Sample records for performs pattern recognition

  1. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements

    PubMed Central

    2014-01-01

    Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948

  3. New Optical Transforms For Statistical Image Recognition

    NASA Astrophysics Data System (ADS)

    Lee, Sing H.

    1983-12-01

    In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.

  4. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  5. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    PubMed Central

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  6. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    PubMed

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  7. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    PubMed

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  8. Classifying performance impairment in response to sleep loss using pattern recognition algorithms on single session testing

    PubMed Central

    St. Hilaire, Melissa A.; Sullivan, Jason P.; Anderson, Clare; Cohen, Daniel A.; Barger, Laura K.; Lockley, Steven W.; Klerman, Elizabeth B.

    2012-01-01

    There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep loss. We utilized pattern recognition algorithms to determine which features of data collected under controlled laboratory conditions could most reliably identify cognitive performance impairment in response to sleep loss using data from only one testing session, such as would occur in the “real world” or field conditions. A training set for testing the pattern recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify performance impairment with a single testing session in individuals studied under laboratory conditions using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high as 82%. When this algorithm was tested on data collected under real-world conditions from individuals whose data were not in the training set, accuracy of predictions for individuals categorized with low performance impairment were as high as 98%. Predictions for medium and severe performance impairment were less accurate. We conclude that pattern recognition algorithms may be a promising method for identifying performance impairment in individuals using only current information about the individual’s behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory setting may not be the best indicators of performance impairment under real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used in conjunction with other assessments of sleepiness in real-world conditions to quantify performance impairment in response to sleep loss. PMID:22959616

  9. Sonar Recognition Training: An Investigation of Whole VS. Part and Analytic VS. Synthetic Procedures.

    ERIC Educational Resources Information Center

    Annett, John

    An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…

  10. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  11. Performance Study of the First 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, Gregory; Hoff, James; Jindariani, Sergo

    Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less

  12. A strip chart recorder pattern recognition tool kit for Shuttle operations

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.

    1993-01-01

    During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.

  13. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed Central

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-01-01

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273

  14. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-11-26

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License

  15. Pattern Recognition Using Artificial Neural Network: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.

  16. Facial emotion recognition in patients with focal and diffuse axonal injury.

    PubMed

    Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita

    2017-01-01

    Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.

  17. Automatic Target Recognition Based on Cross-Plot

    PubMed Central

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508

  18. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  19. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  20. Speaker normalization for chinese vowel recognition in cochlear implants.

    PubMed

    Luo, Xin; Fu, Qian-Jie

    2005-07-01

    Because of the limited spectra-temporal resolution associated with cochlear implants, implant patients often have greater difficulty with multitalker speech recognition. The present study investigated whether multitalker speech recognition can be improved by applying speaker normalization techniques to cochlear implant speech processing. Multitalker Chinese vowel recognition was tested with normal-hearing Chinese-speaking subjects listening to a 4-channel cochlear implant simulation, with and without speaker normalization. For each subject, speaker normalization was referenced to the speaker that produced the best recognition performance under conditions without speaker normalization. To match the remaining speakers to this "optimal" output pattern, the overall frequency range of the analysis filter bank was adjusted for each speaker according to the ratio of the mean third formant frequency values between the specific speaker and the reference speaker. Results showed that speaker normalization provided a small but significant improvement in subjects' overall recognition performance. After speaker normalization, subjects' patterns of recognition performance across speakers changed, demonstrating the potential for speaker-dependent effects with the proposed normalization technique.

  1. Degraded character recognition based on gradient pattern

    NASA Astrophysics Data System (ADS)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  2. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  3. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  4. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  5. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-11-05

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  6. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    PubMed Central

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  7. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.

    PubMed

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-06-13

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).

  8. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  9. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    DOE PAGES

    Abba, A.; Bedeschi, F.; Citterio, M.; ...

    2015-03-05

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.

  10. Sub-pattern based multi-manifold discriminant analysis for face recognition

    NASA Astrophysics Data System (ADS)

    Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen

    2018-04-01

    In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.

  11. Repetition and lag effects in movement recognition.

    PubMed

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  12. Training Strategies for Mitigating the Effect of Proportional Control on Classification in Pattern Recognition Based Myoelectric Control

    PubMed Central

    Scheme, Erik; Englehart, Kevin

    2013-01-01

    The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier’s performance and tolerance to proportional control. PMID:23894224

  13. Pattern Recognition Control Design

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth A.

    2018-01-01

    Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.

  14. CNN: a speaker recognition system using a cascaded neural network.

    PubMed

    Zaki, M; Ghalwash, A; Elkouny, A A

    1996-05-01

    The main emphasis of this paper is to present an approach for combining supervised and unsupervised neural network models to the issue of speaker recognition. To enhance the overall operation and performance of recognition, the proposed strategy integrates the two techniques, forming one global model called the cascaded model. We first present a simple conventional technique based on the distance measured between a test vector and a reference vector for different speakers in the population. This particular distance metric has the property of weighting down the components in those directions along which the intraspeaker variance is large. The reason for presenting this method is to clarify the discrepancy in performance between the conventional and neural network approach. We then introduce the idea of using unsupervised learning technique, presented by the winner-take-all model, as a means of recognition. Due to several tests that have been conducted and in order to enhance the performance of this model, dealing with noisy patterns, we have preceded it with a supervised learning model--the pattern association model--which acts as a filtration stage. This work includes both the design and implementation of both conventional and neural network approaches to recognize the speakers templates--which are introduced to the system via a voice master card and preprocessed before extracting the features used in the recognition. The conclusion indicates that the system performance in case of neural network is better than that of the conventional one, achieving a smooth degradation in respect of noisy patterns, and higher performance in respect of noise-free patterns.

  15. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  16. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  17. Exploring a Decrease in Recognition Performance for Non-Antecedents Following the Processing of Anaphors

    ERIC Educational Resources Information Center

    Dopkins, Stephen; Nordlie, Johanna

    2011-01-01

    Recognition judgments to the non-antecedents of a repeated-noun anaphor are slower and less accurate after than before the processing of the anaphor. Disagreement exists as to whether this pattern of performance reflects a bias shift carried out by a memory process associated with the recognition of a word that has previously occurred in the…

  18. Visual scanning behavior is related to recognition performance for own- and other-age faces

    PubMed Central

    Proietti, Valentina; Macchi Cassia, Viola; dell’Amore, Francesca; Conte, Stefania; Bricolo, Emanuela

    2015-01-01

    It is well-established that our recognition ability is enhanced for faces belonging to familiar categories, such as own-race faces and own-age faces. Recent evidence suggests that, for race, the recognition bias is also accompanied by different visual scanning strategies for own- compared to other-race faces. Here, we tested the hypothesis that these differences in visual scanning patterns extend also to the comparison between own and other-age faces and contribute to the own-age recognition advantage. Participants (young adults with limited experience with infants) were tested in an old/new recognition memory task where they encoded and subsequently recognized a series of adult and infant faces while their eye movements were recorded. Consistent with findings on the other-race bias, we found evidence of an own-age bias in recognition which was accompanied by differential scanning patterns, and consequently differential encoding strategies, for own-compared to other-age faces. Gaze patterns for own-age faces involved a more dynamic sampling of the internal features and longer viewing time on the eye region compared to the other regions of the face. This latter strategy was extensively employed during learning (vs. recognition) and was positively correlated to discriminability. These results suggest that deeply encoding the eye region is functional for recognition and that the own-age bias is evident not only in differential recognition performance, but also in the employment of different sampling strategies found to be effective for accurate recognition. PMID:26579056

  19. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures

    NASA Astrophysics Data System (ADS)

    Yao, Ruigen; Pakzad, Shamim N.

    2012-08-01

    Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.

  20. Consonant-recognition patterns and self-assessment of hearing handicap.

    PubMed

    Hustedde, C G; Wiley, T L

    1991-12-01

    Two companion experiments were conducted with normal-hearing subjects and subjects with high-frequency, sensorineural hearing loss. In Experiment 1, the validity of a self-assessment device of hearing handicap was evaluated in two groups of hearing-impaired listeners with significantly different consonant-recognition ability. Data for the Hearing Performance Inventory--Revised (Lamb, Owens, & Schubert, 1983) did not reveal differences in self-perceived handicap for the two groups of hearing-impaired listeners; it was sensitive to perceived differences in hearing abilities for listeners who did and did not have a hearing loss. Experiment 2 was aimed at evaluation of consonant error patterns that accounted for observed group differences in consonant-recognition ability. Error patterns on the Nonsense-Syllable Test (NST) across the two subject groups differed in both degree and type of error. Listeners in the group with poorer NST performance always demonstrated greater difficulty with selected low-frequency and high-frequency syllables than did listeners in the group with better NST performance. Overall, the NST was sensitive to differences in consonant-recognition ability for normal-hearing and hearing-impaired listeners.

  1. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  2. Do pattern recognition skills transfer across sports? A preliminary analysis.

    PubMed

    Smeeton, Nicholas J; Ward, Paul; Williams, A Mark

    2004-02-01

    The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.

  3. Designing Clinical Examples To Promote Pattern Recognition: Nursing Education-Based Research and Practical Applications.

    ERIC Educational Resources Information Center

    Welk, Dorette Sugg

    2002-01-01

    Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…

  4. Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition.

    PubMed

    Brown, Shannon; Ortiz-Catalan, Max; Petersson, Joel; Rodby, Kristian; Seoane, Fernando

    2016-08-01

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.

  5. Application of pattern recognition techniques to crime analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.

    1976-08-15

    The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)

  6. The effect of inversion on face recognition in adults with autism spectrum disorder.

    PubMed

    Hedley, Darren; Brewer, Neil; Young, Robyn

    2015-05-01

    Face identity recognition has widely been shown to be impaired in individuals with autism spectrum disorders (ASD). In this study we examined the influence of inversion on face recognition in 26 adults with ASD and 33 age and IQ matched controls. Participants completed a recognition test comprising upright and inverted faces. Participants with ASD performed worse than controls on the recognition task but did not show an advantage for inverted face recognition. Both groups directed more visual attention to the eye than the mouth region and gaze patterns were not found to be associated with recognition performance. These results provide evidence of a normal effect of inversion on face recognition in adults with ASD.

  7. Mechanisms and neural basis of object and pattern recognition: a study with chess experts.

    PubMed

    Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-11-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.

  8. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  9. Finger vein recognition based on a personalized best bit map.

    PubMed

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.

  10. Iris recognition based on key image feature extraction.

    PubMed

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  11. Pattern Recognition Control Design

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth

    2016-01-01

    Spacecraft control algorithms must know the expected spacecraft response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach can be used to investigate the relationship between the control effector commands and the spacecraft responses. Instead of supplying the approximated vehicle properties and the effector performance characteristics, a database of information relating the effector commands and the desired vehicle response can be used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands can be analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center (Ref. 1) to analyze flight dynamics Monte Carlo data sets through pattern recognition methods can be used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands is established, it can be used in place of traditional control laws and gains set. This pattern recognition approach can be compared with traditional control algorithms to determine the potential benefits and uses.

  12. Benefits of using culturally unfamiliar stimuli in ambiguous emotion identification: A cross-cultural study.

    PubMed

    Koelkebeck, Katja; Kohl, Waldemar; Luettgenau, Julia; Triantafillou, Susanna; Ohrmann, Patricia; Satoh, Shinji; Minoshita, Seiko

    2015-07-30

    A novel emotion recognition task that employs photos of a Japanese mask representing a highly ambiguous stimulus was evaluated. As non-Asians perceive and/or label emotions differently from Asians, we aimed to identify patterns of task-performance in non-Asian healthy volunteers with a view to future patient studies. The Noh mask test was presented to 42 adult German participants. Reaction times and emotion attribution patterns were recorded. To control for emotion identification abilities, a standard emotion recognition task was used among others. Questionnaires assessed personality traits. Finally, results were compared to age- and gender-matched Japanese volunteers. Compared to other tasks, German participants displayed slowest reaction times on the Noh mask test, indicating higher demands of ambiguous emotion recognition. They assigned more positive emotions to the mask than Japanese volunteers, demonstrating culture-dependent emotion identification patterns. As alexithymic and anxious traits were associated with slower reaction times, personality dimensions impacted on performance, as well. We showed an advantage of ambiguous over conventional emotion recognition tasks. Moreover, we determined emotion identification patterns in Western individuals impacted by personality dimensions, suggesting performance differences in clinical samples. Due to its properties, the Noh mask test represents a promising tool in the differential diagnosis of psychiatric disorders, e.g. schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Finger vein recognition based on personalized weight maps.

    PubMed

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-09-10

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.

  14. Finger Vein Recognition Based on Personalized Weight Maps

    PubMed Central

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-01-01

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556

  15. Facial emotion recognition deficits in relatives of children with autism are not associated with 5HTTLPR.

    PubMed

    Neves, Maila de Castro Lourenço das; Tremeau, Fabien; Nicolato, Rodrigo; Lauar, Hélio; Romano-Silva, Marco Aurélio; Correa, Humberto

    2011-09-01

    A large body of evidence suggests that several aspects of face processing are impaired in autism and that this impairment might be hereditary. This study was aimed at assessing facial emotion recognition in parents of children with autism and its associations with a functional polymorphism of the serotonin transporter (5HTTLPR). We evaluated 40 parents of children with autism and 41 healthy controls. All participants were administered the Penn Emotion Recognition Test (ER40) and were genotyped for 5HTTLPR. Our study showed that parents of children with autism performed worse in the facial emotion recognition test than controls. Analyses of error patterns showed that parents of children with autism over-attributed neutral to emotional faces. We found evidence that 5HTTLPR polymorphism did not influence the performance in the Penn Emotion Recognition Test, but that it may determine different error patterns. Facial emotion recognition deficits are more common in first-degree relatives of autistic patients than in the general population, suggesting that facial emotion recognition is a candidate endophenotype for autism.

  16. Foundations for a syntatic pattern recognition system for genomic DNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  17. Talker variability in audio-visual speech perception

    PubMed Central

    Heald, Shannon L. M.; Nusbaum, Howard C.

    2014-01-01

    A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker’s face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker’s face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker’s face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred. PMID:25076919

  18. Talker variability in audio-visual speech perception.

    PubMed

    Heald, Shannon L M; Nusbaum, Howard C

    2014-01-01

    A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker's face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker's face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker's face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred.

  19. Interrupted Monosyllabic Words: The Effects of Ten Interruption Locations on Recognition Performance by Older Listeners with Sensorineural Hearing Loss.

    PubMed

    Wilson, Richard H; Sharrett, Kadie C

    2017-01-01

    Two previous experiments from our laboratory with 70 interrupted monosyllabic words demonstrated that recognition performance was influenced by the temporal location of the interruption pattern. The interruption pattern (10 interruptions/sec, 50% duty cycle) was always the same and referenced word onset; the only difference between the patterns was the temporal location of the on- and off-segments of the interruption cycle. In the first study, both young and older listeners obtained better recognition performances when the initial on-segment coincided with word onset than when the initial on-segment was delayed by 50 msec. The second experiment with 24 young listeners detailed recognition performance as the interruption pattern was incremented in 10-msec steps through the 0- to 90-msec onset range. Across the onset conditions, 95% of the functions were either flat or U-shaped. To define the effects that interruption pattern locations had on word recognition by older listeners with sensorineural hearing loss as the interruption pattern incremented, re: word onset, from 0 to 90 msec in 10-msec steps. A repeated-measures design with ten interruption patterns (onset conditions) and one uninterruption condition. Twenty-four older males (mean = 69.6 yr) with sensorineural hearing loss participated in two 1-hour sessions. The three-frequency pure-tone average was 24.0 dB HL and word recognition was ≥80% correct. Seventy consonant-vowel nucleus-consonant words formed the corpus of materials with 25 additional words used for practice. For each participant, the 700 interrupted stimuli (70 words by 10 onset conditions), the 70 words uninterrupted, and two practice lists each were randomized and recorded on compact disc in 33 tracks of 25 words each. The data were analyzed at the participant and word levels and compared to the results obtained earlier on 24 young listeners with normal hearing. The mean recognition performance on the 70 words uninterrupted was 91.0% with an overall mean performance on the ten interruption conditions of 63.2% (range: 57.9-69.3%), compared to 80.4% (range: 73.0-87.7%) obtained earlier on the young adults. The best performances were at the extremes of the onset conditions. Standard deviations ranged from 22.1% to 28.1% (24 participants) and from 9.2% to 12.8% (70 words). An arithmetic algorithm categorized the shapes of the psychometric functions across the ten onset conditions. With the older participants in the current study, 40% of the functions were flat, 41.4% were U-shaped, and 18.6% were inverted U-shaped, which compared favorably to the function shapes by the young listeners in the earlier study of 50.0%, 41.4%, and 8.6%, respectively. There were two words on which the older listeners had 40% better performances. Collectively, the data are orderly, but at the individual word or participant level, the data are somewhat volatile, which may reflect auditory processing differences between the participant groups. The diversity of recognition performances by the older listeners on the ten interruption conditions with each of the 70 words supports the notion that the term hearing loss is inclusive of processes well beyond the filtering produced by end-organ sensitivity deficits. American Academy of Audiology

  20. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  1. Modeling the effect of channel number and interaction on consonant recognition in a cochlear implant peak-picking strategy.

    PubMed

    Verschuur, Carl

    2009-03-01

    Difficulties in speech recognition experienced by cochlear implant users may be attributed both to information loss caused by signal processing and to information loss associated with the interface between the electrode array and auditory nervous system, including cross-channel interaction. The objective of the work reported here was to attempt to partial out the relative contribution of these different factors to consonant recognition. This was achieved by comparing patterns of consonant feature recognition as a function of channel number and presence/absence of background noise in users of the Nucleus 24 device with normal hearing subjects listening to acoustic models that mimicked processing of that device. Additionally, in the acoustic model experiment, a simulation of cross-channel spread of excitation, or "channel interaction," was varied. Results showed that acoustic model experiments were highly correlated with patterns of performance in better-performing cochlear implant users. Deficits to consonant recognition in this subgroup could be attributed to cochlear implant processing, whereas channel interaction played a much smaller role in determining performance errors. The study also showed that large changes to channel number in the Advanced Combination Encoder signal processing strategy led to no substantial changes in performance.

  2. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.

  3. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    PubMed

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.

  4. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941

  5. The Characteristics of Binary Spike-Time-Dependent Plasticity in HfO2-Based RRAM and Applications for Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2017-04-01

    A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.

  6. Foundations for a syntatic pattern recognition system for genomic DNA sequences. [Annual] report, 1 December 1991--31 March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  7. Interface Prostheses With Classifier-Feedback-Based User Training.

    PubMed

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.

  8. ERP correlates of recognition memory in Autism Spectrum Disorder.

    PubMed

    Massand, Esha; Bowler, Dermot M; Mottron, Laurent; Hosein, Anthony; Jemel, Boutheina

    2013-09-01

    Recognition memory in autism spectrum disorder (ASD) tends to be undiminished compared to that of typically developing (TD) individuals (Bowler et al. 2007), but it is still unknown whether memory in ASD relies on qualitatively similar or different neurophysiology. We sought to explore the neural activity underlying recognition by employing the old/new word repetition event-related potential effect. Behavioural recognition performance was comparable across both groups, and demonstrated superior recognition for low frequency over high frequency words. However, the ASD group showed a parietal rather than anterior onset (300-500 ms), and diminished right frontal old/new effects (800-1500 ms) relative to TD individuals. This study shows that undiminished recognition performance results from a pattern of differing functional neurophysiology in ASD.

  9. Effects of emotional and perceptual-motor stress on a voice recognition system's accuracy: An applied investigation

    NASA Astrophysics Data System (ADS)

    Poock, G. K.; Martin, B. J.

    1984-02-01

    This was an applied investigation examining the ability of a speech recognition system to recognize speakers' inputs when the speakers were under different stress levels. Subjects were asked to speak to a voice recognition system under three conditions: (1) normal office environment, (2) emotional stress, and (3) perceptual-motor stress. Results indicate a definite relationship between voice recognition system performance and the type of low stress reference patterns used to achieve recognition.

  10. Score Fusion and Decision Fusion for the Performance Improvement of Face Recognition

    DTIC Science & Technology

    2013-07-01

    0.1). A Hamming distance (HD) [7] is calculated with the FP-CGF to measure the similarities among faces. The matched face has the shortest HD from...then put into a face pattern byte (FPB) pixel- by-pixel. A HD is calculated with the FPB to measure the similarities among faces, and recognition is...all query users are included in the database), the recognition performance can be measured by a verification rate (VR), the percentage of the

  11. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  12. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  13. Auditory orientation in crickets: Pattern recognition controls reactive steering

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  14. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  15. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE PAGES

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; ...

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  16. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  17. Context-aware mobile health monitoring: evaluation of different pattern recognition methods for classification of physical activity.

    PubMed

    Jatobá, Luciana C; Grossmann, Ulrich; Kunze, Chistophe; Ottenbacher, Jörg; Stork, Wilhelm

    2008-01-01

    There are various applications of physical activity monitoring for medical purposes, such as therapeutic rehabilitation, fitness enhancement or the use of physical activity as context information for evaluation of other vital data. Physical activity can be estimated using acceleration sensor-systems fixed on a person's body. By means of pattern recognition methods, it is possible to identify with certain accuracy which movement is being performed. This work presents a comparison of different methods for recognition of daily-life activities, which will serve as basis for the development of an online activity monitoring system.

  18. Real-Time Pattern Recognition - An Industrial Example

    NASA Astrophysics Data System (ADS)

    Fitton, Gary M.

    1981-11-01

    Rapid advancements in cost effective sensors and micro computers are now making practical the on-line implementation of pattern recognition based systems for a variety of industrial applications requiring high processing speeds. One major application area for real time pattern recognition is in the sorting of packaged/cartoned goods at high speed for automated warehousing and return goods cataloging. While there are many OCR and bar code readers available to perform these functions, it is often impractical to use such codes (package too small, adverse esthetics, poor print quality) and an approach which recognizes an item by its graphic content alone is desirable. This paper describes a specific application within the tobacco industry, that of sorting returned cigarette goods by brand and size.

  19. Perceiving patterns of play in dynamic sport tasks: investigating the essential information underlying skilled performance.

    PubMed

    Willams, A Mark; Hodges, Nicola J; North, Jamie S; Barton, Gabor

    2006-01-01

    The perceptual-cognitive information used to support pattern-recognition skill in soccer was examined. In experiment 1, skilled players were quicker and more accurate than less-skilled players at recognising familiar and unfamiliar soccer action sequences presented on film. In experiment 2, these action sequences were converted into point-light displays, with superficial display features removed and the positions of players and the relational information between them made more salient. Skilled players were more accurate than less-skilled players in recognising sequences presented in point-light form, implying that each pattern of play can be defined by the unique relations between players. In experiment 3, various offensive and defensive players were occluded for the duration of each trial in an attempt to identify the most important sources of information underpinning successful performance. A decrease in response accuracy was observed under occluded compared with non-occluded conditions and the expertise effect was no longer observed. The relational information between certain key players, team-mates and their defensive counterparts may provide the essential information for effective pattern-recognition skill in soccer. Structural feature analysis, temporal phase relations, and knowledge-based information are effectively integrated to facilitate pattern recognition in dynamic sport tasks.

  20. Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task

    PubMed Central

    López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa

    2013-01-01

    In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436

  1. Facial emotion recognition in Williams syndrome and Down syndrome: A matching and developmental study.

    PubMed

    Martínez-Castilla, Pastora; Burt, Michael; Borgatti, Renato; Gagliardi, Chiara

    2015-01-01

    In this study both the matching and developmental trajectories approaches were used to clarify questions that remain open in the literature on facial emotion recognition in Williams syndrome (WS) and Down syndrome (DS). The matching approach showed that individuals with WS or DS exhibit neither proficiency for the expression of happiness nor specific impairments for negative emotions. Instead, they present the same pattern of emotion recognition as typically developing (TD) individuals. Thus, the better performance on the recognition of positive compared to negative emotions usually reported in WS and DS is not specific of these populations but seems to represent a typical pattern. Prior studies based on the matching approach suggested that the development of facial emotion recognition is delayed in WS and atypical in DS. Nevertheless, and even though performance levels were lower in DS than in WS, the developmental trajectories approach used in this study evidenced that not only individuals with DS but also those with WS present atypical development in facial emotion recognition. Unlike in the TD participants, where developmental changes were observed along with age, in the WS and DS groups, the development of facial emotion recognition was static. Both individuals with WS and those with DS reached an early maximum developmental level due to cognitive constraints.

  2. Using Pattern Recognition and Discriminance Analysis to Predict Critical Events in Large Signal Databases

    NASA Astrophysics Data System (ADS)

    Feller, Jens; Feller, Sebastian; Mauersberg, Bernhard; Mergenthaler, Wolfgang

    2009-09-01

    Many applications in plant management require close monitoring of equipment performance, in particular with the objective to prevent certain critical events. At each point in time, the information available to classify the criticality of the process, is represented through the historic signal database as well as the actual measurement. This paper presents an approach to detect and predict critical events, based on pattern recognition and discriminance analysis.

  3. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  4. Spatially Invariant Vector Quantization: A pattern matching algorithm for multiple classes of image subject matter including pathology.

    PubMed

    Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J

    2011-02-26

    HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.

  5. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification

    NASA Astrophysics Data System (ADS)

    Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma

    2018-04-01

    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.

  6. Mining sequential patterns for protein fold recognition.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2008-02-01

    Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.

  7. Neural network-based system for pattern recognition through a fiber optic bundle

    NASA Astrophysics Data System (ADS)

    Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.

    2001-04-01

    A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.

  8. Computational Modeling of Emotions and Affect in Social-Cultural Interaction

    DTIC Science & Technology

    2013-10-02

    acoustic and textual information sources. Second, a cross-lingual study was performed that shed light on how human perception and automatic recognition...speech is produced, a speaker’s pitch and intonational pattern, and word usage. Better feature representation and advanced approaches were used to...recognition performance, and improved our understanding of language/cultural impact on human perception of emotion and automatic classification. • Units

  9. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  10. Complex auditory behaviour emerges from simple reactive steering

    NASA Astrophysics Data System (ADS)

    Hedwig, Berthold; Poulet, James F. A.

    2004-08-01

    The recognition and localization of sound signals is fundamental to acoustic communication. Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways. In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song. Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song. Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation.

  11. Adaptive weighted local textural features for illumination, expression, and occlusion invariant face recognition

    NASA Astrophysics Data System (ADS)

    Cui, Chen; Asari, Vijayan K.

    2014-03-01

    Biometric features such as fingerprints, iris patterns, and face features help to identify people and restrict access to secure areas by performing advanced pattern analysis and matching. Face recognition is one of the most promising biometric methodologies for human identification in a non-cooperative security environment. However, the recognition results obtained by face recognition systems are a affected by several variations that may happen to the patterns in an unrestricted environment. As a result, several algorithms have been developed for extracting different facial features for face recognition. Due to the various possible challenges of data captured at different lighting conditions, viewing angles, facial expressions, and partial occlusions in natural environmental conditions, automatic facial recognition still remains as a difficult issue that needs to be resolved. In this paper, we propose a novel approach to tackling some of these issues by analyzing the local textural descriptions for facial feature representation. The textural information is extracted by an enhanced local binary pattern (ELBP) description of all the local regions of the face. The relationship of each pixel with respect to its neighborhood is extracted and employed to calculate the new representation. ELBP reconstructs a much better textural feature extraction vector from an original gray level image in different lighting conditions. The dimensionality of the texture image is reduced by principal component analysis performed on each local face region. Each low dimensional vector representing a local region is now weighted based on the significance of the sub-region. The weight of each sub-region is determined by employing the local variance estimate of the respective region, which represents the significance of the region. The final facial textural feature vector is obtained by concatenating the reduced dimensional weight sets of all the modules (sub-regions) of the face image. Experiments conducted on various popular face databases show promising performance of the proposed algorithm in varying lighting, expression, and partial occlusion conditions. Four databases were used for testing the performance of the proposed system: Yale Face database, Extended Yale Face database B, Japanese Female Facial Expression database, and CMU AMP Facial Expression database. The experimental results in all four databases show the effectiveness of the proposed system. Also, the computation cost is lower because of the simplified calculation steps. Research work is progressing to investigate the effectiveness of the proposed face recognition method on pose-varying conditions as well. It is envisaged that a multilane approach of trained frameworks at different pose bins and an appropriate voting strategy would lead to a good recognition rate in such situation.

  12. Handwritten digits recognition based on immune network

    NASA Astrophysics Data System (ADS)

    Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe

    2011-11-01

    With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.

  13. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees

    PubMed Central

    Geng, Yanjuan; Wei, Yue

    2017-01-01

    Previous studies have showed that arm position variations would significantly degrade the classification performance of myoelectric pattern-recognition-based prosthetic control, and the cascade classifier (CC) and multiposition classifier (MPC) have been proposed to minimize such degradation in offline scenarios. However, it remains unknown whether these proposed approaches could also perform well in the clinical use of a multifunctional prosthesis control. In this study, the online effect of arm position variation on motion identification was evaluated by using a motion-test environment (MTE) developed to mimic the real-time control of myoelectric prostheses. The performance of different classifier configurations in reducing the impact of arm position variation was investigated using four real-time metrics based on dataset obtained from transradial amputees. The results of this study showed that, compared to the commonly used motion classification method, the CC and MPC configurations improved the real-time performance across seven classes of movements in five different arm positions (8.7% and 12.7% increments of motion completion rate, resp.). The results also indicated that high offline classification accuracy might not ensure good real-time performance under variable arm positions, which necessitated the investigation of the real-time control performance to gain proper insight on the clinical implementation of EMG-pattern-recognition-based controllers for limb amputees. PMID:28523276

  14. Scattering features for lung cancer detection in fibered confocal fluorescence microscopy images.

    PubMed

    Rakotomamonjy, Alain; Petitjean, Caroline; Salaün, Mathieu; Thiberville, Luc

    2014-06-01

    To assess the feasibility of lung cancer diagnosis using fibered confocal fluorescence microscopy (FCFM) imaging technique and scattering features for pattern recognition. FCFM imaging technique is a new medical imaging technique for which interest has yet to be established for diagnosis. This paper addresses the problem of lung cancer detection using FCFM images and, as a first contribution, assesses the feasibility of computer-aided diagnosis through these images. Towards this aim, we have built a pattern recognition scheme which involves a feature extraction stage and a classification stage. The second contribution relies on the features used for discrimination. Indeed, we have employed the so-called scattering transform for extracting discriminative features, which are robust to small deformations in the images. We have also compared and combined these features with classical yet powerful features like local binary patterns (LBP) and their variants denoted as local quinary patterns (LQP). We show that scattering features yielded to better recognition performances than classical features like LBP and their LQP variants for the FCFM image classification problems. Another finding is that LBP-based and scattering-based features provide complementary discriminative information and, in some situations, we empirically establish that performance can be improved when jointly using LBP, LQP and scattering features. In this work we analyze the joint capability of FCFM images and scattering features for lung cancer diagnosis. The proposed method achieves a good recognition rate for such a diagnosis problem. It also performs well when used in conjunction with other features for other classical medical imaging classification problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Variability in the impairment of recognition memory in patients with frontal lobe lesions.

    PubMed

    Bastin, Christine; Van der Linden, Martial; Lekeu, Françoise; Andrés, Pilar; Salmon, Eric

    2006-10-01

    Fourteen patients with frontal lobe lesions and 14 normal subjects were tested on a recognition memory task that required discriminating between target words, new words that are synonyms of the targets and unrelated distractors. A deficit was found in 12 of the patients. Moreover, three different patterns of recognition impairment were identified: (I) poor memory for targets, (II) normal hits but increased false recognitions for both types of distractors, (III) normal hit rates, but increased false recognitions for synonyms only. Differences in terms of location of the damage and behavioral characteristics between these subgroups were examined. An encoding deficit was proposed to explain the performance of patients in subgroup I. The behavioral patterns of the patients in subgroups II and III could be interpreted as deficient post-retrieval verification processes and an inability to recollect item-specific information, respectively.

  16. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models

    PubMed Central

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162

  17. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.

    PubMed

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.

  18. Protein classification using sequential pattern mining.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2006-01-01

    Protein classification in terms of fold recognition can be employed to determine the structural and functional properties of a newly discovered protein. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. One of the most efficient SPM algorithms, cSPADE, is employed for protein primary structure analysis. Then a classifier uses the extracted sequential patterns for classifying proteins of unknown structure in the appropriate fold category. The proposed methodology exhibited an overall accuracy of 36% in a multi-class problem of 17 candidate categories. The classification performance reaches up to 65% when the three most probable protein folds are considered.

  19. Use of Biometrics within Sub-Saharan Refugee Communities

    DTIC Science & Technology

    2013-12-01

    fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity. Biometrics creates and...Biometrics typically comprises fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity...authentication because it identifies an individual based on mathematical analysis of the random pattern visible within the iris. Facial recognition is

  20. Rotation-invariant neural pattern recognition system with application to coin recognition.

    PubMed

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  1. Dissociation between facial and bodily expressions in emotion recognition: A case study.

    PubMed

    Leiva, Samanta; Margulis, Laura; Micciulli, Andrea; Ferreres, Aldo

    2017-12-21

    Existing single-case studies have reported deficit in recognizing basic emotions through facial expression and unaffected performance with body expressions, but not the opposite pattern. The aim of this paper is to present a case study with impaired emotion recognition through body expressions and intact performance with facial expressions. In this single-case study we assessed a 30-year-old patient with autism spectrum disorder, without intellectual disability, and a healthy control group (n = 30) with four tasks of basic and complex emotion recognition through face and body movements, and two non-emotional control tasks. To analyze the dissociation between facial and body expressions, we used Crawford and Garthwaite's operational criteria, and we compared the patient and the control group performance with a modified one-tailed t-test designed specifically for single-case studies. There were no statistically significant differences between the patient's and the control group's performances on the non-emotional body movement task or the facial perception task. For both kinds of emotions (basic and complex) when the patient's performance was compared to the control group's, statistically significant differences were only observed for the recognition of body expressions. There were no significant differences between the patient's and the control group's correct answers for emotional facial stimuli. Our results showed a profile of impaired emotion recognition through body expressions and intact performance with facial expressions. This is the first case study that describes the existence of this kind of dissociation pattern between facial and body expressions of basic and complex emotions.

  2. Pattern Perception and Pictures for the Blind

    ERIC Educational Resources Information Center

    Heller, Morton A.; McCarthy, Melissa; Clark, Ashley

    2005-01-01

    This article reviews recent research on perception of tangible pictures in sighted and blind people. Haptic picture naming accuracy is dependent upon familiarity and access to semantic memory, just as in visual recognition. Performance is high when haptic picture recognition tasks do not depend upon semantic memory. Viewpoint matters for the ease…

  3. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    NASA Technical Reports Server (NTRS)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  4. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    PubMed Central

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  5. Age-related individual variability in memory performance is associated with amygdala-hippocampal circuit function and emotional pattern separation.

    PubMed

    Leal, Stephanie L; Noche, Jessica A; Murray, Elizabeth A; Yassa, Michael A

    2017-01-01

    While aging is generally associated with episodic memory decline, not all older adults exhibit memory loss. Furthermore, emotional memories are not subject to the same extent of forgetting and appear preserved in aging. We conducted high-resolution fMRI during a task involving pattern separation of emotional information in older adults with and without age-related memory impairment (characterized by performance on a word-list learning task: low performers: LP vs. high performers: HP). We found signals consistent with emotional pattern separation in hippocampal dentate (DG)/CA3 in HP but not in LP individuals, suggesting a deficit in emotional pattern separation. During false recognition, we found increased DG/CA3 activity in LP individuals, suggesting that hyperactivity may be associated with overgeneralization. We additionally observed a selective deficit in basolateral amygdala-lateral entorhinal cortex-DG/CA3 functional connectivity in LP individuals during pattern separation of negative information. During negative false recognition, LP individuals showed increased medial temporal lobe functional connectivity, consistent with overgeneralization. Overall, these results suggest a novel mechanistic account of individual differences in emotional memory alterations exhibited in aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Age-related individual variability in memory performance is associated with amygdala-hippocampal circuit function and emotional pattern separation

    PubMed Central

    Leal, Stephanie L.; Noche, Jessica A.; Murray, Elizabeth A.; Yassa, Michael A.

    2018-01-01

    While aging is generally associated with episodic memory decline, not all older adults exhibit memory loss. Furthermore, emotional memories are not subject to the same extent of forgetting and appear preserved in aging. We conducted high-resolution fMRI during a task involving pattern separation of emotional information in older adults with and without age-related memory impairment (characterized by performance on a word-list learning task: low performers: LP vs. high performers: HP). We found signals consistent with emotional pattern separation in hippocampal dentate (DG)/CA3 in HP but not in LP individuals, suggesting a deficit in emotional pattern separation. During false recognition, we found increased DG/CA3 activity in LP individuals, suggesting that hyperactivity may be associated with overgeneralization. We additionally observed a selective deficit in basolateral amygdala—lateral entorhinal cortex—DG/CA3 functional connectivity in LP individuals during pattern separation of negative information. During negative false recognition, LP individuals showed increased medial temporal lobe functional connectivity, consistent with overgeneralization. Overall, these results suggest a novel mechanistic account of individual differences in emotional memory alterations exhibited in aging. PMID:27723500

  7. Bringing an Ecological Perspective to the Study of Aging and Recognition of Emotional Facial Expressions: Past, Current, and Future Methods

    PubMed Central

    Isaacowitz, Derek M.; Stanley, Jennifer Tehan

    2011-01-01

    Older adults perform worse on traditional tests of emotion recognition accuracy than do young adults. In this paper, we review descriptive research to date on age differences in emotion recognition from facial expressions, as well as the primary theoretical frameworks that have been offered to explain these patterns. We propose that this is an area of inquiry that would benefit from an ecological approach in which contextual elements are more explicitly considered and reflected in experimental methods. Use of dynamic displays and examination of specific cues to accuracy, for example, may reveal more nuanced age-related patterns and may suggest heretofore unexplored underlying mechanisms. PMID:22125354

  8. Vander Lugt correlation of DNA sequence data

    NASA Astrophysics Data System (ADS)

    Christens-Barry, William A.; Hawk, James F.; Martin, James C.

    1990-12-01

    DNA, the molecule containing the genetic code of an organism, is a linear chain of subunits. It is the sequence of subunits, of which there are four kinds, that constitutes the unique blueprint of an individual. This sequence is the focus of a large number of analyses performed by an army of geneticists, biologists, and computer scientists. Most of these analyses entail searches for specific subsequences within the larger set of sequence data. Thus, most analyses are essentially pattern recognition or correlation tasks. Yet, there are special features to such analysis that influence the strategy and methods of an optical pattern recognition approach. While the serial processing employed in digital electronic computers remains the main engine of sequence analyses, there is no fundamental reason that more efficient parallel methods cannot be used. We describe an approach using optical pattern recognition (OPR) techniques based on matched spatial filtering. This allows parallel comparison of large blocks of sequence data. In this study we have simulated a Vander Lugt1 architecture implementing our approach. Searches for specific target sequence strings within a block of DNA sequence from the Co/El plasmid2 are performed.

  9. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  10. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.

    PubMed

    Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin

    2018-03-12

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.

  11. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals

    PubMed Central

    Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin

    2018-01-01

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515

  12. Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging

    PubMed Central

    Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice

    2012-01-01

    Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (p<.05, r=.44) and more accurate at identifying disgust (p<.05, r=.39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p’s<.05, r’s≥.38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800

  13. Training Spiking Neural Models Using Artificial Bee Colony

    PubMed Central

    Vazquez, Roberto A.; Garro, Beatriz A.

    2015-01-01

    Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644

  14. Conditional random fields for pattern recognition applied to structured data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Skurikhin, Alexei

    In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less

  15. Conditional random fields for pattern recognition applied to structured data

    DOE PAGES

    Burr, Tom; Skurikhin, Alexei

    2015-07-14

    In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less

  16. Pattern recognition with "materials that compute".

    PubMed

    Fang, Yan; Yashin, Victor V; Levitan, Steven P; Balazs, Anna C

    2016-09-01

    Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The "stored" patterns are set of polarities of the individual BZ-PZ units, and the "input" patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating "materials that compute."

  17. Pattern recognition with “materials that compute”

    PubMed Central

    Fang, Yan; Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    2016-01-01

    Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The “stored” patterns are set of polarities of the individual BZ-PZ units, and the “input” patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating “materials that compute.” PMID:27617290

  18. Photonics: From target recognition to lesion detection

    NASA Technical Reports Server (NTRS)

    Henry, E. Michael

    1994-01-01

    Since 1989, Martin Marietta has invested in the development of an innovative concept for robust real-time pattern recognition for any two-dimensioanal sensor. This concept has been tested in simulation, and in laboratory and field hardware, for a number of DOD and commercial uses from automatic target recognition to manufacturing inspection. We have now joined Rose Health Care Systems in developing its use for medical diagnostics. The concept is based on determining regions of interest by using optical Fourier bandpassing as a scene segmentation technique, enhancing those regions using wavelet filters, passing the enhanced regions to a neural network for analysis and initial pattern identification, and following this initial identification with confirmation by optical correlation. The optical scene segmentation and pattern confirmation are performed by the same optical module. The neural network is a recursive error minimization network with a small number of connections and nodes that rapidly converges to a global minimum.

  19. Human activities recognition by head movement using partial recurrent neural network

    NASA Astrophysics Data System (ADS)

    Tan, Henry C. C.; Jia, Kui; De Silva, Liyanage C.

    2003-06-01

    Traditionally, human activities recognition has been achieved mainly by the statistical pattern recognition methods or the Hidden Markov Model (HMM). In this paper, we propose a novel use of the connectionist approach for the recognition of ten simple human activities: walking, sitting down, getting up, squatting down and standing up, in both lateral and frontal views, in an office environment. By means of tracking the head movement of the subjects over consecutive frames from a database of different color image sequences, and incorporating the Elman model of the partial recurrent neural network (RNN) that learns the sequential patterns of relative change of the head location in the images, the proposed system is able to robustly classify all the ten activities performed by unseen subjects from both sexes, of different race and physique, with a recognition rate as high as 92.5%. This demonstrates the potential of employing partial RNN to recognize complex activities in the increasingly popular human-activities-based applications.

  20. Device Control Using Gestures Sensed from EMG

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.

    2003-01-01

    In this paper we present neuro-electric interfaces for virtual device control. The examples presented rely upon sampling Electromyogram data from a participants forearm. This data is then fed into pattern recognition software that has been trained to distinguish gestures from a given gesture set. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard.

  1. Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition.

    PubMed

    Ding, Changxing; Choi, Jonghyun; Tao, Dacheng; Davis, Larry S

    2016-03-01

    To perform unconstrained face recognition robust to variations in illumination, pose and expression, this paper presents a new scheme to extract "Multi-Directional Multi-Level Dual-Cross Patterns" (MDML-DCPs) from face images. Specifically, the MDML-DCPs scheme exploits the first derivative of Gaussian operator to reduce the impact of differences in illumination and then computes the DCP feature at both the holistic and component levels. DCP is a novel face image descriptor inspired by the unique textural structure of human faces. It is computationally efficient and only doubles the cost of computing local binary patterns, yet is extremely robust to pose and expression variations. MDML-DCPs comprehensively yet efficiently encodes the invariant characteristics of a face image from multiple levels into patterns that are highly discriminative of inter-personal differences but robust to intra-personal variations. Experimental results on the FERET, CAS-PERL-R1, FRGC 2.0, and LFW databases indicate that DCP outperforms the state-of-the-art local descriptors (e.g., LBP, LTP, LPQ, POEM, tLBP, and LGXP) for both face identification and face verification tasks. More impressively, the best performance is achieved on the challenging LFW and FRGC 2.0 databases by deploying MDML-DCPs in a simple recognition scheme.

  2. Finger vein verification system based on sparse representation.

    PubMed

    Xin, Yang; Liu, Zhi; Zhang, Haixia; Zhang, Hong

    2012-09-01

    Finger vein verification is a promising biometric pattern for personal identification in terms of security and convenience. The recognition performance of this technology heavily relies on the quality of finger vein images and on the recognition algorithm. To achieve efficient recognition performance, a special finger vein imaging device is developed, and a finger vein recognition method based on sparse representation is proposed. The motivation for the proposed method is that finger vein images exhibit a sparse property. In the proposed system, the regions of interest (ROIs) in the finger vein images are segmented and enhanced. Sparse representation and sparsity preserving projection on ROIs are performed to obtain the features. Finally, the features are measured for recognition. An equal error rate of 0.017% was achieved based on the finger vein image database, which contains images that were captured by using the near-IR imaging device that was developed in this study. The experimental results demonstrate that the proposed method is faster and more robust than previous methods.

  3. Higher-order neural network software for distortion invariant object recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  4. Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.

    PubMed

    Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung

    2007-05-01

    This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.

  5. The contribution of recollection and familiarity to recognition memory: a study of the effects of test format and aging.

    PubMed

    Bastin, Christine; Van der Linden, Martial

    2003-01-01

    Whether the format of a recognition memory task influences the contribution of recollection and familiarity to performance is a matter of debate. The authors investigated this issue by comparing the performance of 64 young (mean age = 21.7 years; mean education = 14.5 years) and 62 older participants (mean age = 64.4 years; mean education = 14.2 years) on a yes-no and a forced-choice recognition task for unfamiliar faces using the remember-know-guess procedure. Familiarity contributed more to forced-choice than to yes-no performance. Moreover, older participants, who showed a decrease in recollection together with an increase in familiarity, performed better on the forced-choice task than on the yes-no task, whereas younger participants showed the opposite pattern.

  6. Neural networks: Alternatives to conventional techniques for automatic docking

    NASA Technical Reports Server (NTRS)

    Vinz, Bradley L.

    1994-01-01

    Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.

  7. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    PubMed

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Wavelet filtered shifted phase-encoded joint transform correlation for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.

  9. Right Limbic FDG-PET Hypometabolism Correlates with Emotion Recognition and Attribution in Probable Behavioral Variant of Frontotemporal Dementia Patients

    PubMed Central

    Cerami, Chiara; Dodich, Alessandra; Iannaccone, Sandro; Marcone, Alessandra; Lettieri, Giada; Crespi, Chiara; Gianolli, Luigi; Cappa, Stefano F.; Perani, Daniela

    2015-01-01

    The behavioural variant of frontotemporal dementia (bvFTD) is a rare disease mainly affecting the social brain. FDG-PET fronto-temporal hypometabolism is a supportive feature for the diagnosis. It may also provide specific functional metabolic signatures for altered socio-emotional processing. In this study, we evaluated the emotion recognition and attribution deficits and FDG-PET cerebral metabolic patterns at the group and individual levels in a sample of sporadic bvFTD patients, exploring the cognitive-functional correlations. Seventeen probable mild bvFTD patients (10 male and 7 female; age 67.8±9.9) were administered standardized and validated version of social cognition tasks assessing the recognition of basic emotions and the attribution of emotions and intentions (i.e., Ekman 60-Faces test-Ek60F and Story-based Empathy task-SET). FDG-PET was analysed using an optimized voxel-based SPM method at the single-subject and group levels. Severe deficits of emotion recognition and processing characterized the bvFTD condition. At the group level, metabolic dysfunction in the right amygdala, temporal pole, and middle cingulate cortex was highly correlated to the emotional recognition and attribution performances. At the single-subject level, however, heterogeneous impairments of social cognition tasks emerged, and different metabolic patterns, involving limbic structures and prefrontal cortices, were also observed. The derangement of a right limbic network is associated with altered socio-emotional processing in bvFTD patients, but different hypometabolic FDG-PET patterns and heterogeneous performances on social tasks at an individual level exist. PMID:26513651

  10. Improving the recognition of fingerprint biometric system using enhanced image fusion

    NASA Astrophysics Data System (ADS)

    Alsharif, Salim; El-Saba, Aed; Stripathi, Reshma

    2010-04-01

    Fingerprints recognition systems have been widely used by financial institutions, law enforcement, border control, visa issuing, just to mention few. Biometric identifiers can be counterfeited, but considered more reliable and secure compared to traditional ID cards or personal passwords methods. Fingerprint pattern fusion improves the performance of a fingerprint recognition system in terms of accuracy and security. This paper presents digital enhancement and fusion approaches that improve the biometric of the fingerprint recognition system. It is a two-step approach. In the first step raw fingerprint images are enhanced using high-frequency-emphasis filtering (HFEF). The second step is a simple linear fusion process between the raw images and the HFEF ones. It is shown that the proposed approach increases the verification and identification of the fingerprint biometric recognition system, where any improvement is justified using the correlation performance metrics of the matching algorithm.

  11. Introduction to Neural Networks.

    DTIC Science & Technology

    1992-03-01

    parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.

  12. Crash forecasting in the Korean stock market based on the log-periodic structure and pattern recognition

    NASA Astrophysics Data System (ADS)

    Ko, Bonggyun; Song, Jae Wook; Chang, Woojin

    2018-02-01

    The aim of this research is to propose an alarm index to forecast the crash of the Korean financial market in extension to the idea of Johansen-Ledoit-Sornette model, which uses the log-periodic functions and pattern recognition algorithm. We discover that the crashes of the Korean financial market can be classified into domestic and global crises where each category requires different window length of fitted datasets. Therefore, we add the window length as a new parameter to enhance the performance of alarm index. Distinguishing the domestic and global crises separately, our alarm index demonstrates more robust forecasting than previous model by showing the error diagram and the results of trading performance.

  13. Real-valued composite filters for correlation-based optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Balendra, Anushia

    1992-01-01

    Advances in the technology of optical devices such as spatial light modulators (SLMs) have influenced the research and growth of optical pattern recognition. In the research leading to this report, the design of real-valued composite filters that can be implemented using currently available SLMs for optical pattern recognition and classification was investigated. The design of real-valued minimum average correlation energy (RMACE) filter was investigated. Proper selection of the phase of the output response was shown to reduce the correlation energy. The performance of the filter was evaluated using computer simulations and compared with the complex filters. It was found that the performance degraded only slightly. Continuing the above investigation, the design of a real filter that minimizes the output correlation energy and the output variance due to noise was developed. Simulation studies showed that this filter had better tolerance to distortion and noise compared to that of the RMACE filter. Finally, the space domain design of RMACE filter was developed and implemented on the computer. It was found that the sharpness of the correlation peak was slightly reduced but the filter design was more computationally efficient than the complex filter.

  14. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding

    PubMed Central

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-01-01

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771

  15. Multimodality imaging and state-of-art GPU technology in discriminating benign from malignant breast lesions on real time decision support system

    NASA Astrophysics Data System (ADS)

    Kostopoulos, S.; Sidiropoulos, K.; Glotsos, D.; Dimitropoulos, N.; Kalatzis, I.; Asvestas, P.; Cavouras, D.

    2014-03-01

    The aim of this study was to design a pattern recognition system for assisting the diagnosis of breast lesions, using image information from Ultrasound (US) and Digital Mammography (DM) imaging modalities. State-of-art computer technology was employed based on commercial Graphics Processing Unit (GPU) cards and parallel programming. An experienced radiologist outlined breast lesions on both US and DM images from 59 patients employing a custom designed computer software application. Textural features were extracted from each lesion and were used to design the pattern recognition system. Several classifiers were tested for highest performance in discriminating benign from malignant lesions. Classifiers were also combined into ensemble schemes for further improvement of the system's classification accuracy. Following the pattern recognition system optimization, the final system was designed employing the Probabilistic Neural Network classifier (PNN) on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. The use of such state-of-art technology renders the system capable of redesigning itself on site once additional verified US and DM data are collected. Mixture of US and DM features optimized performance with over 90% accuracy in correctly classifying the lesions.

  16. Age-Related Differences in Lexical Access Relate to Speech Recognition in Noise

    PubMed Central

    Carroll, Rebecca; Warzybok, Anna; Kollmeier, Birger; Ruigendijk, Esther

    2016-01-01

    Vocabulary size has been suggested as a useful measure of “verbal abilities” that correlates with speech recognition scores. Knowing more words is linked to better speech recognition. How vocabulary knowledge translates to general speech recognition mechanisms, how these mechanisms relate to offline speech recognition scores, and how they may be modulated by acoustical distortion or age, is less clear. Age-related differences in linguistic measures may predict age-related differences in speech recognition in noise performance. We hypothesized that speech recognition performance can be predicted by the efficiency of lexical access, which refers to the speed with which a given word can be searched and accessed relative to the size of the mental lexicon. We tested speech recognition in a clinical German sentence-in-noise test at two signal-to-noise ratios (SNRs), in 22 younger (18–35 years) and 22 older (60–78 years) listeners with normal hearing. We also assessed receptive vocabulary, lexical access time, verbal working memory, and hearing thresholds as measures of individual differences. Age group, SNR level, vocabulary size, and lexical access time were significant predictors of individual speech recognition scores, but working memory and hearing threshold were not. Interestingly, longer accessing times were correlated with better speech recognition scores. Hierarchical regression models for each subset of age group and SNR showed very similar patterns: the combination of vocabulary size and lexical access time contributed most to speech recognition performance; only for the younger group at the better SNR (yielding about 85% correct speech recognition) did vocabulary size alone predict performance. Our data suggest that successful speech recognition in noise is mainly modulated by the efficiency of lexical access. This suggests that older adults’ poorer performance in the speech recognition task may have arisen from reduced efficiency in lexical access; with an average vocabulary size similar to that of younger adults, they were still slower in lexical access. PMID:27458400

  17. Age-Related Differences in Lexical Access Relate to Speech Recognition in Noise.

    PubMed

    Carroll, Rebecca; Warzybok, Anna; Kollmeier, Birger; Ruigendijk, Esther

    2016-01-01

    Vocabulary size has been suggested as a useful measure of "verbal abilities" that correlates with speech recognition scores. Knowing more words is linked to better speech recognition. How vocabulary knowledge translates to general speech recognition mechanisms, how these mechanisms relate to offline speech recognition scores, and how they may be modulated by acoustical distortion or age, is less clear. Age-related differences in linguistic measures may predict age-related differences in speech recognition in noise performance. We hypothesized that speech recognition performance can be predicted by the efficiency of lexical access, which refers to the speed with which a given word can be searched and accessed relative to the size of the mental lexicon. We tested speech recognition in a clinical German sentence-in-noise test at two signal-to-noise ratios (SNRs), in 22 younger (18-35 years) and 22 older (60-78 years) listeners with normal hearing. We also assessed receptive vocabulary, lexical access time, verbal working memory, and hearing thresholds as measures of individual differences. Age group, SNR level, vocabulary size, and lexical access time were significant predictors of individual speech recognition scores, but working memory and hearing threshold were not. Interestingly, longer accessing times were correlated with better speech recognition scores. Hierarchical regression models for each subset of age group and SNR showed very similar patterns: the combination of vocabulary size and lexical access time contributed most to speech recognition performance; only for the younger group at the better SNR (yielding about 85% correct speech recognition) did vocabulary size alone predict performance. Our data suggest that successful speech recognition in noise is mainly modulated by the efficiency of lexical access. This suggests that older adults' poorer performance in the speech recognition task may have arisen from reduced efficiency in lexical access; with an average vocabulary size similar to that of younger adults, they were still slower in lexical access.

  18. Imaging in gynaecology: How good are we in identifying endometriomas?

    PubMed Central

    Van Holsbeke, C.; Van Calster, B.; Guerriero, S.; Savelli, L.; Leone, F.; Fischerova, D; Czekierdowski, A.; Fruscio, R.; Veldman, J.; Van de Putte, G.; Testa, A.C.; Bourne, T.; Valentin, L.; Timmerman, D.

    2009-01-01

    Aim: To evaluate the performance of subjective evaluation of ultrasound findings (pattern recognition) to discriminate endometriomas from other types of adnexal masses and to compare the demographic and ultrasound characteristics of the true positive cases with those cases that were presumed to be an endometrioma but proved to have a different histology (false positive cases) and the endometriomas missed by pattern recognition (false negative cases). Methods: All patients in the International Ovarian Tumor Analysis (IOTA ) studies were included for analysis. In the IOTA studies, patients with an adnexal mass that were preoperatively examined by expert sonologists following the same standardized ultrasound protocol were prospectively included in 21 international centres. Sensitivity and specificity to discriminate endometriomas from other types of adnexal masses using pattern recognition were calculated. Ultrasound and some demographic variables of the masses presumed to be an endometrioma were analysed (true positives and false positives) and compared with the variables of the endometriomas missed by pattern recognition (false negatives) as well as the true negatives. Results: IOTA phase 1, 1b and 2 included 3511 patients of which 2560 were benign (73%) and 951 malignant (27%). The dataset included 713 endometriomas. Sensitivity and specificity for pattern recognition were 81% (577/713) and 97% (2723/2798). The true positives were more often unilocular with ground glass echogenicity than the masses in any other category. Among the 75 false positive cases, 66 were benign but 9 were malignant (5 borderline tumours, 1 rare primary invasive tumour and 3 endometrioid adenocarcinomas). The presumed diagnosis suggested by the sonologist in case of a missed endometrioma was mostly functional cyst or cystadenoma. Conclusion: Expert sonologists can quite accurately discriminate endometriomas from other types of adnexal masses, but in this dataset 1% of the masses that were classified as endometrioma by pattern recognition proved to be malignancies. PMID:25478066

  19. Improved Performance Characteristics For Indium Antimonide Photovoltaic Detector Arrays Using A FET-Switched Multiplexing Technique

    NASA Astrophysics Data System (ADS)

    Ma, Yung-Lung; Ma, Chialo

    1987-03-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  20. A Dynamic Bayesian Network Based Structural Learning towards Automated Handwritten Digit Recognition

    NASA Astrophysics Data System (ADS)

    Pauplin, Olivier; Jiang, Jianmin

    Pattern recognition using Dynamic Bayesian Networks (DBNs) is currently a growing area of study. In this paper, we present DBN models trained for classification of handwritten digit characters. The structure of these models is partly inferred from the training data of each class of digit before performing parameter learning. Classification results are presented for the four described models.

  1. Social approach and emotion recognition in fragile X syndrome.

    PubMed

    Williams, Tracey A; Porter, Melanie A; Langdon, Robyn

    2014-03-01

    Evidence is emerging that individuals with Fragile X syndrome (FXS) display emotion recognition deficits, which may contribute to their significant social difficulties. The current study investigated the emotion recognition abilities, and social approachability judgments, of FXS individuals when processing emotional stimuli. Relative to chronological age- (CA-) and mental age- (MA-) matched controls, the FXS group performed significantly more poorly on the emotion recognition tasks, and displayed a bias towards detecting negative emotions. Moreover, after controlling for emotion recognition deficits, the FXS group displayed significantly reduced ratings of social approachability. These findings suggest that a social anxiety pattern, rather than poor socioemotional processing, may best explain the social avoidance observed in FXS.

  2. Face recognition system and method using face pattern words and face pattern bytes

    DOEpatents

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  3. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    PubMed

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  4. An improved architecture for video rate image transformations

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.; Juday, Richard D.

    1989-01-01

    Geometric image transformations are of interest to pattern recognition algorithms for their use in simplifying some aspects of the pattern recognition process. Examples include reducing sensitivity to rotation, scale, and perspective of the object being recognized. The NASA Programmable Remapper can perform a wide variety of geometric transforms at full video rate. An architecture is proposed that extends its abilities and alleviates many of the first version's shortcomings. The need for the improvements are discussed in the context of the initial Programmable Remapper and the benefits and limitations it has delivered. The implementation and capabilities of the proposed architecture are discussed.

  5. Is it worth changing pattern recognition methods for structural health monitoring?

    NASA Astrophysics Data System (ADS)

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  6. A self-organized learning strategy for object recognition by an embedded line of attraction

    NASA Astrophysics Data System (ADS)

    Seow, Ming-Jung; Alex, Ann T.; Asari, Vijayan K.

    2012-04-01

    For humans, a picture is worth a thousand words, but to a machine, it is just a seemingly random array of numbers. Although machines are very fast and efficient, they are vastly inferior to humans for everyday information processing. Algorithms that mimic the way the human brain computes and learns may be the solution. In this paper we present a theoretical model based on the observation that images of similar visual perceptions reside in a complex manifold in an image space. The perceived features are often highly structured and hidden in a complex set of relationships or high-dimensional abstractions. To model the pattern manifold, we present a novel learning algorithm using a recurrent neural network. The brain memorizes information using a dynamical system made of interconnected neurons. Retrieval of information is accomplished in an associative sense. It starts from an arbitrary state that might be an encoded representation of a visual image and converges to another state that is stable. The stable state is what the brain remembers. In designing a recurrent neural network, it is usually of prime importance to guarantee the convergence in the dynamics of the network. We propose to modify this picture: if the brain remembers by converging to the state representing familiar patterns, it should also diverge from such states when presented with an unknown encoded representation of a visual image belonging to a different category. That is, the identification of an instability mode is an indication that a presented pattern is far away from any stored pattern and therefore cannot be associated with current memories. These properties can be used to circumvent the plasticity-stability dilemma by using the fluctuating mode as an indicator to create new states. We capture this behavior using a novel neural architecture and learning algorithm, in which the system performs self-organization utilizing a stability mode and an instability mode for the dynamical system. Based on this observation we developed a self- organizing line attractor, which is capable of generating new lines in the feature space to learn unrecognized patterns. Experiments performed on UMIST pose database and CMU face expression variant database for face recognition have shown that the proposed nonlinear line attractor is able to successfully identify the individuals and it provided better recognition rate when compared to the state of the art face recognition techniques. Experiments on FRGC version 2 database has also provided excellent recognition rate in images captured in complex lighting environments. Experiments performed on the Japanese female face expression database and Essex Grimace database using the self organizing line attractor have also shown successful expression invariant face recognition. These results show that the proposed model is able to create nonlinear manifolds in a multidimensional feature space to distinguish complex patterns.

  7. Scene Context Dependency of Pattern Constancy of Time Series Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur

    2008-01-01

    A fundamental element of future generic pattern recognition technology is the ability to extract similar patterns for the same scene despite wide ranging extraneous variables, including lighting, turbidity, sensor exposure variations, and signal noise. In the process of demonstrating pattern constancy of this kind for retinex/visual servo (RVS) image enhancement processing, we found that the pattern constancy performance depended somewhat on scene content. Most notably, the scene topography and, in particular, the scale and extent of the topography in an image, affects the pattern constancy the most. This paper will explore these effects in more depth and present experimental data from several time series tests. These results further quantify the impact of topography on pattern constancy. Despite this residual inconstancy, the results of overall pattern constancy testing support the idea that RVS image processing can be a universal front-end for generic visual pattern recognition. While the effects on pattern constancy were significant, the RVS processing still does achieve a high degree of pattern constancy over a wide spectrum of scene content diversity, and wide ranging extraneousness variations in lighting, turbidity, and sensor exposure.

  8. Hand biometric recognition based on fused hand geometry and vascular patterns.

    PubMed

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  9. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    PubMed Central

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  10. 21 CFR 26.9 - Equivalence determination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... to in appendix D of this subpart, and a demonstrated pattern of consistent performance in accordance...

  11. 21 CFR 26.9 - Equivalence determination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... to in appendix D of this subpart, and a demonstrated pattern of consistent performance in accordance...

  12. Control chart pattern recognition using RBF neural network with new training algorithm and practical features.

    PubMed

    Addeh, Abdoljalil; Khormali, Aminollah; Golilarz, Noorbakhsh Amiri

    2018-05-04

    The control chart patterns are the most commonly used statistical process control (SPC) tools to monitor process changes. When a control chart produces an out-of-control signal, this means that the process has been changed. In this study, a new method based on optimized radial basis function neural network (RBFNN) is proposed for control chart patterns (CCPs) recognition. The proposed method consists of four main modules: feature extraction, feature selection, classification and learning algorithm. In the feature extraction module, shape and statistical features are used. Recently, various shape and statistical features have been presented for the CCPs recognition. In the feature selection module, the association rules (AR) method has been employed to select the best set of the shape and statistical features. In the classifier section, RBFNN is used and finally, in RBFNN, learning algorithm has a high impact on the network performance. Therefore, a new learning algorithm based on the bees algorithm has been used in the learning module. Most studies have considered only six patterns: Normal, Cyclic, Increasing Trend, Decreasing Trend, Upward Shift and Downward Shift. Since three patterns namely Normal, Stratification, and Systematic are very similar to each other and distinguishing them is very difficult, in most studies Stratification and Systematic have not been considered. Regarding to the continuous monitoring and control over the production process and the exact type detection of the problem encountered during the production process, eight patterns have been investigated in this study. The proposed method is tested on a dataset containing 1600 samples (200 samples from each pattern) and the results showed that the proposed method has a very good performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning.

    PubMed

    Miller, Vonda H; Jansen, Ben H

    2008-12-01

    Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

  14. Compact holographic optical neural network system for real-time pattern recognition

    NASA Astrophysics Data System (ADS)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  15. Local intensity area descriptor for facial recognition in ideal and noise conditions

    NASA Astrophysics Data System (ADS)

    Tran, Chi-Kien; Tseng, Chin-Dar; Chao, Pei-Ju; Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Lee, Tsair-Fwu

    2017-03-01

    We propose a local texture descriptor, local intensity area descriptor (LIAD), which is applied for human facial recognition in ideal and noisy conditions. Each facial image is divided into small regions from which LIAD histograms are extracted and concatenated into a single feature vector to represent the facial image. The recognition is performed using a nearest neighbor classifier with histogram intersection and chi-square statistics as dissimilarity measures. Experiments were conducted with LIAD using the ORL database of faces (Olivetti Research Laboratory, Cambridge), the Face94 face database, the Georgia Tech face database, and the FERET database. The results demonstrated the improvement in accuracy of our proposed descriptor compared to conventional descriptors [local binary pattern (LBP), uniform LBP, local ternary pattern, histogram of oriented gradients, and local directional pattern]. Moreover, the proposed descriptor was less sensitive to noise and had low histogram dimensionality. Thus, it is expected to be a powerful texture descriptor that can be used for various computer vision problems.

  16. A standardization model based on image recognition for performance evaluation of an oral scanner.

    PubMed

    Seo, Sang-Wan; Lee, Wan-Sun; Byun, Jae-Young; Lee, Kyu-Bok

    2017-12-01

    Accurate information is essential in dentistry. The image information of missing teeth is used in optically based medical equipment in prosthodontic treatment. To evaluate oral scanners, the standardized model was examined from cases of image recognition errors of linear discriminant analysis (LDA), and a model that combines the variables with reference to ISO 12836:2015 was designed. The basic model was fabricated by applying 4 factors to the tooth profile (chamfer, groove, curve, and square) and the bottom surface. Photo-type and video-type scanners were used to analyze 3D images after image capture. The scans were performed several times according to the prescribed sequence to distinguish the model from the one that did not form, and the results confirmed it to be the best. In the case of the initial basic model, a 3D shape could not be obtained by scanning even if several shots were taken. Subsequently, the recognition rate of the image was improved with every variable factor, and the difference depends on the tooth profile and the pattern of the floor surface. Based on the recognition error of the LDA, the recognition rate decreases when the model has a similar pattern. Therefore, to obtain the accurate 3D data, the difference of each class needs to be provided when developing a standardized model.

  17. A robust probabilistic collaborative representation based classification for multimodal biometrics

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Liu, Huanxi; Ding, Derui; Xiao, Jianli

    2018-04-01

    Most of the traditional biometric recognition systems perform recognition with a single biometric indicator. These systems have suffered noisy data, interclass variations, unacceptable error rates, forged identity, and so on. Due to these inherent problems, it is not valid that many researchers attempt to enhance the performance of unimodal biometric systems with single features. Thus, multimodal biometrics is investigated to reduce some of these defects. This paper proposes a new multimodal biometric recognition approach by fused faces and fingerprints. For more recognizable features, the proposed method extracts block local binary pattern features for all modalities, and then combines them into a single framework. For better classification, it employs the robust probabilistic collaborative representation based classifier to recognize individuals. Experimental results indicate that the proposed method has improved the recognition accuracy compared to the unimodal biometrics.

  18. Effects of anticaricaturing vs. caricaturing and their neural correlates elucidate a role of shape for face learning.

    PubMed

    Schulz, Claudia; Kaufmann, Jürgen M; Walther, Lydia; Schweinberger, Stefan R

    2012-08-01

    To assess the role of shape information for unfamiliar face learning, we investigated effects of photorealistic spatial anticaricaturing and caricaturing on later face recognition. We assessed behavioural performance and event-related brain potential (ERP) correlates of recognition, using different images of anticaricatures, veridical faces, or caricatures at learning and test. Relative to veridical faces, recognition performance improved for caricatures, with performance decrements for anticaricatures in response times. During learning, an amplitude pattern with caricatures>veridicals=anticaricatures was seen for N170, left-hemispheric ERP negativity during the P200 and N250 time segments (200-380 ms), and for a late positive component (LPC, 430-830 ms), whereas P200 and N250 responses exhibited an additional difference between veridicals and anticaricatures over the right hemisphere. During recognition, larger amplitudes for caricatures again started in the N170, whereas the P200 and the right-hemispheric N250 exhibited a more graded pattern of amplitude effects (caricatures>veridicals>anticaricatures), a result which was specific to learned but not novel faces in the N250. Together, the results (i) emphasise the role of facial shape for visual encoding in the learning of previously unfamiliar faces and (ii) provide important information about the neuronal timing of the encoding advantage enjoyed by faces with distinctive shape. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders

    ERIC Educational Resources Information Center

    Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia

    2006-01-01

    Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…

  20. Neuroelectric Virtual Devices

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Jorgensen, Charles

    2000-01-01

    This paper presents recent results in neuroelectric pattern recognition of electromyographic (EMG) signals used to control virtual computer input devices. The devices are designed to substitute for the functions of both a traditional joystick and keyboard entry method. We demonstrate recognition accuracy through neuroelectric control of a 757 class simulation aircraft landing at San Francisco International Airport using a virtual joystick as shown. This is accomplished by a pilot closing his fist in empty air and performing control movements that are captured by a dry electrode array on the arm which are then analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. We then demonstrate finer grain motor pattern recognition through a virtual keyboard by having a typist tap his traders on a typical desk in a touch typist position. The EMG signals are then translated to keyboard presses and displayed. The paper describes the bioelectric pattern recognition methodology common to both examples. Figure 2 depicts raw EMG data from typing, the numeral '8' and the numeral '9'. These two gestures are very close in appearance and statistical properties yet are distinguishable by our hidden Kharkov model algorithms. Extensions of this work to NASA emissions and robotic control are considered.

  1. Neural network classification technique and machine vision for bread crumb grain evaluation

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.; Chung, O. K.; Caley, M.

    1995-10-01

    Bread crumb grain was studied to develop a model for pattern recognition of bread baked at Hard Winter Wheat Quality Laboratory (HWWQL), Grain Marketing and Production Research Center (GMPRC). Images of bread slices were acquired with a scanner in a 512 multiplied by 512 format. Subimages in the central part of the slices were evaluated by several features such as mean, determinant, eigen values, shape of a slice and other crumb features. Derived features were used to describe slices and loaves. Neural network programs of MATLAB package were used for data analysis. Learning vector quantization method and multivariate discriminant analysis were applied to bread slices from what of different sources. A training and test sets of different bread crumb texture classes were obtained. The ranking of subimages was well correlated with visual judgement. The performance of different models on slice recognition rate was studied to choose the best model. The recognition of classes created according to human judgement with image features was low. Recognition of arbitrarily created classes, according to porosity patterns, with several feature patterns was approximately 90%. Correlation coefficient was approximately 0.7 between slice shape features and loaf volume.

  2. Training and cockpit design to promote expert performance

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.

    1991-01-01

    The behavior of expert pilots in familiar situations is explored and the implications for better training programs and cockpit designs are stated. Experts in familiar operational situations performing highly practiced tasks are said to recognize and respond to complex situations using pattern recognition or intuition. For some tasks this class of behaviors is desirable; performance can be improved by reducing cognitive load and increasing speed and accuracy. Part-task training, training for monitoring and techniques for the transfer of knowledge can facilitate the development of these skills. Methods for promoting pattern recognition through pilot-aircraft interface design include the use of spatial presentations of information and providing triggering events. In some instances, the familiar, well-practiced behavior is not appropriate and it is desirable to prevent the response. When prevention is necessary, barriers can be constructed in the interface to remind the pilot of the inappropriateness of the response.

  3. 64 x 64 thresholding photodetector array for optical pattern recognition

    NASA Astrophysics Data System (ADS)

    Langenbacher, Harry; Chao, Tien-Hsin; Shaw, Timothy; Yu, Jeffrey W.

    1993-10-01

    A high performance 32 X 32 peak detector array is introduced. This detector consists of a 32 X 32 array of thresholding photo-transistor cells, manufactured with a standard MOSIS digital 2-micron CMOS process. A built-in thresholding function that is able to perform 1024 thresholding operations in parallel strongly distinguishes this chip from available CCD detectors. This high speed detector offers responses from one to 10 milliseconds that is much higher than the commercially available CCD detectors operating at a TV frame rate. The parallel multiple peaks thresholding detection capability makes it particularly suitable for optical correlator and optoelectronically implemented neural networks. The principle of operation, circuit design and the performance characteristics are described. Experimental demonstration of correlation peak detection is also provided. Recently, we have also designed and built an advanced version of a 64 X 64 thresholding photodetector array chip. Experimental investigation of using this chip for pattern recognition is ongoing.

  4. New technique for real-time distortion-invariant multiobject recognition and classification

    NASA Astrophysics Data System (ADS)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  5. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  6. Understanding eye movements in face recognition using hidden Markov models.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2014-09-16

    We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.

  7. Comparison of Object Recognition Behavior in Human and Monkey

    PubMed Central

    Rajalingham, Rishi; Schmidt, Kailyn

    2015-01-01

    Although the rhesus monkey is used widely as an animal model of human visual processing, it is not known whether invariant visual object recognition behavior is quantitatively comparable across monkeys and humans. To address this question, we systematically compared the core object recognition behavior of two monkeys with that of human subjects. To test true object recognition behavior (rather than image matching), we generated several thousand naturalistic synthetic images of 24 basic-level objects with high variation in viewing parameters and image background. Monkeys were trained to perform binary object recognition tasks on a match-to-sample paradigm. Data from 605 human subjects performing the same tasks on Mechanical Turk were aggregated to characterize “pooled human” object recognition behavior, as well as 33 separate Mechanical Turk subjects to characterize individual human subject behavior. Our results show that monkeys learn each new object in a few days, after which they not only match mean human performance but show a pattern of object confusion that is highly correlated with pooled human confusion patterns and is statistically indistinguishable from individual human subjects. Importantly, this shared human and monkey pattern of 3D object confusion is not shared with low-level visual representations (pixels, V1+; models of the retina and primary visual cortex) but is shared with a state-of-the-art computer vision feature representation. Together, these results are consistent with the hypothesis that rhesus monkeys and humans share a common neural shape representation that directly supports object perception. SIGNIFICANCE STATEMENT To date, several mammalian species have shown promise as animal models for studying the neural mechanisms underlying high-level visual processing in humans. In light of this diversity, making tight comparisons between nonhuman and human primates is particularly critical in determining the best use of nonhuman primates to further the goal of the field of translating knowledge gained from animal models to humans. To the best of our knowledge, this study is the first systematic attempt at comparing a high-level visual behavior of humans and macaque monkeys. PMID:26338324

  8. Infrared sensing of non-observable human biometrics

    NASA Astrophysics Data System (ADS)

    Willmore, Michael R.

    2005-05-01

    Interest and growth of biometric recognition technologies surged after 9/11. Once a technology mainly used for identity verification in law enforcement, biometrics are now being considered as a secure means of providing identity assurance in security related applications. Biometric recognition in law enforcement must, by necessity, use attributes of human uniqueness that are both observable and vulnerable to compromise. Privacy and protection of an individual's identity is not assured during criminal activity. However, a security system must rely on identity assurance for access control to physical or logical spaces while not being vulnerable to compromise and protecting the privacy of an individual. The solution resides in the use of non-observable attributes of human uniqueness to perform the biometric recognition process. This discussion will begin by presenting some key perspectives about biometric recognition and the characteristic differences between observable and non-observable biometric attributes. An introduction to the design, development, and testing of the Thermo-ID system will follow. The Thermo-ID system is an emerging biometric recognition technology that uses non-observable patterns of infrared energy naturally emanating from within the human body. As with all biometric systems, the infrared patterns recorded and compared within the Thermo-ID system are unique and individually distinguishable permitting a link to be confirmed between an individual and a claimed or previously established identity. The non-observable characteristics of infrared patterns of human uniqueness insure both the privacy and protection of an individual using this type of biometric recognition system.

  9. Infrared and visible fusion face recognition based on NSCT domain

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan

    2018-01-01

    Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In this paper, a novel fusion algorithm in non-subsampled contourlet transform (NSCT) domain is proposed for Infrared and visible face fusion recognition. Firstly, NSCT is used respectively to process the infrared and visible face images, which exploits the image information at multiple scales, orientations, and frequency bands. Then, to exploit the effective discriminant feature and balance the power of high-low frequency band of NSCT coefficients, the local Gabor binary pattern (LGBP) and Local Binary Pattern (LBP) are applied respectively in different frequency parts to obtain the robust representation of infrared and visible face images. Finally, the score-level fusion is used to fuse the all the features for final classification. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. Experiments results show that the proposed method extracts the complementary features of near-infrared and visible-light images and improves the robustness of unconstrained face recognition.

  10. Impaired Word and Face Recognition in Older Adults with Type 2 Diabetes.

    PubMed

    Jones, Nicola; Riby, Leigh M; Smith, Michael A

    2016-07-01

    Older adults with type 2 diabetes mellitus (DM2) exhibit accelerated decline in some domains of cognition including verbal episodic memory. Few studies have investigated the influence of DM2 status in older adults on recognition memory for more complex stimuli such as faces. In the present study we sought to compare recognition memory performance for words, objects and faces under conditions of relatively low and high cognitive load. Healthy older adults with good glucoregulatory control (n = 13) and older adults with DM2 (n = 24) were administered recognition memory tasks in which stimuli (faces, objects and words) were presented under conditions of either i) low (stimulus presented without a background pattern) or ii) high (stimulus presented against a background pattern) cognitive load. In a subsequent recognition phase, the DM2 group recognized fewer faces than healthy controls. Further, the DM2 group exhibited word recognition deficits in the low cognitive load condition. The recognition memory impairment observed in patients with DM2 has clear implications for day-to-day functioning. Although these deficits were not amplified under conditions of increased cognitive load, the present study emphasizes that recognition memory impairment for both words and more complex stimuli such as face are a feature of DM2 in older adults. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    NASA Astrophysics Data System (ADS)

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  12. Recognition of Arabic Sign Language Alphabet Using Polynomial Classifiers

    NASA Astrophysics Data System (ADS)

    Assaleh, Khaled; Al-Rousan, M.

    2005-12-01

    Building an accurate automatic sign language recognition system is of great importance in facilitating efficient communication with deaf people. In this paper, we propose the use of polynomial classifiers as a classification engine for the recognition of Arabic sign language (ArSL) alphabet. Polynomial classifiers have several advantages over other classifiers in that they do not require iterative training, and that they are highly computationally scalable with the number of classes. Based on polynomial classifiers, we have built an ArSL system and measured its performance using real ArSL data collected from deaf people. We show that the proposed system provides superior recognition results when compared with previously published results using ANFIS-based classification on the same dataset and feature extraction methodology. The comparison is shown in terms of the number of misclassified test patterns. The reduction in the rate of misclassified patterns was very significant. In particular, we have achieved a 36% reduction of misclassifications on the training data and 57% on the test data.

  13. A multimodal approach to emotion recognition ability in autism spectrum disorders.

    PubMed

    Jones, Catherine R G; Pickles, Andrew; Falcaro, Milena; Marsden, Anita J S; Happé, Francesca; Scott, Sophie K; Sauter, Disa; Tregay, Jenifer; Phillips, Rebecca J; Baird, Gillian; Simonoff, Emily; Charman, Tony

    2011-03-01

    Autism spectrum disorders (ASD) are characterised by social and communication difficulties in day-to-day life, including problems in recognising emotions. However, experimental investigations of emotion recognition ability in ASD have been equivocal, hampered by small sample sizes, narrow IQ range and over-focus on the visual modality. We tested 99 adolescents (mean age 15;6 years, mean IQ 85) with an ASD and 57 adolescents without an ASD (mean age 15;6 years, mean IQ 88) on a facial emotion recognition task and two vocal emotion recognition tasks (one verbal; one non-verbal). Recognition of happiness, sadness, fear, anger, surprise and disgust were tested. Using structural equation modelling, we conceptualised emotion recognition ability as a multimodal construct, measured by the three tasks. We examined how the mean levels of recognition of the six emotions differed by group (ASD vs. non-ASD) and IQ (≥ 80 vs. < 80). We found no evidence of a fundamental emotion recognition deficit in the ASD group and analysis of error patterns suggested that the ASD group were vulnerable to the same pattern of confusions between emotions as the non-ASD group. However, recognition ability was significantly impaired in the ASD group for surprise. IQ had a strong and significant effect on performance for the recognition of all six emotions, with higher IQ adolescents outperforming lower IQ adolescents. The findings do not suggest a fundamental difficulty with the recognition of basic emotions in adolescents with ASD. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental Health.

  14. Geometry Of Discrete Sets With Applications To Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Sinha, Divyendu

    1990-03-01

    In this paper we present a new framework for discrete black and white images that employs only integer arithmetic. This framework is shown to retain the essential characteristics of the framework for Euclidean images. We propose two norms and based on them, the permissible geometric operations on images are defined. The basic invariants of our geometry are line images, structure of image and the corresponding local property of strong attachment of pixels. The permissible operations also preserve the 3x3 neighborhoods, area, and perpendicularity. The structure, patterns, and the inter-pattern gaps in a discrete image are shown to be conserved by the magnification and contraction process. Our notions of approximate congruence, similarity and symmetry are similar, in character, to the corresponding notions, for Euclidean images [1]. We mention two discrete pattern recognition algorithms that work purely with integers, and which fit into our framework. Their performance has been shown to be at par with the performance of traditional geometric schemes. Also, all the undesired effects of finite length registers in fixed point arithmetic that plague traditional algorithms, are non-existent in this family of algorithms.

  15. Does the presence of priming hinder subsequent recognition or recall performance?

    PubMed

    Stark, Shauna M; Gordon, Barry; Stark, Craig E L

    2008-02-01

    Declarative and non-declarative memories are thought be supported by two distinct memory systems that are often posited not to interact. However, Wagner, Maril, and Schacter (2000a) reported that at the time priming was assessed, greater behavioural and neural priming was associated with lower levels of subsequent recognition memory, demonstrating an interaction between declarative and non-declarative memory. We examined this finding using a similar paradigm, in which participants made the same or different semantic word judgements following a short or long lag and subsequent memory test. We found a similar overall pattern of results, with greater behavioural priming associated with a decrease in recognition and recall performance. However, neither various within-participant nor various between-participant analyses revealed significant correlations between priming and subsequent memory performance. These data suggest that both lag and task have effects on priming and declarative memory performance, but that they are largely independent and occur in parallel.

  16. Hand gesture recognition in confined spaces with partial observability and occultation constraints

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.

  17. Rapid Discrimination for Traditional Complex Herbal Medicines from Different Parts, Collection Time, and Origins Using High-Performance Liquid Chromatography and Near-Infrared Spectral Fingerprints with Aid of Pattern Recognition Methods

    PubMed Central

    Fu, Haiyan; Fan, Yao; Zhang, Xu; Lan, Hanyue; Yang, Tianming; Shao, Mei; Li, Sihan

    2015-01-01

    As an effective method, the fingerprint technique, which emphasized the whole compositions of samples, has already been used in various fields, especially in identifying and assessing the quality of herbal medicines. High-performance liquid chromatography (HPLC) and near-infrared (NIR), with their unique characteristics of reliability, versatility, precision, and simple measurement, played an important role among all the fingerprint techniques. In this paper, a supervised pattern recognition method based on PLSDA algorithm by HPLC and NIR has been established to identify the information of Hibiscus mutabilis L. and Berberidis radix, two common kinds of herbal medicines. By comparing component analysis (PCA), linear discriminant analysis (LDA), and particularly partial least squares discriminant analysis (PLSDA) with different fingerprint preprocessing of NIR spectra variables, PLSDA model showed perfect functions on the analysis of samples as well as chromatograms. Most important, this pattern recognition method by HPLC and NIR can be used to identify different collection parts, collection time, and different origins or various species belonging to the same genera of herbal medicines which proved to be a promising approach for the identification of complex information of herbal medicines. PMID:26345990

  18. Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods.

    PubMed

    Georgiadis, Pantelis; Cavouras, Dionisis; Kalatzis, Ioannis; Glotsos, Dimitris; Athanasiadis, Emmanouil; Kostopoulos, Spiros; Sifaki, Koralia; Malamas, Menelaos; Nikiforidis, George; Solomou, Ekaterini

    2009-01-01

    Three-dimensional (3D) texture analysis of volumetric brain magnetic resonance (MR) images has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to evaluate the efficiency of 3D textural features using a pattern recognition system in the task of discriminating benign, malignant and metastatic brain tissues on T1 postcontrast MR imaging (MRI) series. The dataset consisted of 67 brain MRI series obtained from patients with verified and untreated intracranial tumors. The pattern recognition system was designed as an ensemble classification scheme employing a support vector machine classifier, specially modified in order to integrate the least squares features transformation logic in its kernel function. The latter, in conjunction with using 3D textural features, enabled boosting up the performance of the system in discriminating metastatic, malignant and benign brain tumors with 77.14%, 89.19% and 93.33% accuracy, respectively. The method was evaluated using an external cross-validation process; thus, results might be considered indicative of the generalization performance of the system to "unseen" cases. The proposed system might be used as an assisting tool for brain tumor characterization on volumetric MRI series.

  19. Pattern activation/recognition theory of mind

    PubMed Central

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228

  20. Pattern activation/recognition theory of mind.

    PubMed

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  1. Déjà vu experiences in healthy subjects are unrelated to laboratory tests of recollection and familiarity for word stimuli.

    PubMed

    O'Connor, Akira R; Moulin, Chris J A

    2013-01-01

    Recent neuropsychological and neuroscientific research suggests that people who experience more déjà vu display characteristic patterns in normal recognition memory. We conducted a large individual differences study (n = 206) to test these predictions using recollection and familiarity parameters recovered from a standard memory task. Participants reported déjà vu frequency and a number of its correlates, and completed a recognition memory task analogous to a Remember-Know procedure. The individual difference measures replicated an established correlation between déjà vu frequency and frequency of travel, and recognition performance showed well-established word frequency and accuracy effects. Contrary to predictions, no relationships were found between déjà vu frequency and recollection or familiarity memory parameters from the recognition test. We suggest that déjà vu in the healthy population reflects a mismatch between errant memory signaling and memory monitoring processes not easily characterized by standard recognition memory task performance.

  2. Déjà vu experiences in healthy subjects are unrelated to laboratory tests of recollection and familiarity for word stimuli

    PubMed Central

    O’Connor, Akira R.; Moulin, Chris J. A.

    2013-01-01

    Recent neuropsychological and neuroscientific research suggests that people who experience more déjà vu display characteristic patterns in normal recognition memory. We conducted a large individual differences study (n = 206) to test these predictions using recollection and familiarity parameters recovered from a standard memory task. Participants reported déjà vu frequency and a number of its correlates, and completed a recognition memory task analogous to a Remember-Know procedure. The individual difference measures replicated an established correlation between déjà vu frequency and frequency of travel, and recognition performance showed well-established word frequency and accuracy effects. Contrary to predictions, no relationships were found between déjà vu frequency and recollection or familiarity memory parameters from the recognition test. We suggest that déjà vu in the healthy population reflects a mismatch between errant memory signaling and memory monitoring processes not easily characterized by standard recognition memory task performance. PMID:24409159

  3. Super-recognition in development: A case study of an adolescent with extraordinary face recognition skills.

    PubMed

    Bennetts, Rachel J; Mole, Joseph; Bate, Sarah

    2017-09-01

    Face recognition abilities vary widely. While face recognition deficits have been reported in children, it is unclear whether superior face recognition skills can be encountered during development. This paper presents O.B., a 14-year-old female with extraordinary face recognition skills: a "super-recognizer" (SR). O.B. demonstrated exceptional face-processing skills across multiple tasks, with a level of performance that is comparable to adult SRs. Her superior abilities appear to be specific to face identity: She showed an exaggerated face inversion effect and her superior abilities did not extend to object processing or non-identity aspects of face recognition. Finally, an eye-movement task demonstrated that O.B. spent more time than controls examining the nose - a pattern previously reported in adult SRs. O.B. is therefore particularly skilled at extracting and using identity-specific facial cues, indicating that face and object recognition are dissociable during development, and that super recognition can be detected in adolescence.

  4. Experimental study on GMM-based speaker recognition

    NASA Astrophysics Data System (ADS)

    Ye, Wenxing; Wu, Dapeng; Nucci, Antonio

    2010-04-01

    Speaker recognition plays a very important role in the field of biometric security. In order to improve the recognition performance, many pattern recognition techniques have be explored in the literature. Among these techniques, the Gaussian Mixture Model (GMM) is proved to be an effective statistic model for speaker recognition and is used in most state-of-the-art speaker recognition systems. The GMM is used to represent the 'voice print' of a speaker through modeling the spectral characteristic of speech signals of the speaker. In this paper, we implement a speaker recognition system, which consists of preprocessing, Mel-Frequency Cepstrum Coefficients (MFCCs) based feature extraction, and GMM based classification. We test our system with TIDIGITS data set (325 speakers) and our own recordings of more than 200 speakers; our system achieves 100% correct recognition rate. Moreover, we also test our system under the scenario that training samples are from one language but test samples are from a different language; our system also achieves 100% correct recognition rate, which indicates that our system is language independent.

  5. Parametric classification of handvein patterns based on texture features

    NASA Astrophysics Data System (ADS)

    Al Mahafzah, Harbi; Imran, Mohammad; Supreetha Gowda H., D.

    2018-04-01

    In this paper, we have developed Biometric recognition system adopting hand based modality Handvein,which has the unique pattern for each individual and it is impossible to counterfeit and fabricate as it is an internal feature. We have opted in choosing feature extraction algorithms such as LBP-visual descriptor, LPQ-blur insensitive texture operator, Log-Gabor-Texture descriptor. We have chosen well known classifiers such as KNN and SVM for classification. We have experimented and tabulated results of single algorithm recognition rate for Handvein under different distance measures and kernel options. The feature level fusion is carried out which increased the performance level.

  6. Implementation theory of distortion-invariant pattern recognition for optical and digital signal processing systems

    NASA Astrophysics Data System (ADS)

    Lhamon, Michael Earl

    A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.

  7. Recognition and identification of famous faces in patients with unilateral temporal lobe epilepsy.

    PubMed

    Seidenberg, Michael; Griffith, Randall; Sabsevitz, David; Moran, Maria; Haltiner, Alan; Bell, Brian; Swanson, Sara; Hammeke, Thomas; Hermann, Bruce

    2002-01-01

    We examined the performance of 21 patients with unilateral temporal lobe epilepsy (TLE) and hippocampal damage (10 lefts, and 11 rights) and 10 age-matched controls on the recognition and identification (name and occupation) of well-known faces. Famous face stimuli were selected from four time periods; 1970s, 1980s, 1990-1994, and 1995-1996. Differential patterns of performance were observed for the left and right TLE group across distinct face processing components. The left TLE group showed a selective impairment in naming famous faces while they performed similar to the controls in face recognition and semantic identification (i.e. occupation). In contrast, the right TLE group was impaired across all components of face memory; face recognition, semantic identification, and face naming. Face naming impairment in the left TLE group was characterized by a temporal gradient with better naming performance for famous faces from more distant time periods. Findings are discussed in terms of the role of the temporal lobe system for the acquisition, retention, and retrieval of face semantic networks, and the differential effects of lateralized temporal lobe lesions in this process.

  8. Training Letter and Orthographic Pattern Recognition in Children with Slow Naming Speed

    ERIC Educational Resources Information Center

    Conrad, Nicole J.; Levy, Betty Ann

    2011-01-01

    Although research has established that performance on a rapid automatized naming (RAN) task is related to reading, the nature of this relationship is unclear. Bowers (2001) proposed that processes underlying performance on the RAN task and orthographic knowledge make independent and additive contributions to reading performance. We examined the…

  9. Recognition of Schematic Facial Displays of Emotion in Parents of Children with Autism

    ERIC Educational Resources Information Center

    Palermo, Mark T.; Pasqualetti, Patrizio; Barbati, Giulia; Intelligente, Fabio; Rossini, Paolo Maria

    2006-01-01

    Performance on an emotional labeling task in response to schematic facial patterns representing five basic emotions without the concurrent presentation of a verbal category was investigated in 40 parents of children with autism and 40 matched controls. "Autism fathers" performed worse than "autism mothers," who performed worse than controls in…

  10. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  11. Monopolar Detection Thresholds Predict Spatial Selectivity of Neural Excitation in Cochlear Implants: Implications for Speech Recognition

    PubMed Central

    2016-01-01

    The objectives of the study were to (1) investigate the potential of using monopolar psychophysical detection thresholds for estimating spatial selectivity of neural excitation with cochlear implants and to (2) examine the effect of site removal on speech recognition based on the threshold measure. Detection thresholds were measured in Cochlear Nucleus® device users using monopolar stimulation for pulse trains that were of (a) low rate and long duration, (b) high rate and short duration, and (c) high rate and long duration. Spatial selectivity of neural excitation was estimated by a forward-masking paradigm, where the probe threshold elevation in the presence of a forward masker was measured as a function of masker-probe separation. The strength of the correlation between the monopolar thresholds and the slopes of the masking patterns systematically reduced as neural response of the threshold stimulus involved interpulse interactions (refractoriness and sub-threshold adaptation), and spike-rate adaptation. Detection threshold for the low-rate stimulus most strongly correlated with the spread of forward masking patterns and the correlation reduced for long and high rate pulse trains. The low-rate thresholds were then measured for all electrodes across the array for each subject. Subsequently, speech recognition was tested with experimental maps that deactivated five stimulation sites with the highest thresholds and five randomly chosen ones. Performance with deactivating the high-threshold sites was better than performance with the subjects’ clinical map used every day with all electrodes active, in both quiet and background noise. Performance with random deactivation was on average poorer than that with the clinical map but the difference was not significant. These results suggested that the monopolar low-rate thresholds are related to the spatial neural excitation patterns in cochlear implant users and can be used to select sites for more optimal speech recognition performance. PMID:27798658

  12. Mutual information-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Hazar, Mliki; Hammami, Mohamed; Hanêne, Ben-Abdallah

    2013-12-01

    This paper introduces a novel low-computation discriminative regions representation for expression analysis task. The proposed approach relies on interesting studies in psychology which show that most of the descriptive and responsible regions for facial expression are located around some face parts. The contributions of this work lie in the proposition of new approach which supports automatic facial expression recognition based on automatic regions selection. The regions selection step aims to select the descriptive regions responsible or facial expression and was performed using Mutual Information (MI) technique. For facial feature extraction, we have applied Local Binary Patterns Pattern (LBP) on Gradient image to encode salient micro-patterns of facial expressions. Experimental studies have shown that using discriminative regions provide better results than using the whole face regions whilst reducing features vector dimension.

  13. Speech variability effects on recognition accuracy associated with concurrent task performance by pilots

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1985-01-01

    In the present study of the responses of pairs of pilots to aircraft warning classification tasks using an isolated word, speaker-dependent speech recognition system, the induced stress was manipulated by means of different scoring procedures for the classification task and by the inclusion of a competitive manual control task. Both speech patterns and recognition accuracy were analyzed, and recognition errors were recorded by type for an isolated word speaker-dependent system and by an offline technique for a connected word speaker-dependent system. While errors increased with task loading for the isolated word system, there was no such effect for task loading in the case of the connected word system.

  14. Biologically inspired emotion recognition from speech

    NASA Astrophysics Data System (ADS)

    Caponetti, Laura; Buscicchio, Cosimo Alessandro; Castellano, Giovanna

    2011-12-01

    Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM) recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC) and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  15. Static facial expression recognition with convolution neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Chen, Zhong; Ouyang, Chao; Zhang, Yifei

    2018-03-01

    Facial expression recognition is a currently active research topic in the fields of computer vision, pattern recognition and artificial intelligence. In this paper, we have developed a convolutional neural networks (CNN) for classifying human emotions from static facial expression into one of the seven facial emotion categories. We pre-train our CNN model on the combined FER2013 dataset formed by train, validation and test set and fine-tune on the extended Cohn-Kanade database. In order to reduce the overfitting of the models, we utilized different techniques including dropout and batch normalization in addition to data augmentation. According to the experimental result, our CNN model has excellent classification performance and robustness for facial expression recognition.

  16. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks.

    PubMed

    Luque, Joaquín; Larios, Diego F; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-05-18

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance.

  17. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    PubMed Central

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  18. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks

    PubMed Central

    Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-01-01

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375

  19. Combining two open source tools for neural computation (BioPatRec and Netlab) improves movement classification for prosthetic control.

    PubMed

    Prahm, Cosima; Eckstein, Korbinian; Ortiz-Catalan, Max; Dorffner, Georg; Kaniusas, Eugenijus; Aszmann, Oskar C

    2016-08-31

    Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition models. Performances of the artificial neural networks, linear models, and training program components were compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that provides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding the best performing algorithm and network model. Evaluation criteria included classification accuracy and training time. Results in both the linear and the artificial neural network models demonstrated that Netlab's implementation using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec. It is concluded that the best movement classification performance would be achieved through integrating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).

  20. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    NASA Astrophysics Data System (ADS)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  1. Compositional symbol grounding for motor patterns.

    PubMed

    Greco, Alberto; Caneva, Claudio

    2010-01-01

    We developed a new experimental and simulative paradigm to study the establishing of compositional grounded representations for motor patterns. Participants learned to associate non-sense arm motor patterns, performed in three different hand postures, with non-sense words. There were two group conditions: in the first (compositional), each pattern was associated with a two-word (verb-adverb) sentence; in the second (holistic), each same pattern was associated with a unique word. Two experiments were performed. In the first, motor pattern recognition and naming were tested in the two conditions. Results showed that verbal compositionality had no role in recognition and that the main source of confusability in this task came from discriminating hand postures. As the naming task resulted too difficult, some changes in the learning procedure were implemented in the second experiment. In this experiment, the compositional group achieved better results in naming motor patterns especially for patterns where hand postures discrimination was relevant. In order to ascertain the differential effect, upon this result, of memory load and of systematic grounding, neural network simulations were also made. After a basic simulation that worked as a good model of subjects performance, in following simulations the number of stimuli (motor patterns and words) was increased and the systematic association between words and patterns was disrupted, while keeping the same number of words and syntax. Results showed that in both conditions the advantage for the compositional condition significantly increased. These simulations showed that the advantage for this condition may be more related to the systematicity rather than to the mere informational gain. All results are discussed in connection to the possible support of the hypothesis of a compositional motor representation and toward a more precise explanation of the factors that make compositional representations working.

  2. Psychometric properties of the NEPSY-II affect recognition subtest in a preschool sample: a Rasch modeling approach.

    PubMed

    Yao, Shih-Ying; Bull, Rebecca; Khng, Kiat Hui; Rahim, Anisa

    2018-01-01

    Understanding a child's ability to decode emotion expressions is important to allow early interventions for potential difficulties in social and emotional functioning. This study applied the Rasch model to investigate the psychometric properties of the NEPSY-II Affect Recognition subtest, a U.S. normed measure for 3-16 year olds which assesses the ability to recognize facial expressions of emotion. Data were collected from 1222 children attending preschools in Singapore. We first performed the Rasch analysis with the raw item data, and examined the technical qualities and difficulty pattern of the studied items. We subsequently investigated the relation of the estimated affect recognition ability from the Rasch analysis to a teacher-reported measure of a child's behaviors, emotions, and relationships. Potential gender differences were also examined. The Rasch model fits our data well. Also, the NEPSY-II Affect Recognition subtest was found to have reasonable technical qualities, expected item difficulty pattern, and desired association with the external measure of children's behaviors, emotions, and relationships for both boys and girls. Overall, findings from this study suggest that the NEPSY-II Affect Recognition subtest is a promising measure of young children's affect recognition ability. Suggestions for future test improvement and research were discussed.

  3. Improving Face Verification in Photo Albums by Combining Facial Recognition and Metadata With Cross-Matching

    DTIC Science & Technology

    2017-12-01

    satisfactory performance. We do not use statistical models, and we do not create patterns that require supervised learning. Our methodology is intended...statistical models, and we do not create patterns that require supervised learning. Our methodology is intended for use in personal digital image...THESIS MOTIVATION .........................................................................19 III. METHODOLOGY

  4. Cross-domain expression recognition based on sparse coding and transfer learning

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Zhang, Weiyi; Huang, Yong

    2017-05-01

    Traditional facial expression recognition methods usually assume that the training set and the test set are independent and identically distributed. However, in actual expression recognition applications, the conditions of independent and identical distribution are hardly satisfied for the training set and test set because of the difference of light, shade, race and so on. In order to solve this problem and improve the performance of expression recognition in the actual applications, a novel method based on transfer learning and sparse coding is applied to facial expression recognition. First of all, a common primitive model, that is, the dictionary is learnt. Then, based on the idea of transfer learning, the learned primitive pattern is transferred to facial expression and the corresponding feature representation is obtained by sparse coding. The experimental results in CK +, JAFFE and NVIE database shows that the transfer learning based on sparse coding method can effectively improve the expression recognition rate in the cross-domain expression recognition task and is suitable for the practical facial expression recognition applications.

  5. Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

    NASA Astrophysics Data System (ADS)

    Heger, Daniel; Krischer, Katharina

    2016-08-01

    Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

  6. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    PubMed Central

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  7. An electronic nose for quantitative determination of gas concentrations

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Kalinowski, Paweł; Woźniak, Łukasz

    2016-11-01

    The practical application of human nose for fragrance recognition is severely limited by the fact that our sense of smell is subjective and gets tired easily. Consequently, there is considerable need for an instrument that can be a substitution of the human sense of smell. Electronic nose devices from the mid 1980s are used in growing number of applications. They comprise an array of several electrochemical gas sensors with partial specificity and a pattern recognition algorithms. Most of such systems, however, is only used for qualitative measurements. In this article usage of such system in quantitative determination of gas concentration is demonstrated. Electronic nose consist of a sensor array with eight commercially available Taguchi type gas sensor. Performance of three different pattern recognition algorithms is compared, namely artificial neural network, partial least squares regression and support vector machine regression. The electronic nose is used for ammonia and nitrogen dioxide concentration determination.

  8. [Research on the application of grey system theory in the pattern recognition for chromatographic fingerprints of traditional Chinese medicine].

    PubMed

    Wei, Hang; Lin, Li; Zhang, Yuan; Wang, Lianjing; Chen, Qinqun

    2013-02-01

    A model based on grey system theory was proposed for pattern recognition in chromatographic fingerprints (CF) of traditional Chinese medicine (TCM). The grey relational grade among the data series of each testing CF and the ideal CF was obtained by entropy and norm respectively, then the principle of "maximal matching degree" was introduced to make judgments, so as to achieve the purpose of variety identification and quality evaluation. A satisfactory result in the high performance liquid chromatographic (HPLC) analysis of 56 batches of different varieties of Exocarpium Citrus Grandis was achieved with this model. The errors in the chromatographic fingerprint analysis caused by traditional similarity method or grey correlation method were overcome, as the samples of Citrus grandis 'Tomentosa' and Citrus grandis (L.) Osbeck were correctly distinguished in the experiment. Furthermore in the study on the variety identification of Citrus grandis 'Tomentosa', the recognition rates were up to 92.85%, although the types and the contents of the chemical compositions of the samples were very close. At the same time, the model had the merits of low computation complexity and easy operation by computer programming. The research indicated that the grey system theory has good applicability to pattern recognition in the chromatographic fingerprints of TCM.

  9. Processing of Acoustic Cues in Lexical-Tone Identification by Pediatric Cochlear-Implant Recipients

    PubMed Central

    Peng, Shu-Chen; Lu, Hui-Ping; Lu, Nelson; Lin, Yung-Song; Deroche, Mickael L. D.

    2017-01-01

    Purpose The objective was to investigate acoustic cue processing in lexical-tone recognition by pediatric cochlear-implant (CI) recipients who are native Mandarin speakers. Method Lexical-tone recognition was assessed in pediatric CI recipients and listeners with normal hearing (NH) in 2 tasks. In Task 1, participants identified naturally uttered words that were contrastive in lexical tones. For Task 2, a disyllabic word (yanjing) was manipulated orthogonally, varying in fundamental-frequency (F0) contours and duration patterns. Participants identified each token with the second syllable jing pronounced with Tone 1 (a high level tone) as eyes or with Tone 4 (a high falling tone) as eyeglasses. Results CI participants' recognition accuracy was significantly lower than NH listeners' in Task 1. In Task 2, CI participants' reliance on F0 contours was significantly less than that of NH listeners; their reliance on duration patterns, however, was significantly higher than that of NH listeners. Both CI and NH listeners' performance in Task 1 was significantly correlated with their reliance on F0 contours in Task 2. Conclusion For pediatric CI recipients, lexical-tone recognition using naturally uttered words is primarily related to their reliance on F0 contours, although duration patterns may be used as an additional cue. PMID:28388709

  10. Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine.

    PubMed

    Yan, Jian-Jun; Guo, Rui; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing

    2014-01-01

    This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered.

  11. Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine

    PubMed Central

    Yan, Jian-Jun; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing

    2014-01-01

    This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered. PMID:24883068

  12. Sign Perception and Recognition in Non-Native Signers of ASL

    PubMed Central

    Morford, Jill P.; Carlson, Martina L.

    2011-01-01

    Past research has established that delayed first language exposure is associated with comprehension difficulties in non-native signers of American Sign Language (ASL) relative to native signers. The goal of the current study was to investigate potential explanations of this disparity: do non-native signers have difficulty with all aspects of comprehension, or are their comprehension difficulties restricted to some aspects of processing? We compared the performance of deaf non-native, hearing L2, and deaf native signers on a handshape and location monitoring and a sign recognition task. The results indicate that deaf non-native signers are as rapid and accurate on the monitoring task as native signers, with differences in the pattern of relative performance across handshape and location parameters. By contrast, non-native signers differ significantly from native signers during sign recognition. Hearing L2 signers, who performed almost as well as the two groups of deaf signers on the monitoring task, resembled the deaf native signers more than the deaf non-native signers on the sign recognition task. The combined results indicate that delayed exposure to a signed language leads to an overreliance on handshape during sign recognition. PMID:21686080

  13. Boosting drug named entity recognition using an aggregate classifier.

    PubMed

    Korkontzelos, Ioannis; Piliouras, Dimitrios; Dowsey, Andrew W; Ananiadou, Sophia

    2015-10-01

    Drug named entity recognition (NER) is a critical step for complex biomedical NLP tasks such as the extraction of pharmacogenomic, pharmacodynamic and pharmacokinetic parameters. Large quantities of high quality training data are almost always a prerequisite for employing supervised machine-learning techniques to achieve high classification performance. However, the human labour needed to produce and maintain such resources is a significant limitation. In this study, we improve the performance of drug NER without relying exclusively on manual annotations. We perform drug NER using either a small gold-standard corpus (120 abstracts) or no corpus at all. In our approach, we develop a voting system to combine a number of heterogeneous models, based on dictionary knowledge, gold-standard corpora and silver annotations, to enhance performance. To improve recall, we employed genetic programming to evolve 11 regular-expression patterns that capture common drug suffixes and used them as an extra means for recognition. Our approach uses a dictionary of drug names, i.e. DrugBank, a small manually annotated corpus, i.e. the pharmacokinetic corpus, and a part of the UKPMC database, as raw biomedical text. Gold-standard and silver annotated data are used to train maximum entropy and multinomial logistic regression classifiers. Aggregating drug NER methods, based on gold-standard annotations, dictionary knowledge and patterns, improved the performance on models trained on gold-standard annotations, only, achieving a maximum F-score of 95%. In addition, combining models trained on silver annotations, dictionary knowledge and patterns are shown to achieve comparable performance to models trained exclusively on gold-standard data. The main reason appears to be the morphological similarities shared among drug names. We conclude that gold-standard data are not a hard requirement for drug NER. Combining heterogeneous models build on dictionary knowledge can achieve similar or comparable classification performance with that of the best performing model trained on gold-standard annotations. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Learning to Recognize Patterns: Changes in the Visual Field with Familiarity

    NASA Astrophysics Data System (ADS)

    Bebko, James M.; Uchikawa, Keiji; Saida, Shinya; Ikeda, Mitsuo

    1995-01-01

    Two studies were conducted to investigate changes which take place in the visual information processing of novel stimuli as they become familiar. Japanese writing characters (Hiragana and Kanji) which were unfamiliar to two native English speaking subjects were presented using a moving window technique to restrict their visual fields. Study time for visual recognition was recorded across repeated sessions, and with varying visual field restrictions. The critical visual field was defined as the size of the visual field beyond which further increases did not improve the speed of recognition performance. In the first study, when the Hiragana patterns were novel, subjects needed to see about half of the entire pattern simultaneously to maintain optimal performance. However, the critical visual field size decreased as familiarity with the patterns increased. These results were replicated in the second study with more complex Kanji characters. In addition, the critical field size decreased as pattern complexity decreased. We propose a three component model of pattern perception. In the first stage a representation of the stimulus must be constructed by the subject, and restricting of the visual field interferes dramatically with this component when stimuli are unfamiliar. With increased familiarity, subjects become able to reconstruct a previous representation from very small, unique segments of the pattern, analogous to the informativeness areas hypothesized by Loftus and Mackworth [J. Exp. Psychol., 4 (1978) 565].

  15. A motivational determinant of facial emotion recognition: regulatory focus affects recognition of emotions in faces.

    PubMed

    Sassenrath, Claudia; Sassenberg, Kai; Ray, Devin G; Scheiter, Katharina; Jarodzka, Halszka

    2014-01-01

    Two studies examined an unexplored motivational determinant of facial emotion recognition: observer regulatory focus. It was predicted that a promotion focus would enhance facial emotion recognition relative to a prevention focus because the attentional strategies associated with promotion focus enhance performance on well-learned or innate tasks - such as facial emotion recognition. In Study 1, a promotion or a prevention focus was experimentally induced and better facial emotion recognition was observed in a promotion focus compared to a prevention focus. In Study 2, individual differences in chronic regulatory focus were assessed and attention allocation was measured using eye tracking during the facial emotion recognition task. Results indicated that the positive relation between a promotion focus and facial emotion recognition is mediated by shorter fixation duration on the face which reflects a pattern of attention allocation matched to the eager strategy in a promotion focus (i.e., striving to make hits). A prevention focus did not have an impact neither on perceptual processing nor on facial emotion recognition. Taken together, these findings demonstrate important mechanisms and consequences of observer motivational orientation for facial emotion recognition.

  16. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network

    NASA Astrophysics Data System (ADS)

    Su, Zhongqing; Ye, Lin

    2004-08-01

    The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.

  17. Schizophrenia patients demonstrate a dissociation on declarative and non-declarative memory tests.

    PubMed

    Perry, W; Light, G A; Davis, H; Braff, D L

    2000-12-15

    Declarative memory refers to the recall and recognition of factual information. In contrast, non-declarative memory entails a facilitation of memory based on prior exposure and is typically assessed with priming and perceptual-motor sequencing tasks. In this study, schizophrenia patients were compared to normal comparison subjects on two computerized memory tasks: the Word-stem Priming Test (n=30) and the Pattern Sequence Learning Test (n=20). Word-stem Priming includes recall, recognition (declarative) and priming (non-declarative) components of memory. The schizophrenia patients demonstrated an impaired performance on recall of words with relative improvement during the recognition portion of the test. Furthermore, they performed normally on the priming portion of the test. Thus, on tests of declarative memory, the patients had retrieval deficits with intact performance on the non-declarative memory component. The Pattern Sequence Learning Test utilizes a serial reaction time paradigm to assess non-declarative memory. The schizophrenia patients' serial reaction time was significantly slower than that of comparison subjects. However, the patients' rate of acquisition was not different from the normal comparison group. The data suggest that patients with schizophrenia process more slowly than normal, but have an intact non-declarative memory. The schizophrenia patients' dissociation on declarative vs. non-declarative memory tests is discussed in terms of possible underlying structural impairment.

  18. A Compact Methodology to Understand, Evaluate, and Predict the Performance of Automatic Target Recognition

    PubMed Central

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Chen, Yiping; Zhuang, Zhaowen; Cheng, Yongqiang; Deng, Bin; Wang, Liandong; Zeng, Yonghu; Gao, Lei

    2014-01-01

    This paper offers a compacted mechanism to carry out the performance evaluation work for an automatic target recognition (ATR) system: (a) a standard description of the ATR system's output is suggested, a quantity to indicate the operating condition is presented based on the principle of feature extraction in pattern recognition, and a series of indexes to assess the output in different aspects are developed with the application of statistics; (b) performance of the ATR system is interpreted by a quality factor based on knowledge of engineering mathematics; (c) through a novel utility called “context-probability” estimation proposed based on probability, performance prediction for an ATR system is realized. The simulation result shows that the performance of an ATR system can be accounted for and forecasted by the above-mentioned measures. Compared to existing technologies, the novel method can offer more objective performance conclusions for an ATR system. These conclusions may be helpful in knowing the practical capability of the tested ATR system. At the same time, the generalization performance of the proposed method is good. PMID:24967605

  19. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  20. Employing wavelet-based texture features in ammunition classification

    NASA Astrophysics Data System (ADS)

    Borzino, Ángelo M. C. R.; Maher, Robert C.; Apolinário, José A.; de Campos, Marcello L. R.

    2017-05-01

    Pattern recognition, a branch of machine learning, involves classification of information in images, sounds, and other digital representations. This paper uses pattern recognition to identify which kind of ammunition was used when a bullet was fired based on a carefully constructed set of gunshot sound recordings. To do this task, we show that texture features obtained from the wavelet transform of a component of the gunshot signal, treated as an image, and quantized in gray levels, are good ammunition discriminators. We test the technique with eight different calibers and achieve a classification rate better than 95%. We also compare the performance of the proposed method with results obtained by standard temporal and spectrographic techniques

  1. Effect of Acting Experience on Emotion Expression and Recognition in Voice: Non-Actors Provide Better Stimuli than Expected.

    PubMed

    Jürgens, Rebecca; Grass, Annika; Drolet, Matthis; Fischer, Julia

    Both in the performative arts and in emotion research, professional actors are assumed to be capable of delivering emotions comparable to spontaneous emotional expressions. This study examines the effects of acting training on vocal emotion depiction and recognition. We predicted that professional actors express emotions in a more realistic fashion than non-professional actors. However, professional acting training may lead to a particular speech pattern; this might account for vocal expressions by actors that are less comparable to authentic samples than the ones by non-professional actors. We compared 80 emotional speech tokens from radio interviews with 80 re-enactments by professional and inexperienced actors, respectively. We analyzed recognition accuracies for emotion and authenticity ratings and compared the acoustic structure of the speech tokens. Both play-acted conditions yielded similar recognition accuracies and possessed more variable pitch contours than the spontaneous recordings. However, professional actors exhibited signs of different articulation patterns compared to non-trained speakers. Our results indicate that for emotion research, emotional expressions by professional actors are not better suited than those from non-actors.

  2. Real Time Large Memory Optical Pattern Recognition.

    DTIC Science & Technology

    1984-06-01

    AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical

  3. Classification and machine recognition of severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1976-01-01

    Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.

  4. Fuzzy Logic-Based Audio Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  5. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  6. The Effect of Involuntary Motor Activity on Myoelectric Pattern Recognition: A Case Study with Chronic Stroke Patients

    PubMed Central

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Rymer, William Zev; Zhou, Ping

    2013-01-01

    This study investigates the effect of involuntary motor activity of paretic-spastic muscles on classification of surface electromyography (EMG) signals. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at a relatively slow and fast speed. For each stroke subject, the degree of involuntary motor activity present in voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from slow and fast sessions. Across all tested stroke subjects, our results revealed that when involuntary surface EMG was absent or present in both training and testing datasets, high accuracies (> 96%, > 98%, respectively, averaged over all the subjects) can be achieved in classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either training or testing datasets, the classification accuracies were dramatically reduced (< 89%, < 85%, respectively). However, if both training and testing datasets contained EMG signals with presence and absence of involuntary EMG interference, high accuracies were still achieved (> 97%). The findings of this study can be used to guide appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation. PMID:23860192

  7. The 'fragmented' scintigraphic lung pattern in pulmonary lymphangitic carcinomatosis secondary to breast cancer.

    PubMed

    Vattimo, A V; Burroni, L; Bertelli, P; Vella, A; Volterrani, D

    1998-01-01

    Pulmonary lymphangitic carcinomatosis (PLC) is an unusual presentation of diffuse infiltrative lung disease. In this report we present two cases secondary to breast cancer; the diagnosis was made by means of transbronchial lung biopsy or postmortem examination. The goal of this study was to analyze the scintigraphic pattern of pulmonary perfusion performed with technetium-99m macroaggregated albumin (99mTc-MAA) in the hope of achieving improved recognition of PLC and its subsequent diagnosis. Upon admission, both patients underwent routine clinical exams followed by chest X-rays. The second patient also underwent CT examination, and both were ultimately examined using pulmonary perfusion scintigraphy with 99mTc-MAA. In the various exams performed, the most reliable and easily identified diagnostic finding turned out to be a characteristic 'fragmented' lung pattern revealed with the perfusion lung scan. Unfortunately, in both cases the patients' conditions rapidly worsened and death occurred shortly following scintigraphy. We were able to conclude that the recognition of the mentioned fragmented scintigraphic lung pattern may be useful in suspected PLC, whereas the nonspecific clinical presentation of this pathology makes diagnosis extremely difficult, with the most significant results being achieved through a comparison of scintigraphic and high resolution CT data.

  8. Signal processing method and system for noise removal and signal extraction

    DOEpatents

    Fu, Chi Yung; Petrich, Loren

    2009-04-14

    A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.

  9. A human performance evaluation of graphic symbol-design features.

    PubMed

    Samet, M G; Geiselman, R E; Landee, B M

    1982-06-01

    16 subjects learned each of two tactical display symbol sets (conventional symbols and iconic symbols) in turn and were then shown a series of graphic displays containing various symbol configurations. For each display, the subject was asked questions corresponding to different behavioral processes relating to symbol use (identification, search, comparison, pattern recognition). The results indicated that: (a) conventional symbols yielded faster pattern-recognition performance than iconic symbols, and iconic symbols did not yield faster identification than conventional symbols, and (b) the portrayal of additional feature information (through the use of perimeter density or vector projection coding) slowed processing of the core symbol information in four tasks, but certain symbol-design features created less perceptual interference and had greater correspondence with the portrayal of specific tactical concepts than others. The results were discussed in terms of the complexities involved in the selection of symbol design features for use in graphic tactical displays.

  10. Individually adapted imagery improves brain-computer interface performance in end-users with disability.

    PubMed

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.

  11. Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability

    PubMed Central

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V. C.; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R.

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage. PMID:25992718

  12. Conic section function neural network circuitry for offline signature recognition.

    PubMed

    Erkmen, Burcu; Kahraman, Nihan; Vural, Revna A; Yildirim, Tulay

    2010-04-01

    In this brief, conic section function neural network (CSFNN) circuitry was designed for offline signature recognition. CSFNN is a unified framework for multilayer perceptron (MLP) and radial basis function (RBF) networks to make simultaneous use of advantages of both. The CSFNN circuitry architecture was developed using a mixed mode circuit implementation. The designed circuit system is problem independent. Hence, the general purpose neural network circuit system could be applied to various pattern recognition problems with different network sizes on condition with the maximum network size of 16-16-8. In this brief, CSFNN circuitry system has been applied to two different signature recognition problems. CSFNN circuitry was trained with chip-in-the-loop learning technique in order to compensate typical analog process variations. CSFNN hardware achieved highly comparable computational performances with CSFNN software for nonlinear signature recognition problems.

  13. The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.

    PubMed

    Marée, Raphaël

    2017-01-01

    Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.

  14. Pattern recognition: A basis for remote sensing data analysis

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1973-01-01

    The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.

  15. Optical Pattern Recognition With Self-Amplification

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  16. Application of morphological associative memories and Fourier descriptors for classification of noisy subsurface signatures

    NASA Astrophysics Data System (ADS)

    Ortiz, Jorge L.; Parsiani, Hamed; Tolstoy, Leonid

    2004-02-01

    This paper presents a method for recognition of Noisy Subsurface Images using Morphological Associative Memories (MAM). MAM are type of associative memories that use a new kind of neural networks based in the algebra system known as semi-ring. The operations performed in this algebraic system are highly nonlinear providing additional strength when compared to other transformations. Morphological associative memories are a new kind of neural networks that provide a robust performance with noisy inputs. Two representations of morphological associative memories are used called M and W matrices. M associative memory provides a robust association with input patterns corrupted by dilative random noise, while the W associative matrix performs a robust recognition in patterns corrupted with erosive random noise. The robust performance of MAM is used in combination of the Fourier descriptors for the recognition of underground objects in Ground Penetrating Radar (GPR) images. Multiple 2-D GPR images of a site are made available by NASA-SSC center. The buried objects in these images appear in the form of hyperbolas which are the results of radar backscatter from the artifacts or objects. The Fourier descriptors of the prototype hyperbola-like and shapes from non-hyperbola shapes in the sub-surface images are used to make these shapes scale-, shift-, and rotation-invariant. Typical hyperbola-like and non-hyperbola shapes are used to calculate the morphological associative memories. The trained MAMs are used to process other noisy images to detect the presence of these underground objects. The outputs from the MAM using the noisy patterns may be equal to the training prototypes, providing a positive identification of the artifacts. The results are images with recognized hyperbolas which indicate the presence of buried artifacts. A model using MATLAB has been developed and results are presented.

  17. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    PubMed Central

    2012-01-01

    Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a two-stage cascade classifier, the average classification error was around 9.0% over all five arm positions. Reducing ACC-MMG channels from 8 to 2 only increased the average position classification error across all five arm positions from 0.7% to 1.0% in amputated arms. Conclusions The performance of EMG pattern-recognition based method in classifying movements strongly depends on arm positions. This dependency is a little stronger in intact arm than in amputated arm, which suggests that the investigations associated with practical use of a myoelectric prosthesis should use the limb amputees as subjects instead of using able-body subjects. The two-stage cascade classifier mode with ACC-MMG for limb position identification and EMG for limb motion classification may be a promising way to reduce the effect of limb position variation on classification performance. PMID:23036049

  18. Generalization between canonical and non-canonical views in object recognition

    PubMed Central

    Ghose, Tandra; Liu, Zili

    2013-01-01

    Viewpoint generalization in object recognition is the process that allows recognition of a given 3D object from many different viewpoints despite variations in its 2D projections. We used the canonical view effects as a foundation to empirically test the validity of a major theory in object recognition, the view-approximation model (Poggio & Edelman, 1990). This model predicts that generalization should be better when an object is first seen from a non-canonical view and then a canonical view than when seen in the reversed order. We also manipulated object similarity to study the degree to which this view generalization was constrained by shape details and task instructions (object vs. image recognition). Old-new recognition performance for basic and subordinate level objects was measured in separate blocks. We found that for object recognition, view generalization between canonical and non-canonical views was comparable for basic level objects. For subordinate level objects, recognition performance was more accurate from non-canonical to canonical views than the other way around. When the task was changed from object recognition to image recognition, the pattern of the results reversed. Interestingly, participants responded “old” to “new” images of “old” objects with a substantially higher rate than to “new” objects, despite instructions to the contrary, thereby indicating involuntary view generalization. Our empirical findings are incompatible with the prediction of the view-approximation theory, and argue against the hypothesis that views are stored independently. PMID:23283692

  19. Multifractal analysis of real and imaginary movements: EEG study

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Maksimenko, Vladimir A.; Runnova, Anastasiya E.; Khramova, Marina V.; Pisarchik, Alexander N.

    2018-04-01

    We study abilities of the wavelet-based multifractal analysis in recognition specific dynamics of electrical brain activity associated with real and imaginary movements. Based on the singularity spectra we analyze electroencephalograms (EEGs) acquired in untrained humans (operators) during imagination of hands movements, and show a possibility to distinguish between the related EEG patterns and the recordings performed during real movements or the background electrical brain activity. We discuss how such recognition depends on the selected brain region.

  20. Actively Paranoid Patients with Schizophrenia Over Attribute Anger to Neutral Faces

    PubMed Central

    Pinkham, Amy E.; Brensinger, Colleen; Kohler, Christian; Gur, Raquel E.; Gur, Ruben C.

    2010-01-01

    Previous investigations of the influence of paranoia on facial affect recognition in schizophrenia have been inconclusive as some studies demonstrate better performance for paranoid relative to non-paranoid patients and others show that paranoid patients display greater impairments. These studies have been limited by small sample sizes and inconsistencies in the criteria used to define groups. Here, we utilized an established emotion recognition task and a large sample to examine differential performance in emotion recognition ability between patients who were actively paranoid (AP) and those who were not actively paranoid (NAP). Accuracy and error patterns on the Penn Emotion Recognition test (ER40) were examined in 132 patients (64 NAP and 68 AP). Groups were defined based on the presence of paranoid ideation at the time of testing rather than diagnostic subtype. AP and NAP patients did not differ in overall task accuracy; however, an emotion by group interaction indicated that AP patients were significantly worse than NAP patients at correctly labeling neutral faces. A comparison of error patterns on neutral stimuli revealed that the groups differed only in misattributions of anger expressions, with AP patients being significantly more likely to misidentify a neutral expression as angry. The present findings suggest that paranoia is associated with a tendency to over attribute threat to ambiguous stimuli and also lend support to emerging hypotheses of amygdala hyperactivation as a potential neural mechanism for paranoid ideation. PMID:21112186

  1. Emotional facial recognition in proactive and reactive violent offenders.

    PubMed

    Philipp-Wiegmann, Florence; Rösler, Michael; Retz-Junginger, Petra; Retz, Wolfgang

    2017-10-01

    The purpose of this study is to analyse individual differences in the ability of emotional facial recognition in violent offenders, who were characterised as either reactive or proactive in relation to their offending. In accordance with findings of our previous study, we expected higher impairments in facial recognition in reactive than proactive violent offenders. To assess the ability to recognize facial expressions, the computer-based Facial Emotional Expression Labeling Test (FEEL) was performed. Group allocation of reactive und proactive violent offenders and assessment of psychopathic traits were performed by an independent forensic expert using rating scales (PROREA, PCL-SV). Compared to proactive violent offenders and controls, the performance of emotion recognition in the reactive offender group was significantly lower, both in total and especially in recognition of negative emotions such as anxiety (d = -1.29), sadness (d = -1.54), and disgust (d = -1.11). Furthermore, reactive violent offenders showed a tendency to interpret non-anger emotions as anger. In contrast, proactive violent offenders performed as well as controls. General and specific deficits in reactive violent offenders are in line with the results of our previous study and correspond to predictions of the Integrated Emotion System (IES, 7) and the hostile attribution processes (21). Due to the different error pattern in the FEEL test, the theoretical distinction between proactive and reactive aggression can be supported based on emotion recognition, even though aggression itself is always a heterogeneous act rather than a distinct one-dimensional concept.

  2. Transfer-appropriate processing in recognition memory: perceptual and conceptual effects on recognition memory depend on task demands.

    PubMed

    Parks, Colleen M

    2013-07-01

    Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which suggest that the extent to which perceptual fluency matters on a recognition test depends in large part on the task demands. A test that recruits perceptual processing for discrimination should show greater perceptual effects and smaller conceptual effects than standard recognition, similar to the pattern of effects found in perceptual implicit memory tasks. This idea was tested in the current experiment by crossing a levels of processing manipulation with a modality manipulation on a series of recognition tests that ranged from conceptual (standard recognition) to very perceptually demanding (a speeded recognition test with degraded stimuli). Results showed that the levels of processing effect decreased and the effect of modality increased when tests were made perceptually demanding. These results support the idea that surface-level features influence performance on recognition tests when they are made salient by the task demands. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Creating Organizational Structures to Facilitate Collegial Interaction among Teachers: Evidence from a High-Performing Urban Midwestern US District

    ERIC Educational Resources Information Center

    Ford, Timothy G.; Youngs, Peter A.

    2018-01-01

    Emerging from concerns about "contrived collegiality" in schools is also the recognition that breaking existing patterns of collegial interaction (or lack thereof) might necessitate some level of leader-initiated (or otherwise organizational) intervention. This paper presents the case of Middleville, a high-performing Midwestern US…

  4. Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning.

    PubMed

    Betthauser, Joseph L; Hunt, Christopher L; Osborn, Luke E; Masters, Matthew R; Levay, Gyorgy; Kaliki, Rahul R; Thakor, Nitish V

    2018-04-01

    Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment. We present a robust sparsity-based adaptive classification method that is significantly less sensitive to signal deviations resulting from untrained conditions. We compare this approach in the offline and online contexts of untrained upper-limb positions for amputee and able-bodied subjects to demonstrate its robustness compared against other myoelectric classification methods. We report significant performance improvements () in untrained limb positions across all subject groups. The robustness of our suggested approach helps to ensure better untrained condition performance from fewer training conditions. This method of prosthesis control has the potential to deliver real-world clinical benefits to amputees: better condition-tolerant performance, reduced training burden in terms of frequency and duration, and increased adoption of myoelectric prostheses.

  5. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.

    PubMed

    Lu, Wei; Teng, Jun; Zhou, Qiushi; Peng, Qiexin

    2018-02-01

    The stress in structural steel members is the most useful and directly measurable physical quantity to evaluate the structural safety in structural health monitoring, which is also an important index to evaluate the stress distribution and force condition of structures during structural construction and service phases. Thus, it is common to set stress as a measure in steel structural monitoring. Considering the economy and the importance of the structural members, there are only a limited number of sensors that can be placed, which means that it is impossible to obtain the stresses of all members directly using sensors. This study aims to develop a stress response prediction method for locations where there are insufficent sensors, using measurements from a limited number of sensors and pattern recognition. The detailed improved aspects are: (1) a distributed computing process is proposed, where the same pattern is recognized by several subsets of measurements; and (2) the pattern recognition using the subset of measurements is carried out by considering the optimal number of sensors and number of fusion patterns. The validity and feasibility of the proposed method are verified using two examples: the finite-element simulation of a single-layer shell-like steel structure, and the structural health monitoring of the space steel roof of Shenzhen Bay Stadium; for the latter, the anti-noise performance of this method is verified by the stress measurements from a real-world project.

  6. The Immune System as a Model for Pattern Recognition and Classification

    PubMed Central

    Carter, Jerome H.

    2000-01-01

    Objective: To design a pattern recognition engine based on concepts derived from mammalian immune systems. Design: A supervised learning system (Immunos-81) was created using software abstractions of T cells, B cells, antibodies, and their interactions. Artificial T cells control the creation of B-cell populations (clones), which compete for recognition of “unknowns.” The B-cell clone with the “simple highest avidity” (SHA) or “relative highest avidity” (RHA) is considered to have successfully classified the unknown. Measurement: Two standard machine learning data sets, consisting of eight nominal and six continuous variables, were used to test the recognition capabilities of Immunos-81. The first set (Cleveland), consisting of 303 cases of patients with suspected coronary artery disease, was used to perform a ten-way cross-validation. After completing the validation runs, the Cleveland data set was used as a training set prior to presentation of the second data set, consisting of 200 unknown cases. Results: For cross-validation runs, correct recognition using SHA ranged from a high of 96 percent to a low of 63.2 percent. The average correct classification for all runs was 83.2 percent. Using the RHA metric, 11.2 percent were labeled “too close to determine” and no further attempt was made to classify them. Of the remaining cases, 85.5 percent were correctly classified. When the second data set was presented, correct classification occurred in 73.5 percent of cases when SHA was used and in 80.3 percent of cases when RHA was used. Conclusions: The immune system offers a viable paradigm for the design of pattern recognition systems. Additional research is required to fully exploit the nuances of immune computation. PMID:10641961

  7. Design of coupled mace filters for optical pattern recognition using practical spatial light modulators

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Khan, Ajmal

    1993-01-01

    Spatial light modulators (SLMs) are being used in correlation-based optical pattern recognition systems to implement the Fourier domain filters. Currently available SLMs have certain limitations with respect to the realizability of these filters. Therefore, it is necessary to incorporate the SLM constraints in the design of the filters. The design of a SLM-constrained minimum average correlation energy (SLM-MACE) filter using the simulated annealing-based optimization technique was investigated. The SLM-MACE filter was synthesized for three different types of constraints. The performance of the filter was evaluated in terms of its recognition (discrimination) capabilities using computer simulations. The correlation plane characteristics of the SLM-MACE filter were found to be reasonably good. The SLM-MACE filter yielded far better results than the analytical MACE filter implemented on practical SLMs using the constrained magnitude technique. Further, the filter performance was evaluated in the presence of noise in the input test images. This work demonstrated the need to include the SLM constraints in the filter design. Finally, a method is suggested to reduce the computation time required for the synthesis of the SLM-MACE filter.

  8. Cross-modal face recognition using multi-matcher face scores

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2015-05-01

    The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.

  9. Time manages interference in visual short-term memory.

    PubMed

    Smith, Amy V; McKeown, Denis; Bunce, David

    2017-09-01

    Emerging evidence suggests that age-related declines in memory may reflect a failure in pattern separation, a process that is believed to reduce the encoding overlap between similar stimulus representations during memory encoding. Indeed, behavioural pattern separation may be indexed by a visual continuous recognition task in which items are presented in sequence and observers report for each whether it is novel, previously viewed (old), or whether it shares features with a previously viewed item (similar). In comparison to young adults, older adults show a decreased pattern separation when the number of items between "old" and "similar" items is increased. Yet the mechanisms of forgetting underpinning this type of recognition task are yet to be explored in a cognitively homogenous group, with careful control over the parameters of the task, including elapsing time (a critical variable in models of forgetting). By extending the inter-item intervals, number of intervening items and overall decay interval, we observed in a young adult sample (N = 35, M age  = 19.56 years) that the critical factor governing performance was inter-item interval. We argue that tasks using behavioural continuous recognition to index pattern separation in immediate memory will benefit from generous inter-item spacing, offering protection from inter-item interference.

  10. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study

    PubMed Central

    2013-01-01

    Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and abnormal muscle patterns and provide feedback on their correct recruitment. PMID:23855907

  11. Toxicity and Detoxification Effects of Herbal Caowu via Ultra Performance Liquid Chromatography/Mass Spectrometry Metabolomics Analyzed using Pattern Recognition Method

    PubMed Central

    Yan, Yan; Zhang, Aihua; Dong, Hui; Yan, Guangli; Sun, Hui; Wu, Xiuhong; Han, Ying; Wang, Xijun

    2017-01-01

    Background: Caowu (Radix Aconiti kusnezoffii, CW), the root of Aconitum kusnezoffii Reichb., has widely used clinically in rheumatic arthritis, painful joints, and tumors for thousands of years. However, the toxicity of heart and central nervous system induced by CW still limited the application. Materials and Methods: Metabolomics was performed to identify the sensitive and reliable biomarkers and to characterize the phenotypically biochemical perturbations and potential mechanisms of CW-induced toxicity, and the detoxification by combinatorial intervention of CW with Gancao (Radix Glycyrrhizae) (CG), Baishao (Radix Paeoniae Alba) (CB), and Renshen (Radix Ginseng) (CR) was also analyzed by pattern recognition methods. Results: As a result, the metabolites were characterized and responsible for pentose and glucuronate interconversions, tryptophan metabolism, amino sugar and nucleotide sugar metabolism, taurine and hypotaurine metabolism, fructose and mannose metabolism, and starch and sucrose metabolism, six networks of which were the same to the metabolic pathways of Chuanwu (Radix Aconiti, CHW) group. The ascorbate and aldarate metabolism was also characterized by CW group. The urinary metabolomics also revealed CW-induced serious toxicity to heart and liver. Thirteen significant metabolites were identified and had validated as phenotypic toxicity biomarkers of CW, five biomarkers of which were commonly owned in Aconitum. The changes of toxicity metabolites obtained from combinatorial intervention of CG, CB, and CR also were analyzed to investigate the regulation degree of toxicity biomarkers adjusted by different combinatorial interventions at 6th month. Conclusion: Metabolomics analyses coupled with pattern recognition methods in the evaluation of drug toxicity and finding detoxification methods were highlighted in this work. SUMMARY Metabolomics was performed to characterize the biochemical potential mechanisms of Caowu toxicityThirteen significant metabolites were identified and validated as phenotypic toxicity biomarkers of CaowuMetabolite changes of toxicity obtained can be adjusted by different combinatorial interventions.Pattern recognition plot reflects the toxicity effects tendency of the urine metabolic fluctuations according to time after treatment of herbal Caowu. Abbreviations used: CW: Caowu (Radix Aconiti kusnezoffii); CHW: Chuanwu (Radix Aconiti); TCM: Traditional Chinese Medicine; CG: Caowu and Gancao; CB: Caowu and Baishao; CR: Caowu and Renshen; QC: Quality control; UPLC: Ultra performance liquid chromatography; MS: Mass spectrometry; PCA: Principal component analysis; PLS-DA: Partial least squares-discriminant analysis; OPLS: Orthogonal projection to latent structures analysis. PMID:29200734

  12. The cross-category effect: mere social categorization is sufficient to elicit an own-group bias in face recognition.

    PubMed

    Bernstein, Michael J; Young, Steven G; Hugenberg, Kurt

    2007-08-01

    Although the cross-race effect (CRE) is a well-established phenomenon, both perceptual-expertise and social-categorization models have been proposed to explain the effect. The two studies reported here investigated the extent to which categorizing other people as in-group versus out-group members is sufficient to elicit a pattern of face recognition analogous to that of the CRE, even when perceptual expertise with the stimuli is held constant. In Study 1, targets were categorized as members of real-life in-groups and out-groups (based on university affiliation), whereas in Study 2, targets were categorized into experimentally created minimal groups. In both studies, recognition performance was better for targets categorized as in-group members, despite the fact that perceptual expertise was equivalent for in-group and out-group faces. These results suggest that social-cognitive mechanisms of in-group and out-group categorization are sufficient to elicit performance differences for in-group and out-group face recognition.

  13. Patterns of False Memory in Patients with Huntington's Disease.

    PubMed

    Chen, I-Wen; Chen, Chiung-Mei; Wu, Yih-Ru; Hua, Mau-Sun

    2017-06-01

    Increased false memory recognition in patients with Huntington's disease (HD) has been widely reported; however, the underlying memory constructive processes remain unclear. The present study explored gist memory, item-specific memory, and monitoring ability in patients with HD. Twenty-five patients (including 13 patients with mild HD and 12 patients with moderate-to-severe HD) and 30 healthy comparison participants (HC) were recruited. We used the Deese-Roediger-McDermott (DRM) paradigm to investigate participants' false recognition patterns, along with neuropsychological tests to assess general cognitive function. Both mild and moderate-to-severe patients with HD showed significant executive functioning and episodic memory impairment. On the DRM tasks, both HD patient groups showed significantly impaired performance in tasks assessing unrelated false recognition and item-specific memory as compared to the HC group; moderate-to-severe patients performed more poorly than mild patients did. Only moderate-severe patients exhibited significantly poorer related false recognition index scores than HCs in the verbal DRM task; performance of HD patient groups was comparable to the HC group on the pictorial DRM task. It appears that diminished verbatim memory and monitoring ability are early signs of cognitive decline during the HD course. Conversely, gist memory is relatively robust, with only partial decline during advanced-stage HD. Our findings suggest that medial temporal lobe function is relatively preserved compared to that of frontal-related structures in early HD. Thus, gist-based memory rehabilitation programs might be beneficial for patients with HD. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    PubMed

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  15. Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels.

    PubMed

    Garcia-Arroyo, Jose Luis; Garcia-Zapirain, Begonya

    2018-01-01

    One of the most relevant dermoscopic patterns is the pigment network. An innovative method of pattern recognition is presented for its detection in dermoscopy images. It consists of two steps. In the first one, by means of a supervised machine learning process and after performing the extraction of different colour and texture features, a fuzzy classification of pixels into the three categories present in the pattern's definition ("net", "hole" and "other") is carried out. This enables the three corresponding fuzzy sets to be created and, as a result, the three probability images that map them out are generated. In the second step, the pigment network pattern is characterised from a parameterisation process -derived from the system specification- and the subsequent extraction of different features calculated from the combinations of image masks extracted from the probability images, corresponding to the alpha-cuts obtained from the fuzzy sets. The method was tested on a database of 875 images -by far the largest used in the state of the art to detect pigment network- extracted from a public Atlas of Dermoscopy, obtaining AUC results of 0.912 and 88%% accuracy, with 90.71%% sensitivity and 83.44%% specificity. The main contribution of this method is the very design of the algorithm, highly innovative, which could also be used to deal with other pattern recognition problems of a similar nature. Other contributions are: 1. The good performance in discriminating between the pattern and the disturbing artefacts -which means that no prior preprocessing is required in this method- and between the pattern and other dermoscopic patterns; 2. It puts forward a new methodological approach for work of this kind, introducing the system specification as a required step prior to algorithm design and development, being this specification the basis for a required parameterisation -in the form of configurable parameters (with their value ranges) and set threshold values- of the algorithm and the subsequent conducting of the experiments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Li

    2010-01-01

    We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.

  17. A Unified Framework for Activity Recognition-Based Behavior Analysis and Action Prediction in Smart Homes

    PubMed Central

    Fatima, Iram; Fahim, Muhammad; Lee, Young-Koo; Lee, Sungyoung

    2013-01-01

    In recent years, activity recognition in smart homes is an active research area due to its applicability in many applications, such as assistive living and healthcare. Besides activity recognition, the information collected from smart homes has great potential for other application domains like lifestyle analysis, security and surveillance, and interaction monitoring. Therefore, discovery of users common behaviors and prediction of future actions from past behaviors become an important step towards allowing an environment to provide personalized service. In this paper, we develop a unified framework for activity recognition-based behavior analysis and action prediction. For this purpose, first we propose kernel fusion method for accurate activity recognition and then identify the significant sequential behaviors of inhabitants from recognized activities of their daily routines. Moreover, behaviors patterns are further utilized to predict the future actions from past activities. To evaluate the proposed framework, we performed experiments on two real datasets. The results show a remarkable improvement of 13.82% in the accuracy on average of recognized activities along with the extraction of significant behavioral patterns and precise activity predictions with 6.76% increase in F-measure. All this collectively help in understanding the users” actions to gain knowledge about their habits and preferences. PMID:23435057

  18. The recognition of graphical patterns invariant to geometrical transformation of the models

    NASA Astrophysics Data System (ADS)

    Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian

    2010-11-01

    In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.

  19. Data Mining in Cyber Operations

    DTIC Science & Technology

    2014-07-01

    information processing units intended to mimic the network of neurons in the human brain for performing pattern recognition  Self- organizing maps (SOM...patterns are mined from in order to influence the learning model . An exploratory attack does not alter the training process , but rather uses other...New Jersey: Prentice Hall. 21) Kohonen, T. (1982). Self- organized formation of topologically correct feature maps. Biological Cybernetics , 43, 59–69

  20. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  1. A robust star identification algorithm with star shortlisting

    NASA Astrophysics Data System (ADS)

    Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon

    2018-05-01

    A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.

  2. [GNU Pattern: open source pattern hunter for biological sequences based on SPLASH algorithm].

    PubMed

    Xu, Ying; Li, Yi-xue; Kong, Xiang-yin

    2005-06-01

    To construct a high performance open source software engine based on IBM SPLASH algorithm for later research on pattern discovery. Gpat, which is based on SPLASH algorithm, was developed by using open source software. GNU Pattern (Gpat) software was developped, which efficiently implemented the core part of SPLASH algorithm. Full source code of Gpat was also available for other researchers to modify the program under the GNU license. Gpat is a successful implementation of SPLASH algorithm and can be used as a basic framework for later research on pattern recognition in biological sequences.

  3. Learning with imperfectly labeled patterns

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of learning in pattern recognition using imperfectly labeled patterns is considered. The performance of the Bayes and nearest neighbor classifiers with imperfect labels is discussed using a probabilistic model for the mislabeling of the training patterns. Schemes for training the classifier using both parametric and non parametric techniques are presented. Methods for the correction of imperfect labels were developed. To gain an understanding of the learning process, expressions are derived for success probability as a function of training time for a one dimensional increment error correction classifier with imperfect labels. Feature selection with imperfectly labeled patterns is described.

  4. Self-organized network with a supervised training and its comparison with FALVQ in artificial odor recognition system

    NASA Astrophysics Data System (ADS)

    Kusumoputro, Benyamin; Rostiviani, Linda; Saptawijaya, Ari

    2000-07-01

    Artificial odor recognition system is developed in order to mimic the human sensory test in cosmetics, parfum and beverage industries. The developed system however, lacks of ability to recognize the unknown type of odor. To improve the system's capability, a hybrid neural system with a supervised learning paradigm is developed and used as a pattern classifier. In this paper, the performance of the hybrid neural system is investigated, together with that of FALVQ neural system.

  5. Creating a meaningful visual perception in blind volunteers by optic nerve stimulation

    NASA Astrophysics Data System (ADS)

    Brelén, M. E.; Duret, F.; Gérard, B.; Delbeke, J.; Veraart, C.

    2005-03-01

    A blind volunteer, suffering from retinitis pigmentosa, has been chronically implanted with an optic nerve visual prosthesis. Vision rehabilitation with this volunteer has concentrated on the development of a stimulation strategy according to which video camera images are converted into stimulation pulses. The aim is to convey as much information as possible about the visual scene within the limits of the device's capabilities. Pattern recognition tasks were used to assess the effectiveness of the stimulation strategy. The results demonstrate how even a relatively basic algorithm can efficiently convey useful information regarding the visual scene. By increasing the number of phosphenes used in the algorithm, better performance is observed but a longer training period is required. After a learning period, the volunteer achieved a pattern recognition score of 85% at 54 s on average per pattern. After nine evaluation sessions, when using a stimulation strategy exploiting all available phosphenes, no saturation effect has yet been observed.

  6. Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification

    PubMed Central

    Pham, Tuan D.

    2014-01-01

    The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744

  7. Handwritten recognition of Tamil vowels using deep learning

    NASA Astrophysics Data System (ADS)

    Ram Prashanth, N.; Siddarth, B.; Ganesh, Anirudh; Naveen Kumar, Vaegae

    2017-11-01

    We come across a large volume of handwritten texts in our daily lives and handwritten character recognition has long been an important area of research in pattern recognition. The complexity of the task varies among different languages and it so happens largely due to the similarity between characters, distinct shapes and number of characters which are all language-specific properties. There have been numerous works on character recognition of English alphabets and with laudable success, but regional languages have not been dealt with very frequently and with similar accuracies. In this paper, we explored the performance of Deep Belief Networks in the classification of Handwritten Tamil vowels, and conclusively compared the results obtained. The proposed method has shown satisfactory recognition accuracy in light of difficulties faced with regional languages such as similarity between characters and minute nuances that differentiate them. We can further extend this to all the Tamil characters.

  8. Finger vein recognition based on finger crease location

    NASA Astrophysics Data System (ADS)

    Lu, Zhiying; Ding, Shumeng; Yin, Jing

    2016-07-01

    Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.

  9. Pattern learning with deep neural networks in EMG-based speech recognition.

    PubMed

    Wand, Michael; Schultz, Tanja

    2014-01-01

    We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

  10. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    NASA Astrophysics Data System (ADS)

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  11. A Cutting Pattern Recognition Method for Shearers Based on Improved Ensemble Empirical Mode Decomposition and a Probabilistic Neural Network

    PubMed Central

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Si, Lei; Liu, Xinhua

    2015-01-01

    In order to guarantee the stable operation of shearers and promote construction of an automatic coal mining working face, an online cutting pattern recognition method with high accuracy and speed based on Improved Ensemble Empirical Mode Decomposition (IEEMD) and Probabilistic Neural Network (PNN) is proposed. An industrial microphone is installed on the shearer and the cutting sound is collected as the recognition criterion to overcome the disadvantages of giant size, contact measurement and low identification rate of traditional detectors. To avoid end-point effects and get rid of undesirable intrinsic mode function (IMF) components in the initial signal, IEEMD is conducted on the sound. The end-point continuation based on the practical storage data is performed first to overcome the end-point effect. Next the average correlation coefficient, which is calculated by the correlation of the first IMF with others, is introduced to select essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted as features and PNN is applied to classify the cutting patterns. Finally, a simulation example, with an accuracy of 92.67%, and an industrial application prove the efficiency and correctness of the proposed method. PMID:26528985

  12. Basics of identification measurement technology

    NASA Astrophysics Data System (ADS)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.

    2018-01-01

    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  13. Quantifying Performance Bias in Label Fusion

    DTIC Science & Technology

    2012-08-21

    detect ), may provide the end-user with the means to appropriately adjust the performance and optimal thresholds for performance by fusing legacy systems...boolean combination of classification systems in ROC space: An application to anomaly detection with HMMs. Pattern Recognition, 43(8), 2732-2752. 10...Shamsuddin, S. (2009). An overview of neural networks use in anomaly intrusion detection systems. Paper presented at the Research and Development (SCOReD

  14. Statistical process control using optimized neural networks: a case study.

    PubMed

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition

    NASA Astrophysics Data System (ADS)

    Jiang, Yuning; Kang, Jinfeng; Wang, Xinan

    2017-03-01

    Resistive switching memory (RRAM) is considered as one of the most promising devices for parallel computing solutions that may overcome the von Neumann bottleneck of today’s electronic systems. However, the existing RRAM-based parallel computing architectures suffer from practical problems such as device variations and extra computing circuits. In this work, we propose a novel parallel computing architecture for pattern recognition by implementing k-nearest neighbor classification on metal-oxide RRAM crossbar arrays. Metal-oxide RRAM with gradual RESET behaviors is chosen as both the storage and computing components. The proposed architecture is tested by the MNIST database. High speed (~100 ns per example) and high recognition accuracy (97.05%) are obtained. The influence of several non-ideal device properties is also discussed, and it turns out that the proposed architecture shows great tolerance to device variations. This work paves a new way to achieve RRAM-based parallel computing hardware systems with high performance.

  16. Evaluation of an electronic nose for odorant and process monitoring of alkaline-stabilized biosolids production.

    PubMed

    Romero-Flores, Adrian; McConnell, Laura L; Hapeman, Cathleen J; Ramirez, Mark; Torrents, Alba

    2017-11-01

    Electronic noses have been widely used in the food industry to monitor process performance and quality control, but use in wastewater and biosolids treatment has not been fully explored. Therefore, we examined the feasibility of an electronic nose to discriminate between treatment conditions of alkaline stabilized biosolids and compared its performance with quantitative analysis of key odorants. Seven lime treatments (0-30% w/w) were prepared and the resultant off-gas was monitored by GC-MS and by an electronic nose equipped with ten metal oxide sensors. A pattern recognition model was created using linear discriminant analysis (LDA) and principal component analysis (PCA) of the electronic nose data. In general, LDA performed better than PCA. LDA showed clear discrimination when single tests were evaluated, but when the full data set was included, discrimination between treatments was reduced. Frequency of accurate recognition was tested by three algorithms with Euclidan and Mahalanobis performing at 81% accuracy and discriminant function analysis at 70%. Concentrations of target compounds by GC-MS were in agreement with those reported in literature and helped to elucidate the behavior of the pattern recognition via comparison of individual sensor responses to different biosolids treatment conditions. Results indicated that the electronic nose can discriminate between lime percentages, thus providing the opportunity to create classes of under-dosed and over-dosed relative to regulatory requirements. Full scale application will require careful evaluation to maintain accuracy under variable process and environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The effect of comorbid depression on facial and prosody emotion recognition in first-episode schizophrenia spectrum.

    PubMed

    Herniman, Sarah E; Allott, Kelly A; Killackey, Eóin; Hester, Robert; Cotton, Sue M

    2017-01-15

    Comorbid depression is common in first-episode schizophrenia spectrum (FES) disorders. Both depression and FES are associated with significant deficits in facial and prosody emotion recognition performance. However, it remains unclear whether people with FES and comorbid depression, compared to those without comorbid depression, have overall poorer emotion recognition, or instead, a different pattern of emotion recognition deficits. The aim of this study was to compare facial and prosody emotion recognition performance between those with and without comorbid depression in FES. This study involved secondary analysis of baseline data from a randomized controlled trial of vocational intervention for young people with first-episode psychosis (N=82; age range: 15-25 years). Those with comorbid depression (n=24) had more accurate recognition of sadness in faces compared to those without comorbid depression. Severity of depressive symptoms was also associated with more accurate recognition of sadness in faces. Such results did not recur for prosody emotion recognition. In addition to the cross-sectional design, limitations of this study include the absence of facial and prosodic recognition of neutral emotions. Findings indicate a mood congruent negative bias in facial emotion recognition in those with comorbid depression and FES, and provide support for cognitive theories of depression that emphasise the role of such biases in the development and maintenance of depression. Longitudinal research is needed to determine whether mood-congruent negative biases are implicated in the development and maintenance of depression in FES, or whether such biases are simply markers of depressed state. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Implementation of age and gender recognition system for intelligent digital signage

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Heon; Sohn, Myoung-Kyu; Kim, Hyunduk

    2015-12-01

    Intelligent digital signage systems transmit customized advertising and information by analyzing users and customers, unlike existing system that presented advertising in the form of broadcast without regard to type of customers. Currently, development of intelligent digital signage system has been pushed forward vigorously. In this study, we designed a system capable of analyzing gender and age of customers based on image obtained from camera, although there are many different methods for analyzing customers. We conducted age and gender recognition experiments using public database. The age/gender recognition experiments were performed through histogram matching method by extracting Local binary patterns (LBP) features after facial area on input image was normalized. The results of experiment showed that gender recognition rate was as high as approximately 97% on average. Age recognition was conducted based on categorization into 5 age classes. Age recognition rates for women and men were about 67% and 68%, respectively when that conducted separately for different gender.

  19. Feature extraction for face recognition via Active Shape Model (ASM) and Active Appearance Model (AAM)

    NASA Astrophysics Data System (ADS)

    Iqtait, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Biometric is a pattern recognition system which is used for automatic recognition of persons based on characteristics and features of an individual. Face recognition with high recognition rate is still a challenging task and usually accomplished in three phases consisting of face detection, feature extraction, and expression classification. Precise and strong location of trait point is a complicated and difficult issue in face recognition. Cootes proposed a Multi Resolution Active Shape Models (ASM) algorithm, which could extract specified shape accurately and efficiently. Furthermore, as the improvement of ASM, Active Appearance Models algorithm (AAM) is proposed to extracts both shape and texture of specified object simultaneously. In this paper we give more details about the two algorithms and give the results of experiments, testing their performance on one dataset of faces. We found that the ASM is faster and gains more accurate trait point location than the AAM, but the AAM gains a better match to the texture.

  20. Fuzzy difference-of-Gaussian-based iris recognition method for noisy iris images

    NASA Astrophysics Data System (ADS)

    Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Moon, Kiyoung

    2010-06-01

    Iris recognition is used for information security with a high confidence level because it shows outstanding recognition accuracy by using human iris patterns with high degrees of freedom. However, iris recognition accuracy can be reduced by noisy iris images with optical and motion blurring. We propose a new iris recognition method based on the fuzzy difference-of-Gaussian (DOG) for noisy iris images. This study is novel in three ways compared to previous works: (1) The proposed method extracts iris feature values using the DOG method, which is robust to local variations of illumination and shows fine texture information, including various frequency components. (2) When determining iris binary codes, image noises that cause the quantization error of the feature values are reduced with the fuzzy membership function. (3) The optimal parameters of the DOG filter and the fuzzy membership function are determined in terms of iris recognition accuracy. Experimental results showed that the performance of the proposed method was better than that of previous methods for noisy iris images.

  1. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users.

    PubMed

    Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing

    2014-01-01

    To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.

  2. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  3. The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping

    2013-08-01

    Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.

  4. Talker and lexical effects on audiovisual word recognition by adults with cochlear implants.

    PubMed

    Kaiser, Adam R; Kirk, Karen Iler; Lachs, Lorin; Pisoni, David B

    2003-04-01

    The present study examined how postlingually deafened adults with cochlear implants combine visual information from lipreading with auditory cues in an open-set word recognition task. Adults with normal hearing served as a comparison group. Word recognition performance was assessed using lexically controlled word lists presented under auditory-only, visual-only, and combined audiovisual presentation formats. Effects of talker variability were studied by manipulating the number of talkers producing the stimulus tokens. Lexical competition was investigated using sets of lexically easy and lexically hard test words. To assess the degree of audiovisual integration, a measure of visual enhancement, R(a), was used to assess the gain in performance provided in the audiovisual presentation format relative to the maximum possible performance obtainable in the auditory-only format. Results showed that word recognition performance was highest for audiovisual presentation followed by auditory-only and then visual-only stimulus presentation. Performance was better for single-talker lists than for multiple-talker lists, particularly under the audiovisual presentation format. Word recognition performance was better for the lexically easy than for the lexically hard words regardless of presentation format. Visual enhancement scores were higher for single-talker conditions compared to multiple-talker conditions and tended to be somewhat better for lexically easy words than for lexically hard words. The pattern of results suggests that information from the auditory and visual modalities is used to access common, multimodal lexical representations in memory. The findings are discussed in terms of the complementary nature of auditory and visual sources of information that specify the same underlying gestures and articulatory events in speech.

  5. Talker and Lexical Effects on Audiovisual Word Recognition by Adults With Cochlear Implants

    PubMed Central

    Kaiser, Adam R.; Kirk, Karen Iler; Lachs, Lorin; Pisoni, David B.

    2012-01-01

    The present study examined how postlingually deafened adults with cochlear implants combine visual information from lipreading with auditory cues in an open-set word recognition task. Adults with normal hearing served as a comparison group. Word recognition performance was assessed using lexically controlled word lists presented under auditory-only, visual-only, and combined audiovisual presentation formats. Effects of talker variability were studied by manipulating the number of talkers producing the stimulus tokens. Lexical competition was investigated using sets of lexically easy and lexically hard test words. To assess the degree of audiovisual integration, a measure of visual enhancement, Ra, was used to assess the gain in performance provided in the audiovisual presentation format relative to the maximum possible performance obtainable in the auditory-only format. Results showed that word recognition performance was highest for audiovisual presentation followed by auditory-only and then visual-only stimulus presentation. Performance was better for single-talker lists than for multiple-talker lists, particularly under the audiovisual presentation format. Word recognition performance was better for the lexically easy than for the lexically hard words regardless of presentation format. Visual enhancement scores were higher for single-talker conditions compared to multiple-talker conditions and tended to be somewhat better for lexically easy words than for lexically hard words. The pattern of results suggests that information from the auditory and visual modalities is used to access common, multimodal lexical representations in memory. The findings are discussed in terms of the complementary nature of auditory and visual sources of information that specify the same underlying gestures and articulatory events in speech. PMID:14700380

  6. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  7. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  8. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  9. The relationship between speech recognition, behavioural listening effort, and subjective ratings.

    PubMed

    Picou, Erin M; Ricketts, Todd A

    2018-06-01

    The purpose of this study was to evaluate the reliability and validity of four subjective questions related to listening effort. A secondary purpose of this study was to evaluate the effects of hearing aid beamforming microphone arrays on word recognition and listening effort. Participants answered subjective questions immediately following testing in a dual-task paradigm with three microphone settings in a moderately reverberant laboratory environment in two noise configurations. Participants rated their: (1) mental work, (2) desire to improve the situation, (3) tiredness, and (4) desire to give up. Data were analysed using repeated measures and reliability analyses. Eighteen adults with symmetrical sensorineural hearing loss participated. Beamforming differentially affected word recognition and listening effort. Analysis revealed the same pattern of results for behavioural listening effort and subjective ratings of desire to improve the situation. Conversely, ratings of work revealed the same pattern of results as word recognition performance. Ratings of tiredness and desire to give up were unaffected by hearing aid microphone or noise configuration. Participant ratings of their desire to control the listening situation appear to reliable subjective indicators of listening effort that align with results from a behavioural measure of listening effort.

  10. Classification of Partial Discharge Measured under Different Levels of Noise Contamination.

    PubMed

    Jee Keen Raymond, Wong; Illias, Hazlee Azil; Abu Bakar, Ab Halim

    2017-01-01

    Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination.

  11. Famous faces and voices: Differential profiles in early right and left semantic dementia and in Alzheimer's disease.

    PubMed

    Luzzi, Simona; Baldinelli, Sara; Ranaldi, Valentina; Fabi, Katia; Cafazzo, Viviana; Fringuelli, Fabio; Silvestrini, Mauro; Provinciali, Leandro; Reverberi, Carlo; Gainotti, Guido

    2017-01-08

    Famous face and voice recognition is reported to be impaired both in semantic dementia (SD) and in Alzheimer's Disease (AD), although more severely in the former. In AD a coexistence of perceptual impairment in face and voice processing has also been reported and this could contribute to the altered performance in complex semantic tasks. On the other hand, in SD both face and voice recognition disorders could be related to the prevalence of atrophy in the right temporal lobe (RTL). The aim of the present study was twofold: (1) to investigate famous faces and voices recognition in SD and AD to verify if the two diseases show a differential pattern of impairment, resulting from disruption of different cognitive mechanisms; (2) to check if face and voice recognition disorders prevail in patients with atrophy mainly affecting the RTL. To avoid the potential influence of primary perceptual problems in face and voice recognition, a pool of patients suffering from early SD and AD were administered a detailed set of tests exploring face and voice perception. Thirteen SD (8 with prevalence of right and 5 with prevalence of left temporal atrophy) and 25 CE patients, who did not show visual and auditory perceptual impairment, were finally selected and were administered an experimental battery exploring famous face and voice recognition and naming. Twelve SD patients underwent cerebral PET imaging and were classified in right and left SD according to the onset modality and to the prevalent decrease in FDG uptake in right or left temporal lobe respectively. Correlation of PET imaging and famous face and voice recognition was performed. Results showed a differential performance profile in the two diseases, because AD patients were significantly impaired in the naming tests, but showed preserved recognition, whereas SD patients were profoundly impaired both in naming and in recognition of famous faces and voices. Furthermore, face and voice recognition disorders prevailed in SD patients with RTL atrophy, who also showed a conceptual impairment on the Pyramids and Palm Trees test more important in the pictorial than in the verbal modality. Finally, in 12SD patients in whom PET was available, a strong correlation between FDG uptake and face-to-name and voice-to-name matching data was found in the right but not in the left temporal lobe. The data support the hypothesis of a different cognitive basis for impairment of face and voice recognition in the two dementias and suggest that the pattern of impairment in SD may be due to a loss of semantic representations, while a defect of semantic control, with impaired naming and preserved recognition might be hypothesized in AD. Furthermore, the correlation between face and voice recognition disorders and RTL damage are consistent with the hypothesis assuming that in the RTL person-specific knowledge may be mainly based upon non-verbal representations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Actively paranoid patients with schizophrenia over attribute anger to neutral faces.

    PubMed

    Pinkham, Amy E; Brensinger, Colleen; Kohler, Christian; Gur, Raquel E; Gur, Ruben C

    2011-02-01

    Previous investigations of the influence of paranoia on facial affect recognition in schizophrenia have been inconclusive as some studies demonstrate better performance for paranoid relative to non-paranoid patients and others show that paranoid patients display greater impairments. These studies have been limited by small sample sizes and inconsistencies in the criteria used to define groups. Here, we utilized an established emotion recognition task and a large sample to examine differential performance in emotion recognition ability between patients who were actively paranoid (AP) and those who were not actively paranoid (NAP). Accuracy and error patterns on the Penn Emotion Recognition test (ER40) were examined in 132 patients (64 NAP and 68 AP). Groups were defined based on the presence of paranoid ideation at the time of testing rather than diagnostic subtype. AP and NAP patients did not differ in overall task accuracy; however, an emotion by group interaction indicated that AP patients were significantly worse than NAP patients at correctly labeling neutral faces. A comparison of error patterns on neutral stimuli revealed that the groups differed only in misattributions of anger expressions, with AP patients being significantly more likely to misidentify a neutral expression as angry. The present findings suggest that paranoia is associated with a tendency to over attribute threat to ambiguous stimuli and also lend support to emerging hypotheses of amygdala hyperactivation as a potential neural mechanism for paranoid ideation. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Effect of Dopamine Therapy on Nonverbal Affect Burst Recognition in Parkinson's Disease

    PubMed Central

    Péron, Julie; Grandjean, Didier; Drapier, Sophie; Vérin, Marc

    2014-01-01

    Background Parkinson's disease (PD) provides a model for investigating the involvement of the basal ganglia and mesolimbic dopaminergic system in the recognition of emotions from voices (i.e., emotional prosody). Although previous studies of emotional prosody recognition in PD have reported evidence of impairment, none of them compared PD patients at different stages of the disease, or ON and OFF dopamine replacement therapy, making it difficult to determine whether their impairment was due to general cognitive deterioration or to a more specific dopaminergic deficit. Methods We explored the involvement of the dopaminergic pathways in the recognition of nonverbal affect bursts (onomatopoeias) in 15 newly diagnosed PD patients in the early stages of the disease, 15 PD patients in the advanced stages of the disease and 15 healthy controls. The early PD group was studied in two conditions: ON and OFF dopaminergic therapy. Results Results showed that the early PD patients performed more poorly in the ON condition than in the OFF one, for overall emotion recognition, as well as for the recognition of anger, disgust and fear. Additionally, for anger, the early PD ON patients performed more poorly than controls. For overall emotion recognition, both advanced PD patients and early PD ON patients performed more poorly than controls. Analysis of continuous ratings on target and nontarget visual analog scales confirmed these patterns of results, showing a systematic emotional bias in both the advanced PD and early PD ON (but not OFF) patients compared with controls. Conclusions These results i) confirm the involvement of the dopaminergic pathways and basal ganglia in emotional prosody recognition, and ii) suggest a possibly deleterious effect of dopatherapy on affective abilities in the early stages of PD. PMID:24651759

  14. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  15. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    NASA Astrophysics Data System (ADS)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  16. Not all sounds sound the same: Parkinson's disease affects differently emotion processing in music and in speech prosody.

    PubMed

    Lima, César F; Garrett, Carolina; Castro, São Luís

    2013-01-01

    Does emotion processing in music and speech prosody recruit common neurocognitive mechanisms? To examine this question, we implemented a cross-domain comparative design in Parkinson's disease (PD). Twenty-four patients and 25 controls performed emotion recognition tasks for music and spoken sentences. In music, patients had impaired recognition of happiness and peacefulness, and intact recognition of sadness and fear; this pattern was independent of general cognitive and perceptual abilities. In speech, patients had a small global impairment, which was significantly mediated by executive dysfunction. Hence, PD affected differently musical and prosodic emotions. This dissociation indicates that the mechanisms underlying the two domains are partly independent.

  17. Sparse network-based models for patient classification using fMRI

    PubMed Central

    Rosa, Maria J.; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J.; Garrido, Marta I.; Shawe-Taylor, John; Mourao-Miranda, Janaina

    2015-01-01

    Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to interpret in terms of the underlying neurobiology. Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connectivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and potentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regularized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern interpretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie discriminative changes in brain function between the groups. We illustrate our technique by classifying patients with major depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets acquired while participants performed a gender discrimination and emotional task, respectively, during the visualization of emotional valent faces. PMID:25463459

  18. Multimodal biometric method that combines veins, prints, and shape of a finger

    NASA Astrophysics Data System (ADS)

    Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Kim, Jeong Nyeo

    2011-01-01

    Multimodal biometrics provides high recognition accuracy and population coverage by using various biometric features. A single finger contains finger veins, fingerprints, and finger geometry features; by using multimodal biometrics, information on these multiple features can be simultaneously obtained in a short time and their fusion can outperform the use of a single feature. This paper proposes a new finger recognition method based on the score-level fusion of finger veins, fingerprints, and finger geometry features. This research is novel in the following four ways. First, the performances of the finger-vein and fingerprint recognition are improved by using a method based on a local derivative pattern. Second, the accuracy of the finger geometry recognition is greatly increased by combining a Fourier descriptor with principal component analysis. Third, a fuzzy score normalization method is introduced; its performance is better than the conventional Z-score normalization method. Fourth, finger-vein, fingerprint, and finger geometry recognitions are combined by using three support vector machines and a weighted SUM rule. Experimental results showed that the equal error rate of the proposed method was 0.254%, which was lower than those of the other methods.

  19. ICPR-2016 - International Conference on Pattern Recognition

    Science.gov Websites

    Learning for Scene Understanding" Speakers ICPR2016 PAPER AWARDS Best Piero Zamperoni Student Paper -Paced Dictionary Learning for Cross-Domain Retrieval and Recognition Xu, Dan; Song, Jingkuan; Alameda discussions on recent advances in the fields of Pattern Recognition, Machine Learning and Computer Vision, and

  20. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.

    PubMed

    Benatti, Simone; Milosevic, Bojan; Farella, Elisabetta; Gruppioni, Emanuele; Benini, Luca

    2017-04-15

    Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller.

  1. Visual scanning and recognition of Chinese, Caucasian, and racially ambiguous faces: contributions from bottom-up facial physiognomic information and top-down knowledge of racial categories.

    PubMed

    Wang, Qiandong; Xiao, Naiqi G; Quinn, Paul C; Hu, Chao S; Qian, Miao; Fu, Genyue; Lee, Kang

    2015-02-01

    Recent studies have shown that participants use different eye movement strategies when scanning own- and other-race faces. However, it is unclear (1) whether this effect is related to face recognition performance, and (2) to what extent this effect is influenced by top-down or bottom-up facial information. In the present study, Chinese participants performed a face recognition task with Chinese, Caucasian, and racially ambiguous faces. For the racially ambiguous faces, we led participants to believe that they were viewing either own-race Chinese faces or other-race Caucasian faces. Results showed that (1) Chinese participants scanned the nose of the true Chinese faces more than that of the true Caucasian faces, whereas they scanned the eyes of the Caucasian faces more than those of the Chinese faces; (2) they scanned the eyes, nose, and mouth equally for the ambiguous faces in the Chinese condition compared with those in the Caucasian condition; (3) when recognizing the true Chinese target faces, but not the true target Caucasian faces, the greater the fixation proportion on the nose, the faster the participants correctly recognized these faces. The same was true when racially ambiguous face stimuli were thought to be Chinese faces. These results provide the first evidence to show that (1) visual scanning patterns of faces are related to own-race face recognition response time, and (2) it is bottom-up facial physiognomic information that mainly contributes to face scanning. However, top-down knowledge of racial categories can influence the relationship between face scanning patterns and recognition response time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies

    PubMed Central

    Benatti, Simone; Milosevic, Bojan; Farella, Elisabetta; Gruppioni, Emanuele; Benini, Luca

    2017-01-01

    Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller. PMID:28420135

  3. Visual scanning and recognition of Chinese, Caucasian, and racially ambiguous faces: Contributions from bottom-up facial physiognomic information and top-down knowledge of racial categories

    PubMed Central

    Wang, Qiandong; Xiao, Naiqi G.; Quinn, Paul C.; Hu, Chao S.; Qian, Miao; Fu, Genyue; Lee, Kang

    2014-01-01

    Recent studies have shown that participants use different eye movement strategies when scanning own- and other-race faces. However, it is unclear (1) whether this effect is related to face recognition performance, and (2) to what extent this effect is influenced by top-down or bottom-up facial information. In the present study, Chinese participants performed a face recognition task with Chinese faces, Caucasian faces, and racially ambiguous morphed face stimuli. For the racially ambiguous faces, we led participants to believe that they were viewing either own-race Chinese faces or other-race Caucasian faces. Results showed that (1) Chinese participants scanned the nose of the true Chinese faces more than that of the true Caucasian faces, whereas they scanned the eyes of the Caucasian faces more than those of the Chinese faces; (2) they scanned the eyes, nose, and mouth equally for the ambiguous faces in the Chinese condition compared with those in the Caucasian condition; (3) when recognizing the true Chinese target faces, but not the true target Caucasian faces, the greater the fixation proportion on the nose, the faster the participants correctly recognized these faces. The same was true when racially ambiguous face stimuli were thought to be Chinese faces. These results provide the first evidence to show that (1) visual scanning patterns of faces are related to own-race face recognition response time, and (2) it is bottom-up facial physiognomic information of racial categories that mainly contributes to face scanning. However, top-down knowledge of racial categories can influence the relationship between face scanning patterns and recognition response time. PMID:25497461

  4. Banknote recognition: investigating processing and cognition framework using competitive neural network.

    PubMed

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-02-01

    Humans are apt at recognizing patterns and discovering even abstract features which are sometimes embedded therein. Our ability to use the banknotes in circulation for business transactions lies in the effortlessness with which we can recognize the different banknote denominations after seeing them over a period of time. More significant is that we can usually recognize these banknote denominations irrespective of what parts of the banknotes are exposed to us visually. Furthermore, our recognition ability is largely unaffected even when these banknotes are partially occluded. In a similar analogy, the robustness of intelligent systems to perform the task of banknote recognition should not collapse under some minimum level of partial occlusion. Artificial neural networks are intelligent systems which from inception have taken many important cues related to structure and learning rules from the human nervous/cognition processing system. Likewise, it has been shown that advances in artificial neural network simulations can help us understand the human nervous/cognition system even furthermore. In this paper, we investigate three cognition hypothetical frameworks to vision-based recognition of banknote denominations using competitive neural networks. In order to make the task more challenging and stress-test the investigated hypotheses, we also consider the recognition of occluded banknotes. The implemented hypothetical systems are tasked to perform fast recognition of banknotes with up to 75 % occlusion. The investigated hypothetical systems are trained on Nigeria's Naira banknotes and several experiments are performed to demonstrate the findings presented within this work.

  5. Hopfield's Model of Patterns Recognition and Laws of Artistic Perception

    NASA Astrophysics Data System (ADS)

    Yevin, Igor; Koblyakov, Alexander

    The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.

  6. Computer discrimination procedures applicable to aerial and ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Torline, R. J.; Allen, W. A.

    1970-01-01

    Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.

  7. Pattern Recognition of Cardiovascular and Psychomotor Variability in Response to Pharmacological Agent.

    DTIC Science & Technology

    1985-06-10

    research. 7. A. Sleep research, chronobiology , and performance research have developed as three separate areas, but there is (and should be) growing...and Oxygen Uptake Response to performance of Xarate Kata, Journal ot Sports Medicine, Vol. 22, 1982. (6] D.A. Sideris, J.N. Nanas, S.Thomakos, and...DOWNGRADING SCHEDULE Approved for public release; distribution unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER

  8. Finger vein recognition using local line binary pattern.

    PubMed

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).

  9. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  10. Digital Holographic Logic

    NASA Technical Reports Server (NTRS)

    Preston, K., Jr.

    1972-01-01

    The characteristics of the holographic logic computer are discussed. The holographic operation is reviewed from the Fourier transform viewpoint, and the formation of holograms for use in performing digital logic are described. The operation of the computer with an experiment in which the binary identity function is calculated is discussed along with devices for achieving real-time performance. An application in pattern recognition using neighborhood logic is presented.

  11. Fast and accurate face recognition based on image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  12. Personal authentication through dorsal hand vein patterns

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Bin; Hao, Shu-Sheng; Lee, Jen-Chun

    2011-08-01

    Biometric identification is an emerging technology that can solve security problems in our networked society. A reliable and robust personal verification approach using dorsal hand vein patterns is proposed in this paper. The characteristic of the approach needs less computational and memory requirements and has a higher recognition accuracy. In our work, the near-infrared charge-coupled device (CCD) camera is adopted as an input device for capturing dorsal hand vein images, it has the advantages of the low-cost and noncontact imaging. In the proposed approach, two finger-peaks are automatically selected as the datum points to define the region of interest (ROI) in the dorsal hand vein images. The modified two-directional two-dimensional principal component analysis, which performs an alternate two-dimensional PCA (2DPCA) in the column direction of images in the 2DPCA subspace, is proposed to exploit the correlation of vein features inside the ROI between images. The major advantage of the proposed method is that it requires fewer coefficients for efficient dorsal hand vein image representation and recognition. The experimental results on our large dorsal hand vein database show that the presented schema achieves promising performance (false reject rate: 0.97% and false acceptance rate: 0.05%) and is feasible for dorsal hand vein recognition.

  13. Simultaneous Versus Sequential Presentation in Testing Recognition Memory for Faces.

    PubMed

    Finley, Jason R; Roediger, Henry L; Hughes, Andrea D; Wahlheim, Christopher N; Jacoby, Larry L

    2015-01-01

    Three experiments examined the issue of whether faces could be better recognized in a simul- taneous test format (2-alternative forced choice [2AFC]) or a sequential test format (yes-no). All experiments showed that when target faces were present in the test, the simultaneous procedure led to superior performance (area under the ROC curve), whether lures were high or low in similarity to the targets. However, when a target-absent condition was used in which no lures resembled the targets but the lures were similar to each other, the simultaneous procedure yielded higher false alarm rates (Experiments 2 and 3) and worse overall performance (Experi- ment 3). This pattern persisted even when we excluded responses that participants opted to withhold rather than volunteer. We conclude that for the basic recognition procedures used in these experiments, simultaneous presentation of alternatives (2AFC) generally leads to better discriminability than does sequential presentation (yes-no) when a target is among the alterna- tives. However, our results also show that the opposite can occur when there is no target among the alternatives. An important future step is to see whether these patterns extend to more realistic eyewitness lineup procedures. The pictures used in the experiment are available online at http://www.press.uillinois.edu/journals/ajp/media/testing_recognition/.

  14. Fractal and twin SVM-based handgrip recognition for healthy subjects and trans-radial amputees using myoelectric signal.

    PubMed

    Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant; Jayadeva J

    2016-02-01

    Identifying functional handgrip patterns using surface electromygram (sEMG) signal recorded from amputee residual muscle is required for controlling the myoelectric prosthetic hand. In this study, we have computed the signal fractal dimension (FD) and maximum fractal length (MFL) during different grip patterns performed by healthy and transradial amputee subjects. The FD and MFL of the sEMG, referred to as the fractal features, were classified using twin support vector machines (TSVM) to recognize the handgrips. TSVM requires fewer support vectors, is suitable for data sets with unbalanced distributions, and can simultaneously be trained for improving both sensitivity and specificity. When compared with other methods, this technique resulted in improved grip recognition accuracy, sensitivity, and specificity, and this improvement was significant (κ=0.91).

  15. Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: pattern-recognition analyses for screening quality control purposes.

    PubMed

    Flumignan, Danilo Luiz; Boralle, Nivaldo; Oliveira, José Eduardo de

    2010-06-30

    In this work, the combination of carbon nuclear magnetic resonance ((13)C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized (13)C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Pattern association--a key to recognition of shark attacks.

    PubMed

    Cirillo, G; James, H

    2004-12-01

    Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.

  17. Artificial Neural Network approach to develop unique Classification and Raga identification tools for Pattern Recognition in Carnatic Music

    NASA Astrophysics Data System (ADS)

    Srimani, P. K.; Parimala, Y. G.

    2011-12-01

    A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.

  18. Recognition vs Reverse Engineering in Boolean Concepts Learning

    ERIC Educational Resources Information Center

    Shafat, Gabriel; Levin, Ilya

    2012-01-01

    This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…

  19. Effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication.

    PubMed

    Dhir, L; Habib, N E; Monro, D M; Rakshit, S

    2010-06-01

    The purpose of this study was to investigate the effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication. Prospective non-comparative cohort study. Images of 15 subjects were captured before (enrolment), and 5, 10, and 15 min after instillation of mydriatics before routine cataract surgery. After cataract surgery, images were captured 2 weeks thereafter. Enrolled and test images (after pupillary dilation and after cataract surgery) were segmented to extract the iris. This was then unwrapped onto a rectangular format for normalization and a novel method using the Discrete Cosine Transform was applied to encode the image into binary bits. The numerical difference between two iris codes (Hamming distance, HD) was calculated. The HD between identification and enrolment codes was used as a score and was compared with a confidence threshold for specific equipment, giving a match or non-match result. The Correct Recognition Rate (CRR) and Equal Error Rates (EERs) were calculated to analyse overall system performance. After cataract surgery, perfect identification and verification was achieved, with zero false acceptance rate, zero false rejection rate, and zero EER. After pupillary dilation, non-elastic deformation occurs and a CRR of 86.67% and EER of 9.33% were obtained. Conventional circle-based localization methods are inadequate. Matching reliability decreases considerably with increase in pupillary dilation. Cataract surgery has no effect on iris pattern recognition, whereas pupil dilation may be used to defeat an iris-based authentication system.

  20. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  1. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  2. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  3. Phoneme Error Pattern by Heritage Speakers of Spanish on an English Word Recognition Test.

    PubMed

    Shi, Lu-Feng

    2017-04-01

    Heritage speakers acquire their native language from home use in their early childhood. As the native language is typically a minority language in the society, these individuals receive their formal education in the majority language and eventually develop greater competency with the majority than their native language. To date, there have not been specific research attempts to understand word recognition by heritage speakers. It is not clear if and to what degree we may infer from evidence based on bilingual listeners in general. This preliminary study investigated how heritage speakers of Spanish perform on an English word recognition test and analyzed their phoneme errors. A prospective, cross-sectional, observational design was employed. Twelve normal-hearing adult Spanish heritage speakers (four men, eight women, 20-38 yr old) participated in the study. Their language background was obtained through the Language Experience and Proficiency Questionnaire. Nine English monolingual listeners (three men, six women, 20-41 yr old) were also included for comparison purposes. Listeners were presented with 200 Northwestern University Auditory Test No. 6 words in quiet. They repeated each word orally and in writing. Their responses were scored by word, word-initial consonant, vowel, and word-final consonant. Performance was compared between groups with Student's t test or analysis of variance. Group-specific error patterns were primarily descriptive, but intergroup comparisons were made using 95% or 99% confidence intervals for proportional data. The two groups of listeners yielded comparable scores when their responses were examined by word, vowel, and final consonant. However, heritage speakers of Spanish misidentified significantly more word-initial consonants and had significantly more difficulty with initial /p, b, h/ than their monolingual peers. The two groups yielded similar patterns for vowel and word-final consonants, but heritage speakers made significantly fewer errors with /e/ and more errors with word-final /p, k/. Data reported in the present study lead to a twofold conclusion. On the one hand, normal-hearing heritage speakers of Spanish may misidentify English phonemes in patterns different from those of English monolingual listeners. Not all phoneme errors can be readily understood by comparing Spanish and English phonology, suggesting that Spanish heritage speakers differ in performance from other Spanish-English bilingual listeners. On the other hand, the absolute number of errors and the error pattern of most phonemes were comparable between English monolingual listeners and Spanish heritage speakers, suggesting that audiologists may assess word recognition in quiet in the same way for these two groups of listeners, if diagnosis is based on words, not phonemes. American Academy of Audiology

  4. Using Prosopagnosia to Test and Modify Visual Recognition Theory.

    PubMed

    O'Brien, Alexander M

    2018-02-01

    Biederman's contemporary theory of basic visual object recognition (Recognition-by-Components) is based on structural descriptions of objects and presumes 36 visual primitives (geons) people can discriminate, but there has been no empirical test of the actual use of these 36 geons to visually distinguish objects. In this study, we tested for the actual use of these geons in basic visual discrimination by comparing object discrimination performance patterns (when distinguishing varied stimuli) of an acquired prosopagnosia patient (LB) and healthy control participants. LB's prosopagnosia left her heavily reliant on structural descriptions or categorical object differences in visual discrimination tasks versus the control participants' additional ability to use face recognition or coordinate systems (Coordinate Relations Hypothesis). Thus, when LB performed comparably to control participants with a given stimulus, her restricted reliance on basic or categorical discriminations meant that the stimuli must be distinguishable on the basis of a geon feature. By varying stimuli in eight separate experiments and presenting all 36 geons, we discerned that LB coded only 12 (vs. 36) distinct visual primitives (geons), apparently reflective of human visual systems generally.

  5. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  6. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    USDA-ARS?s Scientific Manuscript database

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  7. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  8. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  9. A commentary on perception-action relationships in spatial display instruments

    NASA Technical Reports Server (NTRS)

    Shebilske, Wayne L.

    1989-01-01

    Transfer of information across disciplines is promoted, while basic and applied researchers are cautioned about the danger of assuming simple relationships between stimulus information, perceptual impressions, and performance including pattern recognition and sensorimotor skills. A theoretical and empirical foundation was developed predicting those relationships.

  10. Application of Classification Models to Pharyngeal High-Resolution Manometry

    ERIC Educational Resources Information Center

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  11. Optical Pattern Recognition for Missile Guidance.

    DTIC Science & Technology

    1982-11-15

    directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec

  12. Unsupervised learning of digit recognition using spike-timing-dependent plasticity

    PubMed Central

    Diehl, Peter U.; Cook, Matthew

    2015-01-01

    In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN) can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns), since most such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e., conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks. PMID:26941637

  13. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time. This prototype facilitated the study of various issues of pattern recognition and identified an efficient classifier, along with a feature ensemble, in the implementation of EMG controlled prosthetic hands in a laboratory setting at low-cost. This platform may help to motivate and facilitate prosthetic hand research in developing countries.

  14. Recognition as Support for Reasoning about Horizontal Motion: A Further Resource for School Science?

    ERIC Educational Resources Information Center

    Howe, Christine; Taylor Tavares, Joana; Devine, Amy

    2016-01-01

    Background: Even infants can recognize whether patterns of motion are or are not natural, yet an acknowledged challenge for science education is to promote adequate reasoning about such patterns. Since research indicates linkage between the conceptual bases of recognition and reasoning, it seems possible that recognition can be engaged to support…

  15. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  16. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  17. HPLC fingerprint analysis combined with chemometrics for pattern recognition of ginger.

    PubMed

    Feng, Xu; Kong, Weijun; Wei, Jianhe; Ou-Yang, Zhen; Yang, Meihua

    2014-03-01

    Ginger, the fresh rhizome of Zingiber officinale Rosc. (Zingiberaceae), has been used worldwide; however, for a long time, there has been no standard approbated internationally for its quality control. To establish an efficacious and combinational method and pattern recognition technique for quality control of ginger. A simple, accurate and reliable method based on high-performance liquid chromatography with photodiode array (HPLC-PDA) detection was developed for establishing the chemical fingerprints of 10 batches of ginger from different markets in China. The method was validated in terms of precision, reproducibility and stability; and the relative standard deviations were all less than 1.57%. On the basis of this method, the fingerprints of 10 batches of ginger samples were obtained, which showed 16 common peaks. Coupled with similarity evaluation software, the similarities between each fingerprint of the sample and the simulative mean chromatogram were in the range of 0.998-1.000. Then, the chemometric techniques, including similarity analysis, hierarchical clustering analysis and principal component analysis were applied to classify the ginger samples. Consistent results were obtained to show that ginger samples could be successfully classified into two groups. This study revealed that HPLC-PDA method was simple, sensitive and reliable for fingerprint analysis, and moreover, for pattern recognition and quality control of ginger.

  18. Membership generation using multilayer neural network

    NASA Technical Reports Server (NTRS)

    Kim, Jaeseok

    1992-01-01

    There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.

  19. Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation

    PubMed Central

    Fernández-Llatas, Carlos; Meneu, Teresa; Traver, Vicente; Benedi, José-Miguel

    2013-01-01

    Born in the early nineteen nineties, evidence-based medicine (EBM) is a paradigm intended to promote the integration of biomedical evidence into the physicians daily practice. This paradigm requires the continuous study of diseases to provide the best scientific knowledge for supporting physicians in their diagnosis and treatments in a close way. Within this paradigm, usually, health experts create and publish clinical guidelines, which provide holistic guidance for the care for a certain disease. The creation of these clinical guidelines requires hard iterative processes in which each iteration supposes scientific progress in the knowledge of the disease. To perform this guidance through telehealth, the use of formal clinical guidelines will allow the building of care processes that can be interpreted and executed directly by computers. In addition, the formalization of clinical guidelines allows for the possibility to build automatic methods, using pattern recognition techniques, to estimate the proper models, as well as the mathematical models for optimizing the iterative cycle for the continuous improvement of the guidelines. However, to ensure the efficiency of the system, it is necessary to build a probabilistic model of the problem. In this paper, an interactive pattern recognition approach to support professionals in evidence-based medicine is formalized. PMID:24185841

  20. How color enhances visual memory for natural scenes.

    PubMed

    Spence, Ian; Wong, Patrick; Rusan, Maria; Rastegar, Naghmeh

    2006-01-01

    We offer a framework for understanding how color operates to improve visual memory for images of the natural environment, and we present an extensive data set that quantifies the contribution of color in the encoding and recognition phases. Using a continuous recognition task with colored and monochrome gray-scale images of natural scenes at short exposure durations, we found that color enhances recognition memory by conferring an advantage during encoding and by strengthening the encoding-specificity effect. Furthermore, because the pattern of performance was similar at all exposure durations, and because form and color are processed in different areas of cortex, the results imply that color must be bound as an integral part of the representation at the earliest stages of processing.

  1. Introducing memory and association mechanism into a biologically inspired visual model.

    PubMed

    Qiao, Hong; Li, Yinlin; Tang, Tang; Wang, Peng

    2014-09-01

    A famous biologically inspired hierarchical model (HMAX model), which was proposed recently and corresponds to V1 to V4 of the ventral pathway in primate visual cortex, has been successfully applied to multiple visual recognition tasks. The model is able to achieve a set of position- and scale-tolerant recognition, which is a central problem in pattern recognition. In this paper, based on some other biological experimental evidence, we introduce the memory and association mechanism into the HMAX model. The main contributions of the work are: 1) mimicking the active memory and association mechanism and adding the top down adjustment to the HMAX model, which is the first try to add the active adjustment to this famous model and 2) from the perspective of information, algorithms based on the new model can reduce the computation storage and have a good recognition performance. The new model is also applied to object recognition processes. The primary experimental results show that our method is efficient with a much lower memory requirement.

  2. Acquisition of Malay word recognition skills: lessons from low-progress early readers.

    PubMed

    Lee, Lay Wah; Wheldall, Kevin

    2011-02-01

    Malay is a consistent alphabetic orthography with complex syllable structures. The focus of this research was to investigate word recognition performance in order to inform reading interventions for low-progress early readers. Forty-six Grade 1 students were sampled and 11 were identified as low-progress readers. The results indicated that both syllable awareness and phoneme blending were significant predictors of word recognition, suggesting that both syllable and phonemic grain-sizes are important in Malay word recognition. Item analysis revealed a hierarchical pattern of difficulty based on the syllable and the phonic structure of the words. Error analysis identified the sources of errors to be errors due to inefficient syllable segmentation, oversimplification of syllables, insufficient grapheme-phoneme knowledge and inefficient phonemic code assembly. Evidence also suggests that direct instruction in syllable segmentation, phonemic awareness and grapheme-phoneme correspondence is necessary for low-progress readers to acquire word recognition skills. Finally, a logical sequence to teach grapheme-phoneme decoding in Malay is suggested. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Multimodal Neuroelectric Interface Development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)

    2001-01-01

    This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.

  4. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  5. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    NASA Astrophysics Data System (ADS)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  6. Efficient local representations for three-dimensional palmprint recognition

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Wang, Xiaohua; Yao, Jinliang; Yang, Xin; Zhu, Wenhua

    2013-10-01

    Palmprints have been broadly used for personal authentication because they are highly accurate and incur low cost. Most previous works have focused on two-dimensional (2-D) palmprint recognition in the past decade. Unfortunately, 2-D palmprint recognition systems lose the shape information when capturing palmprint images. Moreover, such 2-D palmprint images can be easily forged or affected by noise. Hence, three-dimensional (3-D) palmprint recognition has been regarded as a promising way to further improve the performance of palmprint recognition systems. We have developed a simple, but efficient method for 3-D palmprint recognition by using local features. We first utilize shape index representation to describe the geometry of local regions in 3-D palmprint data. Then, we extract local binary pattern and Gabor wavelet features from the shape index image. The two types of complementary features are finally fused at a score level for further improvements. The experimental results on the Hong Kong Polytechnic 3-D palmprint database, which contains 8000 samples from 400 palms, illustrate the effectiveness of the proposed method.

  7. Robust kernel representation with statistical local features for face recognition.

    PubMed

    Yang, Meng; Zhang, Lei; Shiu, Simon Chi-Keung; Zhang, David

    2013-06-01

    Factors such as misalignment, pose variation, and occlusion make robust face recognition a difficult problem. It is known that statistical features such as local binary pattern are effective for local feature extraction, whereas the recently proposed sparse or collaborative representation-based classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF) for robust face recognition. Initially, multipartition max pooling is used to enhance the invariance of SLF to image registration error. Then, a kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images. Extensive experiments are conducted on benchmark face databases, including extended Yale B, AR (A. Martinez and R. Benavente), multiple pose, illumination, and expression (multi-PIE), facial recognition technology (FERET), face recognition grand challenge (FRGC), and labeled faces in the wild (LFW), which have different variations of lighting, expression, pose, and occlusions, demonstrating the promising performance of the proposed method.

  8. Line-based logo recognition through a web-camera

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolu; Wang, Yangsheng; Feng, Xuetao

    2007-11-01

    Logo recognition has gained much development in the document retrieval and shape analysis domain. As human computer interaction becomes more and more popular, the logo recognition through a web-camera is a promising technology in view of application. But for practical application, the study of logo recognition in real scene is much more difficult than the work in clear scene. To cope with the need, we make some improvements on conventional method. First, moment information is used to calculate the test image's orientation angle, which is used to normalize the test image. Second, the main structure of the test image, which is represented by lines patterns, is acquired and modified Hausdorff distance is employed to match the image and each of the existing templates. The proposed method, which is invariant to scale and rotation, gives good result and can work at real-time. The main contribution of this paper is that some improvements are introduced into the exiting recognition framework which performs much better than the original one. Besides, we have built a highly successful logo recognition system using our improved method.

  9. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    PubMed

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Discovering the Sequential Structure of Thought

    ERIC Educational Resources Information Center

    Anderson, John R.; Fincham, Jon M.

    2014-01-01

    Multi-voxel pattern recognition techniques combined with Hidden Markov models can be used to discover the mental states that people go through in performing a task. The combined method identifies both the mental states and how their durations vary with experimental conditions. We apply this method to a task where participants solve novel…

  11. High-Performance 3D Image Processing Architectures for Image-Guided Interventions

    DTIC Science & Technology

    2008-01-01

    Parallel architectures and algorithms for image understanding. Boston: Academic Press, 1991. [99] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger , J...Symposium on Pattern Recognition, vol. 2449(pp. 290-297, 2002. [100] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger , J. Weickert, U. Bruning, and C

  12. V2S: Voice to Sign Language Translation System for Malaysian Deaf People

    NASA Astrophysics Data System (ADS)

    Mean Foong, Oi; Low, Tang Jung; La, Wai Wan

    The process of learning and understand the sign language may be cumbersome to some, and therefore, this paper proposes a solution to this problem by providing a voice (English Language) to sign language translation system using Speech and Image processing technique. Speech processing which includes Speech Recognition is the study of recognizing the words being spoken, regardless of whom the speaker is. This project uses template-based recognition as the main approach in which the V2S system first needs to be trained with speech pattern based on some generic spectral parameter set. These spectral parameter set will then be stored as template in a database. The system will perform the recognition process through matching the parameter set of the input speech with the stored templates to finally display the sign language in video format. Empirical results show that the system has 80.3% recognition rate.

  13. An Energy-Efficient and Scalable Deep Learning/Inference Processor With Tetra-Parallel MIMD Architecture for Big Data Applications.

    PubMed

    Park, Seong-Wook; Park, Junyoung; Bong, Kyeongryeol; Shin, Dongjoo; Lee, Jinmook; Choi, Sungpill; Yoo, Hoi-Jun

    2015-12-01

    Deep Learning algorithm is widely used for various pattern recognition applications such as text recognition, object recognition and action recognition because of its best-in-class recognition accuracy compared to hand-crafted algorithm and shallow learning based algorithms. Long learning time caused by its complex structure, however, limits its usage only in high-cost servers or many-core GPU platforms so far. On the other hand, the demand on customized pattern recognition within personal devices will grow gradually as more deep learning applications will be developed. This paper presents a SoC implementation to enable deep learning applications to run with low cost platforms such as mobile or portable devices. Different from conventional works which have adopted massively-parallel architecture, this work adopts task-flexible architecture and exploits multiple parallelism to cover complex functions of convolutional deep belief network which is one of popular deep learning/inference algorithms. In this paper, we implement the most energy-efficient deep learning and inference processor for wearable system. The implemented 2.5 mm × 4.0 mm deep learning/inference processor is fabricated using 65 nm 8-metal CMOS technology for a battery-powered platform with real-time deep inference and deep learning operation. It consumes 185 mW average power, and 213.1 mW peak power at 200 MHz operating frequency and 1.2 V supply voltage. It achieves 411.3 GOPS peak performance and 1.93 TOPS/W energy efficiency, which is 2.07× higher than the state-of-the-art.

  14. Perirhinal Cortex Lesions in Rats: Novelty Detection and Sensitivity to Interference

    PubMed Central

    2015-01-01

    Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal. PMID:26030425

  15. Understanding native Russian listeners' errors on an English word recognition test: model-based analysis of phoneme confusion.

    PubMed

    Shi, Lu-Feng; Morozova, Natalia

    2012-08-01

    Word recognition is a basic component in a comprehensive hearing evaluation, but data are lacking for listeners speaking two languages. This study obtained such data for Russian natives in the US and analysed the data using the perceptual assimilation model (PAM) and speech learning model (SLM). Listeners were randomly presented 200 NU-6 words in quiet. Listeners responded verbally and in writing. Performance was scored on words and phonemes (word-initial consonants, vowels, and word-final consonants). Seven normal-hearing, adult monolingual English natives (NM), 16 English-dominant (ED), and 15 Russian-dominant (RD) Russian natives participated. ED and RD listeners differed significantly in their language background. Consistent with the SLM, NM outperformed ED listeners and ED outperformed RD listeners, whether responses were scored on words or phonemes. NM and ED listeners shared similar phoneme error patterns, whereas RD listeners' errors had unique patterns that could be largely understood via the PAM. RD listeners had particular difficulty differentiating vowel contrasts /i-I/, /æ-ε/, and /ɑ-Λ/, word-initial consonant contrasts /p-h/ and /b-f/, and word-final contrasts /f-v/. Both first-language phonology and second-language learning history affect word and phoneme recognition. Current findings may help clinicians differentiate word recognition errors due to language background from hearing pathologies.

  16. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    PubMed

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  17. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    PubMed Central

    Zhao, Yongjia; Zhou, Suiping

    2017-01-01

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503

  18. Classification of Partial Discharge Measured under Different Levels of Noise Contamination

    PubMed Central

    2017-01-01

    Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination. PMID:28085953

  19. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Seth; Chen Bin; Holbrook, Kristen

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less

  20. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    PubMed

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  1. Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns

    PubMed Central

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789

  2. Electrophysiological distinctions between recognition memory with and without awareness

    PubMed Central

    Ko, Philip C.; Duda, Bryant; Hussey, Erin P.; Ally, Brandon A.

    2013-01-01

    The influence of implicit memory representations on explicit recognition may help to explain cases of accurate recognition decisions made with high uncertainty. During a recognition task, implicit memory may enhance the fluency of a test item, biasing decision processes to endorse it as “old”. This model may help explain recognition-without-identification, a remarkable phenomenon in which participants make highly accurate recognition decisions despite the inability to identify the test item. The current study investigated whether recognition-without-identification for pictures elicits a similar pattern of neural activity as other types of accurate recognition decisions made with uncertainty. Further, this study also examined whether recognition-without-identification for pictures could be attained by the use of perceptual and conceptual information from memory. To accomplish this, participants studied pictures and then performed a recognition task under difficult viewing conditions while event-related potentials (ERPs) were recorded. Behavioral results showed that recognition was highly accurate even when test items could not be identified, demonstrating recognition-without identification. The behavioral performance also indicated that recognition-without-identification was mediated by both perceptual and conceptual information, independently of one another. The ERP results showed dramatically different memory related activity during the early 300 to 500 ms epoch for identified items that were studied compared to unidentified items that were studied. Similar to previous work highlighting accurate recognition without retrieval awareness, test items that were not identified, but correctly endorsed as “old,” elicited a negative posterior old/new effect (i.e., N300). In contrast, test items that were identified and correctly endorsed as “old,” elicited the classic positive frontal old/new effect (i.e., FN400). Importantly, both of these effects were elicited under conditions when participants used perceptual information to make recognition decisions. Conceptual information elicited very different ERPs than perceptual information, showing that the informational wealth of pictures can evoke multiple routes to recognition even without awareness of memory retrieval. These results are discussed within the context of current theories regarding the N300 and the FN400. PMID:23287567

  3. Forecasting of hourly load by pattern recognition in a small area power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehdashti-Shahrokh, A.

    1982-01-01

    An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less

  4. Optical character recognition based on nonredundant correlation measurements.

    PubMed

    Braunecker, B; Hauck, R; Lohmann, A W

    1979-08-15

    The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.

  5. Analog Front-Ends comparison in the way of a portable, low-power and low-cost EMG controller based on pattern recognition EMBC 2015.

    PubMed

    Mastinu, Enzo; Ortiz-Catalan, Max; Hakansson, Bo

    2015-01-01

    Compact and low-noise Analog Front-Ends (AFEs) are becoming increasingly important for the acquisition of bioelectric signals in portable system. In this work, we compare two popular AFEs available on the market, namely the ADS1299 (Texas Instruments) and the RHA2216 (Intan Technologies). This work develops towards the identification of suitable acquisition modules to design an affordable, reliable and portable device for electromyography (EMG) acquisition and prosthetic control. Device features such as Common Mode Rejection (CMR), Input Referred Noise (IRN) and Signal to Noise Ratio (SNR) were evaluated, as well as the resulting accuracy in myoelectric pattern recognition (MPR) for the decoding of motion intention. Results reported better noise performances and higher MPR accuracy for the ADS1299 and similar SNR values for both devices.

  6. Finger Vein Recognition Using Local Line Binary Pattern

    PubMed Central

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP). PMID:22247670

  7. Aging and the Haptic Perception of Material Properties.

    PubMed

    Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N

    2016-12-01

    The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.

  8. A dynamical pattern recognition model of gamma activity in auditory cortex

    PubMed Central

    Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.

    2012-01-01

    This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049

  9. Visual cluster analysis and pattern recognition methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    2001-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  10. Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1984-01-01

    Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.

  11. Proceedings of the NASA/MPRIA Workshop: Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    Outlines of talks presented at the workshop conducted at Texas A & M University on February 3 and 4, 1983 are presented. Emphasis was given to the application of Mathematics to image processing and pattern recognition.

  12. LBP and SIFT based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Sumer, Omer; Gunes, Ece O.

    2015-02-01

    This study compares the performance of local binary patterns (LBP) and scale invariant feature transform (SIFT) with support vector machines (SVM) in automatic classification of discrete facial expressions. Facial expression recognition is a multiclass classification problem and seven classes; happiness, anger, sadness, disgust, surprise, fear and comtempt are classified. Using SIFT feature vectors and linear SVM, 93.1% mean accuracy is acquired on CK+ database. On the other hand, the performance of LBP-based classifier with linear SVM is reported on SFEW using strictly person independent (SPI) protocol. Seven-class mean accuracy on SFEW is 59.76%. Experiments on both databases showed that LBP features can be used in a fairly descriptive way if a good localization of facial points and partitioning strategy are followed.

  13. Using pattern recognition as a method for predicting extreme events in natural and socio-economic systems

    NASA Astrophysics Data System (ADS)

    Intriligator, M.

    2011-12-01

    Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.

  14. Running Improves Pattern Separation during Novel Object Recognition.

    PubMed

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  15. Classifying Lower Extremity Muscle Fatigue during Walking using Machine Learning and Inertial Sensors

    PubMed Central

    Zhang, Jian; Lockhart, Thurmon E.; Soangra, Rahul

    2013-01-01

    Fatigue in lower extremity musculature is associated with decline in postural stability, motor performance and alters normal walking patterns in human subjects. Automated recognition of lower extremity muscle fatigue condition may be advantageous in early detection of fall and injury risks. Supervised machine learning methods such as Support Vector Machines (SVM) have been previously used for classifying healthy and pathological gait patterns and also for separating old and young gait patterns. In this study we explore the classification potential of SVM in recognition of gait patterns utilizing an inertial measurement unit associated with lower extremity muscular fatigue. Both kinematic and kinetic gait patterns of 17 participants (29±11 years) were recorded and analyzed in normal and fatigued state of walking. Lower extremities were fatigued by performance of a squatting exercise until the participants reached 60% of their baseline maximal voluntary exertion level. Feature selection methods were used to classify fatigue and no-fatigue conditions based on temporal and frequency information of the signals. Additionally, influences of three different kernel schemes (i.e., linear, polynomial, and radial basis function) were investigated for SVM classification. The results indicated that lower extremity muscle fatigue condition influenced gait and loading responses. In terms of the SVM classification results, an accuracy of 96% was reached in distinguishing the two gait patterns (fatigue and no-fatigue) within the same subject using the kinematic, time and frequency domain features. It is also found that linear kernel and RBF kernel were equally good to identify intra-individual fatigue characteristics. These results suggest that intra-subject fatigue classification using gait patterns from an inertial sensor holds considerable potential in identifying “at-risk” gait due to muscle fatigue. PMID:24081829

  16. A Compact Prototype of an Optical Pattern Recognition System

    NASA Technical Reports Server (NTRS)

    Jin, Y.; Liu, H. K.; Marzwell, N. I.

    1996-01-01

    In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.

  17. Recall deficits in stroke patients with thalamic lesions covary with damage to the parvocellular mediodorsal nucleus of the thalamus.

    PubMed

    Pergola, Giulio; Güntürkün, Onur; Koch, Benno; Schwarz, Michael; Daum, Irene; Suchan, Boris

    2012-08-01

    The functional role of the mediodorsal thalamic nucleus (MD) and its cortical network in memory processes is discussed controversially. While Aggleton and Brown (1999) suggested a role for recognition and not recall, Van der Werf et al. (2003) suggested that this nucleus is functionally related to executive function and strategic retrieval, based on its connections to the prefrontal cortices (PFC). The present study used a lesion approach including patients with focal thalamic lesions to examine the functions of the MD, the intralaminar nuclei and the midline nuclei in memory processing. A newly designed pair association task was used, which allowed the assessment of recognition and cued recall performance. Volume loss in thalamic nuclei was estimated as a predictor for alterations in memory performance. Patients performed poorer than healthy controls on recognition accuracy and cued recall. Furthermore, patients responded slower than controls specifically on recognition trials followed by successful cued recall of the paired associate. Reduced recall of picture pairs and increased response times during recognition followed by cued recall covaried with the volume loss in the parvocellular MD. This pattern suggests a role of this thalamic region in recall and thus recollection, which does not fit the framework proposed by Aggleton and Brown (1999). The functional specialization of the parvocellular MD accords with its connectivity to the dorsolateral PFC, highlighting the role of this thalamocortical network in explicit memory (Van der Werf et al., 2003). Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Target recognition of log-polar ladar range images using moment invariants

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong

    2017-01-01

    The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.

  19. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    1999-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  20. Photonic correlator pattern recognition: Application to autonomous docking

    NASA Technical Reports Server (NTRS)

    Sjolander, Gary W.

    1991-01-01

    Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.

  1. A cascaded neuro-computational model for spoken word recognition

    NASA Astrophysics Data System (ADS)

    Hoya, Tetsuya; van Leeuwen, Cees

    2010-03-01

    In human speech recognition, words are analysed at both pre-lexical (i.e., sub-word) and lexical (word) levels. The aim of this paper is to propose a constructive neuro-computational model that incorporates both these levels as cascaded layers of pre-lexical and lexical units. The layered structure enables the system to handle the variability of real speech input. Within the model, receptive fields of the pre-lexical layer consist of radial basis functions; the lexical layer is composed of units that perform pattern matching between their internal template and a series of labels, corresponding to the winning receptive fields in the pre-lexical layer. The model adapts through self-tuning of all units, in combination with the formation of a connectivity structure through unsupervised (first layer) and supervised (higher layers) network growth. Simulation studies show that the model can achieve a level of performance in spoken word recognition similar to that of a benchmark approach using hidden Markov models, while enabling parallel access to word candidates in lexical decision making.

  2. Exploring patterns in resource utilization prior to the formal identification of homelessness in recently returned veterans.

    PubMed

    Gundlapalli, Adi V; Redd, Andrew; Carter, Marjorie E; Palmer, Miland; Peterson, Rachel; Samore, Matthew H

    2014-01-01

    There are limited data on resources utilized by US Veterans prior to their identification as being homeless. We performed visual analytics on longitudinal medical encounter data prior to the official recognition of homelessness in a large cohort of OEF/OIF Veterans. A statistically significant increase in numbers of several categories of visits in the immediate 30 days prior to the recognition of homelessness was noted as compared to an earlier period. This finding has the potential to inform prediction algorithms based on structured data with a view to intervention and mitigation of homelessness among Veterans.

  3. Sign Language Recognition System using Neural Network for Digital Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Vargas, Lorena P.; Barba, Leiner; Torres, C. O.; Mattos, L.

    2011-01-01

    This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.

  4. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  5. Analytical concepts for health management systems of liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Williams, Richard; Tulpule, Sharayu; Hawman, Michael

    1990-01-01

    Substantial improvement in health management systems performance can be realized by implementing advanced analytical methods of processing existing liquid rocket engine sensor data. In this paper, such techniques ranging from time series analysis to multisensor pattern recognition to expert systems to fault isolation models are examined and contrasted. The performance of several of these methods is evaluated using data from test firings of the Space Shuttle main engines.

  6. Listening for Recollection: A Multi-Voxel Pattern Analysis of Recognition Memory Retrieval Strategies

    PubMed Central

    Quamme, Joel R.; Weiss, David J.; Norman, Kenneth A.

    2010-01-01

    Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally directed attentional state (“listening for recollection”) that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects’ recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. We looked for brain regions that met the following criteria: (1) Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and (2) fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are “listening for recollection” at that moment) should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus) where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before), suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection. PMID:20740073

  7. A Review of Subsequence Time Series Clustering

    PubMed Central

    Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies. PMID:25140332

  8. A review of subsequence time series clustering.

    PubMed

    Zolhavarieh, Seyedjamal; Aghabozorgi, Saeed; Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.

  9. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity.

    PubMed

    Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu

    2013-10-01

    Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.

  10. Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.

  11. Students' Dichotomous Experiences of the Illuminating and Illusionary Nature of Pattern Recognition in Mathematics

    ERIC Educational Resources Information Center

    Mhlolo, Michael Kainose

    2016-01-01

    The concept of pattern recognition lies at the heart of numerous deliberations concerned with new mathematics curricula, because it is strongly linked to improved generalised thinking. However none of these discussions has made the deceptive nature of patterns an object of exploration and understanding. Yet there is evidence showing that pattern…

  12. Variability Is the Norm in Performance, but Not in Beliefs

    ERIC Educational Resources Information Center

    Sophian, Catherine

    2006-01-01

    Do children have coexisting but contradictory beliefs about things like magic? Some patterns of behavior that seem to reflect contradictory beliefs may stem from children's recognition that their knowledge about events is incomplete and therefore things may occur without them understanding how. In addition, children may hold certain beliefs that…

  13. Fast Morphological Effects in First and Second Language Word Recognition

    ERIC Educational Resources Information Center

    Diependaele, Kevin; Dunabeitia, Jon Andoni; Morris, Joanna; Keuleers, Emmanuel

    2011-01-01

    In three experiments we compared the performance of native English speakers to that of Spanish-English and Dutch-English bilinguals on a masked morphological priming lexical decision task. The results do not show significant differences across the three experiments. In line with recent meta-analyses, we observed a graded pattern of facilitation…

  14. The Role of Native-Language Knowledge in the Perception of Casual Speech in a Second Language

    PubMed Central

    Mitterer, Holger; Tuinman, Annelie

    2012-01-01

    Casual speech processes, such as /t/-reduction, make word recognition harder. Additionally, word recognition is also harder in a second language (L2). Combining these challenges, we investigated whether L2 learners have recourse to knowledge from their native language (L1) when dealing with casual speech processes in their L2. In three experiments, production and perception of /t/-reduction was investigated. An initial production experiment showed that /t/-reduction occurred in both languages and patterned similarly in proper nouns but differed when /t/ was a verbal inflection. Two perception experiments compared the performance of German learners of Dutch with that of native speakers for nouns and verbs. Mirroring the production patterns, German learners’ performance strongly resembled that of native Dutch listeners when the reduced /t/ was part of a word stem, but deviated where /t/ was a verbal inflection. These results suggest that a casual speech process in a second language is problematic for learners when the process is not known from the leaner’s native language, similar to what has been observed for phoneme contrasts. PMID:22811675

  15. Computer-implemented land use classification with pattern recognition software and ERTS digital data. [Mississippi coastal plains

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.

    1974-01-01

    Significant progress has been made in the classification of surface conditions (land uses) with computer-implemented techniques based on the use of ERTS digital data and pattern recognition software. The supervised technique presently used at the NASA Earth Resources Laboratory is based on maximum likelihood ratioing with a digital table look-up approach to classification. After classification, colors are assigned to the various surface conditions (land uses) classified, and the color-coded classification is film recorded on either positive or negative 9 1/2 in. film at the scale desired. Prints of the film strips are then mosaicked and photographed to produce a land use map in the format desired. Computer extraction of statistical information is performed to show the extent of each surface condition (land use) within any given land unit that can be identified in the image. Evaluations of the product indicate that classification accuracy is well within the limits for use by land resource managers and administrators. Classifications performed with digital data acquired during different seasons indicate that the combination of two or more classifications offer even better accuracy.

  16. Cognitive aspects of haptic form recognition by blind and sighted subjects.

    PubMed

    Bailes, S M; Lambert, R M

    1986-11-01

    Studies using haptic form recognition tasks have generally concluded that the adventitiously blind perform better than the congenitally blind, implicating the importance of early visual experience in improved spatial functioning. The hypothesis was tested that the adventitiously blind have retained some ability to encode successive information obtained haptically in terms of a global visual representation, while the congenitally blind use a coding system based on successive inputs. Eighteen blind (adventitiously and congenitally) and 18 sighted (blindfolded and performing with vision) subjects were tested on their recognition of raised line patterns when the standard was presented in segments: in immediate succession, or with unfilled intersegmental delays of 5, 10, or 15 seconds. The results did not support the above hypothesis. Three main findings were obtained: normally sighted subjects were both faster and more accurate than the other groups; all groups improved in accuracy of recognition as a function of length of interstimulus interval; sighted subjects tended to report using strategies with a strong verbal component while the blind tended to rely on imagery coding. These results are explained in terms of information-processing theory consistent with dual encoding systems in working memory.

  17. Methods and means of diagnostics of oncological diseases on the basis of pattern recognition: intelligent morphological systems - problems and solutions

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.

    2017-01-01

    The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.

  18. Postprocessing for character recognition using pattern features and linguistic information

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi

    1993-04-01

    We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).

  19. SA36. Atypical Memory Structure Related to Recollective Ability

    PubMed Central

    Greenland-White, Sarah; Niendam, Tara

    2017-01-01

    Abstract Background: People with schizophrenia have impaired recognition memory and disproportionate recollection rather than familiarity deficits. This pattern also occurs in individuals with early psychosis (EP) and those at clinical high risk (CHR; Ragland et al., 2016). Additionally, these groups show atypical relationships between different memory processes, with patients demonstrating a stronger reliance on familiarity to support recognition accuracy. However, it is unclear whether these group differences represent a compensatory “trade-off” in memory strategies, whereby patients adopt an overreliance on familiarity to compensate for impaired recollection. We examined data from the Relational and Item-Specific memory task (RiSE) in healthy control (HC), EP and CHR participants, and contrasted subgroups with and without prominent recollection impairments. Interrelations between these memory processes (accuracy, recollection, and familiarity) were examined with Structural Equation Modeling (SEM). Methods: A total of 181 individuals (57 HC, 101 EP, and 21 CHR) completed the RiSE. Measures of recognition accuracy, familiarity, and recollection were computed. We divided the patient group into those with poor recollection (overall d’ recognition accuracy < 1.5, n = 52) and those with good recollection (overall d’ recollection accuracy ≥ 1.5, n = 70). SEM was used to investigate the pattern of memory relationships between HC and patient groups as well as between patients with good versus bad recollection. Results: Recollection and familiarity were negatively correlated in the HC group (r = −.467, P < .01) and in the patient group, though more weakly (r = −.288,P < .05). Improved recollection was correlated with overall improvement in recognition accuracy for both the groups (HC r = .771, P < .01; r = .753, P < .01). Improved familiarity was associated with higher recognition accuracy in the patient group only (.361, P < .01). Moreover, patients with poor recollection showed a stronger association (Fisher’s Z = 2.58, P < .01) between familiarity performance and recognition accuracy (.718, P < .01) than patients with good recollection performance (.396, P < .01). Conclusion: Results suggest that patients may be overrelying on more intact familiarity processes to support recognition accuracy. This potential compensatory strategy is particularly marked in those patients with the worst recollection abilities. The finding that recognition accuracy remains impaired in both patient subgroups, however, reveals that this compensatory familiarity-based strategy is not fully successful. Further work is needed to understand how patients can be remediated for their consistently impaired recollection processes.

  20. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.

    PubMed

    Khushaba, Rami N; Takruri, Maen; Miro, Jaime Valls; Kodagoda, Sarath

    2014-07-01

    Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture–mark–recapture studies

    PubMed Central

    Drechsler, Axel; Helling, Tobias; Steinfartz, Sebastian

    2015-01-01

    Capture–mark–recapture (CMR) approaches are the backbone of many studies in population ecology to gain insight on the life cycle, migration, habitat use, and demography of target species. The reliable and repeatable recognition of an individual throughout its lifetime is the basic requirement of a CMR study. Although invasive techniques are available to mark individuals permanently, noninvasive methods for individual recognition mainly rest on photographic identification of external body markings, which are unique at the individual level. The re-identification of an individual based on comparing shape patterns of photographs by eye is commonly used. Automated processes for photographic re-identification have been recently established, but their performance in large datasets (i.e., > 1000 individuals) has rarely been tested thoroughly. Here, we evaluated the performance of the program AMPHIDENT, an automatic algorithm to identify individuals on the basis of ventral spot patterns in the great crested newt (Triturus cristatus) versus the genotypic fingerprint of individuals based on highly polymorphic microsatellite loci using GENECAP. Between 2008 and 2010, we captured, sampled and photographed adult newts and calculated for 1648 samples/photographs recapture rates for both approaches. Recapture rates differed slightly with 8.34% for GENECAP and 9.83% for AMPHIDENT. With an estimated rate of 2% false rejections (FRR) and 0.00% false acceptances (FAR), AMPHIDENT proved to be a highly reliable algorithm for CMR studies of large datasets. We conclude that the application of automatic recognition software of individual photographs can be a rather powerful and reliable tool in noninvasive CMR studies for a large number of individuals. Because the cross-correlation of standardized shape patterns is generally applicable to any pattern that provides enough information, this algorithm is capable of becoming a single application with broad use in CMR studies for many species. PMID:25628871

  2. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  3. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  4. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, G.C.; Martinez, R.F.

    1999-05-04

    A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.

  5. Multiple degree of freedom optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1987-01-01

    Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.

  6. Ultrasonography of ovarian masses using a pattern recognition approach

    PubMed Central

    Jung, Sung Il

    2015-01-01

    As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108

  7. DESIGN OF A PATTERN RECOGNITION DIGITAL COMPUTER WITH APPLICATION TO THE AUTOMATIC SCANNING OF BUBBLE CHAMBER NEGATIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, B.H.; Narasimhan, R.

    1963-01-01

    The overall computer system contains three main parts: an input device, a pattern recognition unit (PRU), and a control computer. The bubble chamber picture is divided into a grid of st run. Concent 1-mm squares on the film. It is then processed in parallel in a two-dimensional array of 1024 identical processing modules (stalactites) of the PRU. The array can function as a two- dimensional shift register in which results of successive shifting operations can be accumulated. The pattern recognition process is generally controlled by a conventional arithmetic computer. (A.G.W.)

  8. Recognizing Age-Separated Face Images: Humans and Machines

    PubMed Central

    Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel

    2014-01-01

    Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components - facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario. PMID:25474200

  9. Recognizing age-separated face images: humans and machines.

    PubMed

    Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel

    2014-01-01

    Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components--facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario.

  10. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.

    PubMed

    Schafer, Phillip B; Jin, Dezhe Z

    2014-03-01

    Speech recognition in noisy conditions is a major challenge for computer systems, but the human brain performs it routinely and accurately. Automatic speech recognition (ASR) systems that are inspired by neuroscience can potentially bridge the performance gap between humans and machines. We present a system for noise-robust isolated word recognition that works by decoding sequences of spikes from a population of simulated auditory feature-detecting neurons. Each neuron is trained to respond selectively to a brief spectrotemporal pattern, or feature, drawn from the simulated auditory nerve response to speech. The neural population conveys the time-dependent structure of a sound by its sequence of spikes. We compare two methods for decoding the spike sequences--one using a hidden Markov model-based recognizer, the other using a novel template-based recognition scheme. In the latter case, words are recognized by comparing their spike sequences to template sequences obtained from clean training data, using a similarity measure based on the length of the longest common sub-sequence. Using isolated spoken digits from the AURORA-2 database, we show that our combined system outperforms a state-of-the-art robust speech recognizer at low signal-to-noise ratios. Both the spike-based encoding scheme and the template-based decoding offer gains in noise robustness over traditional speech recognition methods. Our system highlights potential advantages of spike-based acoustic coding and provides a biologically motivated framework for robust ASR development.

  11. Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules.

    PubMed

    Fraser, D A; Tenner, A J

    2008-02-01

    Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.

  12. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  13. L1 track trigger for the CMS HL-LHC upgrade using AM chips and FPGAs

    NASA Astrophysics Data System (ADS)

    Fedi, Giacomo

    2017-08-01

    The increase of luminosity at the HL-LHC will require the introduction of tracker information in CMS's Level-1 trigger system to maintain an acceptable trigger rate when selecting interesting events, despite the order of magnitude increase in minimum bias interactions. To meet the latency requirements, dedicated hardware has to be used. This paper presents the results of tests of a prototype system (pattern recognition ezzanine) as core of pattern recognition and track fitting for the CMS experiment, combining the power of both associative memory custom ASICs and modern Field Programmable Gate Array (FPGA) devices. The mezzanine uses the latest available associative memory devices (AM06) and the most modern Xilinx Ultrascale FPGAs. The results of the test for a complete tower comprising about 0.5 million patterns is presented, using as simulated input events traversing the upgraded CMS detector. The paper shows the performance of the pattern matching, track finding and track fitting, along with the latency and processing time needed. The pT resolution over pT of the muons measured using the reconstruction algorithm is at the order of 1% in the range 3-100 GeV/c.

  14. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay.

    PubMed

    Smith, Lauren H; Hargrove, Levi J; Lock, Blair A; Kuiken, Todd A

    2011-04-01

    Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis using pattern recognition of electromyogram (EMG) signals. Classification error and controller delay were varied by training different classifiers with a variety of analysis window lengths ranging from 50 to 550 ms and either two or four EMG input channels. Offline analysis showed that classification error decreased with longer window lengths (p < 0.01 ). Real-time controllability was evaluated with the target achievement control (TAC) test, which prompted users to maneuver the virtual prosthesis into various target postures. The results indicated that user performance improved with lower classification error (p < 0.01 ) and was reduced with longer controller delay (p < 0.01 ), as determined by the window length. Therefore, both of these effects should be considered when choosing a window length; it may be beneficial to increase the window length if this results in a reduced classification error, despite the corresponding increase in controller delay. For the system employed in this study, the optimal window length was found to be between 150 and 250 ms, which is within acceptable controller delays for conventional multistate amplitude controllers.

  15. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.

    PubMed

    Casado, Monica Rivas; Gonzalez, Rocio Ballesteros; Kriechbaumer, Thomas; Veal, Amanda

    2015-11-04

    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  16. Unique and Persistent Individual Patterns of Brain Activity Across Different Memory Retrieval Tasks

    PubMed Central

    Miller, Michael B.; Donovan, Christa-Lynn; Van Horn, John D.; German, Elaine; Sokol-Hessner, Peter; Wolford, George L.

    2009-01-01

    Fourteen subjects were scanned in two fMRI sessions separated by several months. During each session, subjects performed an episodic retrieval task, a semantic retrieval task, and a working memory task. We found that 1) despite extensive intersubject variability in the pattern of activity across the whole brain, individual activity patterns were stable over time, 2) activity patterns of the same individual performing different tasks were more similar than activity patterns of different individuals performing the same task, and 3) that individual differences in decision criterion on a recognition test predicted the degree of similarity between any two individuals’ patterns of brain activity, but individual differences in memory accuracy or similarity in structural anatomy did not. These results imply that the exclusive use of group maps may be ineffective in profiling the pattern of activations for a given task. This may be particularly true for a task like episodic retrieval, which is relatively strategic and can involve widely-distributed specialized processes that are peripheral to the actual retrieval of stored information. Further, these processes may be differentially engaged depending on individual differences in cognitive processing and/or physiology. PMID:19540922

  17. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  18. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  19. Real-time image restoration for iris recognition systems.

    PubMed

    Kang, Byung Jun; Park, Kang Ryoung

    2007-12-01

    In the field of biometrics, it has been reported that iris recognition techniques have shown high levels of accuracy because unique patterns of the human iris, which has very many degrees of freedom, are used. However, because conventional iris cameras have small depth-of-field (DOF) areas, input iris images can easily be blurred, which can lead to lower recognition performance, since iris patterns are transformed by the blurring caused by optical defocusing. To overcome these problems, an autofocusing camera can be used. However, this inevitably increases the cost, size, and complexity of the system. Therefore, we propose a new real-time iris image-restoration method, which can increase the camera's DOF without requiring any additional hardware. This paper presents five novelties as compared to previous works: 1) by excluding eyelash and eyelid regions, it is possible to obtain more accurate focus scores from input iris images; 2) the parameter of the point spread function (PSF) can be estimated in terms of camera optics and measured focus scores; therefore, parameter estimation is more accurate than it has been in previous research; 3) because the PSF parameter can be obtained by using a predetermined equation, iris image restoration can be done in real-time; 4) by using a constrained least square (CLS) restoration filter that considers noise, performance can be greatly enhanced; and 5) restoration accuracy can also be enhanced by estimating the weight value of the noise-regularization term of the CLS filter according to the amount of image blurring. Experimental results showed that iris recognition errors when using the proposed restoration method were greatly reduced as compared to those results achieved without restoration or those achieved using previous iris-restoration methods.

  20. Memory monitoring by animals and humans

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Shields, W. E.; Allendoerfer, K. R.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)

    1998-01-01

    The authors asked whether animals and humans would use similarly an uncertain response to escape indeterminate memories. Monkeys and humans performed serial probe recognition tasks that produced differential memory difficulty across serial positions (e.g., primacy and recency effects). Participants were given an escape option that let them avoid any trials they wished and receive a hint to the trial's answer. Across species, across tasks, and even across conspecifics with sharper or duller memories, monkeys and humans used the escape option selectively when more indeterminate memory traces were probed. Their pattern of escaping always mirrored the pattern of their primary memory performance across serial positions. Signal-detection analyses confirm the similarity of the animals' and humans' performances. Optimality analyses assess their efficiency. Several aspects of monkeys' performance suggest the cognitive sophistication of their decisions to escape.

  1. Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns

    PubMed Central

    Noh, Soo Rim; Isaacowitz, Derek M.

    2014-01-01

    While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713

  2. Comparing the visual spans for faces and letters

    PubMed Central

    He, Yingchen; Scholz, Jennifer M.; Gage, Rachel; Kallie, Christopher S.; Liu, Tingting; Legge, Gordon E.

    2015-01-01

    The visual span—the number of adjacent text letters that can be reliably recognized on one fixation—has been proposed as a sensory bottleneck that limits reading speed (Legge, Mansfield, & Chung, 2001). Like reading, searching for a face is an important daily task that involves pattern recognition. Is there a similar limitation on the number of faces that can be recognized in a single fixation? Here we report on a study in which we measured and compared the visual-span profiles for letter and face recognition. A serial two-stage model for pattern recognition was developed to interpret the data. The first stage is characterized by factors limiting recognition of isolated letters or faces, and the second stage represents the interfering effect of nearby stimuli on recognition. Our findings show that the visual span for faces is smaller than that for letters. Surprisingly, however, when differences in first-stage processing for letters and faces are accounted for, the two visual spans become nearly identical. These results suggest that the concept of visual span may describe a common sensory bottleneck that underlies different types of pattern recognition. PMID:26129858

  3. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.

    PubMed

    Massé, Fabien; Gonzenbach, Roman R; Arami, Arash; Paraschiv-Ionescu, Anisoara; Luft, Andreas R; Aminian, Kamiar

    2015-08-25

    Stroke survivors often suffer from mobility deficits. Current clinical evaluation methods, including questionnaires and motor function tests, cannot provide an objective measure of the patients' mobility in daily life. Physical activity performance in daily-life can be assessed using unobtrusive monitoring, for example with a single sensor module fixed on the trunk. Existing approaches based on inertial sensors have limited performance, particularly in detecting transitions between different activities and postures, due to the inherent inter-patient variability of kinematic patterns. To overcome these limitations, one possibility is to use additional information from a barometric pressure (BP) sensor. Our study aims at integrating BP and inertial sensor data into an activity classifier in order to improve the activity (sitting, standing, walking, lying) recognition and the corresponding body elevation (during climbing stairs or when taking an elevator). Taking into account the trunk elevation changes during postural transitions (sit-to-stand, stand-to-sit), we devised an event-driven activity classifier based on fuzzy-logic. Data were acquired from 12 stroke patients with impaired mobility, using a trunk-worn inertial and BP sensor. Events, including walking and lying periods and potential postural transitions, were first extracted. These events were then fed into a double-stage hierarchical Fuzzy Inference System (H-FIS). The first stage processed the events to infer activities and the second stage improved activity recognition by applying behavioral constraints. Finally, the body elevation was estimated using a pattern-enhancing algorithm applied on BP. The patients were videotaped for reference. The performance of the algorithm was estimated using the Correct Classification Rate (CCR) and F-score. The BP-based classification approach was benchmarked against a previously-published fuzzy-logic classifier (FIS-IMU) and a conventional epoch-based classifier (EPOCH). The algorithm performance for posture/activity detection, in terms of CCR was 90.4 %, with 3.3 % and 5.6 % improvements against FIS-IMU and EPOCH, respectively. The proposed classifier essentially benefits from a better recognition of standing activity (70.3 % versus 61.5 % [FIS-IMU] and 42.5 % [EPOCH]) with 98.2 % CCR for body elevation estimation. The monitoring and recognition of daily activities in mobility-impaired stoke patients can be significantly improved using a trunk-fixed sensor that integrates BP, inertial sensors, and an event-based activity classifier.

  4. Invariant-feature-based adaptive automatic target recognition in obscured 3D point clouds

    NASA Astrophysics Data System (ADS)

    Khuon, Timothy; Kershner, Charles; Mattei, Enrico; Alverio, Arnel; Rand, Robert

    2014-06-01

    Target recognition and classification in a 3D point cloud is a non-trivial process due to the nature of the data collected from a sensor system. The signal can be corrupted by noise from the environment, electronic system, A/D converter, etc. Therefore, an adaptive system with a desired tolerance is required to perform classification and recognition optimally. The feature-based pattern recognition algorithm architecture as described below is particularly devised for solving a single-sensor classification non-parametrically. Feature set is extracted from an input point cloud, normalized, and classifier a neural network classifier. For instance, automatic target recognition in an urban area would require different feature sets from one in a dense foliage area. The figure above (see manuscript) illustrates the architecture of the feature based adaptive signature extraction of 3D point cloud including LIDAR, RADAR, and electro-optical data. This network takes a 3D cluster and classifies it into a specific class. The algorithm is a supervised and adaptive classifier with two modes: the training mode and the performing mode. For the training mode, a number of novel patterns are selected from actual or artificial data. A particular 3D cluster is input to the network as shown above for the decision class output. The network consists of three sequential functional modules. The first module is for feature extraction that extracts the input cluster into a set of singular value features or feature vector. Then the feature vector is input into the feature normalization module to normalize and balance it before being fed to the neural net classifier for the classification. The neural net can be trained by actual or artificial novel data until each trained output reaches the declared output within the defined tolerance. In case new novel data is added after the neural net has been learned, the training is then resumed until the neural net has incrementally learned with the new novel data. The associative memory capability of the neural net enables the incremental learning. The back propagation algorithm or support vector machine can be utilized for the classification and recognition.

  5. Encoding-related brain activity dissociates between the recollective processes underlying successful recall and recognition: a subsequent-memory study.

    PubMed

    Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan

    2012-07-01

    The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Tensor Rank Preserving Discriminant Analysis for Facial Recognition.

    PubMed

    Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo

    2017-10-12

    Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.

  7. Recognition of Telugu characters using neural networks.

    PubMed

    Sukhaswami, M B; Seetharamulu, P; Pujari, A K

    1995-09-01

    The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.

  8. Neural correlates of incidental memory in mild cognitive impairment: an fMRI study.

    PubMed

    Mandzia, Jennifer L; McAndrews, Mary Pat; Grady, Cheryl L; Graham, Simon J; Black, Sandra E

    2009-05-01

    Behaviour and fMRI brain activation patterns were compared during encoding and recognition tasks in mild cognitive impairment (MCI) (n=14) and normal controls (NC) (n=14). Deep (natural vs. man-made) and shallow (color vs. black and white) decisions were made at encoding and pictures from each condition were presented for yes/no recognition 20 min later. MCI showed less inferior frontal activation during deep (left only) and superficial encoding (bilaterally) and in both medial temporal lobes (MTL). When performance was equivalent (recognition of words encoded superficially), MTL activation was similar for the two groups, but during recognition testing of deeply encoded items NC showed more activation in both prefrontal and left MTL region. In a region of interest analysis, the extent of activation during deep encoding in the parahippocampi bilaterally and in left hippocampus correlated with subsequent recognition accuracy for those items in controls but not in MCI, which may reflect the heterogeneity of activation responses in conjunction with different degrees of pathology burden and progression status in the MCI group.

  9. Continuous Chinese sign language recognition with CNN-LSTM

    NASA Astrophysics Data System (ADS)

    Yang, Su; Zhu, Qing

    2017-07-01

    The goal of sign language recognition (SLR) is to translate the sign language into text, and provide a convenient tool for the communication between the deaf-mute and the ordinary. In this paper, we formulate an appropriate model based on convolutional neural network (CNN) combined with Long Short-Term Memory (LSTM) network, in order to accomplish the continuous recognition work. With the strong ability of CNN, the information of pictures captured from Chinese sign language (CSL) videos can be learned and transformed into vector. Since the video can be regarded as an ordered sequence of frames, LSTM model is employed to connect with the fully-connected layer of CNN. As a recurrent neural network (RNN), it is suitable for sequence learning tasks with the capability of recognizing patterns defined by temporal distance. Compared with traditional RNN, LSTM has performed better on storing and accessing information. We evaluate this method on our self-built dataset including 40 daily vocabularies. The experimental results show that the recognition method with CNN-LSTM can achieve a high recognition rate with small training sets, which will meet the needs of real-time SLR system.

  10. Processing Electromyographic Signals to Recognize Words

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Lee, D. D.

    2009-01-01

    A recently invented speech-recognition method applies to words that are articulated by means of the tongue and throat muscles but are otherwise not voiced or, at most, are spoken sotto voce. This method could satisfy a need for speech recognition under circumstances in which normal audible speech is difficult, poses a hazard, is disturbing to listeners, or compromises privacy. The method could also be used to augment traditional speech recognition by providing an additional source of information about articulator activity. The method can be characterized as intermediate between (1) conventional speech recognition through processing of voice sounds and (2) a method, not yet developed, of processing electroencephalographic signals to extract unspoken words directly from thoughts. This method involves computational processing of digitized electromyographic (EMG) signals from muscle innervation acquired by surface electrodes under a subject's chin near the tongue and on the side of the subject s throat near the larynx. After preprocessing, digitization, and feature extraction, EMG signals are processed by a neural-network pattern classifier, implemented in software, that performs the bulk of the recognition task as described.

  11. Effect of Context and Hearing Loss on Time-Gated Word Recognition in Children.

    PubMed

    Lewis, Dawna; Kopun, Judy; McCreery, Ryan; Brennan, Marc; Nishi, Kanae; Cordrey, Evan; Stelmachowicz, Pat; Moeller, Mary Pat

    The purpose of this study was to examine word recognition in children who are hard of hearing (CHH) and children with normal hearing (CNH) in response to time-gated words presented in high- versus low-predictability sentences (HP, LP), where semantic cues were manipulated. Findings inform our understanding of how CHH combine cognitive-linguistic and acoustic-phonetic cues to support spoken word recognition. It was hypothesized that both groups of children would be able to make use of linguistic cues provided by HP sentences to support word recognition. CHH were expected to require greater acoustic information (more gates) than CNH to correctly identify words in the LP condition. In addition, it was hypothesized that error patterns would differ across groups. Sixteen CHH with mild to moderate hearing loss and 16 age-matched CNH participated (5 to 12 years). Test stimuli included 15 LP and 15 HP age-appropriate sentences. The final word of each sentence was divided into segments and recombined with the sentence frame to create series of sentences in which the final word was progressively longer by the gated increments. Stimuli were presented monaurally through headphones and children were asked to identify the target word at each successive gate. They also were asked to rate their confidence in their word choice using a five- or three-point scale. For CHH, the signals were processed through a hearing aid simulator. Standardized language measures were used to assess the contribution of linguistic skills. Analysis of language measures revealed that the CNH and CHH performed within the average range on language abilities. Both groups correctly recognized a significantly higher percentage of words in the HP condition than in the LP condition. Although CHH performed comparably with CNH in terms of successfully recognizing the majority of words, differences were observed in the amount of acoustic-phonetic information needed to achieve accurate word recognition. CHH needed more gates than CNH to identify words in the LP condition. CNH were significantly lower in rating their confidence in the LP condition than in the HP condition. CHH, however, were not significantly different in confidence between the conditions. Error patterns for incorrect word responses across gates and predictability varied depending on hearing status. The results of this study suggest that CHH with age-appropriate language abilities took advantage of context cues in the HP sentences to guide word recognition in a manner similar to CNH. However, in the LP condition, they required more acoustic information (more gates) than CNH for word recognition. Differences in the structure of incorrect word responses and their nomination patterns across gates for CHH compared with their peers with NH suggest variations in how these groups use limited acoustic information to select word candidates.

  12. Addressing the issue of insufficient information in data-based bridge health monitoring : final report.

    DOT National Transportation Integrated Search

    2015-11-01

    One of the most efficient ways to solve the damage detection problem using the statistical pattern recognition : approach is that of exploiting the methods of outlier analysis. Cast within the pattern recognition framework, : damage detection assesse...

  13. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    PubMed

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  14. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  15. Acute behavioural comparisons of toluene and ethanol in human subjects.

    PubMed

    Echeverria, D; Fine, L; Langolf, G; Schork, T; Sampaio, C

    1991-11-01

    A comparison of toluene and ethanol (EtOH) induced changes in central nervous system (CNS) function and symptoms were evaluated in two studies, and when possible the effects of toluene were expressed in EtOH equivalent units. The toluene concentrations were 0, 75, and 150 ppm, bracketing the American Conference of Governmental Industrial Hygienists threshold limit value (ACGIH TLV) of 100 ppm. The socially relevant EtOH doses were 0.00, 0.33, and 0.66 g EtOH/kg body weight, equivalent to two and four 3.5% 12 ounce beers. Forty two paid college students were used in each study. In the first study, subjects were exposed to toluene and an odour masking agent menthol (0.078 ppm) for seven hours over three days. In the second study EtOH or a placebo was administered at 1530 across three days also in the presence of menthol. Verbal and visual short term memory (Sternberg, digit span, Benton, pattern memory), perception (pattern recognition), psychomotor skill (simple reaction time, continuous performance, symbol-digit, hand-eye coordination, finger tapping, and critical tracking), manual dexterity (one hole), mood (profile on mood scales (POMS), fatigue (fatigue checklist), and verbal ability were evaluated at 0800, 1200, and 1600. Voluntary symptoms and observations of sleep were collected daily. A 3 x 3 latin square design evaluated solvent effects simultaneously controlling for learning and dose sequence. An analysis of variance and test for trend were performed on am-pm differences reflecting an eight hour workday and on pm scores for each solvent, in which subjects were their own control Intersubject variation in absorbance was monitored in breath. A 5 to 10% decrement was considered meaningful if consistent with a linear trend at p less than 0.05. At 150 ppm toluene, losses in performance were 6.0% for digit span, 12.1% for pattern recognition (latency), 5% for pattern memory (number correct), 6.5% for one hole, and 3% for critical tracking. The number of headaches and eye irritation also increased in a dose-response manner. The greatest effect was found for an increasing number of observations of sleep. A range of 2 to 7% decrements suggest the ACGIH TLV of 100 ppm toluene may be a good estimate of the biological threshold supporting a re-evaluation of the TLV. At 0.66 g EtOH/kg body weight symptoms and performance decrements were 6.6% for digit span, 9.2% for pattern recognition, 4.0% for continuous performance, 7.9% for symbol-digit, 16.5% for finger tapping, 6.2% for critical tracking, and 5.2% for the one hole test. The EtOH equivalents at 150 ppm toluene for digit span (0.56g EtOH/kg/body weight), the latency for pattern recognition (0.66 g EtOH kg body weight), and the one hole element "move" (0.37 g EtOH kg body weight) show that the first two measures would be affected at or above the 50 mg% blood alcohol concentration. This concentration is recognised as the lowest alcohol concentration associated with increased numbers of automobile accidents. The results suggest that EtOH may be a useful acute standard to compare the effects of various industrial solvents and support investigating an association between exposure to solvents and increased risk to safety in industry.

  16. Affect recognition across manic and euthymic phases of bipolar disorder in Han-Chinese patients.

    PubMed

    Pan, Yi-Ju; Tseng, Huai-Hsuan; Liu, Shi-Kai

    2013-11-01

    Patients with bipolar disorder (BD) have affect recognition deficits. Whether affect recognition deficits constitute a state or trait marker of BD has great etiopathological significance. The current study aims to explore the interrelationships between affect recognition and basic neurocognitive functions for patients with BD across different mood states, using the Diagnostic Analysis of Non-Verbal Accuracy-2, Taiwanese version (DANVA-2-TW) as the index measure for affect recognition. To our knowledge, this is the first study examining affect recognition deficits of BPD across mood states in the Han Chinese population. Twenty-nine manic patients, 16 remitted patients with BD, and 40 control subjects are included in the study. Distinct association patterns between affect recognition and neurocognitive functions are demonstrated for patients with BD and control subjects, implicating alternations in emotion associated neurocognitive processing. Compared to control subjects, manic patients but not remitted subjects perform significantly worse in the recognition of negative emotions as a whole and specifically anger, after adjusting for differences in general intellectual ability and basic neurocognitive functions. Affect recognition deficit may be a relatively independent impairment in BD rather than consequences arising from deficits in other basic neurocognition. The impairments of manic patients in the recognition of negative emotions, specifically anger, may further our understanding of core clinical psychopathology of BD and have implications in treating bipolar patients across distinct mood phases. © 2013 Elsevier B.V. All rights reserved.

  17. Homology modeling, molecular dynamics, and docking studies of pattern-recognition transmembrane protein-lipopolysaccharide and β-1,3 glucan-binding protein from Fenneropenaeus indicus.

    PubMed

    Sivakamavalli, Jeyachandran; Tripathi, Sunil Kumar; Singh, Sanjeev Kumar; Vaseeharan, Baskaralingam

    2015-01-01

    Lipopolysaccharide and β-1,3 glucan-binding protein (LGBP) is a family of pattern-recognition transmembrane proteins (PRPs) which plays a vital role in the immune mechanism of crustaceans in adverse conditions. Fenneropenaeus indicus LGBP-deduced amino acid has conserved potential recognition motif for β-1,3 linkages of polysaccharides and putative RGD (Arg-Gly-Asp) cell adhesion sites for the activation of innate defense mechanism. In order to understand the stimulating activity of β-1,3 glucan (β-glucan) and its interaction with LGBP, a 3D model of LGBP is generated. Molecular docking is performed with this model, and the results indicate Arg71 with strong hydrogen bond from RGD domain of LGBP. Moreover, from the docking studies, we also suggest that Arg34, Lys68, Val135, and Ala146 in LGBP are important amino acid residues in binding as they have strong bonding interaction in the active site of LGBP. In our in vitro studies, yeast agglutination results suggest that shrimp F. indicus LGBP possesses sugar binding and recognition sites in its structure, which is responsible for agglutination reaction. Our results were synchronized with the already reported evidence both in vivo and in vitro experiments. This investigation may be valuable for further experimental investigation in the synthesis of novel immunomodulator.

  18. Improving visual memory, attention, and school function with atomoxetine in boys with attention-deficit/hyperactivity disorder.

    PubMed

    Shang, Chi-Yung; Gau, Susan Shur-Fen

    2012-10-01

    Atomoxetine is efficacious in reducing symptoms of attention- deficit/hyperactivity disorder (ADHD), but its effect on visual memory and attention needs more investigation. This study aimed to assess the effect of atomoxetine on visual memory, attention, and school function in boys with ADHD in Taiwan. This was an open-label 12 week atomoxetine treatment trial among 30 drug-naíve boys with ADHD, aged 8-16 years. Before administration of atomoxetine, the participants were assessed using psychiatric interviews, the Wechsler Intelligence Scale for Children, 3rd edition (WISC-III), the school function of the Chinese version of the Social Adjustment Inventory for Children and Adolescents (SAICA), the Conners' Continuous Performance Test (CPT), and the tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB) involving visual memory and attention: Pattern Recognition Memory, Spatial Recognition Memory, and Reaction Time, which were reassessed at weeks 4 and 12. Our results showed there was significant improvement in pattern recognition memory and spatial recognition memory as measured by the CANTAB tasks, sustained attention and response inhibition as measured by the CPT, and reaction time as measured by the CANTAB after treatment with atomoxetine for 4 weeks or 12 weeks. In addition, atomoxetine significantly enhanced school functioning in children with ADHD. Our findings suggested that atomoxetine was associated with significant improvement in visual memory, attention, and school functioning in boys with ADHD.

  19. Older and Wiser: Older Adults’ Episodic Word Memory Benefits from Sentence Study Contexts

    PubMed Central

    Matzen, Laura E.; Benjamin, Aaron S.

    2013-01-01

    A hallmark of adaptive cognition is the ability to modulate learning in response to the demands posed by different types of tests and different types of materials. Here we evaluate how older adults process words and sentences differently by examining patterns of memory errors. In two experiments, we explored younger and older adults’ sensitivity to lures on a recognition test following study of words in these two types of contexts. Among the studied words were compound words such as “blackmail” and “jailbird” that were related to conjunction lures (e.g. “blackbird”) and semantic lures (e.g. “criminal”). Participants engaged in a recognition test that included old items, conjunction lures, semantic lures, and unrelated new items. In both experiments, younger and older adults had the same general pattern of memory errors: more incorrect endorsements of semantic than conjunction lures following sentence study and more incorrect endorsements of conjunction than semantic lures following list study. The similar pattern reveals that older and younger adults responded to the constraints of the two different study contexts in similar ways. However, while younger and older adults showed similar levels of memory performance for the list study context, the sentence study context elicited superior memory performance in the older participants. It appears as though memory tasks that take advantage of greater expertise in older adults--in this case, greater experience with sentence processing--can reveal superior memory performance in the elderly. PMID:23834493

  20. Capturing specific abilities as a window into human individuality: the example of face recognition.

    PubMed

    Wilmer, Jeremy B; Germine, Laura; Chabris, Christopher F; Chatterjee, Garga; Gerbasi, Margaret; Nakayama, Ken

    2012-01-01

    Proper characterization of each individual's unique pattern of strengths and weaknesses requires good measures of diverse abilities. Here, we advocate combining our growing understanding of neural and cognitive mechanisms with modern psychometric methods in a renewed effort to capture human individuality through a consideration of specific abilities. We articulate five criteria for the isolation and measurement of specific abilities, then apply these criteria to face recognition. We cleanly dissociate face recognition from more general visual and verbal recognition. This dissociation stretches across ability as well as disability, suggesting that specific developmental face recognition deficits are a special case of a broader specificity that spans the entire spectrum of human face recognition performance. Item-by-item results from 1,471 web-tested participants, included as supplementary information, fuel item analyses, validation, norming, and item response theory (IRT) analyses of our three tests: (a) the widely used Cambridge Face Memory Test (CFMT); (b) an Abstract Art Memory Test (AAMT), and (c) a Verbal Paired-Associates Memory Test (VPMT). The availability of this data set provides a solid foundation for interpreting future scores on these tests. We argue that the allied fields of experimental psychology, cognitive neuroscience, and vision science could fuel the discovery of additional specific abilities to add to face recognition, thereby providing new perspectives on human individuality.

  1. Quantum pattern recognition with multi-neuron interactions

    NASA Astrophysics Data System (ADS)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  2. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  3. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology

    PubMed Central

    Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang

    2017-01-01

    The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved. PMID:28106806

  4. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology.

    PubMed

    Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang

    2017-01-18

    The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.

  5. Knowledge Discovery from Vibration Measurements

    PubMed Central

    Li, Jian; Wang, Daoyao

    2014-01-01

    The framework as well as the particular algorithms of pattern recognition process is widely adopted in structural health monitoring (SHM). However, as a part of the overall process of knowledge discovery from data bases (KDD), the results of pattern recognition are only changes and patterns of changes of data features. In this paper, based on the similarity between KDD and SHM and considering the particularity of SHM problems, a four-step framework of SHM is proposed which extends the final goal of SHM from detecting damages to extracting knowledge to facilitate decision making. The purposes and proper methods of each step of this framework are discussed. To demonstrate the proposed SHM framework, a specific SHM method which is composed by the second order structural parameter identification, statistical control chart analysis, and system reliability analysis is then presented. To examine the performance of this SHM method, real sensor data measured from a lab size steel bridge model structure are used. The developed four-step framework of SHM has the potential to clarify the process of SHM to facilitate the further development of SHM techniques. PMID:24574933

  6. A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics.

    PubMed

    Freeman, Walter J

    2008-01-01

    Computational models of brain dynamics fall short of performance in speed and robustness of pattern recognition in detecting minute but highly significant pattern fragments. A novel model employs the properties of thermodynamic systems operating far from equilibrium, which is analyzed by linearization near adaptive operating points using root locus techniques. Such systems construct order by dissipating energy. Reinforcement learning of conditioned stimuli creates a landscape of attractors and their basins in each sensory cortex by forming nerve cell assemblies in cortical connectivity. Retrieval of a selected category of stored knowledge is by a phase transition that is induced by a conditioned stimulus, and that leads to pattern self-organization. Near self-regulated criticality the cortical background activity displays aperiodic null spikes at which analytic amplitude nears zero, and which constitute a form of Rayleigh noise. Phase transitions in recognition and recall are initiated at null spikes in the presence of an input signal, owing to the high signal-to-noise ratio that facilitates capture of cortex by an attractor, even by very weak activity that is typically evoked by a conditioned stimulus.

  7. Enhanced iris recognition method based on multi-unit iris images

    NASA Astrophysics Data System (ADS)

    Shin, Kwang Yong; Kim, Yeong Gon; Park, Kang Ryoung

    2013-04-01

    For the purpose of biometric person identification, iris recognition uses the unique characteristics of the patterns of the iris; that is, the eye region between the pupil and the sclera. When obtaining an iris image, the iris's image is frequently rotated because of the user's head roll toward the left or right shoulder. As the rotation of the iris image leads to circular shifting of the iris features, the accuracy of iris recognition is degraded. To solve this problem, conventional iris recognition methods use shifting of the iris feature codes to perform the matching. However, this increases the computational complexity and level of false acceptance error. To solve these problems, we propose a novel iris recognition method based on multi-unit iris images. Our method is novel in the following five ways compared with previous methods. First, to detect both eyes, we use Adaboost and a rapid eye detector (RED) based on the iris shape feature and integral imaging. Both eyes are detected using RED in the approximate candidate region that consists of the binocular region, which is determined by the Adaboost detector. Second, we classify the detected eyes into the left and right eyes, because the iris patterns in the left and right eyes in the same person are different, and they are therefore considered as different classes. We can improve the accuracy of iris recognition using this pre-classification of the left and right eyes. Third, by measuring the angle of head roll using the two center positions of the left and right pupils, detected by two circular edge detectors, we obtain the information of the iris rotation angle. Fourth, in order to reduce the error and processing time of iris recognition, adaptive bit-shifting based on the measured iris rotation angle is used in feature matching. Fifth, the recognition accuracy is enhanced by the score fusion of the left and right irises. Experimental results on the iris open database of low-resolution images showed that the averaged equal error rate of iris recognition using the proposed method was 4.3006%, which is lower than that of other methods.

  8. Tone classification of syllable-segmented Thai speech based on multilayer perception

    NASA Astrophysics Data System (ADS)

    Satravaha, Nuttavudh; Klinkhachorn, Powsiri; Lass, Norman

    2002-05-01

    Thai is a monosyllabic tonal language that uses tone to convey lexical information about the meaning of a syllable. Thus to completely recognize a spoken Thai syllable, a speech recognition system not only has to recognize a base syllable but also must correctly identify a tone. Hence, tone classification of Thai speech is an essential part of a Thai speech recognition system. Thai has five distinctive tones (``mid,'' ``low,'' ``falling,'' ``high,'' and ``rising'') and each tone is represented by a single fundamental frequency (F0) pattern. However, several factors, including tonal coarticulation, stress, intonation, and speaker variability, affect the F0 pattern of a syllable in continuous Thai speech. In this study, an efficient method for tone classification of syllable-segmented Thai speech, which incorporates the effects of tonal coarticulation, stress, and intonation, as well as a method to perform automatic syllable segmentation, were developed. Acoustic parameters were used as the main discriminating parameters. The F0 contour of a segmented syllable was normalized by using a z-score transformation before being presented to a tone classifier. The proposed system was evaluated on 920 test utterances spoken by 8 speakers. A recognition rate of 91.36% was achieved by the proposed system.

  9. A Spiking Neural Network System for Robust Sequence Recognition.

    PubMed

    Yu, Qiang; Yan, Rui; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2016-03-01

    This paper proposes a biologically plausible network architecture with spiking neurons for sequence recognition. This architecture is a unified and consistent system with functional parts of sensory encoding, learning, and decoding. This is the first systematic model attempting to reveal the neural mechanisms considering both the upstream and the downstream neurons together. The whole system is a consistent temporal framework, where the precise timing of spikes is employed for information processing and cognitive computing. Experimental results show that the system is competent to perform the sequence recognition, being robust to noisy sensory inputs and invariant to changes in the intervals between input stimuli within a certain range. The classification ability of the temporal learning rule used in the system is investigated through two benchmark tasks that outperform the other two widely used learning rules for classification. The results also demonstrate the computational power of spiking neurons over perceptrons for processing spatiotemporal patterns. In summary, the system provides a general way with spiking neurons to encode external stimuli into spatiotemporal spikes, to learn the encoded spike patterns with temporal learning rules, and to decode the sequence order with downstream neurons. The system structure would be beneficial for developments in both hardware and software.

  10. Log-Gabor Weber descriptor for face recognition

    NASA Astrophysics Data System (ADS)

    Li, Jing; Sang, Nong; Gao, Changxin

    2015-09-01

    The Log-Gabor transform, which is suitable for analyzing gradually changing data such as in iris and face images, has been widely used in image processing, pattern recognition, and computer vision. In most cases, only the magnitude or phase information of the Log-Gabor transform is considered. However, the complementary effect taken by combining magnitude and phase information simultaneously for an image-feature extraction problem has not been systematically explored in the existing works. We propose a local image descriptor for face recognition, called Log-Gabor Weber descriptor (LGWD). The novelty of our LGWD is twofold: (1) to fully utilize the information from the magnitude or phase feature of multiscale and orientation Log-Gabor transform, we apply the Weber local binary pattern operator to each transform response. (2) The encoded Log-Gabor magnitude and phase information are fused at the feature level by utilizing kernel canonical correlation analysis strategy, considering that feature level information fusion is effective when the modalities are correlated. Experimental results on the AR, Extended Yale B, and UMIST face databases, compared with those available from recent experiments reported in the literature, show that our descriptor yields a better performance than state-of-the art methods.

  11. Incoherent optical generalized Hough transform: pattern recognition and feature extraction applications

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Ferrari, José A.

    2017-05-01

    Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.

  12. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  13. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  14. Genetic dissection of the maize (Zea mays L.) MAMP response

    USDA-ARS?s Scientific Manuscript database

    Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors (PRRs). Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and ex...

  15. The Functional Architecture of Visual Object Recognition

    DTIC Science & Technology

    1991-07-01

    different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying

  16. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    DOT National Transportation Integrated Search

    2009-01-01

    This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...

  17. Spatial pattern recognition of seismic events in South West Colombia

    NASA Astrophysics Data System (ADS)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  18. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends.

    PubMed

    Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri

    2014-05-01

    Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.

  19. REM sleep and emotional face memory in typically-developing children and children with autism.

    PubMed

    Tessier, Sophie; Lambert, Andréane; Scherzer, Peter; Jemel, Boutheina; Godbout, Roger

    2015-09-01

    Relationship between REM sleep and memory was assessed in 13 neurotypical and 13 children with Autistic Spectrum Disorder (ASD). A neutral/positive/negative face recognition task was administered the evening before (learning and immediate recognition) and the morning after (delayed recognition) sleep. The number of rapid eye movements (REMs), beta and theta EEG activity over the visual areas were measured during REM sleep. Compared to neurotypical children, children with ASD showed more theta activity and longer reaction time (RT) for correct responses in delayed recognition of neutral faces. Both groups showed a positive correlation between sleep and performance but different patterns emerged: in neurotypical children, accuracy for recalling neutral faces and overall RT improvement overnight was correlated with EEG activity and REMs; in children with ASD, overnight RT improvement for positive and negative faces correlated with theta and beta activity, respectively. These results suggest that neurotypical and children with ASD use different sleep-related brain networks to process faces. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods

    NASA Astrophysics Data System (ADS)

    Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.

    2016-01-01

    According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.

  1. Rats Fed a Diet Rich in Fats and Sugars Are Impaired in the Use of Spatial Geometry.

    PubMed

    Tran, Dominic M D; Westbrook, R Frederick

    2015-12-01

    A diet rich in fats and sugars is associated with cognitive deficits in people, and rodent models have shown that such a diet produces deficits on tasks assessing spatial learning and memory. Spatial navigation is guided by two distinct types of information: geometrical, such as distance and direction, and featural, such as luminance and pattern. To clarify the nature of diet-induced spatial impairments, we provided rats with standard chow supplemented with sugar water and a range of energy-rich foods eaten by people, and then we assessed their place- and object-recognition memory. Rats exposed to this diet performed comparably with control rats fed only chow on object recognition but worse on place recognition. This impairment on the place-recognition task was present after only a few days on the diet and persisted across tests. Critically, this spatial impairment was specific to the processing of distance and direction. © The Author(s) 2015.

  2. Autonomous learning in gesture recognition by using lobe component analysis

    NASA Astrophysics Data System (ADS)

    Lu, Jian; Weng, Juyang

    2007-02-01

    Gesture recognition is a new human-machine interface method implemented by pattern recognition(PR).In order to assure robot safety when gesture is used in robot control, it is required to implement the interface reliably and accurately. Similar with other PR applications, 1) feature selection (or model establishment) and 2) training from samples, affect the performance of gesture recognition largely. For 1), a simple model with 6 feature points at shoulders, elbows, and hands, is established. The gestures to be recognized are restricted to still arm gestures, and the movement of arms is not considered. These restrictions are to reduce the misrecognition, but are not so unreasonable. For 2), a new biological network method, called lobe component analysis(LCA), is used in unsupervised learning. Lobe components, corresponding to high-concentrations in probability of the neuronal input, are orientation selective cells follow Hebbian rule and lateral inhibition. Due to the advantage of LCA method for balanced learning between global and local features, large amount of samples can be used in learning efficiently.

  3. Guidelines proposal for clinical recognition of mouth breathing children.

    PubMed

    Pacheco, Maria Christina Thomé; Casagrande, Camila Ferreira; Teixeira, Lícia Pacheco; Finck, Nathalia Silveira; de Araújo, Maria Teresa Martins

    2015-01-01

    Mouth breathing (MB) is an etiological factor for sleep-disordered breathing (SDB) during childhood. The habit of breathing through the mouth may be perpetuated even after airway clearance. Both habit and obstruction may cause facial muscle imbalance and craniofacial changes. The aim of this paper is to propose and test guidelines for clinical recognition of MB and some predisposing factors for SDB in children. Semi-structured interviews were conducted with 110 orthodontists regarding their procedures for clinical evaluation of MB and their knowledge about SDB during childhood. Thereafter, based on their answers, guidelines were developed and tested in 687 children aged between 6 and 12 years old and attending elementary schools. There was no standardization for clinical recognition of MB among orthodontists. The most common procedures performed were inefficient to recognize differences between MB by habit or obstruction. The guidelines proposed herein facilitate clinical recognition of MB, help clinicians to differentiate between habit and obstruction, suggest the most appropriate treatment for each case, and avoid maintenance of mouth breathing patterns during adulthood.

  4. Measurement of pattern recognition efficiency of tracks generated by ionizing radiation in a Medipix2 device

    NASA Astrophysics Data System (ADS)

    Bouchami, J.; Gutiérrez, A.; Holy, T.; Houdayer, A.; Jakůbek, J.; Lebel, C.; Leroy, C.; Macana, J.; Martin, J.-P.; Pospíšil, S.; Prak, S.; Sabella, P.; Teyssier, C.; CERN Medipix Collaboration

    2011-05-01

    Several experiments were performed to establish the Medipix2 device capabilities for track recognition and its efficiency at measuring fluxes. A Medipix2 device was exposed to 241Am, 106Ru and 137Cs radioactive sources, separately and simultaneously. It was also exposed to heavy particle beams (protons and alpha-particles), recoiled on a gold foil to reduce the incoming flux and allow the study of the detector response struck by incoming particles at different incidence angles. For three proton beams (400 keV, 4 and 10 MeV), the device was exposed to the radioactive sources on top of beam, giving a mixed radiation field. To test the reliability of track recognition with this device, the activities of the radioactive sources were extracted from the experimental data and compared to the expected activities. Rotation of the Medipix2 device allowed the test of the heavy tracks recognition at different incidence angles.

  5. Maximum mutual information estimation of a simplified hidden MRF for offline handwritten Chinese character recognition

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Reichenbach, Stephen E.

    1999-01-01

    Understanding of hand-written Chinese characters is at such a primitive stage that models include some assumptions about hand-written Chinese characters that are simply false. So Maximum Likelihood Estimation (MLE) may not be an optimal method for hand-written Chinese characters recognition. This concern motivates the research effort to consider alternative criteria. Maximum Mutual Information Estimation (MMIE) is an alternative method for parameter estimation that does not derive its rationale from presumed model correctness, but instead examines the pattern-modeling problem in automatic recognition system from an information- theoretic point of view. The objective of MMIE is to find a set of parameters in such that the resultant model allows the system to derive from the observed data as much information as possible about the class. We consider MMIE for recognition of hand-written Chinese characters using on a simplified hidden Markov Random Field. MMIE provides improved performance improvement over MLE in this application.

  6. Integrated Low-Rank-Based Discriminative Feature Learning for Recognition.

    PubMed

    Zhou, Pan; Lin, Zhouchen; Zhang, Chao

    2016-05-01

    Feature learning plays a central role in pattern recognition. In recent years, many representation-based feature learning methods have been proposed and have achieved great success in many applications. However, these methods perform feature learning and subsequent classification in two separate steps, which may not be optimal for recognition tasks. In this paper, we present a supervised low-rank-based approach for learning discriminative features. By integrating latent low-rank representation (LatLRR) with a ridge regression-based classifier, our approach combines feature learning with classification, so that the regulated classification error is minimized. In this way, the extracted features are more discriminative for the recognition tasks. Our approach benefits from a recent discovery on the closed-form solutions to noiseless LatLRR. When there is noise, a robust Principal Component Analysis (PCA)-based denoising step can be added as preprocessing. When the scale of a problem is large, we utilize a fast randomized algorithm to speed up the computation of robust PCA. Extensive experimental results demonstrate the effectiveness and robustness of our method.

  7. Computer Vision for Artificially Intelligent Robotic Systems

    NASA Astrophysics Data System (ADS)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  8. Study and response time for the visual recognition of 'similarity' and identity

    NASA Technical Reports Server (NTRS)

    Derks, P. L.; Bauer, T. M.

    1974-01-01

    Four subjects compared successively presented pairs of line patterns for a match between any lines in the pattern (similarity) and for a match between all lines (identity). The encoding or study times for pattern recognition from immediate memory and the latency in responses to comparison stimuli were examined. Qualitative differences within and between subjects were most evident in study times.

  9. Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Amador, Jose J (Inventor)

    2007-01-01

    A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.

  10. The chemical structure of DNA sequence signals for RNA transcription

    NASA Technical Reports Server (NTRS)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  11. An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.

    2003-01-01

    A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.

  12. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  13. Detection and recognition of analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor [Manassas, VA; Bailey, Charles L [Cross Junction, VA; Vsevolodov, Nikolai N [Kensington, MD; Elliott, Adam [Manassas, VA

    2008-05-06

    The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.

  14. Recognition of neural brain activity patterns correlated with complex motor activity

    NASA Astrophysics Data System (ADS)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  15. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline

    PubMed Central

    Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit

    2015-01-01

    Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927

  16. Peptidoglycan recognition proteins in Drosophila immunity.

    PubMed

    Kurata, Shoichiro

    2014-01-01

    Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition

    NASA Astrophysics Data System (ADS)

    Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.

    1993-03-01

    The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.

  18. Age-related increases in false recognition: the role of perceptual and conceptual similarity.

    PubMed

    Pidgeon, Laura M; Morcom, Alexa M

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499-510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.'s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous "old/new" responses at test, while in Experiment 2 participants were also asked to judge lures as "similar," to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.'s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation.

  19. Age-related increases in false recognition: the role of perceptual and conceptual similarity

    PubMed Central

    Pidgeon, Laura M.; Morcom, Alexa M.

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499–510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.’s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous “old/new” responses at test, while in Experiment 2 participants were also asked to judge lures as “similar,” to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.’s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation. PMID:25368576

  20. Dermoscopic patterns of Melanoma Metastases: inter-observer consistency and accuracy for metastases recognition

    PubMed Central

    Costa, J.; Ortiz-Ibañez, K.; Salerni, G.; Borges, V.; Carrera, C.; Puig, S.; Malvehy, J.

    2013-01-01

    Background Cutaneous metastases of malignant melanoma (CMMM) can be confused with other skin lesions. Dermoscopy could be helpful in the differential diagnosis. Objective To describe distinctive dermoscopic patterns that are reproducible and accurate in the identification of CMMM Methods A retrospective study of 146 dermoscopic images of CMMM from 42 patients attending a Melanoma Unit between 2002 and 2009 was performed. Firstly, two investigators established six dermoscopic patterns for CMMM. The correlation of 73 dermoscopic images with their distinctive patterns was assessed by four independent dermatologists to evaluate the reproducibility in the identification of the patterns. Finally, 163 dermoscopic images, including CMMM and non-metastatic lesions, were evaluated by the same four dermatologists to calculate the accuracy of the patterns in the recognition of CMMM. Results Five CMMM dermoscopic patterns had a good inter-observer agreement (blue nevus-like, nevus-like, angioma like, vascular and unspecific). When CMMM were classified according to these patterns, correlation between the investigators and the four dermatologists ranged from κ = 0.56 to 0.7. 71 CMMM, 16 angiomas, 22 blue nevus, 15 malignant melanoma, 11 seborrheic keratosis, 15 melanocytic nevus with globular pattern and 13 pink lesions with vascular pattern were evaluated according to the previously described CMMM dermoscopy patterns, showing an overall sensitivity of 68% (between 54.9–76%) and a specificity of 81% (between 68.6–93.5) for the diagnosis of CMMM. Conclusion Five dermoscopic patterns of CMMM with good inter-observer agreement obtained a high sensitivity and specificity in the diagnosis of metastasis, the accuracy varying according to the experience of the observer. PMID:23495915

  1. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  2. Enemy at the gates: traffic at the plant cell pathogen interface.

    PubMed

    Hoefle, Caroline; Hückelhoven, Ralph

    2008-12-01

    The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.

  3. Multi-modal gesture recognition using integrated model of motion, audio and video

    NASA Astrophysics Data System (ADS)

    Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko

    2015-07-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  4. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.

    PubMed

    Gordon-Salant, Sandra; Cole, Stacey Samuels

    2016-01-01

    This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening Span Test and Reading Span Test) and two tests of processing speed (Paced Auditory Serial Addition Test and The Letter Digit Substitution Test). Significant effects of age and working memory capacity were observed on the speech recognition measures in noise, but these effects were mediated somewhat by the speech signal. Specifically, main effects of age and working memory were revealed for both words and sentences, but the interaction between the two was significant for sentences only. For these materials, effects of age were observed for listeners in the low working memory groups only. Although all cognitive measures were significantly correlated with speech recognition in noise, working memory span was the most important variable accounting for speech recognition performance. The results indicate that older adults with high working memory capacity are able to capitalize on contextual cues and perform as well as young listeners with high working memory capacity for sentence recognition. The data also suggest that listeners with normal hearing and low working memory capacity are less able to adapt to distortion of speech signals caused by background noise, which requires the allocation of more processing resources to earlier processing stages. These results indicate that both younger and older adults with low working memory capacity and normal hearing are at a disadvantage for recognizing speech in noise.

  5. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    DOT National Transportation Integrated Search

    2009-04-28

    A study was conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information, such as electronic charts and moving map displays. The goal of this research is to support t...

  6. Analysis of chemical signals in red fire ants by gas chromatography and pattern recognition techniques

    USDA-ARS?s Scientific Manuscript database

    The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...

  7. Performance Measurement Of Mel Frequency Ceptral Coefficient (MFCC) Method In Learning System Of Al- Qur’an Based In Nagham Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Afrillia, Yesy; Mawengkang, Herman; Ramli, Marwan; Fadlisyah; Putra Fhonna, Rizky

    2017-12-01

    Most of research have used signal and speech processing in order to recognize makhraj pattern and tajwid reading in Al-Quran by exploring the mel frequency ceptral coefficient (MFCC). However, to our knowledge so far there is no research has been conducted to recognize the chanting of Al-Quran verse using MFCC. This term is also well-known as nagham Al-Quran. The characteristics of nagham Al-Quran pattern is much more complex then makhraj and tajwid pattern. In nagham the wave of the sound has more variation which implies the level of noice is much higher and has sound duration longer. The data testing in this research was taken term by real-time recording. The evaluation measurement in the system performance of nagham Al-Quran pattern is based on true and false detection parameter with accuracy 80%. To measure this accuracy it is necessary to modify the MFCC or to give more data learning process with more variation.

  8. Accelerometry-Based Activity Recognition and Assessment in Rheumatic and Musculoskeletal Diseases.

    PubMed

    Billiet, Lieven; Swinnen, Thijs Willem; Westhovens, Rene; de Vlam, Kurt; Van Huffel, Sabine

    2016-12-16

    One of the important aspects to be considered in rheumatic and musculoskeletal diseases is the patient's activity capacity (or performance), defined as the ability to perform a task. Currently, it is assessed by physicians or health professionals mainly by means of a patient-reported questionnaire, sometimes combined with the therapist's judgment on performance-based tasks. This work introduces an approach to assess the activity capacity at home in a more objective, yet interpretable way. It offers a pilot study on 28 patients suffering from axial spondyloarthritis (axSpA) to demonstrate its efficacy. Firstly, a protocol is introduced to recognize a limited set of six transition activities in the home environment using a single accelerometer. To this end, a hierarchical classifier with the rejection of non-informative activity segments has been developed drawing on both direct pattern recognition and statistical signal features. Secondly, the recognized activities should be assessed, similarly to the scoring performed by patients themselves. This is achieved through the interval coded scoring (ICS) system, a novel method to extract an interpretable scoring system from data. The activity recognition reaches an average accuracy of 93.5%; assessment is currently 64.3% accurate. These results indicate the potential of the approach; a next step should be its validation in a larger patient study.

  9. Childhood poverty is associated with altered hippocampal function and visuospatial memory in adulthood.

    PubMed

    Duval, Elizabeth R; Garfinkel, Sarah N; Swain, James E; Evans, Gary W; Blackburn, Erika K; Angstadt, Mike; Sripada, Chandra S; Liberzon, Israel

    2017-02-01

    Childhood poverty is a risk factor for poorer cognitive performance during childhood and adulthood. While evidence linking childhood poverty and memory deficits in adulthood has been accumulating, underlying neural mechanisms are unknown. To investigate neurobiological links between childhood poverty and adult memory performance, we used functional magnetic resonance imaging (fMRI) during a visuospatial memory task in healthy young adults with varying income levels during childhood. Participants were assessed at age 9 and followed through young adulthood to assess income and related factors. During adulthood, participants completed a visuospatial memory task while undergoing MRI scanning. Patterns of neural activation, as well as memory recognition for items, were assessed to examine links between brain function and memory performance as it relates to childhood income. Our findings revealed associations between item recognition, childhood income level, and hippocampal activation. Specifically, the association between hippocampal activation and recognition accuracy varied as a function of childhood poverty, with positive associations at higher income levels, and negative associations at lower income levels. These prospective findings confirm previous retrospective results detailing deleterious effects of childhood poverty on adult memory performance. In addition, for the first time, we identify novel neurophysiological correlates of these deficits localized to hippocampus activation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A steady state visually evoked potential investigation of memory and ageing.

    PubMed

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-04-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and latency associated with memory performance. Participants were 15 older (59-67 years) and 14 younger (20-30 years) adults who performed an object working memory (OWM) task and a contextual recognition memory (CRM) task, whilst the SSVEP was recorded from 64 electrode sites. Retention of a single object in the low demand OWM task was characterised by smaller frontal SSVEP amplitude and latency differences in older adults than in younger adults, indicative of an age-associated reduction in neural processes. Recognition of visual images in the more difficult CRM task was accompanied by larger, more sustained SSVEP amplitude and latency decreases over temporal parietal regions in older adults. In contrast, the more transient, frontally mediated pattern of activity demonstrated by younger adults suggests that younger and older adults utilize different neural resources to perform recognition judgements. The results provide support for compensatory processes in the aging brain; at lower task demands, older adults demonstrate reduced neural activity, whereas at greater task demands neural activity is increased.

  11. Information Theoretic Extraction of EEG Features for Monitoring Subject Attention

    NASA Technical Reports Server (NTRS)

    Principe, Jose C.

    2000-01-01

    The goal of this project was to test the applicability of information theoretic learning (feasibility study) to develop new brain computer interfaces (BCI). The difficulty to BCI comes from several aspects: (1) the effective data collection of signals related to cognition; (2) the preprocessing of these signals to extract the relevant information; (3) the pattern recognition methodology to detect reliably the signals related to cognitive states. We only addressed the two last aspects in this research. We started by evaluating an information theoretic measure of distance (Bhattacharyya distance) for BCI performance with good predictive results. We also compared several features to detect the presence of event related desynchronization (ERD) and synchronization (ERS), and concluded that at least for now the bandpass filtering is the best compromise between simplicity and performance. Finally, we implemented several classifiers for temporal - pattern recognition. We found out that the performance of temporal classifiers is superior to static classifiers but not by much. We conclude by stating that the future of BCI should be found in alternate approaches to sense, collect and process the signals created by populations of neurons. Towards this goal, cross-disciplinary teams of neuroscientists and engineers should be funded to approach BCIs from a much more principled view point.

  12. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    PubMed Central

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H. M.; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications. PMID:28744189

  13. Longitudinal patterns of semantic and episodic memory in frontotemporal lobar degeneration and Alzheimer's disease.

    PubMed

    Xie, Sharon X; Libon, David J; Wang, Xingmei; Massimo, Lauren; Moore, Peachie; Vesely, Luisa; Khan, Alea; Chatterjee, Anjan; Coslett, H Branch; Hurtig, Howard I; Liang, Tsao-Wei; Grossman, Murray

    2010-03-01

    The longitudinal assessment of episodic and semantic memory was obtained from 236 patients diagnosed with Alzheimer's disease (AD, n = 128) and with frontotemporal lobar degeneration (FTLD, n = 108), including patients with a social comportment/dysexecutive (SOC/EXEC) disorder, progressive nonfluent aphasia (PNFA), semantic dementia (SemD), and corticobasal syndrome (CBS). At the initial assessment, AD patients obtained a lower score on the delayed free recall test than other patients. Longitudinal analyses for delayed free recall found converging performance, with all patients reaching the same level of impairment as AD patients. On the initial evaluation for delayed recognition, AD patients also obtained lower scores than other groups. Longitudinal analyses for delayed recognition test performance found that AD patients consistently produced lower scores than other groups and no convergence between AD and other dementia groups was seen. For semantic memory, there were no initial between-group differences. However, longitudinal analyses for semantic memory revealed group differences over illness duration, with worse performance for SemD versus AD, PNFA, SOC/EXEC, and CBS patients. These data suggest the presence of specific longitudinal patterns of impairment for episodic and semantic memory in AD and FTLD patients suggesting that all forms of dementia do not necessarily converge into a single phenotype.

  14. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    PubMed

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  15. Learning effect of computerized cognitive tests in older adults

    PubMed Central

    de Oliveira, Rafaela Sanches; Trezza, Beatriz Maria; Busse, Alexandre Leopold; Jacob-Filho, Wilson

    2014-01-01

    ABSTRACT Objective: To evaluate the learning effect of computerized cognitive testing in the elderly. Methods: Cross-sectional study with 20 elderly, 10 women and 10 men, with average age of 77.5 (±4.28) years. The volunteers performed two series of computerized cognitive tests in sequence and their results were compared. The applied tests were: Trail Making A and B, Spatial Recognition, Go/No Go, Memory Span, Pattern Recognition Memory and Reverse Span. Results: Based on the comparison of the results, learning effects were observed only in the Trail Making A test (p=0.019). Other tests performed presented no significant performance improvements. There was no correlation between learning effect and age (p=0.337) and education (p=0.362), as well as differences between genders (p=0.465). Conclusion: The computerized cognitive tests repeated immediately afterwards, for elderly, revealed no change in their performance, with the exception of the Trail Making test, demonstrating high clinical applicability, even in short intervals. PMID:25003917

  16. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  17. Computer vision for microscopy diagnosis of malaria.

    PubMed

    Tek, F Boray; Dempster, Andrew G; Kale, Izzet

    2009-07-13

    This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  18. The Psychophysics of Algebra Expertise: Mathematics Perceptual Learning Interventions Produce Durable Encoding Changes

    ERIC Educational Resources Information Center

    Bufford, Carolyn A.; Mettler, Everett; Geller, Emma H.; Kellman, Philip J.

    2014-01-01

    Mathematics requires thinking but also pattern recognition. Recent research indicates that perceptual learning (PL) interventions facilitate discovery of structure and recognition of patterns in mathematical domains, as assessed by tests of mathematical competence. Here we sought direct evidence that a brief perceptual learning module (PLM)…

  19. Summary of 1971 pattern recognition program development

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1972-01-01

    Eight areas related to pattern recognition analysis at the Earth Resources Laboratory are discussed: (1) background; (2) Earth Resources Laboratory goals; (3) software problems/limitations; (4) operational problems/limitations; (5) immediate future capabilities; (6) Earth Resources Laboratory data analysis system; (7) general program needs and recommendations; and (8) schedule and milestones.

  20. Pattern Recognition by Retina-Like Devices.

    ERIC Educational Resources Information Center

    Weiman, Carl F. R.; Rothstein, Jerome

    This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…

Top