to a general hospital. CT scans were performed on 30.4% of children (1734), with a higher diagnostic yield in infants (56.5% (144/255)) than children aged 1 to 14 years (26.5% (391/1476)). Overall, only 40.4% (984 of 2437 children) fulfilling at least one of the four NICE criteria for CT actually underwent one. These children were much less likely to receive CT if admitted to a general hospital than to a specialist centre (OR 0.52 (95% CI 0.45 to 0.59)); there was considerable variation between healthcare regions. When indicated, children >3 years were much more likely to have CT than those <3 years (OR 2.35 (95% CI 2.08 to 2.65)). Conclusion Compliance with guidelines and diagnostic yield was variable across age groups, the type of hospital and region where children were admitted. With this pattern of clinical practice the risks of both missing intracranial injury and overuse of CT are considerable. PMID:27449674

  17. Selecting children for head CT following head injury.

    PubMed

    Kemp, A; Nickerson, E; Trefan, L; Houston, R; Hyde, P; Pearson, G; Edwards, R; Parslow, R C; Maconochie, I

    2016-10-01

    Indicators for head CT scan defined by the 2007 National Institute for Health and Care Excellence (NICE) guidelines were analysed to identify CT uptake, influential variables and yield. Cross-sectional study. Hospital inpatient units: England, Wales, Northern Ireland and the Channel Islands. Children (<15 years) admitted to hospital for more than 4 h following a head injury (September 2009 to February 2010). CT scan. Number of children who had CT, extent to which NICE guidelines were followed and diagnostic yield. Data on 5700 children were returned by 90% of eligible hospitals, 84% of whom were admitted to a general hospital. CT scans were performed on 30.4% of children (1734), with a higher diagnostic yield in infants (56.5% (144/255)) than children aged 1 to 14 years (26.5% (391/1476)). Overall, only 40.4% (984 of 2437 children) fulfilling at least one of the four NICE criteria for CT actually underwent one. These children were much less likely to receive CT if admitted to a general hospital than to a specialist centre (OR 0.52 (95% CI 0.45 to 0.59)); there was considerable variation between healthcare regions. When indicated, children >3 years were much more likely to have CT than those <3 years (OR 2.35 (95% CI 2.08 to 2.65)). Compliance with guidelines and diagnostic yield was variable across age groups, the type of hospital and region where children were admitted. With this pattern of clinical practice the risks of both missing intracranial injury and overuse of CT are considerable. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Is sweat chloride predictive of severity of cystic fibrosis lung disease assessed by chest computed tomography?

    PubMed

    Caudri, Daan; Zitter, David; Bronsveld, Inez; Tiddens, Harm

    2017-09-01

    Cystic Fibrosis (CF) lung disease is characterized by a marked heterogeneity. Sweat chloride-level is a functional marker of the CF Transmembrane Regulator (CFTR) protein and could be an important predictor of later disease severity. In this retrospective analysis children from the Rotterdam CF clinic with available sweat chloride level at diagnosis and at least one routine spirometry-controlled volumetric chest CT scan in follow-up were included. CT scans were scored using the CF-CT scoring system (% of maximum). Associations between sweat chloride-levels and CF-CT scores were calculated using linear regression models, adjusting for age at sweat test and age at follow-up. Because structural lung damage develops over the course of many years, effect modification by the age at follow-up CT-scan was tested for by age-stratification. In 59 children (30 male) sweat chloride was measured at diagnosis (median age 0.5 years, range 0-13) and later chest CT performed (median age 14 years, range 6-18). Sweat chloride was associated with significantly higher CT-CT total score, bronchiectasis score, and mucus plugging score. Stratification for age at follow-up in tertiles showed this association remained only in the oldest age group (range 15-18 years). In that subgroup associations were found with all but one of the CF-CT subscores, as well as with all tested lung functions parameters. Sweat chloride-level is a significant predictor of CF lung disease severity as determined by chest CT and lung function. This association could only be demonstrated in children with follow-up to age 15 years and above. © 2017 Wiley Periodicals, Inc.

  19. Automated lung volumetry from routine thoracic CT scans: how reliable is the result?

    PubMed

    Haas, Matthias; Hamm, Bernd; Niehues, Stefan M

    2014-05-01

    Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  20. The scab-like sign: A CT finding indicative of haemoptysis in patients with chronic pulmonary aspergillosis?

    PubMed

    Sato, Haruka; Okada, Fumito; Matsumoto, Shunro; Mori, Hiromu; Kashiwagi, Junji; Komatsu, Eiji; Maeda, Toru; Nishida, Haruto; Daa, Tsutomu; Ohtani, Satoshi; Umeki, Kenji; Ando, Masaru; Kadota, Junichi

    2018-05-03

    The aim of this study was to assess the CT findings that characterise haemoptysis in patients with chronic pulmonary aspergillosis (CPA). We retrospectively identified 120 consecutive patients with CPA (84 men and 36 women, 17-89 years of age, mean age 68.4 years) who had undergone a total of 829 CT examinations between January 2007 and February 2017. In the 11 patients who underwent surgical resection, CT images were compared with the pathological results. The scab-like sign was seen on 142 of the 829 CT scans, specifically, in 87 of the 90 CT scans for haemoptysis and in 55 of the 739 CT scans obtained during therapy evaluation. In 48 of those 55 patients, haemoptysis occurred within 55 days (mean 12.0 days) after the CT scan. In the 687 CT scans with no scab-like sign, there were only three instances of subsequent haemoptysis in the respective patients over the following 6 months. Patients with and without scab-like sign differed significantly in the frequency of haemoptysis occurring after a CT scan (p<0.0001). Pathologically, the scab-like sign corresponded to a fibrinopurulent mass or blood crust. The scab-like sign should be considered as a CT finding indicative of haemoptysis. • Haemoptysis is commonly found in patients with CPA. • A CT finding indicative of haemoptysis in CPA patients is described. • Scab-like sign may identify CPA patients at higher risk of haemoptysis.

  1. Sarcoidosis: correlation of pulmonary parenchymal pattern at CT with results of pulmonary function tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, C.J.; Bell, D.Y.; Coblentz, C.L.

    1989-06-01

    The appearances of the lungs on radiographs and computed tomographic (CT) scans were correlated with degree of uptake on gallium scans and results of pulmonary function tests (PFTs) in 27 patients with sarcoidosis. CT scans were evaluated both qualitatively and quantitatively. Patients were divided into five categories on the basis of the pattern of abnormality at CT: 1 = normal (n = 4); 2 = segmental air-space disease (n = 4); 3 = spherical (alveolar) masslike opacities (n = 4); 4 = multiple, discrete, small nodules (n = 6); and 5 = distortion of parenchymal structures (fibrotic end-stage sarcoidosis) (nmore » = 9). The percentage of the volume judged to be abnormal (CT grade) was correlated with PFT results for each CT and radiographic category. CT grades were also correlated with gallium scanning results and percentage of lymphocytes recovered from bronchoalveolar lavage (BAL). Patients in CT categories 1 and 2 had normal lung function, those in category 3 had mild functional impairment, and those in categories 4 and 5 showed moderate to severe dysfunction. The overall CT grade correlated well with PFT results expressed as a percentage of the predicted value. In five patients, CT scans showed extensive parenchymal disease not seen on radiographs. CT grades did not correlate with the results of gallium scanning or BAL lymphocytes. The authors conclude that patterns of parenchymal sarcoidosis seen at CT correlate with the PFT results and can be used to indicate respiratory impairment.« less

  2. Optimization of dose and image quality in adult and pediatric computed tomography scans

    NASA Astrophysics Data System (ADS)

    Chang, Kwo-Ping; Hsu, Tzu-Kun; Lin, Wei-Ting; Hsu, Wen-Lin

    2017-11-01

    Exploration to maximize CT image and reduce radiation dose was conducted while controlling for multiple factors. The kVp, mAs, and iteration reconstruction (IR), affect the CT image quality and radiation dose absorbed. The optimal protocols (kVp, mAs, IR) are derived by figure of merit (FOM) based on CT image quality (CNR) and CT dose index (CTDIvol). CT image quality metrics such as CT number accuracy, SNR, low contrast materials' CNR and line pair resolution were also analyzed as auxiliary assessments. CT protocols were carried out with an ACR accreditation phantom and a five-year-old pediatric head phantom. The threshold values of the adult CT scan parameters, 100 kVp and 150 mAs, were determined from the CT number test and line pairs in ACR phantom module 1and module 4 respectively. The findings of this study suggest that the optimal scanning parameters for adults be set at 100 kVp and 150-250 mAs. However, for improved low- contrast resolution, 120 kVp and 150-250 mAs are optimal. Optimal settings for pediatric head CT scan were 80 kVp/50 mAs, for maxillary sinus and brain stem, while 80 kVp /300 mAs for temporal bone. SNR is not reliable as the independent image parameter nor the metric for determining optimal CT scan parameters. The iteration reconstruction (IR) approach is strongly recommended for both adult and pediatric CT scanning as it markedly improves image quality without affecting radiation dose.

  3. Lateral topography for reducing effective dose in low-dose chest CT.

    PubMed

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p < 0.001). The mean effective radiation dose for the lateral topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  4. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.

    PubMed

    Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S

    2015-10-01

    Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to commercially available phantoms. They are a viable option for quickly distributing and fabricating low cost, customized phantoms.

  5. Use of computed tomography to define a sacral safe corridor for placement of 2.7 mm cortical screws in feline sacroiliac luxation.

    PubMed

    Philp, Helen; Durand, Alexane; De Vicente, Felipe

    2018-06-01

    Objectives This study aimed to define a safe corridor for 2.7 mm cortical sacroiliac screw insertion in the dorsal plane (craniocaudal direction) using radiography and CT, and in the transverse plane (dorsoventral direction) using CT in feline cadavers. A further aim was to compare the values obtained by CT with those previously reported by radiography in the transverse plane. Methods Thirteen pelvises were retrieved from feline cadavers and dissected to expose one of the articular surfaces of the sacrum. A 2.7 mm screw was placed in the sacrum to a depth of approximately 1 cm in each exposed articular surface. Dorsoventral radiography and CT scanning of each specimen were performed. Multiplanar reconstructions were performed to allow CT evaluation in both the dorsal and transverse planes. Calculations were made to find the maximum, minimum and optimum angles for screw placement in craniocaudal (radiography and CT) and dorsoventral (CT) directions when using a 2.7 mm cortical screw. Results Radiographic measurement showed a mean optimum craniocaudal angle of 106° (range 97-112°). The mean minimum angle was 95° (range 87-107°), whereas the mean maximum angle was 117° (108-124°). Measurement of the dorsal CT scan images showed a mean optimum craniocaudal angle of 101° (range 94-110°). The mean minimum angle was 90° (range 83-99°), whereas the mean maximum angle was 113° (104-125°). The transverse CT scan images showed a mean dorsoventral minimum angle of 103° (range 95-113°), mean maximum angle of 115° (104-125°) and mean optimum dorsoventral angle of 111° (102-119°). Conclusions and relevance An optimum craniocaudal angle of 101° is recommended for 2.7 mm cortical screw placement in the feline sacral body, with a safety margin between 99° and 104°. No single angle can be recommended in the dorsoventral direction and therefore preoperative measuring on individual cats using CT images is recommended to establish the ideal individual angle in the transverse plane.

  6. MDCT of acute pancreatitis: Intraindividual comparison of single-phase versus dual-phase MDCT for initial assessment of acute pancreatitis using different CT scoring systems.

    PubMed

    Avanesov, Maxim; Weinrich, Julius M; Kraus, Thomas; Derlin, Thorsten; Adam, Gerhard; Yamamura, Jin; Karul, Murat

    2016-11-01

    The purpose of the retrospective study was to evaluate the additional value of dual-phase multidetector computed tomography (MDCT) protocols over a single-phase protocol on initial MDCT in patients with acute pancreatitis using three CT-based pancreatitis severity scores with regard to radiation dose. In this retrospective, IRB approved study MDCT was performed in 102 consecutive patients (73 males; 55years, IQR48-64) with acute pancreatitis. Inclusion criteria were CT findings of interstitial edematous pancreatitis (IP) or necrotizing pancreatitis (NP) and a contrast-enhanced dual-phase (arterial phase and portal-venous phase) abdominal CT performed at ≥72h after onset of symptoms. The severity of pancreatic and extrapancreatic changes was independently assessed by 2 observers using 3 validated CT-based scoring systems (CTSI, mCTSI, EPIC). All scores were applied to arterial phase and portal venous phase scans and compared to score results of portal venous phase scans, assessed ≥14days after initial evaluation. For effective dose estimation, volume CT dose index (CTDIvol) and dose length product (DLP) were recorded in all examinations. In neither of the CT severity scores a significant difference was observed after application of a dual-phase protocol compared with a single-phase protocol (IP: CTSI: 2.7 vs. 2.5, p=0.25; mCTSI: 4.0 vs. 4.0, p=0.10; EPIC: 2.0 vs. 2.0, p=0.41; NP: CTSI: 8.0 vs. 7.0, p=0.64; mCTSI: 8.0 vs. 8.0, p=0.10; EPIC: 3.0 vs. 3.0, p=0.06). The application of a single-phase CT protocol was associated with a median effective dose reduction of 36% (mean dose reduction 31%) compared to a dual-phase CT scan. An initial dual-phase abdominal CT after ≥72h after onset of symptoms of acute pancreatitis was not superior to a single-phase protocol for evaluation of the severity of pancreatic and extrapancreatic changes. However, the effective radiation dose may be reduced by 36% using a single-phase protocol. Copyright © 2016. Published by Elsevier Ireland Ltd.

  7. Computer-aided detection of acute pulmonary embolism with 64-slice multi-detector row computed tomography: impact of the scanning conditions and overall image quality in the detection of peripheral clots.

    PubMed

    Dewailly, Marion; Rémy-Jardin, Martine; Duhamel, Alain; Faivre, Jean-Baptiste; Pontana, François; Deken, Valérie; Bakai, Anne-Marie; Remy, Jacques

    2010-01-01

    To evaluate the performance of a computer-aided detection (CAD) system for diagnosing peripheral acute pulmonary embolism (PE) with a 64-slice multi-detector row computed tomography (CT). Two radiologists investigated the accuracy of a software aimed at detecting peripheral clots (PECAD prototype, version 7; Siemens Medical Systems, Forchheim, Germany) by applying this tool for the analysis of the pulmonary arterial bed of 74 CT angiograms obtained with 64-slice dual-source CT (Definition; Siemens Medical Systems). These cases were retrospectively selected from a database of CT studies performed on the same CT unit, with a similar collimation (64 x 0.6 mm) and similar injection protocols. Patient selection was based on a variety of (1) scanning conditions, namely, nongated (n = 30), electrocardiography-gated (n = 30), and dual-energy CT angiograms (n = 14), and (2) image quality (IQ), namely, scans of excellent IQ (n = 53) and lower IQ due to lower levels of arterial enhancement and/or presence of noise (n = 21). The standard of truth was based on the 2 radiologists' consensus reading and the results of CAD. The software detected 80 of 93 peripheral clots present in the 21 patients (42 segmental and 38 subsegmental clots). The overall sensitivity (95% confidence interval) of the CAD tool was 86% (77%-92%) for detecting peripheral clots, 78% (64.5%-88%) at the segmental level and 97% (85.5%-99.9%) at the subsegmental level. Assuming normal vascular anatomy with 20 segmental and 40 subsegmental arteries, overall specificity and positive and negative predictive values (95% confidence interval) of the software were 91.8% (91%-92.6%), 18.4% (15%-22.4%), and 99.7% (99.5%-99.8%), respectively. A mean of 5.4 false positives was found per patient (total, 354 false positives), mainly linked to the presence of perivascular connective tissue (n = 119; 34%) and perivascular airspace consolidation (n = 97; 27%). The sensitivities (95% confidence interval) for the CAD tool were 91% (69.8%-99.3%) for dual-energy, 87% (59.3%-93.2%) for electrocardiography-gated, and 87% (73.5%-95.3%) for nongated scans (P > 0.05). No significant difference was found in the sensitivity of the CAD software when comparing the scans according to the scanning conditions and image quality. The evaluated CAD software has a good sensitivity in detecting peripheral PE, which is not influenced by the scanning conditions or the overall image quality.

  8. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    NASA Astrophysics Data System (ADS)

    Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Marsac, L.; Tanter, M.; Fink, M.

    2009-05-01

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  9. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J

    2013-04-21

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  10. Markerless laser registration in image-guided oral and maxillofacial surgery.

    PubMed

    Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan

    2004-07-01

    The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.

  11. The dosimetric impact of including the patient table in CT dose estimates

    NASA Astrophysics Data System (ADS)

    Nowik, Patrik; Bujila, Robert; Kull, Love; Andersson, Jonas; Poludniowski, Gavin

    2017-12-01

    The purpose of this study was to evaluate the dosimetric impact of including the patient table in Monte Carlo CT dose estimates for both spiral scans and scan projection radiographs (SPR). CT scan acquisitions were simulated for a Siemens SOMATOM Force scanner (Siemens Healthineers, Forchheim, Germany) with and without a patient table present. An adult male, an adult female and a pediatric female voxelized phantom were simulated. The simulated scans included tube voltages of 80 and 120 kVp. Spiral scans simulated without a patient table resulted in effective doses that were overestimated by approximately 5% compared to the same simulations performed with the patient table present. Doses in selected individual organs (breast, colon, lung, red bone marrow and stomach) were overestimated by up to 8%. Effective doses from SPR acquired with the x-ray tube stationary at 6 o’clock (posterior-anterior) were overestimated by 14-23% when the patient table was not included, with individual organ dose discrepancies (breast, colon, lung red bone marrow and stomach) all exceeding 13%. The reference entrance skin dose to the back were in this situation overestimated by 6-15%. These results highlight the importance of including the patient table in patient dose estimates for such scan situations.

  12. Developing patient-specific dose protocols for a CT scanner and exam using diagnostic reference levels.

    PubMed

    Strauss, Keith J

    2014-10-01

    The management of image quality and radiation dose during pediatric CT scanning is dependent on how well one manages the radiographic techniques as a function of the type of exam, type of CT scanner, and patient size. The CT scanner's display of expected CT dose index volume (CTDIvol) after the projection scan provides the operator with a powerful tool prior to the patient scan to identify and manage appropriate CT techniques, provided the department has established appropriate diagnostic reference levels (DRLs). This paper provides a step-by-step process that allows the development of DRLs as a function of type of exam, of actual patient size and of the individual radiation output of each CT scanner in a department. Abdomen, pelvis, thorax and head scans are addressed. Patient sizes from newborns to large adults are discussed. The method addresses every CT scanner regardless of vendor, model or vintage. We cover adjustments to techniques to manage the impact of iterative reconstruction and provide a method to handle all available voltages other than 120 kV. This level of management of CT techniques is necessary to properly monitor radiation dose and image quality during pediatric CT scans.

  13. Image Processing Diagnostics: Emphysema

    NASA Astrophysics Data System (ADS)

    McKenzie, Alex

    2009-10-01

    Currently the computerized tomography (CT) scan can detect emphysema sooner than traditional x-rays, but other tests are required to measure more accurately the amount of affected lung. CT scan images show clearly if a patient has emphysema, but is unable by visual scan alone, to quantify the degree of the disease, as it appears merely as subtle, barely distinct, dark spots on the lung. Our goal is to create a software plug-in to interface with existing open source medical imaging software, to automate the process of accurately diagnosing and determining emphysema severity levels in patients. This will be accomplished by performing a number of statistical calculations using data taken from CT scan images of several patients representing a wide range of severity of the disease. These analyses include an examination of the deviation from a normal distribution curve to determine skewness, a commonly used statistical parameter. Our preliminary results show that this method of assessment appears to be more accurate and robust than currently utilized methods which involve looking at percentages of radiodensities in air passages of the lung.

  14. Early prosthetic aortic valve infection identified with the use of positron emission tomography in a patient with lead endocarditis.

    PubMed

    Amraoui, Sana; Tlili, Ghoufrane; Sohal, Manav; Bordenave, Laurence; Bordachar, Pierre

    2016-12-01

    18-Fluorodeoxyglucose positron emission tomography/computerized tomography (FDG PET/CT) scanning has recently been proposed as a diagnostic tool for lead endocarditis (LE). FDG PET/CT might be also useful to localize associated septic emboli in patients with LE. We report an interesting case of a LE patient with a prosthetic aortic valve in whom a trans-esophageal echocardiogram did not show associated aortic endocarditis. FDG PET/CT revealed prosthetic aortic valve infection. A second TEE performed 2 weeks after identified aortic vegetation. A longer duration of antimicrobial therapy with serial follow-up echocardiography was initiated. There was also increased uptake in the sigmoid colon, corresponding to focal polyps resected during a colonoscopy. FDG PET/CT scanning seems to be highly sensitive for prosthetic aortic valve endocarditis diagnosis. This promising diagnostic tool may be beneficial in LE patients, by identifying septic emboli and potential sites of pathogen entry.

  15. Unusual Presentation of Bladder Paraganglioma: Comparison of 131I MIBG SPECT/CT and 68Ga DOTANOC PET/CT

    PubMed Central

    Jain, Tarun Kumar; Basher, Rajender Kumar; Gupta, Nitin; Shukla, Jaya; Singh, Shrawan Kumar; Mittal, Bhagwant Rai

    2016-01-01

    Extraadrenal chromaffin cell-related tumors or paragangliomas are rare, especially in the bladder, accounting for less than 1% of cases. We report a 16-year-old boy who presented with hematuria and paroxysmal headache and was found to have a prostatic growth infiltrating the urinary bladder on anatomical imaging. Iodine-131 (131I) metaiodobenzylguanidine (MIBG) whole-body scanning and subsequently gallium-68 (68Ga) DOTANOC positron emission tomography/computed tomography (PET/CT) were performed. The MIBG scan revealed a non-tracer-avid soft-tissue mass, while DOTANOC PET/CT revealed a tracer-avid primary soft-tissue mass involving the urinary bladder and prostate with metastasis to the iliac lymph nodes. He underwent surgical management; histopathology of the surgical specimen revealed a bladder paraganglioma, whereas the prostate was found to be free of tumor. PMID:26912984

  16. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging.

    PubMed

    So, Aaron; Imai, Yasuhiro; Nett, Brian; Jackson, John; Nett, Liz; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Islam, Ali; Lee, Ting-Yim

    2016-08-01

    The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisition protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated from the dynamic contrast-enhanced (DCE) heart images taken at baseline and three weeks after the ischemic insult. Their results showed that the phantom and animal images acquired with the CT platform were minimally affected by image noise and artifacts. For the beam-hardening phantom study, changes in water HU in the wall surrounding the heart chambers greatly reduced from >±30 to ≤ ± 5 HU at all kVp settings except one region at 100 kVp (7 HU). For the cone-beam phantom study, differences in mean water HU from the central slice were less than 5 HU at two peripheral slices with each 4 cm away from the central slice. These findings were reproducible in the pig DCE images at two peripheral slices that were 6 cm away from the central slice. For the partial-scan phantom study, standard deviations of the mean water HU in 10 successive partial scans were less than 5 HU at the central slice. Similar observations were made in the pig DCE images at two peripheral slices with each 6 cm away from the central slice. For the image noise phantom study, CNRs in the ASiR-V images were statistically higher (p < 0.05) than the non-ASiR-V images at all kVp settings. MP maps generated from the porcine DCE images were in excellent quality, with the ischemia in the LAD territory clearly seen in the three orthogonal views. The study demonstrates that this CT system can provide accurate and reproducible CT numbers during cardiac gated acquisitions across a wide axial field of view. This CT number fidelity will enable this imaging tool to assess contrast enhancement, potentially providing valuable added information beyond anatomic evaluation of coronary stenoses. Furthermore, their results collectively suggested that the 100 kVp/25 mAs protocol run on this CT system provides sufficient image accuracy at a low radiation dose (<3 mSv) for whole-heart quantitative CT MP imaging.

  17. Accuracy of Canadian CT head rule in predicting positive findings on CT of the head of patients after mild head injury in a large trauma centre in Saudi Arabia

    PubMed Central

    Arab, Ala Faisal; Ahmed, Anwar E; Hussein, Mohamed Ahmed; Khankan, Azzam A; Alokaili, Riyadh Nasser

    2015-01-01

    Background Investigation of unjustified computed tomography (CT) scan in patients with minor head injury is lacking in Saudi Arabia. The purpose of the study was to evaluate the compliance and effectiveness of the Canadian computed tomography head rule (CCHR) in our emergency department (ED) and trauma centre and also to reduce the number of unjustified CT studies of the head in the centre. Methods A retrospective study of 368 ED patients with minor head injury was conducted. Patients who underwent CT scan between July 2010 and June 2011were selected from the ED head trauma registry by systematic randomisation. The CCHR was retrospectively applied on the patients’ charts to calculate the prevalence of unjustified head CT scans. A separate survey was conducted to evaluate three emergency physicians’ level of awareness about the CCHR and their ability to determine the necessity of CT scans with various clinical scenarios of head injury. Results The prevalence of unjustified CT scans as per the CCHR was 61.8% (95% confidence interval (CI) 56.5–66.9%). Approximately 5% of the sample had positive CT findings with 95% CI 2.9–7.6%. The CCHR correctly identified 12 cases with positive CT findings with 66.67% sensitivity. Only 24 (6.7%) had Glasgow coma scale scores less than 15 (13/14). The Glasgow coma scale correctly identified only two cases with positive CT findings with 11.11% sensitivity. The percentage of skull fracture (0.9% vs 5%, P = 0.030) was significantly lower in patients with unjustified CT scans than in patients with clinically justified CT scans. There was fair to substantial agreement between the ED physicians and the CCHR (κ = 35–61%). Two ED physicians identified all cases of justified CT scan with 100% sensitivity (95% CI 71.51–100%). Conclusion The level of education regarding the CCHR was found to be optimal among emergency physicians using a case-based scenario survey. The CCHR was found to have a poor compliance potential in the busy ED of our trauma centre and the prevalence of unjustified cranial CT scans remained high. PMID:26471399

  18. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT

    PubMed Central

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-01-01

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification. PMID:28881772

  19. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT.

    PubMed

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-08-08

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.

  20. Automatic estimation of detector radial position for contoured SPECT acquisition using CT images on a SPECT/CT system.

    PubMed

    Liu, Ruijie Rachel; Erwin, William D

    2006-08-01

    An algorithm was developed to estimate noncircular orbit (NCO) single-photon emission computed tomography (SPECT) detector radius on a SPECT/CT imaging system using the CT images, for incorporation into collimator resolution modeling for iterative SPECT reconstruction. Simulated male abdominal (arms up), male head and neck (arms down) and female chest (arms down) anthropomorphic phantom, and ten patient, medium-energy SPECT/CT scans were acquired on a hybrid imaging system. The algorithm simulated inward SPECT detector radial motion and object contour detection at each projection angle, employing the calculated average CT image and a fixed Hounsfield unit (HU) threshold. Calculated radii were compared to the observed true radii, and optimal CT threshold values, corresponding to patient bed and clothing surfaces, were found to be between -970 and -950 HU. The algorithm was constrained by the 45 cm CT field-of-view (FOV), which limited the detected radii to < or = 22.5 cm and led to occasional radius underestimation in the case of object truncation by CT. Two methods incorporating the algorithm were implemented: physical model (PM) and best fit (BF). The PM method computed an offset that produced maximum overlap of calculated and true radii for the phantom scans, and applied that offset as a calculated-to-true radius transformation. For the BF method, the calculated-to-true radius transformation was based upon a linear regression between calculated and true radii. For the PM method, a fixed offset of +2.75 cm provided maximum calculated-to-true radius overlap for the phantom study, which accounted for the camera system's object contour detect sensor surface-to-detector face distance. For the BF method, a linear regression of true versus calculated radius from a reference patient scan was used as a calculated-to-true radius transform. Both methods were applied to ten patient scans. For -970 and -950 HU thresholds, the combined overall average root-mean-square (rms) error in radial position for eight patient scans without truncation were 3.37 cm (12.9%) for PM and 1.99 cm (8.6%) for BF, indicating BF is superior to PM in the absence of truncation. For two patient scans with truncation, the rms error was 3.24 cm (12.2%) for PM and 4.10 cm (18.2%) for BF. The slightly better performance of PM in the case of truncation is anomalous, due to FOV edge truncation artifacts in the CT reconstruction, and thus is suspect. The calculated NCO contour for a patient SPECT/CT scan was used with an iterative reconstruction algorithm that incorporated compensation for system resolution. The resulting image was qualitatively superior to the image obtained by reconstructing the data using the fixed radius stored by the scanner. The result was also superior to the image reconstructed using the iterative algorithm provided with the system, which does not incorporate resolution modeling. These results suggest that, under conditions of no or only mild lateral truncation of the CT scan, the algorithm is capable of providing radius estimates suitable for iterative SPECT reconstruction collimator geometric resolution modeling.

  1. A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk

    Purpose: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T{sub 1}-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairsmore » and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. Methods: The data consisted of CT and T{sub 1}-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAE{sub vox}) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose–volume histogram (DVH) point deviations and γ-index analysis. Results: The patch-based approach had an average MAE{sub vox} of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min. Conclusions: The authors showed that a patch-based method based on affine registrations and T{sub 1}-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline.« less

  2. In vivo differentiation of complementary contrast media at dual-energy CT.

    PubMed

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F; Gao, Dong-Wei; Yeh, Benjamin M

    2012-10-01

    To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase-enhanced CT scan simultaneously in a single examination. Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012.

  3. In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT

    PubMed Central

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei

    2012-01-01

    Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447

  4. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction.

    PubMed

    Kaasalainen, Touko; Palmu, Kirsi; Lampinen, Anniina; Reijonen, Vappu; Leikola, Junnu; Kivisaari, Riku; Kortesniemi, Mika

    2015-09-01

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality.

  5. Variance analysis of x-ray CT sinograms in the presence of electronic noise background.

    PubMed

    Ma, Jianhua; Liang, Zhengrong; Fan, Yi; Liu, Yan; Huang, Jing; Chen, Wufan; Lu, Hongbing

    2012-07-01

    Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments of low-dose CT data in the presence of electronic noise background. The authors first studied the statistical moment properties of detected signals in CT transmission domain, where the noise of detected signals is considered as quanta fluctuation upon electronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the mean-variance relationship of the detected signals in CT sinogram domain, wherein the image formation becomes a linear operation between the sinogram data and the unknown image, rather than a nonlinear operation in the CT transmission domain. To get insight into the derived new formula by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT scanner at five different mAs levels from 100 down to 17. The results demonstrated that the electronic noise background is significant when low-mAs (or low-dose) scan is performed. The influence of the electronic noise background should be considered in low-dose CT imaging.

  6. Variance analysis of x-ray CT sinograms in the presence of electronic noise background

    PubMed Central

    Ma, Jianhua; Liang, Zhengrong; Fan, Yi; Liu, Yan; Huang, Jing; Chen, Wufan; Lu, Hongbing

    2012-01-01

    Purpose: Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments of low-dose CT data in the presence of electronic noise background. Methods: The authors first studied the statistical moment properties of detected signals in CT transmission domain, where the noise of detected signals is considered as quanta fluctuation upon electronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the mean–variance relationship of the detected signals in CT sinogram domain, wherein the image formation becomes a linear operation between the sinogram data and the unknown image, rather than a nonlinear operation in the CT transmission domain. To get insight into the derived new formula by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT scanner at five different mAs levels from 100 down to 17. Results: The results demonstrated that the electronic noise background is significant when low-mAs (or low-dose) scan is performed. Conclusions: The influence of the electronic noise background should be considered in low-dose CT imaging. PMID:22830738

  7. [Spiral CT angiography in practice].

    PubMed

    Pavcec, Zlatko; Zokalj, Ivan; Rumboldt, Zoran; Pal, Andrej; Saghir, Hussein; Ozretić, David; Latin, Branko; Perhoć, Zeljka; Marotti, Miljenko

    2005-01-01

    Incidence of vascular diseases and development of new radiologic techniques in the last three decades has given strong impuls for introduction of non-invasive vascular diagnostic methods. Thanks to the introduction of Doppler ultrasound, new types of computed tomography (CT) and magnetic resonance (MR) scanners, non-invasive vascular diagnostic methods are replacing conventional invasive (catheter) angiographic methods. Computed tomographic angiography (CTA) is a noninvasive vascular diagnostic method based on continuous scanning with CT scanner during intravenous application of contrast material. Performing of CTA is possible after introduction of spiral CT technique whose characteristics are short imaging time and volumetric data acquisition. The main goal of this article, based on our experiences, is to review the role of CTA, performed on single-slice CT scanner, in managment of patients with vascular pathology.

  8. 11C-Methionine Positron Emission Tomography/Computed Tomography Versus 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Evaluation of Residual or Recurrent World Health Organization Grades II and III Meningioma After Treatment.

    PubMed

    Tomura, Noriaki; Saginoya, Toshiyuki; Goto, Hiromi

    2018-04-02

    The aim of this study was to determine the assessment of positron emission tomography-computed tomography using C-methionine (MET PET/CT) for World Health Organization (WHO) grades II and III meningiomas; MET PET/CT was compared with PET/CT using F-fluorodeoxy glucose (FDG PET/CT). This study was performed in 17 cases with residual and/or recurrent WHO grades II and III meningiomas. Two neuroradiologists reviewed both PET/CT scans. For agreement, the κ coefficient was measured. Difference in tumor-to-normal brain uptake ratios (T/N ratios) between 2 PET/CT scans was analyzed. Correlation between the maximum tumor size and T/N ratio in PET/CT was studied. For agreement by both reviewers, the κ coefficient was 0.51 (P < 0.05). The T/N ratio was significantly higher for MET PET/CT (3.24 ± 1.36) than for FDG PET/CT (0.93 ± 0.44) (P < 0.01). C-methionine ratio significantly correlated with tumor size (y = 8.1x + 16.3, n = 22, P < 0.05), but FDG ratio did not CONCLUSIONS: C-methionine PET/CT has superior potential for imaging of WHO grades II and III meningiomas with residual or recurrent tumors compared with FDG PET/CT.

  9. Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage

    PubMed Central

    Kumar, R Sunil; Narasingappa, Ramesh Balenahalli; Joshi, Chandrashekar G; Girish, Talakatta K; Prasada Rao, Ummiti JS; Danagoudar, Ananda

    2017-01-01

    Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy. PMID:28584491

  10. Image processing, geometric modeling and data management for development of a virtual bone surgery system.

    PubMed

    Niu, Qiang; Chi, Xiaoyi; Leu, Ming C; Ochoa, Jorge

    2008-01-01

    This paper describes image processing, geometric modeling and data management techniques for the development of a virtual bone surgery system. Image segmentation is used to divide CT scan data into different segments representing various regions of the bone. A region-growing algorithm is used to extract cortical bone and trabecular bone structures systematically and efficiently. Volume modeling is then used to represent the bone geometry based on the CT scan data. Material removal simulation is achieved by continuously performing Boolean subtraction of the surgical tool model from the bone model. A quadtree-based adaptive subdivision technique is developed to handle the large set of data in order to achieve the real-time simulation and visualization required for virtual bone surgery. A Marching Cubes algorithm is used to generate polygonal faces from the volumetric data. Rendering of the generated polygons is performed with the publicly available VTK (Visualization Tool Kit) software. Implementation of the developed techniques consists of developing a virtual bone-drilling software program, which allows the user to manipulate a virtual drill to make holes with the use of a PHANToM device on a bone model derived from real CT scan data.

  11. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations.

    PubMed

    Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela

    2013-08-01

    Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.

  12. Computed tomography automatic exposure control techniques in 18F-FDG oncology PET-CT scanning.

    PubMed

    Iball, Gareth R; Tout, Deborah

    2014-04-01

    Computed tomography (CT) automatic exposure control (AEC) systems are now used in all modern PET-CT scanners. A collaborative study was undertaken to compare AEC techniques of the three major PET-CT manufacturers for fluorine-18 fluorodeoxyglucose half-body oncology imaging. An audit of 70 patients was performed for half-body CT scans taken on a GE Discovery 690, Philips Gemini TF and Siemens Biograph mCT (all 64-slice CT). Patient demographic and dose information was recorded and image noise was calculated as the SD of Hounsfield units in the liver. A direct comparison of the AEC systems was made by scanning a Rando phantom on all three systems for a range of AEC settings. The variation in dose and image quality with patient weight was significantly different for all three systems, with the GE system showing the largest variation in dose with weight and Philips the least. Image noise varied with patient weight in Philips and Siemens systems but was constant for all weights in GE. The z-axis mA profiles from the Rando phantom demonstrate that these differences are caused by the nature of the tube current modulation techniques applied. The mA profiles varied considerably according to the AEC settings used. CT AEC techniques from the three manufacturers yield significantly different tube current modulation patterns and hence deliver different doses and levels of image quality across a range of patient weights. Users should be aware of how their system works and of steps that could be taken to optimize imaging protocols.

  13. 7. Survey of Results of Whole Body Imaging Using the PET/CT at the University of Pittsburgh Medical Center PET Facility.

    PubMed

    Martinelli; Townsend; Meltzer; Villemagne

    2000-07-01

    Purpose: At the University Of Pittsburgh Medical Center, over 100 oncology studies have been performed using a combined PET/CT scanner. The scanner is a prototype, which combines clinical PET and clinical CT imaging in a single unit. The sensitivity achieved using three-dimensional PET imaging as well as the use of the CT for attenuation correction and image fusion make the device ideal for clinical oncology. Clinical indications imaged on the PET/CT scanner include, but are not limited to, tumor staging, solitary pulmonary nodule evaluation, and evaluation of tumor reoccurrence in melanoma, lymphoma, colorectal cancer, lung cancer, pancreatic cancer, head and neck cancer, and renal cancer.Methods: For all studies, seven millicuries of F(18)-fluorodeoxyglucose is injected and a forty-five minute uptake period is allowed prior to positioning the patient in the scanner. A helical CT scan is acquired over the region, or regions of interest followed by a multi-bed whole body PET scan for the same axial extent. The CT scan is used to correct the PET data for attenuation. The entire imaging session lasts 1-1.5 hours depending on the number of beds acquired, and is generally well tolerated by the patient.Results and Conclusion: Based on our experience in over 100 studies, combined PET/CT imaging offers significant advantages, including more accurate localization of focal uptake, distinction of pathology from normal physiological uptake, and improvements in evaluating therapy. These benefits will be illustrated with a number of representative, fully documented studies.

  14. Worsening respiratory function in mechanically ventilated intensive care patients: feasibility and value of xenon-enhanced dual energy CT.

    PubMed

    Hoegl, Sandra; Meinel, Felix G; Thieme, Sven F; Johnson, Thorsten R C; Eickelberg, Oliver; Zwissler, Bernhard; Nikolaou, Konstantin

    2013-03-01

    To evaluate the feasibility and incremental diagnostic value of xenon-enhanced dual-energy CT in mechanically ventilated intensive care patients with worsening respiratory function. The study was performed in 13 mechanically ventilated patients with severe pulmonary conditions (acute respiratory distress syndrome (ARDS), n=5; status post lung transplantation, n=5; other, n=3) and declining respiratory function. CT scans were performed using a dual-source CT scanner at an expiratory xenon concentration of 30%. Both ventilation images (Xe-DECT) and standard CT images were reconstructed from a single CT scan. Findings were recorded for Xe-DECT and standard CT images separately. Ventilation defects on xenon images were matched to morphological findings on standard CT images and incremental diagnostic information of xenon ventilation images was recorded if present. Mean xenon consumption was 2.95 l per patient. No adverse events occurred under xenon inhalation. In the visual CT analysis, the Xe-DECT ventilation defects matched with pathologic changes in lung parenchyma seen in the standard CT images in all patients. Xe-DECT provided additional diagnostic findings in 4/13 patients. These included preserved ventilation despite early pneumonia (n=1), more confident discrimination between a large bulla and pneumothorax (n=1), detection of an airway-to-pneumothorax fistula (n=1) and exclusion of a suspected airway-to-mediastinum fistula (n=1). In all 4 patients, the additional findings had a substantial impact on patients' management. Xenon-enhanced DECT is safely feasible and can add relevant diagnostic information in mechanically ventilated intensive care patients with worsening respiratory function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. SU-F-207-16: CT Protocols Optimization Using Model Observer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, H; Fan, J; Kupinski, M

    2015-06-15

    Purpose: To quantitatively evaluate the performance of different CT protocols using task-based measures of image quality. This work studies the task of size and the contrast estimation of different iodine concentration rods inserted in head- and body-sized phantoms using different imaging protocols. These protocols are designed to have the same dose level (CTDIvol) but using different X-ray tube voltage settings (kVp). Methods: Different concentrations of iodine objects inserted in a head size phantom and a body size phantom are imaged on a 64-slice commercial CT scanner. Scanning protocols with various tube voltages (80, 100, and 120 kVp) and current settingsmore » are selected, which output the same absorbed dose level (CTDIvol). Because the phantom design (size of the iodine objects, the air gap between the inserted objects and the phantom) is not ideal for a model observer study, the acquired CT images are used to generate simulation images with four different sizes and five different contracts iodine objects. For each type of the objects, 500 images (100 x 100 pixels) are generated for the observer study. The observer selected in this study is the channelized scanning linear observer which could be applied to estimate the size and the contrast. The figure of merit used is the correct estimation ratio. The mean and the variance are estimated by the shuffle method. Results: The results indicate that the protocols with 100 kVp tube voltage setting provides the best performance for iodine insert size and contrast estimation for both head and body phantom cases. Conclusion: This work presents a practical and robust quantitative approach using channelized scanning linear observer to study contrast and size estimation performance from different CT protocols. Different protocols at same CTDIvol setting could Result in different image quality performance. The relationship between the absorbed dose and the diagnostic image quality is not linear.« less

  16. MRI simulation: end-to-end testing for prostate radiation therapy using geometric pelvic MRI phantoms

    NASA Astrophysics Data System (ADS)

    Sun, Jidi; Dowling, Jason; Pichler, Peter; Menk, Fred; Rivest-Henault, David; Lambert, Jonathan; Parker, Joel; Arm, Jameen; Best, Leah; Martin, Jarad; Denham, James W.; Greer, Peter B.

    2015-04-01

    To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation. A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor’s 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs. The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.

  17. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistrangelo, Massimiliano, E-mail: mistrangelo@katamail.com; Pelosi, Ettore; Bello, Marilena

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectalmore » examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.« less

  18. Arthroscopic and 3D CT Scan Evaluation of Femoral Footprint of the Anterior Cruciate Ligament in Chronic ACL Deficient Knees.

    PubMed

    Das, Anupam; Yadav, C S; Gamanagatti, Shivanand; Pandey, R M; Mittal, Ravi

    2018-06-13

    The outcome of single-bundle anterior cruciate ligament (ACL) reconstruction depends largely on the anatomic placement of bone tunnel. The lateral intercondylar ridge (LIR) and bifurcate ridge (BR) are useful bony landmarks for femoral tunnel placement. The purpose of our study was to compare the bony landmarks of ACL footprint on femur by three-dimensional computed tomography (3D CT) scan and arthroscopy in chronic ACL-deficient knees. Fifty patients above 18 years of age who were diagnosed of having ACL tear were selected for the study. All the cases were more than 6 months old since the injury. Preoperative 3D CT scan of the affected knee was obtained for each of them. They underwent single-bundle anatomic ACL reconstruction. Measurements were done on the preoperative 3D CT and arthroscopy to quantify the position of the LIR and BR. The proximodistal distance of lateral femoral condyle was 21.41+/-2.5 mm on CT scan and 22.02+/-2.02 mm on arthroscopy. On preoperative 3D CT scan, the midpoint of the LIR was found to be located at a mean distance of 11.17±2.11 mm from the proximal margin of the lateral femoral condyle. On arthroscopy, it was at 10.18+/-1.52 mm from the proximal margin the lateral femoral condyle. The "bifurcate ridge"(BR) was not visible in any of the cases during arthroscopy or CT scan. We concluded that LIR is an easily identifiable bony landmark on arthroscopy in all cases. It can also be identified on CT scans. BR is not identified both on arthroscopy and CT scans in chronic ACL tears. The arthroscopic measurements of bony landmarks are quite close to those of CT scan. Midpoint of LIR is at 52.185% of the proximodistal distance on CT scan evaluation and it is at 46.21% on arthroscopic evaluation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Correlation between CT-based measured renal volumes and nuclear-renography-based split renal function in living kidney donors. Clinical diagnostic utility and practice patterns.

    PubMed

    Diez, Alejandro; Powelson, John; Sundaram, Chandru P; Taber, Tim E; Mujtaba, Muhammad A; Yaqub, Muhammad S; Mishler, Dennis P; Goggins, William C; Sharfuddin, Asif A

    2014-06-01

    Living donor evaluation involves imaging to determine the choice of kidney for nephrectomy. Our aim was to study the diagnostic accuracy and correlation between CT-based volume measurements and split renal function (SRF) as measured by nuclear renography in potential living donors and its impact on kidney selection decision. We analyzed 190 CT-based volume measurements in healthy donors, of which 65 donors had a radionuclide study performed to determine SRF. There were no differences in demographics, anthropometric measurements, total volumes, eGFR, creatinine clearances between those who required a nuclear scan and those who did not. There was a significant correlation between CT-volume-measurement-based SRF and nuclear-scan-based SRF (Pearson coefficient r 0.59; p < 0.001). Furthermore, selective nuclear-based SRF allowed careful selection of donor nephrectomy, leaving the donor with the higher functioning kidney in most cases. There was also a significantly higher number of right-sided nephrectomies selected after nuclear-based SRF studies. CT-based volume measurements in living donor imaging have sufficient correlation with nuclear-based SRF. Selective use of nuclear-scan-based SRF allows careful selection for donor nephrectomy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Brain early infarct detection using gamma correction extreme-level eliminating with weighting distribution.

    PubMed

    Teh, V; Sim, K S; Wong, E K

    2016-11-01

    According to the statistic from World Health Organization (WHO), stroke is one of the major causes of death globally. Computed tomography (CT) scan is one of the main medical diagnosis system used for diagnosis of ischemic stroke. CT scan provides brain images in Digital Imaging and Communication in Medicine (DICOM) format. The presentation of CT brain images is mainly relied on the window setting (window center and window width), which converts an image from DICOM format into normal grayscale format. Nevertheless, the ordinary window parameter could not deliver a proper contrast on CT brain images for ischemic stroke detection. In this paper, a new proposed method namely gamma correction extreme-level eliminating with weighting distribution (GCELEWD) is implemented to improve the contrast on CT brain images. GCELEWD is capable of highlighting the hypodense region for diagnosis of ischemic stroke. The performance of this new proposed technique, GCELEWD, is compared with four of the existing contrast enhancement technique such as brightness preserving bi-histogram equalization (BBHE), dualistic sub-image histogram equalization (DSIHE), extreme-level eliminating histogram equalization (ELEHE), and adaptive gamma correction with weighting distribution (AGCWD). GCELEWD shows better visualization for ischemic stroke detection and higher values with image quality assessment (IQA) module. SCANNING 38:842-856, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  1. Estimating organ doses from tube current modulated CT examinations using a generalized linear model.

    PubMed

    Bostani, Maryam; McMillan, Kyle; Lu, Peiyun; Kim, Grace Hyun J; Cody, Dianna; Arbique, Gary; Greenberg, S Bruce; DeMarco, John J; Cagnon, Chris H; McNitt-Gray, Michael F

    2017-04-01

    Currently, available Computed Tomography dose metrics are mostly based on fixed tube current Monte Carlo (MC) simulations and/or physical measurements such as the size specific dose estimate (SSDE). In addition to not being able to account for Tube Current Modulation (TCM), these dose metrics do not represent actual patient dose. The purpose of this study was to generate and evaluate a dose estimation model based on the Generalized Linear Model (GLM), which extends the ability to estimate organ dose from tube current modulated examinations by incorporating regional descriptors of patient size, scanner output, and other scan-specific variables as needed. The collection of a total of 332 patient CT scans at four different institutions was approved by each institution's IRB and used to generate and test organ dose estimation models. The patient population consisted of pediatric and adult patients and included thoracic and abdomen/pelvis scans. The scans were performed on three different CT scanner systems. Manual segmentation of organs, depending on the examined anatomy, was performed on each patient's image series. In addition to the collected images, detailed TCM data were collected for all patients scanned on Siemens CT scanners, while for all GE and Toshiba patients, data representing z-axis-only TCM, extracted from the DICOM header of the images, were used for TCM simulations. A validated MC dosimetry package was used to perform detailed simulation of CT examinations on all 332 patient models to estimate dose to each segmented organ (lungs, breasts, liver, spleen, and kidneys), denoted as reference organ dose values. Approximately 60% of the data were used to train a dose estimation model, while the remaining 40% was used to evaluate performance. Two different methodologies were explored using GLM to generate a dose estimation model: (a) using the conventional exponential relationship between normalized organ dose and size with regional water equivalent diameter (WED) and regional CTDI vol as variables and (b) using the same exponential relationship with the addition of categorical variables such as scanner model and organ to provide a more complete estimate of factors that may affect organ dose. Finally, estimates from generated models were compared to those obtained from SSDE and ImPACT. The Generalized Linear Model yielded organ dose estimates that were significantly closer to the MC reference organ dose values than were organ doses estimated via SSDE or ImPACT. Moreover, the GLM estimates were better than those of SSDE or ImPACT irrespective of whether or not categorical variables were used in the model. While the improvement associated with a categorical variable was substantial in estimating breast dose, the improvement was minor for other organs. The GLM approach extends the current CT dose estimation methods by allowing the use of additional variables to more accurately estimate organ dose from TCM scans. Thus, this approach may be able to overcome the limitations of current CT dose metrics to provide more accurate estimates of patient dose, in particular, dose to organs with considerable variability across the population. © 2017 American Association of Physicists in Medicine.

  2. Two-Phase Helical Computed Tomography Study of Salivary Gland Warthin Tumors: A Radiologic Findings and Surgical Applications

    PubMed Central

    Joo, Yeon Hee; Kim, Jin Pyeong; Park, Jung Je

    2014-01-01

    Objectives The goal of this study was to define the radiologic characteristics of two-phase computed tomography (CT) of salivary gland Warthin tumors and to compare them to pleomorphic adenomas. We also aimed to provide a foundation for selecting a surgical method on the basis of radiologic findings. Methods We prospectively enrolled 116 patients with parotid gland tumors, who underwent two-phase CT preoperatively. Early and delayed phase scans were obtained, with scanning delays of 30 and 120 seconds, respectively. The attenuation changes and enhancement patterns were analyzed. In cases when the attenuation changes were decreased, we presumed Warthin tumor preoperatively and performed extracapsular dissection. When the attenuation changes were increased, superficial parotidectomy was performed on the parotid gland tumors. We analyzed the operation times, incision sizes, complications, and recurrence rates. Results Attenuation of Warthin tumors was decreased from early to delayed scans. The ratio of CT numbers in Warthin tumors was also significantly different from other tumors. Warthin tumors were diagnosed with a sensitivity of 96.1% and specificity of 97% using two-phase CT. The mean operation time was 38 minutes and the mean incision size was 36.2 mm for Warthin tumors. However, for the other parotid tumors, the average operation time was 122 minutes and the average incision size was 91.8 mm (P<0.05). Conclusion Salivary Warthin tumor has a distinct pattern of contrast enhancement on two-phase CT, which can guide treatment decisions. The preoperative diagnosis of Warthin tumor made extracapsular dissection possible instead of superficial parotidectomy. PMID:25177439

  3. Two-phase helical computed tomography study of salivary gland warthin tumors: a radiologic findings and surgical applications.

    PubMed

    Joo, Yeon Hee; Kim, Jin Pyeong; Park, Jung Je; Woo, Seung Hoon

    2014-09-01

    The goal of this study was to define the radiologic characteristics of two-phase computed tomography (CT) of salivary gland Warthin tumors and to compare them to pleomorphic adenomas. We also aimed to provide a foundation for selecting a surgical method on the basis of radiologic findings. We prospectively enrolled 116 patients with parotid gland tumors, who underwent two-phase CT preoperatively. Early and delayed phase scans were obtained, with scanning delays of 30 and 120 seconds, respectively. The attenuation changes and enhancement patterns were analyzed. In cases when the attenuation changes were decreased, we presumed Warthin tumor preoperatively and performed extracapsular dissection. When the attenuation changes were increased, superficial parotidectomy was performed on the parotid gland tumors. We analyzed the operation times, incision sizes, complications, and recurrence rates. Attenuation of Warthin tumors was decreased from early to delayed scans. The ratio of CT numbers in Warthin tumors was also significantly different from other tumors. Warthin tumors were diagnosed with a sensitivity of 96.1% and specificity of 97% using two-phase CT. The mean operation time was 38 minutes and the mean incision size was 36.2 mm for Warthin tumors. However, for the other parotid tumors, the average operation time was 122 minutes and the average incision size was 91.8 mm (P<0.05). Salivary Warthin tumor has a distinct pattern of contrast enhancement on two-phase CT, which can guide treatment decisions. The preoperative diagnosis of Warthin tumor made extracapsular dissection possible instead of superficial parotidectomy.

  4. Interpretation of Brain CT Scans in the Field by Critical Care Physicians in a Mobile Stroke Unit

    PubMed Central

    Zakariassen, Erik; Lindner, Thomas; Nome, Terje; Bache, Kristi G.; Røislien, Jo; Gleditsch, Jostein; Solyga, Volker; Russell, David; Lund, Christian G.

    2017-01-01

    ABSTRACT BACKGROUND AND PURPOSE In acute stroke, thromboembolism or spontaneous hemorrhage abruptly reduces blood flow to a part of the brain. To limit necrosis, rapid radiological identification of the pathological mechanism must be conducted to allow the initiation of targeted treatment. The aim of the Norwegian Acute Stroke Prehospital Project is to determine if anesthesiologists, trained in prehospital critical care, may accurately assess cerebral computed tomography (CT) scans in a mobile stroke unit (MSU). METHODS In this pilot study, 13 anesthesiologists assessed unselected acute stroke patients with a cerebral CT scan in an MSU. The scans were simultaneously available by teleradiology at the receiving hospital and the on‐call radiologist. CT scan interpretation was focused on the radiological diagnosis of acute stroke and contraindications for thrombolysis. The aim of this study was to find inter‐rater agreement between the pre‐ and in‐hospital radiological assessments. A neuroradiologist evaluated all CT scans retrospectively. Statistical analysis of inter‐rater agreement was analyzed with Cohen's kappa. RESULTS Fifty‐one cerebral CT scans from the MSU were included. Inter‐rater agreement between prehospital anesthesiologists and the in‐hospital on‐call radiologists was excellent in finding radiological selection for thrombolysis (kappa .87). Prehospital CT scans were conducted in median 10 minutes (7 and 14 minutes) in the MSU, and median 39 minutes (31 and 48 minutes) before arrival at the receiving hospital. CONCLUSION This pilot study shows that anesthesiologists trained in prehospital critical care may effectively assess cerebral CT scans in an MSU, and determine if there are radiological contraindications for thrombolysis. PMID:28766306

  5. Lecithin-coated gold nanoflowers (GNFs) for CT scan imaging applications and biochemical parameters; in vitro and in vivo studies.

    PubMed

    Aziz, Farooq; Bano, Khizra; Siddique, Ahmad Hassan; Bajwa, Sadia Zafar; Nazir, Aalia; Munawar, Anam; Shaheen, Ayesha; Saeed, Madiha; Afzal, Muhammad; Iqbal, M Zubair; Wu, Aiguo; Khan, Waheed S

    2018-01-09

    We report a novel strategy for the fabrication of lecithin-coated gold nanoflowers (GNFs) via single-step design for CT imaging application. Field-emission electron microscope confirmed flowers like morphology of the as-synthesized nanostructures. Furthermore, these show absorption peak in near-infrared (NIR) region at λ max 690 nm Different concentrations of GNFs are tested as a contrast agent in CT scans at tube voltage 135 kV and tube current 350 mA. These results are compared with same amount of iodine at same CT scan parameters. The results of in vitro CT scan study show that GNFs have good contrast enhancement properties, whereas in vivo study of rabbits CT scan shows that GNFs enhance the CT image clearly at 135 kV as compared to that of iodine. Cytotoxicity was studied and blood profile show minor increase of white blood cells and haemoglobin, whereas decrease of red blood cells and platelets.

  6. The effects of slice thickness and radiation dose level variations on computer-aided diagnosis (CAD) nodule detection performance in pediatric chest CT scans

    NASA Astrophysics Data System (ADS)

    Emaminejad, Nastaran; Lo, Pechin; Ghahremani, Shahnaz; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.

    2017-03-01

    For pediatric oncology patients, CT scans are performed to assess treatment response and disease progression. CAD may be used to detect lung nodules which would reflect metastatic disease. The purpose of this study was to investigate the effects of reducing radiation dose and varying slice thickness on CAD performance in the detection of solid lung nodules in pediatric patients. The dataset consisted of CT scans of 58 pediatric chest cases, from which 7 cases had lung nodules detected by radiologist, and a total of 28 nodules were marked. For each case, the original raw data (sinogram data) was collected and a noise addition model was used to simulate reduced-dose scans of 50%, 25% and 10% of the original dose. In addition, the original and reduced-dose raw data were reconstructed at slice thicknesses of 1.5 and 3 mm using a medium sharp (B45) kernel; the result was eight datasets (4 dose levels x 2 thicknesses) for each case An in-house CAD tool was applied on all reconstructed scans, and results were compared with the radiologist's markings. Patient level mean sensitivities at 3mm thickness were 24%, 26%, 25%, 27%, and at 1.5 mm thickness were 23%, 29%, 35%, 36% for 10%, 25%, 50%, and 100% dose level, respectively. Mean FP numbers were 1.5, 0.9, 0.8, 0.7 at 3 mm and 11.4, 3.5, 2.8, 2.8 at 1.5 mm thickness for 10%, 25%, 50%, and 100% dose level respectively. CAD sensitivity did not change with dose level for 3mm thickness, but did change with dose for 1.5 mm. False Positives increased at low dose levels where noise values were high.

  7. Pre-operative predictive factors for gallbladder cholesterol polyps using conventional diagnostic imaging

    PubMed Central

    Choi, Ji-Hoon; Yun, Jung-Won; Kim, Yong-Sung; Lee, Eun-A; Hwang, Sang-Tae; Cho, Yong-Kyun; Kim, Hong-Joo; Park, Jung-Ho; Park, Dong-Il; Sohn, Chong-Il; Jeon, Woo-Kyu; Kim, Byung-Ik; Kim, Hyoung-Ook; Shin, Jun-Ho

    2008-01-01

    AIM: To determine the clinical data that might be useful for differentiating benign from malignant gallbladder (GB) polyps by comparing radiological methods, including abdominal ultrasonography (US) and computed tomography (CT) scanning, with postoperative pathology findings. METHODS: Fifty-nine patients underwent laparoscopic cholecystectomy for a GB polyp of around 10 mm. They were divided into two groups, one with cholesterol polyps and the other with non-cholesterol polyps. Clinical features such as gender, age, symptoms, size and number of polyps, the presence of a GB stone, the radiologically measured maximum diameter of the polyp by US and CT scanning, and the measurements of diameter from postoperative pathology were recorded for comparative analysis. RESULTS: Fifteen of the 41 cases with cholesterol polyps (36.6%) were detected with US but not CT scanning, whereas all 18 non-cholesterol polyps were observed using both methods. In the cholesterol polyp group, the maximum measured diameter of the polyp was smaller by CT scan than by US. Consequently, the discrepancy between those two scanning measurements was greater than for the non-cholesterol polyp group. CONCLUSION: The clinical signs indicative of a cholesterol polyp include: (1) a polyp observed by US but not observable by CT scanning, (2) a smaller diameter on the CT scan compared to US, and (3) a discrepancy in its maximum diameter between US and CT measurements. In addition, US and the CT scan had low accuracy in predicting the polyp diameter compared to that determined by postoperative pathology. PMID:19058309

  8. Pre-operative predictive factors for gallbladder cholesterol polyps using conventional diagnostic imaging.

    PubMed

    Choi, Ji-Hoon; Yun, Jung-Won; Kim, Yong-Sung; Lee, Eun-A; Hwang, Sang-Tae; Cho, Yong-Kyun; Kim, Hong-Joo; Park, Jung-Ho; Park, Dong-Il; Sohn, Chong-Il; Jeon, Woo-Kyu; Kim, Byung-Ik; Kim, Hyoung-Ook; Shin, Jun-Ho

    2008-11-28

    To determine the clinical data that might be useful for differentiating benign from malignant gallbladder (GB) polyps by comparing radiological methods, including abdominal ultrasonography (US) and computed tomography (CT) scanning, with postoperative pathology findings. Fifty-nine patients underwent laparoscopic cholecystectomy for a GB polyp of around 10 mm. They were divided into two groups, one with cholesterol polyps and the other with non-cholesterol polyps. Clinical features such as gender, age, symptoms, size and number of polyps, the presence of a GB stone, the radiologically measured maximum diameter of the polyp by US and CT scanning, and the measurements of diameter from postoperative pathology were recorded for comparative analysis. Fifteen of the 41 cases with cholesterol polyps (36.6%) were detected with US but not CT scanning, whereas all 18 non-cholesterol polyps were observed using both methods. In the cholesterol polyp group, the maximum measured diameter of the polyp was smaller by CT scan than by US. Consequently, the discrepancy between those two scanning measurements was greater than for the non-cholesterol polyp group. The clinical signs indicative of a cholesterol polyp include: (1) a polyp observed by US but not observable by CT scanning, (2) a smaller diameter on the CT scan compared to US, and (3) a discrepancy in its maximum diameter between US and CT measurements. In addition, US and the CT scan had low accuracy in predicting the polyp diameter compared to that determined by postoperative pathology.

  9. A comparison of sequential and spiral scanning techniques in brain CT.

    PubMed

    Pace, Ivana; Zarb, Francis

    2015-01-01

    To evaluate and compare image quality and radiation dose of sequential computed tomography (CT) examinations of the brain and spiral CT examinations of the brain imaged on a GE HiSpeed NX/I Dual Slice 2CT scanner. A random sample of 40 patients referred for CT examination of the brain was selected and divided into 2 groups. Half of the patients were scanned using the sequential technique; the other half were scanned using the spiral technique. Radiation dose data—both the computed tomography dose index (CTDI) and the dose length product (DLP)—were recorded on a checklist at the end of each examination. Using the European Guidelines on Quality Criteria for Computed Tomography, 4 radiologists conducted a visual grading analysis and rated the level of visibility of 6 anatomical structures considered necessary to produce images of high quality. The mean CTDI(vol) and DLP values were statistically significantly higher (P <.05) with the sequential scans (CTDI(vol): 22.06 mGy; DLP: 304.60 mGy • cm) than with the spiral scans (CTDI(vol): 14.94 mGy; DLP: 229.10 mGy • cm). The mean image quality rating scores for all criteria of the sequential scanning technique were statistically significantly higher (P <.05) in the visual grading analysis than those of the spiral scanning technique. In this local study, the sequential technique was preferred over the spiral technique for both overall image quality and differentiation between gray and white matter in brain CT scans. Other similar studies counter this finding. The radiation dose seen with the sequential CT scanning technique was significantly higher than that seen with the spiral CT scanning technique. However, image quality with the sequential technique was statistically significantly superior (P <.05).

  10. Pre-operative prediction of cervical nodal metastasis in papillary thyroid cancer by 99mTc-MIBI SPECT/CT; a pilot study.

    PubMed

    Tangjaturonrasme, Napadon; Vasavid, Pataramon; Sombuntham, Premsuda; Keelawat, Somboon

    2013-06-01

    Papillary thyroid cancer has a high prevalence of cervical nodal metastasis. There is no "gold standard" imaging for pre-operative diagnosis. The aim of the present study was to assess the accuracy of pre-operative 99mTc-MBI SPECT/CT in diagnosis of cervical nodal metastasis in patients with papillary thyroid cancer Fifteen patients were performed 99Tc-MlBI SPECT/CT pre-operatively. Either positive pathological report of neck dissection or positive post-treatment I-131 whole body scan with SPECT/CT of neck was concluded for definite neck metastasis. The PPV, NPV, and accuracy of 99mTc-MIBI SPECT/CT were analyzed. The PPV NPV and accuracy were 80%, 88.89%, and 85.71%, respectively. 99mTc-MIBI SPECT/CT could localize the abnormal lymph nodes groups correctly in most cases when compared with pathological results. However the authors found one false positive case with caseating granulomatous lymphadenitis and one false negative case with positive post-treatment 1-131 whole body scan with SPECT/CT of neck on cervical nodes zone II and IV CONCLUSION: 99mTc-MIBI SPECT/CTseem promising for pre-operative staging of cervical nodal involvement in patients with papillary thyroid cancer without the need of using iodinated contrast that may complicate subsequence 1-131 treatment. However, false positive result in granulomatous inflammatory nodes should be aware of especially in endemic areas. 99mTc-MIBI SPECT/CT scan shows a good result when compared with previous study of CT or MRI imaging. The comparative study between different imaging modality and the extension of neck dissection according to MIBI result seems interesting.

  11. Audit of demand for after-hours CT scanning services in RANZCR-accredited training departments.

    PubMed

    Goergen, Stacy K; Grimm, Jane; Paul, Eldho; Fabiny, Robert; Lee, Wai Kit; Blome, Steven; Zhou, Kim; Munro, Philip L

    2016-02-01

    The aims of this study were to measure: (i) the growth in after-hours emergency department--referred CT (ED-CT) performed in accredited training departments between 2011 and 2013; (ii) the growth in ED CT relative to growth in ED presentations at the same hospitals; and (iii) trainee workload resulting from after-hours ED CT. Ethics approval was obtained for all participating sites. Accredited training facilities in Australia and New Zealand with three or more trainees and serving one or more EDs were invited to participate (N = 32). Four nights were surveyed between August and December 2013. For data collection, the number of ED patients having one or more CT scans; ED CT scan total images; non-contrast head CTs; and ED patients (total and categories 1 and 2) attending the ED in the preceding 24 h and first half of calendar year were collected for 2013 and corresponding days in 2012 and 2011. Trainee staffing levels were measured. Eleven of 32 sites provided data for all four nights and 14 of 32 for one or more nights. A 15.7% increase in number of ED CTs between 1700 and 2200 h and 16.8% increase between 2201 and 0730 h occurred in the 2 years between 2011 and 2013 compared with a 6.9% increase in overall ED and 26% increase in categories 1 and 2 presentations over the same period. The number of CT images, however, increased 23%. Growth in demand by EDs for after-hours CT services has implications for service provision and trainee workloads in Royal Australian and New Zealand College of Radiologists-accredited training departments. © 2015 The Royal Australian and New Zealand College of Radiologists.

  12. CT scan exposure in Spanish children and young adults by socioeconomic status: Cross-sectional analysis of cohort data.

    PubMed

    Bosch de Basea, Magda; Espinosa, Ana; Gil, Mariona; Figuerola, Jordi; Pardina, Marina; Vilar, José; Cardis, Elisabeth

    2018-01-01

    Recent publications reported that children in disadvantaged areas undergo more CT scanning than others. The present study is aimed to assess the potential differences in CT imaging by socioeconomic status (SES) in Spanish young scanned subjects and if such differences vary with different indicators or different time point SES measurements. The associations between CT scanning and SES, and between the CT scan rate per patient and SES were investigated in the Spanish EPI-CT subcohort. Various SES indicators were studied to determine whether particular SES dimensions were more closely related to the probability of undergoing one or multiple CTs. Comparisons were made with indices based on 2001 and 2011 censuses. We found evidence of socio-economic variation among young people, mainly related to autonomous communities of residence. A slightly higher rate of scans per patient of multiple body parts in the less affluent categories was observed, possibly reflecting a higher rate of accidents and violence in these groups. The number of CT scans per patient was higher both in the most affluent and the most deprived categories and somewhat lower in the intermediate groups. This relation varied with the SES indicator used, with lower CT scans per patients in categories of high unemployment and temporary work, but not depending on categories of unskilled work or illiteracy. The relationship between these indicators and number of CTs in 2011 was different than that seen with the 2001 census, with the number of CTs increasing with higher unemployment. Overall we observed some differences in the SES distribution of scanned patients by Autonomous Community in Spain. There was, however, no major differences in the frequency of CT scans per patient by SES overall, based on the 2001 census. The use of different indicators and of SES data collected at different time points led to different relations between SES and frequency of CT scans, outlining the difficulty of adequately capturing the social and economic dimensions which may affect health and health service utilisation.

  13. CT scan exposure in Spanish children and young adults by socioeconomic status: Cross-sectional analysis of cohort data

    PubMed Central

    Espinosa, Ana; Gil, Mariona; Figuerola, Jordi; Pardina, Marina; Vilar, José; Cardis, Elisabeth

    2018-01-01

    Recent publications reported that children in disadvantaged areas undergo more CT scanning than others. The present study is aimed to assess the potential differences in CT imaging by socioeconomic status (SES) in Spanish young scanned subjects and if such differences vary with different indicators or different time point SES measurements. The associations between CT scanning and SES, and between the CT scan rate per patient and SES were investigated in the Spanish EPI-CT subcohort. Various SES indicators were studied to determine whether particular SES dimensions were more closely related to the probability of undergoing one or multiple CTs. Comparisons were made with indices based on 2001 and 2011 censuses. We found evidence of socio-economic variation among young people, mainly related to autonomous communities of residence. A slightly higher rate of scans per patient of multiple body parts in the less affluent categories was observed, possibly reflecting a higher rate of accidents and violence in these groups. The number of CT scans per patient was higher both in the most affluent and the most deprived categories and somewhat lower in the intermediate groups. This relation varied with the SES indicator used, with lower CT scans per patients in categories of high unemployment and temporary work, but not depending on categories of unskilled work or illiteracy. The relationship between these indicators and number of CTs in 2011 was different than that seen with the 2001 census, with the number of CTs increasing with higher unemployment. Overall we observed some differences in the SES distribution of scanned patients by Autonomous Community in Spain. There was, however, no major differences in the frequency of CT scans per patient by SES overall, based on the 2001 census. The use of different indicators and of SES data collected at different time points led to different relations between SES and frequency of CT scans, outlining the difficulty of adequately capturing the social and economic dimensions which may affect health and health service utilisation. PMID:29723272

  14. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  15. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  16. Use of C-Arm Cone Beam CT During Hepatic Radioembolization: Protocol Optimization for Extrahepatic Shunting and Parenchymal Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Prince, Jip F.; Keizer, Bart de

    PurposeTo optimize a C-arm computed tomography (CT) protocol for radioembolization (RE), specifically for extrahepatic shunting and parenchymal enhancement.Materials and MethodsA prospective development study was performed per IDEAL recommendations. A literature-based protocol was applied in patients with unresectable and chemorefractory liver malignancies undergoing an angiography before radioembolization. Contrast and scan settings were adjusted stepwise and repeatedly reviewed in a consensus meeting. Afterwards, two independent raters analyzed all scans. A third rater evaluated the SPECT/CT scans as a reference standard for extrahepatic shunting and lack of target segment perfusion.ResultsFifty scans were obtained in 29 procedures. The first protocol, using a 6 s delaymore » and 10 s scan, showed insufficient parenchymal enhancement. In the second protocol, the delay was determined by timing parenchymal enhancement on DSA power injection (median 8 s, range 4–10 s): enhancement improved, but breathing artifacts increased (from 0 to 27 %). Since the third protocol with a 5 s scan decremented subjective image quality, the second protocol was deemed optimal. Median CNR (range) was 1.7 (0.6–3.2), 2.2 (−1.4–4.0), and 2.1 (−0.3–3.0) for protocol 1, 2, and 3 (p = 0.80). Delineation of perfused segments was possible in 57, 73, and 44 % of scans (p = 0.13). In all C-arm CTs combined, the negative predictive value was 95 % for extrahepatic shunting and 83 % for lack of target segment perfusion.ConclusionAn optimized C-arm CT protocol was developed that can be used to detect extrahepatic shunts and non-perfusion of target segments during RE.« less

  17. Whole-body CT in polytrauma patients: The effect of arm position on abdominal image quality when using a human phantom

    NASA Astrophysics Data System (ADS)

    Jeon, Pil-Hyun; Kim, Hee-Joung; Lee, Chang-Lae; Kim, Dae-Hong; Lee, Won-Hyung; Jeon, Sung-Su

    2012-06-01

    For a considerable number of emergency computed tomography (CT) scans, patients are unable to position their arms above their head due to traumatic injuries. The arms-down position has been shown to reduce image quality with beam-hardening artifacts in the dorsal regions of the liver, spleen, and kidneys, rendering these images non-diagnostic. The purpose of this study was to evaluate the effect of arm position on the image quality in patients undergoing whole-body CT. We acquired CT scans with various acquisition parameters at voltages of 80, 120, and 140 kVp and an increasing tube current from 200 to 400 mAs in 50 mAs increments. The image noise and the contrast assessment were considered for quantitative analyses of the CT images. The image noise (IN), the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), and the coefficient of variation (COV) were evaluated. Quantitative analyses of the experiments were performed with CT scans representative of five different arm positions. Results of the CT scans acquired at 120 kVp and 250 mAs showed high image quality in patients with both arms raised above the head (SNR: 12.4, CNR: 10.9, and COV: 8.1) and both arms flexed at the elbows on the chest (SNR: 11.5, CNR: 10.2, and COV: 8.8) while the image quality significantly decreased with both arms in the down position (SNR: 9.1, CNR: 7.6, and COV: 11). Both arms raised, one arm raised, and both arms flexed improved the image quality compared to arms in the down position by reducing beam-hardening and streak artifacts caused by the arms being at the side of body. This study provides optimal methods for achieving higher image quality and lower noise in abdominal CT for trauma patients.

  18. 99mTc-HMPAO SPECT of the brain in mild to moderate traumatic brain injury patients: compared with CT--a prospective study.

    PubMed

    Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J

    1993-01-01

    Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.

  19. Dual energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-03-01

    Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.

  20. Comparison of CT Fluoroscopy-Guided Manual and CT-Guided Robotic Positioning System for In Vivo Needle Placements in Swine Liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornelis, F.; Takaki, H.; Laskhmanan, M.

    PurposeTo compare CT fluoroscopy-guided manual and CT-guided robotic positioning system (RPS)-assisted needle placement by experienced IR physicians to targets in swine liver.Materials and MethodsManual and RPS-assisted needle placement was performed by six experienced IR physicians to four 5 mm fiducial seeds placed in swine liver (n = 6). Placement performance was assessed for placement accuracy, procedure time, number of confirmatory scans, needle manipulations, and procedure radiation dose. Intra-modality difference in performance for each physician was assessed using paired t test. Inter-physician performance variation for each modality was analyzed using Kruskal–Wallis test.ResultsPaired comparison of manual and RPS-assisted placements to a target by the samemore » physician indicated accuracy outcomes was not statistically different (manual: 4.53 mm; RPS: 4.66 mm; p = 0.41), but manual placement resulted in higher total radiation dose (manual: 1075.77 mGy/cm; RPS: 636.4 mGy/cm; p = 0.03), required more confirmation scans (manual: 6.6; RPS: 1.6; p < 0.0001) and needle manipulations (manual: 4.6; RPS: 0.4; p < 0.0001). Procedure time for RPS was longer than manual placement (manual: 6.12 min; RPS: 9.7 min; p = 0.0003). Comparison of inter-physician performance during manual placement indicated significant differences in the time taken to complete placements (p = 0.008) and number of repositions (p = 0.04) but not in other study measures (p > 0.05). Comparison of inter-physician performance during RPS-assisted placement suggested statistically significant differences in procedure time (p = 0.02) and not in other study measures (p > 0.05).ConclusionsCT-guided RPS-assisted needle placement reduced radiation dose, number of confirmatory scans, and needle manipulations when compared to manual needle placement by experienced IR physicians, with equivalent accuracy.« less

  1. Preliminary study on the differentiation between parapelvic cyst and hydronephrosis with non-calculous using only pre-contrast dual-energy spectral CT scans

    PubMed Central

    Han, Dong; Ma, Guangming; Wei, Lequn; Ren, Chenglong; Zhou, Jieli; Shen, Chen

    2017-01-01

    Objective: To investigate the value of using the quantitative parameters from only the pre-contrast dual-energy spectral CT imaging for distinguishing between parapelvic cyst and hydronephrosis with non-calculous (HNC). Methods: This retrospective study was approved by the institutional review board. 28 patients with parapelvic cyst and 24 patients with HNC who underwent standard pre-contrast and multiphase contrast-enhanced dual-energy spectral CT imaging were retrospectively identified. The parapelvic cyst and HNC were identified using the contrast-enhanced scans, and their CT number in the 70-keV monochromatic images, effective atomic number (Zeff), iodine concentration (IC) and water concentration in the pre-contrast images were measured. The slope of the spectral curve (λ) was calculated. The difference in the measurements between parapelvic cyst and HNC was statistically analyzed using SPSS® v. 19.0 (IBM Corp., New York, NY; formerly SPSS Inc., Chicago, IL) statistical software. Receiver-operating characteristic analysis was performed to assess the diagnostic performance. Results: The CT numbers in the 70-keV images, Zeff and IC values were statistically different between parapelvic cyst and HNC (all p < 0.05). The sensitivity, specificity and accuracy of these parameters for distinguishing between parapelvic cyst and HNC were 89.2%, 73.3% and 82.1%; 86.5%, 43.3% and 67.2%; 91.9%, 40.0% and 68.7%; and 64.9%, 73.3% and 83.6%, respectively, and the combined specificity was 92.9%. There was no statistical difference in λ between the two groups (p > 0.05). Conclusion: The quantitative parameters obtained in the pre-contrast dual-energy spectral CT imaging may be used to differentiate between parapelvic cyst and HNC. Advances in knowledge: The pre-contrast dual-energy spectral CT scans may be used to screen parapelvic cysts for patients who are asymptomatic, thereby avoiding contrast-enhanced CT or CT urography examination for these patients to reduce ionizing radiation dose and contrast dose. PMID:28281789

  2. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma.

    PubMed

    Alongi, Pierpaolo; Evangelista, Laura; Caobelli, Federico; Spallino, Marianna; Gianolli, Luigi; Midiri, Massimo; Picchio, Maria

    2018-01-01

    The aim of this bicentric retrospective study was to assess the diagnostic performance, the prognostic value, the incremental prognostic value and the impact on therapeutic management of 18 F-FDG PET/CT in patients with suspected recurrent germinal cell testicular carcinoma (GCT). From the databases of two centers including 31,500 18 F-FDG PET/CT oncological studies, 114 patients affected by GCT were evaluated in a retrospective study. All 114 patients underwent 18 F-FDG PET/CT for suspected recurrent disease. Diagnostic performance of visually interpreted 18 F-FDG PET/CT and potential impact on the treatment decision were assessed using histology (17 patients), other diagnostic imaging modalities (i.e., contrast enhanced CT in 89 patients and MRI in 15) and clinical follow-up (114 patients) as reference. Progression-free survival (PFS) and overall survival (OS) rates were computed by means of Kaplan-Meier survival analysis. The progression rate (Hazard Ratio-HR) was determined using univariate Cox regression analysis by considering various clinical variables. Recurrent GCT was confirmed in 47 of 52 patients with pathological 18 F-FDG PET/CT findings, by means of histology in 18 patients and by other diagnostic imaging modalities/follow-up in 29. Sensitivity, specificity, accuracy, positive and negative likelihood ratio (LR+ and LR-, respectively), pre-test Odds-ratio and post-test Odds-ratio of 18 FDG PET/CT were 86.8%, 90.2%, 88.4%, 8.85, 0.14, 0.85, 8.85, respectively. 18 F-FDG PET/CT impacted significantly on therapeutic management in 26/114 (23%) cases (from palliative to curative in 12 patients, from "wait and watch" to new chemotherapy in six patients and the "wait-and-watch" approach in eight patients with unremarkable findings). At 2 and 5-year follow-up, PFS was significantly longer in patients with a negative than a pathological 18 F-FDG PET/CT scan (98% and 95% vs 48% and 38%, respectively; p = 0.02). An unremarkable scan was associated also with a longer OS (98% after 2 years and 95% after 5 years, p = 0.02). At univariate Cox regression analysis, a pathological 18 F-FDG PET/CT scan was associated with an increased risk of disease progression (HR = 24.3, CI 95% 14.1-40.6; p = 0.03) and lower OS (HR = 17.3 CI 95% 4,9-77; p < 0.001). Its prognostic value was confirmed also if tested against advanced disease at diagnosis and rising Human Chorionic Gonadotropin Beta (HCGB) or Alpha-Fetoprotein (AFP) (HR = 7.3 for STAGE III-PET+, p = 0.03; HR = 14.3 elevated HCGB-PET+, p = 0.02; HR 10.7 elevated AFP-PET+, p = 0.01) At multivariate analysis, only a pathological 18 F-FDG PET/CT scan and advanced disease in terms of TNM staging were predictors of disease progression and OS. 18 F-FDG PET/CT showed incremental value over other variables both in predicting PFS (chi-square from 24 to 40, p < 0.001) and OS (chi-square from 32 to 38, p = 0.003). 18 F-FDG PET/CT has a very good diagnostic performance in patients with suspected recurrent GCT and has an important prognostic value in assessing the rate of PFS and OS. Furthermore, 18 F-FDG PET/CT impacted the therapeutic regimen in 23% of patients, thus providing a significant impact in the restaging process.

  3. Iterative reconstruction for CT perfusion with a prior-image induced hybrid nonlocal means regularization: Phantom studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Lyu, Qingwen; Ma, Jianhua

    2016-04-15

    Purpose: In computed tomography perfusion (CTP) imaging, an initial phase CT acquired with a high-dose protocol can be used to improve the image quality of later phase CT acquired with a low-dose protocol. For dynamic regions, signals in the later low-dose CT may not be completely recovered if the initial CT heavily regularizes the iterative reconstruction process. The authors propose a hybrid nonlocal means (hNLM) regularization model for iterative reconstruction of low-dose CTP to overcome the limitation of the conventional prior-image induced penalty. Methods: The hybrid penalty was constructed by combining the NLM of the initial phase high-dose CT inmore » the stationary region and later phase low-dose CT in the dynamic region. The stationary and dynamic regions were determined by the similarity between the initial high-dose scan and later low-dose scan. The similarity was defined as a Gaussian kernel-based distance between the patch-window of the same pixel in the two scans, and its measurement was then used to weigh the influence of the initial high-dose CT. For regions with high similarity (e.g., stationary region), initial high-dose CT played a dominant role for regularizing the solution. For regions with low similarity (e.g., dynamic region), the regularization relied on a low-dose scan itself. This new hNLM penalty was incorporated into the penalized weighted least-squares (PWLS) for CTP reconstruction. Digital and physical phantom studies were performed to evaluate the PWLS-hNLM algorithm. Results: Both phantom studies showed that the PWLS-hNLM algorithm is superior to the conventional prior-image induced penalty term without considering the signal changes within the dynamic region. In the dynamic region of the Catphan phantom, the reconstruction error measured by root mean square error was reduced by 42.9% in PWLS-hNLM reconstructed image. Conclusions: The PWLS-hNLM algorithm can effectively use the initial high-dose CT to reconstruct low-dose CTP in the stationary region while reducing its influence in the dynamic region.« less

  4. 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues

    PubMed Central

    2014-01-01

    Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and increased lesion-to-background SUVmax ratios seen from preoperative to postoperative 18F-FDG PET/CT imaging have great potential for allowing for the integrated, real-time use of 18F-FDG PET/CT imaging in conjunction with 18F-FDG-directed interventional radiology biopsy and ablation procedures and 18F-FDG-directed surgical procedures, as well as have far-reaching impact on potentially re-shaping future thinking regarding the “most optimal” injection-to-scan acquisition time interval for all routine diagnostic 18F-FDG PET/CT oncologic imaging. PMID:24942656

  5. Non-Invasive Transcranial Brain Therapy Guided by CT Scans: an In Vivo Monkey Study

    NASA Astrophysics Data System (ADS)

    Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Tanter, M.; Boch, A.-L.; Kujas, M.; Seilhean, D.; Fink, M.

    2007-05-01

    Brain therapy using focused ultrasound remains very limited due to the strong aberrations induced by the skull. A minimally invasive technique using time-reversal was validated recently in-vivo on 20 sheeps. But such a technique requires a hydrophone at the focal point for the first step of the time-reversal procedure. A completely noninvasive therapy requires a reliable model of the acoustic properties of the skull in order to simulate this first step. 3-D simulations based on high-resolution CT images of a skull have been successfully performed with a finite differences code developed in our Laboratory. Thanks to the skull porosity, directly extracted from the CT images, we reconstructed acoustic speed, density and absorption maps and performed the computation. Computed wavefronts are in good agreement with experimental wavefronts acquired through the same part of the skull and this technique was validated in-vitro in the laboratory. A stereotactic frame has been designed and built in order to perform non invasive transcranial focusing in vivo. Here we describe all the steps of our new protocol, from the CT-scans to the therapy treatment and the first in vivo results on a monkey will be presented. This protocol is based on protocols already existing in radiotherapy.

  6. Early introduction of direct oral anticoagulants in cardioembolic stroke patients with non-valvular atrial fibrillation.

    PubMed

    Cappellari, Manuel; Carletti, Monica; Danese, Alessandra; Bovi, Paolo

    2016-10-01

    Direct oral anticoagulants (DOACs) are superior to warfarin in reduction of the intracranial bleeding risk. The aim of the present study was to assess whether early DOAC introduction (1-3 days after onset) in stroke patients with non-valvular atrial fibrillation (nVAF) may be safe and effective, compared with DOAC introduction after 4-7 days. We conducted a prospective analysis based on data collected from 147 consecutive nVAF patients who started DOAC within 7 days after stroke onset. In all patients, we performed pre-DOAC CT scan 24-36 h after onset and follow-up CT scan at 7 days after DOAC introduction. Outcome measures were post-DOAC intracranial bleeding (new any intracerebral hemorrhage (ICH) in patients with pre-DOAC infarct without hemorrhagic transformation (HT) or expansion of ICH in patients with pre-DOAC infarct with asymptomatic HT) and post-DOAC recurrent ischemic stroke (any new ischemic infarct) on follow-up CT scan. 97 patients started DOAC after 1-3 days and 50 patients started DOAC after 4-7 days. On pre-DOAC CT scan, 132 patients had an infarct without HT and 15 an infarct with asymptomatic HT. On follow-up CT scan, new any ICH was noted in seven patients (asymptomatic in 6) and asymptomatic expansion of ICH in one patient. We found no association between early DOAC introduction and intracranial bleeding. Large infarct remained the only independent predictor of post-DOAC intracranial bleeding. No patients suffered recurrent ischemic stroke after DOAC introduction. Early DOAC introduction might be safe in carefully selected patients with nVAF who experience small- and medium-sized cardioembolic ischemic strokes. Further investigation will be needed.

  7. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    NASA Astrophysics Data System (ADS)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  8. Predictive equations for lung volumes from computed tomography for size matching in pulmonary transplantation.

    PubMed

    Konheim, Jeremy A; Kon, Zachary N; Pasrija, Chetan; Luo, Qingyang; Sanchez, Pablo G; Garcia, Jose P; Griffith, Bartley P; Jeudy, Jean

    2016-04-01

    Size matching for lung transplantation is widely accomplished using height comparisons between donors and recipients. This gross approximation allows for wide variation in lung size and, potentially, size mismatch. Three-dimensional computed tomography (3D-CT) volumetry comparisons could offer more accurate size matching. Although recipient CT scans are universally available, donor CT scans are rarely performed. Therefore, predicted donor lung volumes could be used for comparison to measured recipient lung volumes, but no such predictive equations exist. We aimed to use 3D-CT volumetry measurements from a normal patient population to generate equations for predicted total lung volume (pTLV), predicted right lung volume (pRLV), and predicted left lung volume (pLLV), for size-matching purposes. Chest CT scans of 400 normal patients were retrospectively evaluated. 3D-CT volumetry was performed to measure total lung volume, right lung volume, and left lung volume of each patient, and predictive equations were generated. The fitted model was tested in a separate group of 100 patients. The model was externally validated by comparison of total lung volume with total lung capacity from pulmonary function tests in a subset of those patients. Age, gender, height, and race were independent predictors of lung volume. In the test group, there were strong linear correlations between predicted and actual lung volumes measured by 3D-CT volumetry for pTLV (r = 0.72), pRLV (r = 0.72), and pLLV (r = 0.69). A strong linear correlation was also observed when comparing pTLV and total lung capacity (r = 0.82). We successfully created a predictive model for pTLV, pRLV, and pLLV. These may serve as reference standards and predict donor lung volume for size matching in lung transplantation. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  9. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.

    PubMed

    Vivanti, Refael; Joskowicz, Leo; Lev-Cohain, Naama; Ephrat, Ariel; Sosna, Jacob

    2018-03-10

    Radiological longitudinal follow-up of tumors in CT scans is essential for disease assessment and liver tumor therapy. Currently, most tumor size measurements follow the RECIST guidelines, which can be off by as much as 50%. True volumetric measurements are more accurate but require manual delineation, which is time-consuming and user-dependent. We present a convolutional neural networks (CNN) based method for robust automatic liver tumor delineation in longitudinal CT studies that uses both global and patient specific CNNs trained on a small database of delineated images. The inputs are the baseline scan and the tumor delineation, a follow-up scan, and a liver tumor global CNN voxel classifier built from radiologist-validated liver tumor delineations. The outputs are the tumor delineations in the follow-up CT scan. The baseline scan tumor delineation serves as a high-quality prior for the tumor characterization in the follow-up scans. It is used to evaluate the global CNN performance on the new case and to reliably predict failures of the global CNN on the follow-up scan. High-scoring cases are segmented with a global CNN; low-scoring cases, which are predicted to be failures of the global CNN, are segmented with a patient-specific CNN built from the baseline scan. Our experimental results on 222 tumors from 31 patients yield an average overlap error of 17% (std = 11.2) and surface distance of 2.1 mm (std = 1.8), far better than stand-alone segmentation. Importantly, the robustness of our method improved from 67% for stand-alone global CNN segmentation to 100%. Unlike other medical imaging deep learning approaches, which require large annotated training datasets, our method exploits the follow-up framework to yield accurate tumor tracking and failure detection and correction with a small training dataset. Graphical abstract Flow diagram of the proposed method. In the offline mode (orange), a global CNN is trained as a voxel classifier to segment liver tumor as in [31]. The online mode (blue) is used for each new case. The input is baseline scan with delineation and the follow-up CT scan to be segmented. The main novelty is the ability to predict failures by trying the system on the baseline scan and the ability to correct them using the patient-specific CNN.

  10. Does the time between CT scan and chemotherapy increase the risk of acute adverse reactions to iodinated contrast media in cancer patients?

    PubMed

    Farolfi, Alberto; Carretta, Elisa; Luna, Corradina Della; Ragazzini, Angela; Gentili, Nicola; Casadei, Carla; Barone, Domenico; Minguzzi, Martina; Amadori, Dino; Nanni, Oriana; Gavelli, Giampaolo

    2014-10-31

    Cancer patients undergo routine computed-tomography (CT) scans and, therefore, iodinated contrast media (ICM) administration. It is not known whether a time-dependent correlation exists between chemotherapy administration, contrast enhanced CT and onset of acute ICM-related adverse reactions (ARs). All consecutive contrast-enhanced CTs performed from 1 January 2010 to 31 December 2012 within 30 days of the last chemotherapy administration were retrospectively reviewed. Episodes of acute ICM-related ARs were reported to the pharmacovigilance officer. We analyzed time to CT evaluation calculated as the time elapsed from the date of the CT performed to the date of the last chemotherapy administration. Patients were classified into 4 groups based on the antineoplastic treatment: platinum-based, taxane-based, platinum plus taxane and other group. Out of 10,472 contrast-enhanced CTs performed, 3,945 carried out on 1,878 patients were considered for the study. Forty acute ICM-related ARs (1.01%; 95% CI, 0.70-1.33) were reported. No differences were seen among immediate (within 10 days of the last chemotherapy administration), early (11-20 days) and delayed (21-30 days) CTs. Median time to CT in patients who experienced an acute ICM-related AR by treatment group was not statistically different: 20 days (range 6-30), 17 days (range 5-22), 13 days (range 8-17), 13 days (range (2-29) for the platinum, taxane, platinum plus taxane and other group, respectively (P =0.251). Our results did not reveal any correlation between time to CT and risk of acute ICM-related ARs in cancer patients.

  11. SU-E-J-270: Repeated 18F-FDG PET/CTs Based Feature Analysis for the Predication of Anal Cancer Recurrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Chuong, M; Choi, W

    Purpose: To identify PET/CT based imaging predictors of anal cancer recurrence and evaluate baseline vs. mid-treatment vs. post-treatment PET/CT scans in the tumor recurrence prediction. Methods: FDG-PET/CT scans were obtained at baseline, during chemoradiotherapy (CRT, midtreatment), and after CRT (post-treatment) in 17 patients of anal cancer. Four patients had tumor recurrence. For each patient, the mid-treatment and post-treatment scans were respectively aligned to the baseline scan by a rigid registration followed by a deformable registration. PET/CT image features were computed within the manually delineated tumor volume of each scan to characterize the intensity histogram, spatial patterns (texture), and shape ofmore » the tumors, as well as the changes of these features resulting from CRT. A total of 335 image features were extracted. An Exact Logistic Regression model was employed to analyze these PET/CT image features in order to identify potential predictors for tumor recurrence. Results: Eleven potential predictors of cancer recurrence were identified with p < 0.10, including five shape features, five statistical texture features, and one CT intensity histogram feature. Six features were indentified from posttreatment scans, 3 from mid-treatment scans, and 2 from baseline scans. These features indicated that there were differences in shape, intensity, and spatial pattern between tumors with and without recurrence. Recurrent tumors tended to have more compact shape (higher roundness and lower elongation) and larger intensity difference between baseline and follow-up scans, compared to non-recurrent tumors. Conclusion: PET/CT based anal cancer recurrence predictors were identified. The post-CRT PET/CT is the most important scan for the prediction of cancer recurrence. The baseline and mid-CRT PET/CT also showed value in the prediction and would be more useful for the predication of tumor recurrence in early stage of CRT. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  12. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation

    NASA Astrophysics Data System (ADS)

    Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.

    2013-04-01

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  13. Use of PET/CT scanning in cancer patients: technical and practical considerations

    PubMed Central

    2005-01-01

    This overview of the oncologic applications of positron emission tomography (PET) focuses on the technical aspects and clinical applications of a newer technique: the combination of a PET scanner and a computed tomography (CT) scanner in a single (PET/CT) device. Examples illustrate how PET/CT contributes to patient care and improves upon the previous state-of-the-art method of comparing a PET scan with a separate CT scan. Finally, the author presents some of the results from studies of PET/CT imaging that are beginning to appear in the literature. PMID:16252023

  14. Managing vulvovaginal hematoma by arterial embolization as first-line hemostatic therapy.

    PubMed

    Takagi, Kenjiro; Akashi, Keiko; Horiuchi, Isao; Nakamura, Eishin; Samejima, Koki; Ushijima, Junko; Okochi, Tomohisa; Hamamoto, Kohei; Tanno, Keisuke

    2017-04-01

    A puerperal vulvovaginal hematoma may continue to grow after a surgical procedure and may require blood transfusion. Thus, we selected arterial embolization for hemostasis as the first-line management in two cases of large vulvovaginal hematoma. Case 1 was a 32-year-old pregnant woman. After delivery, a 10-cm vulvar hematoma developed. An enhanced computed tomography (CT) scan revealed active bleeding. Arterial embolization was performed and complete hemostasis was obtained. Case 2 was a 34-year-old woman with a recurring hematoma after delivery. An enhanced CT scan revealed extravasation in the hematoma. Gelatin sponges were applied and complete hemostasis was obtained. In both cases, arterial embolization was successful without requiring blood transfusions. We successfully managed two cases of puerperal vulvovaginal hematoma by arterial embolization based on the evaluation of an enhanced CT scan. In conclusion, we suggest arterial embolization to be a viable option for first-line treatment in the management of vulvovaginal hematomas. Copyright © 2017. Published by Elsevier B.V.

  15. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  16. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan geometries, employed as ground truth data. Image similarity between the simulated and ground truth scans was evaluated. The model validation experiments were conducted in a patient cohort of seventeen patients to assess the model robustness and inter-patient variation. The model error averaged over multiple tracked positions from several breathing cycles was found to be on the order of one millimeter. In modeling the density change under free breathing condition, the determinant of Jacobian matrix from the registration-derived deformation vector field yielded volume change information of the lung tissues. Correlation of the Jacobian values to the corresponding voxel Housfield units (HU) reveals that the density variation for the majority of lung tissues can be very well described by mass conservation relationship. Different tissue types were identified and separately modeled. Large trials of validation experiments were performed. The averaged deviation between the modeled and the reference lung density was 30 HU, which was estimated to be the background CT noise level. In characterizing the lung ventilation function, a novel method was developed to determine the extent of lung tissue volume change. Information on volume change was derived from the deformable image registration of the fast helical CT images in terms of Jacobian values with respect to a reference image. Assuming the multiple volume change measurements are independently and identically distributed, statistical formulation was derived to model ventilation distribution of each lung voxels and empirical minimum and maximum probability distribution of the Jacobian values was computed. Ventilation characteristic was evaluated as the difference of the expectation value from these extremal distributions. The resulting ventilation map was compared with an independently obtained ventilation image derived directly from the lung intensities and good correlation was found using statistical test. In addition, dynamic ventilation characterization was investigated by estimating the voxel-specific ventilation distribution. Ventilation maps were generated at different percentile levels using the tissue volume expansion metrics.

  17. Pulmonary nodules: effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-dose CT scans.

    PubMed

    Yanagawa, Masahiro; Honda, Osamu; Kikuyama, Ayano; Gyobu, Tomoko; Sumikawa, Hiromitsu; Koyama, Mitsuhiro; Tomiyama, Noriyuki

    2012-10-01

    To evaluate the effects of ASIR on CAD system of pulmonary nodules using clinical routine-dose CT and lower-dose CT. Thirty-five patients (body mass index, 22.17 ± 4.37 kg/m(2)) were scanned by multidetector-row CT with tube currents (clinical routine-dose CT, automatically adjusted mA; lower-dose CT, 10 mA) and X-ray voltage (120 kVp). Each 0.625-mm-thick image was reconstructed at 0%-, 50%-, and 100%-ASIR: 0%-ASIR is reconstructed using only the filtered back-projection algorithm (FBP), while 100%-ASIR is reconstructed using the maximum ASIR and 50%-ASIR implies a blending of 50% FBP and ASIR. CAD output was compared retrospectively with the results of the reference standard which was established using a consensus panel of three radiologists. Data were analyzed using Bonferroni/Dunn's method. Radiation dose was calculated by multiplying dose-length product by conversion coefficient of 0.021. The consensus panel found 265 non-calcified nodules ≤ 30 mm (ground-glass opacity [GGO], 103; part-solid, 34; and solid, 128). CAD sensitivity was significantly higher at 100%-ASIR [clinical routine-dose CT, 71% (overall), 49% (GGO); lower-dose CT, 52% (overall), 67% (solid)] than at 0%-ASIR [clinical routine-dose CT, 54% (overall), 25% (GGO); lower-dose CT, 36% (overall), 50% (solid)] (p<0.001). Mean number of false-positive findings per examination was significantly higher at 100%-ASIR (clinical routine-dose CT, 8.5; lower-dose CT, 6.2) than at 0%-ASIR (clinical routine-dose CT, 4.6; lower-dose CT, 3.5; p<0.001). Effective doses were 10.77 ± 3.41 mSv in clinical routine-dose CT and 2.67 ± 0.17 mSv in lower-dose CT. CAD sensitivity at 100%-ASIR on lower-dose CT is almost equal to that at 0%-ASIR on clinical routine-dose CT. ASIR can increase CAD sensitivity despite increased false-positive findings. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. The use of technetium-99m-labeled human serum albumin diethylenetriamine pentaacetic acid single-photon emission CT scan in the follow-up of type II endoleak treatment.

    PubMed

    Nakai, Motoki; Sato, Hirotatsu; Ikoma, Akira; Sonomura, Tetsuo; Sato, Morio

    2014-03-01

    An 84-year-old woman presented with persistent type II endoleak with sac expansion from 57 mm to 75 mm during 4-year follow-up after endovascular abdominal aortic aneurysm repair. The patient underwent transabdominal embolization with coils and N-butyl cyanoacrylate/ethiodized oil (Lipiodol; Guerbet, Villepinte, France) mixture (2.5 mL). Because of the anticipated embolization artifacts on follow-up computed tomography (CT), technetium-99m-labeled human serum albumin diethylenetriamine pentaacetic acid single-photon emission computed tomography ((99m)Tc-HSAD SPECT) was performed before and after the intervention. Perigraft accumulation on (99m)Tc-HSAD SPECT corresponding to the endoleak disappeared after embolization. CT scan performed 12 months after embolization showed no signs of sac expansion. (99m)Tc-HSAD SPECT may be useful for evaluating therapeutic effect after embolization for endoleak. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  19. DYSTROPHIC CALCIFICATION OF MAXILLARY SINUS IN PEDIATRIC PATIENTS WITH LIVER TRANSPLANTATION AND PIGMENTATION OF DENTAL ORGAN

    PubMed Central

    de Macedo, Adriana Furtado; Costa, Claudio; Mattar, Regina Helena Guedes da Motta; de Azevedo, Ramiro Anthero

    2017-01-01

    ABSTRACT Objective: To report a case of severe dystrophic calcification in maxillary sinus of a child with liver transplantation and dental organs pigmented by hyperbilirubinemia. Case description: female patient, 12 years old, with liver transplantation performed at the age of 7 due to extrahepatic biliary atresia (EHBA). The patient was receiving the immunosuppressant tacrolimus (2 mg daily). Intraoral clinical exam showed tooth green pigmentation by bilirubin. Cone-beam volumetric computed tomography (CT) was performed to verify radiographic density of pigmented dental elements. Hounsfield scale measurement did not show changes in radiographic density of dental structures. However, CT scan showed intense dystrophic calcification in the maxillary sinus region. Comments: CT scan indicated relevant radiographic findings, with radiopacity of the maxillary sinus due to fungal or non-fungal sinusitis. This case report highlights the presence of radiographic image associated with acute infectious processes that could compromise the systemic state of immunosuppressed patients. PMID:29166493

  20. The relationship of body mass index and abdominal fat on the radiation dose received during routine computed tomographic imaging of the abdomen and pelvis.

    PubMed

    Chan, Victoria O; McDermott, Shaunagh; Buckley, Orla; Allen, Sonya; Casey, Michael; O'Laoide, Risteard; Torreggiani, William C

    2012-11-01

    To determine the relationship of increasing body mass index (BMI) and abdominal fat on the effective dose acquired from computed tomography (CT) abdomen and pelvis scans. Over 6 months, dose-length product and total milliamp-seconds (mAs) from routine CT abdomen and pelvis scans of 100 patients were recorded. The scans were performed on a 64-slice CT scanner by using an automatic exposure control system. Effective dose (mSv) based on dose-length product, BMI, periumbilical fat thickness, and intra-abdominal fat were documented for each patient. BMI, periumbilical fat thickness, and intra-abdominal fat were compared with effective dose. Thirty-nine men and 61 women were included in the study (mean age, 56.3 years). The mean BMI was 26.2 kg/m(2). The mean effective dose was 10.3 mSv. The mean periumbilical fat thickness was 2.4 cm. Sixty-five patients had a small amount of intra-abdominal fat, and 35 had a large amount of intra-abdominal fat. The effective dose increased with increasing BMI (P < .001) and increasing amounts of intra-abdominal fat (P < .001). For every kilogram of weight, there is a 0.13 mSv increase in effective dose, which is equal to 6.5 chest radiographs per CT examination. For an increase in BMI by 5 kg/m(2), there is a 1.95 mSv increase in effective dose, which is equal to 97.5 chest radiographs per CT examination. Increasing BMI and abdominal fat significantly increases the effective dose received from CT abdomen and pelvis scans. Copyright © 2012 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Cost-Effectiveness of Diagnostic Strategies for Suspected Scaphoid Fractures.

    PubMed

    Yin, Zhong-Gang; Zhang, Jian-Bing; Gong, Ke-Tong

    2015-08-01

    The aim of this study was to assess the cost effectiveness of multiple competing diagnostic strategies for suspected scaphoid fractures. With published data, the authors created a decision-tree model simulating the diagnosis of suspected scaphoid fractures. Clinical outcomes, costs, and cost effectiveness of immediate computed tomography (CT), day 3 magnetic resonance imaging (MRI), day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, week 2 radiographs-MRI, week 2 radiographs-bone scan, and immediate MRI were evaluated. The primary clinical outcome was the detection of scaphoid fractures. The authors adopted societal perspective, including both the costs of healthcare and the cost of lost productivity. The incremental cost-effectiveness ratio (ICER), which expresses the incremental cost per incremental scaphoid fracture detected using a strategy, was calculated to compare these diagnostic strategies. Base case analysis, 1-way sensitivity analyses, and "worst case scenario" and "best case scenario" sensitivity analyses were performed. In the base case, the average cost per scaphoid fracture detected with immediate CT was $2553. The ICER of immediate MRI and day 3 MRI compared with immediate CT was $7483 and $32,000 per scaphoid fracture detected, respectively. The ICER of week 2 radiographs-MRI was around $170,000. Day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, and week 2 radiographs-bone scan strategy were dominated or extendedly dominated by MRI strategies. The results were generally robust in multiple sensitivity analyses. Immediate CT and MRI were the most cost-effective strategies for diagnosing suspected scaphoid fractures. Economic and Decision Analyses Level II. See Instructions for Authors for a complete description of levels of evidence.

  2. CT attenuation measurements are valuable to discriminate pledgets used in prosthetic heart valve implantation from paravalvular leakage

    PubMed Central

    Habets, J; Meijer, T S; Meijer, R C A; Mali, W P Th M; Vonken, E-J P A; Budde, R P J

    2012-01-01

    Objectives Sutures with polytetrafluorethylene (PTFE) felt pledgets are commonly used in prosthetic heart valve (PHV) implantation. Paravalvular leakage can be difficult to distinguish from PTFE felt pledgets on multislice CT because both present as hyperdense structures. We assessed whether pledgets can be discriminated from contrast-enhanced solutions (blood/saline) on CT images based on attenuation difference in an ex vivo experiment and under in vivo conditions. Methods PTFE felt pledgets were sutured to the suture ring of a mechanical PHV and porcine aortic annulus, and immersed and scanned in four different contrast-enhanced (Ultravist®; 300 mg jopromide ml−1) saline concentrations (10.0, 12.0, 13.6 and 15.0 mg ml−1). Scanning was performed on a 256-slice scanner with eight different scan protocols with various tube voltage (100 kV, 120 kV) and tube current (400 mAs, 600 mAs, 800 mAs, 1000 mAs) settings. Attenuation of the pledgets and surrounding contrast-enhanced saline were measured. Additionally, the attenuation of pledgets and contrast-enhanced blood was measured on electrocardiography (ECG)-gated CTA scans of 19 patients with 22 PHVs. Results Ex vivo CT attenuation differences between the pledgets and contrast-enhanced solutions were larger by using higher tube voltages. CT attenuation values of the pledgets were higher than contrast-enhanced blood in patients: 420±26 Hounsfield units (mean±SD, range 383–494) and 288±41 Hounsfield units (range 202–367), respectively. Conclusions PTFE felt pledgets have consistently higher attenuation than surrounding contrast-enhanced blood. CT attenuation measurements therefore may help to differentiate pledgets from paravalvular leakage, and detect paravalvular leakage in patients with suspected PHV dysfunction. PMID:22919014

  3. The measurement of liver fat from single-energy quantitative computed tomography scans

    PubMed Central

    Cheng, Xiaoguang; Brown, J. Keenan; Guo, Zhe; Zhou, Jun; Wang, Fengzhe; Yang, Liqiang; Wang, Xiaohong; Xu, Li

    2017-01-01

    Background Studies of soft tissue composition using computed tomography (CT) scans are often semi-quantitative and based on Hounsfield units (HU) measurements that have not been calibrated with a quantitative CT (QCT) phantom. We describe a study to establish the water (H2O) and dipotassium hydrogen phosphate (K2HPO4) basis set equivalent densities of fat and fat-free liver tissue. With this information liver fat can be accurately measured from any abdominal CT scan calibrated with a suitable phantom. Methods Liver fat content was measured by comparing single-energy QCT (SEQCT) HU measurements of the liver with predicted HU values for fat and fat-free liver tissue calculated from their H2O and K2HPO4 equivalent densities and calibration data from a QCT phantom. The equivalent densities of fat were derived from a listing of its constituent fatty acids, and those of fat-free liver tissue from a dual-energy QCT (DEQCT) study performed in 14 healthy Chinese subjects. This information was used to calculate liver fat from abdominal SEQCT scans performed in a further 541 healthy Chinese subjects (mean age 62 years; range, 31–95 years) enrolled in the Prospective Urban Rural Epidemiology (PURE) Study. Results The equivalent densities of fat were 941.75 mg/cm3 H2O and –43.72 mg/cm3 K2HPO4, and for fat-free liver tissue 1,040.13 mg/cm3 H2O and 21.34 mg/cm3 K2HPO4. Liver fat in the 14 subjects in the DEQCT study varied from 0–17.9% [median: 4.5%; interquartile range (IQR): 3.0–7.9%]. Liver fat in the 541 PURE study subjects varied from –0.3–29.9% (median: 4.9%; IQR: 3.4–6.9%). Conclusions We have established H2O and K2HPO4 equivalent densities for fat and fat-free liver tissue that allow a measurement of liver fat to be obtained from any abdominal CT scan acquired with a QCT phantom. Although radiation dose considerations preclude the routine use of QCT to measure liver fat, the method described here facilitates its measurement in patients having CT scans performed for other purposes. Further studies comparing the results with magnetic resonance (MR) measurements of liver fat are required to validate the method as a useful clinical tool. PMID:28811994

  4. Computed Tomography Scanning and Geophysical Measurements of Core from the Coldstream 1MH Well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, Dustin M.; Brown, Sarah; Moore, Johnathan E.

    The computed tomography (CT) facilities and the Multi-Sensor Core Logger (MSCL) at the National Energy Technology Laboratory (NETL) Morgantown, West Virginia site were used to characterize core of the Marcellus Shale from a vertical well, the Coldstream 1MH Well in Clearfield County, PA. The core is comprised primarily of the Marcellus Shale from a depth of 7,002 to 7,176 ft. The primary impetus of this work is a collaboration between West Virginia University (WVU) and NETL to characterize core from multiple wells to better understand the structure and variation of the Marcellus and Utica shale formations. As part of thismore » effort, bulk scans of core were obtained from the Coldstream 1MH well, provided by the Energy Corporation of America (now Greylock Energy). This report, and the associated scans, provide detailed datasets not typically available from unconventional shales for analysis. The resultant datasets are presented in this report, and can be accessed from NETL's Energy Data eXchange (EDX) online system using the following link: https://edx.netl.doe.gov/dataset/coldstream-1mh-well. All equipment and techniques used were non-destructive, enabling future examinations to be performed on these cores. None of the equipment used was suitable for direct visualization of the shale pore space, although fractures and discontinuities were detectable with the methods tested. Low resolution CT imagery with the NETL medical CT scanner was performed on the entire core. Qualitative analysis of the medical CT images, coupled with x-ray fluorescence (XRF), P-wave, and magnetic susceptibility measurements from the MSCL were useful in identifying zones of interest for more detailed analysis as well as fractured zones. En echelon fractures were observed at 7,100 ft and were CT scanned using NETL’s industrial CT scanner at higher resolution. The ability to quickly identify key areas for more detailed study with higher resolution will save time and resources in future studies. The combination of methods used provided a multi-scale analysis of this core and provides both a macro and micro description of the core that is relevant for many subsurface energy-related examinations that have traditionally been performed at NETL.« less

  5. Improved surgical procedure using intraoperative navigation for the implantation of the SPG microstimulator in patients with chronic cluster headache.

    PubMed

    Kohlmeier, Carsten; Behrens, Peter; Böger, Andreas; Ramachandran, Brinda; Caparso, Anthony; Schulze, Dirk; Stude, Philipp; Heiland, Max; Assaf, Alexandre T

    2017-12-01

    The ATI SPG microstimulator is designed to be fixed on the posterior maxilla, with the integrated lead extending into the pterygopalatine fossa to electrically stimulate the sphenopalatine ganglion (SPG) as a treatment for cluster headache. Preoperative surgical planning to ensure the placement of the microstimulator in close proximity (within 5 mm) to the SPG is critical for treatment efficacy. The aim of this study was to improve the surgical procedure by navigating the initial dissection prior to implantation using a passive optical navigation system and to match the post-operative CBCT images with the preoperative treatment plan to verify the accuracy of the intraoperative placement of the microstimulator. Custom methods and software were used that result in a 3D rotatable digitally reconstructed fluoroscopic image illustrating the patient-specific placement with the ATI SPG microstimulator. Those software tools were preoperatively integrated with the planning software of the navigation system to be used intraoperatively for navigated placement. Intraoperatively, the SPG microstimulator was implanted by completing the initial dissection with CT navigation, while the final position of the stimulator was verified by 3D CBCT. Those reconstructed images were then immediately matched with the preoperative CT scans with the digitally inserted SPG microstimulator. This method allowed for visual comparison of both CT scans and verified correct positioning of the SPG microstimulator. Twenty-four surgeries were performed using this new method of CT navigated assistance during SPG microstimulator implantation. Those results were compared to results of 21 patients previously implanted without the assistance of CT navigation. Using CT navigation during the initial dissection, an average distance reduction of 1.2 mm between the target point and electrode tip of the SPG microstimulator was achieved. Using the navigation software for navigated implantation and matching the preoperative planned scans with those performed post-operatively, the average distance was 2.17 mm with navigation, compared to 3.37 mm in the 28 surgeries without navigation. Results from this new procedure showed a significant reduction (p = 0.009) in the average distance from the SPG microstimulator to the desired target point. Therefore, a distinct improvement could be achieved in positioning of the SPG microstimulator through the use of intraoperative navigation during the initial dissection and by post-operative matching of pre- and post-operatively performed CBCT scans.

  6. SU-G-IeP4-07: Feasibility of Low Dose 18FDG PET in Pediatric Oncology Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Binzel, K; Hall, NC

    Purpose: To evaluate and demonstrate the feasibility of low dose FDG PET in pediatric oncology patients using virtual dose reduction as well as true patients PET/CT scans. Methods: Wholebody 18F-FDG PET/CT of 39 clinical pediatric patients (0.16±0.06MBq/kg) were scanned on a Gemini TF 64 system at 75±5 min post FDG injection using 3min/bed. Based on the 180s/bed listmode PET data, subsets of total counts in 120s, 90s, 60s, 30s and 15s per bed position were extracted for PET reconstruction to simulate lower dose PET at 2/3th, 1/2th, 1/3th, 1/6th and 1/12th dose levels. PET/CT scans of Jaszczak PET phantom withmore » 6 hot hollow spheres varying with sizes and contrast ratios were performed (real PET versus simulated PET) to validate the methodology of virtual dose PET simulation. Region of interests (ROIs) were placed on lesions and normal anatomical tissues with quantitative and qualitative assessment performed. Significant lower FDG dose PET/CT of 5 research adolescents were scanned to validate the proposal and low dose PET feasibility. Results: Although all lesions are visible on the 1/12th dose PET, overall PET image quality appears to be influenced in a multi-factorial way. 30%–60% dose reduction from current standard of care FDG PET is recommended to maintain equivalent quality and PET quantification. An optimized BMI-based FDG administration is recommended (from 1.1±0.5 mCi for BMI < 18.5 to 4.8±1.5 mCi for BMI > 30). A linear lowest “Dose-BMI” relationship is given. SUVs from 1/12th to full dose PETs were identified as consistent (R2 = 1.08, 0.99, 1.01, 1.00 and 0.98). No significant variances of count density, SUV and SNR were found across certain dose ranges (p<0.01). Conclusion: Pediatric PET/CT can be performed using current time-of-flight systems at substantially lower PET doses (30–60%) than the standard of care PET/CT without compromising qualitative and quantitative image quality in clinical.« less

  7. Analysis of patient CT dose data using virtualdose

    NASA Astrophysics Data System (ADS)

    Bennett, Richard

    X-ray computer tomography has many benefits to medical and research applications. Recently, over the last decade CT has had a large increase in usage in hospitals and medical diagnosis. In pediatric care, from 2000 to 2006, abdominal CT scans increased by 49 % and chest CT by 425 % in the emergency room (Broder 2007). Enormous amounts of effort have been performed across multiple academic and government groups to determine an accurate measure of organ dose to patients who undergo a CT scan due to the inherent risks with ionizing radiation. Considering these intrinsic risks, CT dose estimating software becomes a necessary tool that health care providers and radiologist must use to determine many metrics to base the risks versus rewards of having an x-ray CT scan. This thesis models the resultant organ dose as body mass increases for patients with all other related scan parameters fixed. In addition to this,this thesis compares a modern dose estimating software, VirtualDose CT to two other programs, CT-Expo and ImPACT CT. The comparison shows how the software's theoretical basis and the phantom they use to represent the human body affect the range of results in organ dose. CT-Expo and ImPACT CT dose estimating software uses a different model for anatomical representation of the organs in the human body and the results show how that approach dramatically changes the outcome. The results categorizes four datasets as compared to the three software types where the appropriate phantom was available. Modeling was done to simulate chest abdominal pelvis scans and whole body scans. Organ dose difference versus body mass index shows as body mass index (BMI) ranges from 23.5 kg/m 2 to 45 kg/m2 the amount of organ dose also trends a percent change from -4.58 to -176.19 %. Comparing organ dose difference with increasing x-ray tube potential from 120 kVp to 140 kVp the percent change in organ dose increases from 55 % to 65 % across all phantoms. In comparing VirtualDose to CT-Expo for organ dose difference versus age, male phantoms show percent difference of -19 % to 25 % for various organs minus bone surface and breast tissues results. Finally, for organ dose difference across all software for average adult phantom the results range from -45 % to 6 % in the comparison of ImPACT CT to VirtualDose and -27 % to 66 % for the comparison of CT-Expo to VirtualDose. In the comparison for increased BMI (done only in VirtualDose), results show that with all other parameters fixed, the organ dose goes down as BMI increases, which is due to the increase in adipose tissue and bulk of the patient model. The range of results when comparing all the three softwares have a wide range, in some cases greater than 150 %, it is evident that using a different anatomical basis for the human phantom and the theoretical basis for the dose estimation will cause fluctuation in the results. Therefore, choosing the software with the most accurate human phantom will provide a closer range to the true dose to the organ.

  8. Lung Ultrasonography: A Viable Alternative to Chest Radiography in Children with Suspected Pneumonia?

    PubMed

    Ambroggio, Lilliam; Sucharew, Heidi; Rattan, Mantosh S; O'Hara, Sara M; Babcock, Diane S; Clohessy, Caitlin; Steinhoff, Mark C; Macaluso, Maurizio; Shah, Samir S; Coley, Brian D

    2016-09-01

    To determine the interrater reliability (IRR) of lung ultrasonography (LUS) and chest radiography (CXR) and evaluate the accuracy of LUS compared with CXR for detecting pediatric pneumonia compared with chest computed tomography (CT) scan. This was a prospective cohort study of children aged 3 months to 18 years with a CXR and LUS performed between May 1, 2012, and January 31, 2014 with or without a clinical diagnosis of pneumonia. Four pediatric radiologists blinded to clinical information reported findings for the CXR and LUS images. IRR was estimated for 50 LUS and CXR images. The main outcome was the finding from CT ordered clinically or the probability of the CT finding for patients clinically requiring CT. Two radiologists reviewed CT scans to determine an overall finding. Latent class analysis was used to evaluate the sensitivity and specificity for findings (eg, consolidation) for LUS and CXR compared with CT. Of the 132 patients in the cohort, 36 (27%) had CT performed for a clinical reason. Pneumonia was clinically documented in 47 patients (36%). The IRR for lung consolidation was 0.55 (95% CI, 0.40-0.70) for LUS and 0.36 (95% CI, 0.21-0.51) for CXR. The sensitivity for detecting consolidation, interstitial disease, and pleural effusion was statistically similar for LUS and CXR compared with CT; however, specificity was higher for CXR. The negative predictive value was similar for CXR and LUS. LUS has a sufficiently high IRR for detection of consolidation. Compared with CT, LUS and CXR have similar sensitivity, but CXR is more specific for findings indicating pneumonia. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. LUNGx Challenge for computerized lung nodule classification

    DOE PAGES

    Armato, Samuel G.; Drukker, Karen; Li, Feng; ...

    2016-12-19

    The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less

  10. LUNGx Challenge for computerized lung nodule classification

    PubMed Central

    Armato, Samuel G.; Drukker, Karen; Li, Feng; Hadjiiski, Lubomir; Tourassi, Georgia D.; Engelmann, Roger M.; Giger, Maryellen L.; Redmond, George; Farahani, Keyvan; Kirby, Justin S.; Clarke, Laurence P.

    2016-01-01

    Abstract. The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. Ten groups applied their own methods to 73 lung nodules (37 benign and 36 malignant) that were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. The continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community. PMID:28018939

  11. LUNGx Challenge for computerized lung nodule classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armato, Samuel G.; Drukker, Karen; Li, Feng

    The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less

  12. Sarcoidosis Occurring After Lymphoma

    PubMed Central

    London, Jonathan; Grados, Aurélie; Fermé, Christophe; Charmillon, Alexandre; Maurier, François; Deau, Bénédicte; Crickx, Etienne; Brice, Pauline; Chapelon-Abric, Catherine; Haioun, Corinne; Burroni, Barbara; Alifano, Marco; Le Jeunne, Claire; Guillevin, Loïc; Costedoat-Chalumeau, Nathalie; Schleinitz, Nicolas; Mouthon, Luc; Terrier, Benjamin

    2014-01-01

    Abstract Sarcoidosis is a granulomatous disease that most frequently affects the lungs with pulmonary infiltrates and/or bilateral hilar and mediastinal lymphadenopathy. An association of sarcoidosis and lymphoproliferative disease has previously been reported as the sarcoidosis-lymphoma syndrome. Although this syndrome is characterized by sarcoidosis preceding lymphoma, very few cases of sarcoidosis following lymphoma have been reported. We describe the clinical, biological, and radiological characteristics and outcome of 39 patients presenting with sarcoidosis following lymphoproliferative disease, including 14 previously unreported cases and 25 additional patients, after performing a literature review. Hodgkin lymphoma and non-Hodgkin lymphoma were equally represented. The median delay between lymphoma and sarcoidosis was 18 months. Only 16 patients (41%) required treatment. Sarcoidosis was of mild intensity or self-healing in most cases, and overall clinical response to sarcoidosis was excellent with complete clinical response in 91% of patients. Sarcoidosis was identified after a follow-up computerized tomography scan (CT-scan) or 18fluorodeoxyglucose-positron emission tomography/computerized tomography (18FDG-PET/CT) evaluation in 18/34 patients (53%). Sarcoidosis is therefore a differential diagnosis to consider when lymphoma relapse is suspected on a CT-scan or 18FDG-PET/CT, emphasizing the necessity to rely on histological confirmation of lymphoma relapse. PMID:25380084

  13. Radiation Dose Reduction by Indication-Directed Focused z-Direction Coverage for Neck CT.

    PubMed

    Parikh, A K; Shah, C C

    2016-06-01

    The American College of Radiology-American Society of Neuroradiology-Society for Pediatric Radiology Practice Parameter for a neck CT suggests that coverage should be from the sella to the aortic arch. It also recommends using CT scans judiciously to achieve the clinical objective. Our purpose was to analyze the potential dose reduction by decreasing the scan length of a neck CT and to assess for any clinically relevant information that might be missed from this modified approach. This retrospective study included 126 children who underwent a neck CT between August 1, 2013, and September 30, 2014. Alteration of the scan length for the modified CT was suggested on the topographic image on the basis of the indication of the study, with the reader blinded to the images and the report. The CT dose index volume of the original scan was multiplied by the new scan length to calculate the dose-length product of the modified study. The effective dose was calculated for the original and modified studies by using age-based conversion factors from the American Association of Physicists in Medicine Report No. 96. Decreasing the scan length resulted in an average estimated dose reduction of 47%. The average reduction in scan length was 10.4 cm, decreasing the overall coverage by 48%. The change in scan length did not result in any missed findings that altered management. Of the 27 abscesses in this study, none extended to the mediastinum. All of the lesions in question were completely covered. Decreasing the scan length of a neck CT according to the indication provides a significant savings in radiation dose, while not altering diagnostic ability or management. © 2016 by American Journal of Neuroradiology.

  14. SU-F-I-40: Impact of Scan Length On Patient Dose in Abdomen/pelvis CT Diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, I; Song, J; Kim, K

    Purpose: To analysis the impact of scan length on patient doses in abdomen/pelvis CT diagnosis of each hospital. Methods: Scan length of 7 hospitals from abdomen/pelvis CT diagnosis was surveyed in Korea. Surveyed scan lengths were additional distance above diaphragm and distance below pubic symphysis except for standard scan range between diaphragm and pubic symphysis. Patient dose was estimated for adult male and female according to scan length of each hospital. CT-Expo was used to estimate the patient dose under identical equipment settings (120 kVp, 100 mAs, 10 mm collimation width, etc.) except scan length. Effective dose was calculated bymore » using tissue weighting factor of ICRP 103 recommendation. Increase rate of effective dose was calculated comparing with effective dose of standard scan range Results: Scan lengths of abdomen/pelvis CT diagnosis of each hospital were different. Also effective dose was increased with increasing the scan length. Generally increasing the distance above diaphragm caused increase of effective dose of male and female, but increasing the distance below pubic symphysis caused increase of effective dose of male. Conclusion: We estimated the patient dose according to scan length of each hospital in abdomen/pelvis CT diagnosis. Effective dose was increased by increasing the scan length because dose of organs with high tissue weighting factor such as lung, breast, testis were increased. Scan length is important factor on patient dose in CT diagnosis. If radiologic technologist interested in patient dose, decreasing the unnecessary scan length will decrease the risk of patients from radiation. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0004).« less

  15. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  16. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging.

    PubMed

    Barratt, Dean C; Chan, Carolyn S K; Edwards, Philip J; Penney, Graeme P; Slomczykowski, Mike; Carter, Timothy J; Hawkes, David J

    2008-06-01

    Statistical shape modelling potentially provides a powerful tool for generating patient-specific, 3D representations of bony anatomy for computer-aided orthopaedic surgery (CAOS) without the need for a preoperative CT scan. Furthermore, freehand 3D ultrasound (US) provides a non-invasive method for digitising bone surfaces in the operating theatre that enables a much greater region to be sampled compared with conventional direct-contact (i.e., pointer-based) digitisation techniques. In this paper, we describe how these approaches can be combined to simultaneously generate and register a patient-specific model of the femur and pelvis to the patient during surgery. In our implementation, a statistical deformation model (SDM) was constructed for the femur and pelvis by performing a principal component analysis on the B-spline control points that parameterise the freeform deformations required to non-rigidly register a training set of CT scans to a carefully segmented template CT scan. The segmented template bone surface, represented by a triangulated surface mesh, is instantiated and registered to a cloud of US-derived surface points using an iterative scheme in which the weights corresponding to the first five principal modes of variation of the SDM are optimised in addition to the rigid-body parameters. The accuracy of the method was evaluated using clinically realistic data obtained on three intact human cadavers (three whole pelves and six femurs). For each bone, a high-resolution CT scan and rigid-body registration transformation, calculated using bone-implanted fiducial markers, served as the gold standard bone geometry and registration transformation, respectively. After aligning the final instantiated model and CT-derived surfaces using the iterative closest point (ICP) algorithm, the average root-mean-square distance between the surfaces was 3.5mm over the whole bone and 3.7mm in the region of surgical interest. The corresponding distances after aligning the surfaces using the marker-based registration transformation were 4.6 and 4.5mm, respectively. We conclude that despite limitations on the regions of bone accessible using US imaging, this technique has potential as a cost-effective and non-invasive method to enable surgical navigation during CAOS procedures, without the additional radiation dose associated with performing a preoperative CT scan or intraoperative fluoroscopic imaging. However, further development is required to investigate errors using error measures relevant to specific surgical procedures.

  17. CT scan (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  18. A comparative study of cranial, blunt trauma fractures as seen at medicolegal autopsy and by Computed Tomography

    PubMed Central

    2009-01-01

    Background Computed Tomography (CT) has become a widely used supplement to medico legal autopsies at several forensic institutes. Amongst other things, it has proven to be very valuable in visualising fractures of the cranium. Also CT scan data are being used to create head models for biomechanical trauma analysis by Finite Element Analysis. If CT scan data are to be used for creating individual head models for retrograde trauma analysis in the future we need to ascertain how well cranial fractures are captured by CT scan. The purpose of this study was to compare the diagnostic agreement between CT and autopsy regarding cranial fractures and especially the precision with which cranial fractures are recorded. Methods The autopsy fracture diagnosis was compared to the diagnosis of two CT readings (reconstructed with Multiplanar and Maximum Intensity Projection reconstructions) by registering the fractures on schematic drawings. The extent of the fractures was quantified by merging 3-dimensional datasets from both the autopsy as input by 3D digitizer tracing and CT scan. Results The results showed a good diagnostic agreement regarding fractures localised in the posterior fossa, while the fracture diagnosis in the medial and anterior fossa was difficult at the first CT scan reading. The fracture diagnosis improved during the second CT scan reading. Thus using two different CT reconstructions improved diagnosis in the medial fossa and at the impact points in the cranial vault. However, fracture diagnosis in the anterior and medial fossa and of hairline fractures in general still remained difficult. Conclusion The study showed that the forensically important fracture systems to a large extent were diagnosed on CT images using Multiplanar and Maximum Intensity Projection reconstructions. Difficulties remained in the minute diagnosis of hairline fractures. These inconsistencies need to be resolved in order to use CT scan data of victims for individual head modelling and trauma analysis. PMID:19835570

  19. Delayed splenic vascular injury after nonoperative management of blunt splenic trauma.

    PubMed

    Furlan, Alessandro; Tublin, Mitchell E; Rees, Mitchell A; Nicholas, Dederia H; Sperry, Jason L; Alarcon, Louis H

    2017-05-01

    Delayed splenic vascular injury (DSVI) is traditionally considered a rare, often clinically occult, harbinger of splenic rupture in patients with splenic trauma that are managed conservatively. The purpose of our study was to assess the incidence of DSVI and associated features in patients admitted with blunt splenic trauma and managed nonoperatively. A retrospective analysis was conducted over a 4-y time. Patients admitted with blunt splenic trauma, managed no-operatively and with a follow-up contrast-enhanced computed tomography (CT) scan study during admission were included. The CT scans were reviewed for American Association for the Surgery of Trauma splenic injury score, amount of hemoperitoneum, and presence of DSVI. Logistic regression models were used to investigate the risk factors associated with DSVI. A total of 100 patients (60 men and 40 women) constituted the study group. Follow-up CT scan demonstrated a 23% incidence of DSVI. Splenic artery angiography validated DSVI in 15% of the total patient population. Most DSVIs were detected only on arterial phase CT scan imaging. The American Association for the Surgery of Trauma splenic injury score (odds ratio = 1.73; P = 0.045) and the amount of hemoperitoneum (odds ratio = 1.90; P = 0.023) on admission CT scan were associated with the development of DSVI on follow-up CT scan. DSVI on follow-up CT scan imaging of patients managed nonoperatively after splenic injury is common and associated with splenic injury score assessed on admission CT scan. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparison between low (3:1) and high (6:1) pitch for routine abdominal/pelvic imaging with multislice computed tomography.

    PubMed

    Sahani, Dushyant; Saini, Sanjay; D'Souza, Roy V; O'Neill, Mary Jane; Prasad, Srinivasa R; Kalra, Mannudeep K; Halpern, Elkan F; Mueller, Peter

    2003-01-01

    The purpose of this study was to compare the performance of low helical pitch acquisition (3:1) and high helical pitch acquisition (6:1) for routine abdominal/pelvic imaging with multislice computed tomography (CT). Three hundred eighty-four patients referred for abdominal/pelvic CT were examined in a breath-hold on a multislice CT scanner (LightSpeed QX/I; General Electric Medical Systems, Milwaukee, WI). Patients were randomized and scanned with pitch of 3:1 or 6:1 using a constant 140 peak kV and 280-300 mA. Images were reconstructed at a 3.75-mm slice thickness. Direct comparison between the two pitches was possible in a subset of 40 patients who had a follow-up scan performed with the second pitch used in each patient. A comparison was also performed between standard dose CT using a pitch of 6:1 and 20% reduced radiation dose CT using a pitch of 3:1. Two readers performed a blind evaluation using a three-point scale for image quality, anatomic details, and motion artifacts. Statistical analysis was performed using a rank sum test and the Wilcoxon signed rank test. Overall image quality mean scores were 2.5 and 2.3 for a pitch of 3:1 and a pitch of 6:1, respectively (P = 0.134). Likewise, mean anatomic detail and motion artifact scores were 2.5 and 2.6 for a 3:1 pitch and 2.3 and 2.5 for a 6:1 pitch, respectively (P > 0.05). In patients with a direct comparison of the two pitches (with the standard radiation dose as well as with a 20% reduction in milliamperes), no statistically significant difference in the performance of the two pitches was observed (P > 0.05). Image quality with a high pitch (6:1) is acceptable for routine abdominal/pelvic CT.

Top