Science.gov

Sample records for perfused term human

  1. Long-term three-dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors.

    PubMed

    Schmelzer, Eva; Finoli, Anthony; Nettleship, Ian; Gerlach, Jörg C

    2015-04-01

    The construction and long-term maintenance of three-dimensional in vitro bone marrow models is of great interest but still quite challenging. Here we describe the use of a multi-compartment hollow-fiber membrane based three-dimensional perfusion bioreactor for long-term culture of whole human bone marrow mononuclear cells. We also investigated bioreactors with incorporated open-porous foamed hydroxyapatite scaffolds, mimicking the in vivo bone matrix. Cells in bioreactors with and without scaffolds were cultured to 6 weeks and compared to Petri dish controls. Cells were analyzed for gene expression, surface markers by flow cytometry, metabolic activity, hematopoietic potential, viability, and attachment by immunocytochemistry. Cells in bioreactors were metabolic active during long-term culture. The percentages of hematopoietic stem cell and mature endothelial cell fractions were maintained in bioreactors. The expression of most of the analyzed genes stabilized and increased after long-term culture of 6 weeks. Compared to Petri dish culture controls, bioreactor perfusion culture improved in both the short and long-term, the colony formation unit capacity of hematopoietic progenitors. Cells attached to the ample surface area provided by hydroxyapatite scaffolds. The implementation of a hydroxyapatite scaffold did not influence colony formation capacity, percentages of cell type specific fractions, gene expression, cell viability or metabolic turnover when compared to control cells cultured in bioreactors without scaffolds. In conclusion, three-dimensional perfusion bioreactor culture enables long-term maintenance of primary human bone marrow cells, with hydroxyapatite scaffolds providing an in vivo-like scaffold for three-dimensional culture. © 2015 Wiley Periodicals, Inc.

  2. Periodic "flow-stop" perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture.

    PubMed

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri; Levenberg, Shulamit

    2009-02-01

    The present study examines the use of automated periodic "flow-stop" perfusion systems for long-term culture of mammalian cells in a microchannel bioreactor. The method is used to culture Human Foreskin Fibroblasts (HFF) and Human Umbilical Vein Endothelial Cells (HUVEC) for long periods of time (>7 d) in a microchannel (height 100 mum). Design parameters, mass transport and shear stress issues are theoretically examined via numerical simulations. Cell growth and morphology are experimentally monitored and an enhanced growth rate was measured compared to constant perfusion micro-reactors and to traditional culture in Petri dishes. Moreover, we demonstrate the use of the method to co-culture undifferentiated colonies of human Embryonic Stem Cells (hESC) on HFF feeder cells in microchannels. The successful hESC-HFF co-culture in the microbioreactor is achieved due to two vital characteristics of the developed method-short temporal exposure to flow followed by long static incubation periods. The short pulsed exposure to shear enables shear sensitive cells (e.g., hESC) to withstand the medium renewal flow. The long static incubation period may enable secreted factors (e.g., feeder cells secreted factors) to accumulate locally. Thus the developed method may be suitable for long-term culture of sensitive multi-cellular complexes in microsystems.

  3. Long term perfusion system supporting adipogenesis

    PubMed Central

    Abbott, Rosalyn D.; Raja, Waseem K.; Wang, Rebecca Y.; Stinson, Jordan A.; Glettig, Dean L.; Burke, Kelly A.; Kaplan, David L.

    2015-01-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogensis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  4. Metabolic Characteristics of Human Hearts Preserved for 12 Hours by Static Storage, Antegrade Perfusion or Retrograde Coronary Sinus Perfusion

    PubMed Central

    Cobert, Michael L.; Merritt, Matthew E.; West, LaShondra M.; Ayers, Colby; Jessen, Michael E.; Peltz, Matthias

    2014-01-01

    Objective(s) Machine perfusion of donor hearts is a promising strategy to increase the donor pool. Antegrade perfusion is effective but can lead to aortic valve incompetence and non-nutrient flow. Experience with retrograde coronary sinus perfusion of donor hearts has been limited. We tested the hypothesis that retrograde perfusion could support myocardial metabolism over an extended donor ischemic interval. Methods Human hearts from donors rejected or not offered for transplantation were preserved for 12 hours in University of Wisconsin Machine Perfusion Solution by: 1. Static hypothermic storage 2. Hypothermic antegrade machine perfusion or 3. Hypothermic retrograde machine perfusion. Myocardial oxygen consumption (MVO2), and lactate accumulation were measured. Ventricular tissue was collected for proton (1H) and phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) to evaluate the metabolic state of the myocardium. Myocardial water content was determined at end-experiment. Results Stable perfusion parameters were maintained throughout the perfusion period with both perfusion techniques. Lactate/alanine ratios were lower in perfused hearts compared to static hearts (p<.001). Lactate accumulation (Antegrade 2.0±.7, Retrograde 1.7±.1 mM) and MVO2 (Antegrade 0.25±.2, Retrograde 0.26±.3 mL O2/min/100g) were similar in machine perfused groups. High energy phosphates were better preserved in both perfused groups (p<.05). Left ventricular myocardial water content was increased in retrograde perfused (80.2±.8%) compared to both antegrade perfused (76.6±.8%, p=.02) and static storage hearts (76.7±1%, p=.02). Conclusions In conclusion, machine perfusion by either the antegrade or the retrograde technique can support myocardial metabolism over long intervals. Machine perfusion appears promising for long term preservation of human donor hearts. PMID:24642559

  5. Effect of lipid composition of cationic SUV liposomes on materno-fetal transfer of warfarin across the perfused human term placenta.

    PubMed

    Bajoria, R; Sooranna, S; Chatterjee, R

    2013-12-01

    Use of drugs that cross the placenta freely are currently avoided during pregnancy. We investigated whether cationic small unilamellar (SUV) liposomes of different lipid compositions could prevent the transfer and uptake of warfarin across human term placenta. Cationic liposomes encapsulated warfarin was prepared by using lecithin (F-SUV) or sterylamine (S-SUV) with cholesterol and stearylamine. The size distribution, encapsulation efficiency, and stability were determined in blood-based media. The transfer kinetics of free and liposomally encapsulated warfarin were studied in a dually perfused isolated lobule of human term placenta with creatinine. Concentrations of warfarin were measured by fluorimetry. Data are expressed as % of initial dose added and given as mean ± sd. Warfarin crossed the placenta freely (14.9 ± 1.1%). Trans placental transfer of warfarin was significantly reduced by F-SUV (6.4 ± 0.6%; P < 0.001) and S-SUV liposomes (5.0 ± 0.8%; P < 0.001). Placental uptake of F-SUV (6.3 ± 1.7%; P < 0.001) was greater than that of S-SUV liposomes (2.2 ± 0.5%; P < 0.001). Our data suggest that cationic liposomes reduce trans placental transfer of warfarin. If confirmed "in vivo", liposomes might provide an alternative non-invasive method of drug delivery to the mother. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Transplacental transfer of nitrosodimethylamine in perfused human placenta.

    PubMed

    Annola, K; Heikkinen, A T; Partanen, H; Woodhouse, H; Segerbäck, D; Vähäkangas, K

    2009-03-01

    Nitrosodimethylamine (NDMA) is a carcinogenic compound present in tobacco smoke and food such as cured meat, smoked fish and beer. The O(6)-methylguanine formed in human cord blood in mothers highly exposed to such products implicates NDMA exposure of the fetus. Dual recirculating human placental perfusion was used to get direct evidence of the transplacental transfer of NDMA and DNA adduct formation in perfused human placenta. Eleven placentas from normal full-term pregnancies were collected immediately after delivery and an isolated lobule was perfused with 1 or 5 microM of (14)C-NDMA with a reference substance, antipyrine (0.1mg/ml) added to the maternal circulation. Perfusate samples were collected from both maternal and fetal circulations every half an hour for the first two hours and once per hour from thereon. NDMA was analyzed by scintillation counting and antipyrine by high performance liquid chromatography. The transfer of NDMA was comparable to that of antipyrine and probably occurred through passive diffusion, with the concentrations in maternal and fetal sides equilibrating in 2-3h. No indication of any effect by efflux transporters on NDMA kinetics was noticed in the experiments utilizing Caco-2 or MDCK- MDCKII-MDR1 cell culture monolayer in a transwell system, either. Furthermore, no NDMA-DNA-adducts were found after the perfusions and no DNA-binding of NDMA was seen in in vitro incubations with human placental microsomes from 8 additional placentas. Thus, our study demonstrates that the human fetus can be exposed to NDMA from the maternal circulation. According to this study and the literature, NDMA is not metabolized in full-term human placenta from healthy non-smoking, non-drinking mothers. It remains to be studied whether NDMA concentrations high enough to evoke fetal toxicity can be obtained from dietary sources.

  7. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta

    SciTech Connect

    Myllynen, Paeivi Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysae, Jaana; Pirilae, Rauna; Lastumaeki, Anni; Vaehaekangas, Kirsi H.

    2008-10-15

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of {sup 14}C-PhIP (2 {mu}M) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 {+-} 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of {sup 14}C-PhIP from maternal to fetal circulation (FM ratio 0.90 {+-} 0.08 at 6 h, p < 0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75 {+-} 0.10, p = 0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of {sup 14}C-PhIP (R = - 0.81, p < 0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: - 0.11, p = 0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of {sup 14}C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells.

  8. Perfused human organs versus Mary Shelley's Frankenstein.

    PubMed

    Leung, Lawrence

    2009-01-23

    Novel drugs have to go through mandatory pre-clinical testing before they can be approved for use in clinical trials. In essence, it is a form of bench-to-bedside (N2B) translational medicine, but the wastage rate of target candidates is immensely high. Effects seen in vitro often do not translate to in vivo human settings. The search is on for better models closer to human physiology to be used in pre-clinical drug screening. The Ex Vivo Metrics system has been introduced where a human organ is harvested and revitalized in a controlled environment suitable for testing of both drug efficacy and potential toxicity. This commentary expresses the author's views regarding this technology of perfused human organs.

  9. Perfused human organs versus Mary Shelley's Frankenstein

    PubMed Central

    Leung, Lawrence

    2009-01-01

    Novel drugs have to go through mandatory pre-clinical testing before they can be approved for use in clinical trials. In essence, it is a form of bench-to-bedside (N2B) translational medicine, but the wastage rate of target candidates is immensely high. Effects seen in vitro often do not translate to in vivo human settings. The search is on for better models closer to human physiology to be used in pre-clinical drug screening. The Ex Vivo Metrics© system has been introduced where a human organ is harvested and revitalized in a controlled environment suitable for testing of both drug efficacy and potential toxicity. This commentary expresses the author's views regarding this technology of perfused human organs. PMID:19166591

  10. Ventilation-perfusion matching in long-term microgravity

    NASA Technical Reports Server (NTRS)

    Verbandt, Y.; Wantier, M.; Prisk, G. K.; Paiva, M.; West, J. B. (Principal Investigator)

    2000-01-01

    We studied the ventilation-perfusion matching pattern in normal gravity (1 G) and short- and long-duration microgravity (microG) using the cardiogenic oscillations in the sulfur hexaflouride (SF(6)) and CO(2) concentration signals during the phase III portion of vital capacity single-breath washout experiments. The signal power of the cardiogenic concentration variations was assessed by spectral analysis, and the phase angle between the oscillations of the two simultaneously expired gases was obtained through cross-correlation. For CO(2), a significant reduction of cardiogenic power was observed in microG, with respect to 1 G, but the reduction was smaller and more variable in the case of SF(6). A shift from an in-phase condition in 1 G to an out-of-phase condition was found for both short- and long-duration microG. We conclude that, although the distribution of ventilation and perfusion becomes more homogeneous in microG, significant inhomogeneities persist and that areas of high perfusion become associated with areas of relatively lower ventilation. In addition, these modifications seem to remain constant during long-term exposure to microG.

  11. Ventilation-perfusion matching in long-term microgravity

    NASA Technical Reports Server (NTRS)

    Verbandt, Y.; Wantier, M.; Prisk, G. K.; Paiva, M.; West, J. B. (Principal Investigator)

    2000-01-01

    We studied the ventilation-perfusion matching pattern in normal gravity (1 G) and short- and long-duration microgravity (microG) using the cardiogenic oscillations in the sulfur hexaflouride (SF(6)) and CO(2) concentration signals during the phase III portion of vital capacity single-breath washout experiments. The signal power of the cardiogenic concentration variations was assessed by spectral analysis, and the phase angle between the oscillations of the two simultaneously expired gases was obtained through cross-correlation. For CO(2), a significant reduction of cardiogenic power was observed in microG, with respect to 1 G, but the reduction was smaller and more variable in the case of SF(6). A shift from an in-phase condition in 1 G to an out-of-phase condition was found for both short- and long-duration microG. We conclude that, although the distribution of ventilation and perfusion becomes more homogeneous in microG, significant inhomogeneities persist and that areas of high perfusion become associated with areas of relatively lower ventilation. In addition, these modifications seem to remain constant during long-term exposure to microG.

  12. In vitro perfused human capillary networks.

    PubMed

    Moya, Monica L; Hsu, Yu-Hsiang; Lee, Abraham P; Hughes, Christopher C W; George, Steven C

    2013-09-01

    Replicating in vitro the complex in vivo tissue microenvironment has the potential to transform our approach to medicine and also our understanding of biology. In order to accurately model the 3D arrangement and interaction of cells and extracellular matrix, new microphysiological systems must include a vascular supply. The vasculature not only provides the necessary convective transport of oxygen, nutrients, and waste in 3D culture, but also couples and integrates the responses of organ systems. Here we combine tissue engineering and microfluidic technology to create an in vitro 3D metabolically active stroma (∼1 mm(3)) that, for the first time, contains a perfused, living, dynamic, interconnected human capillary network. The range of flow rate (μm/s) and shear rate (s(-1)) within the network was 0-4000 and 0-1000, respectively, and thus included the normal physiological range. Infusion of FITC dextran demonstrated microvessels (15-50 μm) to be largely impermeable to 70 kDa. Our high-throughput biology-directed platform has the potential to impact a broad range of fields that intersect with the microcirculation, including tumor metastasis, drug discovery, vascular disease, and environmental chemical toxicity.

  13. Human males and females body thermoregulation: perfusion effect analysis.

    PubMed

    Acharya, Saraswati; Gurung, D B; Saxena, V P

    2014-10-01

    Skin temperature is a common physiological parameter that reflects thermal responses. Blood perfusion is an important part of the physiological processes that the human body undergoes in order to maintain homeostasis. This study focuses on the effect of perfusion on the temperature distribution in human males and females body in different thermal environment. The study has been carried out for one dimensional steady cases using finite element method. The input parameter of the model is the blood perfusion or volumetric flow rate within the tissue. The appropriate physical and physiological parameters together with suitable boundary conditions that affect the heat regulations have been incorporated in the model. The study is to have a better understanding that how does thermoregulation change in human males and females skin layered due to perfusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ex Situ Perfusion of Human Limb Allografts for 24 Hours.

    PubMed

    Werner, Nicole L; Alghanem, Fares; Rakestraw, Stephanie L; Sarver, Dylan C; Nicely, Bruce; Pietroski, Richard E; Lange, Paul; Rudich, Steven M; Mendias, Christopher L; Rojas-Pena, Alvaro; Magee, John C; Bartlett, Robert H; Ozer, Kagan

    2017-03-01

    Vascularized composite allografts, particularly hand and forearm, have limited ischemic tolerance after procurement. In bilateral hand transplantations, this demands a 2 team approach and expedited transfer of the allograft, limiting the recovery to a small geographic area. Ex situ perfusion may be an alternative allograft preservation method to extend allograft survival time. This is a short report of 5 human limbs maintained for 24 hours with ex situ perfusion. Upper limbs were procured from brain-dead organ donors. Following recovery, the brachial artery was cannulated and flushed with 10 000 U of heparin. The limb was then attached to a custom-made, near-normothermic (30-33°C) ex situ perfusion system composed of a pump, reservoir, and oxygenator. Perfusate was plasma-based with a hemoglobin concentration of 4 to 6 g/dL. Average warm ischemia time was 76 minutes. Perfusion was maintained at an average systolic pressure of 93 ± 2 mm Hg, flow 310 ± 20 mL/min, and vascular resistance 153 ± 16 mm Hg/L per minute. Average oxygen consumption was 1.1 ± 0.2 mL/kg per minute. Neuromuscular electrical stimulation continually displayed contraction until the end of perfusion, and histology showed no myocyte injury. Human limb allografts appeared viable after 24 hours of near-normothermic ex situ perfusion. Although these results are early and need validation with transplantation, this technology has promise for extending allograft storage times.

  15. The culture of human embryonic stem cells in microchannel perfusion bioreactors

    NASA Astrophysics Data System (ADS)

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri; Levenberg, Shulamit

    2007-12-01

    The culture of human Embryonic Stem (ES) cells in microchannel bioreactors can be highly beneficial for ES cell biology studies and ES tissue engineering applications. In the present study we examine the use of Human Foreskin Fibroblasts (HFF) cells as feeder cells for human ES culture in a microchannel perfusion bioreactor. PDMS microchannels (depth:130 micron) were fabricated using conventional soft-lithography techniques. The channels were sterilized, coated with a human fibronectin solution and seeded with cells. Following a period of static incubation, culture medium was perfused through the channels at various flow rates and cell growth was monitored throughout the culture process. Mass transport and fluid mechanics models were used to evaluate the culture conditions (shear stress, oxygen levels within the micro-bioreactor as a function of the medium flow rate. The conditions for successful long-term culture (>7 days) of HFF under flow were established. Experiments with human embryonic stem cells cultured in microchannels show that the conditions essential to co-culture human ES cell on HFF cells under perfusion differ from the conditions necessary for HFF cell culture. Human ES cells were found to be highly sensitive to flow and culture conditions and did not grow under flow rates which were suitable for HFF long-term culture. Successful culture of undifferentiated human ES cell colonies in a perfusion micro-bioreactor is a basic step towards utilizing microfluidic techniques to explore stem cell biology.

  16. L-arginine prevents hypoxia-induced vasoconstriction in dual-perfused human placental cotyledons.

    PubMed

    Bednov, Andrey; Espinoza, Jimmy; Betancourt, Ancizar; Vedernikov, Yuri; Belfort, Michael; Yallampalli, Chandrasekhar

    2015-11-01

    Chronic hypoxia in the uteroplacental unit is associated with increased resistance to blood flow in the fetal-placental circulation. These changes can lead to adverse cardiovascular events in adulthood. This study investigates whether L-arginine (substrate for nitric oxide synthase (NOS) or endothelin-A receptor antagonist BQ123 administration reverses hypoxia-induced changes in perfusion pressure in the fetal compartment in dual-perfused placental cotyledons. Human placental cotyledons (n = 15) from term deliveries (n = 15) were perfused with Krebs solution from maternal and fetal sides. Normal and reduced oxygen tension conditions were sequentially created in the perfused maternal compartment. Fetal perfusion pressure was continuously monitored. 1 mM L-arginine, D-arginine (an enantiomer of L-arginine and not a substrate for NOS), and BQ123 or normal saline were administered to the fetal compartment; L-arginine was also administered to the maternal compartment prior to maternal side hypoxia. Changes in perfusion pressure were compared between groups. Maternal hypoxia increased (19 ± 6%) perfusion pressure and this was blunted by L-arginine injection (3 ± 5%; p = 0.006) into the fetal compartment. L-arginine in the maternal compartment had no significant effect (22 ± 4% with L-arginine vs.14 ± 3% at control) on perfusion pressure. Similarly, D-arginine (23 ± 11% vs.19 ± 8% at control) or BQ123 (12 ± 3% vs.13 ± 3% at control) in the fetal compartment did not blunt the hypoxia-induced increase in perfusion pressure. Fetal vasoconstriction induced by maternal hypoxia is blunted by NO synthase substrate L-arginine, but not by D-arginine, in the fetal compartment, suggesting the involvement of NO synthesis in regulating the hypoxia-induced fetal vasoconstriction. Endothelin A receptor-related mechanisms does not appear to play a role in the maternal hypoxia-induced fetal vasoconstriction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. In vivo perfusion of human skin substitutes with microvessels formed by adult circulating endothelial progenitor cells.

    PubMed

    Kung, Elaine F; Wang, Feiya; Schechner, Jeffrey S

    2008-02-01

    At present, tissue-engineered human skin substitutes (HSSs) mainly function as temporary bioactive dressings due to inadequate perfusion. Failure to form functional vascular networks within the initial posttransplantation period compromises cell survival of the graft and its long-term viability in the wound bed. Our goal was to demonstrate that adult circulating endothelial progenitor cells (EPCs) seeded onto HSS can form functional microvessels capable of graft neovascularization and perfusion. Adult peripheral blood mononuclear cells (PBMCs) underwent CD34 selection and endothelial cell (EC) culture conditions. After in vitro expansion, flow cytometry verified EC phenotype before their incorporation into HSS. After 2 weeks in vivo, immunohistochemical analysis, immunofluorescent microscopy, and microfil polymer perfusion were performed. CD34+ PBMCs differentiated into EPC demonstrating characteristic EC morphology and expression of CD31, Tie-2, and E-selectin after TNFalpha-induction. Numerous human CD31 and Ulex europaeus agglutinin-1 (UEA-1) microvessels within the engineered grafts (HSS/EPCs) inosculated with recipient murine circulation. Limitation of murine CD31 immunoreactivity to HSS margins showed angiogenesis was attributable to human EPC at 2 weeks posttransplantation. Delivery of intravenous rhodamine-conjugated UEA-1 and microfil polymer to HSS/EPCs demonstrated enhanced perfusion by functional microvessels compared to HSS control without EPCs. We successfully engineered functional microvessels in HSS by incorporating adult circulating EPCs. This autologous EC source can form vascular conduits enabling perfusion and survival of human bioengineered tissues.

  18. Skin Blood Perfusion and Oxygenation Colour Affect Perceived Human Health

    PubMed Central

    Stephen, Ian D.; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I.

    2009-01-01

    Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice. PMID:19337378

  19. Ex Vivo Perfusion Treatment of Infection in Human Donor Lungs.

    PubMed

    Nakajima, D; Cypel, M; Bonato, R; Machuca, T N; Iskender, I; Hashimoto, K; Linacre, V; Chen, M; Coutinho, R; Azad, S; Martinu, T; Waddell, T K; Hwang, D M; Husain, S; Liu, M; Keshavjee, S

    2016-04-01

    Ex vivo lung perfusion (EVLP) is a platform to treat infected donor lungs with antibiotic therapy before lung transplantation. Human donor lungs that were rejected for transplantation because of clinical concern regarding infection were randomly assigned to two groups. In the antibiotic group (n = 8), lungs underwent EVLP for 12 h with high-dose antibiotics (ciprofloxacin 400 mg or azithromycin 500 mg, vancomycin 15 mg/kg, and meropenem 2 g). In the control group (n = 7), lungs underwent EVLP for 12 h without antibiotics. A quantitative decrease in bacterial counts in bronchoalveolar lavage (BAL) was found in all antibiotic-treated cases but in only two control cases. Perfusate endotoxin levels at 12 h were significantly lower in the antibiotic group compared with the control group. EVLP with broad-spectrum antibiotic therapy significantly improved pulmonary oxygenation and compliance and reduced pulmonary vascular resistance. Perfusate endotoxin levels at 12 h were strongly correlated with levels of perfusates tumor necrosis factor α, IL-1β and macrophage inflammatory proteins 1α and 1β at 12 h. In conclusion, EVLP treatment of infected donor lungs with broad-spectrum antibiotics significantly reduced BAL bacterial counts and endotoxin levels and improved donor lung function. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. A microfluidically perfused three dimensional human liver model.

    PubMed

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Transport of benzo[alpha]pyrene in the dually perfused human placenta perfusion model: effect of albumin in the perfusion medium.

    PubMed

    Mathiesen, Line; Rytting, Erik; Mose, Tina; Knudsen, Lisbeth E

    2009-09-01

    Transport of benzo[alpha]pyrene (BaP) across the placenta was examined because it is a ubiquitous and highly carcinogenic substance found in tobacco smoke, polluted air and certain foods. Foetal exposure to this substance is highly relevant but is difficult to estimate. The human placenta is unique compared to other species; since it is available without major ethical obstacles, we have used the human placenta perfusion model to study transport from mother to foetus. Placentas were donated after births at Rigshospitalet in Copenhagen from pregnant mothers who signed an informed consent. BaP is lipophilic and studies using cell culture medium in 6-hr placenta perfusions showed minimal transport through the placenta. To increase the solubility of BaP in perfusion medium and to increase physiological relevance, perfusions were also performed with albumin added to the perfusion medium [2 and 30 mg/ml bovine serum albumin (BSA) and 30 mg/ml human serum albumin (HSA)]. The addition of albumin resulted in increased transfer of BaP from maternal to foetal reservoirs. The transfer was even higher in the presence of an HSA formulation containing acetyltryptophanate and caprylate, resulting in a foetal-maternal concentration (FM) ratio of 0.71 +/- 0.10 after 3 hr and 0.78 +/- 0.11 after 6 hr, whereas the FM ratio in perfusions without albumin was only 0.05 +/- 0.03 after 6 hr of perfusion. Less BaP accumulated in placental tissue in perfusions with added albumin. This shows that transplacental transport of the pro-carcinogenic substance BaP occurs, and emphasizes the importance of adding physiological concentrations of albumin when studying the transport of lipophilic substances.

  2. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    PubMed

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers.

    PubMed

    op den Dries, S; Karimian, N; Sutton, M E; Westerkamp, A C; Nijsten, M W N; Gouw, A S H; Wiersema-Buist, J; Lisman, T; Leuvenink, H G D; Porte, R J

    2013-05-01

    In contrast to traditional static cold preservation of donor livers, normothermic machine perfusion may reduce preservation injury, improve graft viability and potentially allows ex vivo assessment of graft viability before transplantation. We have studied the feasibility of normothermic machine perfusion in four discarded human donor livers. Normothermic machine perfusion consisted of pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion for 6 h. Two hollow fiber membrane oxygenators provided oxygenation of the perfusion fluid. Biochemical markers in the perfusion fluid reflected minimal hepatic injury and improving function. Lactate levels decreased to normal values, reflecting active metabolism by the liver (mean lactate 10.0 ± 2.3 mmol/L at 30 min to 2.3 ± 1.2 mmol/L at 6 h). Bile production was observed throughout the 6 h perfusion period (mean rate 8.16 ± 0.65 g/h after the first hour). Histological examination before and after 6 h of perfusion showed well-preserved liver morphology without signs of additional hepatocellular ischemia, biliary injury or sinusoidal damage. In conclusion, this study shows that normothermic machine perfusion of human donor livers is technically feasible. It allows assessment of graft viability before transplantation, which opens new avenues for organ selection, therapeutic interventions and preconditioning.

  4. Placental transfer of the HIV integrase inhibitor dolutegravir in an ex vivo human cotyledon perfusion model.

    PubMed

    Schalkwijk, Stein; Greupink, Rick; Colbers, Angela P; Wouterse, Alfons C; Verweij, Vivienne G M; van Drongelen, Joris; Teulen, Marga; van den Oetelaar, Daphne; Burger, David M; Russel, Frans G M

    2016-02-01

    Data on fetal exposure to antiretroviral agents during pregnancy are important to estimate their potential for prevention of mother-to-child transmission (PMTCT) and possible toxicity. For the recently developed HIV integrase inhibitor dolutegravir, clinical data on fetal disposition are not yet available. Dual perfusion of a single placental lobule (cotyledon) provides a useful ex vivo model to predict the in vivo maternal-to-fetal transfer of this drug. The aim of this study was to estimate the transfer of dolutegravir across the human term placenta, using a dual-perfusion cotyledon model. After cannulation of the cotyledons (n = 6), a fetal circulation of 6 mL/min and maternal circulation of 12 mL/min were initiated. The perfusion medium consisted of Krebs-Henseleit buffer (pH = 7.2-7.4) supplemented with 10.1 mM glucose, 30 g/L human serum albumin and 0.5 mL/L heparin 5000IE. Dolutegravir was administered to the maternal circulation (∼ 4.2 mg/L) and analysed by UPLC-MS/MS. After 3 h of perfusion, the mean ± SD fetal-to-maternal (FTM) concentration ratio of dolutegravir was 0.6 ± 0.2 and the mean ± SD concentrations in the maternal and fetal compartments were 2.3 ± 0.4 and 1.3 ± 0.3 mg/L, respectively. Dolutegravir crosses the blood-placental barrier with a mean FTM concentration ratio of 0.6. Compared with other antiretroviral agents, placental transfer of dolutegravir is moderate to high. These data suggest that dolutegravir holds clinical potential for pre-exposure prophylaxis and consequently PMTCT, but also risk of fetal toxicity. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Placental Transfer of Darunavir in an Ex Vivo Human Cotyledon Perfusion Model

    PubMed Central

    Duro, Dominique; Belissa, Emilie; Peytavin, Gilles

    2014-01-01

    Placental transfer of the HIV protease inhibitor darunavir was investigated in 5 term human cotyledons perfused with darunavir (1,000 ng/ml) in the maternal to fetal direction. The mean (± the standard deviation [SD]) fetal transfer rate (FTR) (fetal/maternal concentration at steady state from 30 to 90 min) was 15.0% ± 2.1%, and the mean (±SD) clearance index (darunavir FTR/antipyrine FTR) was 40.3% ± 5.8%. This shows that darunavir crosses the placenta at a relatively low rate, resulting in fetal exposure. PMID:24982090

  6. Placental transfer of darunavir in an ex vivo human cotyledon perfusion model.

    PubMed

    Mandelbrot, Laurent; Duro, Dominique; Belissa, Emilie; Peytavin, Gilles

    2014-09-01

    Placental transfer of the HIV protease inhibitor darunavir was investigated in 5 term human cotyledons perfused with darunavir (1,000 ng/ml) in the maternal to fetal direction. The mean (± the standard deviation [SD]) fetal transfer rate (FTR) (fetal/maternal concentration at steady state from 30 to 90 min) was 15.0%±2.1%, and the mean (±SD) clearance index (darunavir FTR/antipyrine FTR) was 40.3%±5.8%. This shows that darunavir crosses the placenta at a relatively low rate, resulting in fetal exposure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Placental transfer of rilpivirine in an ex vivo human cotyledon perfusion model.

    PubMed

    Mandelbrot, Laurent; Duro, Dominique; Belissa, Emilie; Peytavin, Gilles

    2015-05-01

    Placental transfers of the HIV nonnucleoside reverse transcriptase inhibitor rilpivirine were investigated in 8 term human cotyledons perfused with rilpivirine (400 ng/ml) in the maternal-to-fetal direction. The mean fetal transfer rate (FTR) (fetal/maternal concentration at steady state from 15 to 90 min) was 26% ± 8% (mean ± standard deviation), and the clearance index (rilpivirine FTR/antipyrine FTR) was 61% ± 20%. This shows that rilpivirine crosses the placenta at a relatively high rate, suggesting that the fetus is exposed to the compound during treatment of the mother. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Placental Transfer of Rilpivirine in an Ex Vivo Human Cotyledon Perfusion Model

    PubMed Central

    Duro, Dominique; Belissa, Emilie; Peytavin, Gilles

    2015-01-01

    Placental transfers of the HIV nonnucleoside reverse transcriptase inhibitor rilpivirine were investigated in 8 term human cotyledons perfused with rilpivirine (400 ng/ml) in the maternal-to-fetal direction. The mean fetal transfer rate (FTR) (fetal/maternal concentration at steady state from 15 to 90 min) was 26% ± 8% (mean ± standard deviation), and the clearance index (rilpivirine FTR/antipyrine FTR) was 61% ± 20%. This shows that rilpivirine crosses the placenta at a relatively high rate, suggesting that the fetus is exposed to the compound during treatment of the mother. PMID:25691637

  9. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation: First North American results.

    PubMed

    Selzner, Markus; Goldaracena, Nicolas; Echeverri, Juan; Kaths, Johan M; Linares, Ivan; Selzner, Nazia; Serrick, Cyril; Marquez, Max; Sapisochin, Gonzalo; Renner, Eberhard L; Bhat, Mamatha; McGilvray, Ian D; Lilly, Leslie; Greig, Paul D; Tsien, Cynthia; Cattral, Mark S; Ghanekar, Anand; Grant, David R

    2016-11-01

    The European trial investigating normothermic ex vivo liver perfusion (NEVLP) as a preservation technique for liver transplantation (LT) uses gelofusine, a non-US Food and Drug Administration-approved, bovine-derived, gelatin-based perfusion solution. We report a safety and feasibility clinical NEVLP trial with human albumin-based Steen solution. Transplant outcomes of 10 human liver grafts that were perfused on the Metra device at 37 °C with Steen solution, plus 3 units of erythrocytes were compared with a matched historical control group of 30 grafts using cold storage (CS) as the preservation technique. Ten liver grafts were perfused for 480 minutes (340-580 minutes). All livers cleared lactate (final lactate 1.46 mmol/L; 0.56-1.74 mmol/L) and produced bile (61 mL; 14-146 mL) during perfusion. No technical problems occurred during perfusion, and all NEVLP-preserved grafts functioned well after LT. NEVLP versus CS had lower aspartate aminotransferase and alanine aminotransferase values on postoperative days 1-3 without reaching significance. No difference in postoperative graft function between NEVLP and CS grafts was detected as measured by day 7 international normalized ratio (1.1 [1-1.56] versus 1.1 [1-1.3]; P = 0.5) and bilirubin (1.5; 1-7.7 mg/dL versus 2.78; 0.4-15 mg/dL; P = 0.5). No difference was found in the duration of intensive care unit stay (median, 1 versus 2 days; range, 0-8 versus 0-23 days; P = 0.5) and posttransplant hospital stay (median, 11 versus 13 days; range, 8-17 versus 7-89 days; P = 0.23). Major complications (Dindo-Clavien ≥ 3b) occurred in 1 patient in the NEVLP group (10%) compared with 7 (23%) patients in the CS group (P = 0.5). No graft loss or patient death was observed in either group. Liver preservation with normothermic ex vivo perfusion with the Metra device using Steen solution is safe and results in comparable outcomes to CS after LT. Using US Food and Drug Administration-approved Steen

  10. Ex Vivo Perfusion Characteristics of Donation After Cardiac Death Kidneys Predict Long-Term Graft Survival.

    PubMed

    Sevinc, M; Stamp, S; Ling, J; Carter, N; Talbot, D; Sheerin, N

    2016-12-01

    Ex vivo perfusion is used in our unit for kidneys donated after cardiac death (DCD). Perfusion flow index (PFI), resistance, and perfusate glutathione S-transferase (GST) can be measured to assess graft viability. We assessed whether measurements taken during perfusion could predict long-term outcome after transplantation. All DCD kidney transplants performed from 2002 to 2014 were included in this study. The exclusion criteria were: incomplete data, kidneys not machine perfused, kidneys perfused in continuous mode, and dual transplantation. There were 155 kidney transplantations included in the final analysis. Demographic data, ischemia times, donor hypertension, graft function, survival and machine perfusion parameters after 3 hours were analyzed. Each perfusion parameter was divided into 3 groups as high, medium, and low. Estimated glomerular filtration rate was calculated at 12 months and then yearly after transplantation. There was a significant association between graft survival and PFI and GST (P values, .020 and .022, respectively). PFI was the only independent parameter to predict graft survival. A low PFI during ex vivo hypothermic perfusion is associated with inferior graft survival after DCD kidney transplantation. We propose that PFI is a measure of the health of the graft vasculature and that a low PFI indicates vascular disease and therefore predicts a worse long-term outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Myocardial perfusion during exercise in endurance-trained and untrained humans.

    PubMed

    Laaksonen, Marko S; Kalliokoski, Kari K; Luotolahti, Matti; Kemppainen, Jukka; Teräs, Mika; Kyröläinen, Heikki; Nuutila, Pirjo; Knuuti, Juhani

    2007-08-01

    Because of technical challenges very little is known about absolute myocardial perfusion in humans in vivo during physical exercise. In the present study we applied positron emission tomography (PET) in order to 1) investigate the effects of dynamic bicycle exercise on myocardial perfusion and 2) clarify the possible effects of endurance training on myocardial perfusion during exercise. Myocardial perfusion was measured in endurance-trained and healthy untrained subjects at rest and during absolutely the same (150 W) and relatively similar [70% maximal power output (W(max))] bicycle exercise intensities. On average, the absolute myocardial perfusion was 3.4-fold higher during 150 W (P < 0.001) and 4.9-fold higher during 70% W(max) (P < 0.001) than at rest. At 150 W myocardial perfusion was 46% lower in endurance-trained than in untrained subjects (1.67 +/- 0.45 vs. 3.00 +/- 0.75 ml x g(-1) x min(-1); P < 0.05), whereas during 70% W(max) perfusion was not significantly different between groups (P = not significant). When myocardial perfusion was normalized with rate-pressure product, the results were similar. Thus, according to the present results, myocardial perfusion increases in parallel with the increase in working intensity and in myocardial work rate. Endurance training seems to affect myocardial blood flow pattern during submaximal exercise and leads to more efficient myocardial pump function.

  12. Agreement in human interpretation of analog thallium myocardial perfusion images

    SciTech Connect

    Atwood, J.E.; Jensen, D.; Froelicher, V.; Witztum, K.; Gerber, K.; Gilpin, E.; Ashburn, W.

    1981-09-01

    To assess the agreement of human interpretation of analog thallium myocardial perfusion images, four experienced interpreters evaluated 100 images on two occasions using a form designed to limit reader variability. A high intraobserver agreement (agreement by same observer at separate times) of 89--93% was found when films were interpreted as normal or abnormal (a dichotomous decision). Interobserver agreement for a majority grouping of observers (three or four) was 75% for an abnormal and 68% for a normal interpretation. However, agreement ranged from 11--79% when interpreters were asked to read the anatomic location of defects. Posterior and lateral wall defects were interpreted with the least amount of agreement. These results indicate that caution must be taken when interpreting defect location. Using a scale of 1--10 to grade the severity of a defect, correlations of 0.82--0.86 were found when reading defects in the lateral and anterior projections. Higher correlations, from 0.86--0.94, were found in left anterior oblique views. Use of reporting forms with specific criteria, multiple observers at one occasion, and/or computer processing may improve agreement. A brief review of the agreement of cardiology testing procedures is also presented.

  13. Long-term measurement of renal cortical and medullary tissue oxygenation and perfusion in unanesthetized sheep.

    PubMed

    Calzavacca, Paolo; Evans, Roger G; Bailey, Michael; Lankadeva, Yugeesh R; Bellomo, Rinaldo; May, Clive N

    2015-05-15

    The role of renal cortical and medullary hypoxia in the development of acute kidney injury is controversial, partly due to a lack of techniques for the long-term measurement of intrarenal oxygenation and perfusion in conscious animals. We have, therefore, developed a methodology to chronically implant combination probes to chronically measure renal cortical and medullary tissue perfusion and oxygen tension (tPO2) in conscious sheep and evaluated their responsiveness and reliability. A transit-time flow probe and a vascular occluder were surgically implanted on the left renal artery. At the same operation, dual fiber-optic probes, comprising a fluorescence optode to measure tPO2 and a laser-Doppler probe to assess tissue perfusion, were inserted into the renal cortex and medulla. In recovered conscious sheep (n = 8) breathing room air, mean 24-h cortical and medullary tPO2 were similar (31.4 ± 0.6 and 29.7 ± 0.7 mmHg, respectively). In the renal cortex and medulla, a 20% reduction in renal blood flow (RBF) decreased perfusion (14.6 ± 8.6 and 41.2 ± 8.5%, respectively) and oxygenation (48.1 ± 8.5 and 72.4 ± 8.5%, respectively), with greater decreases during a 50% reduction in RBF. At autopsy, minimal fibrosis was observed around the probes. In summary, we have developed a technique to chronically implant fiber-optic probes in the renal cortex and medulla for recording tissue perfusion and oxygenation over many days. In normal resting conscious sheep, cortical and medullary tPO2 were similar. The responses to and recovery from renal artery occlusion, together with the consistent measurements over a 24-h period, demonstrate the responsiveness and stability of the probes.

  14. Kinetic assessment of manganese using magnetic resonance imaging in the dually perfused human placenta in vitro

    SciTech Connect

    Miller, R.K.; Mattison, D.R.; Panigel, M.; Ceckler, T.; Bryant, R.; Thomford, P.

    1987-10-01

    The transfer and distribution of paramagnetic manganese was investigated in the dually perfused human placenta in vitro (using 10, 20, 100 ..mu..M Mn with and without /sup 54/Mn) using magnetic resonance imaging (MRI) and conventional radiochemical techniques. The human placenta concentrated /sup 54/Mn rapidly during the first 15 min of perfusion and by 4 hr was four times greater than the concentrations of Mn in the maternal perfusate, while the concentration of Mn in the fetal perfusate was 25% of the maternal perfusate levels. Within placentae, 45% of the /sup 54/Mn was free in the 100,000g supernatant, with 45% in the 1000g pellet. The magnetic field dependence of proton nuclear spin-lattice relaxation time (T/sub 1/) in placental tissue supports this Mn binding. Mn primarily affected the MRI partial saturation rather than spin-echo images of the human placenta, which provided for the separation of perfusate contributions from those produced by Mn. The washout of the Mn from the placenta was slow compared with its uptake, as determined by MRI. Thus, Mn was concentrated by the human placenta, but transfer of Mn across the placenta was limited in either direction. These studies also illustrate the opportunity for studies of human placental function using magnetic resonance imaging as a noninvasive biomarker.

  15. Procedure for Human Saphenous Veins Ex Vivo Perfusion and External Reinforcement

    PubMed Central

    Berard, Xavier; Alonso, Florian; Haefliger, Jacques-Antoine

    2014-01-01

    The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh. PMID:25350681

  16. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  17. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro.

    PubMed

    Killian, Nathaniel J; Vernekar, Varadraj N; Potter, Steve M; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations.

  18. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro

    PubMed Central

    Killian, Nathaniel J.; Vernekar, Varadraj N.; Potter, Steve M.; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  19. Mastication induces long-term increases in blood perfusion of the trigeminal principal nucleus.

    PubMed

    Viggiano, A; Manara, R; Conforti, R; Paccone, A; Secondulfo, C; Lorusso, L; Sbordone, L; Di Salle, F; Monda, M; Tedeschi, G; Esposito, F

    2015-12-17

    Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing.

  20. Criteria for Viability Assessment of Discarded Human Donor Livers during Ex Vivo Normothermic Machine Perfusion

    PubMed Central

    Karimian, Negin; Weeder, Pepijn D.; de Boer, Marieke T.; Wiersema-Buist, Janneke; Gouw, Annette S. H.; Leuvenink, Henri G. D.; Lisman, Ton; Porte, Robert J.

    2014-01-01

    Although normothermic machine perfusion of donor livers may allow assessment of graft viability prior to transplantation, there are currently no data on what would be a good parameter of graft viability. To determine whether bile production is a suitable biomarker that can be used to discriminate viable from non-viable livers we have studied functional performance as well as biochemical and histological evidence of hepatobiliary injury during ex vivo normothermic machine perfusion of human donor livers. After a median duration of cold storage of 6.5 h, twelve extended criteria human donor livers that were declined for transplantation were ex vivo perfused for 6 h at 37°C with an oxygenated solution based on red blood cells and plasma, using pressure controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion. During perfusion, two patterns of bile flow were identified: (1) steadily increasing bile production, resulting in a cumulative output of ≥30 g after 6 h (high bile output group), and (2) a cumulative bile production <20 g in 6 h (low bile output group). Concentrations of transaminases and potassium in the perfusion fluid were significantly higher in the low bile output group, compared to the high bile output group. Biliary concentrations of bilirubin and bicarbonate were respectively 4 times and 2 times higher in the high bile output group. Livers in the low bile output group displayed more signs of hepatic necrosis and venous congestion, compared to the high bile output group. In conclusion, bile production could be an easily assessable biomarker of hepatic viability during ex vivo machine perfusion of human donor livers. It could potentially be used to identify extended criteria livers that are suitable for transplantation. These ex vivo findings need to be confirmed in a transplant experiment or a clinical trial. PMID:25369327

  1. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion.

    PubMed

    Sutton, Michael E; op den Dries, Sanna; Karimian, Negin; Weeder, Pepijn D; de Boer, Marieke T; Wiersema-Buist, Janneke; Gouw, Annette S H; Leuvenink, Henri G D; Lisman, Ton; Porte, Robert J

    2014-01-01

    Although normothermic machine perfusion of donor livers may allow assessment of graft viability prior to transplantation, there are currently no data on what would be a good parameter of graft viability. To determine whether bile production is a suitable biomarker that can be used to discriminate viable from non-viable livers we have studied functional performance as well as biochemical and histological evidence of hepatobiliary injury during ex vivo normothermic machine perfusion of human donor livers. After a median duration of cold storage of 6.5 h, twelve extended criteria human donor livers that were declined for transplantation were ex vivo perfused for 6 h at 37 °C with an oxygenated solution based on red blood cells and plasma, using pressure controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion. During perfusion, two patterns of bile flow were identified: (1) steadily increasing bile production, resulting in a cumulative output of ≥ 30 g after 6 h (high bile output group), and (2) a cumulative bile production <20 g in 6 h (low bile output group). Concentrations of transaminases and potassium in the perfusion fluid were significantly higher in the low bile output group, compared to the high bile output group. Biliary concentrations of bilirubin and bicarbonate were respectively 4 times and 2 times higher in the high bile output group. Livers in the low bile output group displayed more signs of hepatic necrosis and venous congestion, compared to the high bile output group. In conclusion, bile production could be an easily assessable biomarker of hepatic viability during ex vivo machine perfusion of human donor livers. It could potentially be used to identify extended criteria livers that are suitable for transplantation. These ex vivo findings need to be confirmed in a transplant experiment or a clinical trial.

  2. Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells.

    PubMed

    Li, Lin-Mei; Wang, Wei; Zhang, Shu-Hui; Chen, Shi-Jing; Guo, Shi-Shang; Français, Olivier; Cheng, Jie-Ke; Huang, Wei-Hua

    2011-12-15

    Electrochemical techniques based on ultramicroelectrodes (UMEs) play a significant role in real-time monitoring of chemical messengers' release from single cells. Conversely, precise monitoring of cells in vitro strongly depends on the adequate construction of cellular physiological microenvironment. In this paper, we developed a multilayer microdevice which integrated high aspect ratio poly(dimethylsiloxane) (PDMS) microfluidic device for long-term automated perfusion culture of cells without shear stress and an independently addressable microelectrodes array (IAMEA) for electrochemical monitoring of the cultured cells in real time. Novel design using high aspect ratio between circular "moat" and ring-shaped micropillar array surrounding cell culture chamber combined with automated "circular-centre" and "bottom-up" perfusion model successfully provided continuous fresh medium and a stable and uniform microenvironment for cells. Two weeks automated culture of human umbilical endothelial cell line (ECV304) and neuronal differentiation of rat pheochromocytoma (PC12) cells have been realized using this device. Furthermore, the quantal release of dopamine from individual PC12 cells during their culture or propagation process was amperometrically monitored in real time. The multifunctional microdevice developed in this paper integrated cellular microenvironment construction and real-time monitoring of cells during their physiological process, and would possibly provide a versatile platform for cell-based biomedical analysis.

  3. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.

    PubMed

    Ong, Louis Jun Ye; Chong, Lor Huai; Jin, Lin; Singh, Pawan Kumar; Lee, Poh Seng; Yu, Hanry; Ananthanarayanan, Abhishek; Leo, Hwa Liang; Toh, Yi-Chin

    2017-10-01

    The practical application of microfluidic liver models for in vitro drug testing is partly hampered by their reliance on human primary hepatocytes, which are limited in number and have batch-to-batch variation. Human stem cell-derived hepatocytes offer an attractive alternative cell source, although their 3D differentiation and maturation in a microfluidic platform have not yet been demonstrated. We develop a pump-free microfluidic 3D perfusion platform to achieve long-term and efficient differentiation of human liver progenitor cells into hepatocyte-like cells (HLCs). The device contains a micropillar array to immobilize cells three-dimensionally in a central cell culture compartment flanked by two side perfusion channels. Constant pump-free medium perfusion is accomplished by controlling the differential heights of horizontally orientated inlet and outlet media reservoirs. Computational fluid dynamic simulation is used to estimate the hydrostatic pressure heads required to achieve different perfusion flow rates, which are experimentally validated by micro-particle image velocimetry, as well as viability and functional assessments in a primary rat hepatocyte model. We perform on-chip differentiation of HepaRG, a human bipotent progenitor cell, and discover that 3D microperfusion greatly enhances the hepatocyte differentiation efficiency over static 2D and 3D cultures. However, HepaRG progenitor cells are highly sensitive to the time-point at which microperfusion is applied. Isolated HepaRG cells that are primed as static 3D spheroids before being subjected to microperfusion yield a significantly higher proportion of HLCs (92%) than direct microperfusion of isolated HepaRG cells (62%). This platform potentially offers a simple and efficient means to develop highly functional microfluidic liver models incorporating human stem cell-derived HLCs. Biotechnol. Bioeng. 2017;114: 2360-2370. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model

    PubMed Central

    Grafmüller, Stefanie; Manser, Pius; Krug, Harald F.; Wick, Peter; von Mandach, Ursula

    2013-01-01

    Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ 1. Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 2 and continuously modified by Schneider et al. in 1972 3, can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data. PMID:23851364

  5. Determination of the transport rate of xenobiotics and nanomaterials across the placenta using the ex vivo human placental perfusion model.

    PubMed

    Grafmüller, Stefanie; Manser, Pius; Krug, Harald F; Wick, Peter; von Mandach, Ursula

    2013-06-18

    Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ (1). Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 (2) and continuously modified by Schneider et al. in 1972 (3), can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data.

  6. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation.

    PubMed

    Bruinsma, B G; Yeh, H; Ozer, S; Martins, P N; Farmer, A; Wu, W; Saeidi, N; Op den Dries, S; Berendsen, T A; Smith, R N; Markmann, J F; Porte, R J; Yarmush, M L; Uygun, K; Izamis, M-L

    2014-06-01

    To reduce widespread shortages, attempts are made to use more marginal livers for transplantation. Many of these grafts are discarded for fear of inferior survival rates or biliary complications. Recent advances in organ preservation have shown that ex vivo subnormothermic machine perfusion has the potential to improve preservation and recover marginal livers pretransplantation. To determine the feasibility in human livers, we assessed the effect of 3 h of oxygenated subnormothermic machine perfusion (21°C) on seven livers discarded for transplantation. Biochemical and microscopic assessment revealed minimal injury sustained during perfusion. Improved oxygen uptake (1.30 [1.11-1.94] to 6.74 [4.15-8.16] mL O2 /min kg liver), lactate levels (4.04 [3.70-5.99] to 2.29 [1.20-3.43] mmol/L) and adenosine triphosphate content (45.0 [70.6-87.5] pmol/mg preperfusion to 167.5 [151.5-237.2] pmol/mg after perfusion) were observed. Liver function, reflected by urea, albumin and bile production, was seen during perfusion. Bile production increased and the composition of bile (bile salts/phospholipid ratio, pH and bicarbonate concentration) became more favorable. In conclusion, ex vivo subnormothermic machine perfusion effectively maintains liver function with minimal injury and sustains or improves various hepatobiliary parameters postischemia.

  7. Increased infiltration of Chlamydophila pneumoniae in the vessel wall of human veins after perfusion.

    PubMed

    Kupreishvili, K; ter Weeme, M; Morré, S A; van den Brule, A J C; Huybregts, M A J M; Quax, P H A; ten Velden, J; Van Hinsbergh, V W M; Stooker, W; Eijsman, L; Niessen, H W M

    2008-07-01

    Several studies have suggested an association between Chlamydophila pneumoniae (Cp) infection and atherosclerosis. A recent study detected Cp DNA in the saphenous vein of 12% of all patients before bypass grafting and in 38% of failed grafts. We used a system in which human veins were perfused with autologous blood under arterial pressure. Veins were surplus segments of saphenous veins of coronary artery bypass grafting (CABG) patients. Vein grafts were perfused with the blood of the same patient after CABG procedures. Veins were analysed for Cp-specific membrane protein using immunohistochemical and PCR analysis. Veins were analysed before and after perfusion (up to 4 h). The number of Cp positive cells was then quantified in the vein layers. Cp protein was detected within macrophages only. In non-perfused veins, Cp was present in the adventitia in 91% of all patients, in the circular (64%) and longitudinal (23%) layer of the media. No positivity was found in the intima. Perfusion subsequently resulted in a significant increase of Cp positive cells within the circular layer of the media that, however, differed strongly between different patients. Cp DNA was not detected by PCR in those specimens. Cp protein was present in 91% of veins, but the number of positive cells differed remarkably between patients. Perfusion of veins resulted in increased infiltration of Cp into the circular layer. These results may point to a putative discriminating role of Cp with respect to graft failure between different patients.

  8. Maternal-fetal transport kinetics of manganese in perfused human placental lobule in vitro.

    PubMed

    Nandakumaran, Moorkath; Al-Sannan, Baydaa; Al-Sarraf, Hameed; Al-Shammari, Majed

    2016-01-01

    There have been no detailed reports relating to maternal-fetal transport kinetics of manganese, an essential trace element in the human pregnancies, and hence we have attempted to study the transport kinetics of this trace element in the human placenta in vitro. Human placentae from normal uncomplicated pregnancies were collected postpartum. Manganese chloride solution (GFS Chem Inc., Columbus, OH), 10 times the physiological concentrations, along with antipyrine (Sigma Chem Co., St. Louis, MO) as reference marker were then injected as a single bolus (100 µl) into the maternal arterial circulation of perfused placental lobules and perfusate samples collected from maternal and fetal circulations over a period of five minutes. National Culture and Tissue Collection medium, diluted with Earle's buffered salt solution was used as the perfusate and serial perfusate samples from fetal venous perfusate collected for a period of 30 min. Concentration of manganese in perfusate samples was assessed by atomic absorption spectrophotometry, while that of antipyrine was assessed by spectrophotometry. Transport kinetics of substances studied were computed using established permeation parameters. Differential transport rates of manganese and antipyrine in 12 perfusions differed significantly for 25.75, 90% efflux fractions (ANOVA test, p < 0.05), while those of 10 and 50% efflux fractions were not significantly different between the study and reference substances. Transport fraction (TF) of manganese averaged 54.9% of bolus dose in 12 perfusions, whereas that of antipyrine averaged 89% of bolus dose, representing 61.80% of reference marker TF. The difference observed in TF values of manganese and antipyrine was statistically significant (Student's t-test, p < 0.05). Pharmacokinetic parameters such as area under the curve, clearance, absorption rate, elimination rate of manganese compared to reference marker were significantly different (ANOVA test, p < 0

  9. Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation.

    PubMed

    Seidel, J O; Pei, M; Gray, M L; Langer, R; Freed, L E; Vunjak-Novakovic, G

    2004-01-01

    One approach to functional tissue engineering of cartilage is to utilize bioreactors to provide environmental conditions that stimulate chondrogenesis in cells cultured on biomaterial scaffolds. We report the combined use of a three-dimensional in vitro model and a novel bioreactor with perfusion of culture medium and mechanical stimulation in long-term studies of cartilage development and function. To engineer cartilage, scaffolds made of a non-woven mesh of polyglycolic acid (PGA) were seeded with bovine calf articular chondrocytes, cultured for an initial 30-day period under free swelling conditions, and cultured for an additional 37 day period in one of the three groups: (1) free-swelling, (2) static compression (on 24 h/day, strain control, static offset 10%), and (3) dynamic compression (on 1 h/day; off 23 h/day; strain control, static offset 2%, dynamic strain amplitude 5%; frequency 0.3 Hz). Constructs were sampled at timed intervals and assessed with respect to structure, biochemical composition, and mechanical function. Mechanical simulation had little effect on the compositions, morphologies and on mechanical properties of construct interiors discs, but it resulted in distincly different properties of the peripheral rings and face sides. Contructs cultured with mechanical loading maintained their cylindrical shape with flat and parallel top and bottom surfaces, and retained larger amounts of GAG. The modular bioreactor system with medium perfusion and mechanical loading can be utilized to define the conditions of cultivation for functional tissue engineering of cartilage.

  10. Successful Dual Kidney Transplantation After Hypothermic Oxygenated Perfusion of Discarded Human Kidneys.

    PubMed

    Ravaioli, Matteo; De Pace, Vanessa; Comai, Giorgia; Busutti, Marco; Del Gaudio, Massimo; Amaduzzi, Annalisa; Cucchetti, Alessandro; Siniscalchi, Antonio; La Manna, Gaetano; D'Errico, Antonietta A D; Pinna, Antonio Daniele

    2017-09-20

    BACKGROUND The recovery of discarded human kidneys has increased in recent years and impels to use of unconventional organ preservation strategies that improve graft function. We report the first case of human kidneys histologically discarded and transplanted after hypothermic oxygenated perfusion (HOPE). CASE REPORT Marginal kidneys from a 78-year-old woman with brain death were declined by Italian transplant centers due to biopsy score (right kidney: 6; left kidney: 7). We recovered and preserved both kidneys through HOPE and we revaluated their use for transplantation by means of perfusion parameters. The right kidney was perfused for 1 h 20 min and the left kidney for 2 h 30 min. During organ perfusion, the renal flow increased progressively. We observed an increase of 34% for the left kidney (median flow 52 ml/min) and 50% for the right kidney (median flow 24 ml/min). Both kidneys had low perfusate's lactate levels. We used perfusion parameters as important determinants of the organ discard. Based on our previous organ perfusion experience, the increase of renal flow and the low level of lactate following 1 h of HOPE lead us to declare both kidneys as appropriate for dual kidney transplantation (DKT). No complications were reported during the transplant and in the post-transplant hospital stay. The recipient had immediate graft function and serum creatinine value of 0.95 mg/dL at 3 months post-transplant. CONCLUSIONS HOPE provides added information in the organ selection process and may improve graft quality of marginal kidneys.

  11. Accumulation characteristics of human colon carcinomas after monoclonal antibody ex vivo perfusion.

    PubMed Central

    Löhde, E.; Schwarzendahl, P.; Schlicker, H.; Abri, O.; Kalthoff, H.; Matzku, S.; Epenetos, A. A.; Kraas, E.

    1990-01-01

    Human colon carcinomas were operatively resected and the tumour-bearing segments interposed into an oxygenised ex vivo perfusion system. Pressure, flow, temperature, pH and metabolic parameters were controlled. Over a period of 45 min the 131I-labelled monoclonal antibody AUA1 was administered and its distribution in the tumour tissue analysed scintigraphically. The accumulated activity was determined in different tissues. The results showed that the AUA1 uptake increased with the degree of histological tumour differentiation. The main tumour:non-tumour ratio reached 0.8 in poorly, 4.1 in moderately and 5.9 in highly differentiated adenocarcinomas. Introducing the oxygenised erythrocyte-enriched perfusion media significantly increased the viability of the colon tissue. The ex vivo perfusion system will help to analyse factors determining monoclonal antibody accumulation in human colon carcinomas. Images Figure 3 PMID:2383474

  12. In vitro studies of ferric carboxymaltose on placental permeability using the dual perfusion model of human placenta.

    PubMed

    Malek, Antoine

    2010-01-01

    An in vitro perfusion model of human placenta was used to study the transplacental passage of iron applied in the form of the drug compound ferric carboxymaltose (FCM) which had been radio-labelled with 59Fe. In four placental perfusion experiments, two simulated circuits for the maternal and fetal sides of the placenta were set up with two experimental phases each lasting 3 h. FCM was added to the maternal circuit at the beginning of each phase to a final iron concentration of 11 mM, which is at least 10 times higher than the maximal predicted level in blood after an administration of 200 mg iron as FCM. The effects of adding transferrin at a physiological concentration of 1.67 mg/ ml were also tested. The concentration profiles of 59Fe showed a 10% decrease within the first 30 min of perfusion on the maternal side. Thereafter the radioactivity levels remained unchanged. The addition of transferrin had no effect on the tissue uptake of 59Fe-FCM. No transferred iron radioactivity could be detected in the fetal circuit. Despite a loss of approximately 10% of the radio-labelled iron observed on the maternal side, only 0.5-2% of the radioactivity was detected in the placental tissue after perfusion. No free iron could be detected at the end of perfusion on the maternal side using ultrafiltration or acid precipitation methods. In addition, the production of transferrin receptor remained unchanged, with similar concentrations in placental tissue before and after perfusion. No effects of FCM on placental viability were observed in terms of energy metabolism (glucose consumption and lactate production), hormone release or placental permeability (assessed by the transfer rates of creatinine and antipyrine). However, two additional observations were made: firstly, a significant reduction in the rate of cell death compared to control conditions was observed in the presence of FCM; secondly, the integrity of the fetal capillary system was improved on the fetal side of the

  13. A 4D CT digital phantom of an individual human brain for perfusion analysis.

    PubMed

    Manniesing, Rashindra; Brune, Christoph; van Ginneken, Bram; Prokop, Mathias

    2016-01-01

    Brain perfusion is of key importance to assess brain function. Modern CT scanners can acquire perfusion maps of the cerebral parenchyma in vivo at submillimeter resolution. These perfusion maps give insights into the hemodynamics of the cerebral parenchyma and are critical for example for treatment decisions in acute stroke. However, the relations between acquisition parameters, tissue attenuation curves, and perfusion values are still poorly understood and cannot be unraveled by studies involving humans because of ethical concerns. We present a 4D CT digital phantom specific for an individual human brain to analyze these relations in a bottom-up fashion. Validation of the signal and noise components was based on 1,000 phantom simulations of 20 patient imaging data. This framework was applied to quantitatively assess the relation between radiation dose and perfusion values, and to quantify the signal-to-noise ratios of penumbra regions with decreasing sizes in white and gray matter. This is the first 4D CT digital phantom that enables to address clinical questions without having to expose the patient to additional radiation dose.

  14. Optimized Saturation Pulse Train for Human First-Pass Myocardial Perfusion Imaging at 7T

    PubMed Central

    Tao, Yuehui; Hess, Aaron T; Keith, Graeme A; Rodgers, Christopher T; Liu, Alexander; Francis, Jane M; Neubauer, Stefan; Robson, Matthew D

    2015-01-01

    Purpose To investigate whether saturation using existing methods developed for 3T imaging is feasible for clinical perfusion imaging at 7T, and to propose a new design of saturation pulse train for first-pass myocardial perfusion imaging at 7T. Methods The new design of saturation pulse train consists of four hyperbolic-secant (HS8) radiofrequency pulses, whose peak amplitudes are optimized for a target range of static and transmit field variations and radiofrequency power deposition restrictions measured in the myocardium at 7T. The proposed method and existing methods were compared in simulation, phantom, and in vivo experiments. Results In healthy volunteer experiments without contrast agent, average saturation efficiency with the proposed method was 97.8%. This is superior to results from the three previously published methods at 86/95/90.8%. The first series of human first-pass myocardial perfusion images at 7T have been successfully acquired with the proposed method. Conclusion Existing saturation methods developed for 3T imaging are not optimal for perfusion imaging at 7T. The proposed new design of saturation pulse train can saturate effectively, and with this method first-pass myocardial perfusion imaging is feasible in humans at 7T. Magn Reson Med 73:1450–1456, 2015. © 2014 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:24753130

  15. A 4D CT digital phantom of an individual human brain for perfusion analysis

    PubMed Central

    Brune, Christoph; van Ginneken, Bram; Prokop, Mathias

    2016-01-01

    Brain perfusion is of key importance to assess brain function. Modern CT scanners can acquire perfusion maps of the cerebral parenchyma in vivo at submillimeter resolution. These perfusion maps give insights into the hemodynamics of the cerebral parenchyma and are critical for example for treatment decisions in acute stroke. However, the relations between acquisition parameters, tissue attenuation curves, and perfusion values are still poorly understood and cannot be unraveled by studies involving humans because of ethical concerns. We present a 4D CT digital phantom specific for an individual human brain to analyze these relations in a bottom-up fashion. Validation of the signal and noise components was based on 1,000 phantom simulations of 20 patient imaging data. This framework was applied to quantitatively assess the relation between radiation dose and perfusion values, and to quantify the signal-to-noise ratios of penumbra regions with decreasing sizes in white and gray matter. This is the first 4D CT digital phantom that enables to address clinical questions without having to expose the patient to additional radiation dose. PMID:27917312

  16. The effect of ex vivo lung perfusion on microbial load in human donor lungs.

    PubMed

    Andreasson, Anders; Karamanou, Danai M; Perry, John D; Perry, Audrey; Ӧzalp, Faruk; Butt, Tanveer; Morley, Katie E; Walden, Hannah R; Clark, Stephen C; Prabhu, Mahesh; Corris, Paul A; Gould, Kate; Fisher, Andrew J; Dark, John H

    2014-09-01

    Ex vivo lung perfusion (EVLP) has emerged as a technique to potentially recondition unusable donor lungs for transplantation. Beneficial effects of EVLP on physiologic function have been reported, but little is known about the effect of normothermic perfusion on the infectious burden of the donor lung. In this study, we investigated the effect of EVLP on the microbial load of human donor lungs. Lungs from 18 human donors considered unusable for transplantation underwent EVLP with a perfusate containing high-dose, empirical, broad-spectrum anti-microbial agents. Quantitative cultures of bacteria and fungi were performed on bronchoalveolar lavage fluid from the donor lung before and after 3 to 6 hours of perfusion. The identification of any organisms and changes in number of colony forming units before and after EVLP were assessed and anti-microbial susceptibilities identified. Thirteen out of 18 lungs had positive cultures, with bacterial loads significantly decreasing after EVLP. Yeast loads increased when no anti-fungal treatment was given, but were reduced when prophylactic anti-fungal treatment was added to the circuit. Six lungs were ultimately transplanted into patients, all of whom survived to hospital discharge. There was 1 death at 11 months. Our study shows that EVLP with high-dose, empirical anti-microbial agents in the perfusate is associated with an effective reduction in the microbial burden of the donor lung, a benefit that has not previously been demonstrated. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  17. A New Apparatus and Surgical Technique for the Dual Perfusion of Human Tumor Xenografts in Situ in Nude Rats

    PubMed Central

    Dauchy, Robert T; Dauchy, Erin M; Mao, Lulu; Belancio, Victoria P; Hill, Steven M; Blask, David E

    2012-01-01

    We present a new perfusion system and surgical technique for simultaneous perfusion of 2 tissue-isolated human cancer xenografts in nude rats by using donor blood that preserves a continuous flow. Adult, athymic nude rats (Hsd:RH-Foxn1rnu) were implanted with HeLa human cervical or HT29 colon adenocarcinomas and grown as tissue-isolated xenografts. When tumors reached an estimated weight of 5 to 6 g, rats were prepared for perfusion with donor blood and arteriovenous measurements. The surgical procedure required approximately 20 min to complete for each tumor, and tumors were perfused for a period of 150 min. Results showed that tumor venous blood flow, glucose uptake, lactic acid release, O2 uptake and CO2 production, uptake of total fatty acid and linoleic acid and conversion to the mitogen 13-HODE, cAMP levels, and activation of several marker kinases were all well within the normal physiologic, metabolic, and signaling parameters characteristic of individually perfused xenografts. This new perfusion system and technique reduced procedure time by more than 50%. These findings demonstrate that 2 human tumors can be perfused simultaneously in situ or ex vivo by using either rodent or human blood and suggest that the system may also be adapted for use in the dual perfusion of other organs. Advantages of this dual perfusion technique include decreased anesthesia time, decreased surgical manipulation, and increased efficiency, thereby potentially reducing the numbers of laboratory animals required for scientific investigations. PMID:22546915

  18. An integrated environmental perfusion chamber and heating system for long-term, high resolution imaging of living cells.

    PubMed

    Hing, W A; Poole, C A; Jensen, C G; Watson, M

    2000-08-01

    This communication presents the design and application of an integrated environmental perfusion chamber and stage heating blanket suitable for time-lapse video microscopy of living cells. The system consists of two independently regulated components: a perfusion chamber suitable for the maintenance of cell viability and the variable delivery of environmental factors, and a separate heating blanket to control the temperature of the microscope stage and limit thermal conduction from the perfusion chamber. Two contrasting experiments are presented to demonstrate the versatility of the system. One long-term sequence illustrates the behaviour of cells exposed to ceramic fibres. The other shows the shrinking response of cultured articular cartilage chondrons under dynamic hyper-osmotic conditions designed to simulate joint loading. The chamber is simple in design, economical to produce and permits long-term examination of dynamic cellular behaviour while satisfying the fundamental requirements for the maintenance of environmental factors that influence cell viability.

  19. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells.

    PubMed

    Simão, Daniel; Arez, Francisca; Terasso, Ana P; Pinto, Catarina; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2016-01-01

    Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable

  20. Human cortical perfusion and the arterial pulse: a near-infrared spectroscopy study

    PubMed Central

    Kwan, Hon C; Cheng, Anita; Liu, Ruth; Borrett, Donald S

    2004-01-01

    Background The pulsatile nature of the arterial pulse induces a pulsatile perfusion pattern which can be observed in human cerebral cortex with non-invasive near-infrared spectroscopy. The present study attempts to establish a quantitative relation between these two events, even in situations of very weak signal-to-noise ratio in the cortical perfusion signal. The arterial pulse pattern was extracted from the left middle finger by means of plethesmographic techniques. Changes in cortical perfusion were detected with a continuous-wave reflectance spectrophotometer on the scalp overlying the left prefrontal cortex. Cross-correlation analysis was performed to provide evidence for a causal relation between the arterial pulse and relative changes in cortical total hemoglobin. In addition, the determination of the statistical significance of this relation was established by the use of phase-randomized surrogates. Results The results showed statistically significant cross correlation between the arterial and perfusion signals. Conclusions The approach designed in the present study can be utilized for a quantitative and continuous assessment of the perfusion states of the cerebral cortex in experimental and clinical settings even in situations of extremely low signal-to-noise ratio. PMID:15113424

  1. Metabolic profiling during ex vivo machine perfusion of the human liver.

    PubMed

    Bruinsma, Bote G; Sridharan, Gautham V; Weeder, Pepijn D; Avruch, James H; Saeidi, Nima; Özer, Sinan; Geerts, Sharon; Porte, Robert J; Heger, Michal; van Gulik, Thomas M; Martins, Paulo N; Markmann, James F; Yeh, Heidi; Uygun, Korkut

    2016-03-03

    As donor organ shortages persist, functional machine perfusion is under investigation to improve preservation of the donor liver. The transplantation of donation after circulatory death (DCD) livers is limited by poor outcomes, but its application may be expanded by ex vivo repair and assessment of the organ before transplantation. Here we employed subnormothermic (21 °C) machine perfusion of discarded human livers combined with metabolomics to gain insight into metabolic recovery during machine perfusion. Improvements in energetic cofactors and redox shifts were observed, as well as reversal of ischemia-induced alterations in selected pathways, including lactate metabolism and increased TCA cycle intermediates. We next evaluated whether DCD livers with steatotic and severe ischemic injury could be discriminated from 'transplantable' DCD livers. Metabolomic profiling was able to cluster livers with similar metabolic patterns based on the degree of injury. Moreover, perfusion parameters combined with differences in metabolic factors suggest variable mechanisms that result in poor energy recovery in injured livers. We conclude that machine perfusion combined with metabolomics has significant potential as a clinical instrument for the assessment of preserved livers.

  2. Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects.

    PubMed

    Roberts, Victoria H J; Lo, Jamie O; Salati, Jennifer A; Lewandowski, Katherine S; Lindner, Jonathan R; Morgan, Terry K; Frias, Antonio E

    2016-03-01

    The uteroplacental vascular supply is a critical determinant of placental function and fetal growth. Current methods for the in vivo assessment of placental blood flow are limited. We demonstrate the feasibility of the use of contrast-enhanced ultrasound imaging to visualize and quantify perfusion kinetics in the intervillous space of the primate placenta. Pregnant Japanese macaques were studied at mid second trimester and in the early third trimester. Markers of injury were assessed in placenta samples from animals with or without contrast-enhanced ultrasound exposure (n = 6/group). Human subjects were recruited immediately before scheduled first-trimester pregnancy termination. All studies were performed with maternal intravenous infusion of lipid-shelled octofluoropropane microbubbles with image acquisition with a multipulse contrast-specific algorithm with destruction-replenishment analysis of signal intensity for assessment of perfusion. In macaques, the rate of perfusion in the intervillous space was increased with advancing gestation. No evidence of microvascular hemorrhage or acute inflammation was found in placental villous tissue and expression levels of caspase-3, nitrotyrosine and heat shock protein 70 as markers of apoptosis, nitrative, and oxidative stress, respectively, were unchanged by contrast-enhanced ultrasound exposure. In humans, placental perfusion was visualized at 11 weeks gestation, and preliminary data reveal regional differences in intervillous space perfusion within an individual placenta. By electron microscopy, we demonstrate no evidence of ultrastructure damage to the microvilli on the syncytiotrophoblast after first-trimester ultrasound studies. Use of contrast-enhanced ultrasound did not result in placental structural damage and was able to identify intervillous space perfusion rate differences within a placenta. Contrast-enhanced ultrasound imaging may offer a safe clinical tool for the identification of pregnancies that are at

  3. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    PubMed

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Long-term effects of intratympanic methylprednisolone perfusion treatment on intractable Ménière's disease.

    PubMed

    She, W; Lv, L; Du, X; Li, H; Dai, Y; Lu, L; Ma, X; Chen, F

    2015-03-01

    This study aimed to investigate the long-term efficacy of intratympanic methylprednisolone perfusion treatment for intractable Ménière's disease. A retrospective analysis of 17 intractable Ménière's disease patients treated with intratympanic methylprednisolone perfusion was performed. Treatment efficacy was evaluated according to the American Academy of Otolaryngology-Head and Neck Surgery criteria. Short and long-term control or improvement rates were calculated after 6 and 24 months, respectively. Sixteen patients were followed for more than two years. Short- and long-term vertigo control rates were 94 per cent and 81 per cent, respectively; short- and long-term functional activity improvements were 94 per cent and 88 per cent, respectively. The pure tone average was 53 ± 14 dB before treatment, and 50 ± 16 dB at 6 months and 52 ± 20 dB at 24 months after intratympanic methylprednisolone perfusion. Tinnitus was controlled or improved in five patients over the two-year follow-up period. Intratympanic methylprednisolone perfusion can effectively control vertigo and improve functional activity in intractable Ménière's disease patients with good hearing preservation. It may therefore be a viable alternative treatment for intractable Ménière's disease.

  5. Antigenic composition of human renal vascular endothelium assessed by kidney perfusion.

    PubMed

    Baldwin, W M; Claas, F H; van Rood, J J; van Es, L A

    1984-05-01

    Intravascular perfusion of healthy, viable human kidneys either with human sera or with monoclonal antibodies specific for individual HLA-A, B, DR or E-M antigens demonstrated that all of these antigens are exposed to circulating antibodies and thus can serve as stimuli or targets for immunologic mediators of renal transplant rejection. In addition, these antibodies could be recovered from the renal vessels by brief treatment with acid buffer.

  6. Long-term mortality following normal exercise myocardial perfusion SPECT according to coronary disease risk factors.

    PubMed

    Rozanski, Alan; Gransar, Heidi; Min, James K; Hayes, Sean W; Friedman, John D; Thomson, Louise E J; Berman, Daniel S

    2014-04-01

    While normal exercise myocardial perfusion imaging (SPECT-MPI) is a robust predictor of low short-term clinical risk, there is increasing interest in ascertaining how clinical factors influence long-term risk following SPECT-MPI. We evaluated the predictors of outcome from clinical data obtained at the time of testing in 12,232 patients with normal exercise SPECT-MPI studies. All-cause mortality (ACM) was assessed at a mean of 11.2 ± 4.5 years using the Social Security Death Index. The ACM rate was 0.8%/year, but varied markedly according to the presence of CAD risk factors. Hypertension, smoking, diabetes, exercise capacity, dyspnea, obesity, higher resting heart rate, an abnormal ECG, LVH, atrial fibrillation, and LVEF < 45% were all predictors of increased mortality. Risk factors were synergistic in predicting mortality: annualized age and gender-adjusted ACM rates ranged from only 0.2%/year among patients exercising for >9 minutes having none of three significant risk factors (among hypertension, diabetes, and smoking) to 1.6%/year among patients exercising <6 minutes and having ≥ 2 of these three risk factors. The age and gender-adjusted hazard ratio for mortality was increased by 7.3 (95% confidence interval 5.5-9.7) in the latter patients compared to those patients who exercised >9 minutes and had no significant risk factors (P < .001). Long-term mortality risk varies markedly in accordance with baseline CAD risk factors and functional capacity among patients with normal exercise SPECT-MPI studies. Further study is indicated to determine whether the prospective characterization of both short-term and long-term risks following the performance of stress SPECT-MPI leads to improved clinical management.

  7. An Optical Oxygen Sensor for Long-Term Continuous Monitoring of Dissolved Oxygen in Perfused Bioreactors

    NASA Technical Reports Server (NTRS)

    Gao, F. G.; Jeevarajan, A. S.; Anderson, M. M.

    2002-01-01

    For long-term growth of man1ITlalian cells in perfused bioreactors, it is essential to monitor the concentration of dissolved oxygen (DO) present in the culture medium to quantitate and control level of DO. Continuous measurement of the amount of DO in the cell culture medium in-line under sterile conditions in NASA's perfused bioreactor requires that the oxygen sensor provide increased sensitivity and be sterilizable and nontoxic. Additionally, long-term cell culture experiments require that the calibration be maintained several weeks or months. Although there are a number of sensors for dissolved oxygen on the market and under development elsewhere, very few meet these stringent conditions. An optical oxygen sensor (BOXY) based on dynamic fluorescent quenching and a pulsed blue LED light source was developed in our laboratory to address these requirements. Tris( 4,7 -diphenyl-l, 1 O-phenanthroline )ruthenium(II) chloride is employed as the fluorescent dye indicator. The sensing element consists of a glass capillary (OD 4.0 mm; ID 2.0 mm) coated internally with a thin layer of the fluorescent dye in silicone matrix and overlayed with a black shielding layer. Irradiation of the sensing element with blue light (blue LED with emission maximum at 475 nm) generates a red fluorescence centered at 626 nm. The fluorescence intensity is correlated to the concentration of DO present in the culture medium, following the modified non-linear Stern-Volmer equation. By using a pulsed irradiating light source, the problem of dye-bleaching, which is often encountered in long-term continuous measurements of tIns type, 'is minimized. To date we achieved sensor resolution of 0.3 mmHg at 50 mmHg p02, and 0.6 mmHg at 100 mmHg p02, with a response time of about one minute. Calibration was accomplished in sterile phosphate-buffered saline with a blood-gas analyzer (BGA) measurement as reference. Stand-alone software was also developed to control the sensor and bioreactor as well as to

  8. Blood temperature and perfusion to exercising and non‐exercising human limbs

    PubMed Central

    Calbet, José A. L.; Boushel, Robert; Helge, Jørn W.; Søndergaard, Hans; Munch‐Andersen, Thor; van Hall, Gerrit; Mortensen, Stefan P.; Secher, Niels H.

    2015-01-01

    New Findings What is the central question of this study? Temperature‐sensitive mechanisms are thought to contribute to blood‐flow regulation, but the relationship between exercising and non‐exercising limb perfusion and blood temperature is not established. What is the main finding and its importance? The close coupling among perfusion, blood temperature and aerobic metabolism in exercising and non‐exercising extremities across different exercise modalities and activity levels and the tight association between limb vasodilatation and increases in plasma ATP suggest that both temperature‐ and metabolism‐sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes. Temperature‐sensitive mechanisms may contribute to blood‐flow regulation, but the influence of temperature on perfusion to exercising and non‐exercising human limbs is not established. Blood temperature (T B), blood flow and oxygen uptake (V˙O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher than arm blood flow (ABF) in association with higher T B and limb V˙O2. Leg and arm vascular conductance during exercise compared with rest was related closely to T B (r 2 = 0.91; P < 0.05), plasma ATP (r 2 = 0.94; P < 0.05) and limb V˙O2 (r 2 = 0.99; P < 0.05). During incremental leg exercise, LBF increased in association with elevations in T B and limb V˙O2, whereas ABF, arm T B and V˙O2 remained largely unchanged. During incremental arm exercise, both ABF and LBF increased in relationship to similar increases in V˙O2. In 12 trained males, increases in femoral T B and LBF during incremental leg exercise were mirrored by similar pulmonary artery T B and cardiac output dynamics, suggesting that processes in active limbs dominate central

  9. Correlation between cerebral hemodynamic and perfusion pressure changes in non-human primates

    NASA Astrophysics Data System (ADS)

    Ruesch, A.; Smith, M. A.; Wollstein, G.; Sigal, I. A.; Nelson, S.; Kainerstorfer, J. M.

    2017-02-01

    The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral auto-regulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impaired in diseases like traumatic brain injury, Parkinson's disease, stroke, hydrocephalus and others. If CA is impaired, blood flow and pressure changes are coupled and thee oxygen supply might be unstable. Lassen's blood flow auto-regulation curve describes this mechanism, where a plateau of stable blood flow in a specific range of CPP corresponds to intact auto-regulation. Knowing the limits of this plateau and maintaining CPP within these limits can improve patient outcome. Since CPP is influenced by both intracranial pressure and arterial blood pressure, long term changes in either can lead to auto-regulation impairment. Non-invasive methods for monitoring blood flow auto-regulation are therefore needed. We propose too use Near infrared spectroscopy (NIRS) too fill this need. NIRS is an optical technique, which measures microvascular changes in cerebral hemoglobin concentration. We performed experiments on non-human primates during exsanguination to demonstrate that thee limits of blood flow auto-regulation can be accessed with NIRS.

  10. The cerebral imaging using vessel-around method in the perfusion CT of the human brain

    NASA Astrophysics Data System (ADS)

    Ahn, Choong-Il; Choi, Seung-Wook; Park, Seung-Chul; Shin, Yeong-Gil; Kim, Jae-Hyoung; Chong, Gi-Bong

    2005-04-01

    Perfusion CT has been successfully used as a functional imaging technique for diagnosis of patients with hyperacute stroke. However, the commonly used methods based on curve-fitting are time consuming. Numerous researchers have investigated to what extent Perfusion CT can be used for the quantitative assessment of cerebral ischemia and to rapidly obtain comprehensive information regarding the extent of ischemic damage in acute stroke patients. The aim of this study is to propose an alternative approach to rapidly obtain the brain perfusion mapping and to show the proposed cerebral flow imaging of the vessel and tissue in human brain be reliable and useful. Our main design concern was algorithmic speed, robustness and automation in order to allow its potential use in the emergency situation of acute stroke. To obtain a more effective mapping, we analyzed the signal characteristics of Perfusion CT and defined the vessel-around model which includes the vessel and tissue. We proposed a nonparametric vessel-around approach which automatically discriminates the vessel and tissue around vessel from non-interested brain matter stratifying the level of maximum enhancement of pixel-based TAC. The stratification of pixel-based TAC was executed using the mean and standard deviation of the signal intensity of each pixel and mapped to the cerebral flow imaging. The defined vessel-around model was used to show the cerebral flow imaging and to specify the area of markedly reduced perfusion with loss of function of still viable neurons. Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. The vessel-around approach reduces the computation time significantly when compared with the perfusion imaging using the GVF. The proposed cerebral imaging shows reliable results which are validated by physicians and

  11. Human placental perfusion method in the assessment of transplacental passage of antiepileptic drugs

    SciTech Connect

    Myllynen, Paeivi . E-mail: paivi.k.myllynen@oulu.fi; Pienimaeki, Paeivi; Vaehaekangas, Kirsi

    2005-09-01

    Epilepsy is one of the most common neurological diseases, affecting about 0.5 to 1% of pregnant women. It is commonly accepted that older antiepileptic drugs bear teratogenic potential. So far, no agreement has been reached about the safest antiepileptic drug during pregnancy. It is known that nearly all drugs cross the placenta at least to some extent. Nowadays, there is very little information available of the pharmacokinetics of drugs in the feto-placental unit. Detailed information about drug transport across the placenta would be valuable for the development of safe and effective treatments. For reasons of safety, human studies on placental transfer are restricted to a limited number of drugs. Interspecies differences limit the extrapolation of animal data to humans. Several in vitro methods for the study of placental transfer have been developed over the past decades. The placental perfusion method is the only experimental method that has been used to study human placental transfer of substances in organized placental tissue. The aim of this article is to review human placental perfusion data on antiepileptic drugs. According to perfusion data, it seems that most of the antiepileptic drugs are transferred across the placenta meaning significant fetal exposure.

  12. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.

    1998-01-01

    Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P < 0.05) over a 13-d period. Total protein synthesis rates could be determined accurately in the bioreactors for up to 30 h and total protein degradation rates could be measured for up to 3 wk. Special fixation and storage conditions necessary for space flight studies were validated as part of the studies. For example, the anabolic autocrine/paracrine skeletal muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

  13. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.

    1998-01-01

    Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P < 0.05) over a 13-d period. Total protein synthesis rates could be determined accurately in the bioreactors for up to 30 h and total protein degradation rates could be measured for up to 3 wk. Special fixation and storage conditions necessary for space flight studies were validated as part of the studies. For example, the anabolic autocrine/paracrine skeletal muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

  14. Human Mesenchymal Stromal Cells Improve Cardiac Perfusion in an Ovine Immunocompetent Animal Model.

    PubMed

    Dayan, Victor; Sotelo, Veronica; Delfina, Valentina; Delgado, Natalia; Rodriguez, Carlos; Suanes, Carol; Langhain, María; Ferrando, Rodolfo; Keating, Armand; Benech, Alejandro; Touriño, Cristina

    2016-08-01

    Mesenchymal stromal cells (MSCs) hold considerable promise in the treatment of ischemic heart disease. Most preclinical studies of MSCs for acute myocardial infarction (AMI) have been performed either in syngeneic animal models or with human cells in xenogeneic immunodeficient animals. A preferable pre-clinical model, however, would involve human MSCs in an immunocompetent animal. AMI was generated in adult sheep by inducing ischemia reperfusion of the second diagonal branch. Sheep (n = 10) were randomized to receive an intravenous injection of human MSCs (1 × 10(6) cells/kg) or phosphate buffered saline. Cardiac function and remodeling were evaluated with echocardiography. Perfusion scintigraphy was used to identify sustained myocardial ischemia. Interaction between human MSCs and ovine lymphocytes was assessed by a mixed lymphocyte response (MLR). Sheep receiving human MSCs showed significant improvement in myocardial perfusion at 1 month compared with baseline measurements. There was no change in ventricular dimensions in either group after 1 month of AMI. No adverse events or symptoms were observed in the sheep receiving human MSCs. The MLR was negative. The immunocompetent ovine AMI model demonstrates the clinical safety and efficacy of human MSCs. The human cells do not appear to be immunogenic, further suggesting that immunocompetent sheep may serve as a suitable pre-clinical large animal model for testing human MSCs.

  15. Human erythrocytes are not suitable for determination of intravascular volume of perfused rat liver.

    PubMed

    Karabey, Y; Sahin, S

    2006-01-01

    Homologous or heterologous erythrocytes have been widely used for the estimation of intravascular volume of the liver. However, cross-species blood mediates immune response in the organ, and foreign cells are rapidly cleared from the plasma, indicating that heterologous erythrocytes may not be a suitable marker for determination of vascular space. This aspect was investigated in the perfused rat liver preparation following bolus administration of human (heterologous) erythrocytes into the portal vein. To compare the extent of its distribution within the liver, rat (homologous) erythrocytes and Evans blue were chosen as the reference vascular and extracellular markers, respectively. Hepatic distribution of human erythrocytes was influenced by the perfusion medium (with and without protein) and injection number (first and second injections). Mean transit time and hence volume of distribution decreased in the presence of protein and repetition of the injection. Even in the presence of protein, the volume of distribution obtained for human erythrocytes was larger than that of the extracellular volume of the liver obtained with Evans blue (0.22 +/- 0.01 vs. 0.20 +/- 0.02 ml/g), indicating that they are not suitable for determination of intravascular volume of the perfused rat liver preparation.

  16. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans.

    PubMed

    Buck, Amanda K W; Elder, Christopher P; Donahue, Manus J; Damon, Bruce M

    2015-08-01

    Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities.

  17. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans

    PubMed Central

    Elder, Christopher P.; Donahue, Manus J.; Damon, Bruce M.

    2015-01-01

    Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities. PMID:26066829

  18. Long-Term Evaluation of a Selective Retrograde Coronary Venous Perfusion Model in Pigs (Sus Scrofa Domestica)

    PubMed Central

    Harig, Frank; Schmidt, Joachim; Hoyer, Evelyn; Eckl, Sebastian; Adamek, Edytha; Ertel, Dirk; Nooh, Ehab; Amann, Kerstin; Weyand, Michael; Ensminger, Stephan M

    2011-01-01

    The lack of suitable target vessels remains a challenge for aortocoronary bypass grafting in end-stage coronary heart disease. This study aimed to investigate the arterialization of cardiac veins as an alternative myocardial revascularization strategy in an experimental long-term model in pigs. Selective retrograde perfusion of a coronary vein (aorta to coronary vein bypass, retrobypass) before ligation of the ramus interventricularis paraconalis (equivalent to the left anterior descending artery in humans) was performed in 20 German Landrace pigs (Sus scrofa domestica). Retroperfusion of the left anterior descending vein was performed in 10 pigs (RP+) but not in the other 10 (RP–), and the vena cordis magna was ligated (L+) in 5 pigs in each of these groups but left open (L–) in the remaining animals. Hemodynamic performance (for example, cardiac output) was significantly better in the group that underwent selective retroperfusion with proximal ligation of vena cordis magna (RP+L+; 4.1 L/min) compared with the other groups (RP+L–, 2.5 L/min; RP–L+, 2.2 L/min; RP–L–, 1.9 L/min). Long-term survival was significantly better in RP+L+ pigs (112 ± 16 d) than in all other groups. Histologic follow-up studies showed significantly less necrosis in the RP+L+ group compared with all other groups. Venous retroperfusion is an effective technique to achieve long-term survival after acute occlusion of the left anterior descending artery in a pig model. In this model, proximal ligation of vena cordis magna is essential. PMID:21535926

  19. Partitioning of glutamine synthesised by the isolated perfused human placenta between the maternal and fetal circulations☆

    PubMed Central

    Day, P.E.L.; Cleal, J.K.; Lofthouse, E.M.; Goss, V.; Koster, G.; Postle, A.; Jackson, J.M.; Hanson, M.A.; Jackson, A.A.; Lewis, R.M.

    2013-01-01

    Introduction Placental glutamine synthesis has been demonstrated in animals and is thought to increase the availability of this metabolically important amino acid to the fetus. Glutamine is of fundamental importance for cellular replication, cellular function and inter-organ nitrogen transfer. The objective of this study was to investigate the role of glutamate/glutamine metabolism by the isolated perfused human placenta in the provision of glutamine to the fetus. Methods Glutamate metabolism was investigated in the isolated dually perfused human placental cotyledon. U–13C-glutamate was used to investigate the movement of carbon and 15N-leucine to study movement of amino-nitrogen. Labelled amino acids were perfused via maternal or fetal arteries at defined flow rates. The enrichment and concentration of amino acids in the maternal and fetal veins were measured following 5 h of perfusion. Results Glutamate taken up from the maternal and fetal circulations was primarily converted into glutamine the majority of which was released into the maternal circulation. The glutamine transporter SNAT5 was localised to the maternal-facing membrane of the syncytiotrophoblast. Enrichment of 13C or 15N glutamine in placental tissue was lower than in either the maternal or fetal circulation, suggesting metabolic compartmentalisation within the syncytiotrophoblast. Discussion Placental glutamine synthesis may help ensure the placenta's ability to supply this amino acid to the fetus does not become limiting to fetal growth. Glutamine synthesis may also influence placental transport of other amino acids, metabolism, nitrogen flux and cellular regulation. Conclusions Placental glutamine synthesis may therefore be a central mechanism in ensuring that the human fetus receives adequate nutrition and is able to maintain growth. PMID:24183194

  20. Probabilistic pharmacokinetic models of decompression sickness in humans, part 1: Coupled perfusion-limited compartments.

    PubMed

    Murphy, F Gregory; Hada, Ethan A; Doolette, David J; Howle, Laurens E

    2017-07-01

    Decompression sickness (DCS) is a disease caused by gas bubbles forming in body tissues following a reduction in ambient pressure, such as occurs in scuba diving. Probabilistic models for quantifying the risk of DCS are typically composed of a collection of independent, perfusion-limited theoretical tissue compartments which describe gas content or bubble volume within these compartments. It has been previously shown that 'pharmacokinetic' gas content models, with compartments coupled in series, show promise as predictors of the incidence of DCS. The mechanism of coupling can be through perfusion or diffusion. This work examines the application of five novel pharmacokinetic structures with compartments coupled by perfusion to the prediction of the probability and time of onset of DCS in humans. We optimize these models against a training set of human dive trial data consisting of 4335 exposures with 223 DCS cases. Further, we examine the extrapolation quality of the models on an additional set of human dive trial data consisting of 3140 exposures with 147 DCS cases. We find that pharmacokinetic models describe the incidence of DCS for single air bounce dives better than a single-compartment, perfusion-limited model. We further find the U.S. Navy LEM-NMRI98 is a better predictor of DCS risk for the entire training set than any of our pharmacokinetic models. However, one of the pharmacokinetic models we consider, the CS2T3 model, is a better predictor of DCS risk for single air bounce dives and oxygen decompression dives. Additionally, we find that LEM-NMRI98 outperforms CS2T3 on the extrapolation data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cultivation of human bone-like tissue from pluripotent stem cell-derived osteogenic progenitors in perfusion bioreactors.

    PubMed

    de Peppo, Giuseppe Maria; Vunjak-Novakovic, Gordana; Marolt, Darja

    2014-01-01

    Human pluripotent stem cells represent an unlimited source of skeletal tissue progenitors for studies of bone biology, pathogenesis, and the development of new approaches for bone reconstruction and therapies. In order to construct in vitro models of bone tissue development and to grow functional, clinical-size bone substitutes for transplantation, cell cultivation in three-dimensional environments composed of porous osteoconductive scaffolds and dynamic culture systems-bioreactors-has been studied. Here, we describe a stepwise procedure for the induction of human embryonic and induced pluripotent stem cells (collectively termed PSCs) into mesenchymal-like progenitors, and their subsequent cultivation on decellularized bovine bone scaffolds in perfusion bioreactors, to support the development of viable, stable bone-like tissue in defined geometries.

  2. Three-dimensional perfusion bioreactor culture supports differentiation of human fetal liver cells.

    PubMed

    Schmelzer, Eva; Triolo, Fabio; Turner, Morris E; Thompson, Robert L; Zeilinger, Katrin; Reid, Lola M; Gridelli, Bruno; Gerlach, Jörg C

    2010-06-01

    The ability of human fetal liver cells to survive, expand, and form functional tissue in vitro is of high interest for the development of bioartificial extracorporeal liver support systems, liver cell transplantation therapies, and pharmacologic models. Conventional static two-dimensional culture models seem to be inadequate tools. We focus on dynamic three-dimensional perfusion technologies and developed a scaled-down bioreactor, providing decentralized mass exchange with integral oxygenation. Human fetal liver cells were embedded in a hyaluronan hydrogel within the capillary system to mimic an in vivo matrix and perfusion environment. Metabolic performance was monitored daily, including glucose consumption, lactate dehydrogenase activity, and secretion of alpha-fetoprotein and albumin. At culture termination cells were analyzed for proliferation and liver-specific lineage-dependent cytochrome P450 (CYP3A4/3A7) gene expression. Occurrence of hepatic differentiation in bioreactor cultures was demonstrated by a strong increase in CYP3A4/3A7 gene expression ratio, lower alpha-fetoprotein, and higher albumin secretion than in conventional Petri dish controls. Cells in bioreactors formed three-dimensional structures. Viability of cells was higher in bioreactors than in control cultures. In conclusion, the culture model implementing three-dimensionality, constant perfusion, and integral oxygenation in combination with a hyaluronan hydrogel provides superior conditions for liver cell survival and differentiation compared to conventional culture.

  3. Human immunodeficiency virus-infected subjects have no altered myocardial perfusion.

    PubMed

    Catzin-Kuhlmann, Andres; Orea-Tejeda, Arturo; Castillo-Martínez, Lilia; Colín-Ramírez, Eloisa; Asz, Daniel; Aguirre, Víctor H; Herrera, Luis E; Valles, Victoria; Aguilar-Salinas, Carlos A; Sierra, Juan; Calva, Juan J

    2007-10-31

    We assessed myocardial perfusion (blinded interpretation of a single-photon emission computed tomography) and known risk factors for atherosclerosis in 105 randomly selected human immunodeficiency virus (HIV)-infected patients in a clinic in Mexico City and in a community sample of 105 age and gender-matched infection-free subjects. An abnormal scan was obtained in 4.8% of the infected and in 7.6% of the non-infected subjects. Severity of scintigraphic abnormalities was similar in both groups. In these Mexican HIV-infected patients, despite a long time of infection and of exposure to combined antiretroviral therapy and to other classical risk factors for atherosclerosis, there was no evidence of increased risk for abnormal myocardial perfusion. Dissimilar magnitude in the hazard of coronary heart disease may occur among infected populations with different frequencies of traditional predisposing factors for cardiovascular illness.

  4. Placental transfer of enfuvirtide in the ex vivo human placenta perfusion model.

    PubMed

    Ceccaldi, Pierre-Francois; Ferreira, Claudia; Gavard, Laurent; Gil, Sophie; Peytavin, Gilles; Mandelbrot, Laurent

    2008-04-01

    The objective of the study was to determine the placental transfer of the antiretroviral fusion inhibitor, enfuvirtide (Fuzeon). Human cotyledons were perfused for 90 minutes in an open dual circuit with enfuvirtide, and fetal venous samples were collected every 5 minutes. Three perfusion experiments were validated using antipyrine. Enfuvirtide was not detected in the fetal compartment in any of the 3 experiments. The mean concentration of the drug measured in the maternal compartment was 12,400 ng/mL (range, 6500-16,200 ng/mL), which is 2.5 times the maximum concentration recommended for patients treated with enfuvirtide. Even at maternal concentrations twice above therapeutic levels, no placental transfer of enfuvirtide was observed. The high molecular weight of the molecule (4492 kDa) and its ionized state may account for the lack of placental transfer. This result suggests that enfuvirtide could be used in HIV-infected pregnant women without causing fetal exposure.

  5. Mechanisms compensating Na and water retention induced by long-term reduction of renal perfusion pressure.

    PubMed

    Seeliger, E; Boemke, W; Corea, M; Encke, T; Reinhardt, H W

    1997-08-01

    Endogenous downregulation of plasma aldosterone (Aldo) concentration, despite increased plasma renin activity (PRA), has been suggested to compensate Na and water retention, which is induced by long-term reduction of renal perfusion pressure (rRPP). To determine whether fixed plasma Aldo concentration would prevent equilibration of 24-h Na and water balances during rRPP, chronically instrumented, freely moving beagle dogs were kept under standardized conditions (daily intake 5.5 mmol Na/kg body wt) and studied for 4 consecutive days under the following conditions: control without rRPP (protocol 1) and rRPP + infusion of Aldo (rRPP + Aldo, protocol 2). Because Aldo administration reduces PRA and, thereby, angiotensin II (ANG II) levels ANG II was additionally infused in protocol 3 (rRPP + ANG II + Aldo). During rRPP + Aldo, 24-h Na balances were never equilibrated. Daily Na retention was approximately 3.5 mmol/kg body wt on day 1 and decreased to approximately 1.6 mmol/kg body wt on day 4; 24-h water balances changed in a similar manner. PRA decreased stepwise. On all rRPP + ANG II + Aldo days, Na and water retentions were more extensive than during rRPP + Aldo. Daily Na retention decreased from approximately 4.4 mmol/kg body wt on day 1 to approximately 3.0 mmol/kg body wt on day 4. Plasma atrial natriuretic peptide increased during both protocols. It is concluded that 1) endogenous downregulation of components of the renin-angiotensin-aldosterone system is a pivotal compensatory mechanism to reduce Na and water retention and 2) natriuretic and diuretic factors seem to be of minor potency, because not even the sum of all could counterbalances the Na- and water-retaining effects of Aldo and ANG II.

  6. Induction of Hepatic and Endothelial Differentiation by Perfusion in a Three-Dimensional Cell Culture Model of Human Fetal Liver

    PubMed Central

    Pekor, Christopher; Gerlach, Jörg C.; Nettleship, Ian

    2015-01-01

    The development of functional engineered tissue constructs depends on high cell densities and appropriate vascularization. In this study we implemented a four-compartment three-dimensional perfusion bioreactor culture model for studying the effects of medium perfusion on endothelial, hepatic, and hematopoietic cell populations of primary human fetal liver in an in vivo-like environment. Human fetal liver cells were cultured in bioreactors configured to provide either perfusion or diffusion conditions. Metabolic activities of the cultures were monitored daily by measuring glucose consumption and lactate production. Cell viability during culture was analyzed by lactate dehydrogenase activity. Hepatic functionality was determined by the release of albumin and alpha-fetoprotein (AFP) in culture medium samples. After 4 days of culture, cells were analyzed for the expression of a variety of endothelial, hepatic, and hematopoietic genes, as well as the surface marker expression of CD31 and CD34 in flow cytometry. We found that medium perfusion increased the gene expression of endothelial markers such as CD31, von Willebrand factor (vWF), CD140b, CD309, and CD144 while decreasing the gene expression of the erythrocyte-surface marker CD235a. Hepatic differentiation was promoted under perfusion conditions as demonstrated by lower AFP and higher albumin secretion compared with cultures not exposed to medium perfusion. Additionally, cultures exposed to medium perfusion gave higher rates of glucose consumption and lactate production, indicating increased metabolic activity. In conclusion, high-density bioreactors configured to provide constant medium perfusion significantly induced hepatic and endothelial cell differentiation and provided improved conditions for the culture of human fetal liver cells compared with cultures without perfusion. PMID:25559936

  7. Induction of Hepatic and Endothelial Differentiation by Perfusion in a Three-Dimensional Cell Culture Model of Human Fetal Liver.

    PubMed

    Pekor, Christopher; Gerlach, Jörg C; Nettleship, Ian; Schmelzer, Eva

    2015-07-01

    The development of functional engineered tissue constructs depends on high cell densities and appropriate vascularization. In this study we implemented a four-compartment three-dimensional perfusion bioreactor culture model for studying the effects of medium perfusion on endothelial, hepatic, and hematopoietic cell populations of primary human fetal liver in an in vivo-like environment. Human fetal liver cells were cultured in bioreactors configured to provide either perfusion or diffusion conditions. Metabolic activities of the cultures were monitored daily by measuring glucose consumption and lactate production. Cell viability during culture was analyzed by lactate dehydrogenase activity. Hepatic functionality was determined by the release of albumin and alpha-fetoprotein (AFP) in culture medium samples. After 4 days of culture, cells were analyzed for the expression of a variety of endothelial, hepatic, and hematopoietic genes, as well as the surface marker expression of CD31 and CD34 in flow cytometry. We found that medium perfusion increased the gene expression of endothelial markers such as CD31, von Willebrand factor (vWF), CD140b, CD309, and CD144 while decreasing the gene expression of the erythrocyte-surface marker CD235a. Hepatic differentiation was promoted under perfusion conditions as demonstrated by lower AFP and higher albumin secretion compared with cultures not exposed to medium perfusion. Additionally, cultures exposed to medium perfusion gave higher rates of glucose consumption and lactate production, indicating increased metabolic activity. In conclusion, high-density bioreactors configured to provide constant medium perfusion significantly induced hepatic and endothelial cell differentiation and provided improved conditions for the culture of human fetal liver cells compared with cultures without perfusion.

  8. Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds

    PubMed Central

    Dahlin, Rebecca L.; Gershovich, Julia G.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    In this study, we investigated the effect of flow perfusion culture on the mineralization of co-cultures of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs). Osteogenically precultured hMSCs were seeded onto electrospun scaffolds in monoculture or a 1:1 ratio with HUVECs, cultured for 7 or 14 days in osteogenic medium under static or flow perfusion, and the resulting constructs were analyzed for cellularity, alkaline phosphatase (ALP) activity and calcium content. In flow perfusion, constructs with monocultures of hMSCs demonstrated higher cellularity and calcium content, but lower ALP activity compared to corresponding static controls. ALP activity was enhanced in co-cultures under flow perfusion conditions, compared to hMSCs alone; however unlike the static controls, the calcium content of the co-cultures in flow perfusion was not different from the corresponding hMSC monocultures. The data suggest that co-cultures of hMSCs and HUVECs did not contribute to enhanced mineralization compared to hMSCs alone under the flow perfusion conditions investigated in this study. However, flow perfusion culture resulted in an enhanced spatial distribution of cells and matrix compared to static cultures, which were limited to a thin surface layer. PMID:23842695

  9. Cytokine expression profile in human lungs undergoing normothermic ex-vivo lung perfusion.

    PubMed

    Sadaria, Miral R; Smith, Phillip D; Fullerton, David A; Justison, George A; Lee, Joon H; Puskas, Ferenc; Grover, Frederick L; Cleveland, Joseph C; Reece, T Brett; Weyant, Michael J

    2011-08-01

    A donor lung shortage prevents patients from receiving life-saving transplants. Ex-vivo lung perfusion (EVLP) is a viable means of expanding the donor pool by evaluating and potentially improving donor lung function. The metabolic and inflammatory effects of EVLP on human lung tissue are currently unknown. We sought to establish representative cytokine expression in human donor lungs meeting acceptable lung transplant criteria after prolonged normothermic EVLP. Seven single human lungs not meeting traditional transplantation criteria for various reasons underwent normothermic EVLP. Lungs were perfused with deoxygenated colloid, rewarmed, and ventilated per standard protocol. Lung function was evaluated every hour. Biopsies were taken at 1, 6, and 12 hours. Inflammatory cytokines were quantitatively measured using a human cytokine magnetic bead-based multiplex assay. All lungs met traditional transplant criteria after EVLP. The partial pressure of arterial oxygen and physiologic lung function significantly improved (p<0.05). No pulmonary edema was formed, and histology demonstrated no evidence of acute lung injury. Interleukin (IL)-6, IL-8, granulocyte colony-stimulating factor, and monocyte chemotactic protein-1 were upregulated, while granulocyte macrophage colony-stimulating factor was downregulated during EVLP (p<0.05). IL-1β, IL-4, IL-7, IL-12, interferon-γ, macrophage inflammatory protein-1β, and tumor necrosis factor-α were detectable and unchanged. Ex-vivo lung perfusion demonstrates the ability to improve oxygenation and physiologic lung function in donor lungs unacceptable for transplantation without injury to the lung. We establish here a cytokine expression profile in human lungs undergoing normothermic EVLP. These data can be used in the future to explore novel targeted therapies for ischemia-reperfusion injury. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Improved perfusion conditions for patch-clamp recordings on human erythrocytes.

    PubMed

    Lisk, Godfrey; Desai, Sanjay A

    2006-08-18

    Various configurations of the patch-clamp method are powerful tools for examining the transport of charged solutes across biological membranes. Originally developed for the study of relatively large cells which adhere to solid surfaces under in vitro culture, these methods have been increasingly applied to small cells or organelles in suspension. Under these conditions, a number of significant technical problems may arise as a result of the smaller geometry. Here, we examined these problems using human erythrocytes infected with the malaria parasite, Plasmodium falciparum, a system where experimental differences and the technical difficulty of erythrocyte patch-clamp have hindered universal agreement on the properties of the induced ion channels. We found that patch-clamp recordings on infected erythrocytes are especially susceptible to artifacts from mechanical perturbations due to solution flow around the cell. To minimize these artifacts, we designed a new perfusion chamber whose geometry allows controlled solution flow around the fragile erythrocyte. Not only were recordings acquired in this chamber significantly less susceptible to perfusion artifacts, but the chamber permitted rapid and reversible application of known inhibitors with negligible mechanical agitation. Electrophysiological recordings then faithfully reproduced several findings made with more traditional methods. The new perfusion chamber should also be useful for patch-clamp recordings on blood cells, protoplasts, and organelles.

  11. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    PubMed

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices. © 2013 Wiley Periodicals, Inc.

  12. Validation of minimally invasive measurement of myocardial perfusion using electron beam computed tomography and application in human volunteers

    PubMed Central

    Bell, M; Lerman, L; Rumberger, J

    1999-01-01

    OBJECTIVES—To measure myocardial perfusion using an estimate of intramyocardial vascular volume obtained by electron beam computed tomography (EBCT) in an animal model; to assess the feasibility and validity of measuring regional myocardial perfusion in human volunteers using the techniques developed and validated in the animal studies.
METHODS—Measurements of myocardial perfusion with EBCT employing intravenous contrast injections were compared with radioactive microsphere measurements (flow 57 to 346 ml/100 g/min) in seven closed chest dogs. Fourteen human volunteers then underwent EBCT scans using intravenous contrast injections.
RESULTS—Mean (SEM) global intramyocardial vascular volume by EBCT was 7.6 (1.1)%. The correlation between global EBCT (y) and microsphere (x) perfusion was y = 0.59x + 15.56 (r = 0.86) before, and y = 0.72x + 6.06 (r = 0.88) after correcting for intramyocardial vascular volume. Regional perfusion correlation was y = 0.75x + 23.84 (r = 0.82). Corresponding improvements in agreement between the two techniques were also seen using Bland-Altman plots. In the human subjects, mean resting global myocardial flow was 98 (6) ml/100 g/min, with homogeneous flow across all regions. In 10 of these subjects, perfusion was studied during coronary vasodilatation using intravenous adenosine. Global flow increased from 93 (5) ml/100 g/min at rest to 250 (19) ml/100 g/min during adenosine (p < 0.001), with an average perfusion reserve ratio of 2.8 (0.2). Similar changes in regional perfusion were observed and were uniform throughout all regions, with a mean regional perfusion reserve ratio of 2.8 (0.3).
CONCLUSIONS—Accounting for intramyocardial vascular volume improves the accuracy of EBCT measurements of myocardial perfusion when using intravenous contrast injections. The feasibility of providing accurate measurements of global and regional myocardial perfusion and perfusion reserve in people using this

  13. Human Urinary Kallidinogenase Improves Outcome of Stroke Patients by Shortening Mean Transit Time of Perfusion Magnetic Resonance Imaging.

    PubMed

    Li, Jingwei; Chen, Yan; Zhang, Xin; Zhang, Bing; Zhang, Meijuan; Xu, Yun

    2015-08-01

    Improving cerebral perfusion remains a good option for ischemic stroke for restoring cerebral blood flow. Human urinary kallidinogenase has been shown promising in treating stroke patients. To investigate whether human urinary kallidinogenase's efficacy in treating stroke patients has relationship with improving cerebral perfusion and possible mechanism. Fifty-eight stroke patients in Nanjing Drum Tower Hospital were enrolled in this prospective study. Of them, 29 received human urinary kallidinogenase, while the other 29 were selected as control. National institute health stroke scale, modified Rankin Scale and activities of daily living score were used to determine patient outcome. Cerebral perfusion in patients was determined by perfusion magnetic resonance imaging. Serum apelin and vascular endothelial growth factor were measured by enzyme-linked immunosorbent assay. We confirmed that human urinary kallidinogenase improved stroke outcome in patients. Cerebral perfusion was elevated by human urinary kallidinogenase 12 days after therapy. Human urinary kallidinogenase enhanced vascular endothelial growth factor and APJ expression in stroke patients. The reduced mean transit time was related with favorable outcome analyzed by univariate logistic regression. Human urinary kallidinogenase facilitated stroke recovery and enhanced cerebral reperfusion through up-regulating vascular endothelial growth factor, apelin/APJ pathway. Copyright © 2015. Published by Elsevier Inc.

  14. Effects of elevated perfusion pressure and pulsatile flow on human saphenous veins isolated from diabetic and non-diabetic patients.

    PubMed

    Rosique, Marina J F; Rosique, Rodrigo G; Tirapelli, Luis F; Joviliano, Edwaldo E; Dalio, Marcelo B; Bassetto, Solange; Rodrigues, Alfredo J; Evora, Paulo R B

    2013-05-01

    This study was carried out to determine high pressure and pulsatile flow perfusion effects on human saphenous vein (HSV) segments obtained from diabetic and non-diabetic patients. The veins were perfused with oxygenated Krebs solution for 3 h, with a pulsatile flow rate of 100 mL/min and pressures of 250 × 200 or 300 × 250 mmHg. After perfusion, veins were studied by light microscopy; nitric oxide synthase (NOS) isoforms, CD34 and nitrotyrosine immunohistochemistry and tissue nitrite/nitrate (NO(x)) and malondialdehyde (MDA) quantification. Light microscopy revealed endothelial denuding areas in all HSV segments subjected to 300 × 250 mmHg perfusion pressure, but the luminal area was similar. The percentage of luminal perimeter covered by endothelium decreased as perfusion pressures increased, and significant differences were observed between groups. The endothelial nitric oxide synthase (eNOS) isoform immunostaining decreased significantly in diabetic patients' veins independent of the perfusion pressure levels. The inducible NOS (iNOS), neuronal NOS (nNOS) and nitrotyrosine immunostaining were similar. Significant CD34 differences were observed between the diabetic 300 × 250 mmHg perfusion pressure group and the non-diabetic control group. Tissue nitrite/nitrate and MDA were not different among groups. Pulsatile flow and elevated pressures for 3 h caused morphological changes and decreased the eNOS expression in the diabetic patients' veins.

  15. Active skin perfusion and thermoregulatory response in the hand following nerve injury and repair in human upper extremities.

    PubMed

    Deng, Aidong; Liu, Dan; Gu, Chen; Gu, Xiaosong; Gu, Jianhui; Hu, Wen

    2016-01-01

    Cutaneous vasoconstriction/vasodilatation occurs in response to whole body and local cooling/heating, and the vasomotor activities play a pivotal role in thermal control of the human body. The mechanisms underlying regulation of skin blood flow involve both neurogenic and humeral/local chemical influence, contributing to the initial response to thermal stimuli and the prolonged phase of response, respectively. Previous studies have suggested the impairment of cutaneous thermal regulation after nerve injury. However, the evidence regarding how the skin perfusion and thermoregulatory response evolve after nerve injury and repair remains limited. Here we observed, by utilizing laser-Doppler perfusion imaging, baseline skin perfusion and perfusion change in response to thermal stimuli after median and ulnar nerve injury, and the results showed that baseline perfusion in autonomous skin area profoundly decreased and active rewarming after clod stress dramatically diminished before sensory recovery of the skin became detectable. In addition, baseline cutaneous perfusion was recovered as the skin regained touch sensation, and exhibited positive correlation to touch sensibility of the skin. These data indicate that both active perfusion and thermoregulatory response of the skin are markedly compromised during skin denervation and can be recovered by re-innervation. This suggests the importance of timely repair of injured nerve, especially in the practice of replantation.

  16. Intravital lectin perfusion analysis of vascular permeability in human micro- and macro- blood vessels.

    PubMed

    Debbage, P L; Sölder, E; Seidl, S; Hutzler, P; Hugl, B; Ofner, D; Kreczy, A

    2001-10-01

    We previously applied intravital lectin perfusion in mouse models to elucidate mechanisms underlying vascular permeability. The present work transfers this technique to human models, analysing vascular permeability in macro- and microvessels. Human vascular endothelial surface carbohydrate biochemistry differs significantly from its murine counterpart, lacking alpha-galactosyl epitopes and expressing the L-fucose moiety in the glycocalyx; the poly-N-lactosamine glycan backbone is common to all mammals. We examined extensively lectin binding specificities in sections and in vivo, and then applied the poly-N-lactosamine-specific lectin LEA and the L-fucose-specific lectin UEA-I in human intravital perfusions. Transendothelial transport differed in macrovessels and microvessels. In microvessels of adult human fat tissue, rectal wall and rectal carcinomas, slow transendothelial transport by vesicles was followed by significant retention at the subendothelial basement membrane; paracellular passage was not observed. Passage time exceeded 1 h. Thus we found barrier mechanisms resembling those we described previously in murine tissues. In both adult and fetal macrovessels, the vena saphena magna and the umbilical vein, respectively, rapid passage across the endothelial lining was observed, the tracer localising completely in the subendothelial tissues within 15 min; vesicular transport was more rapid than in microvessels, and retention at the subendothelial basement membrane briefer.

  17. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima.

    PubMed

    Oh, Sung Ho; Kwon, Min Chul; Choi, Woon Yong; Seo, Yong Chang; Kim, Ga Bin; Kang, Do Hyung; Lee, Shin Young; Lee, Hyeon Yong

    2010-08-01

    A unique perfusion process was developed to maintain high concentrations of marine alga, Chlorella minutissima. This method is based on recycling cells by continuous feeding with warm spent sea water from nuclear power plants, which has very similar properties as sea water. A temperature of at least 30 degrees C in a 200 L photo-bioreactor was maintained in this system by perfusion of the thermal plume for 80 days in the coldest season. The maximum cell concentration and total lipid content was 8.3 g-dry wt./L and 23.2 %, w/w, respectively, under mixotrophic conditions. Lipid production was found to be due to a partially or non-growth related process, which implies that large amounts of biomass are needed for a high accumulation of lipids within the cells. At perfusion rates greater than 1.5 L/h, the temperature of the medium inside the reactor was around 30 degrees C, which was optimal for cell growth. For this system, a perfusion rate of 2.8 L/h was determined to be optimal for maintaining rapid cell growth and lipid production during outdoor cultivation. It was absolutely necessary to maintain the appropriate perfusion rate so that the medium temperature was optimal for cell growth. In addition, the lipids produced using this process were shown to be feasible for biodiesel production since the lipid composition of C. minutissima grown under these conditions consisted of 17 % (w/w) of C(16) and 47% (w/w) of C(18). The combined results of this study clearly demonstrated that the discharged energy of the thermal plume could be reused to cultivate marine alga by maintaining a relatively constant temperature in an outdoor photo-bioreactor without the need for supplying any extra energy, which could allow for cheap production of biodiesel from waste energy.

  18. Three-dimensional perfusion cultivation of human cardiac-derived progenitors facilitates their expansion while maintaining progenitor state.

    PubMed

    Kryukov, Olga; Ruvinov, Emil; Cohen, Smadar

    2014-11-01

    The therapeutic application of autologous cardiac-derived progenitor cells (CPCs) requires a large cell quantity generated under defined conditions. Herein, we investigated the applicability of a three-dimensional (3D) perfusion cultivation system to facilitate the expansion of CPCs harvested from human heart biopsies and characterized by a relatively high percentage of c-kit(+) cells. The cells were seeded in macroporous alginate scaffolds and after cultivation for 7 days under static conditions, some of the constructs were transferred into a perfusion bioreactor, which was operated for an additional 14 days. A robust and highly reproducible human CPC (hCPC) expansion of more than seven-fold was achieved under the 3D perfusion culture conditions, while under static conditions, the expansion of CPCs was limited only to the first 7 days, after which it leveled-off. On day 21 of perfusion cultivation, the expanded cells exhibited a higher expression level of the progenitor marker c-kit, suggesting that the c-kit-positive CPCs are the main cell population undergoing proliferation. The profile of the spontaneous differentiation in the perfused construct was different from that in the static cultivated constructs; genes typical for cardiac and endothelial cell lineages were more widely expressed in the perfused constructs. By contrast, the differentiation to osteogenic (Von Kossa staining and alkaline phosphatase activity) and adipogenic (Oil Red staining) lineages was reduced in the perfused constructs compared with static cultivated constructs. Collectively, our results indicate that 3D perfusion cultivation mode is an appropriate system for robust expansion of human CPCs while maintaining their progenitor state and differentiation potential into the cardiovascular cell lineages.

  19. In vivo confocal Raman spectroscopy study of the vitamin A derivative perfusion through human skin

    NASA Astrophysics Data System (ADS)

    dos Santos, Laurita; Téllez Soto, Claudio A.; Favero, Priscila P.; Martin, Airton A.

    2016-03-01

    In vivo confocal Raman spectroscopy is a powerful non-invasive technique able to analyse the skin constituents. This technique was applied to transdermal perfusion studies of the vitamin A derivative in human skin. The composition of the stratum corneum (lipid bilayer) is decisive for the affinity and transport of the vitamin through skin. The vitamin A is significantly absorbed by human skin when applied with water in oil emulsion or hydro-alcoholic gel. The purpose of this study is to elucidate the behaviour of vitamin A derivative into human skin without the presence of enhancers. The results showed that the intensity band of the derivative (around 1600 cm-1), which represents the -C=O vibrational mode, was detected in different stratum corneum depths (up to 20 μm). This Raman peak of vitamin A derivative has non-coincident band with the Raman spectra of the skin epidermis, demonstrating that compound penetrated in forearm skin.

  20. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice

    PubMed Central

    Pernicone, Elizabeth; Korkes, Henri A.; Burke, Suzanne D.; Rajakumar, Augustine; Thadhani, Ravi I.; Roberts, Drucilla J.; Bhasin, Manoj; Karumanchi, S. Ananth

    2016-01-01

    Decidual NK (dNK) cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK) cells by a combination of hypoxia, TGFß-1 and 5-aza-2’-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion. PMID:27736914

  1. Evolution and resolution of human brain perfusion responses to the stress of induced hypoglycemia.

    PubMed

    Teh, Ming Ming; Dunn, Joel T; Choudhary, Pratik; Samarasinghe, Yohan; Macdonald, Ian; O'Doherty, Michael; Marsden, Paul; Reed, Laurence J; Amiel, Stephanie A

    2010-11-01

    The relationship between the human brain response to acute stress and subjective, behavioural and physiological responses is poorly understood. We have examined the human cerebral response to the intense interoceptive stressor of hypoglycemia, controlling plasma glucose at either normal fasting concentrations (5 mmol/l, n=7) or at hypoglycemia (2.7 mmol/l, n=10) for 1 h in healthy volunteers. Hypoglycemia was associated with symptomatic responses, counterregulatory neuroendocrine responses and a sequential pattern of brain regional engagement, mapped as changes in relative cerebral perfusion using [(15)O]-H(2)O water positron emission tomography. The early cerebral response comprised activation bilaterally in anterior cingulate cortex (ACC) and thalamic pulvinar, with deactivation in posterior parahippocampal gyrus. Later responses (>20 min) engaged bilateral anterior insula, ventral striatum and pituitary. Following resolution of hypoglycemia, the majority of responses returned to baseline, save persistent engagement of the ACC and sustained elevation of growth hormone and cortisol. Catecholamine responses correlated with increased perfusion in pulvinar and medial thalamus, ACC and pituitary, while growth hormone and cortisol responses showed no correlation with thalamic activation but did show additional correlation with the hypothalamus and ventral striatum bilaterally. These data demonstrate complex dynamic responses to the stressor of hypoglycemia that would be expected to drive physiological and behavioural changes to remedy the state. Further, these data show that sustained stress and its aftermath engage distinct sets of brain regions, providing a neural substrate for adaptive or 'allostasic' responses to stressors.

  2. Tolerance of human placental tissue to severe hypoxia and its relevance for dual ex vivo perfusion.

    PubMed

    Schneider, H

    2009-03-01

    In the dual ex vivo perfusion of an isolated human placental cotyledon it takes on average 20-30 min to set up stable perfusion circuits for the maternal and fetal vascular compartments. In vivo placental tissue of all species maintains a highly active metabolism and it continues to puzzle investigators how this tissue can survive 30 min of ischemia with more or less complete anoxia following expulsion of the organ from the uterus and do so without severe damage. There seem to be parallels between "depressed metabolism" seen in the fetus and the immature neonate in the peripartum period and survival strategies described in mammals with increased tolerance of severe hypoxia like hibernators in the state of torpor or deep sea diving turtles. Increased tolerance of hypoxia in both is explained by "partial metabolic arrest" in the sense of a temporary suspension of Kleiber's rule. Furthermore the fetus can react to major changes in surrounding oxygen tension by decreasing or increasing the rate of specific basal metabolism, providing protection against severe hypoxia as well as oxidative stress. There is some evidence that adaptive mechanisms allowing increased tolerance of severe hypoxia in the fetus or immature neonate can also be found in placental tissue, of which at least the villous portion is of fetal origin. A better understanding of the molecular details of reprogramming of fetal and placental tissues in late pregnancy may be of clinical relevance for an improved risk assessment of the individual fetus during the critical transition from intrauterine life to the outside and for the development of potential prophylactic measures against severe ante- or intrapartum hypoxia. Responses of the tissue to reperfusion deserve intensive study, since they may provide a rational basis for preventive measures against reperfusion injury and related oxidative stress. Modification of the handling of placental tissue during postpartum ischemia, and adaptation of the

  3. Comparison of lung preservation solutions in human lungs using an ex vivo lung perfusion experimental model.

    PubMed

    Medeiros, Israel L; Pêgo-Fernandes, Paulo M; Mariani, Alessandro W; Fernandes, Flávio G; Unterpertinger, Fernando V; Canzian, Mauro; Jatene, Fabio B

    2012-09-01

    Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex®was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p = 0.98). The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn·s·cm-5, respectively (p =0.035). The mean pulmonary compliance was 46.8 cm H20 in Group 1 and 49.3 ml/cm H20 in Group 2 (p =0.816). The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87). The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p = 1.0), and the apoptotic cell counts were 118.75/mm² and 137.50/mm², respectively (p=0.71). The locally produced preservation solution proved to be as good as Perfadex®. The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation.

  4. Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Hequn; Wang, Ruikang K.

    2014-05-01

    Characterization of the relationship between external pressure and blood flow is important in the examination of pressure-induced disturbance in tissue microcirculation. Optical coherence tomography (OCT)-based microangiography is a promising imaging technique, capable of providing the noninvasive extraction of functional vessels within the skin tissue with capillary-scale resolution. Here, we present a feasibility study of OCT microangiography (OMAG) to evaluate changes in blood perfusion in response to externally applied pressure on human skin tissue in vivo. External force is loaded normal to the tissue surface at the nailfold region of a healthy human volunteer. An incremental force is applied step by step and then followed by an immediate release. Skin perfusion events including baseline are continuously imaged by OMAG, allowing for visualization and quantification of the capillary perfusion in the nailfold tissue. The tissue strain maps are simultaneously evaluated through the available OCT structural images to assess the relationship of the microcirculation response to the applied pressure. The results indicate that the perfusion progressively decreases with the constant increase of pressure. Reactive hyperemia occurs right after the removal of the pressure. The perfusion returns to the baseline level after a few minutes. These findings suggest that OMAG may have great potential for quantitatively assessing tissue microcirculation in the locally pressed tissue in vivo.

  5. Peak muscle perfusion and oxygen uptake in humans: importance of precise estimates of muscle mass.

    PubMed

    Râdegran, G; Blomstrand, E; Saltin, B

    1999-12-01

    The knee extensor exercise model was specifically developed to enable in vivo estimates of peak muscle blood flow and O(2) uptake in humans. The original finding, using thermodilution measurements to measure blood flow in relation to muscle mass [P. Andersen and B. Saltin. J. Physiol. (Lond.) 366: 233-249, 1985], was questioned, however, as the measurements were two- to threefold higher than those previously obtained with the (133)Xe clearance and the plethysmography technique. As thermodilution measurements have now been confirmed by other methods and independent research groups, we aimed to address the impact of muscle mass estimates on the peak values of muscle perfusion and O(2) uptake. In the present study, knee extensor volume was determined from multiple measurements with computer tomography along the full length of the muscle. In nine healthy humans, quadriceps muscle volume was 2.36 +/- 0.17 (range 1. 31-3.27) liters, corresponding to 2.48 +/- 0.18 (range 1.37-3.43) kg. Anthropometry overestimated the muscle volume by approximately 21-46%, depending on whether quadriceps muscle length was estimated from the patella to either the pubic bone, inguinal ligament, or spina iliaca anterior superior. One-legged, dynamic knee extensor exercise up to peak effort of 67 +/- 7 (range 55-100) W rendered peak values for leg blood flow (thermodilution) of 5.99 +/- 0.66 (range 4.15-9.52) l/min and leg O(2) uptake of 856 +/- 109 (range 590-1,521) ml/min. Muscle perfusion and O(2) uptake reached peak values of 246 +/- 24 (range 149-373) and 35.2 +/- 3.7 (range 22.6-59. 6) ml. min(-1). 100 g muscle(-1), respectively. These peak values are approximately 19-33% larger than those attained by applying anthropometric muscle mass estimates. In conclusion, the present findings emphasize that peak perfusion and O(2) uptake in human skeletal muscle may be up to approximately 30% higher than previous anthropometric-based estimates that use equivalent techniques for blood flow

  6. Placental transfer of maraviroc in an ex vivo human cotyledon perfusion model and influence of ABC transporter expression.

    PubMed

    Vinot, C; Gavard, L; Tréluyer, J M; Manceau, S; Courbon, E; Scherrmann, J M; Declèves, X; Duro, D; Peytavin, G; Mandelbrot, L; Giraud, C

    2013-03-01

    Nowadays, antiretroviral therapy is recommended during pregnancy to prevent mother-to-child transmission of HIV. However, for many antiretroviral drugs, including maraviroc, a CCR5 antagonist, very little data exist regarding placental transfer. Besides, various factors may modulate this transfer, including efflux transporters belonging to the ATP-binding cassette (ABC) transporter superfamily. We investigated maraviroc placental transfer and the influence of ABC transporter expression on this transfer using the human cotyledon perfusion model. Term placentas were perfused ex vivo for 90 min with maraviroc (600 ng/ml) either in the maternal-to-fetal (n = 10 placentas) or fetal-to-maternal (n = 6 placentas) direction. Plasma concentrations were determined by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fetal transfer rates (FTR) and clearance indexes (CLI) were calculated as ratios of fetal to maternal concentrations at steady state (mean values between 30 and 90 min) and ratios of FTR of maraviroc to that of antipyrine, respectively. ABC transporter gene expression levels were determined by quantitative reverse transcription (RT)-PCR and ABCB1 protein expression by Western blotting. For the maternal-to-fetal direction, the mean FTR and CLI were 8.0% ± 3.0 and 0.26 ± 0.07, respectively, whereas the mean CLI was 0.52 ± 0.23 for the fetal-to-maternal direction. We showed a significant inverse correlation between maraviroc CLI and ABCC2, ABCC10, and ABCC11 placental gene expression levels (P < 0.05). To conclude, we report a low maraviroc placental transfer probably involving ABC efflux transporters and thus in all likelihood associated with a limited fetal exposition. Nevertheless, these results would need to be supported by in vivo data obtained from paired maternal and cord blood samples.

  7. Preparation of Tc-99m-macroaggregated albumin from recombinant human albumin for lung perfusion imaging.

    PubMed

    Hunt, A P; Frier, M; Johnson, R A; Berezenko, S; Perkins, A C

    2006-01-01

    Human serum albumin (HSA) extracted from pooled blood taken from human donors is used in the production of (99m)Tc-labelled macroaggregated albumin (MAA) for lung perfusion imaging. However, concerns for the safety of blood-derived products due to potential contamination by infective agents (e.g. new variant CJD), make alternative production methods necessary. Recombinant DNA technology is a promising method of albumin production avoiding problems associated with human-derived HSA. This paper presents results comparing MAA prepared from recombinant human albumin (rHA, Recombumin) (rMAA) with in-house produced HSA MAA (hMAA) and commercially available MAA (cMAA). (99m)Tc-MAA was prepared using previously published production methods by heating a mixture of albumin and stannous chloride in acetate buffer (pH 5.4) at 70 degrees C for 20 min. Parameters investigated include aggregate size, radiolabelling efficiency, radiochemical and aggregate stability at 4 degrees C and in vitro (in whole human blood) at 37 degrees C and biodistribution studies. Results showed that rMAA could be produced with similar morphology, labelling efficiency and stability to hMAA and cMAA. Our findings confirm that rHA shows significant potential as a direct replacement for HSA in commercially available MAA.

  8. A proposed study on the transplacental transport of parabens in the human placental perfusion model.

    PubMed

    Mathiesen, Line; Zuri, Giuseppina; Andersen, Maria H; Knudsen, Lisbeth E

    2013-12-01

    Human exposure to parabens as a preservative used in personal care products is of increasing concern, as there is evidence from in vivo and in vitro studies of hormone disruption in association with exposure to parabens. Transport across the placenta could be critical for risk assessment, but the available data are sparse. The aim is to develop a method for estimating fetal exposure, via the placenta, to the most commonly-used parabens, by using a human placental perfusion model. The use of human tissue is vital for determining human fetal exposure, because animal studies are of little relevance, since the placenta exhibits significant interspecies variation. An HPLC model is currently being established to simultaneously quantify four different parabens, namely, methylparaben, ethylparaben, propylparaben and butylparaben, and their main metabolite, p-hydroxybenzoic acid. With this model, we aim to determine the transport kinetics of these parabens across the human placenta, and to investigate placental metabolism, including differences in transport due to molecular characteristics. This will facilitate assessment of the risks associated with the use of paraben-containing products during pregnancy. 2013 FRAME.

  9. Short-term and long-term cognitive function and cerebral perfusion in off-pump and on-pump coronary artery bypass patients.

    PubMed

    Chernov, Vladimir I; Efimova, Nataliya Yu; Efimova, Irina Yu; Akhmedov, Shamil D; Lishmanov, Yuri B

    2006-01-01

    The aim of this study was to evaluate cognitive function, as measured by serial neuropsychological testing, and cerebral perfusion, as measured by brain SPECT scanning in patients with coronary artery diseases (CAD) following off-pump and on-pump coronary artery bypass graft surgery. Besides, the relationship between cerebral blood flow, cognitive functions, surgery parameters, and cardiac function in these patients were estimated. Also, brain-protective effects of instenon were studied. Brain SPECT and comprehensive neuropsychological testing were performed 1 day before, 10-14 days and 6 months after coronary artery bypass graft surgery (CABG). The study involved 65 patients (62 males and 3 females, mean age 55+/-2) who underwent CABG with cardiopulmonary bypass (CPB) (43 pts) and off-pump coronary revascularization (OPCAB) using the Octopus stabilization system (22 pts). In 21 cases employing CPB, for prevention of the impairments of cerebral perfusion and cognitive deficit instenon was administered. CABG with the use of extracorporeal circulation is complicated by short-term and long-term neurocognitive dysfunction (in 96 and 55% cases, correspondingly). Also, in the early period after CABG, in 68% patients, decrease in regional cerebral blood flow (rCBF) was found, and after 6 months brain perfusion was lower than the baseline in 55% cases. Relationship between postoperative rCBF changes and the dynamics of cognitive function was found in early period and after 6 months following CABG. The coronary revascularization on beating heart or preventive administration of instenon in CPB patients helps significantly to diminish the risk of cerebrovascular complication.

  10. Phenylalanine transfer across the isolated perfused human placenta: an experimental and modeling investigation.

    PubMed

    Lofthouse, E M; Perazzolo, S; Brooks, S; Crocker, I P; Glazier, J D; Johnstone, E D; Panitchob, N; Sibley, C P; Widdows, K L; Sengers, B G; Lewis, R M

    2016-02-01

    Membrane transporters are considered essential for placental amino acid transfer, but the contribution of other factors, such as blood flow and metabolism, is poorly defined. In this study we combine experimental and modeling approaches to understand the determinants of [(14)C]phenylalanine transfer across the isolated perfused human placenta. Transfer of [(14)C]phenylalanine across the isolated perfused human placenta was determined at different maternal and fetal flow rates. Maternal flow rate was set at 10, 14, and 18 ml/min for 1 h each. At each maternal flow rate, fetal flow rates were set at 3, 6, and 9 ml/min for 20 min each. Appearance of [(14)C]phenylalanine was measured in the maternal and fetal venous exudates. Computational modeling of phenylalanine transfer was undertaken to allow comparison of the experimental data with predicted phenylalanine uptake and transfer under different initial assumptions. Placental uptake (mol/min) of [(14)C]phenylalanine increased with maternal, but not fetal, flow. Delivery (mol/min) of [(14)C]phenylalanine to the fetal circulation was not associated with fetal or maternal flow. The absence of a relationship between placental phenylalanine uptake and net flux of phenylalanine to the fetal circulation suggests that factors other than flow or transporter-mediated uptake are important determinants of phenylalanine transfer. These observations could be explained by tight regulation of free amino acid levels within the placenta or properties of the facilitated transporters mediating phenylalanine transport. We suggest that amino acid metabolism, primarily incorporation into protein, is controlling free amino acid levels and, thus, placental transfer.

  11. Changes in transmural distribution of myocardial perfusion assessed by quantitative intravenous myocardial contrast echocardiography in humans

    PubMed Central

    Fukuda, S; Muro, T; Hozumi, T; Watanabe, H; Shimada, K; Yoshiyama, M; Takeuchi, K; Yoshikawa, J

    2002-01-01

    Objective: To clarify whether changes in transmural distribution of myocardial perfusion under significant coronary artery stenosis can be assessed by quantitative intravenous myocardial contrast echocardiography (MCE) in humans. Methods: 31 patients underwent dipyridamole stress MCE and quantitative coronary angiography. Intravenous MCE was performed by continuous infusion of Levovist. Images were obtained from the apical four chamber view with alternating pulsing intervals both at rest and after dipyridamole infusion. Images were analysed offline by placing regions of interest over both endocardial and epicardial sides of the mid-septum. The background subtracted intensity versus pulsing interval plots were fitted to an exponential function, y = A (1 − e−βt), where A is plateau level and β is rate of rise. Results: Of the 31 patients, 16 had significant stenosis (> 70%) in the left anterior descending artery (group A) and 15 did not (group B). At rest, there were no differences in the A endocardial to epicardial ratio (A-EER) and β-EER between the two groups (mean (SD) 1.2 (0.6) v 1.2 (0.8) and 1.2 (0.7) v 1.1 (0.6), respectively, NS). During hyperaemia, β-EER in group A was significantly lower than that in group B (1.0 (0.5) v 1.4 (0.5), p < 0.05) and A-EER did not differ between the two groups (1.0 (0.5) v 1.2 (0.4), NS). Conclusions: Changes in transmural distribution of myocardial perfusion under significant coronary artery stenosis can be assessed by quantitative intravenous MCE in humans. PMID:12231594

  12. Perfused human hepatocyte microtissues identify reactive metabolite-forming and mitochondria-perturbing hepatotoxins.

    PubMed

    Rowe, Cliff; Shaeri, Mohsen; Large, Emma; Cornforth, Terri; Robinson, Angela; Kostrzewski, Tomasz; Sison-Young, Rowena; Goldring, Christopher; Park, Kevin; Hughes, David

    2017-09-15

    Hepatotoxins cause liver damage via many mechanisms but the formation of reactive metabolites and/or damage to liver mitochondria are commonly implicated. We assess 3D human primary hepatocyte microtissues as a platform for hepatotoxicity studies with reactive metabolite-forming and mitochondria-perturbing compounds. We show that microtissues formed from cryopreserved human hepatocytes had bile canaliculi, transcribed mRNA from genes associated with xenobiotic metabolism and expressed functional cytochrome P450 enzymes. Hierarchical clustering was used to distinguish dose-dependent hepatotoxicity elicited by clozapine, fialuridine and acetaminophen (APAP) from control cultures and less liver-damaging compounds, olanzapine and entecavir. The regio-isomer of acetaminophen, N-acetyl-meta-aminophenol (AMAP) clustered with the hepatotoxic compounds. The principal metabolites of APAP were formed and dose-dependent changes in metabolite profile similar to those seen in patient overdose was observed. The toxicological profile of APAP was indistinguishable from that of AMAP, confirming AMAP as a human hepatotoxin. Tissue oxygen consumption rate was significantly decreased within 2h of exposure to APAP or AMAP, concomitant with glutathione depletion. These data highlight the potential utility of perfused metabolically functional human liver microtissues in drug development and mechanistic toxicology. Copyright © 2017. Published by Elsevier Ltd.

  13. Radiation effects on left ventricular function and myocardial perfusion in long term survivors of Hodgkin's disease

    SciTech Connect

    Savage, D.E.; Constine, L.S.; Schwartz, R.G.; Rubin, P. )

    1990-09-01

    We evaluated systolic and diastolic indices of left ventricular performance by radionuclide angiocardiography and myocardial perfusion with exercise/rest thallium scintigraphy in 16 patients previously irradiated for Hodgkin's disease. These commonly used indices of left ventricular (LV) performance included LV ejection fraction (LVEF) as a measure of systolic function, and LV peak filling rate (PFR) as a measure of diastolic function. The presence of coronary artery disease (CAD) was evaluated by ECG treadmill testing (13 patients) and by quantitative planar thallium scintigraphy (12 patients). Patients were 16-38 years old (mean 24.9 +/- SD 6.2) at the time of irradiation, and were evaluated 2.5-21.5 years (mean 9.3 +/- 6.3) after radiation therapy (RT). RT was delivered with beam energies of 2-18 MV, equally weighted AP-PA mantle fields with both fields treated daily for most patients (13 patients), and fraction sizes of 1.5-2.0 Gy. Six patients received radiation to th entire cardiac volume, most commonly via left-sided partial transmission lung blocks (PTLB). Patient data were analyzed according to the volume of heart treated. Individuals who had the entire cardiac volume irradiated were assigned to group I (N = 6), and those patients who had some portion of the heart shielded throughout treatment comprised group II (N = 10). In this series, no perfusion defects were evident in either group by quantitative planar thallium scintigraphy. Mean LVEF for all patients studied was 60% (normal LVEF greater than or equal to 50%). Patients in group I had a lower mean LVEF than those in group II, 55 +/- 4% versus 63 +/- 6% (p = 0.01). Mean PFR for all patients studied was normal at 3.5 EDV/sec (normal PFR greater than or equal to 2.54 EDV/sec). Patients in group I had a lower mean PFR than those in group II, 3.0 +/- 0.6 vs 3.8 +/- 0.7 EDV/sec (p = 0.04).

  14. Severe, short-term food restriction improves cardiac function following ischemia/reperfusion in perfused rat hearts.

    PubMed

    Yamagishi, Tadashi; Bessho, Motoaki; Yanagida, Shigeki; Nishizawa, Kenya; Kusuhara, Masatoshi; Ohsuzu, Fumitaka; Tamai, Seiichi

    2010-09-01

    The purpose of this study was to clarify the characteristics of improved ischemic tolerance induced by severe, short-term food restriction in isolated, perfused rat hearts. Male Wistar (8 week-old) rats were given a food intake equivalent to a 70% reduction on the food intake of ad-libitum fed rats for 11 days (FR group and AL group, respectively). After this period, hearts were isolated and perfused in the Langendorff mode, and subjected to 20 min of global ischemia followed by 30 min of reperfusion. Although the coronary flow rate in the FR group (63.0 +/- 3.1 ml/min/g dry weight) was higher than that in the AL group (47.1 +/- 1.3 ml/min/g dry weight) during preischemic perfusion, the lactate release into the coronary effluent and absolute values of +dP/dt and -dP/dt in the FR group (2422 +/- 161 and -1282 +/- 51) were inversely lower than in the AL group (2971 +/- 156 and -1538 +/- 74, respectively). An increase in ischemic contracture was suppressed in the FR group. Following reperfusion, cardiac function, high-energy phosphate content, and intracellular pH, as measured by 31P-nuclear magnetic resonance spectroscopy, had recovered to a much greater degree in the FR group than in the AL group. The serum T3 level was significantly lower in the FR group (2.7 +/- 0.1 pg/ml) than in the AL group (3.6 +/- 0.1 pg/ml), and the levels of triglycerides, free fatty acids, insulin, and glucose were also significantly lower in the FR group than in the AL group. The protein expressions of myocyte enhancer factor 2A, Na(+), K(+)-ATPase, and phospholamban in the cardiac tissue were higher in the FR group than in the AL group. These results suggested that severe, short-term food restriction improves ischemic tolerance in rat hearts via altered expression of functional proteins induced by low serum T3 levels, decreased coronary conductance, and change in metabolic flux.

  15. Perfusion Bioreactor Module

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1990-01-01

    Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

  16. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature.

    PubMed

    Rafiq, Aasma; Khanday, M A

    2016-12-01

    Extreme environmental and physiological conditions present challenges for thermal processes in body tissues including multi-layered human eye. A mathematical model has been formulated in this direction to study the thermal behavior of the human eye in relation with the change in blood perfusion, porosity, evaporation and environmental temperatures. In this study, a comprehensive thermal analysis has been performed on the multi-layered eye using Pennes' bio-heat equation with appropriate boundary and interface conditions. The variational finite element method and MATLAB software were used for the solution purpose and simulation of the results. The thermoregulatory effect due to blood perfusion rate, porosity, ambient temperature and evaporation at various regions of human eye was illustrated mathematically and graphically. The main applications of this model are associated with the medical sciences while performing laser therapy and other thermoregulatory investigation on human eye.

  17. Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease

    PubMed Central

    Kostrzewski, Tomasz; Cornforth, Terri; Snow, Sophie A; Ouro-Gnao, Larissa; Rowe, Cliff; Large, Emma M; Hughes, David J

    2017-01-01

    AIM To develop a human in vitro model of non-alcoholic fatty liver disease (NAFLD), utilising primary hepatocytes cultured in a three-dimensional (3D) perfused platform. METHODS Fat and lean culture media were developed to directly investigate the effects of fat loading on primary hepatocytes cultured in a 3D perfused culture system. Oil Red O staining was used to measure fat loading in the hepatocytes and the consumption of free fatty acids (FFA) from culture medium was monitored. Hepatic functions, gene expression profiles and adipokine release were compared for cells cultured in fat and lean conditions. To determine if fat loading in the system could be modulated hepatocytes were treated with known anti-steatotic compounds. RESULTS Hepatocytes cultured in fat medium were found to accumulate three times more fat than lean cells and fat uptake was continuous over a 14-d culture. Fat loading of hepatocytes did not cause any hepatotoxicity and significantly increased albumin production. Numerous adipokines were expressed by fatty cells and genes associated with NAFLD and liver disease were upregulated including: Insulin-like growth factor-binding protein 1, fatty acid-binding protein 3 and CYP7A1. The metabolic activity of hepatocytes cultured in fatty conditions was found to be impaired and the activities of CYP3A4 and CYP2C9 were significantly reduced, similar to observations made in NAFLD patients. The utility of the model for drug screening was demonstrated by measuring the effects of known anti-steatotic compounds. Hepatocytes, cultured under fatty conditions and treated with metformin, had a reduced cellular fat content compared to untreated controls and consumed less FFA from cell culture medium. CONCLUSION The 3D in vitro NAFLD model recapitulates many features of clinical NAFLD and is an ideal tool for analysing the efficacy of anti-steatotic compounds. PMID:28127194

  18. Human Urinary Kallidinogenase Promotes Angiogenesis and Cerebral Perfusion in Experimental Stroke.

    PubMed

    Han, Lijuan; Li, Jie; Chen, Yanting; Zhang, Meijuan; Qian, Lai; Chen, Yan; Wu, Zhengzheng; Xu, Yun; Li, Jingwei

    2015-01-01

    Angiogenesisis a key restorative mechanism in response to ischemia, and pro-angiogenic therapy could be beneficial in stroke. Accumulating experimental and clinical evidence suggest that human urinary kallidinogenase (HUK) improves stroke outcome, but the underlying mechanisms are not clear. The aim of current study was to verify roles of HUK in post-ischemic angiogenesis and identify relevant mediators. In rat middle cerebral artery occlusion (MCAO) model, we confirmed that HUK treatment could improve stroke outcome, indicated by reduced infarct size and improved neurological function. Notably, the 18F-FDG micro-PET scan indicated that HUK enhanced cerebral perfusion in rats after MCAO treatment. In addition, HUK promotespost-ischemic angiogenesis, with increased vessel density as well as up-regulated VEGF andapelin/APJ expression in HUK-treated MCAO mice. In endothelial cell cultures, induction of VEGF and apelin/APJ expression, and ERK1/2 phosphorylation by HUK was further confirmed. These changes were abrogated by U0126, a selective ERK1/2 inhibitor. Moreover, F13A, a competitive antagonist of APJ receptor, significantly suppressed HUK-induced VEGF expression. Furthermore, angiogenic functions of HUK were inhibited in the presence of selective bradykinin B1 or B2 receptor antagonist both in vitro and in vivo. Our findings indicate that HUK treatment promotes post-ischemic angiogenesis and cerebral perfusion via activation of bradykinin B1 and B2 receptors, which is potentially due to enhancement expression of VEGF and apelin/APJ in ERK1/2 dependent way.

  19. Human Urinary Kallidinogenase Promotes Angiogenesis and Cerebral Perfusion in Experimental Stroke

    PubMed Central

    Chen, Yanting; Zhang, Meijuan; Qian, Lai; Chen, Yan; Wu, Zhengzheng; Xu, Yun; Li, Jingwei

    2015-01-01

    Angiogenesisis a key restorative mechanism in response to ischemia, and pro-angiogenic therapy could be beneficial in stroke. Accumulating experimental and clinical evidence suggest that human urinary kallidinogenase (HUK) improves stroke outcome, but the underlying mechanisms are not clear. The aim of current study was to verify roles of HUK in post-ischemic angiogenesis and identify relevant mediators. In rat middle cerebral artery occlusion (MCAO) model, we confirmed that HUK treatment could improve stroke outcome, indicated by reduced infarct size and improved neurological function. Notably, the 18F-FDG micro-PET scan indicated that HUK enhanced cerebral perfusion in rats after MCAO treatment. In addition, HUK promotespost-ischemic angiogenesis, with increased vessel density as well as up-regulated VEGF andapelin/APJ expression in HUK-treated MCAO mice. In endothelial cell cultures, induction of VEGF and apelin/APJ expression, and ERK1/2 phosphorylation by HUK was further confirmed. These changes were abrogated by U0126, a selective ERK1/2 inhibitor. Moreover, F13A, a competitive antagonist of APJ receptor, significantly suppressed HUK-induced VEGF expression. Furthermore, angiogenic functions of HUK were inhibited in the presence of selective bradykinin B1 or B2 receptor antagonist both in vitro and in vivo. Our findings indicate that HUK treatment promotes post-ischemic angiogenesis and cerebral perfusion via activation of bradykinin B1 and B2 receptors, which is potentially due to enhancement expression of VEGF and apelin/APJ in ERK1/2 dependent way. PMID:26222055

  20. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors.

    PubMed

    Vietze, Andrea; Koch, Franziska; Laskowski, Ulrich; Linder, Albert; Hosten, Norbert

    2011-11-01

    Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 °C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 °C (mean value, P<0.05); without ventilation it increased about 7.0 °C (mean value, P<0.05). Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Quantification of perfusion modes in terms of surplus hemodynamic energy levels in a simulated pediatric CPB model.

    PubMed

    Undar, Akif; Ji, Bingyang; Lukic, Branka; Zapanta, Conrad M; Kunselman, Allen R; Reibson, John D; Weiss, William J; Rosenberg, Gerson; Myers, John L

    2006-01-01

    The objective of this investigation was to compare pulsatile versus nonpulsatile perfusion modes in terms of surplus hemodynamic energy (SHE) levels during cardiopulmonary bypass (CPB) in a simulated neonatal model. The extracorporeal circuit consisted of a Jostra HL-20 heart-lung machine (for both pulsatile and nonpulsatile modes of perfusion), a Capiox Baby RX hollow-fiber membrane oxygenator, a Capiox pediatric arterial filter, 5 feet of arterial tubing and 6 feet of venous tubing with a quarter-inch diameter. The circuit was primed with a lactated Ringers solution. The systemic resistance of a pseudo-patient (mean weight, 3 kg) was simulated by placing a clamp at the end of the arterial line. The pseudo-patient was subjected to five pump flow rates in the 400 to 800 ml/min range. During pulsatile perfusion, the pump rate was kept constant at 120 bpm. Pressure waveforms were recorded at the preoxygenator, postoxygenator, and preaortic cannula sites. SHE was calculated by use of the following formula {SHE (ergs/cm) = 1,332 [((integral fpdt) / (integral fdt)) - Mean Arterial Pressure]} (f = pump flow and p = pressure). A total of 60 experiments were performed (n = 6 for nonpulsatile and n = 6 for pulsatile) at each of the five flow rates. A linear mixed-effects model, which accounts for the correlation among repeated measurements, was fit to the data to assess differences in SHE between flows, pumps, and sites. The Tukey multiple comparison procedure was used to adjust p values for post hoc pairwise comparisons. With a pump flow rate of 400 ml/min, pulsatile flow generated significantly higher surplus hemodynamic energy levels at the preoxygenator site (23,421 +/- 2,068 ergs/cm vs. 4,154 +/- 331 ergs/cm, p < 0.0001), the postoxygenator site (18,784 +/- 1,557 ergs/cm vs. 3,383 +/- 317 ergs/cm, p < 0.0001), and the precannula site (6,324 +/- 772 ergs/cm vs. 1,320 +/- 91 ergs/cm, p < 0.0001), compared with the nonpulsatile group. Pulsatile flow produced higher SHE

  2. Selective cerebral perfusion with aortic cannulation and short-term hypothermic circulatory arrest in aortic arch reconstruction.

    PubMed

    Turkoz, R; Saritas, B; Ozker, E; Vuran, C; Yoruker, U; Balci, S; Altun, D; Turkoz, A

    2014-01-01

    The deep hypothermic circulatory arrest (DHCA) technique has been used in aortic arch and isthmus hypoplasia for many years. However, with the demonstration of the deleterious effects of prolonged DHCA, selective cerebral perfusion (SCP) has started to be used in aortic arch repair. For SCP, perfusion via the innominate artery route is generally preferred (either direct innominate artery cannulation or re-routing of the cannula in the aorta is used). Herein, we describe our technique and the result of arch reconstruction in combination with selective cerebral and myocardial perfusion (SCMP) and short-term total circulatory arrest (TCA) (5-10 min) through ascending aortic cannulation. Thirty-seven cases with aortic arch and isthmus hypoplasia accompanying cardiac defects were operated on with SCMP and short TCA in Baskent University Istanbul Research and Training Hospital between January 2007 and Sep 2012. There were 17 cases with ventricular septal defect (VSD)-coarctation with aortic arch hypoplasia (CoAAH), 4 cases of transposition of the great arteries-VSD-CoAAH, 4 cases of Taussing Bing Anomaly-CoAAH, 2 cases complete atrioventricular canal defect-CoAAH, 3 cases single ventricle-CoAAH, 3 cases of type A interruption-VSD, 2 subvalvular aortic stenosis-CoAAH and 2 cases of isolated CoAAH. The aorta was cannulated in the middle of the ascending aorta in all cases. The cross-clamp was applied to the aortic arch distal to either the innominate artery or the left carotid artery. In addition, a side-biting clamp was applied to the descending aorta. The aorta between these two clamps was reconstructed with gluteraldehyde-treated autogeneous pericardium, using SCMP. The proximal arch and distal ascending aorta reconstructions were carried out under short TCA. The mean age of the patients was 2.5 ± 2 months. The mean cardiopulmonary bypass and cross-clamp times were 144 ± 58 and 43 ± 27 minutes, respectively. The mean SCMP and descending aorta ischemia times were 22

  3. Placental transfer of lopinavir/ritonavir in the ex vivo human cotyledon perfusion model.

    PubMed

    Gavard, Laurent; Gil, Sophie; Peytavin, Gilles; Ceccaldi, Pierre-François; Ferreira, Claudia; Farinotti, Robert; Mandelbrot, Laurent

    2006-07-01

    This study was done to determine the placental transfer of the human immunodeficiency virus protease inhibitor lopinavir with ritonavir. Twenty-five human cotyledons that were obtained after uneventful pregnancies and deliveries were perfused in an open double circuit with lopinavir (1099-10,606 microg/L) and ritonavir (254-1147 microg/L) at various albumin concentrations (2, 10, and 40 g/L). The fetal transfer rate of lopinavir, when combined with ritonavir, was 23.6% +/- 6.9% at an albumin concentration of 2 g/L. The fetal transfer rate decreased to 20.7% +/- 10% at an albumin concentration of 10 g/L and to 3.3% +/- 0.5% at an albumin concentration of 40 g/L. The placental transfer of lopinavir, a highly protein-bound molecule, was compatible with passive diffusion of the unbound fraction. Even at physiologic maternal albumin concentrations, the amount of drug transferred into the fetal compartment was well above the 50% inhibitory concentration.

  4. External-to-Internal Iliac Stent-Graft: Medium-Term Patency Following Exclusion of a Retrogradely Perfused Common Iliac Aneurysm

    SciTech Connect

    Nicholls, Marcus John; McPherson, Simon

    2010-08-15

    Following complicated aortic aneurysm surgery a complete left iliac occlusion resulted in buttock claudication. A retrogradely perfused right common iliac aneurysm expanded. Exclusion was by external-to-internal iliac stent-graft. No deterioration in claudication occurred with medium-term stent-graft patency.

  5. Intestinal absorption, metabolism, and excretion of (-)-epicatechin in healthy humans assessed by using an intestinal perfusion technique.

    PubMed

    Actis-Goretta, Lucas; Lévèques, Antoine; Rein, Maarit; Teml, Alexander; Schäfer, Christian; Hofmann, Ute; Li, Hequn; Schwab, Matthias; Eichelbaum, Michel; Williamson, Gary

    2013-10-01

    (-)-Epicatechin is a dietary flavonoid present in many foods that affects vascular function, but its action is limited by incomplete absorption, conjugation, and metabolism. Factors that influence this activity may be attributed to instability in the gastrointestinal lumen, low permeability across the intestinal wall, or active efflux from enterocytes and extensive conjugation. With the use of a multilumen perfusion catheter, we investigated the jejunal absorption, systemic availability, metabolism, and intestinal, biliary, and urinary excretion of (-)-epicatechin in humans. In a single-center, randomized, open, controlled study in 8 healthy volunteers, 50 mg purified (-)-epicatechin was perfused into an isolated jejunal segment together with antipyrine as a marker for absorption. (-)-Epicatechin and conjugates were measured in intestinal perfusates, bile, plasma, and urine. Forty-six percent of the dose was recovered in the perfusate either as unchanged (-)-epicatechin (22 mg) or conjugates (0.8 mg); with stability taken into account, this result indicates that ∼46% of the dose had apparently been absorbed. The conjugates were predominantly sulfates, which indicated conjugation by sulfotransferases followed by efflux from the enterocytes. In contrast, epicatechin glucuronides were dominant in plasma, bile, and urine. Almost one-half of the (-)-epicatechin is apparently absorbed in the jejunum but with substantial interindividual differences in the extent of absorption. The data suggest that the nature and substitution position of (-)-epicatechin conjugation are major determinants of the metabolic fate in the body, influencing whether the compound is effluxed into the lumen or absorbed into the blood and subsequently excreted.

  6. Safety and Feasibility of High-pressure Transvenous Limb Perfusion With 0.9% Saline in Human Muscular Dystrophy

    PubMed Central

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2012-01-01

    We evaluated safety and feasibility of the transvenous limb perfusion gene delivery method in muscular dystrophy. A dose escalation study of single limb perfusion with 0.9% saline starting with 5% of limb volume was carried out in adults with muscular dystrophies under intravenous analgesia/anesthesia. Cardiac, vascular, renal, muscle, and nerve functions were monitored. A tourniquet was placed above the knee with inflated pressure of 310 mm Hg. Infusion was carried out with a clinically approved infuser via an intravenous catheter inserted in the saphenous vein with a goal infusion rate of 80 ml/minute. Infusion volume was escalated stepwise to 20% limb volume in seven subjects. No subject complained of any post procedure pain other than due to needle punctures. Safety warning boundaries were exceeded only for transient depression of limb tissue oximetry and transient elevation of muscle compartment pressures; these were not associated with nerve, muscle, or vascular damage. Muscle magnetic resonant imaging (MRI) demonstrated fluid accumulation in muscles of the perfused lower extremity. High-pressure retrograde transvenous limb perfusion with saline up to 20% of limb volume at above infusion parameters is safe and feasible in adult human muscular dystrophy. This study will serve as a basis for future gene transfer clinical trials. PMID:21772257

  7. Ketogenesis evaluation in perfused liver of diabetic rats submitted to short-term insulin-induced hypoglycemia.

    PubMed

    Barrena, Helenton Cristhian; Gazola, Vilma Aparecida Ferreira Godoi; Furlan, Maria Montserrat Diaz Pedrosa; Garcia, Rosângela Fernandes; de Souza, Helenir Medri; Bazotte, Roberto Barbosa

    2009-08-01

    Ketogenesis, inferred by the production of acetoacetate plus ss-hydroxybutyrate, in isolated perfused livers from 24-h fasted diabetic rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. For this purpose, alloxan-diabetic rats that received intraperitoneal regular insulin (IIH group) or saline (COG group) injection were compared. An additional group of diabetic rats which received oral glucose (gavage) (100 mg kg(-1)) 15 min after insulin administration (IIH + glucose group) was included. The studies were performed 30 min after insulin (1.0 U kg(-1)) or saline injection. The ketogenesis before octanoate infusion was diminished (p < 0.05) in livers from rats which received insulin (COG vs. IIH group) or insulin plus glucose (COG vs. IIH + glucose group). However, the liver ketogenic capacity during the infusion of octanoate (0.3 mM) was maintained (COG vs. IIH group and COG vs. IIH + glucose group). In addition, the blood concentration of ketone bodies was not influenced by the administration of insulin or insulin plus glucose. Taken together, the results showed that inspite the fact that insulin and glucose inhibits ketogenesis, livers from diabetic rats submitted to short-term IIH which received insulin or insulin plus glucose showed maintained capacity to produce acetoacetate and ss-hydroxybutyrate from octanoate.

  8. Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis.

    PubMed

    Bhandari, A; Bansal, A; Singh, A; Sinha, N

    2017-07-05

    Cancer is one of the leading causes of death all over the world. Among the strategies that are used for cancer treatment, the effectiveness of chemotherapy is often hindered by factors such as irregular and non-uniform uptake of drugs inside tumor. Thus, accurate prediction of drug transport and deposition inside tumor is crucial for increasing the effectiveness of chemotherapeutic treatment. In this study, a computational model of human brain tumor is developed that incorporates dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data into a voxelized porous media model. The model takes into account realistic transport and perfusion kinetics parameters together with realistic heterogeneous tumor vasculature and accurate arterial input function (AIF), which makes it patient specific. The computational results for interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and tracer concentration show good agreement with the experimental results. The computational model can be extended further for predicting the deposition of chemotherapeutic drugs in tumor environment as well as selection of the best chemotherapeutic drug for a specific patient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pancreatic ductal perfusion at organ procurement enhances islet yield in human islet isolation.

    PubMed

    Takita, Morihito; Itoh, Takeshi; Shimoda, Masayuki; Kanak, Mazhar A; Shahbazov, Rauf; Kunnathodi, Faisal; Lawrence, Michael C; Naziruddin, Bashoo; Levy, Marlon F

    2014-11-01

    Pancreas preservation is a major factor influencing the results of islet cell transplantation. This study evaluated the effects of 2 different solutions for pancreatic ductal perfusion (PDP) at organ procurement. Eighteen human pancreases were assigned to 3 groups: non-PDP (control), PDP with ET-Kyoto solution, and PDP with cold storage/purification stock solution. Pancreatic islets were isolated according to the modified Ricordi method. No significant differences in donor characteristics, including cold ischemia time, were observed between the 3 groups. All islet isolations in the PDP groups had more than 400,000 islet equivalence in total islet yield after purification, a significant increase when compared with the control (P = 0.04 and P < 0.01). The islet quality assessments, including an in vivo diabetic nude mice assay and the response of high-mobility group box protein 1 to cytokine stimulation, also showed no significant differences. The proportion of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells showing apoptosis in islets in the PDP groups was significantly lower than in the control group (P < 0.05). Both ET-Kyoto solution and cold storage/purification stock solution are suitable for PDP and consistently resulted in isolation success. Further studies with a larger number of pancreas donors should be done to compare the effects of the PDP solutions.

  10. Pancreatic Ductal Perfusion at Organ Procurement Enhances Islet Yield in Human Islet Isolation

    PubMed Central

    Shimoda, Masayuki; Kanak, Mazhar A.; Shahbazov, Rauf; Kunnathodi, Faisal; Lawrence, Michael C.; Naziruddin, Bashoo; Levy, Marlon F.

    2015-01-01

    Objective Pancreas preservation is a major factor influencing the results of islet cell transplantation. This study evaluated the effects of two different solutions for pancreatic ductal perfusion (PDP) at organ procurement. Methods Eighteen human pancreases were assigned to three groups: non-PDP (control), PDP with ET-Kyoto solution, and PDP with cold storage/purification stock solution. Pancreatic islets were isolated according to the modified Ricordi method. Results No significant differences in donor characteristics, including cold ischemia time, were observed between the three groups. All islet isolations in the PDP groups had >400,000 IEQ in total islet yield post-purification, a significant increase when compared with the control (P = 0.04 and <0.01). The islet quality assessments—including an in vivo diabetic nude mice assay and the response of high-mobility group box protein 1 to cytokine stimulation—also showed no significant differences. The proportion of TUNEL-positive cells showing apoptosis in islets in the PDP groups was significantly lower than in the control group (P < 0.05). Conclusion Both ET-Kyoto solution and cold storage/purification stock solution are suitable for PDP and consistently resulted in isolation success. Further studies with a larger number of pancreas donors should be done to compare the effects of the PDP solutions. PMID:25058879

  11. Uptake of cesium ions by human erythrocytes and perfused rat heart: a cesium-133 NMR study

    SciTech Connect

    Davis, D.G.; Murphy, E.; London, R.E.

    1988-05-17

    Cesium-133 NMR studies have been carried out on suspended human erythrocytes and on perfused rat hearts in media containing CsCl. The resulting spectra exhibit two sharp resonances, arising from intra-and extracellular Cs/sup +/, separated in chemical shift by 1.0-1.4 ppm. Thus, intra- and extracellular resonances are easily resolved without the addition of paramagnetic shift reagents required to resolve resonance of the other alkali metal ions. Spin-lattice relaxation times in all cases are monoexponential and significantly shorter (3-4 times) for the intracellular component. When corrections are made for the pulse repetition rate, the total intensity of the intracellular and extracellular Cs/sup +/ resonances in erythrocytes is conserve, implying total observability of the intracellular pool. The uptake of Cs/sup +/ by erythrocytes occurs at approximately one-third the reported rate for K/sup +/ and was reduced by a factor of 2 upon addition of ouabain to the sample. These results indicate that /sup 133/Cs NMR is a promising tool for studying the distribution and transport of cesium ions in biological systems and, in some cases such as uptake by cellular Na,K-ATPase, for analysis of K/sup +/ ion metabolism.

  12. Comparison of bone marrow cells harvested from various bones of cynomolgus monkeys at various ages by perfusion or aspiration methods: a preclinical study for human BMT.

    PubMed

    Kushida, Taketoshi; Inaba, Muneo; Ikebukuro, Kazuya; Ichioka, Naoya; Esumi, Takashi; Oyaizu, Haruki; Yoshimura, Tomoo; Nagahama, Takashi; Nakamura, Kouichi; Ito, Tomoki; Hisha, Hiroko; Sugiura, Kikuya; Yasumizu, Ryoji; Iida, Hirokazu; Ikehara, Susumu

    2002-01-01

    Using cynomolgus monkeys, we have previously established a new method for harvesting bone marrow cells (BMCs) with minimal contamination of the BMCs with T cells from the peripheral blood. We originally conducted this new "perfusion method" in the long bones (the humerus, femur, and tibia) of cynomolgus monkeys. Here, we apply the perfusion method to obtain BMCs from the ilium of cynomolgus monkeys, since BMCs are usually collected from the ilium by the conventional aspiration method in humans. The perfusion method consists of two approaches: transverse iliac perfusion and longitudinal iliac perfusion. BMCs harvested by the perfusion method from the long bones and ilium were compared with those collected from the ilium by the aspiration method. The contamination of BMCs with peripheral blood, determined by the frequencies of CD4+ and CD8+ T cells, was significantly lower in BMCs obtained from the ilium or long bones by the perfusion method (CD4+ plus CD8+ T cells <4%) than in those obtained by the iliac aspiration method (CD4+ plus CD8+ T cells >20%). However, the numbers of immature myeloid cells, such as myeloblasts, promyelocytes, myelocytes, and metamyelocytes, were higher in BMCs obtained by the iliac perfusion method than in those obtained by the iliac aspiration method. The assays for in vitro colony-forming unit in culture revealed that progenitor activity was significantly higher in BMCs obtained by the perfusion method than in those obtained by the aspiration method. These findings suggest that the contamination of BMCs with peripheral blood is much less when using the perfusion method than when using the aspiration method. To determine the best site for harvesting BMCs by the perfusion method, age-dependent changes in BMCs harvested by the perfusion method from the long bones and ilium were examined. The numbers of BMCs varied in the long bones (humerus > femur > tibia) and showed age-dependent decreases, whereas they remained similar in the ilium of

  13. Isolated total lung perfusion as a means to deliver organ-specific chemotherapy: long-term studies in animals

    SciTech Connect

    Johnston, M.R.; Christensen, C.W.; Minchin, R.F.; Rickaby, D.A.; Linehan, J.H.; Schuller, H.M.; Boyd, M.R.; Dawson, C.A.

    1985-07-01

    The objectives of this study were to develop a surgical procedure that would allow for bilateral isolated lung perfusion in vivo as a means of delivering organ-specific chemotherapy and to evaluate the influence of the procedure on certain pulmonary physiologic parameters. The sterile surgical procedure that was carried out in dogs involved the setting up of two separate perfusion circuits. Once standard systemic cardiopulmonary bypass was established, a second circuit was devised to perfuse the lungs by placing an inflow cannula into the main pulmonary artery and collecting venous effluent in the left atrium. Cross-contamination between perfusion circuits was determined in acute studies with labeled plasma protein or red blood cells and was found to be in an acceptable range if the aorta was cross-clamped and the heart arrested. Only about 0.4 ml/min of pulmonary perfusate leaked into the systemic circulation, indicating that systemic toxicity should not be a major concern when chemotherapy agents are added to the pulmonary perfusate. Chronic studies demonstrated that hemodynamic parameters, lung water, pulmonary endothelial serotonin extraction, and histologic findings all showed minimal changes after 50 minutes of isolated lung perfusion. Five days after perfusion, lung dynamic compliance and peak serotonin extraction showed significant decreases. However, all of the measured parameters had returned toward baseline levels by the end of the 8-week postoperative study period. The procedure offers significant advantages over the previously described single lung perfusion and may provide a method of delivering immediate high-concentration adjuvant chemotherapy to coincide with resection of primary or metastatic lung tumors.

  14. [ARTCEREB irrigation and perfusion solution for cerebrospinal surgery: pharmacological assessment using human astrocytes exposed to test solutions].

    PubMed

    Nishimura, Masuhiro; Doi, Kazuhisa; Enomoto, Riyo; Lee, Eibai; Naito, Shinsaku; Yamauchi, Aiko

    2009-09-01

    ARTCEREB irrigation and perfusion solution (Artcereb) is a preparation intended for the irrigation and perfusion of the cerebral ventricles, and it is therefore important to evaluate the effects of Artcereb on brain cells. In vitro assessment of the effects of Artcereb in cell cultures of human fetal astrocytes was conducted in comparison with normal saline and lactated Ringer's solution. The effects of exposure to Artcereb were evaluated based on microscopic images of the mitochondria stained with rhodamine 123. The effects of exposure to Artcereb on cell function were also evaluated by quantitative analysis of mitochondrial activity based on rhodamine 123 and (3)H-thymidine incorporation. Morphological changes in nuclear structure were also evaluated. The results of the present study showed that cell function in cell cultures of human astrocytes was relatively unaffected by exposure to Artcereb as compared with normal saline or lactated Ringer's solution, suggesting that Artcereb has less effect on brain cells than normal saline or lactated Ringer's solution when used for the irrigation or perfusion of the cerebral ventricles.

  15. Brain Perfusion Is Increased at Term in the White Matter of Very Preterm Newborns and Newborns with Congenital Heart Disease: Does this Reflect Activated Angiogenesis?

    PubMed

    Wintermark, Pia; Lechpammer, Mirna; Kosaras, Bela; Jensen, Frances E; Warfield, Simon K

    2015-10-01

    This study aims to evaluate brain perfusion at term in very preterm newborns and newborns with congenital heart disease before their corrective surgery, and to search for histopathological indicators of whether the brain perfusion abnormalities of these newborns may be related to an activated angiogenesis. Using magnetic resonance imaging and arterial spin labeling, regional cerebral blood flow was measured at a term-equivalent age for three very preterm newborns (born at < 32 weeks), one newborn with congenital heart disease before his corrective surgery and three healthy newborns. In addition, a histopathological analysis was performed on a newborn with congenital heart disease. The very preterm newborns and the newborn with congenital heart disease included in this study all displayed an increased signal in their white matter on T2-weighted imaging. The cerebral blood flow of these newborns was increased in their white matter, compared with the healthy term newborns. The vascular endothelial growth factor was overexpressed in the injured white matter of the newborn with congenital heart disease. Brain perfusion may be increased at term in the white matter, in very preterm newborns, and newborns with congenital heart disease, and it correlates with white matter abnormalities on conventional imaging. Georg Thieme Verlag KG Stuttgart · New York.

  16. Central pain mechanisms following combined acid and capsaicin perfusion of the human oesophagus.

    PubMed

    Brock, Christina; Andresen, Trine; Frøkjaer, Jens Brøndum; Gale, Jeremy; Olesen, Anne Estrup; Arendt-Nielsen, Lars; Drewes, Asbjørn Mohr

    2010-03-01

    Visceral afferents originating from different gut-segments converge at the spinal level. We hypothesized that chemically-induced hyperalgesia in the oesophagus could provoke widespread visceral hypersensitivity and also influence descending modulatory pain pathways. Fifteen healthy volunteers were studied at baseline, 30, 60 and 90 min after randomized perfusion of the distal oesophagus with either saline or 180 ml 0.1M HCl+2mg capsaicin. Electro-stimulation of the oesophagus, 8 cm proximal to the perfusion site, rectosigmoid electrical stimulation and rectal mechanical and heat stimulations were used. Evoked brain potentials were recorded after electrical stimulations before and after oesophageal perfusion. After the perfusion, rectal hyperalgesia to heat (P<0.01, 37%) and mechanical (P=0.01, 11%) stimulations were demonstrated. In contrast, hypoalgesia to electro-stimulation was observed in both the oesophagus (P<0.03, 23%) and the sigmoid colon (P<0.001, 18%). Referred pain areas to electro-stimulation in oesophagus were reduced by 13% after perfusion (P=0.01). Evoked brain potentials to rectosigmoid stimulations showed decreased latencies and amplitudes of P1, N1 and P2 (P<0.05), whereas oesophagus-evoked brain potentials were unaffected after perfusion. In conclusion, modality-specific hyperalgesia was demonstrated in the lower gut following chemical sensitization of the oesophagus, reflecting widespread central hyperexcitability. Conversely, hypoalgesia to electrical stimulation, decreases in referred pain and latencies of evoked brain potentials was seen. This outcome may reflect a counterbalancing activation of descending inhibitory pathways. As these findings are also seen in the clinical setting, the model may be usable for future basic and pharmacological studies. Copyright 2009 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  17. Separating blood and water: Perfusion and free water elimination from diffusion MRI in the human brain.

    PubMed

    Rydhög, Anna S; Szczepankiewicz, Filip; Wirestam, Ronnie; Ahlgren, André; Westin, Carl-Fredrik; Knutsson, Linda; Pasternak, Ofer

    2017-08-01

    The assessment of the free water fraction in the brain provides important information about extracellular processes such as atrophy and neuroinflammation in various clinical conditions as well as in normal development and aging. Free water estimates from diffusion MRI are assumed to account for freely diffusing water molecules in the extracellular space, but may be biased by other pools of molecules in rapid random motion, such as the intravoxel incoherent motion (IVIM) of blood, where water molecules perfuse in the randomly oriented capillary network. The goal of this work was to separate the signal contribution of the perfusing blood from that of free-water and of other brain diffusivities. The influence of the vascular compartment on the estimation of the free water fraction and other diffusivities was investigated by simulating perfusion in diffusion MRI data. The perfusion effect in the simulations was significant, especially for the estimation of the free water fraction, and was maintained as long as low b-value data were included in the analysis. Two approaches to reduce the perfusion effect were explored in this study: (i) increasing the minimal b-value used in the fitting, and (ii) using a three-compartment model that explicitly accounts for water molecules in the capillary blood. Estimation of the model parameters while excluding low b-values reduced the perfusion effect but was highly sensitive to noise. The three-compartment model fit was more stable and additionally, provided an estimation of the volume fraction of the capillary blood compartment. The three-compartment model thus disentangles the effects of free water diffusion and perfusion, which is of major clinical importance since changes in these components in the brain may indicate different pathologies, i.e., those originating from the extracellular space, such as neuroinflammation and atrophy, and those related to the vascular space, such as vasodilation, vasoconstriction and capillary density

  18. Effect of intracoronary glyceryl trinitrate on perfusion distribution in the collateralised human myocardium.

    PubMed

    Wald, R W; Sternberg, L; Feiglin, D H; Morch, J E

    1980-08-01

    The effect on myocardial perfusion distribution of intracoronary glyceryl trinitrate in a dose (60 micrograms) insufficient to cause alterations in systemic blood pressure or heart rate was studied in eight patients with angiographically demonstrated collaterals from the left coronary system to the distal right coronary artery. Double isotope imaging using technetium-99m and iodine-131 labelled albumin macroaggregates allowed each patient to serve as his own control. The reproducibility of the imaging and data handling techniques was shown in 12 control patients. Glyceryl trinitrate caused a significant diminution in the collateral-mediated fractional perfusion while increasing that of the native coronary bed.

  19. Effect of intracoronary glyceryl trinitrate on perfusion distribution in the collateralised human myocardium.

    PubMed Central

    Wald, R W; Sternberg, L; Feiglin, D H; Morch, J E

    1980-01-01

    The effect on myocardial perfusion distribution of intracoronary glyceryl trinitrate in a dose (60 micrograms) insufficient to cause alterations in systemic blood pressure or heart rate was studied in eight patients with angiographically demonstrated collaterals from the left coronary system to the distal right coronary artery. Double isotope imaging using technetium-99m and iodine-131 labelled albumin macroaggregates allowed each patient to serve as his own control. The reproducibility of the imaging and data handling techniques was shown in 12 control patients. Glyceryl trinitrate caused a significant diminution in the collateral-mediated fractional perfusion while increasing that of the native coronary bed. PMID:6775646

  20. A Perfusion-based Human Cadaveric Model for Management of Carotid Artery Injury during Endoscopic Endonasal Skull Base Surgery

    PubMed Central

    Pham, Martin; Kale, Aydemir; Marquez, Yvette; Winer, Jesse; Lee, Brian; Harris, Brianna; Minnetti, Michael; Carey, Joseph; Giannotta, Steven; Zada, Gabriel

    2014-01-01

    Objective To create and develop a reproducible and realistic training environment to prepare residents and trainees for arterial catastrophes during endoscopic endonasal surgery. Design An artificial blood substitute was perfused at systolic blood pressures in eight fresh human cadavers to mimic intraoperative scenarios. Setting The USC Keck School of Medicine Fresh Tissue Dissection Laboratory was used as the training site. Participants Trainees were USC neurosurgery residents and junior faculty. Main Outcome A 5-point questionnaire was used to assess pre- and posttraining confidence scores. Results High-pressure extravasation at normal arterial blood pressure mimicked real intraoperative internal carotid artery (ICA) injury. Residents developed psychomotor skills required to achieve hemostasis using suction, cottonoids, and muscle grafts. Questionnaire responses from all trainees reported a realistic experience enhanced by the addition of the perfusion model. Conclusions The addition of an arterial perfusion system to fresh tissue cadavers is among the most realistic training models available. This enables the simulation of rare intraoperative scenarios such as ICA injury. Strategies for rapid hemostasis and implementation of techniques including endoscope manipulation, suction, and packing can all be rehearsed via this novel paradigm. PMID:25301092

  1. Pulsatile ex vivo perfusion of human saphenous vein grafts under controlled pressure conditions increases MMP-2 expression

    PubMed Central

    2011-01-01

    Background The use of human saphenous vein grafts (HSVGs) as a bypass conduit is a standard procedure in the treatment of coronary artery disease while their early occlusion remains a major problem. Methods We have developed an ex vivo perfusion system, which uses standardized and strictly controlled hemodynamic parameters for the pulsatile and non-static perfusion of HSVGs to guarantee a reliable analysis of molecular parameters under different pressure conditions. Cell viability of HSVGs (n = 12) was determined by the metabolic conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) into a purple formazan dye. Results Under physiological flow rates (10 mmHg) HSVGs remained viable for two weeks. Their exposure to arterial conditions (100 mmHg) was possible for one week without important reduction in viability. Baseline expression of matrix metalloproteinase-2 (MMP-2) after venous perfusion (2.2 ± 0.5, n = 5) was strongly up-regulated after exposure to arterial conditions for three days (19.8 ± 4.3) or five days (23.9 ± 6.1, p < 0.05). Zymographic analyses confirmed this increase on the protein level. Our results suggest that expression and activity of MMP-2 are strongly increased after exposure of HSVGs to arterial hemodynamic conditions compared to physiological conditions. Conclusion Therefore, our system might be helpful to more precisely understand the molecular mechanisms leading to an early failure of HSVGs. PMID:21777461

  2. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells.

    PubMed

    Sellgren, Katelyn L; Ma, Teng

    2012-01-01

    Tissue-engineered bone grafts require an osteogenic cell source and a scaffold capable of supporting tissue regeneration. Hydroxyapatite (H), chitosan (C), and gelatin (G), when combined, produce a biomimetic scaffold with a chemical similarity to the main structural components of natural bone tissue. In this study a phase-separation technique was used to produce a porous 3D HCG scaffold, containing a network of cross-linked chitosan and gelatin fibrils coated in hydroxyapatite, with pore size readily controlled by freezing temperature. The HCG scaffolds were then seeded with human mesenchymal stem cells (hMSCs), using a depth filtration system after preconditioning with serum-containing medium for 7 days under either static or perfusion conditions. The effects of static and perfusion media preconditioning on protein adsorption, surface morphology, hMSC attachment, proliferation and osteogenic differentiation were examined. Perfusion preconditioning, as opposed to static preconditioning, enhances adsorption of ECM proteins, which in turn promotes hMSC proliferation and osteogenic differentiation. The results demonstrate the importance of convective flow in modulating the 3D HCG microenvironment and highlight its profound influence on 3D construct development. Copyright © 2011 John Wiley & Sons, Ltd.

  3. An Assessment of Urinary Biomarkers in a Series of Declined Human Kidneys Measured During Ex Vivo Normothermic Kidney Perfusion.

    PubMed

    Hosgood, Sarah A; Nicholson, Michael L

    2017-09-01

    The measurement of urinary biomarkers during ex vivo normothermic kidney perfusion (EVKP) may aid in the assessment of a kidney prior to transplantation. This study measured levels of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1) and endothelin-1 (ET-1) during EVKP in a series of discarded human kidneys. Fifty-six kidneys from deceased donors were recruited into the study. Each kidney underwent 60 minutes of EVKP and was scored based on the macroscopic appearance, renal blood flow and urine output. The scores ranged from 1 (least injury) to 5 (most severe). Levels of oxygen consumption, extraction, creatinine fall and fractional excretion of sodium were measured during perfusion. Urinary levels of NGAL, KIM-1, and ET-1 were measured after EVKP. Thirty-eight kidneys had an EVKP score of 1 or 2, 8 a score of 3 and 10 a score of 4 or 5. During EVKP lower levels of oxygen consumption, higher oxygen extraction, a lower decrement of serum creatinine, and higher levels of NGAL and ET-1 were associated with a higher EVKP score (P < 0.05). These parameters were also associated with a raised creatinine level in the donor before organ retrieval. Levels of KIM-1 were not associated with the perfusion parameters (P = 0.649) or renal function in the donor (R = 0.02458: P = 0.271). The measurement of urinary biomarkers, particularly NGAL in combination with functional perfusion parameters and the EVKP score provides an informative measure of kidney quality which may aid the decision to transplant the kidney.

  4. Pyridostigmine bromide modulates topical irritant-induced cytokine release from human epidermal keratinocytes and isolated perfused porcine skin.

    PubMed

    Monteiro-Riviere, Nancy A; Baynes, Ronald E; Riviere, Jim E

    2003-02-01

    Gulf War personnel were given pyridostigmine bromide (PB) as a prophylactic treatment against organophosphate nerve agent exposure, and were exposed to the insecticide permethrin and the insect repellent N,N-diethyl-m-toluamide (DEET). The purpose of this study was to assess the effects of PB to modulate release of inflammatory biomarkers after topical chemical exposure to chemical mixtures containing permethrin and DEET applied in ethanol or water vehicles. Treatments were topically applied to isolated perfused porcine skin flaps (IPPSFs). Concentrations of interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-alpha) and prostaglandin E(2) (PGE(2)) were assayed in perfusate to probe for potential inflammatory effects after complex mixture application. IPPSFs (n=4/treatment) were topically dosed with mixtures of permethrin, DEET, and permethrin/DEET, in ethanol. Each treatment was repeated with perfusate spiked with 50 ng/ml of PB. Perfusate was also spiked with 30 ng/ml diisopropylfluorophosphate to simulate low level organophosphate nerve agent exposure. Timed IPPSF venous effluent samples (0.5,1,2,4, and 8 h) were assayed by ELISA for IL-8 and TNF-alpha and by EIA for PGE(2). Overall, PB infusion caused a decrease or IL-8 and PGE(2) release. Effects on TNF-alpha were vehicle dependent. To probe the potential mechanism of this PB effect, human epidermal keratinocyte HEK cell cultures were exposed to permethrin DEET permethrin/DEET, with and without PB in DMSO. IL-8 was assayed at 1, 2, 4, 8, 12 and 24 h. PB suppressed IL-8 in permethrin and ethanol treatment from 4 to 24 h confirming the IPPSF results. In conclusion, these studies suggest that systemic exposure to PB suppressed IL-8 release at multiple time points in two skin model systems. This interaction merits further study.

  5. Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation.

    PubMed

    Sonnaert, M; Papantoniou, I; Bloemen, V; Kerckhofs, G; Luyten, F P; Schrooten, J

    2017-02-01

    Perfusion bioreactor systems have shown to be a valuable tool for the in vitro development of three-dimensional (3D) cell-carrier constructs. Their use for cell expansion, however, has been much less explored. Since maintenance of the initial cell phenotype is essential in this process, it is imperative to obtain insight into the bioreactor-related variables determining cell fate. Therefore, this study investigated the influence of fluid flow-induced shear stress on the proliferation, differentiation and matrix deposition of human periosteal-derived cells in the absence of additional differentiation-inducing stimuli; 120 000 cells were seeded on additive manufactured 3D Ti6Al4V scaffolds and cultured for up to 28 days at different flow rates in the range 0.04-6 ml/min. DNA measurements showed, on average, a three-fold increase in cell content for all perfused conditions in comparison to static controls, whereas the magnitude of the flow rate did not have an influence. Contrast-enhanced nanofocus X-ray computed tomography showed substantial formation of an engineered neotissue in all perfused conditions, resulting in a filling (up to 70%) of the total internal void volume, and no flow rate-dependent differences were observed. The expression of key osteogenic markers, such as RunX2, OCN, OPN and Col1, did not show any significant changes in comparison to static controls after 28 days of culture, with the exception of OSX at high flow rates. We therefore concluded that, in the absence of additional osteogenic stimuli, the investigated perfusion conditions increased cell proliferation but did not significantly enhance osteogenic differentiation, thus allowing for this process to be used for cell expansion. Copyright © 2014 John Wiley & Sons, Ltd.

  6. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans.

    PubMed

    Braz, Igor D; Fisher, James P

    2016-08-15

    Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age-related alterations in cerebral vascular function. During low-to-moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10-30%. Beyond ∼60-70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation-mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial-internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age-related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age-related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  7. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an ex Vivo Human Placental Perfusion Model

    PubMed Central

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Diener, Pierre-André; Maeder-Althaus, Xenia; Maurizi, Lionel; Jochum, Wolfram; Krug, Harald F.; Buerki-Thurnherr, Tina; von Mandach, Ursula

    2015-01-01

    Background Nanoparticle exposure in utero might not be a major concern yet, but it could become more important with the increasing application of nanomaterials in consumer and medical products. Several epidemiologic and in vitro studies have shown that nanoparticles can have potential toxic effects. However, nanoparticles also offer the opportunity to develop new therapeutic strategies to treat specifically either the pregnant mother or the fetus. Previous studies mainly addressed whether nanoparticles are able to cross the placental barrier. However, the transport mechanisms underlying nanoparticle translocation across the placenta are still unknown. Objectives In this study we examined which transport mechanisms underlie the placental transfer of nanoparticles. Methods We used the ex vivo human placental perfusion model to analyze the bidirectional transfer of plain and carboxylate modified polystyrene particles in a size range between 50 and 300 nm. Results We observed that the transport of polystyrene particles in the fetal to maternal direction was significantly higher than for the maternal to fetal direction. Regardless of their ability to cross the placental barrier and the direction of perfusion, all polystyrene particles accumulated in the syncytiotrophoblast of the placental tissue. Conclusions Our results indicate that the syncytiotrophoblast is the key player in regulating nanoparticle transport across the human placenta. The main mechanism underlying this translocation is not based on passive diffusion, but is likely to involve an active, energy-dependent transport pathway. These findings will be important for reproductive toxicology as well as for pharmaceutical engineering of new drug carriers. Citation Grafmueller S, Manser P, Diener L, Diener PA, Maeder-Althaus X, Maurizi L, Jochum W, Krug HF, Buerki-Thurnherr T, von Mandach U, Wick P. 2015. Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human

  8. Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device.

    PubMed

    Vivares, Aurelie; Salle-Lefort, Sandrine; Arabeyre-Fabre, Catherine; Ngo, Robert; Penarier, Geraldine; Bremond, Michele; Moliner, Patricia; Gallas, Jean-François; Fabre, Gerard; Klieber, Sylvie

    2015-01-01

    1. The quantitative prediction of the pharmacokinetic parameters of a drug from data obtained using human in vitro systems remains a significant challenge i.e. prediction of metabolic clearance in humans and estimation of the relative contribution of enzymes involved in the clearance. This has become particularly problematic for low turnover compounds. 2. Having human hepatocytes with stable cellular function over several days that adequately mimic the complexity of the physiological environment would be a major advance. Thus, we evaluated human hepatocytes, maintained in culture during 7 days in the microfluidic LiverChip™ system, in terms of morphological appearance, relative mRNA expression of phase I and II enzymes and transporters as a function of time, and metabolic capacity using probe substrates. 3. The results showed that mRNA levels of the major genes for enzymes involved in drug metabolism were well-maintained over a 7-day period of culture. Furthermore, after 4 days of culture, in the Liverchip™ device, human hepatocytes exhibited higher or similar CYPs activities compared to 1 day of culture in 2D-static conditions. 4. The functional data were supported by light/electron microscopies and immunohistochemistry showing viable tissue structure and well-differentiated human hepatocytes: presence of cell junctions, glycogen storage, and bile canaliculi.

  9. Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging

    PubMed Central

    Saalfrank, Dirk; Konduri, Anil Krishna; Latifi, Shahrzad; Habibey, Rouhollah; Golabchi, Asiyeh; Martiniuc, Aurel Vasile; Knoll, Alois; Ingebrandt, Sven; Blau, Axel

    2015-01-01

    Most in vitro electrophysiology studies extract information and draw conclusions from representative, temporally limited snapshot experiments. This approach bears the risk of missing decisive moments that may make a difference in our understanding of physiological events. This feasibility study presents a simple benchtop cell-culture perfusion system adapted to commercial microelectrode arrays (MEAs), multichannel electrophysiology equipment and common inverted microscopy stages for simultaneous and uninterrupted extracellular electrophysiology and time-lapse imaging at ambient CO2 levels. The concept relies on a transparent, replica-casted polydimethylsiloxane perfusion cap, gravity- or syringe-pump-driven perfusion and preconditioning of pH-buffered serum-free cell-culture medium to ambient CO2 levels at physiological temperatures. The low-cost microfluidic in vitro enabling platform, which allows us to image cultures immediately after cell plating, is easy to reproduce and is adaptable to the geometries of different cell-culture containers. It permits the continuous and simultaneous multimodal long-term acquisition or manipulation of optical and electrophysiological parameter sets, thereby considerably widening the range of experimental possibilities. Two exemplary proof-of-concept long-term MEA studies on hippocampal networks illustrate system performance. Continuous extracellular recordings over a period of up to 70 days revealed details on both sudden and gradual neural activity changes in maturing cell ensembles with large intra-day fluctuations. Correlated time-lapse imaging unveiled rather static macroscopic network architectures with previously unreported local morphological oscillations on the timescale of minutes. PMID:26543581

  10. Quantitative determination of octadecenedioic acid in human skin and transdermal perfusates by gas chromatography-mass spectrometry.

    PubMed

    Judefeind, Anja; Jansen van Rensburg, Peet; Langelaar, Stephan; Wiechers, Johann W; du Plessis, Jeanetta

    2008-07-01

    A gas chromatographic (GC) method with mass spectrometric (MS) detection is developed and validated for the accurate and precise determination of octadecenedioic acid (C18:1 DIOIC) in human skin samples and transdermal perfusates. C18:1 DIOIC is extracted using methanol. The saturated analogue 1,18-octadecanedioic acid (C18:0 DIOIC) is added as internal standard. Prior to analysis, both compounds are converted to their trimethylsilylated derivatives using N,O-bis(trimethylsilyl)trifluoroacetamide with 15% trimethylchlorosilane. Quantitation is performed in selected ion monitoring mode with a limit of quantitation of 250 ng/mL. Linearity with a correlation coefficient of 0.998 is obtained over a concentration range of 250-2000 ng/mL. Values for within-day accuracy range from 94.5% to 102.4%, and from 97.5% to 105.8% for between-day accuracy. Within- and between-day precision values are better than 5% and 7%, respectively. The recovery values from the various matrices vary from 92.6% to 104.0%. The GC-MS method is employed for the determination of C18:1 DIOIC after application of an emulsion containing the active ingredient onto human skin in vitro. The results demonstrate that the method is suitable for the determination of C18:1 DIOIC in human skin samples and transdermal perfusates.

  11. Human Thiel-Embalmed Cadaveric Aortic Model with Perfusion for Endovascular Intervention Training and Medical Device Evaluation.

    PubMed

    McLeod, Helen; Cox, Ben F; Robertson, James; Duncan, Robyn; Matthew, Shona; Bhat, Raj; Barclay, Avril; Anwar, J; Wilkinson, Tracey; Melzer, Andreas; Houston, J Graeme

    2017-09-01

    The purpose of this investigation was to evaluate human Thiel-embalmed cadavers with the addition of extracorporeal driven ante-grade pulsatile flow in the aorta as a model for simulation training in interventional techniques and endovascular device testing. Three human cadavers embalmed according to the method of Thiel were selected. Extracorporeal pulsatile ante-grade flow of 2.5 L per min was delivered directly into the aorta of the cadavers via a surgically placed connection. During perfusion, aortic pressure and temperature were recorded and optimized for physiologically similar parameters. Pre- and post-procedure CT imaging was conducted to plan and follow up thoracic and abdominal endovascular aortic repair as it would be in a clinical scenario. Thoracic endovascular aortic repair (TEVAR) and endovascular abdominal repair (EVAR) procedures were conducted in simulation of a clinical case, under fluoroscopic guidance with a multidisciplinary team present. The Thiel cadaveric aortic perfusion model provided pulsatile ante-grade flow, with pressure and temperature, sufficient to conduct a realistic simulation of TEVAR and EVAR procedures. Fluoroscopic imaging provided guidance during the intervention. Pre- and post-procedure CT imaging facilitated planning and follow-up evaluation of the procedure. The human Thiel-embalmed cadavers with the addition of extracorporeal flow within the aorta offer an anatomically appropriate, physiologically similar robust model to simulate aortic endovascular procedures, with potential applications in interventional radiology training and medical device testing as a pre-clinical model.

  12. Do perfume additives termed human pheromones warrant being termed pheromones?

    PubMed

    Winman, Anders

    2004-09-30

    Two studies of the effects of perfume additives, termed human pheromones by the authors, have conveyed the message that these substances can promote an increase in human sociosexual behaviour [Physiol. Behav. 75 (2003) R1; Arch. Sex. Behav. 27 (1998) R2]. The present paper presents an extended analysis of this data. It is shown that in neither study is there a statistically significant increase in any of the sociosexual behaviours for the experimental groups. In the control groups of both studies, there are, however, moderate but statistically significant decreases in the corresponding behaviour. Most notably, there is no support in data for the claim that the substances increase the attractiveness of the wearers of the substances to the other sex. It is concluded that more research using matched homogenous groups of participants is needed.

  13. Value of continuous leakage monitoring with radioactive iodine-131-labeled human serum albumin during hyperthermic isolated limb perfusion with tumor necrosis factor-alpha and melphalan.

    PubMed

    van Ginkel, Robert J; Limburg, Pieter C; Piers, D Albertus; Koops, Heimen Schraffordt; Hoekstra, Harald J

    2002-05-01

    The aim of this study was to analyze the value of continuous leakage monitoring with radioactive iodine-131-labeled human serum albumin (RISA) in patients treated with hyperthermic isolated limb perfusion with tumor necrosis factor-alpha (TNF alpha) and melphalan. Forty-eight patients with melanoma (n = 14) or soft tissue sarcoma (n = 34) of an extremity underwent 51 perfusions. Perfusion was performed at the iliac level in 22 cases, at the popliteal level in 16 cases, at the femoral level in 7 cases, and at the axillary level in 6 cases. Leakage rates and perfusion circuit and systemic levels of TNF alpha, interleukin-6, and C-reactive protein were determined, as were systemic hematological and metabolic profiles and tumor response. The mean isotopically measured leakage was 2.9%. Systemic leakage was < or = 2% in 28 perfusions and >2% in 23 perfusions. The correlation between the maximal monitored leakage and maximal systemic TNF alpha levels was.7114. The area under the curve for TNF alpha in the perfusion circuit, indicating the exposure of the perfused limb to TNF alpha, was 18.7% lower in the >2% leakage group. No significant differences in tumor response were found between groups. The area under the curve for systemic TNF alpha, indicating the exposure of the patient to TNF alpha, was 18.1 times higher in the >2% leakage group, resulting in a significant decrease in leukocyte and platelet count, hyperbilirubinemia, hypocholesterolemia, and proteinemia. No beneficial effect of the systemically leaked TNF and melphalan was seen on the occurrence of distant metastasis during follow-up. There was a significant difference between perfusions performed at the iliac and femoral levels compared with leakage values at the popliteal level. A good correlation between RISA leakage measurement and TNF alpha exposure during and after hyperthermic isolated limb perfusion with TNF alpha and melphalan was demonstrated. RISA leakage measurement serves as a good guide for the

  14. Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: key sources of artifacts

    NASA Astrophysics Data System (ADS)

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Maurizi, Lionel; Diener, Pierre-André; Hofmann, Heinrich; Jochum, Wolfram; Krug, Harald F.; Buerki-Thurnherr, Tina; von Mandach, Ursula; Wick, Peter

    2015-08-01

    Nanotechnology is a rapidly expanding and highly promising new technology with many different fields of application. Consequently, the investigation of engineered nanoparticles in biological systems is steadily increasing. Questions about the safety of such engineered nanoparticles are very important and the most critical subject with regard to the penetration of biological barriers allowing particle distribution throughout the human body. Such translocation studies are technically challenging and many issues have to be considered to obtain meaningful and comparable results. Here we report on the transfer of polystyrene nanoparticles across the human placenta using an ex vivo human placenta perfusion model. We provide an overview of several challenges that can potentially occur in any translocation study in relation to particle size distribution, functionalization and stability of labels. In conclusion, a careful assessment of nanoparticle properties in a physiologically relevant milieu is as challenging and important as the actual study of nanoparticle-cell interactions itself.

  15. Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: key sources of artifacts.

    PubMed

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Maurizi, Lionel; Diener, Pierre-André; Hofmann, Heinrich; Jochum, Wolfram; Krug, Harald F; Buerki-Thurnherr, Tina; von Mandach, Ursula; Wick, Peter

    2015-08-01

    Nanotechnology is a rapidly expanding and highly promising new technology with many different fields of application. Consequently, the investigation of engineered nanoparticles in biological systems is steadily increasing. Questions about the safety of such engineered nanoparticles are very important and the most critical subject with regard to the penetration of biological barriers allowing particle distribution throughout the human body. Such translocation studies are technically challenging and many issues have to be considered to obtain meaningful and comparable results. Here we report on the transfer of polystyrene nanoparticles across the human placenta using an ex vivo human placenta perfusion model. We provide an overview of several challenges that can potentially occur in any translocation study in relation to particle size distribution, functionalization and stability of labels. In conclusion, a careful assessment of nanoparticle properties in a physiologically relevant milieu is as challenging and important as the actual study of nanoparticle-cell interactions itself.

  16. Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: key sources of artifacts

    PubMed Central

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Maurizi, Lionel; Diener, Pierre-André; Hofmann, Heinrich; Jochum, Wolfram; Krug, Harald F.; Buerki-Thurnherr, Tina; von Mandach, Ursula; Wick, Peter

    2015-01-01

    Nanotechnology is a rapidly expanding and highly promising new technology with many different fields of application. Consequently, the investigation of engineered nanoparticles in biological systems is steadily increasing. Questions about the safety of such engineered nanoparticles are very important and the most critical subject with regard to the penetration of biological barriers allowing particle distribution throughout the human body. Such translocation studies are technically challenging and many issues have to be considered to obtain meaningful and comparable results. Here we report on the transfer of polystyrene nanoparticles across the human placenta using an ex vivo human placenta perfusion model. We provide an overview of several challenges that can potentially occur in any translocation study in relation to particle size distribution, functionalization and stability of labels. In conclusion, a careful assessment of nanoparticle properties in a physiologically relevant milieu is as challenging and important as the actual study of nanoparticle–cell interactions itself. PMID:27877820

  17. Bidirectional Transfer of Raltegravir in an Ex Vivo Human Cotyledon Perfusion Model

    PubMed Central

    Tréluyer, Jean-Marc; Giraud, Carole; Gavard, Laurent; Peytavin, Gilles

    2016-01-01

    Placental transfer of the HIV integrase inhibitor raltegravir (RLT) was investigated in term human cotyledons in the maternal-to-fetal (n = 3) and fetal-to-maternal (n = 6) directions. In the maternal-to-fetal direction, the mean ± standard deviation (SD) fetal transfer rate (FTR) was 9.1% ± 1.4%, and the mean ± SD clearance index (IC), i.e., RLT FTR/antipyrine FTR, was 0.28 ± 0.05. In the fetal-to-maternal direction, the mean ± SD CI was 0.31 ± 0.09. Placental transfer of RLT was high in both directions. PMID:26833154

  18. Perfusion Based Cell Culture Chips

    NASA Astrophysics Data System (ADS)

    Heiskanen, A.; Emnéus, J.; Dufva, M.

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers.

  19. Effect of transmembrane pressure on Factor VIII yield in ATF perfusion culture for the production of recombinant human Factor VIII co-expressed with von Willebrand factor.

    PubMed

    Kim, Seung-Chul; An, Sora; Kim, Hyun-Ki; Park, Beom-Soo; Na, Kyu-Heum; Kim, Byung-Gee

    2016-10-01

    In this study, we evaluated three cell retention devices, an alternating tangential flow (ATF) system, a spin-filter, and a Centritech Lab III centrifuge, for the production of recombinant human Factor VIII co-expressed with von Willebrand factor. From the results, it was found that the FVIII activity in bioreactor was significantly higher in the ATF perfusion culture than two other perfusion cultures. Moreover, the FVIII activity yield was unexpectedly low in the ATF perfusion culture. We have, therefore, studied the reasons for this low FVIII activity yield. It was revealed that the inactivation and the surface adsorption of FVIII onto the harvest bag were not the main reasons for the low yield in the ATF perfusion culture. The FVIII activity yield was not increased by the use of a hollow fiber filter with 0.5 μm pore size instead of 0.2 μm pore size. Additionally, the retention of FVIII molecules by the hollow fiber filter was a dominant factor in the low FVIII activity yield in the ATF perfusion culture. We demonstrated that FVIII yield was significantly improved by controlling transmembrane pressure (TMP) across the hollow fiber filter membrane. Taken together, these results suggest that TMP control could be an efficient method for the enhancement of FVIII yield in an ATF perfusion culture.

  20. Effect of Glycine-Conjugated Bile Acids with and without Lecithin on Water and Glucose Absorption in Perfused Human Jejunum

    PubMed Central

    Wingate, David L.; Phillips, Sidney F.; Hofmann, Alan F.

    1973-01-01

    Perfusion studies were performed in healthy volunteers to test whether the secretory effect of conjugated bile acids, previously shown for the colon, was also present in the jejunum. A perfusion system with a proximal occlusive balloon (and continuous aspiration of duodenal secretions) was used; isotonic test solutions contained glycine-conjugated bile acids with or without lecithin. Fluid movement was measured by changes in the concentration of polyethylene glycol (PEG, mol wt 4,000). Conjugated dihydroxy bile acids inhibited electrolyte and fluid absorption and, at higher concentrations, evoked secretion of an isotonic fluid. Glucose absorption continued, despite fluid secretion, but its rate decreased. The secretory effects of bile acids were abolished by the addition of lecithin to the bile acid solutions. A trihydroxy bile acid (cholylglycine) had no effect on jejunal absorption. Small amounts (6-9%) of conjugated bile acids were absorbed in the jejunum; lecithin was well absorbed (72-90%). The results indicate that dihydroxy bile acids influence salt and water transport in the human jejunum but that this effect may be abolished when a polar lipid such as lecithin is present. We speculate that this effect of bile acids may modify fluid movement in the small intestine postprandially after fat absorption has occurred. Images PMID:4700493

  1. Step-by-step protocol to perfuse and dissect the mouse parotid gland and isolation of high-quality RNA from murine and human parotid tissue.

    PubMed

    Watermann, Christoph; Valerius, Klaus Peter; Wagner, Steffen; Wittekindt, Claus; Klussmann, Jens Peter; Baumgart-Vogt, Eveline; Karnati, Srikanth

    2016-04-01

    Macroscopic identification and surgical removal of the mouse parotid gland is demanding because of its anatomic location and size. Moreover, the mouse parotid gland contains high concentrations of RNases, making it difficult to isolate high-quality RNA. So far, appropriate methods for optimal perfusion-fixation and dissection of mouse parotid glands, as well as the isolation of high quality RNA from this tissue, are not available. Here we present a simple, optimized, step-by-step surgical method to perfuse and isolate murine parotid glands. We also compared two common RNA extraction methods (RNeasy Mini Kit versus TRIzol) for their yields of high-quality, intact RNA from human and murine parotid gland tissues that were either snap-frozen or immersed in RNAlater stabilization solution. Mouse parotid tissue that was perfused and immersed in RNAlater and human samples immersed in RNAlater exhibited the best RNA quality, independent of the isolation method.

  2. Bidirectional Transfer of Raltegravir in an Ex Vivo Human Cotyledon Perfusion Model.

    PubMed

    Vinot, Cécile; Tréluyer, Jean-Marc; Giraud, Carole; Gavard, Laurent; Peytavin, Gilles; Mandelbrot, Laurent

    2016-05-01

    Placental transfer of the HIV integrase inhibitor raltegravir (RLT) was investigated in term human cotyledons in the maternal-to-fetal (n = 3) and fetal-to-maternal (n = 6) directions. In the maternal-to-fetal direction, the mean ± standard deviation (SD) fetal transfer rate (FTR) was 9.1% ± 1.4%, and the mean ± SD clearance index (IC), i.e., RLT FTR/antipyrine FTR, was 0.28 ± 0.05. In the fetal-to-maternal direction, the mean ± SD CI was 0.31 ± 0.09. Placental transfer of RLT was high in both directions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. SHORT-TERM EFFECTS OF EXERCISE ON OPTIC NERVE AND MACULAR PERFUSION MEASURED BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    Alnawaiseh, Maged; Lahme, Larissa; Treder, Maximilian; Rosentreter, André; Eter, Nicole

    2017-09-01

    To evaluate the effects of exercise on optic nerve and macular perfusion using optical coherence tomography angiography. Thirteen eyes of 13 healthy volunteers were examined using a high-speed and high-resolution spectral-domain optical coherence tomography XR Avanti with a split-spectrum amplitude-decorrelation angiography algorithm. Blood pressure, heart rate, the mean area of the foveal avascular zone , and flow density on the optic nerve head and macula, before and after exercise were measured and analyzed. Mean patient age was 27.3 ± 3.5 years. Heart rate, systolic and diastolic blood pressure increased significantly after exercise (P < 0.001). The mean area of the foveal avascular zone did not change significantly after exercise (before: 0.27 ± 0.07 mm; after: 0.26 ± 0.07 mm; P = 0.10). The peripapillary and the parafoveal flow density decreased significantly after exercise (peripapillary: before: 65.1 ± 2.1; after: 62.3 ± 3.0; P < 0.001 and parafoveal: before: 56.7 ± 1.3; after: 55.6 ± 1.5; P = 0.007). Increased physical activity induced significant changes in optic nerve and macular perfusion, which were measured using split-spectrum amplitude-decorrelation angiography optical coherence tomography angiography. In studies that aim to evaluate optic nerve and macular perfusion using optical coherence tomography angiography, it should be strongly recommended that patients rest before imaging is performed and that data concerning systemic circulation including blood pressure and pulse is included within the evaluation.

  4. Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta.

    PubMed

    Corbel, T; Gayrard, V; Puel, S; Lacroix, M Z; Berrebi, A; Gil, S; Viguié, C; Toutain, P-L; Picard-Hagen, N

    2014-08-01

    The widespread human exposure to Bisphenol A (BPA), an endocrine disruptor interfering with developmental processes, raises the question of the risk for human health of BPA fetal exposure. In humans, highly variable BPA concentrations have been reported in the feto-placental compartment. However the human fetal exposure to BPA still remains unclear. The aim of the study was to characterize placental exchanges of BPA and its main metabolite, Bisphenol A-Glucuronide (BPA-G) using the non-recirculating dual human placental perfusion. This high placental bidirectional permeability to the lipid soluble BPA strongly suggests a transport by passive diffusion in both materno-to-fetal and feto-to-maternal direction, leading to a calculated ratio between fetal and maternal free BPA concentrations of about 1. In contrast, BPA-G has limited placental permeability, particularly in the materno-to-fetal direction. Thus the fetal exposure to BPA conjugates could be explained mainly by its limited capacity to extrude BPA-G.

  5. Effects of long chain fatty acids on solute absorption: perfusion studies in the human jejunum.

    PubMed Central

    Ammon, H V; Thomas, P J; Phillips, S F

    1977-01-01

    Perfusion studies were performed in healthy volunteers to test the hypothesis that net fluid secretion induced by fatty acids is accompanied by parallel reduction in solute transport. Ricinoleic acid provoked a marked net secretion of fluid and concomitantly inhibited the absorption of all solutes tested; these included glucose, xylose, L-leucine, L-lysine, Folic acid, and 2-mono-olein. Oleic acid also reduced net fluid and solute transport, but was less potent in reducing solute absorption than was ricinoleic acid. When fluid secretion was induced osmotically with mannitol, glucose and xylose absorption was not affected. The mechanism for this generalised effect of fatty acids on solute absorption is uncertain, possibly nonspecific, and might be related to mucosal damage and altered mucosal permeability induced by these agents. PMID:590838

  6. Serologic analysis of anti-porcine endogenous retroviruses immune responses in humans after ex vivo transgenic pig liver perfusion.

    PubMed

    Xu, Hui; Sharma, Ajay; Okabe, Jeannine; Cui, Cunqi; Huang, Liping; Wei, Yuan Yuan; Wan, Hua; Lei, Ying; Logan, John S; Levy, Marlon F; Byrne, Guerard W

    2003-01-01

    Improvements in xenotransplantation may significantly increase the availability of organs for human transplantation. The use of porcine organs, however, has raised concern about possible transmission of porcine endogenous retroviruses (PERV) to the recipients. The authors developed monoclonal antibodies specific to the PERV Gag viral product and show that these antibodies can detect PERV antigen under a variety of assay conditions, including enzyme linked immunosorbent assay (ELISA), Western blot, and immunofluorescence staining methods. Two patients in fulminant hepatic failure were treated by extracorporeal perfusion using transgenic porcine livers before receiving orthotopic liver transplants. Despite the use of immune suppression that allowed survival of the allograft, these patients both showed a strong immune response to the xenograft suggesting a largely intact capability to mount a humoral immune response. However, analysis of patient serum samples over a 3 to 4 year period has showed no evidence of an immune response to PERV antigens, suggesting a lack of PERV infection.

  7. Human dorsal root ganglion in vivo morphometry and perfusion in Fabry painful neuropathy.

    PubMed

    Godel, Tim; Bäumer, Philipp; Pham, Mirko; Köhn, Anja; Muschol, Nicole; Kronlage, Moritz; Kollmer, Jennifer; Heiland, Sabine; Bendszus, Martin; Mautner, Victor-Felix

    2017-09-19

    To evaluate functional and morphometric magnetic resonance neurography of the dorsal root ganglion and peripheral nerve segments in patients with Fabry painful neuropathy. In this prospective study, the lumbosacral dorsal root ganglia and proximal peripheral nerve segments of the lower extremity were examined in 11 male patients with Fabry disease by a standardized 3T magnetic resonance neurography protocol. Volumes of L3 to S2 dorsal root ganglia, perfusion parameters of L5-S1 dorsal root ganglia and the spinal nerve L5, and the cross-sectional area of the proximal sciatic nerve were compared to healthy controls. Dorsal root ganglia of patients with Fabry disease were symmetrically enlarged by 78% (L3), 94% (L4), 122% (L5), 115% (S1), and 119% (S2) (p < 0.001). In addition, permeability of the blood-tissue interface was decreased by 53% (p < 0.001). This finding was most pronounced in the peripheral zone of the dorsal root ganglion containing the cell bodies of the primary sensory neurons (p < 0.001). Spinal nerve permeability showed no difference between patients with Fabry disease and controls (p = 0.7). The sciatic nerve of patients with Fabry disease at the thigh level showed an increase in cross-sectional area by 48% (p < 0.001). Patients with Fabry disease have severely enlarged dorsal root ganglia with dysfunctional perfusion. This may be due to glycolipid accumulation in the dorsal root ganglia mediating direct neurotoxic effects and decreased neuronal blood supply. These alterations were less pronounced in peripheral nerve segments. Thus, the dorsal root ganglion might play a key pathophysiologic role in the development of neuropathy and pain in Fabry disease. © 2017 American Academy of Neurology.

  8. Sulfasalazine reduces bile acid induced apoptosis in human hepatoma cells and perfused rat livers

    PubMed Central

    Rust, C; Bauchmuller, K; Bernt, C; Vennegeerts, T; Fickert, P; Fuchsbichler, A; Beuers, U

    2006-01-01

    Background Bile acid induced apoptosis in hepatocytes can be antagonised by nuclear factor κB (NFκB) dependent survival pathways. Sulfasalazine modulates NFκB in different cell types. We aimed to determine the effects of sulfasalazine and its metabolites sulfapyridine and 5‐aminosalicylic acid (5‐ASA) on bile acid induced apoptosis in hepatocytes. Methods Apoptosis was determined by caspase assays and immunoblotting, NFκB activation by electrophoretic mobility shift assay and reporter gene assays, generation of reactive oxygen species (ROS) fluorometrically, bile secretion gravimetrically, and bile acid uptake radiochemically and by gas chromatography in HepG2‐Ntcp cells and isolated perfused rat livers. Results Glycochenodeoxycholic acid (GCDCA 75 µmol/l) induced apoptosis was reduced by sulfasalazine dose dependently (1–1000 µmol/l) in HepG2‐Ntcp cells whereas its metabolites 5‐ASA and sulfapyridine had no effect. Sulfasalazine significantly reduced GCDCA induced activation of caspases 9 and 3. In addition, sulfasalazine activated NFκB and decreased GCDCA induced generation of ROS. Bile acid uptake was competitively inhibited by sulfasalazine. In perfused rat livers, GCDCA (25 µmol/l) induced liver injury and extensive hepatocyte apoptosis were significantly reduced by simultaneous administration of 100 µmol/l sulfasalazine: lactate dehydrogenase and glutamate‐pyruvate transaminase activities were reduced by 82% and 87%, respectively, and apoptotic hepatocytes were observed only occasionally. GCDCA uptake was reduced by 45 (5)% when sulfasalazine was coadministered. However, when 50% of GCDCA (12.5 µmol/l) was administered alone, marked hepatocyte apoptosis and liver injury were again observed, questioning the impact of reduced GCDCA uptake for the antiapoptotic effect of sulfasalazine. Conclusion Sulfasalazine is a potent inhibitor of GCDCA induced hepatocyte apoptosis in vitro and in the intact liver. PMID:16322111

  9. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans.

    PubMed

    Seifert, Thomas; Fisher, James P; Young, Colin N; Hartwich, Doreen; Ogoh, Shigehiko; Raven, Peter B; Fadel, Paul J; Secher, Niels H

    2010-10-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral metabolism (from arterial and internal jugular venous O(2), glucose and lactate differences), as well as the middle cerebral artery mean blood velocity (MCA V(mean); transcranial Doppler ultrasound) during a sustained static handgrip contraction at 40% of maximal voluntary contraction (n = 9) and the MCA V(mean) during ergometer cycling (n = 8). Separate, randomized and counterbalanced trials were performed in control (no drug) conditions and following muscarinic cholinergic receptor blockade by glycopyrrolate. Glycopyrrolate increased resting heart rate from approximately 60 to approximately 110 beats min(-1) (P < 0.01) and cardiac output by approximately 40% (P < 0.05), but did not affect mean arterial pressure. The central cardiovascular responses to exercise with glycopyrrolate were similar to the control responses, except that cardiac output did not increase during static handgrip with glycopyrrolate. Glycopyrrolate did not significantly affect cerebral metabolism during static handgrip, but a parallel increase in MCA V(mean) (approximately 16%; P < 0.01) and CBF (approximately 12%; P < 0.01) during static handgrip, as well as the increase in MCA V(mean) during cycling (approximately 15%; P < 0.01), were abolished by glycopyrrolate (P < 0.05). Thus, during both cycling and static handgrip, a cholinergic receptor mechanism is important for the exercise-induced increase in cerebral perfusion without affecting the cerebral metabolic rate for oxygen.

  10. Short-term effects of brimonidine/timolol and dorzolamide/timolol on ocular perfusion pressure and blood flow in glaucoma.

    PubMed

    Siesky, Brent; Harris, Alon; Ehrlich, Rita; Cantor, Louis; Shoja, Mohammadali M; Rusia, Deepam; Hollander, David A; Abrams, Leslie; Williams, Julia M; Shoshani, Yochai

    2012-01-01

    To examine the comparative short-term effects of brimonidine/timolol and dorzolamide/timolol on ocular perfusion pressure and retrobulbar blood flow in patients with primary open angle glaucoma (OAG). In a prospective, randomized, double-blind, crossover study, intraocular pressure (IOP), blood pressure (BP), ocular perfusion pressure (OPP), and retrobulbar hemodynamics were assessed in 15 patients with OAG (mean age 68.1 years, eight women) with well controlled IOP. IOP was measured by Goldman applanation tonometery and color Doppler imaging was utilized to assess the retrobulbar blood vessels before and 1 month after treatment with topical brimonidine/timolol and dorzolamide/timolol. Statistical analysis was performed by Friedman two-way analysis of variance by ranks and post-hoc Wilcoxon signed rank test for multiple comparisons with Holm's sequential Bonferroni procedure. P values <0.05 were considered statistically significant. The Friedman test and subsequent post-hoc analysis indicated that IOP, BP, OPP, and retrobulbar blood flow velocities did not significantly differ between brimonidine/timolol and dorzolamide/timolol after 1-month treatment administration in patients with OAG and well controlled IOP. In this cohort of patients with OAG, short-term treatment with brimonidine/timolol and dorzolamide/timolol results in similar effects on OPP and retrobulbar blood flow velocities.

  11. Human Behaviour in Long-Term Missions

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session WP1, the discussion focuses on the following topics: Psychological Support for International Space Station Mission; Psycho-social Training for Man in Space; Study of the Physiological Adaptation of the Crew During A 135-Day Space Simulation; Interpersonal Relationships in Space Simulation, The Long-Term Bed Rest in Head-Down Tilt Position; Psychological Adaptation in Groups of Varying Sizes and Environments; Deviance Among Expeditioners, Defining the Off-Nominal Act in Space and Polar Field Analogs; Getting Effective Sleep in the Space-Station Environment; Human Sleep and Circadian Rhythms are Altered During Spaceflight; and Methodological Approach to Study of Cosmonauts Errors and Its Instrumental Support.

  12. Circadian Kisspeptin expression in human term placenta.

    PubMed

    de Pedro, M A; Morán, J; Díaz, I; Murias, L; Fernández-Plaza, C; González, C; Díaz, E

    2015-11-01

    Kisspeptin is an essential gatekeeper of reproductive function. During pregnancy high circulating levels of kisspeptin have been described, however the clear role of this neuropeptide in pregnancy remains unknown. We tested the existence of rhythmic kisspeptin expression in human full-term placenta from healthy pregnant women at six different time points during the day. The data obtained by Western blotting were fitted to a mathematical model (Fourier series), demonstrating, for the first time, the existence of a circadian rhythm in placental kisspeptin expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Autophagy in term normal human placentas.

    PubMed

    Signorelli, P; Avagliano, L; Virgili, E; Gagliostro, V; Doi, P; Braidotti, P; Bulfamante, G P; Ghidoni, R; Marconi, A M

    2011-06-01

    Autophagy is an inducible catabolic process that responds to environment and is essential for cell survival during stress, starvation and hypoxia. Its function in the human placenta it is not yet understood. We collected 14 placentas: 7 at vaginal delivery and 7 at elective caesarean section after uneventful term pregnancies. The presence of autophagy was assessed in different placental areas by immunoblotting, immunohistochemistry and electron microscopy. We found that autophagy is significantly higher in placentas obtained from cesarean section than in those from vaginal delivery. Moreover there is a significant inverse relationship between autophagy and umbilical arterial glucose concentration.

  14. Acute effects of ethanol on the transfer of nicotine and two dietary carcinogens in human placental perfusion.

    PubMed

    Veid, Jenni; Karttunen, Vesa; Myöhänen, Kirsi; Myllynen, Päivi; Auriola, Seppo; Halonen, Toivo; Vähäkangas, Kirsi

    2011-09-10

    Many mothers use, against instructions, alcohol during pregnancy. Simultaneously mothers are exposed to a wide range of other environmental chemicals. These chemicals may also harm the developing fetus, because almost all toxic compounds can go through human placenta. Toxicokinetic effects of ethanol on the transfer of other environmental compounds through human placenta have not been studied before. It is known that ethanol has lytic properties and increases the permeability and fluidity of cell membranes. We studied the effects of ethanol on the transfer of three different environmental toxins: nicotine, PhIP (2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine) and NDMA (N-nitrosodimethylamine) in placental perfusion. We tested in human breast cancer adenocarcinoma cell line MCF-7 whether ethanol affects ABCG2/BCRP, which is also the major transporter in human placenta. We found that the transfer of ethanol is comparable to that of antipyrine, which points to passive diffusion as the transfer mechanism. Unexpectedly, ethanol had no statistically significant effect on the transfer of the other studied compounds. Neither did ethanol inhibit the function of ABCG2/BCRP. These experiments represent only the effects of acute exposure to ethanol and chronic exposure remains to be studied.

  15. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation.

  16. Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells*

    PubMed Central

    Shestov, Alexander A.; Mancuso, Anthony; Lee, Seung-Cheol; Guo, Lili; Nelson, David S.; Roman, Jeffrey C.; Henry, Pierre-Gilles; Leeper, Dennis B.; Blair, Ian A.; Glickson, Jerry D.

    2016-01-01

    A network model for the determination of tumor metabolic fluxes from 13C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-13C2]glucose under normoxic conditions at 37 °C and monitored by 13C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism. PMID:26703469

  17. Alternative solution for ex vivo lung perfusion, experimental study on donated human lungs non-accepted for transplantation.

    PubMed

    Fernandes, Lucas Matos; Mariani, Alessandro Wasum; Medeiros, Israel Lopes de; Samano, Marcos Naoyuki; Abdalla, Luís Gustavo; Correia, Aristides Tadeu; Nepomuceno, Natália Aparecida; Canzian, Mauro; Pêgo-Fernandes, Paulo Manuel

    2015-05-01

    To evaluate a new perfusate solution to be used for ex vivo lung perfusion. Randomized experimental study using lungs from rejected brain-dead donors harvested and submitted to 1 hour of ex vivo lung perfusion (EVLP) using mainstream solution or the alternative. From 16 lungs blocs tested, we found no difference on weight after EVLP: Steen group (SG) = 1,097±526g; Alternative Perfusion Solution (APS) = 743±248g, p=0.163. Edema formation, assessed by Wet/dry weigh ratio, was statistically higher on the Alternative Perfusion Solution group (APS = 3.63 ± 1.26; SG = 2.06 ± 0.28; p = 0.009). No difference on PaO2 after EVLP (SG = 498±37.53mmHg; APS = 521±55.43mmHg, p=0.348, nor on histological analyses: pulmonary injury score: SG = 4.38±1.51; APS = 4.50±1.77, p=0.881; apoptotic cells count after perfusion: SG = 2.4 ± 2.0 cells/mm2; APS = 4.8 ± 6.9 cells/mm2; p = 0.361). The ex vivo lung perfusion using the alternative perfusion solution showed no functional or histological differences, except for a higher edema formation, from the EVLP using Steen Solution(r) on lungs from rejected brain-dead donors.

  18. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion.

    PubMed

    Kalsi, Kameljit K; González-Alonso, José

    2012-03-01

    Human limb muscle and skin blood flow increases significantly with elevations in temperature, possibly through physiological processes that involve temperature-sensitive regulatory mechanisms. Here we tested the hypothesis that the release of the vasodilator ATP from human erythrocytes is sensitive to physiological increases in temperature both in vitro and in vivo, and examined potential channel/transporters involved. To investigate the source of ATP release, whole blood, red blood cells (RBCs), plasma and serum were heated in vitro to 33, 36, 39 and 42°C. In vitro heating augmented plasma or 'bathing solution' ATP in whole blood and RBC samples, but not in either isolated plasma or serum samples. Heat-induced ATP release was blocked by niflumic acid and glibenclamide, but was not affected by inhibitors of nucleoside transport or anion exchange. Heating blood to 42°C enhanced (P < 0.05) membrane protein abundance of cystic fibrosis transmembrane conductance regulator (CFTR) in RBCs. In a parallel in vivo study in humans exposed to whole-body heating at rest and during exercise, increases in muscle temperature from 35 to 40°C correlated strongly with elevations in arterial plasma ATP (r(2) = 0.91; P = 0.0001), but not with femoral venous plasma ATP (r(2) = 0.61; P = 0.14). In vitro, however, the increase in ATP release from RBCs was similar in arterial and venous samples heated to 39°C. Our findings demonstrate that erythrocyte ATP release is sensitive to physiological increases in temperature, possibly via activation of CFTR-like channels, and suggest that temperature-dependent release of ATP from erythrocytes might be an important mechanism regulating human limb muscle and skin perfusion in conditions that alter blood and tissue temperature.

  19. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion

    PubMed Central

    Kalsi, Kameljit K; González-Alonso, José

    2012-01-01

    Human limb muscle and skin blood flow increases significantly with elevations in temperature, possibly through physiological processes that involve temperature-sensitive regulatory mechanisms. Here we tested the hypothesis that the release of the vasodilator ATP from human erythrocytes is sensitive to physiological increases in temperature both in vitro and in vivo, and examined potential channel/transporters involved. To investigate the source of ATP release, whole blood, red blood cells (RBCs), plasma and serum were heated in vitro to 33, 36, 39 and 42°C. In vitro heating augmented plasma or ‘bathing solution’ ATP in whole blood and RBC samples, but not in either isolated plasma or serum samples. Heat-induced ATP release was blocked by niflumic acid and glibenclamide, but was not affected by inhibitors of nucleoside transport or anion exchange. Heating blood to 42°C enhanced (P < 0.05) membrane protein abundance of cystic fibrosis transmembrane conductance regulator (CFTR) in RBCs. In a parallel in vivo study in humans exposed to whole-body heating at rest and during exercise, increases in muscle temperature from 35 to 40°C correlated strongly with elevations in arterial plasma ATP (r2 = 0.91; P = 0.0001), but not with femoral venous plasma ATP (r2 = 0.61; P = 0.14). In vitro, however, the increase in ATP release from RBCs was similar in arterial and venous samples heated to 39°C. Our findings demonstrate that erythrocyte ATP release is sensitive to physiological increases in temperature, possibly via activation of CFTR-like channels, and suggest that temperature-dependent release of ATP from erythrocytes might be an important mechanism regulating human limb muscle and skin perfusion in conditions that alter blood and tissue temperature. PMID:22227202

  20. [Outcome of patients with suspected pulmonary thromboembolism and low probability ventilation/perfusion lung scan who receive no long-term anticoagulation].

    PubMed

    Calvo Romero, J M; Arévalo Lorido, J C; Carretero Gómez, J

    2005-08-01

    To know in our area the security of no long-term anticoagulation in patients with suspected pulmonary thromboembolism (PTE) and a low probability ventilation/perfusion (V/Q) lung scan. Retrospective review of a series of consecutive outpatients with suspected PTE and a low probability V/Q lung scan, according to the modified PIOPED criteria, who receive no long-term anticoagulation. Among 38 patients with a low probability V/Q lung scan, 31 (81.6%) did not receive long-term anticoagulation. The median age was 69.1 years (range 26-88 years), and 19 (61.3%) were female. The clinical probability of PTE was moderate in 27 patients (87.1%). Twenty-two patients (71%) had a venous lower extremities echography-doppler negative for deep vein thrombosis (DVT). The median follow-up was 6.3 months (range 3-12 months). There was one case (3.2%; 95% confidence interval, 0.1-16.7%) with demonstrated PTE and DVT, and there was no death. No long-term anticoagulation in outpatients with a moderate clinical probability of PTE, a low probability V/Q lung scan and a venous lower extremities echography-doppler negative for DVT may be secure in our area.

  1. Interstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges

    PubMed Central

    Talò, Giuseppe; Lovati, Arianna B.; Pasdeloup, Marielle; Riboldi, Stefania A.; Moretti, Matteo; Mallein-Gerin, Frédéric

    2016-01-01

    Articular cartilage has poor healing ability and cartilage injuries often evolve to osteoarthritis. Cell-based strategies aiming to engineer cartilaginous tissue through the combination of biocompatible scaffolds and articular chondrocytes represent an alternative to standard surgical techniques. In this context, perfusion bioreactors have been introduced to enhance cellular access to oxygen and nutrients, hence overcoming the limitations of static culture and improving matrix deposition. Here, we combined an optimized cocktail of soluble factors, the BIT (BMP-2, Insulin, Thyroxin), and clinical-grade collagen sponges with a bidirectional perfusion bioreactor, namely the oscillating perfusion bioreactor (OPB), to engineer in vitro articular cartilage by human articular chondrocytes (HACs) obtained from osteoarthritic patients. After amplification, HACs were seeded and cultivated in collagen sponges either in static or dynamic conditions. Chondrocyte phenotype and the nature of the matrix synthesized by HACs were assessed using western blotting and immunohistochemistry analyses. Finally, the stability of the cartilaginous tissue produced by HACs was evaluated in vivo by subcutaneous implantation in nude mice. Our results showed that perfusion improved the distribution and quality of cartilaginous matrix deposited within the sponges, compared to static conditions. Specifically, dynamic culture in the OPB, in combination with the BIT cocktail, resulted in the homogeneous production of extracellular matrix rich in type II collagen. Remarkably, the production of type I collagen, a marker of fibrous tissues, was also inhibited, indicating that the association of the OPB with the BIT cocktail limits fibrocartilage formation, favoring the reconstruction of hyaline cartilage. PMID:27584727

  2. In vivo (31)P magnetic resonance spectroscopy and morphometric analysis of the perfused vascular architecture of human glioma xenografts in nude mice.

    PubMed Central

    van der Sanden, B. P.; Rijken, P. F.; Heerschap, A.; Bernsen, H. J.; van der Kogel, A. J.

    1997-01-01

    The relationship between the bioenergetic status of human glioma xenografts in nude mice and morphometric parameters of the perfused vascular architecture was studied using (31)P magnetic resonance spectroscopy (MRS), fluorescence microscopy and two-dimensional digital image analysis. Two tumour lines with a different vascular architecture were used for this study. Intervascular distances and non-perfused area fractions varied greatly between tumours of the same line and tumours of different lines. The inorganic phosphate-nucleoside triphosphate (P(i)/NTP) ratio increased rapidly as mean intervascular distances increased from 100 microm to 300 microm. Two morphometric parameters - the percentage of intervascular distances larger than 200 microm (ivd200) and the non-perfused area fraction at a distance larger than 100 microm from a nearest perfused vessel (area100), - were deduced from these experiments and related to the P(i)/NTP ratio of the whole tumour. It is assumed that an aerobic to anaerobic transition influences the bioenergetic status, i.e. the P(i)/NTP ratio increased linearly with the percentage of ivd200 and the area100. PMID:9166934

  3. Gaseous oxygen persufflation or oxygenated machine perfusion with Custodiol-N for long-term preservation of ischemic rat livers?

    PubMed

    Stegemann, Judith; Hirner, Andreas; Rauen, Ursula; Minor, Thomas

    2009-02-01

    The aim of the present study was to evaluate the potential benefit of two different techniques for the provision of tissue aerobiosis upon cold preservation of marginal livers from non-heart beating donors using a recently developed improved preservation solution. Rat livers were harvested 30 min after cardiac arrest, flushed via the portal vein and cold-stored in HTK or modified HTK-solution (Custodiol-N) for 18 h at 4 degrees C. Other organs were flushed with Custodiol-N and subjected to aerobic conditions by either vascular systemic oxygen persufflation (VSOP) of the cold stored organ or hypothermic machine perfusion (HMP) with oxygenated Custodiol-N. Viability of the livers was assessed after 18 h of preservation by warm reperfusion in vitro for 120 min. Free radical mediated lipid peroxidation was significantly abrogated by the use of Custodiol-N in all groups compared with HTK. Custodiol-N improved enzyme leakage upon reperfusion and histological integrity, but had no impact on functional recovery (bile production, energetic status). However, VSOP further minimized enzyme release during the whole reperfusion period, led to a rise in hepatic bile production and enhanced recovery of energy charge (p<0.05, resp. vs Custodiol-N). Histological appearance was concordantly improved in VSOP. During the first 45min of reperfusion, leakage of ALT and LDH was also reduced by MP but deteriorated thereafter and became significantly higher compared to Custodiol-N at the end of the experiment. In conclusion, the results of the present study recommend the use of gaseous oxygen persufflation to improve tissue integrity and functional recovery of predamaged livers.

  4. Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: an initial pilot and feasibility study.

    PubMed

    La Francesca, Saverio; Ting, Anthony E; Sakamoto, Jason; Rhudy, Jessica; Bonenfant, Nicholas R; Borg, Zachary D; Cruz, Fernanda F; Goodwin, Meagan; Lehman, Nicholas A; Taggart, Jennifer M; Deans, Robert; Weiss, Daniel J

    2014-01-01

    Primary graft dysfunction (PGD) is a significant cause of early morbidity and mortality following lung transplantation. Improved organ preservation techniques will decrease ischemia-reperfusion injury (IRI) contributing to PGD. Adult bone marrow-derived adherent stem cells, including mesenchymal stromal (stem) cells (MSCs) and multipotent adult progenitor cells (MAPCs), have potent anti-inflammatory actions, and we thus postulated that intratracheal MAPC administration during donor lung processing would decrease IRI. The goal of the study was therefore to determine if intratracheal MAPC instillation would decrease lung injury and inflammation in an ex vivo human lung explant model of prolonged cold storage and subsequent reperfusion. Four donor lungs not utilized for transplant underwent 8 h of cold storage (4°C). Following rewarming for approximately 30 min, non-HLA-matched allogeneic MAPCs (1 × 10(7) MAPCs/lung) were bronchoscopically instilled into the left lower lobe (LLL) and vehicle comparably instilled into the right lower lobe (RLL). The lungs were then perfused and mechanically ventilated for 4 h and subsequently assessed for histologic injury and for inflammatory markers in bronchoalveolar lavage fluid (BALF) and lung tissue. All LLLs consistently demonstrated a significant decrease in histologic and BALF inflammation compared to vehicle-treated RLLs. These initial pilot studies suggest that use of non-HLA-matched allogeneic MAPCs during donor lung processing can decrease markers of cold ischemia-induced lung injury.

  5. IFPA Meeting 2013 Workshop Report III: maternal placental immunological interactions, novel determinants of trophoblast cell fate, dual ex vivo perfusion of the human placenta.

    PubMed

    Abumaree, M H; Brownbill, P; Burton, G; Castillo, C; Chamley, L; Croy, B A; Drewlo, S; Dunk, C; Girard, S; Hansson, S; Jones, S; Jurisicova, A; Lewis, R; Letarte, M; Parast, M; Pehrson, C; Rappolee, D; Schneider, H; Tannetta, D; Varmuza, S; Wadsack, C; Wallace, A E; Zenerino, C; Lash, G E

    2014-02-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At IFPA meeting 2013 there were twelve themed workshops, three of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of placental function, cell turnover and immunology: 1) immunology; 2) novel determinants of placental cell fate; 3) dual perfusion of human placental tissue.

  6. Distribution of perfusion.

    PubMed

    Glenny, Robb; Robertson, H Thomas

    2011-01-01

    Local driving pressures and resistances within the pulmonary vascular tree determine the distribution of perfusion in the lung. Unlike other organs, these local determinants are significantly influenced by regional hydrostatic and alveolar pressures. Those effects on blood flow distribution are further magnified by the large vertical height of the human lung and the relatively low intravascular pressures in the pulmonary circulation. While the distribution of perfusion is largely due to passive determinants such as vascular geometry and hydrostatic pressures, active mechanisms such as vasoconstriction induced by local hypoxia can also redistribute blood flow. This chapter reviews the determinants of regional lung perfusion with a focus on vascular tree geometry, vertical gradients induced by gravity, the interactions between vascular and surrounding alveolar pressures, and hypoxic pulmonary vasoconstriction. While each of these determinants of perfusion distribution can be examined in isolation, the distribution of blood flow is dynamically determined and each component interacts with the others so that a change in one region of the lung influences the distribution of blood flow in other lung regions. © 2011 American Physiological Society.

  7. Effects of a short-term fast on albumin synthesis studied in vivo, in the perfused liver, and on amino acid incorporation by hepatic microsomes

    PubMed Central

    Rothschild, Marcus A.; Oratz, Murray; Mongelli, Joseph; Schreiber, Sidney S.

    1968-01-01

    Carbonate-14C was used to label the hepatic intracellular arginine pool and direct measurement of albumin synthesis was made in six rabbits before and after an 18-36 hr fast. 18 perfusion studies were performed with livers derived from fed and fasted rabbits (18-24 hr). Microsomal amino acid-incorporating ability with leucine-3H and phenylalanine-14C was compared in 17 studies, using microsomes isolated from livers taken from fed and fasted rabbits and from isolated perfused livers whose donors were fed and fasted. Albumin synthesis is rapidly inhibited by fasting. Albumin synthesis decreased 33% in vivo and 53% in the perfused liver. The microsomes from perfused livers taken from fed animals did not demonstrate a significantly reduced capacity to incorporate leucine-3H or phenylalanine-14C into protein. Microsomes derived from perfused and nonperfused livers whose donors were fasted incorporated 32-54% less tracer than microsomes obtained from fed donor rabbits. Microsomes separated from perfused livers removed from fed and fasted rabbits responded to polyuridylic acid stimulation and phenylalanine-14C incorporation rose from 58 to 171%. An 18-36 hr fast inhibits albumin production in vivo and in the perfused liver. The microsomal system is less active in the fasted state and perfusion per se does not inhibit the microsomal response. PMID:5725276

  8. Studying Closed Hydrodynamic Models of "In Vivo" DNA Perfusion in Pig Liver for Gene Therapy Translation to Humans.

    PubMed

    Sendra, Luis; Miguel, Antonio; Pérez-Enguix, Daniel; Herrero, María José; Montalvá, Eva; García-Gimeno, María Adelaida; Noguera, Inmaculada; Díaz, Ana; Pérez, Judith; Sanz, Pascual; López-Andújar, Rafael; Martí-Bonmatí, Luis; Aliño, Salvador F

    2016-01-01

    Expressing exogenous genes after naked DNA delivery into hepatocytes might achieve sustained and high expression of human proteins. Tail vein DNA injection is an efficient procedure for gene transfer in murine liver. Hydrodynamic procedures in large animals require organ targeting, and improve with liver vascular exclusion. In the present study, two closed liver hydrofection models employing the human alpha-1-antitrypsin (hAAT) gene are compared to reference standards in order to evaluate their potential clinical interest. A solution of naked DNA bearing the hAAT gene was retrogradely injected in 7 pig livers using two different closed perfusion procedures: an endovascular catheterization-mediated procedure (n = 3) with infrahepatic inferior vena cava and portal vein blockage; and a surgery-mediated procedure (n = 4) with completely sealed liver. Gene transfer was performed through the suprahepatic inferior cava vein in the endovascular procedure and through the infrahepatic inferior vena cava in the surgical procedure. The efficiency of the procedures was evaluated 14 days after hydrofection by quantifying the hAAT protein copies per cell in tissue and in plasma. For comparison, samples from mice (n = 7) successfully hydrofected with hAAT and healthy human liver segments (n = 4) were evaluated. Gene decoding occurs efficiently using both procedures, with liver vascular arrest improving its efficiency. The surgically closed procedure (sealed organ) reached higher tissue protein levels (4x10^5- copies/cell) than the endovascular procedure, though the levels were lower than in human liver (5x10^6- copies/cell) and hydrofected mouse liver (10^6- copies/cell). However, protein levels in plasma were lower (p<0.001) than the reference standards in all cases. Hydrofection of hAAT DNA to "in vivo" isolated pig liver mediates highly efficient gene delivery and protein expression in tissue. Both endovascular and surgically closed models mediate high tissue protein expression

  9. Studying Closed Hydrodynamic Models of “In Vivo” DNA Perfusion in Pig Liver for Gene Therapy Translation to Humans

    PubMed Central

    Sendra, Luis; Miguel, Antonio; Pérez-Enguix, Daniel; Montalvá, Eva; García-Gimeno, María Adelaida; Noguera, Inmaculada; Díaz, Ana; Pérez, Judith; Sanz, Pascual; López-Andújar, Rafael; Martí-Bonmatí, Luis; Aliño, Salvador F.

    2016-01-01

    Introduction Expressing exogenous genes after naked DNA delivery into hepatocytes might achieve sustained and high expression of human proteins. Tail vein DNA injection is an efficient procedure for gene transfer in murine liver. Hydrodynamic procedures in large animals require organ targeting, and improve with liver vascular exclusion. In the present study, two closed liver hydrofection models employing the human alpha-1-antitrypsin (hAAT) gene are compared to reference standards in order to evaluate their potential clinical interest. Material and Methods A solution of naked DNA bearing the hAAT gene was retrogradely injected in 7 pig livers using two different closed perfusion procedures: an endovascular catheterization-mediated procedure (n = 3) with infrahepatic inferior vena cava and portal vein blockage; and a surgery-mediated procedure (n = 4) with completely sealed liver. Gene transfer was performed through the suprahepatic inferior cava vein in the endovascular procedure and through the infrahepatic inferior vena cava in the surgical procedure. The efficiency of the procedures was evaluated 14 days after hydrofection by quantifying the hAAT protein copies per cell in tissue and in plasma. For comparison, samples from mice (n = 7) successfully hydrofected with hAAT and healthy human liver segments (n = 4) were evaluated. Results Gene decoding occurs efficiently using both procedures, with liver vascular arrest improving its efficiency. The surgically closed procedure (sealed organ) reached higher tissue protein levels (4x10^5- copies/cell) than the endovascular procedure, though the levels were lower than in human liver (5x10^6- copies/cell) and hydrofected mouse liver (10^6- copies/cell). However, protein levels in plasma were lower (p<0.001) than the reference standards in all cases. Conclusion Hydrofection of hAAT DNA to “in vivo” isolated pig liver mediates highly efficient gene delivery and protein expression in tissue. Both endovascular and

  10. A new recycling technique for human placental cotyledon perfusion: application to studies of the fetomaternal transfer of glucose, inulin, and antipyrine

    SciTech Connect

    Brandes, J.M.; Tavoloni, N.; Potter, B.J.; Sarkozi, L.; Shepard, M.D.; Berk, P.D.

    1983-08-01

    A previously described technique has been modified to permit the continuously recirculating perfusion of the separate maternal and fetal circulations of an isolated cotyledon of human placenta. Viability of the perfused cotyledons was established by measurements of oxygen consumption (average, 0.18 ml/gm/hr), glucose utilization (average, 1.0 mg/gm/hr), and lactate production (less than 0.01 mumol/gm/hr), and integrity of the placental barrier by the failure of India ink, 125I-albumin, or 35S-sulfobromophthalein to cross from fetal to maternal circulation. Clearance of 3H-inulin from the fetal circuit, 0.0059 +/- 0.0005 (SE) ml/min/gm, corresponded to 2.5% of its clearance by the adult human kidney. Clearance of 14C-antipyrine was 0.013 +/- 0.003 ml/min/gm. After introduction into the fetal circuit, the observed appearance of both inulin and antipyrine in the maternal circuit closely paralleled curves predicted by a simple mathematical model. The use of a continuously recirculating perfusion system is technically feasible, and has advantages over the single-pass technique for studying transplacental transfer of metabolites with a low efficiency of extraction.

  11. Metabolite Profiling and Pharmacokinetic Evaluation of Hydrocortisone in a Perfused Three-Dimensional Human Liver Bioreactor

    PubMed Central

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M.; Hughes, David J.; Ravindra, Kodihalli C.; Dyer, Rachel L.; Ebrahimkhani, Mohammad R.; Griffith, Linda G.

    2015-01-01

    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte–Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase–ultra high-performance liquid chromatography–quadrupole time of flight–mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8–10% of the loss, and 45–52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour−1, 6.6 × 10−5 l⋅hour−1, and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver. PMID:25926431

  12. Quantitative Assessment of Population Variability in Hepatic Drug Metabolism Using a Perfused Three-Dimensional Human Liver Microphysiological System

    PubMed Central

    Tsamandouras, N.; Kostrzewski, T.; Stokes, C. L.; Griffith, L. G.; Hughes, D. J.

    2017-01-01

    In this work, we first describe the population variability in hepatic drug metabolism using cryopreserved hepatocytes from five different donors cultured in a perfused three-dimensional human liver microphysiological system, and then show how the resulting data can be integrated with a modeling and simulation framework to accomplish in vitro–in vivo translation. For each donor, metabolic depletion profiles of six compounds (phenacetin, diclofenac, lidocaine, ibuprofen, propranolol, and prednisolone) were measured, along with metabolite formation, mRNA levels of 90 metabolism-related genes, and markers of functional viability [lactate dehydrogenase (LDH) release, albumin, and urea production]. Drug depletion data were analyzed with mixed-effects modeling. Substantial interdonor variability was observed with respect to gene expression levels, drug metabolism, and other measured hepatocyte functions. Specifically, interdonor variability in intrinsic metabolic clearance ranged from 24.1% for phenacetin to 66.8% for propranolol (expressed as coefficient of variation). Albumin, urea, LDH, and cytochrome P450 mRNA levels were identified as significant predictors of in vitro metabolic clearance. Predicted clearance values from the liver microphysiological system were correlated with the observed in vivo values. A population physiologically based pharmacokinetic model was developed for lidocaine to illustrate the translation of the in vitro output to the observed pharmacokinetic variability in vivo. Stochastic simulations with this model successfully predicted the observed clinical concentration-time profiles and the associated population variability. This is the first study of population variability in drug metabolism in the context of a microphysiological system and has important implications for the use of these systems during the drug development process. PMID:27760784

  13. Quantitative Assessment of Population Variability in Hepatic Drug Metabolism Using a Perfused Three-Dimensional Human Liver Microphysiological System.

    PubMed

    Tsamandouras, N; Kostrzewski, T; Stokes, C L; Griffith, L G; Hughes, D J; Cirit, M

    2017-01-01

    In this work, we first describe the population variability in hepatic drug metabolism using cryopreserved hepatocytes from five different donors cultured in a perfused three-dimensional human liver microphysiological system, and then show how the resulting data can be integrated with a modeling and simulation framework to accomplish in vitro-in vivo translation. For each donor, metabolic depletion profiles of six compounds (phenacetin, diclofenac, lidocaine, ibuprofen, propranolol, and prednisolone) were measured, along with metabolite formation, mRNA levels of 90 metabolism-related genes, and markers of functional viability [lactate dehydrogenase (LDH) release, albumin, and urea production]. Drug depletion data were analyzed with mixed-effects modeling. Substantial interdonor variability was observed with respect to gene expression levels, drug metabolism, and other measured hepatocyte functions. Specifically, interdonor variability in intrinsic metabolic clearance ranged from 24.1% for phenacetin to 66.8% for propranolol (expressed as coefficient of variation). Albumin, urea, LDH, and cytochrome P450 mRNA levels were identified as significant predictors of in vitro metabolic clearance. Predicted clearance values from the liver microphysiological system were correlated with the observed in vivo values. A population physiologically based pharmacokinetic model was developed for lidocaine to illustrate the translation of the in vitro output to the observed pharmacokinetic variability in vivo. Stochastic simulations with this model successfully predicted the observed clinical concentration-time profiles and the associated population variability. This is the first study of population variability in drug metabolism in the context of a microphysiological system and has important implications for the use of these systems during the drug development process. Copyright © 2016 by The Author(s).

  14. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    PubMed Central

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  15. Trimethoprim and sulfamethoxazole transfer in the in vitro perfused human cotyledon.

    PubMed

    Bawdon, R E; Maberry, M C; Fortunato, S J; Gilstrap, L C; Kim, S

    1991-01-01

    Utilizing the in vitro human placental model, we studied the placental transfer of trimethoprim and sulfamethoxazole. At trimethoprim concentrations of 7.2 micrograms/ml, only 1.4 micrograms/ml was transported across the placenta after 1 h, and at concentrations of 1.0 microgram/ml, one half the usual serum level, only 0.08 microgram/ml was transported across the placenta. Maternal concentrations of sulfamethoxazole of 29.6 and 127.7 micrograms/ml resulted in concentrations of 5.1 and 14.8 micrograms/ml on the fetal side, respectively. Thus, it would appear that trimethoprim is slowly transported across the placenta and in low concentrations whereas sulfamethoxazole readily crosses the placenta. The combination of these drugs is useful for treatment of bacteriuria. It may also prove to be especially useful for Pneumocystis carinii infections in pregnant women with AIDS. With a half-life of 13 h for trimethoprim and 6 h for sulfamethoxazole, the drugs are not likely to achieve toxic levels in the fetal compartment. Thus, it would appear that trimethoprim and sulfamethoxazole may be both efficacious and safe for the treatment of both these infections during pregnancy.

  16. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, Part 2: Biodistribution and brain imaging in humans.

    PubMed

    Léveillé, J; Demonceau, G; De Roo, M; Rigo, P; Taillefer, R; Morgan, R A; Kupranick, D; Walovitch, R C

    1989-11-01

    The safety, biodistribution and kinetics of a new perfusion imaging agent [99mTc-L,L]-ethyl cysteinate dimer (ECD) was evaluated in normal volunteers. Technetium-99m-L,L-ECD is a neutral, lipophilic complex, which is radiochemically pure and stable. Twelve healthy adults were injected with 25-30 mCi of 99mTc-L,L-ECD and imaged periodically for up to 24 hr. Planar imaging showed rapid brain uptake with a peak concentration of 4.9% injected dose and very slow brain washout (approximately 6% per hour during the first 6 hr). Repeat or dynamic tomographic imaging of the brain using either a rotating gamma camera or a multidetector system was performed up to 6 hr postinjection. The distribution of 99mTc-L,L-ECD in the brain did not change and was similar to the pattern seen with other perfusion agents. Background facial areas and lungs cleared rapidly. Peak blood activity was below 10% injected dose at all times and 99mTc-L,L-ECD cleared rapidly through the kidneys. Vital signs, blood and urine chemistries were normal in all volunteers and no adverse reactions were noted. These results suggest that 99mTc-L,L-ECD should be useful for routine assessment of cerebral perfusion in humans.

  17. Distributed Perfusion Educational Model: A Shift in Perfusion Economic Realities

    PubMed Central

    Austin, Jon W.; Evans, Edward L.; Hoerr, Harry R.

    2005-01-01

    Abstract: In recent years, a steady decline in the number of perfusion education programs in the United States has been noted. At the same time, there has been a parallel decline in the number of students graduated from perfusion educational programs in the United States. Also, as noted by several authors, there has been an increase in demand for perfusion graduates. The decline in programs and graduates has also been noted in anesthesia and surgical residency programs. The shift is caused by a combination of economic and clinical factors. First, decreased reimbursement has led to reallocation of hospital resources. Second, the original enthusiasm for beating heart coronary artery bypass surgery was grossly overestimated and has led to further reallocation of hospital resources and denigration of cardiopulmonary bypass. This paper describes two models of perfusion education programs: serial perfusion education model (SPEM) and the distributed perfusion education model (DPEM). Arguments are presented that the SPEM has some serious limitations and challenges for long-term economic survival. The authors feel the DPEM along with dependence on tuition funding can survive the current clinical and economic conditions and allow the profession to adapt to changes in scope of practice. PMID:16524152

  18. Meta-Analysis of Stress Myocardial Perfusion Imaging

    ClinicalTrials.gov

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  19. Human tissue-engineered bone produced in clinically relevant amounts using a semi-automated perfusion bioreactor system: a preliminary study.

    PubMed

    Janssen, F W; van Dijkhuizen-Radersma, R; Van Oorschot, A; Oostra, J; de Bruijn, J D; Van Blitterswijk, C A

    2010-01-01

    The aim of this study was to evaluate a semi-automated perfusion bioreactor system for the production of clinically relevant amounts of human tissue-engineered bone. Human bone marrow stromal cells (hBMSCs) of eight donors were dynamically seeded and proliferated in a perfusion bioreactor system in clinically relevant volumes (10 cm(3)) of macroporous biphasic calcium phosphate scaffolds (BCP particles, 2-6 mm). Cell load and distribution were shown using methylene blue staining. MTT staining was used to demonstrate viability of the present cells. After 20 days of cultivation, the particles were covered with a homogeneous layer of viable cells. Online oxygen measurements confirmed the proliferation of hBMSCs in the bioreactor. After 20 days of cultivation, the hybrid constructs became interconnected and a dense layer of extracellular matrix was present, as visualized by scanning electron microscopy (SEM). Furthermore, the hBMSCs showed differentiation towards the osteogenic lineage as was indicated by collagen type I production and alkaline phosphatase (ALP) expression. We observed no significant differences in osteogenic gene expression profiles between static and dynamic conditions like ALP, BMP2, Id1, Id2, Smad6, collagen type I, osteocalcin, osteonectin and S100A4. For the donors that showed bone formation, dynamically cultured hybrid constructs showed the same amount of bone as the statically cultured hybrid constructs. Based on these results, we conclude that a semi-automated perfusion bioreactor system is capable of producing clinically relevant and viable amounts of human tissue-engineered bone that exhibit bone-forming potential after implantation in nude mice. 2009 John Wiley & Sons, Ltd.

  20. Association of frontal gray matter volume and cerebral perfusion in heroin addiction: a multimodal neuroimaging study.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Schmid, Otto; Riecher-Rössler, Anita; Wiesbeck, Gerhard A; Huber, Christian G; Lang, Undine E; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2013-01-01

    Structure and function are closely related in the healthy human brain. In patients with chronic heroin exposure, brain imaging studies have identified long-lasting changes in gray matter (GM) volume. More recently, we showed that acute application of heroin in dependent patients results in hypoperfusion of fronto-temporal areas compared with the placebo condition. However, the relationship between structural and cerebral blood flow (CBF) changes in heroin addiction has not yet been investigated. Moreover, it is not known whether there is any interaction between the chronic structural changes and the short and long-term effects on perfusion caused by heroin. Using a double-blind, within-subject design, heroin or placebo (saline) was administered to 14 heroin-dependent patients from a stable heroin-assisted treatment program, in order to observe acute short-term effects. Arterial spin labeling (ASL) was used to calculate perfusion quantification maps in both treatment conditions, while Voxel-Based Morphometry (VBM) was conducted to calculate regional GM density. VBM and ASL data were used to calculate homologous correlation fields by Biological Parametric Mapping (BPM) and a whole-brain Pearson r correlation. We correlated each perfusion condition (heroin and placebo) separately with a VBM sample that was identical for the two treatment conditions. It was assumed that heroin-associated perfusion is manifested in short-term effects, while placebo-associated perfusion is more related to long-term effects. In order to restrict our analyses to fronto-temporal regions, we used an explicit mask for our analyses. Correlation analyses revealed a significant positive correlation in frontal areas between GM and both perfusion conditions (heroin and placebo). Heroin-associated perfusion was also negatively correlated with GM in the inferior temporal gyrus on both hemispheres. These findings indicate that, in heroin-dependent patients, low GM volume is positively associated with

  1. Oral alprazolam acutely increases nucleus accumbens perfusion

    PubMed Central

    Wolf, Daniel H.; Pinkham, Amy E.; Satterthwaite, Theodore D.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey; Smith, Mark A.; Detre, John A.; Gur, Ruben C.; Gur, Raquel E.

    2014-01-01

    Benzodiazepines treat anxiety, but can also produce euphoric effects, contributing to abuse. Using perfusion magnetic resonance imaging, we provide the first direct evidence in humans that alprazolam (Xanax) acutely increases perfusion in the nucleus accumbens, a key reward-processing region linked to addiction. PMID:23070072

  2. Long-Term Locoregional Vascular Morbidity After Isolated Limb Perfusion and External-Beam Radiotherapy for Soft Tissue Sarcoma of the Extremity

    PubMed Central

    Hoven-Gondrie, Miriam L.; Thijssens, Katja M. J.; Van den Dungen, Jan J. A. M.; Loonstra, Jan; van Ginkel, Robert J.

    2007-01-01

    Background Isolated limb perfusion (ILP) with tumor necrosis factor alpha (TNF-α) and melphalan, followed by delayed surgical resection and adjuvant external-beam radiotherapy is a limb salvage treatment strategy for locally advanced soft tissue sarcomas. The long-term vascular side effects of this combined procedure were evaluated. Methods Thirty-two patients were treated for a locally advanced sarcoma of the upper (n = 5) or lower limb (n = 27). All patients underwent a noninvasive vascular work-up. Results Five patients underwent a leg amputation, in two cases due to critical leg ischemia 10 years after ILP. With a median follow-up of 88 (range, 17–159) months, none of the patients with a salvaged lower leg (n = 22) experienced peripheral arterial occlusive disease. Ankle-brachial index (ABI) measurements in the involved leg (median, 1.02; range, .50–1.20) showed a significant decrease compared with the contralateral leg (median, 1.09; range, .91–1.36, P = .001). Pulsatility index (PI) was decreased in the treated leg in 17 of 22 patients at the femoral level (median, 6.30; range, 2.1–23.9 vs. median, 7.35; range, 4.8–21.9; P = .011) and in 19 of 20 patients at popliteal level (median, 8.35; range, 0–21.4 vs. median, 10.95; range, 8.0–32.6; P < .0005). In patients with follow-up of >5 years, there was more often a decrease in ABI (P = .024) and PI at femoral level (P = .011). Conclusions ILP followed by resection and external-beam radiotherapy can lead to major late vascular morbidity that requires amputation. Objective measurements show a time-related decrease of ABI and femoral PI in the treated extremity. PMID:17457649

  3. The Effects of Vasopressin and Oxytocin on the Fetoplacental Distal Stem Arteriolar Vascular Resistance of the Dual-Perfused, Single, Isolated, Human Placental Cotyledon.

    PubMed

    Downing, John W; Baysinger, Curtis L; Johnson, Raymond F; Paschall, Ray L; Shotwell, Matthew S

    2016-09-01

    Vasoactive agents administered to counter maternal hypotension at cesarean delivery may theoretically intensify the hypoxemic fetoplacental vasoconstrictor response and, hence, negatively impact transplacental oxygen delivery to the fetus. Yet, this aspect of their pharmacodynamic profiles is seldom mentioned, let alone investigated. We hypothesized that vasopressin, a potent systemic vasoconstrictor, and oxytocin, a uterotonic agent administered routinely at cesarean delivery, which, in contrast to vasopressin, possesses significant systemic vasodilator properties, would not influence distal stem villous arteriolar resistance. The dual-perfused, single, isolated cotyledon, human placental perfusion model was used to examine the resistance response of the fetoplacental circulation to oxytocin and vasopressin in placentae harvested from healthy women. Twelve of a total of 17 individual experiments were conducted successfully during which either oxytocin (n = 6) or vasopressin (n = 6) was introduced into the fetal reservoir in concentration increments of 10 M. Fetoplacental distal stem villous arteriolar perfusion pressure (FAP) was measured continuously. The fetal circuit concentration of either oxytocin or vasopressin was raised in a stepwise fashion from 10 to 10 M or 10 to 10 M, respectively. Both reservoirs were then purged of drug, after which 1-mL 1.0 mM 5-hydroxytryptamine (2.5 µM), an agent well known to manifestly increase fetoplacental distal stem villous arteriolar resistance, was introduced into the fetal circuit. A significant increase in FAP from baseline in response to exposure to 5-hydroxytryptamine confirmed that the fetoplacental vasoconstrictor response remained reactive. The primary outcome of this study was changes in FAP after incremental dosing of vasopressin and oxytocin. No changes in FAP were observed with either oxytocin or vasopressin regardless of the drug concentration tested. For each drug and concentration, a mean pressure change

  4. The effect of L-glutamine on salt and water absorption: a jejunal perfusion study in cholera in humans.

    PubMed

    van Loon, F P; Banik, A K; Nath, S K; Patra, F C; Wahed, M A; Darmaun, D; Desjeux, J F; Mahalanabis, D

    1996-05-01

    To assess the efficacy of an L-glutamine solution on jejunal salt and water absorption in cholera patients. A randomized double-blind jejunal perfusion study. International Centre for Diarrhoeal Disease Research, Bangladesh. Nineteen adults with acute cholera. Perfusion of balanced salt solutions alternated with defined glucose salt solution and glutamine glucose salt or alanine glucose salt solutions. Net jejunal water and sodium secretion. Perfusion of glutamine in the presence of glucose significantly reduced net water secretion (JnetH2O = -2.6 +/- 1.3 ml/h/cm) and also reduced net sodium secretion (JnetNa = -213 +/- 153 mumol/h/cm). Similar results were observed during the perfusion of solutions that contained alanine in addition to glucose (JnetH2O = -4.2 +/- 1.1 ml/h/cm and JnetNa = -444 U +/- 142 mumol/h/cm, respectively) or glucose alone (JnetH2O = -4.3 +/- 1.7 ml/h/cm and JnetNa = -452 +/- 212 mumol/h/cm, respectively). In addition, a higher basal secretion was associated with a greater stimulation of water absorption (F = 17, P < 0.001). Glutamine in the presence of glucose significantly reduces net water secretion and also reduces sodium secretion; higher basal secretion is associated with greater water absorption. As glutamine is able to stimulate water absorption to the same degree as glucose and alanine, and because it has the theoretical advantage of providing fuel for the mucosa, the inclusion of glutamine as the sole substrate in oral rehydration solution warrants further study.

  5. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI.

    PubMed

    Bauman, Grzegorz; Puderbach, Michael; Deimling, Michael; Jellus, Vladimir; Chefd'hotel, Christophe; Dinkel, Julien; Hintze, Christian; Kauczor, Hans-Ulrich; Schad, Lothar R

    2009-09-01

    Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow-up of pulmonary diseases. In this work a new method of non-contrast-enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two-dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole-body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion- and ventilation-weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non-contrast-enhanced perfusion and ventilation data.

  6. The human milk oligosaccharide 2'-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine.

    PubMed

    Good, Misty; Sodhi, Chhinder P; Yamaguchi, Yukihiro; Jia, Hongpeng; Lu, Peng; Fulton, William B; Martin, Laura Y; Prindle, Thomas; Nino, Diego F; Zhou, Qinjie; Ma, Congrong; Ozolek, John A; Buck, Rachael H; Goehring, Karen C; Hackam, David J

    2016-10-01

    Necrotising enterocolitis (NEC) is a common disease in premature infants characterised by intestinal ischaemia and necrosis. The only effective preventative strategy against NEC is the administration of breast milk, although the protective mechanisms remain unknown. We hypothesise that an abundant human milk oligosaccharide (HMO) in breast milk, 2'-fucosyllactose (2'FL), protects against NEC by enhancing intestinal mucosal blood flow, and we sought to determine the mechanisms underlying this protection. Administration of HMO-2'FL protected against NEC in neonatal wild-type mice, resulted in a decrease in pro-inflammatory markers and preserved the small intestinal mucosal architecture. These protective effects occurred via restoration of intestinal perfusion through up-regulation of the vasodilatory molecule endothelial nitric oxide synthase (eNOS), as administration of HMO-2'FL to eNOS-deficient mice or to mice that received eNOS inhibitors did not protect against NEC, and by 16S analysis HMO-2'FL affected the microbiota of the neonatal mouse gut, although these changes do not seem to be the primary mechanism of protection. Induction of eNOS by HMO-2'FL was also observed in cultured endothelial cells, providing a link between eNOS and HMO in the endothelium. These data demonstrate that HMO-2'FL protects against NEC in part through maintaining mesenteric perfusion via increased eNOS expression, and suggest that the 2'FL found in human milk may be mediating some of the protective benefits of breast milk in the clinical setting against NEC.

  7. Creation of an ensemble of simulated cardiac cases and a human observer study: tools for the development of numerical observers for SPECT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Pretorius, P. Hendrik; Gifford, Howard C.; Licho, Robert; Joffe, Samuel; McGuiness, Matthew; Mehurg, Shannon; Zacharias, Michael; Brankov, Jovan G.

    2012-02-01

    Our previous Single Photon Emission Computed Tomography (SPECT) myocardial perfusion imaging (MPI) research explored the utility of numerical observers. We recently created two hundred and eighty simulated SPECT cardiac cases using Dynamic MCAT (DMCAT) and SIMIND Monte Carlo tools. All simulated cases were then processed with two reconstruction methods: iterative ordered subset expectation maximization (OSEM) and filtered back-projection (FBP). Observer study sets were assembled for both OSEM and FBP methods. Five physicians performed an observer study on one hundred and seventy-nine images from the simulated cases. The observer task was to indicate detection of any myocardial perfusion defect using the American Society of Nuclear Cardiology (ASNC) 17-segment cardiac model and the ASNC five-scale rating guidelines. Human observer Receiver Operating Characteristic (ROC) studies established the guidelines for the subsequent evaluation of numerical model observer (NO) performance. Several NOs were formulated and their performance was compared with the human observer performance. One type of NO was based on evaluation of a cardiac polar map that had been pre-processed using a gradient-magnitude watershed segmentation algorithm. The second type of NO was also based on analysis of a cardiac polar map but with use of a priori calculated average image derived from an ensemble of normal cases.

  8. Role of hypothermic machine perfusion in liver transplantation.

    PubMed

    Schlegel, Andrea; Dutkowski, Philipp

    2015-06-01

    Machine liver perfusion has significantly evolved during the last ten years to optimize extended criteria liver grafts and to address the worldwide organ shortage. This review gives an overview on available ex vivo and in vivo data on hypothermic machine liver perfusion. We discuss also possible protective pathways and show most recent clinical applications of hypothermic machine liver perfusion in human.

  9. Magnetic resonance imaging of perfusion-diffusion mismatch in rodent and non-human primate stroke models.

    PubMed

    Duong, Timothy Q

    2013-06-01

    Stroke is a leading cause of death and long-term disability. Non-invasive magnetic resonance imaging (MRI) has been widely used for the early detection of ischemic stroke and the longitudinal monitoring of novel treatment strategies. Recent advances in MRI techniques have enabled improved sensitivity and specificity to detecting ischemic brain injury and monitoring functional recovery. This review describes recent progresses in the development and application of multimodal MRI and image analysis techniques to study experimental stroke in rats and non-human primates.

  10. Human Rights and the Law-Terms to Know.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 1998

    1998-01-01

    Identifies 10 terms on human rights and the law that have been introduced and discussed throughout this issue of "Update on Law-Related Education." Offers students a chance to match each item to its definition by writing the letter of the terms on the line next to the number of the definition. (CMK)

  11. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation

    SciTech Connect

    Krivokapich, J.; Stevenson, L.W.; Kobashigawa, J.; Huang, S.C.; Schelbert, H.R. )

    1991-08-01

    The maximal exercise capacity of cardiac transplant recipients is reduced compared with that of normal subjects. To determine if this reduced exercise capacity is related to inadequate myocardial perfusion during exercise, myocardial perfusion was measured noninvasively with use of positron emission tomography and nitrogen (N)-13 ammonia. Twelve transplant recipients with no angiographic evidence of accelerated coronary atherosclerosis were studied. Serial N-13 ammonia imaging was performed at rest and during supine bicycle exercise. The results were compared with those from 10 normal volunteers with a low probability of having cardiac disease. A two-compartment kinetic model for estimating myocardial perfusion was applied to the data. Transplant recipients achieved a significant lower exercise work load than did the volunteers (42 {plus minus} 16 vs. 128 {plus minus} 22 W), but a higher venous lactate concentration (31.3 {plus minus} 14.9 vs. 13.7 {plus minus} 4.1 mg/100 ml). Despite the difference in exercise work load, there was no significant difference in the cardiac work achieved by transplant recipients and normal subjects as evidenced by similar rate-pressure products of 24,000 {plus minus} 3,400 versus 21,300 {plus minus} 2,800 betas/min per mm Hg, respectively. In addition, myocardial blood flow during exercise was not significantly different between the two groups (1.70 {plus minus} 0.60 vs. 1.56 {plus minus} 0.71 ml/min per g, respectively). This study demonstrates that the myocardial flow response to the physiologic stress of exercise is appropriate in transplant recipients and does not appear to explain the decreased exercise capacity in these patients.

  12. Disturbances in the cerebral perfusion of human immune deficiency virus-1 seropositive asymptomatic subjects: A quantitative tomography study of 18 cases

    SciTech Connect

    Tran Dinh, Y.R.; Mamo, H.; Cervoni, J.; Caulin, C.; Saimot, A.C. , Paris )

    1990-10-01

    Quantitative measurements of cerebral blood flow (CBF) by xenon-133 ({sup 133}Xe) tomography, together with magnetic resonance imaging (MRI), electroencephalography (EEG), psychometric tests, and laboratory analyses were performed on 18 human immunodeficiency virus 1 (HIV-1) seropositive asymptomatic subjects. Abnormalities of cerebral perfusion were observed in 16 cases (88%). These abnormalities were particularly frequent in the frontal regions (77% of cases). MRI demonstrated leucoencephalopathy in only two cases. EEG showed only induced diffuse abnormalities in two cases. Psychometric tests showed restricted moderate disturbances in 55% of patients. These disturbances mostly concerned those sectors involved in cognitive functions and memorization. These results indicate that quantitative measurements of CBF by {sup 133}Xe-SPECT is capable of detecting abnormalities of cerebral perfusion at a very early stage (Phase II) of HIV-1 infection. These abnormalities are indications of disturbances resulting from unidentified metabolic or vascular lesions. This technique appears to be superior to MRI at this stage of the disease's development. It could provide objective information leading to earlier treatment, and prove useful in evaluating potential antiviral chemotherapy.

  13. Tubular perfusion system culture of human mesenchymal stem cells on poly-l-lactic acid scaffolds produced using a supercritical carbon dioxide-assisted process

    PubMed Central

    Pisanti, Paola; Yeatts, Andrew B.; Cardea, Stefano; Fisher, John P.; Reverchon, Ernesto

    2012-01-01

    In vitro human mesenchymal stem cell (hMSC) proliferation and differentiation is dependent on scaffold design parameters and specific culture conditions. In this study, we investigate how scaffold microstructure influences hMSC behavior in a perfusion bioreactor system. Poly-l-lactic acid (PLLA) scaffolds are fabricated using supercritical carbon dioxide (SC-CO2) gel drying. This production method results in scaffolds fabricated with nanostructure. To introduce a microporous structure, porogen leaching was used in addition to this technique to produce scaffolds of average pore size of 100, 250, and 500 µm. These scaffolds were then cultured in static culture in well plates or dynamic culture in the tubular perfusion system (TPS) bioreactor. Results indicated that hMSCs were able to attach and maintain viability on all scaffolds with higher proliferation in the 250 µm and 500 µm pore sizes of bioreactor cultured scaffolds and 100 µm pore size of statically cultured scaffolds. Osteoblastic differentiation was enhanced in TPS culture as compared to static culture with the highest alkaline phosphatase expression observed in the 250 µm pore size group. Bone morphogenetic protein-2 was also analyzed and expression levels were highest in the 250 µm and 500 µm pore size bioreactor cultured samples. These results demonstrate cellular response to pore size as well as the ability of dynamic culture to enhance these effects. PMID:22528808

  14. Preliminary Single-Center Canadian Experience of Human Normothermic Ex Vivo Liver Perfusion: Results of a Clinical Trial.

    PubMed

    Bral, M; Gala-Lopez, B; Bigam, D; Kneteman, N; Malcolm, A; Livingstone, S; Andres, A; Emamaullee, J; Russell, L; Coussios, C; West, L J; Friend, P J; Shapiro, A M J

    2017-04-01

    After extensive experimentation, outcomes of a first clinical normothermic machine perfusion (NMP) liver trial in the United Kingdom demonstrated feasibility and clear safety, with improved liver function compared with standard static cold storage (SCS). We present a preliminary single-center North American experience using identical NMP technology. Ten donor liver grafts were procured, four (40%) from donation after circulatory death (DCD), of which nine were transplanted. One liver did not proceed because of a technical failure with portal cannulation and was discarded. Transplanted NMP grafts were matched 1:3 with transplanted SCS livers. Median NMP was 11.5 h (range 3.3-22.5 h) with one DCD liver perfused for 22.5 h. All transplanted livers functioned, and serum transaminases, bilirubin, international normalized ratio, and lactate levels corrected in NMP recipients similarly to controls. Graft survival at 30 days (primary outcome) was not statistically different between groups on an intent-to-treat basis (p = 0.25). Intensive care and hospital stays were significantly more prolonged in the NMP group. This preliminary experience demonstrates feasibility as well as potential technical risks of NMP in a North American setting and highlights a need for larger, randomized studies. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Kidneys From α1,3-Galactosyltransferase Knockout/Human Heme Oxygenase-1/Human A20 Transgenic Pigs Are Protected From Rejection During Ex Vivo Perfusion With Human Blood

    PubMed Central

    Ahrens, Hellen E.; Petersen, Björn; Ramackers, Wolf; Petkov, Stoyan; Herrmann, Doris; Hauschild-Quintern, Janet; Lucas-Hahn, Andrea; Hassel, Petra; Ziegler, Maren; Baars, Wiebke; Bergmann, Sabine; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner

    2015-01-01

    Background Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties. Methods The GGTA1-KO/human heme oxygenase-1 (hHO-1)/human A20 (hA20) transgenic pigs were produced in a stepwise approach using zinc finger nuclease vectors targeting the GGTA1 gene and a Sleeping Beauty vector coding for hA20. Two piglets were analyzed by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and sequencing. The biological function of the genetic modifications was tested in a 51Chromium release assay and by ex vivo kidney perfusions with human blood. Results Disruption of the GGTA1 gene by deletion of few basepairs was demonstrated in GGTA1-KO/hHO-1/hA20 transgenic pigs. The hHO-1 and hA20 mRNA expression was confirmed by quantitative reverse-transcription polymerase chain reaction. Ex vivo perfusion of 2 transgenic kidneys was feasible for the maximum experimental time of 240 minutes without symptoms of rejection. Conclusions Results indicate that GGTA1-KO/hHO-1/hA20 transgenic pigs are a promising model to alleviate rejection and ischemia-reperfusion damage in porcine xenografts and could serve as a background for further genetic modifications toward the production of a donor pig that is clinically relevant for xenotransplantation. PMID:27500225

  16. Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts

    PubMed Central

    Fedorov, Vadim V.; Glukhov, Alexey V.; Ambrosi, Christina M.; Kostecki, Geran; Chang, Roger; Janks, Deborah; Schuessler, Richard B.; Moazami, Nader; Nichols, Colin G.; Efimov, Igor R.

    2011-01-01

    INTRODUCTION This study compared the effects of ATP-regulated potassium channel (KATP) openers, diazoxide and pinacidil, on diseased and normal human atria and ventricles. METHODS We optically mapped the endocardium of coronary-perfused right (n=11) or left (n=2) posterior atrial-ventricular free wall preparations from human hearts with congestive heart failure (CHF, n=8) and non-failing human hearts without (NF, n=3) or with (INF, n=2) infarction. We also analyzed the mRNA expression of the KATP targets Kir6.1, Kir6.2, SUR1, and SUR2 in the left atria and ventricles of NF (n=8) and CHF (n=4) hearts. RESULTS In both CHF and INF hearts, diazoxide significantly decreased action potential durations (APDs) in atria (by −21±3% and −27±13%, p<0.01) and ventricles (by −28±7% and −28±4%, p<0.01). Diazoxide did not change APD (0±5%) in NF atria. Pinacidil significantly decreased APDs in both atria (−46 to - 80%, p<0.01) and ventricles (−65 to −93%, p<0.01) in all hearts studied. The effect of pinacidil on APD was significantly higher than that of diazoxide in both atria and ventricles of all groups (p<0.05). During pinacidil perfusion, burst pacing induced flutter/fibrillation in all atrial and ventricular preparations with dominant frequencies of 14.4±6.1 Hz and 17.5 ±5.1 Hz, respectively. Glibenclamide (10 μM) terminated these arrhythmias and restored APDs to control values. Relative mRNA expression levels of KATP targets were correlated to functional observations. CONCLUSION Remodeling in response to CHF and/or previous infarct potentiated diazoxide-induced APD shortening. The activation of atrial and ventricular KATP channels enhances arrhythmogenicity, suggesting that such activation may contribute to reentrant arrhythmias in ischemic hearts. PMID:21586291

  17. Morpheus - Hypometabolic Stasis in Humans for Long term Space Flight

    NASA Astrophysics Data System (ADS)

    Ayre, M.; Zancanaro, C.; Malatesta, M.

    An overview of the application of hypometabolic stasis (HS) to humans for long-term space flight is presented. In the first section, the paper begins with a discussion of why HS in humans would be, from a resource-driven perspective, desirable during long-term space flight. The second section then reviews mammalian hibernation, covering behavioural, physiological and genetic strategies. The third part presents a general review of the effects on human physiology of the space environment, and the overlapping areas between the likely physiological effects of human-hibernation and the space environment are briefly discussed. In the fourth section, possible hibernation strategies for humans are considered, including pharmacological, genetic and environ- mental tactics. The fifth section briefly discusses the impact of human hibernation at a system level, particularly with regards to life support. The report finishes by concluding that the achievement of the goal of human hibernation on the Earth will probably take decades of research. Hibernation in space, with the concomitant increases in the complexity of the problem caused by the space environment, will be substantially more difficult to achieve. But, if realised, it will be of significant benefit to the extension of human presence in space.

  18. Personality factors correlate with regional cerebral perfusion.

    PubMed

    O'Gorman, R L; Kumari, V; Williams, S C R; Zelaya, F O; Connor, S E J; Alsop, D C; Gray, J A

    2006-06-01

    There is an increasing body of evidence pointing to a neurobiological basis of personality. The purpose of this study was to investigate the biological bases of the major dimensions of Eysenck's and Cloninger's models of personality using a noninvasive magnetic resonance perfusion imaging technique in 30 young, healthy subjects. An unbiased voxel-based analysis was used to identify regions where the regional perfusion demonstrated significant correlation with any of the personality dimensions. Highly significant positive correlations emerged between extraversion and perfusion in the basal ganglia, thalamus, inferior frontal gyrus and cerebellum and between novelty seeking and perfusion in the cerebellum, cuneus and thalamus. Strong negative correlations emerged between psychoticism and perfusion in the basal ganglia and thalamus and between harm avoidance and perfusion in the cerebellar vermis, cuneus and inferior frontal gyrus. These observations suggest that personality traits are strongly associated with resting cerebral perfusion in a variety of cortical and subcortical regions and provide further evidence for the hypothesized neurobiological basis of personality. These results may also have important implications for functional neuroimaging studies, which typically rely on the modulation of cerebral hemodynamics for detection of task-induced activation since personality effects may influence the intersubject variability for both task-related activity and resting cerebral perfusion. This technique also offers a novel approach for the exploration of the neurobiological correlates of human personality.

  19. Multiphoton imaging reveals that nanosecond pulsed electric fields collapse tumor and normal vascular perfusion in human glioblastoma xenografts

    PubMed Central

    Bardet, Sylvia M.; Carr, Lynn; Soueid, Malak; Arnaud-Cormos, Delia; Leveque, Philippe; O’Connor, Rodney P.

    2016-01-01

    Despite the biomedical advances of the last century, many cancers including glioblastoma are still resistant to existing therapies leaving patients with poor prognoses. Nanosecond pulsed electric fields (nsPEF) are a promising technology for the treatment of cancer that have thus far been evaluated in vitro and in superficial malignancies. In this paper, we develop a tumor organoid model of glioblastoma and apply intravital multiphoton microscopy to assess their response to nsPEFs. We demonstrate for the first time that a single 10 ns, high voltage electric pulse (35–45 kV/cm), collapses the perfusion of neovasculature, and also alters the diameter of capillaries and larger vessels in normal tissue. These results contribute to the fundamental understanding of nsPEF effects in complex tissue environments, and confirm the potential of nsPEFs to disrupt the microenvironment of solid tumors such as glioblastoma. PMID:27698479

  20. A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy.

    PubMed

    Winslow, Timothy B; Eranki, Annu; Ullas, Soumya; Singh, Anurag K; Repasky, Elizabeth A; Sen, Arindam

    2015-01-01

    The tumour microenvironment is frequently hypoxic, poorly perfused, and exhibits abnormally high interstitial fluid pressure. These factors can significantly reduce efficacy of chemo and radiation therapies. The present study aims to determine whether mild systemic heating alters these parameters and improves response to radiation in human head and neck tumour xenografts in SCID mice. SCID mice were injected with FaDu cells (a human head and neck carcinoma cell line), or implanted with a resected patient head and neck squamous cell carcinoma grown as a xenograft, followed by mild systemic heating. Body temperature during heating was maintained at 39.5 ± 0.5 °C for 4 h. Interstitial fluid pressure (IFP), hypoxia and relative tumour perfusion in the tumours were measured at 2 and 24 h post-heating. Tumour vessel perfusion was measured 24 h post-heating, coinciding with the first dose of fractionated radiotherapy. Heating tumour-bearing mice resulted in significant decrease in intratumoural IFP, increased the number of perfused tumour blood vessels as well as relative tumour perfusion in both tumour models. Intratumoural hypoxia was also reduced in tumours of mice that received heat treatment. Mice bearing FaDu tumours heated 24 h prior to five daily radiation treatments exhibited significantly enhanced tumour response compared to tumours in control mice. Mild systemic heating can significantly alter the tumour microenvironment of human head and neck tumour xenograft models, decreasing IFP and hypoxia while increasing microvascular perfusion. Collectively, these effects could be responsible for the improved response to radiotherapy.

  1. A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy

    PubMed Central

    Winslow, Timothy B.; Eranki, Annu; Ullas, Soumya; Singh, Anurag K.; Repasky, Elizabeth A.; Sen, Arindam

    2015-01-01

    Purpose The tumour microenvironment is frequently hypoxic, poorly perfused, and exhibits abnormally high interstitial fluid pressure. These factors can significantly reduce efficacy of chemo and radiation therapies. The present study aims to determine whether mild systemic heating alters these parameters and improves response to radiation in human head and neck tumour xenografts in SCID mice. Materials and methods SCID mice were injected with FaDu cells (a human head and neck carcinoma cell line), or implanted with a resected patient head and neck squamous cell carcinoma grown as a xenograft, followed by mild systemic heating. Body temperature during heating was maintained at 39.5 ± 0.5 °C for 4 h. Interstitial fluid pressure (IFP), hypoxia and relative tumour perfusion in the tumours were measured at 2 and 24 h post-heating. Tumour vessel perfusion was measured 24 h post-heating, coinciding with the first dose of fractionated radiotherapy. Results Heating tumour-bearing mice resulted in significant decrease in intratumoural IFP, increased the number of perfused tumour blood vessels as well as relative tumour perfusion in both tumour models. Intratumoural hypoxia was also reduced in tumours of mice that received heat treatment. Mice bearing FaDu tumours heated 24 h prior to five daily radiation treatments exhibited significantly enhanced tumour response compared to tumours in control mice. Conclusions Mild systemic heating can significantly alter the tumour microenvironment of human head and neck tumour xenograft models, decreasing IFP and hypoxia while increasing microvascular perfusion. Collectively, these effects could be responsible for the improved response to radiotherapy. PMID:25986432

  2. Noninvasive estimation of oxygen consumption in human calf muscle through combined NMR measurements of ASL perfusion and T₂ oxymetry.

    PubMed

    Decorte, Nicolas; Buehler, Tania; Caldas de Almeida Araujo, Ericky; Vignaud, Alexandre; Carlier, Pierre G

    2014-01-01

    The objective of this work was to demonstrate the feasibility of measuring muscle O2 consumption (V˙O2) noninvasively with a combination of functional nuclear magnetic resonance (NMR) imaging methods, and to verify that changes in muscle V˙O2 can be detected with a temporal resolution compatible with physiological investigation and patient ease. T2-based oxymetry of arterial and venous blood was combined with the arterial-spin labeling (ASL)-based determination of muscle perfusion. These measurements were performed on 8 healthy volunteers under normoxic and hypoxic conditions in order to assess the sensitivity of measurements over a range of saturation values. Blood samples were drawn simultaneously and used to titrate blood T2 measurements versus hemoglobin O2 saturation (%HbO2) in vitro. The in vitro calibration curve of blood T2 fitted very well with the %HbO2 (r(2): 0.95). The in vivo venous T2 measurements agreed well with the in vitro measurements (intraclass correlation coefficient 0.82, 95% confidence interval 0.61-0.91). Oxygen extraction at rest decreased in the calf muscles subjected to hypoxia (p = 0.031). The combination of unaltered muscle perfusion and pinched arteriovenous O2 difference (p = 0.038) pointed towards a reduced calf muscle V˙O2 during transient hypoxia (p = 0.018). The results of this pilot study confirmed that muscle O2 extraction and V˙O2 can be estimated noninvasively using a combination of functional NMR techniques. Further studies are needed to confirm the usefulness in a larger sample of volunteers and patients.

  3. The human milk oligosaccharide 2′-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine

    PubMed Central

    Good, Misty; Sodhi, Chhinder P.; Yamaguchi, Yukihiro; Jia, Hongpeng; Lu, Peng; Fulton, William B.; Martin, Laura Y.; Prindle, Thomas; Nino, Diego F.; Zhou, Qinjie; Ma, Congrong; Ozolek, John A.; Buck, Rachael H.; Goehring, Karen C.; Hackam, David J.

    2016-01-01

    Necrotising enterocolitis (NEC) is a common disease in premature infants characterised by intestinal ischaemia and necrosis. The only effective preventative strategy against NEC is the administration of breast milk, although the protective mechanisms remain unknown. We hypothesise that an abundant human milk oligosaccharide (HMO) in breast milk, 2′-fucosyllactose (2′FL), protects against NEC by enhancing intestinal mucosal blood flow, and we sought to determine the mechanisms underlying this protection. Administration of HMO-2′FL protected against NEC in neonatal wild-type mice, resulted in a decrease in pro-inflammatory markers and preserved the small intestinal mucosal architecture. These protective effects occurred via restoration of intestinal perfusion through up-regulation of the vasodilatory molecule endothelial nitric oxide synthase (eNOS), as administration of HMO-2′FL to eNOS-deficient mice or to mice that received eNOS inhibitors did not protect against NEC, and by 16S analysis HMO-2′FL affected the microbiota of the neonatal mouse gut, although these changes do not seem to be the primary mechanism of protection. Induction of eNOS by HMO-2′FL was also observed in cultured endothelial cells, providing a link between eNOS and HMO in the endothelium. These data demonstrate that HMO-2′FL protects against NEC in part through maintaining mesenteric perfusion via increased eNOS expression, and suggest that the 2′FL found in human milk may be mediating some of the protective benefits of breast milk in the clinical setting against NEC. PMID:27609061

  4. Steroid hormone effects on intercellular communication between term pregnant human myometrial cells before labor.

    PubMed

    Ciray, H N; Bäckström, T; Ulmsten, U; Roomans, G M

    1996-08-01

    The appearance of gap junctions (GJs) between myometrial smooth muscle cells is one of the major events associated with the onset of labor. We have employed dye-coupling and electrical-current injection techniques to study the mechanisms by which steroid hormones regulate GJs in term pregnant myometrium of women before labor. Progesterone (P4) did not alter the input resistance (Ro) of the tissues when added to Tyrode's solution, which was used as control treatment. Octanol, the putative gap junctional uncoupling agent, increased the Ro of the cells compared to the control and P4-treated groups. The membrane potential (Em) did not differ between these groups. However, when P4 was applied after the tissue was perfused with estradiol (E2), the results changed dramatically: the Em hyperpolarized, and the Ro increased. Octanol increased the Ro in E2-treated tissues, but did not affect the Em. Consecutive application of E2, octanol, E2, and P4 resulted in rapid changes in the Ro of the cells. Dye-coupling was mostly detected between cells from controls and E2-treated tissues. These results indicate that P4 exerts its effects in the presence of E2 and that P4 has rapid effects on the intercellular communication between human myometrial cells.

  5. A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: In silico and during pharmacological renal perfusion modulation.

    PubMed

    van der Bel, René; Gurney-Champion, Oliver J; Froeling, Martijn; Stroes, Erik S G; Nederveen, Aart J; Krediet, C T Paul

    2017-06-01

    In the kidneys, there is both blood flow through the capillaries and flow of pre-urine through the tubuli and collecting ducts. We hypothesized that diffusion-weighted (DW) MRI measures both blood and pre-urine flow when using a tri-exponential intravoxel incoherent motion (IVIM) model. Our aim was to systematically investigate and optimize tri-exponential IVIM-analysis for the kidney and test its sensitivity to renal perfusion changes in humans. The tri-exponential fit probes the diffusion coefficient (D), the intermediate (D*i) and fast (D*f) pseudo-diffusion coefficients, and their signal fractions, fD, fi and ff. First, we studied the effects of fixing the D*-coefficients of the tri-exponential fit using in silico simulations. Then, using a 3T MRI scanner, DW images were acquired in healthy subjects (18-24 years) and we assessed the within-subject coefficient of variation (wsCV, n=6). Then, renal perfusion was modulated by Angiotensin II infusion during which DW imaging of the kidneys and phase contrast MRI of the renal artery was performed (n=8). Radioisotope clearing tests were used to assess the glomerular filtration rate. Simulations showed that fixing the D*-coefficients - which could potentially increase the fit stability - in fact decreased the precision of the model. Changes in D*-coefficients were translated into the f-parameters instead. Fixing D*-coefficients resulted in a stronger response of the fit parameters to the intervention. Using this model, the wsCVs for D, fD, fi and ff were 2.4%, 0.8%, 3.5%, 19.4% respectively. fi decreased by 14% (p=0.059) and ff increased by 32% (p=0.004) between baseline and maximal Angiotensin II dose. ff inversely correlated to renal plasma flow (R=-0.70, p<0.01) and fi correlated to glomerular filtration rate (R=0.39, p=0.026). We validated a kidney-specific method for IVIM analysis using a tri-exponential model. The model is able to track renal perfusion changes induced by Angiotensin II. Copyright © 2017 Elsevier

  6. Perfusion decellularization of whole organs.

    PubMed

    Guyette, Jacques P; Gilpin, Sarah E; Charest, Jonathan M; Tapias, Luis F; Ren, Xi; Ott, Harald C

    2014-01-01

    The native extracellular matrix (ECM) outlines the architecture of organs and tissues. It provides a unique niche of composition and form, which serves as a foundational scaffold that supports organ-specific cell types and enables normal organ function. Here we describe a standard process for pressure-controlled perfusion decellularization of whole organs for generating acellular 3D scaffolds with preserved ECM protein content, architecture and perfusable vascular conduits. By applying antegrade perfusion of detergents and subsequent washes to arterial vasculature at low physiological pressures, successful decellularization of complex organs (i.e., hearts, lungs and kidneys) can be performed. By using appropriate modifications, pressure-controlled perfusion decellularization can be achieved in small-animal experimental models (rat organs, 4-5 d) and scaled to clinically relevant models (porcine and human organs, 12-14 d). Combining the unique structural and biochemical properties of native acellular scaffolds with subsequent recellularization techniques offers a novel platform for organ engineering and regeneration, for experimentation ex vivo and potential clinical application in vivo.

  7. In anesthetized pigs human chorionic gonadotropin increases myocardial perfusion and function through a β-adrenergic-related pathway and nitric oxide.

    PubMed

    Grossini, Elena; Surico, Daniela; Mary, David A S G; Molinari, Claudio; Surico, Nicola; Vacca, Giovanni

    2013-08-15

    Human chorionic gonadotropin (hCG) is not only responsible for numerous pregnancy-related processes, but can affect the cardiovascular system as well. So far, however, information about any direct effect elicited by hCG on cardiac function, perfusion, and the mechanisms involved has remained scarce. Therefore, the present study aimed to determine the primary in vivo effect of hCG on cardiac contractility and coronary blood flow and the involvement of autonomic nervous system and nitric oxide (NO). Moreover, in coronary endothelial cells (CEC), the intracellular pathways involved in the effects of hCG on NO release were also examined. In 25 anesthetized pigs, intracoronary 500 mU/ml hCG infusion at constant heart rate and aortic blood pressure increased coronary blood flow, maximum rate of change of left ventricular systolic pressure, segmental shortening, cardiac output, and coronary NO release (P < 0.0001). These hemodynamic responses were graded in a further five pigs. Moreover, while blockade of muscarinic cholinoceptors (n = 5) and of α-adrenoceptors (n = 5) did not abolish the observed responses, β1-adrenoceptors blocker (n = 5) prevented the effects of hCG on cardiac function. In addition, β2-adrenoceptors (n = 5) and NO synthase inhibition (n = 5) abolished the coronary response and the effect of hCG on NO release. In CEC, hCG induced the phosphorylation of endothelial NO synthase through cAMP/PKA signaling and ERK1/2, Akt, p38 MAPK involvement, which were activated as downstream effectors of β2-adrenoceptor stimulation. In conclusion, in anesthetized pigs, hCG primarily increased cardiac function and perfusion through the involvement of β-adrenoceptors and NO release. Moreover, cAMP/PKA-dependent kinases phosphorylation was found to play a role in eliciting the observed NO production in CEC.

  8. Evaluation of efficacy and safety for recombinant human adenovirus-p53 in the control of the malignant pleural effusions via thoracic perfusion

    PubMed Central

    Biaoxue, Rong; Hui, Pan; Wenlong, Gao; Shuanying, Yang

    2016-01-01

    A certain number of studies have showed that p53 gene transfer has an anti-tumor activity in vitro and in vivo. This study was to evaluate the efficacy and safety of thoracic perfusion of recombinant human adenovirus p53 (rAd-p53, Gendicine) for controlling malignant pleural effusion (MPE). We searched for the relevant studies from the database of MEDLINE, Web of Science, EMBASE, Cochrance Library and CNKI to collect the trials concerning the efficacy and safety of rAd-p53 to treat MPE. Fourteen randomised controlled trials (RCTs) with 879 patients were involved in this analysis. The rAd-p53 combined with chemotherapeutic agents significantly improved the overall response rate (ORR) (P < 0.001; odds ratio = 3.73) and disease control rate (DCR) (P < 0.001; odds ratio = 2.32) of patients with MPE as well as the quality of life (QOL) of patients (P < 0.001; odds ratio = 4.27), compared with that of chemotherapeutic agents alone. In addition, the participation of rAd-p53 did not have an obvious impact on the most of incidence of adverse reactions (AEs) (P < 0.05) except the fever (P < 0.001). However, the fever was self-limited and could be tolerated well. The application of rAd-p53 through thoracic perfusion for treating MPE had a better efficacy and safety, which could be a potential choice for controlling MPE. PMID:27976709

  9. AMC-Bio-Artificial Liver culturing enhances mitochondrial biogenesis in human liver cell lines: The role of oxygen, medium perfusion and 3D configuration.

    PubMed

    Adam, Aziza A A; van Wenum, Martien; van der Mark, Vincent A; Jongejan, Aldo; Moerland, Perry D; Houtkooper, Riekelt H; Wanders, Ronald J A; Oude Elferink, Ronald P; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2017-08-24

    Human liver cell lines, like HepaRG and C3A, acquire higher functionality when cultured in the AMC-Bio-Artificial Liver (AMC-BAL). The three main differences between BAL and monolayer culture are the oxygenation (40% vs 20%O2), dynamic vs absent medium perfusion and 3D vs 2D configuration. Here, we investigated the background of the differences between BAL-cultures and monolayers. We performed whole-genome microarray analysis on HepaRG monolayer and BAL-cultures. Next, mitochondrial biogenesis was studied in monolayer and BAL-cultures of HepaRG and C3A. The driving forces for mitochondrial biogenesis by BAL-culturing were investigated in representative culture models differing in oxygenation level, medium flow or 2D vs 3D configuration. Gene-sets related to mitochondrial energy metabolism were most prominently up-regulated in HepaRG-BAL vs monolayer cultures. This was confirmed by a 2.4-fold higher mitochondrial abundance with increased expression of mitochondrial OxPhos complexes. Moreover, the transcript levels of mitochondria-encoded genes were up to 3.6-fold induced and mitochondrial membrane potential activity was 8.3-fold increased in BAL vs monolayers. Culturing with 40% O2, dynamic medium flow and/or in 3D increased the mitochondrial abundance and expression of mitochondrial complexes vs standard monolayer culturing. The stimulatory effect of the BAL culture on mitochondrial biogenesis was confirmed in C3A cells in which mitochondrial abundance increased 2.2-fold with induction of mitochondria-encoded genes. The increased functionality of liver cell lines upon AMC-BAL culturing is associated with increased mitochondrial biogenesis. High oxygenation, medium perfusion and 3D configuration contribute to the up-regulation of the mitochondrial biogenesis. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  10. Uptake and Killing of Leptospira interrogans and Borrelia burgdorferi, Spirochetes Pathogenic to Humans, by Reticuloendothelial Cells in Perfused Rat Liver

    PubMed Central

    Marangoni, Antonella; Aldini, Rita; Sambri, Vittorio; Montagnani, Marco; Ballardini, Giorgio; Storni, Elisa; Cevenini, Roberto

    2000-01-01

    In situ-perfused rat livers were infused with a single dose of 1.5 × 107 radiolabeled cells of Leptospira interrogans serovar icterohaemorrhagiae, the agent of leptospirosis, or with Borrelia burgdorferi IRS, the agent of Lyme disease. Significant (P < 0.0001) differences in the liver uptake of L. interrogans and of B. burgdorferi were observed, the uptakes being 37.4% ± 2.3% for L. interrogans and 60.5% ± 3.1% for B. burgdorferi. Leptospires, in contrast to borreliae, were recovered from the livers when liver samples were cultured in growth medium. Leptospires but not borreliae were recovered in bile within 30 min of infusion. The association of leptospires and borreliae with reticuloendothelial cells of the liver was demonstrated by immunohistochemistry. Leptospires and borreliae were found to be associated with vimentin-positive cells and not with desmin-positive cells. Few leptospires but no borreliae were also seen associated with vimentin- and desmin-negative cells, suggesting the presence of leptospires outside the sinusoidal spaces, in the liver parenchyma. PMID:10948172

  11. TANK S-109 LONG TERM HUMAN HEALTH RISK CALCULATIONS

    SciTech Connect

    CARLSON, S.E.

    2003-12-16

    This document provides Tank S-109 long-term human risks calculations, in support of Functions and Requirements document (RPP-18812) as required by milestone M-45-00 of the Hanford Federal Facility Agreement and Consent Order. This calculation was performed to provide a screening-level assessment of long-term human health risk associated with potential leakage that could occur during waste retrieval operations for tank S-109 This calculation supports the development of tank S-109 waste retrieval functions and requirements as documented in RPP-18812. Risks associated with current waste and potential residual waste in tank S-109, as well as risk associated with other S farm tanks, were not of interest and were not evaluated.

  12. Phenotypic characterization of macrophages in human term placenta.

    PubMed Central

    Mues, B; Langer, D; Zwadlo, G; Sorg, C

    1989-01-01

    Immunohistological techniques have been used to study heterogeneity, frequency and distribution of macrophages and T lymphocytes in chorionic villous mesenchyme, stroma of the amniochorion and decidua of 36 human term placentas obtained at spontaneous normal delivery and by caesarean section, using a panel of monoclonal antibodies (mAb) specific for macrophage phenotypes appearing in acute early (mAb 27E10), late (mAb 25F9) and down-regulatory (mAb RM3/1) stages of inflammation. Significant numbers of macrophages were identified. It could be shown that RM3/1+ macrophage phenotypes which in vitro are strongly dexamethasone-inducible and in vivo appear in down-regulatory stages of inflammatory processes are the major cell population in human term placenta. Macrophages characterized by monoclonal antibodies 27E10 and 25F9, as well as CD4+ and CD8+ cells, were distributed sparsely or were completely absent. The finding of anti-inflammatory macrophage phenotypes to be the predominant mononuclear cell population in human term placenta provides support for a mechanism whereby placenta functions as an active immunosuppressive biological barrier between mother and fetus. Images Figure 1 Figure 2 Figure 3 PMID:2788125

  13. Characterization of peripheral benzodiazepine binding sites in human term placenta.

    PubMed

    Fares, F; Gavish, M

    1986-01-15

    Peripheral benzodiazepine binding sites were characterized in human term placental membranes using [3H]PK 11195, which is a ligand specific for peripheral benzodiazepine binding sites. Binding of [3H]PK 11195 to human term placental membranes was found to be saturable. Scatchard analysis revealed a single population of binding sites (r = 0.98). Equilibrium dissociation constant (KD) was 2.1 +/- 0.3 nM, and density of binding sites (Bmax) was 920 +/- 105 fmol/mg protein. The KD value calculated from kinetic experiments was 3.6 +/- 0.2 nM. The ability of various drugs to displace [3H]PK 11195 from human term placental binding sites was tested: the inhibition constants (KI) for PK 11195, Ro 5-4864, and diazepam were 2.9, 11.8, and 177 nM, respectively, whereas clonazepam, methyl-beta-carboline-3-carboxylate, Ro 15-1788, chlordiazepoxide, atropine, and estradiol were inefficient in displacing [3H]PK 11195 (KI greater than 10(-5) M).

  14. The Evolution of Human Cells in Terms of Protein Innovation

    PubMed Central

    Sardar, Adam J.; Oates, Matt E.; Fang, Hai; Forrest, Alistair R.R.; Kawaji, Hideya; Gough, Julian; Rackham, Owen J.L.

    2014-01-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type–specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type–specific domain architectures. PMID:24692656

  15. The evolution of human cells in terms of protein innovation.

    PubMed

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  16. Human cervicovaginal fluid biomarkers to predict term and preterm labor

    PubMed Central

    Heng, Yujing J.; Liong, Stella; Permezel, Michael; Rice, Gregory E.; Di Quinzio, Megan K. W.; Georgiou, Harry M.

    2015-01-01

    Preterm birth (PTB; birth before 37 completed weeks of gestation) remains the major cause of neonatal morbidity and mortality. The current generation of biomarkers predictive of PTB have limited utility. In pregnancy, the human cervicovaginal fluid (CVF) proteome is a reflection of the local biochemical milieu and is influenced by the physical changes occurring in the vagina, cervix and adjacent overlying fetal membranes. Term and preterm labor (PTL) share common pathways of cervical ripening, myometrial activation and fetal membranes rupture leading to birth. We therefore hypothesize that CVF biomarkers predictive of labor may be similar in both the term and preterm labor setting. In this review, we summarize some of the existing published literature as well as our team's breadth of work utilizing the CVF for the discovery and validation of putative CVF biomarkers predictive of human labor. Our team established an efficient method for collecting serial CVF samples for optimal 2-dimensional gel electrophoresis resolution and analysis. We first embarked on CVF biomarker discovery for the prediction of spontaneous onset of term labor using 2D-electrophoresis and solution array multiple analyte profiling. 2D-electrophoretic analyses were subsequently performed on CVF samples associated with PTB. Several proteins have been successfully validated and demonstrate that these biomarkers are associated with term and PTL and may be predictive of both term and PTL. In addition, the measurement of these putative biomarkers was found to be robust to the influences of vaginal microflora and/or semen. The future development of a multiple biomarker bed-side test would help improve the prediction of PTB and the clinical management of patients. PMID:26029118

  17. Organ Perfusion for Uterus Transplantation in Non-Human Primates With Assumed Procurement of a Uterus From a Brain-Dead Donor.

    PubMed

    Kisu, I; Kato, Y; Yamada, Y; Matsubara, K; Obara, H; Emoto, K; Adachi, M; Umene, K; Nogami, Y; Banno, K; Kitagawa, Y; Aoki, D

    2016-05-01

    Clinical studies of uterus transplantation have been performed to treat uterine factor infertility. Because the uterus is a pelvic visceral organ, the method of perfusion for the procurement of vital organs from a brain-dead donor should be modified for removal of the uterus. Herein, we report the results of a preliminary study in cynomolgus monkeys of a new perfusion method for uterus transplantation with assumed procurement of a uterus from a brain-dead donor. Cynomolgus monkeys were used; thoracolaparotomy was performed on the donor. A perfusion catheter was then placed into the unilateral femoral artery and/or external iliac artery. Cross-clamping was performed for the aorta under the diaphragm and the inferior vena cava was divided in the pleural space. The perfusion solution was then administered via the catheter to perfuse all organs in the abdominal cavity, including those in the pelvic cavity. After the perfusion, gross observation and histopathological examination of abdominal organs were conducted. Gross findings showed that all abdominal organs turned white in all specimens, indicating favorable perfusion of the uterus and all other organs in the abdomen. Pathological findings showed that almost no hemocytes were observed in the vessels of each organ. With perfusion via the femoral artery and/or external iliac artery, all organs in the abdominal cavity, including the uterus, could be perfused. It was suggested that this technique could be useful for uterus transplantation assuming the procurement of a uterus from a brain-dead donor. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Creatine biosynthesis and transport by the term human placenta.

    PubMed

    Ellery, Stacey J; Della Gatta, Paul A; Bruce, Clinton R; Kowalski, Greg M; Davies-Tuck, Miranda; Mockler, Joanne C; Murthi, Padma; Walker, David W; Snow, Rod J; Dickinson, Hayley

    2017-04-01

    Creatine is an amino acid derivative that is involved in preserving ATP homeostasis. Previous studies suggest an important role for the creatine kinase circuit for placental ATP turnover. Creatine is obtained from both the diet and endogenous synthesis, usually along the renal-hepatic axis. However, some tissues with a high-energy demand have an inherent capacity to synthesise creatine. In this study, we determined if the term human placenta has the enzymatic machinary to synthesise creatine. Eleven placentae were collected following elective term caesarean section. Samples from the 4 quadrants of each placenta were either fixed in formalin or frozen. qPCR was used to determine the mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and the creatine transporter (SLC6A8). Protein expression of AGAT and GAMT was quantified by Western blot, and observations of cell localisation of AGAT, GAMT and SLC6A8 made with immunohistochemistry. Synthesis of guanidinoacetate (GAA; creatine precursor) and creatine in placental homogenates was determined via GC-MS and HPLC, respectively. AGAT, GAMT and SLC6A8 mRNA and protein were detected in the human placenta. AGAT staining was identified in stromal and endothelial cells of the fetal capillaries. GAMT and SLC6A8 staining was localised to the syncytiotrophoblast of the fetal villi. Ex vivo, tissue homogenates produce both GAA (4.6 nmol mg protein(-1)h(-1)) and creatine (52.8 nmol mg protein(-1)h(-1)). The term human placenta has the capacity to synthesise creatine. These data present a new understanding of placental energy metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood.

    PubMed

    Harris, Donald G; Quinn, Kevin J; French, Beth M; Schwartz, Evan; Kang, Elizabeth; Dahi, Siamak; Phelps, Carol J; Ayares, David L; Burdorf, Lars; Azimzadeh, Agnes M; Pierson, Richard N

    2015-01-01

    Genetically modified pigs are a promising potential source of lung xenografts. Ex vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had one genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 h of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 h generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55, or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression and pathway-specific injury and explore

  20. A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies.

    PubMed

    Srivastava, Shashikant; Pasipanodya, Jotam G; Ramachandran, Geetha; Deshpande, Devyani; Shuford, Stephen; Crosswell, Howland E; Cirrincione, Kayle N; Sherman, Carleton M; Swaminathan, Soumya; Gumbo, Tawanda

    2016-04-01

    Treatment of disseminated tuberculosis in children≤6years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose-response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children≤6years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies

    PubMed Central

    Srivastava, Shashikant; Pasipanodya, Jotam G.; Ramachandran, Geetha; Deshpande, Devyani; Shuford, Stephen; Crosswell, Howland E.; Cirrincione, Kayle N.; Sherman, Carleton M.; Swaminathan, Soumya; Gumbo, Tawanda

    2016-01-01

    Treatment of disseminated tuberculosis in children ≤ 6 years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose–response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100 mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children ≤ 6 years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity. PMID:27211555

  2. Abdominal perfusion computed tomography.

    PubMed

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-02-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis.

  3. Abdominal Perfusion Computed Tomography

    PubMed Central

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M. Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-01-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis. PMID:25610249

  4. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer: In vivo whole tumor assessment using volumetric perfusion computed tomography

    SciTech Connect

    Ng, Q.-S.; Goh, Vicky; Milner, Jessica; Padhani, Anwar R.; Saunders, Michele I.; Hoskin, Peter J. . E-mail: peterhoskin@nhs.net

    2007-02-01

    Purpose: To quantitatively assess the in vivo acute vascular effects of fractionated radiotherapy for human non-small-cell lung cancer using volumetric perfusion computed tomography (CT). Methods and Materials: Sixteen patients with advanced non-small-cell lung cancer, undergoing palliative radiotherapy delivering 27 Gy in 6 fractions over 3 weeks, were scanned before treatment, and after the second (9 Gy), fourth (18 Gy), and sixth (27 Gy) radiation fraction. Using 16-detector CT, multiple sequential volumetric acquisitions were acquired after intravenous contrast agent injection. Measurements of vascular blood volume and permeability for the whole tumor volume were obtained. Vascular changes at the tumor periphery and center were also measured. Results: At baseline, lung tumor vascularity was spatially heterogeneous with the tumor rim showing a higher vascular blood volume and permeability than the center. After the second, fourth, and sixth fractions of radiotherapy, vascular blood volume increased by 31.6% (paired t test, p = 0.10), 49.3% (p = 0.034), and 44.6% (p = 0.0012) respectively at the tumor rim, and 16.4% (p = 0.29), 19.9% (p = 0.029), and 4.0% (p = 0.0050) respectively at the center of the tumor. After the second, fourth, and sixth fractions of radiotherapy, vessel permeability increased by 18.4% (p = 0.022), 44.8% (p = 0.0048), and 20.5% (p = 0.25) at the tumor rim. The increase in permeability at the tumor center was not significant after radiotherapy. Conclusion: Fractionated radiotherapy increases tumor vascular blood volume and permeability in human non-small-cell lung cancer. We have established the spatial distribution of vascular changes after radiotherapy; greater vascular changes were demonstrated at the tumor rim compared with the center.

  5. Lipopolysaccharide induces the expression of interleukin-1alpha distinctly in different compartments of term and preterm human placentae.

    PubMed

    Huleihel, Mahmoud; Amash, Alaa; Sapir, Olga; Maor, Ester; Levy, Sharon; Katz, Miriam; Dukler, Doron; Myatt, Lesly; Holcberg, Gershon

    2004-01-01

    The aim of the study was to investigate the stimulatory effect of lipopolysaccharide (LPS) on IL-lalpha production in different compartments of term and preterm placental tissues. Homogenates from amnion, chorion, and from fetal (subchorionic placental tissues, maternal decidua, and mid-placental tissue before and after perfusion of isolated placental cotyledons of 5 term placentas and 4 placentas obtained after preterm birth (28-34 W of gestation) were examined. Isolated placental cotyledons were dually perfused LPS (100 ng/kg perfused placental tissue) was perfused into the maternal side during 10 hours. Homogenates of the samples were examined by ELISA for IL-1alpha levels, and paraffin sections of the samples were stained by immunohistochemical staining, to characterize the cellular origin of placental IL-1alpha. Paired t test and ANOVA determined statistical significance. In the homogenates, there was a tendency towards higher IL-lalpha levels in all preterm placental compartments as compared to the term compartments before perfusion. A significant increase was observed only in the chorion compartment (p = 0.035). LPS had significantly increased IL-la levels only in the decidua compartment of term placentas as compared to other placental compartments (p = 0.0004), and had decreased IL-1alpha levels in the mid-placenta (p = 0.034). In preterm placentas, addition of LPS did not affect the expression levels of IL-1alpha in either fetal or maternal compartments as determined by ELISA and immunohistochemical staining. IL-la levels in the chorion compartment of preterm placenta were significantly higher as compared to term placenta. LPS affects placental tissues of term and preterm placentas differently. Also, in the term placentas, LPS affected the different compartments differently. Thus, IL-1alpha may have a key role (as a autocrine/paracrine factor) in the regulation of normal and pathological pregnancy and parturition.

  6. Short-term and long-term plasticity interaction in human primary motor cortex.

    PubMed

    Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Li Voti, Pietro; Bologna, Matteo; Berardelli, Alfredo

    2011-05-01

    Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short- and long-term forms of synaptic plasticity, resembling short-term potentiation (STP) and long-term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5-Hz rTMS interferes with LTP/LTD-like plasticity induced by intermittent and continuous theta-burst stimulation (iTBS and cTBS). The effects induced by 5-Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5-Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5-Hz rTMS. Interactions between 5-Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5-Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5-Hz rTMS and TBS, and delivering one and ten 5-Hz rTMS trains. We also investigated whether 5-Hz rTMS induces changes in intracortical excitability tested with paired-pulse transcranial magnetic stimulation. When given alone, 5-Hz rTMS induced short-lasting and iTBS/cTBS induced long-lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5-Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS-induced after-effects disappeared. The 5-Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5-Hz rTMS abolishes iTBS/cTBS-induced LTP/LTD-like plasticity through non-homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short-term and long-term rTMS-induced plasticity in human M1.

  7. Hepatic Differentiation and Maturation of Human Embryonic Stem Cells Cultured in a Perfused Three-Dimensional Bioreactor

    PubMed Central

    Synnergren, Jane; Jensen, Janne; Björquist, Petter; Ingelman-Sundberg, Magnus

    2013-01-01

    Drug-induced liver injury is a serious and frequently occurring adverse drug reaction in the clinics and is hard to predict during preclinical studies. Today, primary hepatocytes are the most frequently used cell model for drug discovery and prediction of toxicity. However, their use is marred by high donor variability regarding drug metabolism and toxicity, and instable expression levels of liver-specific genes such as cytochromes P450. An in vitro model system based on human embryonic stem cells (hESC), with their unique properties of pluripotency and self-renewal, has potential to provide a stable and unlimited supply of human hepatocytes. Much effort has been made to direct hESC toward the hepatic lineage, mostly using 2-dimensional (2D) cultures. Although the results are encouraging, these cells lack important functionality. Here, we investigate if hepatic differentiation of hESC can be improved by using a 3-dimensional (3D) bioreactor system. Human ESCs were differentiated toward the hepatic lineage using the same cells in either the 3D or 2D system. A global transcriptional analysis identified important differences between the 2 differentiation regimes, and we identified 10 pathways, highly related to liver functions, which were significantly upregulated in cells differentiated in the bioreactor compared to 2D control cultures. The enhanced hepatic differentiation observed in the bioreactor system was also supported by immunocytochemistry. Taken together, our results suggest that hepatic differentiation of hESC is improved when using this 3D bioreactor technology as compared to 2D culture systems. PMID:22970843

  8. Dutch perfusion incident survey.

    PubMed

    Groenenberg, Ingrid; Weerwind, Patrick W; Everts, Peter A M; Maessen, Jos G

    2010-09-01

    Cardiopulmonary bypass procedures remain complex, involving many potential risks. Therefore, a nationwide retrospective study was conducted to gain insight into the number of incidents and accidents in Dutch adult perfusion practice. An anonymous postal survey (85 questions about hardware, disposables, fluids and medication, air emboli, anticoagulation, practice, and safety measures) was sent to all Dutch perfusionists involved in adult cardiovascular perfusion during 2006 and 2007. To guarantee complete anonymity, respondents were asked to return the survey to a notary who discarded personal information. The net response rate was 72% and covered 23,500 perfusions. Individual respondents performed 240 ± 103 perfusions during the 2-year study period and had 13.8 ± 8.7 years of practical experience. The incident rate was 1 per 15.6 perfusions and the adverse event rate was 1 per 1,236 perfusions. The three most reported incidents were: (1) persistent inability to raise the activated coagulation time above 400s during perfusion (184 incidents); (2) an allergic or anaphylactic reaction to drugs, fluids, or blood products (114 incidents); and (3) clotting formation in the extracorporeal circuit (74 incidents). Furthermore, pre-bypass safety measures showed no statistically significant association with the reported incidents. In comparison with data from the recent literature, the reported number of incidents is high. Nevertheless, the adverse outcome rate is well matched to other published surveys. The relatively high response rate conveys the impression that the Dutch perfusionist is vigilant and willing to report incidents. Hence, a web-based Dutch perfusion incident registration system is recommended.

  9. Myocardial perfusion grade, myocardial salvage indices and long-term mortality in patients with acute myocardial infarction and full restoration of epicardial blood flow after primary percutaneous coronary intervention.

    PubMed

    Ndrepepa, Gjin; Mehilli, Julinda; Tiroch, Klaus; Fusaro, Massimiliano; Kufner, Sebastian; Ellert, Julia; Goedel, Julia; Schömig, Albert; Kastrati, Adnan

    2010-07-01

    The relationship between microcirculatory myocardial perfusion grade (MPG), myocardial salvage and long-term mortality after acute ST-segment elevation myocardial infarction (STEMI) and full restoration of epicardial blood flow by primary percutaneous coronary intervention (PCI) remains poorly understood. This study included 1213 patients with STEMI and Thrombolysis in Myocardial Infarction (TIMI) grade-3 flow after primary PCI. The MPG was determined and paired scintigraphic studies (before and 7-14 days after the intervention) were performed. The primary outcome was 5-year mortality. The MPG was 0-1 in 217 patients, 2 in 195, and 3 in 801. In patients with an MPG of 0-1, 2 and 3, respectively, the median infarct size was 13% (interquartile range [IQR] 5.6-28%), 12% (IQR 4-27%) and 7% (IQR 1-19%) of the left ventricle, respectively (P< .001), the myocardial salvage index (i.e. the proportion of the initial area at risk that recovered) was 0.44 (IQR 0.22-0.73), 0.46 (IQR 0.25-0.75) and 0.58 (IQR 0.31-0.85), respectively (P< .001), and the Kaplan-Meier estimated 5-year mortality was 16.6% (i.e. 28 deaths), 15.3% (i.e. 25 deaths) and 7.8% (i.e. 48 deaths), respectively. The odds ratio (OR) for death for an MPG of 0-1 vs. 3 was 2.32 (95% confidence interval [CI] 1.42-3.8; P< .001) and for an MPG of 2 vs. 3, 2.3 (95% CI 1.38-3.85; P=.001). The Cox proportional hazards model identified MPG as independently associated with mortality at 5 years: the hazard ratio for an MPG of 3 vs. 0-2 was 0.65 (95% CI 0.41-0.97; P=.037). In patients with STEMI and TIMI grade-3 flow after primary PCI, suboptimal microcirculatory myocardial perfusion (i.e. MPG < or =2) was associated with poorer myocardial salvage, a larger infarct, and higher 5-year mortality than observed in patients whose tissue perfusion was reestablished (i.e. MPG=3).

  10. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System.

    PubMed

    Knöspel, Fanny; Jacobs, Frank; Freyer, Nora; Damm, Georg; De Bondt, An; van den Wyngaert, Ilse; Snoeys, Jan; Monshouwer, Mario; Richter, Marco; Strahl, Nadja; Seehofer, Daniel; Zeilinger, Katrin

    2016-04-16

    Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  11. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System

    PubMed Central

    Knöspel, Fanny; Jacobs, Frank; Freyer, Nora; Damm, Georg; De Bondt, An; van den Wyngaert, Ilse; Snoeys, Jan; Monshouwer, Mario; Richter, Marco; Strahl, Nadja; Seehofer, Daniel; Zeilinger, Katrin

    2016-01-01

    Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro. PMID:27092500

  12. ARISTOLOCHIC ACID I METABOLISM IN THE ISOLATED PERFUSED RAT KIDNEY

    PubMed Central

    Priestap, Horacio A.; Torres, M. Cecilia; Rieger, Robert A.; Dickman, Kathleen G.; Freshwater, Tomoko; Taft, David R.; Barbieri, Manuel A.; Iden, Charles R.

    2012-01-01

    Aristolochic acids are natural nitro-compounds found globally in the plant genus Aristolochia that have been implicated in the severe illness in humans termed aristolochic acid nephropathy (AAN). Aristolochic acids undergo nitroreduction, among other metabolic reactions, and active intermediates arise that are carcinogenic. Previous experiments with rats showed that aristolochic acid I (AA-I), after oral administration or injection, is subjected to detoxication reactions to give aristolochic acid Ia, aristolactam Ia, aristolactam I and their glucuronide and sulfate conjugates that can be found in urine and faeces. Results obtained with whole rats do not clearly define the role of liver and kidney in such metabolic transformation. In this study, in order to determine the specific role of the kidney on the renal disposition of AA-I and to study the biotransformations suffered by AA-I in this organ, isolated kidneys of rats were perfused with AA-I. AA-I and metabolite concentrations were determined in perfusates and urines using HPLC procedures. The isolated perfused rat kidney model showed that AA-I distributes rapidly and extensively in kidney tissues by uptake from the peritubular capillaries and the tubules. It was also established that the kidney is able to metabolize AA-I into aristolochic acid Ia, aristolochic acid Ia O-sulfate, aristolactam Ia, aristolactam I and aristolactam Ia O-glucuronide. Rapid demethylation and sulfation of AA-I in the kidney generate aristolochic acid Ia and its sulfate conjugate that are voided to the urine. Reduction reactions to give the aristolactam metabolites occur to a slower rate. Renal clearances showed that filtered AA-I is reabsorbed at the tubules whereas the metabolites are secreted. The unconjugated metabolites produced in the renal tissues are transported to both urine and perfusate whereas the conjugated metabolites are almost exclusively secreted to the urine. PMID:22118289

  13. Short-term effects of recombinant human growth hormone and feeding on gluconeogenesis in humans

    USDA-ARS?s Scientific Manuscript database

    After a short-term fast, lactating women have increased rates of glucose production but not gluconeogenesis (GNG) despite relative hypoinsulinemia. We explored the effects of non-insulin-dependent increase in glucose utilization and recombinant human growth hormone (rhGH) on glucose production, glyc...

  14. Effects of rat/mouse hemokinin-1, human hemokinin-1 and human hemokinin-1(4-11), mammalian tachykinin peptides, on rate and perfusion pressure in the isolated guinea pig heart.

    PubMed

    Kong, Zi-Qing; Yang, Wen-Le; Tao, Yan; Shi, Xiao-Mei; Fu, Cai-Yun; Zhao, Rui-Fei; Wang, Rui

    2010-10-01

    Rat/mouse hemokinin-1 (r/m HK-1), human hemokinin-1 (h HK-1) and human hemokinin-1(4-11) (h HK-1(4-11)) are members of the tachykinin family. In the present study, the coronary vascular activities and cardiac functions of r/m HK-1, h HK-1 and h HK-1(4-11) were investigated in isolated, spontaneously beating guinea pig hearts. Bolus injections of r/m HK-1 caused decrease in perfusion pressure indicative of coronary vasodilation, which was primarily due to the action on tachykinin NK1 receptors on vascular endothelial cells, causing the release of nitric oxide that relaxed the coronary vessels. H HK-1 caused biphasic perfusion pressure changes that were coronary vasodilation followed by coronary vasoconstriction. The mechanisms involved in the vasodilation induced by h HK-1 were similar to that of r/m HK-1 while the mechanisms for coronary vasoconstriction were mediated through the activation of tachykinin NK2 receptors on coronary sympathetic neurons to release catecholamines. H HK-1(4-11) only produced coronary vasoconstriction and the mechanisms involved in this effect were similar to that of h HK-1 in vasoconstriction. Moreover, r/m HK-1 and h HK-1 produced similar decreases in heart rate indicative of negative chronotropic responses and the decreases were mainly mediated through the activation of tachykinin NK1 receptors to release ACh acting on muscarinic receptors. H HK-1(4-11) also produced negative chronotropic response, which was mainly mediated through tachykinin NK2 receptors and muscarinic receptors. Our present results provide evidence that all of the three tachykinins could influence cardiac function and coronary vascular activity in the isolated guinea pig heart. 2010 Elsevier Ltd. All rights reserved.

  15. Human short-term spatial memory: precision predicts capacity.

    PubMed

    Banta Lavenex, Pamela; Boujon, Valérie; Ndarugendamwo, Angélique; Lavenex, Pierre

    2015-03-01

    Here, we aimed to determine the capacity of human short-term memory for allocentric spatial information in a real-world setting. Young adults were tested on their ability to learn, on a trial-unique basis, and remember over a 1-min interval the location(s) of 1, 3, 5, or 7 illuminating pads, among 23 pads distributed in a 4m×4m arena surrounded by curtains on three sides. Participants had to walk to and touch the pads with their foot to illuminate the goal locations. In contrast to the predictions from classical slot models of working memory capacity limited to a fixed number of items, i.e., Miller's magical number 7 or Cowan's magical number 4, we found that the number of visited locations to find the goals was consistently about 1.6 times the number of goals, whereas the number of correct choices before erring and the number of errorless trials varied with memory load even when memory load was below the hypothetical memory capacity. In contrast to resource models of visual working memory, we found no evidence that memory resources were evenly distributed among unlimited numbers of items to be remembered. Instead, we found that memory for even one individual location was imprecise, and that memory performance for one location could be used to predict memory performance for multiple locations. Our findings are consistent with a theoretical model suggesting that the precision of the memory for individual locations might determine the capacity of human short-term memory for spatial information. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Long-term efficacy and safety of human papillomavirus vaccination

    PubMed Central

    De Vincenzo, Rosa; Conte, Carmine; Ricci, Caterina; Scambia, Giovanni; Capelli, Giovanni

    2014-01-01

    In this paper, we review the published evidence about the long-term efficacy of the available human papillomavirus (HPV) vaccines and their safety profile. Two prophylactic HPV vaccines – bivalent (bHPV) and quadrivalent (qHPV) – are now available, and vaccination programs are being widely implemented, primarily targeting adolescent girls. Efficacy has been widely demonstrated for both vaccines. Since the risk of HPV exposure potentially persists throughout a woman’s sexual life, vaccine duration of protection is critical to overall effectiveness. Interpreting the results of long-term efficacy studies for the two HPV vaccines can be puzzling, due to the heterogeneity of studies, different methods used in the assessment of immunogenicity, histopathological and virological end points, and statistical power issues. Moreover, an immunologic correlate of protection has not yet been established, and it is unknown whether higher antibody levels will really result in a longer duration of protection. Disease prevention remains the most important measure of long-term duration of vaccine efficacy. To date, the longest follow-up of an HPV vaccine has been 9.4 years for the bHPV vaccine. Long-term follow-up for qHPV vaccine goes up to 8 years. The vaccine continues to be immunogenic and well tolerated up to 9 years following vaccination. All randomized controlled clinical trials of the bHPV and the qHPV vaccines provide evidence of an excellent safety profile. The most common complaint reported is pain in the injection site, which is self-limiting and spontaneously resolved. The incidence of systemic adverse events (AEs), serious AEs, and discontinuations due to a serious AE reported in clinical studies are similar between the two vaccines and their control groups. In particular, no increased risk of autoimmune disease has been shown among HPV-vaccinated subjects in long-term observation studies. As these are crucial topics in HPV vaccination, it is important to establish

  17. Lipidomic analysis reveals prostanoid profiles in human term pregnant myometrium.

    PubMed

    Durn, J H; Marshall, K M; Farrar, D; O'Donovan, P; Scally, A J; Woodward, D F; Nicolaou, A

    2010-01-01

    Prostanoids modulate the activity of human pregnant myometrium and their functional role can be appreciated through characterisation of prostanoid receptors and tissue concentration of prostanoids. We have applied a lipidomic approach to elucidate the profile of prostanoids in human non-labouring and labouring myometrium. We have identified a total of nineteen prostanoids including prostacyclin, thromboxanes, prostaglandins and dihydro-prostaglandins. Prostacyclin was the predominant prostanoid in both non-labouring and labouring myometria, with PGD(2) and PGF(2alpha) being the second most abundant. Although the total amount of prostanoids was increased in the labouring tissue, PGE(2) and 13,14-dihydro-15-keto-PGE(2) were the only prostanoids to increase significantly at early and late labour (p< or =0.001). Our data suggest that PGF(2alpha) plays an important role in parturition, whilst the increase in PGE(2) could occur to facilitate cervical dilation and relaxation of the lower myometrium during labour. Although the elevation in TXA(2) was less marked than expected, in terms of translation to function even a relatively small increase in the level of this potent spasmogen may have significant effects. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Task-Based Evaluation of a 4D MAP-RBI-EM Image Reconstruction Method for Gated Myocardial Perfusion SPECT using a Human Observer Study

    PubMed Central

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-01-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  19. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  20. Effect of oxygen on multidrug resistance in term human placenta.

    PubMed

    Javam, M; Audette, M C; Iqbal, M; Bloise, E; Gibb, W; Matthews, S G

    2014-05-01

    The placenta contains efflux transporters, including P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), that limit the passage of xenobiotics, certain hormones and nutrients from the maternal to the fetal circulation. The expression of these transporters changes with gestational age, yet the mechanisms involved remain unknown. However, the changes in P-gp and BCRP transporter expression coincide with those of oxygen tension in the placenta, and oxygen tension has been shown to modulate P-gp and BCRP expression in other tissues. The objective of this study was to investigate the effects of oxygen tension on P-gp and BCRP expression in the term human placenta. Following equilibration in culture (96 h), term placental explants (n = 7) were cultured in 3% or 20% oxygen for 24 and 48 h. Culture medium was collected every 24 h to measure lactate dehydrogenase (LDH; explant viability) and human chorionic gonadotropin (hCG; syncytiotrophoblast function). P-gp (encoded by ABCB1) and BCRP (encoded by ABCG2) protein and mRNA, as well as VEGFA mRNA were measured using western blot and qRT-PCR. P-gp localization was determined using immunofluorescence. Oxygen tension had a significant effect on P-gp expression, with ABCB1/P-gp mRNA and protein levels increased in the hypoxic condition (3% O2) after 48 h (p < 0.05). VEGFA mRNA was elevated by hypoxia at both 24 and 48 h (p < 0.05). In contrast, placental ABCG2/BCRP mRNA and protein expression were stable with changes in oxygen tension. We identified profound differences in the glycosylation of P-gp between cultured and non-cultured placental tissue, with cultured explants expressing deglycosylated P-gp. These findings demonstrate that, at term, the expression of placental P-gp, is regulated by oxygen tension. This suggests that changes in oxygenation of the placenta in the third trimester may alter levels of placental P-gp, and in doing so alter fetal exposure to P-gp substrates, including xenobiotics and certain

  1. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  2. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  3. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  4. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  5. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug, antibiotic...

  6. First trimester alcohol exposure alters placental perfusion and fetal oxygen availability affecting fetal growth and development in a non-human primate model.

    PubMed

    Lo, Jamie O; Schabel, Matthias C; Roberts, Victoria H J; Wang, Xiaojie; Lewandowski, Katherine S; Grant, Kathleen A; Frias, Antonio E; Kroenke, Christopher D

    2017-03-01

    Prenatal alcohol exposure leads to impaired fetal growth, brain development, and stillbirth. Placental impairment likely contributes to these adverse outcomes, but the mechanisms and specific vasoactive effects of alcohol that links altered placental function to impaired fetal development remain areas of active research. Recently, we developed magnetic resonance imaging techniques in nonhuman primates to characterize placental blood oxygenation through measurements of T2* and perfusion using dynamic contrast-enhanced magnetic resonance imaging. The objective of this study was to evaluate the effects of first-trimester alcohol exposure on macaque placental function and to characterize fetal brain development in vivo. Timed-pregnant Rhesus macaques (n=12) were divided into 2 groups: control (n=6) and ethanol exposed (n=6). Animals were trained to self-administer orally either 1.5 g/kg/d of a 4% ethanol solution (equivalent to 6 drinks/d) or an isocaloric control fluid from preconception until gestational day 60 (term is G168). All animals underwent Doppler ultrasound scanning followed by magnetic resonance imaging that consisted of T2* and dynamic contrast-enhanced measurements. Doppler ultrasound scanning was used to measure uterine artery and umbilical vein velocimetry and diameter to calculate uterine artery volume blood flow and placental volume blood flow. After noninvasive imaging, animals underwent cesarean delivery for placenta collection and fetal necropsy at gestational day 110 (n=6) or 135 (n=6). Fetal weight and biparietal diameter were significantly smaller in ethanol-exposed animals compared with control animals at gestational day 110. By Doppler ultrasound scanning, placental volume blood flow was significantly lower (P=.04) at gestational day 110 in ethanol-exposed vs control animals. A significant reduction in placental blood flow was evident by dynamic contrast-enhanced magnetic resonance imaging. As we demonstrated recently, T2* values vary

  7. Ex Situ Normothermic Machine Perfusion of Donor Livers

    PubMed Central

    Karimian, Negin; Matton, Alix P.M.; Westerkamp, Andrie C.; Burlage, Laura C.; op den Dries, Sanna; Leuvenink, Henri G.D.; Lisman, Ton; Uygun, Korkut; Markmann, James F.; Porte, Robert J.

    2015-01-01

    In contrast to conventional static cold preservation (0-4 °C), ex situ machine perfusion may provide better preservation of donor livers. Continuous perfusion of organs provides the opportunity to improve organ quality and allows ex situ viability assessment of donor livers prior to transplantation. This video article provides a step by step protocol for ex situ normothermic machine perfusion (37 °C) of human donor livers using a device that provides a pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous perfusion of the portal vein. The perfusion fluid is oxygenated by two hollow fiber membrane oxygenators and the temperature can be regulated between 10 °C and 37 °C. During perfusion, the metabolic activity of the liver as well as the degree of injury can be assessed by biochemical analysis of samples taken from the perfusion fluid. Machine perfusion is a very promising tool to increase the number of livers that are suitable for transplantation. PMID:26067131

  8. Isolated limb perfusion and external beam radiotherapy for soft tissue sarcomas of the extremity: long-term effects on normal tissue according to the LENT-SOMA scoring system.

    PubMed

    Hoven-Gondrie, Miriam L; Thijssens, Katja M J; Geertzen, Jan H B; Pras, Elisabeth; van Ginkel, Robert J; Hoekstra, Harald J

    2008-05-01

    With the combined treatment procedure of isolated limb perfusion (ILP), delayed surgical resection and external beam radiotherapy (EBRT) for locally advanced soft tissue sarcomas (STS) of the extremities, limb salvage rates of more than 80% can be achieved. However, long-term damage to the healthy surrounding tissue cannot be prevented. We studied the late effects on the normal tissue using the LENT-SOMA scoring system. A total of 32 patients-median age 47 (range 14-71) years-were treated for a locally advanced STS with ILP, surgical resection and often adjuvant 60-70 Gy EBRT. After a median follow-up of 88 (range 17-159) months, the patients were scored, using the LENT-SOMA scales, for the following late tissue damage: muscle/soft tissue, peripheral nerves, skin/subcutaneous tissue and vessels. According to the individual SOM parameters of the LENT-SOMA scales, 20 patients (63%) scored grade-3 toxicity on one or more separate items, reflecting severe symptoms with a negative impact on daily activities. Of these patients, 3 (9%) even scored grade-4 toxicity on some of the parameters, denoting irreversible functional damage necessitating major therapeutic intervention. In evaluating long-term morbidity after a combined treatment procedure for STS of the extremity, using modified LENT-SOMA scores, two-thirds of patients were found to have experienced serious late toxic effects.

  9. Quantitative myocardial perfusion SPECT.

    PubMed

    Tsui, B M; Frey, E C; LaCroix, K J; Lalush, D S; McCartney, W H; King, M A; Gullberg, G T

    1998-01-01

    In recent years, there has been much interest in the clinical application of attenuation compensation to myocardial perfusion single photon emission computed tomography (SPECT) with the promise that accurate quantitative images can be obtained to improve clinical diagnoses. The different attenuation compensation methods that are available create confusion and some misconceptions. Also, attenuation-compensated images reveal other image-degrading effects including collimator-detector blurring and scatter that are not apparent in uncompensated images. This article presents basic concepts of the major factors that degrade the quality and quantitative accuracy of myocardial perfusion SPECT images, and includes a discussion of the various image reconstruction and compensation methods and misconceptions and pitfalls in implementation. The differences between the various compensation methods and their performance are demonstrated. Particular emphasis is directed to an approach that promises to provide quantitative myocardial perfusion SPECT images by accurately compensating for the 3-dimensional (3-D) attenuation, collimator-detector response, and scatter effects. With advances in the computer hardware and optimized implementation techniques, quantitatively accurate and high-quality myocardial perfusion SPECT images can be obtained in clinically acceptable processing time. Examples from simulation, phantom, and patient studies are used to demonstrate the various aspects of the investigation. We conclude that quantitative myocardial perfusion SPECT, which holds great promise to improve clinical diagnosis, is an achievable goal in the near future.

  10. High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline

    PubMed Central

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F.; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2015-01-01

    We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity. PMID:25953425

  11. High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline.

    PubMed

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2015-09-01

    We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.

  12. Cardiac tissue engineering using perfusion bioreactor systems

    PubMed Central

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  13. Isolation of multipotent cells from human term placenta.

    PubMed

    Yen, B Linju; Huang, Hsing-I; Chien, Chih-Cheng; Jui, Hsiang-Yiang; Ko, Bor-Sheng; Yao, Ming; Shun, Chia-Tung; Yen, Men-Luh; Lee, Meng-Chou; Chen, Yao-Chang

    2005-01-01

    Current sources of stem cells include embryonic stem cells (ESCs) and adult stem cells (ASCs). However, concerns exist with either source: ESCs, with their significant ethical considerations, tumorigenicity, and paucity of cell lines; and ASCs, which are possibly more limited in potential. Thus, the search continues for an ethically conducive, easily accessible, and high-yielding source of stem cells. We have isolated a population of multipotent cells from the human term placenta, a temporary organ with fetal contributions that is discarded postpartum. These placenta-derived multipotent cells (PDMCs) exhibit many markers common to mesenchymal stem cells--including CD105/endoglin/SH-2, SH-3, and SH-4--and they lack hematopoietic-, endothelial-, and trophoblastic-specific cell markers. In addition, PDMCs exhibit ESC surface markers of SSEA-4, TRA-1-61, and TRA-1-80. Adipogenic, osteogenic, and neurogenic differentiation were achieved after culturing under the appropriate conditions. PDMCs could provide an ethically uncontroversial and easily accessible source of multipotent cells for future experimental and clinical applications.

  14. [Portable peristaltic perfusion pumps].

    PubMed

    Magallón Pedrera, I; Soto Torres, I

    1999-11-01

    Portable peristaltic perfusion pumps allow one to administer pharmaceuticals in hospitals as well as in primary health care centers and furthermore these pumps present multiple advantages for patients and their families since they make it possible to carry out treatment in a patient's home while at the same time lowering the costs involved. The authors analyze the most out standing aspects of portable peristaltic perfusion pumps along with their characteristics, installation, programming, and how to turn them on; in addition, the authors list the maintenance care which these pumps require.

  15. Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion

    PubMed Central

    Brachat, Sophie; Braccini, Alessandra; Wendt, David; Barbero, Andrea; Jacobi, Carsten; Martin, Ivan

    2014-01-01

    Mesenchymal stromal/stem cell (MSC) expansion in conventional monolayer culture on plastic dishes (2D) leads to progressive loss of functionality and thus challenges fundamental studies on the physiology of skeletal progenitors, as well as translational applications for cellular therapy and molecular medicine. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow nucleated cells within 3D porous scaffolds in a perfusion-based bioreactor system. The 3D-perfusion system generated a stromal tissue that could be enzymatically treated to yield CD45- MSC. As compared to 2D-expanded MSC (control), those derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7–8 doublings) better maintained their progenitor properties, as assessed by a 4.3-fold higher clonogenicity and the superior differentiation capacity towards all typical mesenchymal lineages. Transcriptomic analysis of MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability and a significant upregulation of multipotency-related gene clusters following 3D-perfusion- as compared to 2D-expansion. Interestingly, the differences in functionality and transcriptomics between MSC expanded in 2D or under 3D-perfusion were only partially captured by cytofluorimetric analysis using conventional surface markers. The described system offers a multidisciplinary approach to study how factors of a 3D engineered niche regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems. PMID:25020062

  16. Effect of human patient plasma ex vivo treatment on gene expression and progenitor cell activation of primary human liver cells in multi-compartment 3D perfusion bioreactors for extra-corporeal liver support.

    PubMed

    Schmelzer, Eva; Mutig, Kerim; Schrade, Petra; Bachmann, Sebastian; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Cultivation of primary human liver cells in innovative 3D perfusion multi-compartment capillary membrane bioreactors using decentralized mass exchange and integral oxygenation provides in vitro conditions close to the physiologic environment in vivo. While a few scale-up bioreactors were used clinically, inoculated liver progenitors in these bioreactors were not investigated. Therefore, we characterized regenerative processes and expression patterns of auto- and paracrine mediators involved in liver regeneration in bioreactors after patient treatment. Primary human liver cells containing parenchymal and non-parenchymal cells co-cultivated in bioreactors were used for clinical extra-corporeal liver support to bridge to liver transplantation. 3D tissue re-structuring in bioreactors was studied; expression of proteins and genes related to regenerative processes and hepatic progenitors was analyzed. Formation of multiple bile ductular networks and colonies of putative progenitors were observed within parenchymal cell aggregates. HGF was detected in scattered cells located close to vascular-like structures, expression of HGFA and c-Met was assigned to biliary cells and hepatocytes. Increased expression of genes associated to hepatic progenitors was detected following clinical application. The results confirm auto- and paracrine interactions between co-cultured cells in the bioreactor. The 3D bioreactor provides a valuable tool to study mechanisms of progenitor activation and hepatic regeneration ex vivo under patient plasma treatment. (c) 2009 Wiley Periodicals, Inc.

  17. Short-term effect of antibiotics on human gut microbiota.

    PubMed

    Panda, Suchita; El khader, Ismail; Casellas, Francesc; López Vivancos, Josefa; García Cors, Montserrat; Santiago, Alba; Cuenca, Silvia; Guarner, Francisco; Manichanh, Chaysavanh

    2014-01-01

    From birth onwards, the human gut microbiota rapidly increases in diversity and reaches an adult-like stage at three years of age. After this age, the composition may fluctuate in response to external factors such as antibiotics. Previous studies have shown that resilience is not complete months after cessation of the antibiotic intake. However, little is known about the short-term effects of antibiotic intake on the gut microbial community. Here we examined the load and composition of the fecal microbiota immediately after treatment in 21 patients, who received broad-spectrum antibiotics such as fluoroquinolones and β-lactams. A fecal sample was collected from all participants before treatment and one week after for microbial load and community composition analyses by quantitative PCR and pyrosequencing of the 16S rRNA gene, respectively. Fluoroquinolones and β-lactams significantly decreased microbial diversity by 25% and reduced the core phylogenetic microbiota from 29 to 12 taxa. However, at the phylum level, these antibiotics increased the Bacteroidetes/Firmicutes ratio (p = 0.0007, FDR = 0.002). At the species level, our findings unexpectedly revealed that both antibiotic types increased the proportion of several unknown taxa belonging to the Bacteroides genus, a Gram-negative group of bacteria (p = 0.0003, FDR<0.016). Furthermore, the average microbial load was affected by the treatment. Indeed, the β-lactams increased it significantly by two-fold (p = 0.04). The maintenance of or possible increase detected in microbial load and the selection of Gram-negative over Gram-positive bacteria breaks the idea generally held about the effect of broad-spectrum antibiotics on gut microbiota.

  18. Machine perfusion of the liver: past, present and future.

    PubMed

    Monbaliu, Diethard; Brassil, John

    2010-04-01

    This review considers the potential of machine perfusion to preserve livers for clinical transplantation, including steatotic or ischaemically damaged grafts and aims to go over the most significant achievements in liver machine perfusion over the last year. To reach acceptance in liver preservation, machine perfusion will need to improve outcomes compared with simple cold storage (SCS), provide objective measures of graft viability, and resuscitate less-than-ideal grafts before transplantation. Current machine perfusion protocols comprise both hypothermic (HMP) and normothermic (NMP) approaches. HMP increases energy stores compared to SCS, and NMP shows additional resuscitative potential. Dutkowski transplanted ischaemically damaged pig livers after HMP following SCS, which avoided graft failure observed after SCS alone. Guarrera performed 20 clinical transplants after 4-7 h HMP. Friend has performed porcine transplantations after NMP of 4-20 h and univocally demonstrated the significant resuscitative effects on ischaemically damaged grafts otherwise destined to fail. Whereas NMP promises resuscitative effects, it demands challenging, near-physiologic conditions. Subnormothermic perfusion is being tested as a promising medium in between. Despite recent substantial improvements, liver preservation by machine perfusion remains limited and in contrast to the global revival of kidney machine perfusion. However, liver machine perfusion may be close to returning to clinical practice if it has not already done so. History shows that superiority alone does not guarantee immediate clinical use. Further clear-cut benefits of machine perfusion such as viability assessment will have to be accompanied by usability and human factors, and innovative and improved perfusion solutions applied in novel perfusion protocols.

  19. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung

    PubMed Central

    Sá, Rui Carlos; Theilmann, Rebecca J.; Buxton, Richard B.; Prisk, G. Kim; Hopkins, Susan R.

    2013-01-01

    The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (V̇a/Q̇) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional V̇a/Q̇ ratio, the gravitational gradients in proton density, ventilation, perfusion, and V̇a/Q̇ ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min−1·ml−1) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min−1·ml−1) images to obtain regional V̇a/Q̇ ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (−0.17 ± 0.10 ml·min−1·ml−1·cm−1 supine, −0.040 ± 0.03 prone ml·min−1·ml−1·cm−1, P = 0.02) as was the slope of the perfusion-height relationship (−0.14 ± 0.05 ml·min−1·ml−1·cm−1 supine, −0.08 ± 0.09 prone ml·min−1·ml−1·cm−1, P = 0.02). There was a significant gravitational gradient in V̇a/Q̇ ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm−1 supine, 0.04 ± 0.03 cm−1 prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional V̇a/Q̇ ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of

  20. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.

    PubMed

    Henderson, A Cortney; Sá, Rui Carlos; Theilmann, Rebecca J; Buxton, Richard B; Prisk, G Kim; Hopkins, Susan R

    2013-08-01

    The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (Va/Q) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional Va/Q ratio, the gravitational gradients in proton density, ventilation, perfusion, and Va/Q ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min(-1)·ml(-1)) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min(-1)·ml(-1)) images to obtain regional Va/Q ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (-0.17 ± 0.10 ml·min(-1)·ml(-1)·cm(-1) supine, -0.040 ± 0.03 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02) as was the slope of the perfusion-height relationship (-0.14 ± 0.05 ml·min(-1)·ml(-1)·cm(-1) supine, -0.08 ± 0.09 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02). There was a significant gravitational gradient in Va/Q ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm(-1) supine, 0.04 ± 0.03 cm(-1) prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional Va/Q ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of gravity on Va/Q matching.

  1. Nifedipine and thallium-201 myocardial perfusion in progressive systemic sclerosis

    SciTech Connect

    Kahan, A.; Devaux, J.Y.; Amor, B.; Menkes, C.J.; Weber, S.; Nitenberg, A.; Venot, A.; Guerin, F.; Degeorges, M.; Roucayrol, J.C.

    1986-05-29

    Heart disease in patients with progressive systemic sclerosis may be due in part to myocardial ischemia caused by a disturbance of the coronary microcirculation. To determine whether abnormalities of myocardial perfusion in this disorder are potentially reversible, we evaluated the effect of the coronary vasodilator nifedipine on myocardial perfusion assessed by thallium-201 scanning in 20 patients. Thallium-201 single-photon-emission computerized tomography was performed under control conditions and 90 minutes after 20 mg of oral nifedipine. The mean (+/- SD) number of left ventricular segments with perfusion defects decreased from 5.3 +/- 2.0 to 3.3 +/- 2.2 after nifedipine (P = 0.0003). Perfusion abnormalities were quantified by a perfusion score (0 to 2.0) assigned to each left ventricular segment and by a global perfusion score (0 to 18) for the entire left ventricle. The mean perfusion score in segments with resting defects increased from 0.97 +/- 0.24 to 1.26 +/- 0.44 after nifedipine (P less than 0.00001). The mean global perfusion score increased from 11.2 +/- 1.7 to 12.8 +/- 2.4 after nifedipine (P = 0.003). The global perfusion score increased by at least 2.0 in 10 patients and decreased by at least 2.0 in only 1. These observations reveal short-term improvement in thallium-201 myocardial perfusion with nifedipine in patients with progressive systemic sclerosis. The results are consistent with a potentially reversible abnormality of coronary vasomotion in this disorder, but the long-term therapeutic effects of nifedipine remain to be determined.

  2. Free flap rescue using an extracorporeal perfusion device.

    PubMed

    Fichter, Andreas M; Ritschl, Lucas M; Rau, Andrea; Schwarzer, Claudia; von Bomhard, Achim; Wagenpfeil, Stefan; Wolff, Klaus-Dietrich; Mücke, Thomas

    2016-12-01

    The warm ischaemia time of microvascular free flaps is limited. Incalculable events, such as lack of adequate recipient vessels or intraoperative medical emergencies, can lead to prolonged ischaemia and potentially to flap loss. In this study, critically perfused ischaemic or congested flaps were temporarily perfused with an extracorporeal perfusion system until anastomosis could be commenced. Temporary extracorporeal perfusion was performed in 8 radial forearm flaps for 147 ± 52 (range 77-237) minutes. Flap perfusion was assessed using Indocyanine Green fluorescence angiography and combined laser Doppler flowmetry and remission spectroscopy. Results were compared with those of 30 patients who underwent conventional reconstruction with radial forearm flaps. Flap survival, flap microcirculation, postoperative complications, and hospital stay did not differ between groups. We report successful free flap transfer after short-term extracorporeal perfusion for up to 4 h in 8 patient cases. Temporary extracorporeal free flap perfusion reduces the warm ischaemia time in emergency situations and can help to prevent flap failure in critically perfused or congested flaps. The trial is registered with ClinicalTrials.gov, number NCT02449525.

  3. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-matched Case Analysis.

    PubMed

    Dutkowski, Philipp; Polak, Wojciech G; Muiesan, Paolo; Schlegel, Andrea; Verhoeven, Cornelia J; Scalera, Irene; DeOliveira, Michelle L; Kron, Philipp; Clavien, Pierre-Alain

    2015-11-01

    Exposure of donor liver grafts to prolonged periods of warm ischemia before procurement causes injuries including intrahepatic cholangiopathy, which may lead to graft loss. Due to unavoidable prolonged ischemic time before procurement in donation after cardiac death (DCD) donation in 1 participating center, each liver graft of this center was pretreated with the new machine perfusion "Hypothermic Oxygenated PErfusion" (HOPE) in an attempt to improve graft quality before implantation. HOPE-treated DCD livers (n = 25) were matched and compared with normally preserved (static cold preservation) DCD liver grafts (n = 50) from 2 well-established European programs. Criteria for matching included duration of warm ischemia and key confounders summarized in the balance of risk score. In a second step, perfused and unperfused DCD livers were compared with liver grafts from standard brain dead donors (n = 50), also matched to the balance of risk score, serving as baseline controls. HOPE treatment of DCD livers significantly decreased graft injury compared with matched cold-stored DCD livers regarding peak alanine-aminotransferase (1239 vs 2065 U/L, P = 0.02), intrahepatic cholangiopathy (0% vs 22%, P = 0.015), biliary complications (20% vs 46%, P = 0.042), and 1-year graft survival (90% vs 69%, P = 0.035). No graft failure due to intrahepatic cholangiopathy or nonfunction occurred in HOPE-treated livers, whereas 18% of unperfused DCD livers needed retransplantation. In addition, HOPE-perfused DCD livers achieved similar results as control donation after brain death livers in all investigated endpoints. HOPE seems to offer important benefits in preserving higher-risk DCD liver grafts.

  4. Aspirate from human stented saphenous vein grafts induces epicardial coronary vasoconstriction and impairs perfusion and left ventricular function in rat bioassay hearts with pharmacologically induced endothelial dysfunction.

    PubMed

    Lieder, Helmut R; Baars, Theodor; Kahlert, Philipp; Kleinbongard, Petra

    2016-08-01

    Stent implantation into aortocoronary saphenous vein grafts (SVG) releases particulate debris and soluble vasoactive mediators, for example, serotonin. We now analyzed effects of the soluble mediators released into the coronary arterial blood during stent implantation on vasomotion of isolated rat epicardial coronary artery segments and on coronary flow and left ventricular developed pressure in isolated perfused rat hearts. Coronary blood was retrieved during percutaneous SVG intervention using a distal occlusion/aspiration protection device in nine symptomatic patients with stable angina pectoris and a flow-limiting SVG stenosis. The blood was separated into particulate debris and plasma. Responses to coronary plasma were determined in isolated rat epicardial coronary arteries and in isolated, constant pressure-perfused rat hearts (±nitric oxide synthase [NOS] inhibition and ±serotonin receptor blockade, respectively). Coronary aspirate plasma taken after stent implantation induced a stronger vasoconstriction of rat epicardial coronary arteries (52 ± 8% of maximal potassium chloride induced vasoconstriction [% KClmax = 100%]) than plasma taken before stent implantation (12 ± 8% of KClmax); NOS inhibition augmented this vasoconstrictor response (to 110 ± 15% and 24 ± 9% of KClmax). Coronary aspirate plasma taken after stent implantation reduced in isolated perfused rat hearts only under NOS inhibition coronary flow by 17 ± 3% and left ventricular developed pressure by 25 ± 4%. Blockade of serotonin receptors abrogated these effects. Coronary aspirate plasma taken after stent implantation induces vasoconstriction in isolated rat epicardial coronary arteries and reduces coronary flow and left ventricular developed pressure in isolated perfused rat hearts with pharmacologically induced endothelial dysfunction. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The

  5. Enhanced Visualization of Optimal Cerebral Perfusion Pressure Over Time to Support Clinical Decision Making.

    PubMed

    Aries, Marcel J H; Wesselink, Robin; Elting, Jan Willem J; Donnelly, Joseph; Czosnyka, Marek; Ercole, Ari; Maurits, Natasha M; Smielewski, Peter

    2016-10-01

    Cerebrovascular reactivity can provide a continuously updated individualized target for management of cerebral perfusion pressure, termed optimal cerebral perfusion pressure. The objective of this project was to find a way of improving the optimal cerebral perfusion pressure methodology by introducing a new visualization method. Four severe traumatic brain injury patients with intracranial pressure monitoring. Data were collected and pre-processed using ICM+ software. Sequential optimal cerebral perfusion pressure curves were used to create a color-coded maps of autoregulation - cerebral perfusion pressure relationship evolution over time. The visualization method addresses some of the main drawbacks of the original methodology and might bring the potential for its clinical application closer.

  6. The interaction of exercise ability and body mass index upon long-term outcomes among patients undergoing stress-rest perfusion single-photon emission computed tomography imaging.

    PubMed

    Uretsky, Seth; Supariwala, Azhar; Gurram, Srinivasa; Bonda, Sri Lakshmi Kala; Thota, Naganath; Bezwada, Prema; Manchireddy, Seema; Nair, Subu; Cohen, Randy; Rozanski, Alan

    2013-07-01

    The obesity paradox has been reported in several populations of patients with cardiovascular disease. Recent data have shown that physical fitness may attenuate the obesity paradox. Patients who undergo pharmacologic stress testing are known to have a higher risk of mortality than those who can exercise. The purpose of this study is to determine the interaction of obesity and exercise ability on survival among patients with a normal stress-rest single-photon emission computed tomography (SPECT). A total of 5,203 (60 ± 13 years, male 37%) patients without a history of heart disease and a normal stress-rest SPECT between the years 1995 and 2010 were included in this analysis. Body mass index categories were defined according to the World Health Organization classification: normal weight, 18.5 to 24.9 kg/m(2); overweight, 25 to 29.9 kg/m(2); and obese, ≥30 kg/m(2). Patients were divided into 3 groups based on their ability to exercise: those who reached ≥6 METs on exercise, those who attained a level of <6 METs, and those who required pharmacologic stress. Patients in each of these fitness groups were further divided into 3 subgroups based on their body mass index. There were 939 (18%) deaths during a mean follow-up of 8.1 ± 4.1 years, for an overall event rate of 2.3%/y. Both exercise to ≥6 METs and being obese were associated with lower mortality. Adjusted multivariate analysis using the obese high-fit patients as the reference showed a wide heterogeneity in annualized mortality rates according to exercise and weight status, with annualized event rates which varied from 0.6%/y in the obese subjects who were physically fit to 5.3%/y among healthy subjects who underwent pharmacologic stress testing (P < .001). Stress mode and body weight impacted long-term survival in patients with a normal stress SPECT. The benefit of being physically fit was evident in all weight groups, as was the adverse effect of being unable to exercise. However, with regard to body

  7. Perfusion abnormalities in hemimegalencephaly.

    PubMed

    Wintermark, P; Roulet-Perez, E; Maeder-Ingvar, M; Moessinger, A C; Gudinchet, F; Meuli, R

    2009-04-01

    Cerebrovascular changes are rarely discussed in patients with hemimegalencephaly. These alterations have previously been associated with epileptical activity. We report the case of a 36-week gestation neonate presenting with total right hemimegalencephaly, as demonstrated by a magnetic resonance imaging (MRI) performed in the first days of life. Perfusion-weighted imaging displayed a clear hypervascularization of the right hemisphere. Diffusion-tensor imaging showed an arrangement of white matter fibers concentrically around the ventricle on the right hemisphere. AngioMRI showed an obvious asymmetry in the size of the middle cerebral arteries, with the right middle cerebral artery being prominent. The baby was free of clinical seizures during his first week of life. An electroencephalogram at that time displayed an asymmetric background activity, but no electrical seizures. Perfusion anomalies in hemimegalencephaly may not necessarily be related to epileptical activity, but may be related to vessel alterations. (c) Georg Thieme Verlag KG Stuttgart, New York.

  8. Contactless mapping of rhythmical phenomena in tissue perfusion using PPGI

    NASA Astrophysics Data System (ADS)

    Huelsbusch, Markus; Blazek, Vladimir

    2002-04-01

    This paper presents the experimental setup and preliminary results of a near infrared CCD camera based Photoplethysmography Imaging (PPGI) system, which has been shown to be suitable for contactless and spatially resolved assessment of rhythmical blood volume changes in the skin. To visualize the complex rhythmical patterns in the dermal perfusion the Wavelet Transform is utilized. It is able to jointly assess time and frequency behavior of signals and thus allows to analyze instationary oscillations and variabilities in the different human rhythmics. The presented system is expected to provide new insights into the functional sequences of physiological tissue perfusion as well as of the perfusion status in ulcer formation and wound healing.

  9. A long term model of circulation. [human body

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  10. Computed tomography workup of patients suspected of acute ischemic stroke: perfusion computed tomography adds value compared with clinical evaluation, noncontrast computed tomography, and computed tomography angiogram in terms of predicting outcome.

    PubMed

    Zhu, Guangming; Michel, Patrik; Aghaebrahim, Amin; Patrie, James T; Xin, Wenjun; Eskandari, Ashraf; Zhang, Weiwei; Wintermark, Max

    2013-04-01

    To determine whether perfusion computed tomography (PCT) adds value to noncontrast head CT (NCT), CT angiogram (CTA), and clinical assessment in patients suspected of acute ischemic stroke. We retrospectively reviewed 165 patients with acute ischemic stroke. PCT was used to calculate the volumes of infarct core and ischemic penumbra on admission. Other imaging data included Alberta Score Program Early CT Score, site of occlusion, and collateral flow. Clinical data included age, time, National Institutes of Health Stroke Scale at baseline, treatment type, and modified Rankin score (mRS) at 90 days. Recanalization status was assessed on follow-up imaging. In a first multivariate regression analysis, we assessed whether volumes of PCT penumbra and infarct core could be predicted from clinical variables, NCT, or CTA, or whether they represented independent information. In a second multivariate regression analysis, we used mRS at 90 days as outcome and determined which variables predicted it best. Of 165 patients identified, 76 had a mRS score of 0 to 2 at 90 days, 89 had a mRS score >2. PCT infarct could be predicted by clinical data, NCT, CTA, and combinations of this data (P<0.05). PCT penumbra could not be predicted by clinical data, NCT, and CTA. All of the variables but NCT and CTA were significantly associated with 90-day mRS outcome. The single most important predictor was recanalization status (P<0.001). PCT penumbra volume (P=0.001) was also a predictor of clinical outcome, especially when considered in conjunction with recanalization through an interaction term (P<0.001). PCT penumbra represents independent information, which cannot be predicted by clinical, NCT, and CTA data. PCT penumbra is an important determinant of clinical outcome and adds relevant clinical information compared with a stroke CT workup, including NCT and CTA.

  11. Immunoglobulin M-enriched human intravenous immunoglobulins reduce leukocyte-endothelial cell interactions and attenuate microvascular perfusion failure in normotensive endotoxemia.

    PubMed

    Hoffman, Johannes N; Fertmann, Jan M; Vollmar, Brigitte; Laschke, Matthias W; Jauch, Karl W; Menger, Michael D

    2008-01-01

    Clinical studies indicate potential differences in the efficacy of immunoglobulin (Ig) preparations in patients with sepsis. A recent meta-analysis showed improved survival rates with IgM-enriched Igs. It was the objective of the present study to characterize microcirculatory actions of different clinically used Ig preparations in a rodent endotoxin model by intravital microscopy. Male Syrian golden hamsters 6 to 8 weeks old with a body weight of 60 to 80 g were investigated by intravital fluorescence microscopy. Endotoxemia was induced by administration of 2 mg/kg (i.v.) endotoxin (LPS, Escherichia coli). Two different Ig preparations containing IgM, IgA, and IgG (intravenous IgM group; n = 6; 5 mL Pentaglobin/kg body weight, i.v.) or exclusively IgG (intravenous IgG group; n = 5; 5 mL Flebogamma/kg body weight, i.v.) were applied 5 min before LPS. Saline-treated endotoxemic animals served as controls (control; n = 8). In controls, LPS induced massive leukocyte-endothelial cell interactions, pronounced microvascular leakage, a decrease of systemic platelet count, and distinct capillary perfusion failure (P < 0.05). Both intravenous IgM and IgG reduced venular leakage (P< 0.05) and ameliorated the decrease in platelet count (P < 0.05). Of interest, intravenous IgM was capable of significantly (P< 0.05) reducing leukocyte adhesion in venules. This was associated with normalization of capillary perfusion at 24 h of endotoxemia, whereas intravenous IgG could not prevent LPS-mediated microvascular perfusion failure. We demonstrate that IgM-enriched Igs are superior to IgG alone in attenuating LPS-induced leukocytic inflammation and microcirculatory dysfunction. Our findings can explain better efficacy of IgM-enriched Igs in patients with severe sepsis.

  12. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle.

    PubMed

    Yanagisawa, O; Fukubayashi, T

    2010-11-01

    To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20°C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0°C, -27.8% at 10°C, and -22.6% at 20°C; ADC2: -26% at 0°C, -21.1% at 10°C, and -14.6% at 20°C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0°C, -51.1% at 10°C, and -26.8% at 20°C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling. Copyright © 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Human sperm chromosomes. Long-term effect of cancer treatment

    SciTech Connect

    Genesca, A.; Caballin, M.R.; Miro, R.; Benet, J.; Bonfill, X.; Egozcue, J. )

    1990-06-01

    The long-term cytogenetic effect of radio- or chemotherapy or both on male germ cells was evaluated by study of the chromosomal abnormalities in spermatozoa of four men treated for cancer 5-18 years earlier. The cytogenetic analysis of 422 sperm metaphases showed no differences in the aneuploidy rate. The incidence of structural chromosome aberrations was 14.0%, however, which is much higher than in controls. Thus, the high incidence of structurally aberrant spermatozoa observed in our long-term study indicates that antitumoral treatments affect stem-cell spermatogonia and that aberrant cells can survive germinal selection and produce abnormal spermatozoa.

  14. Human Term Placenta as a Source of Hematopoietic Cells

    PubMed Central

    Serikov, Vladimir; Hounshell, Catherine; Larkin, Sandra; Green, William; Ikeda, Hirokazu; Walters, Mark C.

    2012-01-01

    The main barrier to a broader clinical application of umbilical cord blood (UCB) transplantation is its limiting cellular content. Thus, the discovery of hematopoietic progenitor cells in murine placental tissue led us investigate whether the human placenta contains hematopoietic cells, sites of hematopoiesis, and to develop a procedure of processing and storing placental hematopoietic cells for transplantation. Here we show that the human placenta contains large numbers of CD34-expressing hematopoietic cells, with the potential to provide a cellular yield several-fold greater than that of a typical UCB harvest. Cells from fresh or cryopreserved placental tissue generated erythroid and myeloid colonies in culture, and also produced lymphoid cells after transplantation in immunodeficient mice. These results suggest that human placenta could become an important new source of hematopoietic cells for allogeneic transplantation. PMID:19429852

  15. Low dose CT perfusion using k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2016-03-01

    We aim at improving low dose CT perfusion functional parameters maps and CT images quality, preserving quantitative information. In a dynamic CT perfusion dataset, each voxel is measured T times, where T is the number of acquired time points. In this sense, we can think about a voxel as a point in a T-dimensional space, where the coordinates of the voxels would be the values of its time attenuation curve (TAC). Starting from this idea, a k-means algorithm was designed to group voxels in K classes. A modified guided time-intensity profile similarity (gTIPS) filter was implemented and applied only for those voxels belonging to the same class. The approach was tested on a digital brain perfusion phantom as well as on clinical brain and body perfusion datasets, and compared to the original TIPS implementation. The TIPS filter showed the highest CNR improvement, but lowest spatial resolution. gTIPS proved to have the best combination of spatial resolution and CNR improvement for CT images, while k-gTIPS was superior to both gTIPS and TIPS in terms of perfusion maps image quality. We demonstrate k-means clustering analysis can be applied to denoise dynamic CT perfusion data and to improve functional maps. Beside the promising results, this approach has the major benefit of being independent from the perfusion model employed for functional parameters calculation. No similar approaches were found in literature.

  16. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    NASA's Human Exploration Plans: A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to

  17. Ventilation-perfusion distribution in normal subjects.

    PubMed

    Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A

    2012-09-01

    Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.

  18. A role for estriol in human labor, term and preterm.

    PubMed

    Goodwin, T M

    1999-01-01

    Although estriol has been studied as an indicator of fetal well-being in the past, its broader biologic role has not been elucidated. Estriol in the maternal compartment closely reflects fetal adrenal activity, and increased fetal adrenal activity prior to the onset of labor is a common link in mammalian parturition. In humans, estriol increases before spontaneous labor and may be a clinically useful marker for some cases of preterm labor.

  19. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  20. Long-term population cycles in human societies.

    PubMed

    Turchin, Peter

    2009-04-01

    Human population dynamics are usually conceptualized as either boundless growth or growth to an equilibrium. The implicit assumption underlying these paradigms is that any feedback processes regulating population density, if they exist, operate on a fast-time-scale, and therefore we do not expect to observe population oscillations in human population numbers. This review asks, are population processes in historical and prehistorical human populations characterized by second-order feedback loops, that is, regulation involving lags? If yes, then the implications for forecasting future population change are obvious--what may appear as inexplicable, exogenously driven reverses in population trends may actually be a result of feedbacks operating with substantial time lags. This survey of a variety of historical and archeological data indicates that slow oscillations in population numbers, with periods of roughly two to three centuries, are observed in a number of world regions and historical periods. Next, a potential explanation for this pattern, the demographic-structural theory, is discussed. Finally, the implications of these results for global population forecasts is discussed.

  1. Effect of plasma proteins on Buprenorphine transfer across dually perfused placental lobule

    PubMed Central

    Nanovskaya, TN; Bowen, RS; Patrikeeva, SL; Hankins, GDV; Ahmed, MS

    2015-01-01

    Objective The aim of this investigation is to determine the effect of human serum albumin (HSA) and α-acid glycoprotein (AAG) on buprenorphine (BUP) transplacental transfer and distribution. Methods The technique of dual perfusion of placental lobule (DPPL) was utilized. Buprenorphine was co-perfused with the marker compound antipyrine (AP). In each experiment, the radiolabeled isotopes [3H]-buprenorphine and [14C]-AP were added to enhance their detection limits. Human plasma proteins, HSA and AAG, were added to both the maternal and fetal circuits separately and in combination at their physiological concentrations in maternal and fetal circulations close to term. Results Transplacental transfer of BUP, in absence of plasma proteins, is a 2-step process: the first is its uptake by the syncytiotrophoblast from the maternal circuit, and the second is its transfer/release from the tissue to the fetal circuit. The addition of HSA to the perfusion medium affected only the second step of BUP transfer, but AAG affected both steps. The combined effect of HSA and AAG was not different from that observed in presence of the latter alone. Conclusions Binding of BUP to circulating AAG could have an important role in the transfer of the drug from the maternal to fetal circulation. PMID:19544152

  2. The human disease network in terms of dysfunctional regulatory mechanisms.

    PubMed

    Yang, Jing; Wu, Su-Juan; Dai, Wen-Tao; Li, Yi-Xue; Li, Yuan-Yuan

    2015-10-08

    Elucidation of human disease similarities has emerged as an active research area, which is highly relevant to etiology, disease classification, and drug repositioning. In pioneer studies, disease similarity was commonly estimated according to clinical manifestation. Subsequently, scientists started to investigate disease similarity based on gene-phenotype knowledge, which were inevitably biased to well-studied diseases. In recent years, estimating disease similarity according to transcriptomic behavior significantly enhances the probability of finding novel disease relationships, while the currently available studies usually mine expression data through differential expression analysis that has been considered to have little chance of unraveling dysfunctional regulatory relationships, the causal pathogenesis of diseases. We developed a computational approach to measure human disease similarity based on expression data. Differential coexpression analysis, instead of differential expression analysis, was employed to calculate differential coexpression level of every gene for each disease, which was then summarized to the pathway level. Disease similarity was eventually calculated as the partial correlation coefficients of pathways' differential coexpression values between any two diseases. The significance of disease relationships were evaluated by permutation test. Based on mRNA expression data and a differential coexpression analysis based method, we built a human disease network involving 1326 significant Disease-Disease links among 108 diseases. Compared with disease relationships captured by differential expression analysis based method, our disease links shared known disease genes and drugs more significantly. Some novel disease relationships were discovered, for example, Obesity and cancer, Obesity and Psoriasis, lung adenocarcinoma and S. pneumonia, which had been commonly regarded as unrelated to each other, but recently found to share similar molecular

  3. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    NASA Astrophysics Data System (ADS)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  4. Harmonic analysis of perfusion pumps.

    PubMed

    Dougherty, F Carroll; Donovan, F M; Townsley, Mary I

    2003-12-01

    The controversy over the use of nonpulsatile versus pulsatile pumps for maintenance of normal organ function during ex vivo perfusion has continued for many years, but resolution has been limited by lack of a congruent mathematical definition of pulsatility. We hypothesized that the waveform frequency and amplitude, as well as the underlying mean distending pressure are all key parameters controlling vascular function. Using discrete Fourier Analysis, our data demonstrate the complexity of the pulmonary arterial pressure waveform in vivo and the failure of commonly available perfusion pumps to mimic in vivo dynamics. In addition, our data show that the key harmonic signatures are intrinsic to the perfusion pumps, are similar for flow and pressure waveforms, and are unchanged by characteristics of the downstream perfusion circuit or perfusate viscosity.

  5. Interactions between human immunodeficiency virus type 1 and human cytomegalovirus in human term syncytiotrophoblast cells coinfected with both viruses.

    PubMed Central

    Tóth, F D; Mosborg-Petersen, P; Kiss, J; Aboagye-Mathiesen, G; Hager, H; Juhl, C B; Gergely, L; Zdravkovic, M; Aranyosi, J; Lampé, L

    1995-01-01

    Human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1) may interact in the pathogenesis of AIDS. The placental syncytiotrophoblast layer serves as the first line of defense of the fetus against viruses. We analyzed the patterns of replication of HIV-1 and HCMV in singly an dually infected human term syncytiotrophoblast cells cultured in vitro. Syncytiotrophoblast cells exhibited restricted permissiveness for HIV-1, while HCMV replication was restricted at the level of immediate-early and early gene products in the singly infected cells. We found that the syncytiotrophoblasts as an overlapping cell population could be coinfected with HIV-1 and HCMV. HIV-1 replication was markedly upregulated by previous or simultaneous infection of the cells with HCMV, whereas prior HIV-1 infection of the cells converted HCMV infection from a nonpermissive to a permissive one. No simultaneous enhancement of HCMV and HIV-1 expression was observed in the dually infected cell cultures. Major immediate-early proteins of HCMV were necessary for enhancement of HIV-1 replication, and interleukin-6 production induced by HCMV and further increased by replicating HIV-1 synergized with these proteins to produce this effect. Permissive replication cycle of HCMV was induced by the HIV-1 tat gene product. We were unable to detect HIV-1 (HCMV) or HCMV (HIV-1) pseudotypes in supernatant fluids from dually infected cell cultures. Our results suggest that interactions between HIV-1 and HCMV in coinfected syncytiotrophoblast cells may contribute to the transplacental transmission of both viruses. PMID:7884869

  6. A compact instrument to measure perfusion of vasculature in transplanted maxillofacial free flaps

    NASA Astrophysics Data System (ADS)

    Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Podolsky, Matthew J.; Farkas, Dana; Ward, Brent B.; Vartarian, Mark; Feinberg, Stephen E.; Lee, Seung Yup; Parikh, Urmi; Mycek, Mary-Ann; Christian, James F.

    2016-03-01

    The vascularization and resulting perfusion of transferred tissues are critical to the success of grafts in buried free flap transplantations. To enable long-term clinical monitoring of grafted tissue perfusion during neovascularization and endothelialization, we are developing an implantable instrument for the continuous monitoring of perfusion using diffuse correlation spectroscopy (DCS), and augmented with diffuse reflectance spectroscopy (DRS). This work discusses instrument construction, integration, and preliminary results using a porcine graft model.

  7. In-vivo Stretch of Term Human Fetal Membranes

    PubMed Central

    Joyce, EM; Diaz, P; Tamarkin, S; Moore, R; Strohl, A; Stetzer, B; Kumar, D; Sacks, MS; Moore, JJ

    2015-01-01

    Introduction Fetal membranes (FM) usually fail prior to delivery during term labor, but occasionally fail at preterm gestation, precipitating preterm birth. To understand the FM biomechanical properties underlying these events, study of the baseline in-vivo stretch experienced by the FM is required. This study's objective was to utilize high resolution MRI imaging to determine in-vivo FM stretch. Methods Eight pregnant women (38.4±0.4wks) underwent abdominal-pelvic MRI prior to (2.88±0.83d) caesarean delivery. Software was utilized to determine the total FM in-vivo surface area (SA) and that of its components: placental disc and reflected FM. At delivery, the SA of the disc and FM in the relaxed state were measured. In-vivo (stretched) to delivered SA ratios were calculated. FM fragments were then biaxially stretched to determine the force required to re-stretch the FM back to in-vivo SA. Results Total FM SA, in-vivo vs delivered, was 2135.51±108.47 cm2 vs 842.59±35.86 cm2; reflected FM was 1778.42±107.39 cm2 vs 545.41±22.90 cm2, and disc was 357.10±28.08 cm2 vs 297.18±22.14 cm2. The ratio (in-vivo to in-vitro SA) of reflected FM was 3.26±0.11 and disc was 1.22±0.10. Reflected FM re-stretched to in-vivo SA generated a tension of 72.26N/m, corresponding to approximate pressure of 15.4mmHg. FM rupture occurred at 295.08 ± 31.73N/m corresponding to approximate pressure of 34mmHg. Physiological SA was 70% of that at rupture. Discussion FM are significantly distended in-vivo. FM collagen fibers were rapidly recruited once loaded and functioned near the failure state during in-vitro testing, suggesting that, in-vivo, minimal additional (beyond physiological) stretch may facilitate rapid, catastrophic failure. PMID:26907383

  8. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  9. Leptin determination in colostrum and early human milk from mothers of preterm and term infants.

    PubMed

    Eilers, Elisabeth; Ziska, Thomas; Harder, Thomas; Plagemann, Andreas; Obladen, Michael; Loui, Andrea

    2011-06-01

    Leptin is involved in the regulation of food intake and energy expenditure and is therefore important for growth and brain development. Analytical methods used for leptin measurement in human milk differ widely in the literature and yield varying results. To compare different preparation methods for the analysis of leptin in human milk and to investigate the leptin levels in colostrum and mature human milk from mothers of preterm or term infants. Mothers delivering a preterm (n=37) or a term infant (n=40) were recruited for a prospective study and were ask to collect breast milk on the 3rd and 28th day of lactation. Leptin, protein and fat concentrations were analysed. Clinical data of mother and child were recorded prospectively. Skim milk was most appropriate for leptin analysis. Human milk leptin concentrations did not differ between preterm and term human milk. In term milk, leptin concentration on day 28 was lower than on day 3 (p<0.05). Milk leptin levels on the 3rd and 28th day were positively correlated with mothers' body mass index, but not with fat content in milk. Skim milk was the most stabile preparation for leptin analysis. Preterm and term human milk contain leptin in equal concentrations. Human milk leptin depends on mothers' body mass index. Copyright © 2011. Published by Elsevier Ireland Ltd.

  10. Fostering Humane Care of Dying Persons in Long-Term Care. Guidebook for Staff Development Instructors.

    ERIC Educational Resources Information Center

    Wilson, Sarah A.; Daley, Barbara

    This guide is intended for staff development instructors responsible for inservice education on the topic of fostering humane care for dying persons in long-term care. The introduction discusses the guide's development based on input from administrators, staff, and families of residents in long-term care facilities and focus group interviews in…

  11. Cardiac shock wave therapy and myocardial perfusion in severe coronary artery disease.

    PubMed

    Kaller, M; Faber, L; Bogunovic, N; Horstkotte, D; Burchert, W; Lindner, Oliver

    2015-10-01

    Ultrasound guided cardiac shock wave therapy (CSWT) is a noninvasive therapeutic option in the treatment of chronic-refractory angina. Clinical trials have shown that CSWT reduces angina symptoms, improves regional systolic function, LV ejection fraction, myocardial perfusion and quality of life parameters. Absolute measurements of myocardial perfusion before and after CSWT have not been performed so far. We studied a total of 21 CCS III patients with history of CAD and multiple interventions who suffered from disabling angina despite individually optimized medical therapy. An N-13 NH3 PET perfusion scan under adenosine was performed before and after CSWT treatment. CSWT was well tolerated in all patients. Absolute perfusion under adenosine of the global left-ventricular myocardium did not change under therapy or minimal coronary resistance. The treated segments, however, showed in terms of both perfusion and resistance a mild but significant improvement, by 11 and 15 %, respectively, whereas no change could be observed in the remote segments. Considering a threshold of increased perfusion of 5 %, 10 (77 %) out of 13 patients with a better target perfusion improved in their CCS class, whereas 3 (43 %) out of 7 patients without improved target perfusion improved in their CCS class too. Standard CSWT has the potential to improve myocardial perfusion of the therapy zone and clinical CAD symptomatology without affecting global myocardial perfusion. As a noninvasive and well tolerated therapeutic option, these data suggest the use of CSWT in patients with end-stage CAD.

  12. [Effect of eleutherococcus on short-term memory and visual perception in healthy humans].

    PubMed

    Arushanian, E B; Baĭda, O A; Mastiagin, S S; Popova, A P; Shikina, I B

    2003-01-01

    Acute administration of a liquid eleutherococcus extract significantly improves short-term memory in healthy humans. The expression of this action depends on the daytime and psychophysiological peculiarities of the volunteers. Administration of the preparation also changes light perception by increasing retinal sensitivity. This effect was more pronounced in humans with weak type of high nervous activity in evening hours.

  13. Apelin is decreased with human preterm and term labor and regulates prolabor mediators in human primary amnion cells.

    PubMed

    Lim, Ratana; Barker, Gillian; Riley, Clyde; Lappas, Martha

    2013-08-01

    A critical role of proinflammatory mediators including cytokines, prostaglandins, and extracellular matrix remodeling enzymes in the processes of human labor and delivery, at term and preterm, has been demonstrated. In nongestational tissues, apelin plays an important role in a number of physiologic processes, including the regulation of inflammation. However, the role and regulation of apelin and the apelin receptor (APJ) in human gestational tissues are not known. The aims of this study were to determine the effect of (i) preterm and term labor on apelin and APJ expression in human gestational tissues and (ii) apelin small interfering RNA (siRNA) knockdown in human primary amnion cells on prolabor mediators. Human placenta and fetal membranes were collected from term nonlaboring women and women after spontaneous labor and delivery. Preterm and term spontaneous labor were associated with significantly lower apelin expression in fetal membranes. On the other hand, there was no effect of labor on APJ expression and no effect of term labor on placental apelin or APJ expression. Transfection of primary amnion cells with apelin siRNA was associated with significantly increased interleukin (IL)-1β-induced IL-6 and IL-8 release and cyclooxygenase-2 messenger RNA (mRNA) expression and resultant prostaglandin E2 and prostaglandin F2α release. There was no effect of apelin siRNA on matrix metalloproteinase (MMP)-9 mRNA expression and pro MMP-9 release. In summary, human labor downregulates apelin expression in human fetal membranes. Furthermore, a role of apelin in the regulation of proinflammatory and prolabor mediators in human fetal membranes is supported by our studies.

  14. Perfusion measurement in acute pancreatitis using dynamic perfusion MDCT.

    PubMed

    Bize, Pierre E; Platon, Alexandra; Becker, Christoph D; Poletti, Pierre-Alexandre

    2006-01-01

    Our objective was to determine whether MDCT with perfusion imaging could help in assessing the severity of acute pancreatitis in the initial phase of the disease. One hundred six patients with abdominal pain were prospectively enrolled in this study. Patients were separated into two groups: P1 (severe) and P2 (mild) acute pancreatitis. Mean perfusion value was 24.8 mL/100 mL/min in the P1 group and 50.5 mL/100 mL/min in the P2 group (p = 0.0016, significant). Our preliminary data suggest that pancreatic perfusion measurement using MDCT with perfusion imaging could help in assessing the severity of acute pancreatitis.

  15. Cerebral-Body Perfusion Model

    DTIC Science & Technology

    1990-07-01

    compared to the 0.5g curve) fall in flow. Fig. 9b, showing the 5g case, strongly suggests a possible, so-called, " luxury perfusion ", in which natural...as the luxury perfusion situation which bypasses the flow with the nutrients it carries (through newly opened collaterals) and result in a "blackout...89-0054 CEREBRAL-BODY PERFUSION MODEL S. Sorek’, J. Bear2, and M., Feinsod3 in Collaboration with K. Allen4, L. Bunt5 and S. Ben-IHaiM6 July 1990

  16. Three-dimensional tumor perfusion reconstruction using fractal interpolation functions.

    PubMed

    Craciunescu, O I; Das, S K; Poulson, J M; Samulski, T V

    2001-04-01

    It has been shown that the perfusion of blood in tumor tissue can be approximated using the relative perfusion index determined from dynamic contrast-enhanced magnetic resonance imaging (DE-MRI) of the tumor blood pool. Also, it was concluded in a previous report that the blood perfusion in a two-dimensional (2-D) tumor vessel network has a fractal structure and that the evolution of the perfusion front can be characterized using invasion percolation. In this paper, the three-dimensional (3-D) tumor perfusion is reconstructed from the 2-D slices using the method of fractal interpolation functions (FIF), i.e., the piecewise self-affine fractal interpolation model (PSAFIM) and the piecewise hidden variable fractal interpolation model (PHVFIM). The fractal models are compared to classical interpolation techniques (linear, spline, polynomial) by means of determining the 2-D fractal dimension of the reconstructed slices. Using FIFs instead of classical interpolation techniques better conserves the fractal-like structure of the perfusion data. Among the two FIF methods, PHVFIM conserves the 3-D fractality better due to the cross correlation that exists between the data in the 2-D slices and the data along the reconstructed direction. The 3-D structures resulting from PHVFIM have a fractal dimension within 3%-5% of the one reported in literature for 3-D percolation. It is, thus, concluded that the reconstructed 3-D perfusion has a percolation-like scaling. As the perfusion term from bio-heat equation is possibly better described by reconstruction via fractal interpolation, a more suitable computation of the temperature field induced during hyperthermia treatments is expected.

  17. Quantitative measurement of tissue perfusion and diffusion in vivo.

    PubMed

    Chenevert, T L; Pipe, J G; Williams, D M; Brunberg, J A

    1991-01-01

    Magnetic resonance imaging techniques designed for sensitivity to microscopic motions of water diffusion and blood flow in the capillary network are also exceptionally sensitive to bulk motion properties of the tissue, which may lead to contrast artifact and large quantitative errors. The magnitude of bulk motion error that exists in human brain perfusion/diffusion imaging and the inability of cardiac gating to adequately control this motion are demonstrated by direct measurement of phase stability of voxels localized in the brain. Two methods are introduced to reduce bulk motion phase error. The first, a postprocessing phase correction algorithm, reduces coarse phase error but is inadequate by itself for quantitative perfusion/diffusion MRI. The second method employs orthogonal slice selection gradients to define a column of tissue in the object, from which echoes may be combined in a phase-insensitive manner to measure more reliably the targeted signal attenuation. Applying this acquisition technique and a simplistic model of perfusion and diffusion signal attenuations yields an estimated perfusion fraction of 3.4 +/- 1.1% and diffusion coefficient of 1.1 +/- 0.2 x 10(-5) cm2/s in the white matter of one normal volunteer. Successful separation of perfusion and diffusion effects by this technique is supported in a dynamic study of calf muscle. Periods of normal blood flow, low flow, and reactive hyperemia are clearly distinguished in the quantitative perfusion results, whereas measured diffusion remained nearly constant.

  18. The Snackbot: Documenting the Design of a Robot for Long-term Human-Robot Interaction

    DTIC Science & Technology

    2009-03-01

    Physiological Behavior, 79, 183-189. [2] Bickmore, T. W ., and Picard, R. W . (2005). Establishing and maintaining long-term human-computer...2003). Emotion and sociable humanoid robots. International Journal of Human-Computer Studies, 59, 119- 155. [5] Bruce , A., Nourbakhsh, I., and...Simmons, R. (2002). The role of expressiveness and attention in human-robot interaction. Proceedings of ICRA’02, 4138-4142. [6] Burgard, W ., Cremers, A.B

  19. Engineering of functional, perfusable 3D microvascular networks on a chip.

    PubMed

    Kim, Sudong; Lee, Hyunjae; Chung, Minhwan; Jeon, Noo Li

    2013-04-21

    Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.

  20. Heart failure diagnostics based on ventilation/perfusion single photon emission computed tomography pattern and quantitative perfusion gradients.

    PubMed

    Jögi, Jonas; Palmer, John; Jonson, Björn; Bajc, Marika

    2008-08-01

    Left heart failure (LHF) is a common and frequently overlooked condition owing to insufficient diagnostic methods. This can potentially delay onset of treatment. Our clinical experience with ventilation/perfusion single photon emission computed tomography (V/P SPECT) indicates that perfusion shows an antigravitational distribution pattern in LHF. The aim of the study was to test the hypothesis that LHF diagnosis can be made on the basis of V/P SPECT, and to develop and perform a first evaluation of objective parameters for LHF diagnostics in terms of perfusion gradients. This retrospective study included 247 consecutive patients with clinical suspicion of pulmonary embolism (PE), who were examined with V/P SPECT. Perfusion gradients were developed and quantified in dorso-ventral and cranio-caudal directions. Quantitative results were compared with visual interpretation of patients with normal and heart failure patterns. Patients with LHF pattern were retrospectively followed up by review of medical records to confirm or discard heart failure diagnosis at the time of V/P SPECT examination. LHF pattern on V/P SPECT was identified in 36 patients (15%), normal ventilation/perfusion pattern was found in 67 patients (27%), and PE in 62 patients (25%). The follow-up confirmed heart failure diagnosis in 32 of the 36 cases with LHF pattern, leading to a positive predictive value of 88% for LHF diagnosis based on V/P SPECT. Dorso-ventral perfusion gradients discriminated normal from LHF patients. In patients with suspected PE, LHF is common. Appropriate V/P SPECT pattern recognition, supported by objectively determined dorso-ventral perfusion gradients, allows the diagnosis of LHF. A positive perfusion gradient in the dorso-ventral direction should lead to consideration of heart failure as a possible explanation for the symptoms in these patients.

  1. Resuscitation of Ischemic Donor Livers with Normothermic Machine Perfusion: A Metabolic Flux Analysis of Treatment in Rats

    PubMed Central

    Izamis, Maria-Louisa; Tolboom, Herman; Uygun, Basak; Berthiaume, Francois; Yarmush, Martin L.; Uygun, Korkut

    2013-01-01

    Normothermic machine perfusion has previously been demonstrated to restore damaged warm ischemic livers to transplantable condition in animal models. However, the mechanisms of recovery are unclear, preventing rational optimization of perfusion systems and slowing clinical translation of machine perfusion. In this study, organ recovery time and major perfusate shortcomings were evaluated using a comprehensive metabolic analysis of organ function in perfusion prior to successful transplantation. Two groups, Fresh livers and livers subjected to 1 hr of warm ischemia (WI) received perfusion for a total preservation time of 6 hrs, followed by successful transplantation. 24 metabolic fluxes were directly measured and 38 stoichiometrically-related fluxes were estimated via a mass balance model of the major pathways of energy metabolism. This analysis revealed stable metabolism in Fresh livers throughout perfusion while identifying two distinct metabolic states in WI livers, separated at t = 2 hrs, coinciding with recovery of oxygen uptake rates to Fresh liver values. This finding strongly suggests successful organ resuscitation within 2 hrs of perfusion. Overall perfused livers regulated metabolism of perfusate substrates according to their metabolic needs, despite supraphysiological levels of some metabolites. This study establishes the first integrative metabolic basis for the dynamics of recovery during perfusion treatment of marginal livers. Our initial findings support enhanced oxygen delivery for both timely recovery and long-term sustenance. These results are expected to lead the optimization of the treatment protocols and perfusion media from a metabolic perspective, facilitating translation to clinical use. PMID:23922793

  2. Maximizing kidneys for transplantation using machine perfusion: from the past to the future

    PubMed Central

    Hameed, Ahmer M.; Pleass, Henry C.; Wong, Germaine; Hawthorne, Wayne J.

    2016-01-01

    Abstract Background: The two main options for renal allograft preservation are static cold storage (CS) and machine perfusion (MP). There has been considerably increased interest in MP preservation of kidneys, however conflicting evidence regarding its efficacy and associated costs have impacted its scale of clinical uptake. Additionally, there is no clear consensus regarding oxygenation, and hypo- or normothermia, in conjunction with MP, and its mechanisms of action are also debated. The primary aims of this article were to elucidate the benefits of MP preservation with and without oxygenation, and/or under normothermic conditions, when compared with CS prior to deceased donor kidney transplantation. Methods: Clinical (observational studies and prospective trials) and animal (experimental) articles exploring the use of renal MP were assessed (EMBASE, Medline, and Cochrane databases). Meta-analyses were conducted for the comparisons between hypothermic MP (hypothermic machine perfusion [HMP]) and CS (human studies) and normothermic MP (warm (normothermic) perfusion [WP]) compared with CS or HMP (animal studies). The primary outcome was allograft function. Secondary outcomes included graft and patient survival, acute rejection and parameters of tubular, glomerular and endothelial function. Subgroup analyses were conducted in expanded criteria (ECD) and donation after circulatory (DCD) death donors. Results: A total of 101 studies (63 human and 38 animal) were included. There was a lower rate of delayed graft function in recipients with HMP donor grafts compared with CS kidneys (RR 0.77; 95% CI 0.69–0.87). Primary nonfunction (PNF) was reduced in ECD kidneys preserved by HMP (RR 0.28; 95% CI 0.09–0.89). Renal function in animal studies was significantly better in WP kidneys compared with both HMP (standardized mean difference [SMD] of peak creatinine 1.66; 95% CI 3.19 to 0.14) and CS (SMD of peak creatinine 1.72; 95% CI 3.09 to 0.34). MP improves renal

  3. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... JavaScript. A pulmonary ventilation/perfusion scan involves two nuclear scan tests to measure breathing (ventilation) and circulation ( ... In: Mettler FA, Guiberteau MJ, eds. Essentials of Nuclear Medicine Imaging . 6th ed. Philadelphia, PA: Elsevier Saunders; ...

  4. Human papillomavirus, p16, and epidermal growth factor receptor biomarkers and CT perfusion values in head and neck squamous cell carcinoma.

    PubMed

    Hoefling, N L; McHugh, J B; Light, E; Kumar, B; Walline, H; Prince, M; Bradford, C; Carey, T E; Mukherji, S K

    2013-05-01

    Head and neck squamous cell carcinoma tumors positive for laboratory biomarkers hrHPV and p16 and negative for EGFR often respond better to nonsurgical organ-preservation therapy than hrHPV-negative, p16-negative, and EGFR overexpressing tumors. CTP has been shown to distinguish which locally advanced head and neck squamous cell carcinomas will respond to induction chemotherapy or chemoradiation. Our purpose was to determine whether a relationship exists between CTP measures and the expression of these laboratory biomarkers, because both appear to separate head and neck squamous cell carcinoma tumors into similar groups. We conducted an institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective review of head and neck CTP in 25 patients with locally advanced head and neck squamous cell carcinoma who had signed informed consent. Eight women and 17 men, 41-80 years of age, constituted a pretreatment group of 18 patients and a palliative group of 7 patients. Tumor biopsy samples were analyzed for overexpression of hrHPV, p16, and EGFR. The hrHPV, p16, and EGFR status of the tumors was correlated with CTP parameters (MTT, BV, BF, CP) by using the Wilcoxon evaluation and Fischer exact test. There were significantly lower CP values in pretreatment tumors overexpressing EGFR (P = .04). CP values ≤17.23 were significantly correlated with EGFR overexpression (P = .015). A trend toward higher CP values was present in hrHPV-positive and p16-overexpressing pretreatment tumors (P = .14). A significant correlation exists between CTP measures and EGFR overexpression in head and neck squamous cell carcinomas, suggesting an association between certain imaging findings and molecular biomarkers. These results may be related to a tumor cell survival mechanism linking perfusion and biomarker expression.

  5. The differential effects of norepinephrine and dopamine on cerebrospinal fluid pressure and spinal cord perfusion pressure after acute human spinal cord injury.

    PubMed

    Altaf, F; Griesdale, D E; Belanger, L; Ritchie, L; Markez, J; Ailon, T; Boyd, M C; Paquette, S; Fisher, C G; Street, J; Dvorak, M F; Kwon, B K

    2017-01-01

    Prospective vasopressor cross-over interventional studyObjectives:To examine how two vasopressors used in acute traumatic spinal cord injury (SCI) affect intrathecal cerebrospinal fluid pressure and the corresponding spinal cord perfusion pressure (SCPP). Vancouver, British Columbia, Canada. Acute SCI patients over the age of 17 with cervical or thoracic ASIA Impairment Scale (AIS). A, B or C injuries were enrolled in this study. Two vasopressors, norepinephrine and dopamine, were evaluated in a 'crossover procedure' to directly compare their effect on the intrathecal pressure (ITP). The vasopressor cross-over procedures were performed in the intensive care unit where ITP, mean arterial pressure (MAP) and heart rate were being continuously measured. The SCPP was calculated as the difference between MAP and ITP. A total of 11 patients were enrolled and included in our analysis. There were 6 patients with AIS A, 3 with AIS B and 2 with AIS C injuries at baseline. We performed 24 cross-over interventions in these 11 patients. There was no difference in MAP with the use of norepinephrine versus dopamine (84±1 mm Hg for both; P=0.33). Conversely, ITP was significantly lower with the use of norepinephrine than with dopamine (17±1 mm Hg vs 20±1 mm Hg, respectively, P<0.001). This decrease in ITP with norepinephrine resulted in an increased SCPP during the norepinephrine infusion when compared with dopamine (67±1 mm Hg vs 65±1 mm Hg respectively, P=0.0049). Norepinephrine was able to maintain MAP with a lower ITP and a correspondingly higher SCPP as compared with dopamine in this study. These results suggest that norepinephrine may be preferable to dopamine if vasopressor support is required post SCI to maintain elevated MAPs in accordance with published guidelines.

  6. Changes in pulse rate, respiratory rate, blood oxygenation, perfusion index, skin conductance, and their variability induced during and after grounding human subjects for 40 minutes.

    PubMed

    Chevalier, Gaetan

    2010-01-01

    Previous studies have shown that grounding produces quantifiable physiologic changes. This study was set up to reproduce and expand earlier electrophysiologic and physiologic parameters measured immediately after grounding with improved methodology and state-of-the-art equipment. A multiparameter double-blind experiment was conducted with 14 men and 14 women (age range: 18-80) in relatively good health. Subjects were screened for health problems using a commonly used health questionnaire. They were seated in a comfortable recliner and measured during 2-hour grounding sessions, leaving time for signals to stabilize before, during, and after grounding (40 minutes for each period). Sham 2-hour grounding sessions were also recorded with the same subjects as controls. This report presents results for 5 of the 18 parameters measured. The parameters reported here are: skin conductance (SC), blood oxygenation (BO), respiratory rate (RR), pulse rate (PR), and perfusion index (PI). This study was performed in a rented facility in Encinitas, California. The facility was chosen in a quiet area for its very low electromagnetic noise. For each session, statistical analyses were performed on four 10-minute segments: before and after grounding (sham grounding for control session) and before and after ungrounding (sham ungrounding). There was an immediate decrease in SC at grounding and an immediate increase at ungrounding on all subjects. RR increased during grounding, and the effect lasted after ungrounding. RR variance increased immediately after grounding then decreased. BO variance decreased during grounding, followed by a dramatic increase after ungrounding. PR and PI variances increased toward the end of the grounding period, and this change persisted after ungrounding. These results warrant further research to determine how grounding affects the body. Grounding could become important for relaxation, health maintenance and disease prevention.

  7. The prion gene is associated with human long-term memory.

    PubMed

    Papassotiropoulos, Andreas; Wollmer, M Axel; Aguzzi, Adriano; Hock, Christoph; Nitsch, Roger M; de Quervain, Dominique J-F

    2005-08-01

    Human cognitive processes are highly variable across individuals and are influenced by both genetic and environmental factors. Although genetic variations affect short-term memory in humans, it is unknown whether genetic variability has also an impact on long-term memory. Because prion-like conformational changes may be involved in the induction of long-lasting synaptic plasticity, we examined the impact of single-nucleotide polymorphisms (SNPs) of the prion protein gene (PRNP) on long-term memory in healthy young humans. SNPs in the genomic region of PRNP were associated with better long-term memory performance in two independent populations with different educational background. Among the examined PRNP SNPs, the common Met129Val polymorphism yielded the highest effect size. Twenty-four hours after a word list-learning task, carriers of either the 129MM or the 129MV genotype recalled 17% more information than 129VV carriers, but short-term memory was unaffected. These results suggest a role for the prion protein in the formation of long-term memory in humans.

  8. Nifedipine increases fetoplacental perfusion.

    PubMed

    Karahanoglu, Ertugrul; Altinboga, Orhan; Akpinar, Funda; Demirdag, Erhan; Ozdemirci, Safak; Akyol, Aysegul; Yalvac, Serdar

    2017-01-01

    Our aim is to evaluate the effect of nifedipine on fetoplacental hemodynamic parameters. A retrospective study was conducted at a tertiary center with 30 patients for whom nifedipine treatment was used as a tocolytic therapy for preterm labor. Initiation of this treatment was at 31.6±2.5 weeks of gestation. We combined the pulse Doppler imaging parameters with grayscale imaging via the Bernoulli theorem, which is called the "continuity equation", to get the fetoplacental perfusion (FPP). Evaluated parameters were the resistance index (RI), the pulsatility index (PI), systole/diastole ratios (S/D), the velocity-time integral of the umbilical artery (VTI), the radius of the umbilical artery, the peak systolic velocity and the mean pressure gradient in the umbilical artery. From these parameters, the FPP was acquired. We found that the RI, the PI and the S/D ratio did not change after treatment with nifedipine. The mean pressure gradient, the VTI and the peak systolic velocity increased after treatment with nifedipine. Nifedipine increases FPP from 166±73.81 beat.cm3/min to 220±83.3 beat.cm3/min. Although nifedipine had no effect on the PI, the RI or the S/D, it increased the mean pressure gradient, the VTI and FPP.

  9. CAD of myocardial perfusion

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2007-03-01

    Our purpose is in the automated evaluation of the physiological relevance of lesions in coronary angiograms. We aim to extract as much as possible quantitative information about the physiological condition of the heart from standard angiographic image sequences. Coronary angiography is still the gold standard for evaluating and diagnosing coronary abnormalities as it is able to locate precisely the coronary artery lesions. The dimensions of the stenosis can be assessed nowadays successfully with image processing based Quantitative Coronary Angiography (QCA) techniques. Our purpose is to assess the clinical relevance of the pertinent stenosis. We therefore analyze the myocardial perfusion as revealed in standard angiographic image sequences. In a Region-of-Interest (ROI) on the angiogram (without an overlaying major blood vessel) the contrast is measured as a function of time (the so-called time-density curve). The required hyperemic state of exercise is induced artificially by the injection of a vasodilator drug e.g. papaverine. In order to minimize motion artifacts we select based on the recorded ECG signal end-diastolic images in both a basal and a hyperemic run in the same projection to position the ROI. We present the development of the algorithms together with results of a small study of 20 patients which have been catheterized following the standard protocol.

  10. Local perfusion and metabolic demand during exercise: a noninvasive MRI method of assessment.

    PubMed

    Richardson, R S; Haseler, L J; Nygren, A T; Bluml, S; Frank, L R

    2001-10-01

    A noninvasive magnetic resonance imaging (MRI) method to assess the distribution of perfusion and metabolic demand (Q/VO(2)) in exercising human skeletal muscle is described. This method combines two MRI techniques that can provide accurate multiple localized measurements of Q/VO(2) during steady-state plantar flexion exercise. The first technique, (31)P chemical shift imaging, permits the acquisition of comparable phosphorus spectra from multiple voxels simultaneously. Because phosphocreatine (PCr) depletion is directly proportional to ATP hydrolysis, its relative depletion can be used as an index of muscle O(2) uptake (VO(2)). The second MRI technique allows the measurement of both spatially and temporally resolved muscle perfusion in vivo by using arterial spin labeling. Promising validity and reliability data are presented for both MRI techniques. Initial results from the combined method provide evidence of a large variation in Q/VO(2), revealing areas of apparent under- and overperfusion for a given metabolic turnover. Analysis of these data in a similar fashion to that employed in the assessment of ventilation-to-perfusion matching in the lungs revealed a similar second moment of the perfusion distribution and PCr distribution on a log scale (log SD(Q) and log SD(PCr)) (0.47). Modeling the effect of variations in log SD(Q) and log SD(PCr) in terms of attainable VO(2), assuming no diffusion limits, indicates that the log SD(Q) and log SD(PCr) would allow only 92% of the target VO(2) to be achieved. This communication documents this novel, noninvasive method for assessing Q/VO(2), and initial data suggest that the mismatch in Q/VO(2) may play a significant role in determining O(2) transport and utilization during exercise.

  11. Coagulase-Negative Staphylococci in Human Milk From Mothers of Preterm Compared With Term Neonates.

    PubMed

    Soeorg, Hiie; Metsvaht, Tuuli; Eelmäe, Imbi; Metsvaht, Hanna Kadri; Treumuth, Sirli; Merila, Mirjam; Ilmoja, Mari-Liis; Lutsar, Irja

    2017-05-01

    Human milk is the preferred nutrition for neonates and a source of bacteria. Research aim: The authors aimed to characterize the molecular epidemiology and genetic content of staphylococci in the human milk of mothers of preterm and term neonates. Staphylococci were isolated once per week in the 1st month postpartum from the human milk of mothers of 20 healthy term and 49 preterm neonates hospitalized in the neonatal intensive care unit. Multilocus variable-number tandem-repeats analysis and multilocus sequence typing were used. The presence of the mecA gene, icaA gene of the ica-operon, IS 256, and ACME genetic elements was determined by PCR. The human milk of mothers of preterm compared with term neonates had higher counts of staphylococci but lower species diversity. The human milk of mothers of preterm compared with term neonates more often contained Staphylococcus epidermidis mecA (32.7% vs. 2.6%), icaA (18.8% vs. 6%), IS 256 (7.9% vs. 0.9%), and ACME (15.4% vs. 5.1%), as well as Staphylococcus haemolyticus mecA (90.5% vs. 10%) and IS 256 (61.9% vs. 10%). The overall distribution of multilocus variable-number tandem-repeats analysis (MLVA) types and sequence types was similar between the human milk of mothers of preterm and term neonates, but a few mecA-IS 256-positive MLVA types colonized only mothers of preterm neonates. Maternal hospitalization within 1 month postpartum and the use of an arterial catheter or antibacterial treatment in the neonate increased the odds of harboring mecA-positive staphylococci in human milk. Limiting exposure of mothers of preterm neonates to the hospital could prevent human milk colonization with more pathogenic staphylococci.

  12. Accuracy and feasibility of dynamic contrast-enhanced 3D MR imaging in the assessment of lung perfusion: comparison with Tc-99 MAA perfusion scintigraphy.

    PubMed

    Yilmaz, E; Akkoclu, A; Degirmenci, B; Cooper, R A; Sengun, B; Gulcu, A; Osma, E; Ucan, E S

    2005-08-01

    The aim of this study was to correlate findings of perfusion magnetic resonance imaging (MRI) and perfusion scintigraphy in cases where there was a suspicion of abnormal pulmonary vasculature, and to evaluate the usefulness of MRI in the detection of perfusion deficits of the lung. In all, 17 patients with suspected abnormality of the pulmonary vasculature underwent dynamic contrast-enhanced MRI. T1-weighted 3D fast-field echo pulse sequences were obtained (TR/TE 3.3/1.58 ms; flip angle 30 degrees; slice thickness 12 to 15 mm). The dynamic study was acquired in the coronal plane following administration of 0.1 mmol/kg gadopentetate dimeglumine. A total of 8 to 10 sections repeated 20 to 25 times at intervals of 1s were performed. Perfusion lung scintigraphy was carried out a maximum of 48 h before the MR examination in all cases. Two radiologists, who were blinded to the clinical data and results of other imaging methods, reviewed all coronal sections. MR perfusion images were independently assessed in terms of segmental or lobar perfusion defects in the 85 lobes of the 17 individuals, and the findings were compared with the results of scintigraphy. Of the 17 patients, 8 were found to have pulmonary emboli, 2 chronic obstructive pulmonary disease with emphysema, 2 bullous emphysema, 2 Takayasu arteritis and 1 had a hypoplastic pulmonary artery. Pulmonary perfusion was completely normal in 2 cases. In 35 lobes, perfusion defects were detected using both methods, in 4 with MR alone and in 9 only with scintigraphy. There was good agreement between MRI and scintigraphy findings (kappa=0.695). Pulmonary perfusion MRI is a new alternative to scintigraphy in the evaluation of pulmonary perfusion for various lung disorders. In addition, this technique allows measurement and quantification of pulmonary perfusion abnormalities.

  13. Does Human Milk Modulate Body Composition in Late Preterm Infants at Term-Corrected Age?

    PubMed

    Giannì, Maria Lorella; Consonni, Dario; Liotto, Nadia; Roggero, Paola; Morlacchi, Laura; Piemontese, Pasqua; Menis, Camilla; Mosca, Fabio

    2016-10-23

    (1) Background: Late preterm infants account for the majority of preterm births and are at risk of altered body composition. Because body composition modulates later health outcomes and human milk is recommended as the normal method for infant feeding, we sought to investigate whether human milk feeding in early life can modulate body composition development in late preterm infants; (2) Methods: Neonatal, anthropometric and feeding data of 284 late preterm infants were collected. Body composition was evaluated at term-corrected age by air displacement plethysmography. The effect of human milk feeding on fat-free mass and fat mass content was evaluated using multiple linear regression analysis; (3) Results: Human milk was fed to 68% of the infants. According to multiple regression analysis, being fed any human milk at discharge and at  term-corrected and being fed exclusively human milk at term-corrected age were positively associated with fat-free mass content(β = -47.9, 95% confidence interval (CI) = -95.7; -0.18; p = 0.049; β = -89.6, 95% CI = -131.5; -47.7; p < 0.0001; β = -104.1, 95% CI = -151.4; -56.7, p < 0.0001); (4) Conclusion: Human milk feeding appears to be associated with fat-free mass deposition in late preterm infants. Healthcare professionals should direct efforts toward promoting and supporting breastfeeding in these vulnerable infants.

  14. Does Human Milk Modulate Body Composition in Late Preterm Infants at Term-Corrected Age?

    PubMed Central

    Giannì, Maria Lorella; Consonni, Dario; Liotto, Nadia; Roggero, Paola; Morlacchi, Laura; Piemontese, Pasqua; Menis, Camilla; Mosca, Fabio

    2016-01-01

    (1) Background: Late preterm infants account for the majority of preterm births and are at risk of altered body composition. Because body composition modulates later health outcomes and human milk is recommended as the normal method for infant feeding, we sought to investigate whether human milk feeding in early life can modulate body composition development in late preterm infants; (2) Methods: Neonatal, anthropometric and feeding data of 284 late preterm infants were collected. Body composition was evaluated at term-corrected age by air displacement plethysmography. The effect of human milk feeding on fat-free mass and fat mass content was evaluated using multiple linear regression analysis; (3) Results: Human milk was fed to 68% of the infants. According to multiple regression analysis, being fed any human milk at discharge and at  term-corrected and being fed exclusively human milk at term-corrected age were positively associated with fat-free mass content(β = −47.9, 95% confidence interval (CI) = −95.7; −0.18; p = 0.049; β = −89.6, 95% CI = −131.5; −47.7; p < 0.0001; β = −104.1, 95% CI = −151.4; −56.7, p < 0.0001); (4) Conclusion: Human milk feeding appears to be associated with fat-free mass deposition in late preterm infants. Healthcare professionals should direct efforts toward promoting and supporting breastfeeding in these vulnerable infants. PMID:27782098

  15. Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure.

    PubMed

    Henriksen, L

    1986-06-01

    CBF and related parameters were studied in 68 patients before, during, and following cardiopulmonary bypass. CBF was measured using the intraarterial 133Xe injection method. The extracorporeal circuit was nonpulsatile with a bubble oxygenator administering 3-5% CO2 in the main group of hypercapnic patients (n = 59) and no CO2 in a second group of hypocapnic patients. In the hypercapnic patients, marked changes in CBF occurred during bypass. Evidence was found of a brain luxury perfusion that could not be related to the effect of CO2 per se. Mean CBF was 29 ml/100 g/min just before bypass, 49 ml/100 g/min at steady-state hypothermia (27 degrees C), reached a maximum of 73 ml/100 g/min during the rewarming phase (32 degrees C), fell to 56 ml/100 g/min at steady-state normothermic bypass (37 degrees C), and was 48 ml/100 g/min shortly after bypass was stopped. Addition of CO2 evoked systemic vasodilation with low blood pressure and a rebound hyperemia. The hypocapnic group responded more physiologically to the induced changes in hematocrit (Htc) and temperature, CBF being 25, 23, 25, 34, and 35 ml/100 g/min, respectively, during the five corresponding periods. Carbon dioxide was an important regulator of CBF during all phases of cardiac surgery, the responsiveness of CBF being approximately 4% for each 1-mm Hg change of PaCO2. The level of MABP was important for the CO2 response. At low blood pressure states, the CBF responsiveness to changes in PaCO2 was almost abolished. An optimal level of PaCO2 during hypothermic bypass of approximately 25 mm Hg (at actual temperature) is recommended. A normal autoregulatory response of CBF to changes in blood pressure was found during and following bypass. The lower limit of autoregulation was at pressure levels of approximately 50-60 mm Hg. CBF autoregulation was almost abolished at PaCO2 levels of greater than 50 mm Hg. The degree of hemodilution neither affected the CO2 response nor impaired CBF autoregulation, although, as

  16. Long-term culture and functional characterization of follicular cells from adult normal human thyroids.

    PubMed Central

    Curcio, F; Ambesi-Impiombato, F S; Perrella, G; Coon, H G

    1994-01-01

    We have obtained long-term cultures of differentiated proliferating follicular cells from normal adult human thyroid glands. In vitro growth of such human cells has been sustained by a modified F-12 medium, supplemented with bovine hypothalamus and pituitary extracts and no added thyrotropin. Cultures have been expanded, cloned, frozen, successfully retrieved, and characterized. Functional characterization of these cells shows constitutive thyroglobulin production and release and thyrotropin-dependent adenosine 3',5'-cyclic monophosphate production, the latter apparently not associated with significant increases in DNA synthesis or cell proliferation. Genetic characterization of these cells by chromosome counting showed the normal diploid chromosome number. The ability to cultivate differentiated human thyroid follicular cells in long-term culture opens possibilities for investigating the transduction pathways of thyrotropin stimulation in normal and pathological human tissues, developing clinically relevant in vitro assays, and considering cellular and molecular therapies. Images PMID:8090760

  17. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans.

  18. Dye-coupling between term pregnant human myometrial cells before labor: carboxyfluorescein versus lucifer yellow.

    PubMed

    Ciray, H N; Persson, B E; Roomans, G M; Ulmsten, U

    1995-07-01

    Term pregnant human myometrial cells in whole mounts were microinjected by pressure with the fluorescent probes Lucifer Yellow and carboxyfluorescein. Tissues obtained from acute and elective sections displayed weak dye-coupling when injected with Lucifer Yellow. Injection of carboxyfluorescein into cells from the elective sections resulted in a more extensive dye-coupling than that observed with Lucifer Yellow. These results indicate that term pregnant human myometrial cells are metabolically coupled before labor and carboxyfluorescein is superior to Lucifer Yellow in detecting the coupling.

  19. Differential Gene Expression Profiling of Enriched Human Spermatogonia after Short- and Long-Term Culture

    PubMed Central

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Renninger, Markus; Skutella, Thomas

    2014-01-01

    This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks) and long-term culture (up to more than 14 months) in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen−/laminin+ matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the “spermatogonial” gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future. PMID:24738045

  20. Supercooling enables long-term transplantation survival following 4 days of liver preservation.

    PubMed

    Berendsen, Tim A; Bruinsma, Bote G; Puts, Catheleyne F; Saeidi, Nima; Usta, O Berk; Uygun, Basak E; Izamis, Maria-Louisa; Toner, Mehmet; Yarmush, Martin L; Uygun, Korkut

    2014-07-01

    The realization of long-term human organ preservation will have groundbreaking effects on the current practice of transplantation. Herein we present a new technique based on subzero nonfreezing preservation and extracorporeal machine perfusion that allows transplantation of rat livers preserved for up to four days, thereby tripling the viable preservation duration.

  1. Long term and large-scale cultivation of human hepatoma Hep G2 cells in hollow fiber bioreactor. Cultivation of human hepatoma Hep G2 in hollow fiber bioreactor.

    PubMed

    Liu, J J; Chen, B S; Tsai, T F; Wu, Y J; Pang, V F; Hsieh, A; Hsieh, J H; Chang, T H

    1991-02-01

    Long-term and large scale cultivation of an anchorage-dependent cell line using an industrial scale hollow fiber perfusion bioreactor is described. Hep G2 cells (a human hepatoma cell line) were cultivated in an Acusyst-P (Endotronic) with a total fiber surface area of 7.2 m2 6 x 1.2m2) to produce Hep G2 crude conditioned medium (CCM). Pretreatment of the cellulose acetate hollow fibers with collagen enhances the attachment of the anchorage-dependent cells. We have succeeded in growing the Hep G2 cells in an antibiotics- and serum-free IMDM medium, supplemented with 50 micrograms/ml of Hep G2 CCM protein at inoculation. The Hep G2 cells replicate and secrete CCM protein in quantities comparable to those produced in DMEM containing 10% fetal calf serum (FCS). The highest CCM protein productivity during the 80-day cultivation was 1.1 g/day with a total of 30 g of protein accumulated. Hep G2 CCM (20-40 micrograms protein/ml) was comparable to or even better than 10% FCS in supporting the growth of Molt-4 (a human T leukemia cell line) and FO (a mouse myeloma cell line) cells in vitro. The availability of this large amount of Hep G2 CCM will aid the further purification and characterization of growth factor(s) which could be used as serum substituents.

  2. Vascular Tissue Engineering: Building Perfusable Vasculature for Implantation

    PubMed Central

    Gui, Liqiong; Niklason, Laura E.

    2014-01-01

    Tissue and organ replacement is required when there are no alternative therapies available. Although vascular tissue engineering was originally developed to meet the clinical demands of small-diameter vascular conduits as bypass grafts, it has evolved into a highly advanced field where perfusable vasculatures are generated for implantation. Herein, we review several cutting-edge techniques that have led to implantable human blood vessels in clinical trials, the novel approaches that build complex perfusable microvascular networks in functional tissues, the use of stem cells to generate endothelial cells for vascularization, as well as the challenges in bringing vascular tissue engineering technologies into the clinics. PMID:24533306

  3. Endogenous Human Milk Peptide Release Is Greater after Preterm Birth than Term Birth123

    PubMed Central

    Dallas, David C; Smink, Christina J; Robinson, Randall C; Tian, Tian; Guerrero, Andres; Parker, Evan A; Smilowitz, Jennifer T; Hettinga, Kasper A; Underwood, Mark A; Lebrilla, Carlito B; German, J Bruce; Barile, Daniela

    2015-01-01

    Background: Hundreds of naturally occurring milk peptides are present in term human milk. Preterm milk is produced before complete maturation of the mammary gland, which could change milk synthesis and secretion processes within the mammary gland, leading to differences in protein expression and enzymatic activity, thereby resulting in an altered peptide profile. Objective: This study examined differences in peptides present between milk from women delivering at term and women delivering prematurely. Methods: Nano-LC tandem mass spectrometry was employed to identify naturally occurring peptides and compare their abundances between term and preterm human milk samples at multiple time points over lactation. Term milk samples were collected from 8 mothers and preterm milk was collected from 14 mothers. The 28 preterm and 32 term human milk samples were divided into 4 groups based on day of collection (<14, 14–28, 29–41, and 42–58 d). Results: Preterm milk peptide counts, ion abundance, and concentration were significantly higher in preterm milk than term milk. Bioinformatic analysis of the cleavage sites for peptides identified suggested that plasmin was more active in preterm milk than term milk and that cytosol aminopeptidase and carboxypeptidase B2 likely contribute to extensive milk protein breakdown. Many identified milk peptides in both term and preterm milk overlapped with known functional peptides, including antihypertensive, antimicrobial, and immunomodulatory peptides. Conclusion: The high protein degradation by endogenous proteases in preterm milk might attenuate problems because of the preterm infant’s immature digestive system. This trial was registered at clinicaltrials.gov as NCT01817127. PMID:25540406

  4. Endogenous human milk peptide release is greater after preterm birth than term birth.

    PubMed

    Dallas, David C; Smink, Christina J; Robinson, Randall C; Tian, Tian; Guerrero, Andres; Parker, Evan A; Smilowitz, Jennifer T; Hettinga, Kasper A; Underwood, Mark A; Lebrilla, Carlito B; German, J Bruce; Barile, Daniela

    2015-03-01

    Hundreds of naturally occurring milk peptides are present in term human milk. Preterm milk is produced before complete maturation of the mammary gland, which could change milk synthesis and secretion processes within the mammary gland, leading to differences in protein expression and enzymatic activity, thereby resulting in an altered peptide profile. This study examined differences in peptides present between milk from women delivering at term and women delivering prematurely. Nano-LC tandem mass spectrometry was employed to identify naturally occurring peptides and compare their abundances between term and preterm human milk samples at multiple time points over lactation. Term milk samples were collected from 8 mothers and preterm milk was collected from 14 mothers. The 28 preterm and 32 term human milk samples were divided into 4 groups based on day of collection (<14, 14-28, 29-41, and 42-58 d). Preterm milk peptide counts, ion abundance, and concentration were significantly higher in preterm milk than term milk. Bioinformatic analysis of the cleavage sites for peptides identified suggested that plasmin was more active in preterm milk than term milk and that cytosol aminopeptidase and carboxypeptidase B2 likely contribute to extensive milk protein breakdown. Many identified milk peptides in both term and preterm milk overlapped with known functional peptides, including antihypertensive, antimicrobial, and immunomodulatory peptides. The high protein degradation by endogenous proteases in preterm milk might attenuate problems because of the preterm infant's immature digestive system. This trial was registered at clinicaltrials.gov as NCT01817127. © 2015 American Society for Nutrition.

  5. Civil Conflict and Human Capital Accumulation: The Long-Term Effects of Political Violence in Peru

    ERIC Educational Resources Information Center

    Leon, Gianmarco

    2012-01-01

    This paper provides empirical evidence of the persistent effect of exposure to political violence on human capital accumulation. I exploit the variation in conflict location and birth cohorts to identify the long- and short-term effects of the civil war on educational attainment. Conditional on being exposed to violence, the average person…

  6. Citizenship, Nationalism, Human Rights and Democracy: A Tangling of Terms in the Kuwaiti Curriculum

    ERIC Educational Resources Information Center

    Al-Nakib, Rania

    2011-01-01

    Background: Citizenship, nationalism, human rights and democracy are four terms and concepts that are inextricably linked. In Kuwait, the status of citizen is based on nationality, gender and age, with women, children, naturalised citizens, expatriates and "bidoon" (stateless people) denied many freedoms, rights and services. Citizenship…

  7. Citizenship, Nationalism, Human Rights and Democracy: A Tangling of Terms in the Kuwaiti Curriculum

    ERIC Educational Resources Information Center

    Al-Nakib, Rania

    2011-01-01

    Background: Citizenship, nationalism, human rights and democracy are four terms and concepts that are inextricably linked. In Kuwait, the status of citizen is based on nationality, gender and age, with women, children, naturalised citizens, expatriates and "bidoon" (stateless people) denied many freedoms, rights and services. Citizenship…

  8. Confluence of arts, humanities, and science at sites of long-term ecological inquiry

    Treesearch

    Frederick J. Swanson

    2015-01-01

    Over the past century, ecology, the arts, and humanities diverged, but are now converging again, especially at sites of long-term, place-based ecological inquiry. This convergence has been inspired in part by the works of creative, boundary-spanning individuals and the long-standing examples of artshumanities programs in intriguing landscapes, such as artist and writer...

  9. Reframing Photographic Research Methods in Human Geography: A Long-Term Reflection

    ERIC Educational Resources Information Center

    Hall, Tim

    2015-01-01

    This paper offers a long-term reflection on the introduction of a photographic research project into a third-year undergraduate Human Geography module. The findings indicate that, whilst the students valued the project, it did impact on their overall performance, their evaluation of the module and the ways in which they spoke about it. The paper…

  10. Humans, Topograpghy, and Wildland Fire: The Ingredients for Long-term Patterns in Ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography, and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These factors can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  11. Humans, topography, and wildland fire: The ingredients for long-term patterns in ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography,and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These facters can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  12. Civil Conflict and Human Capital Accumulation: The Long-Term Effects of Political Violence in Peru

    ERIC Educational Resources Information Center

    Leon, Gianmarco

    2012-01-01

    This paper provides empirical evidence of the persistent effect of exposure to political violence on human capital accumulation. I exploit the variation in conflict location and birth cohorts to identify the long- and short-term effects of the civil war on educational attainment. Conditional on being exposed to violence, the average person…

  13. Examination of 2015 Human Development Index in Terms of Education: Comparison of the Continents and Turkey

    ERIC Educational Resources Information Center

    Nartgün, Senay Sezgin; Sezen-Gültekin, Gözde; Limon, Ibrahim

    2017-01-01

    This study aims to compare Turkey to the first three countries from each continent in terms of educational indicators in 2015 Human Development Report. In line with this aim, it is a case study utilizing document review method. Analysis of the data has been carried out on a single document which is United Nations Development Report (2015). To…

  14. Reframing Photographic Research Methods in Human Geography: A Long-Term Reflection

    ERIC Educational Resources Information Center

    Hall, Tim

    2015-01-01

    This paper offers a long-term reflection on the introduction of a photographic research project into a third-year undergraduate Human Geography module. The findings indicate that, whilst the students valued the project, it did impact on their overall performance, their evaluation of the module and the ways in which they spoke about it. The paper…

  15. Short-Term Plasticity of the Visuomotor Map during Grasping Movements in Humans

    ERIC Educational Resources Information Center

    Safstrom, Daniel; Edin, Benoni B.

    2005-01-01

    During visually guided grasping movements, visual information is transformed into motor commands. This transformation is known as the "visuomotor map." To investigate limitations in the short-term plasticity of the visuomotor map in normal humans, we studied the maximum grip aperture (MGA) during the reaching phase while subjects grasped objects…

  16. Modelling of temperature and perfusion during scalp cooling.

    PubMed

    Janssen, F E M; Van Leeuwen, G M J; Van Steenhoven, A A

    2005-09-07

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 degrees C to 18.3 degrees C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 degrees C to 21.8 degrees C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  17. Modelling of temperature and perfusion during scalp cooling

    NASA Astrophysics Data System (ADS)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  18. Long term effects of Climate change on Human adaptation in Middle Gila River Valley

    NASA Astrophysics Data System (ADS)

    Zhu, Tianduowa; Ertsen, Maurits

    2013-04-01

    Climate change has been one of key concerning factors for the origin and evolution of hydraulic engineering projects. The study of ancient irrigation systems in the context of long-term climate change enables us to improve the understanding on the response of human beings to variations on their environment. And niche construction starts to be used to explain the development of early small-scale irrigation canals in a view of biological evolution. Therefore, the study of early irrigation canals within a frame of long-term timescale may help to explore the roles of niche construction theory on canals' operation and further expansion. In this paper, the Hohokam canals in the middle Gila River of Southwest America are used as case study, in order to explore the influences of climate change on human behavior. A prehistoric large-scale irrigation network, the Hohokam irrigation system was composed of interconnected sections organized by local independent communities, rather than under the supervision of a central government. This common operation for water distribution without centralization provides us with the opportunity to focus on the relationship between humans and their environment. The aim of this paper is to model the process of human adaptation to their environment, including water flows, crops production and canal maintenance in long term, with the assistance of archaeological surveys and reconstructed climatological data. The results provide us with an insight on how the variation of the configuration of the canals is clearly conditioned by the interaction and adaptation of human settlements. This evolution can be explained by the combination of human food needs to the restrictions of the changing climate given by water availability. The balance of human demand and water availability guides the direction of human dynamics.

  19. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources

    PubMed Central

    Kahanda, Indika; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa

    2015-01-01

    The human phenotype ontology (HPO) was recently developed as a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In this work we demonstrate the performance advantage of the structured SVM approach which was shown to be highly effective for Gene Ontology term prediction in comparison to several baseline methods. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data. PMID:26834980

  20. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium.

    PubMed

    Turco, Margherita Y; Gardner, Lucy; Hughes, Jasmine; Cindrova-Davies, Tereza; Gomez, Maria J; Farrell, Lydia; Hollinshead, Michael; Marsh, Steven G E; Brosens, Jan J; Critchley, Hilary O; Simons, Benjamin D; Hemberger, Myriam; Koo, Bon-Kyoung; Moffett, Ashley; Burton, Graham J

    2017-05-01

    In humans, the endometrium, the uterine mucosal lining, undergoes dynamic changes throughout the menstrual cycle and pregnancy. Despite the importance of the endometrium as the site of implantation and nutritional support for the conceptus, there are no long-term culture systems that recapitulate endometrial function in vitro. We adapted conditions used to establish human adult stem-cell-derived organoid cultures to generate three-dimensional cultures of normal and decidualized human endometrium. These organoids expand long-term, are genetically stable and differentiate following treatment with reproductive hormones. Single cells from both endometrium and decidua can generate a fully functional organoid. Transcript analysis confirmed great similarity between organoids and the primary tissue of origin. On exposure to pregnancy signals, endometrial organoids develop characteristics of early pregnancy. We also derived organoids from malignant endometrium, and so provide a foundation to study common diseases, such as endometriosis and endometrial cancer, as well as the physiology of early gestation.

  1. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition.

  2. [Short-term memory characteristics of vibration intensity tactile perception on human wrist].

    PubMed

    Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo

    2014-12-25

    In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme.

  3. Viable neurons with luxury perfusion in hydrocephalus.

    PubMed

    Wong, C Y; Luciano, M G; MacIntyre, W J; Brunken, R C; Hahn, J F; Go, R T

    1997-09-01

    A woman with hydrocephalus due to aqueductal stenosis had functional imaging of cerebral perfusion and metabolism to demonstrate the effects of endoscopic third ventriculostomy--a new form of internal surgical shunting. Technetium-99m-ECD SPECT and 18F-FDG PET showed regional luxury perfusion at the left frontal region. Three months after a successful third ventriculostomy, a repeated imaging of cerebral perfusion and metabolism showed resolution of luxury perfusion and global improvement of both perfusion and metabolism. This concurred with postoperative clinical improvement. The paired imaging of cerebral perfusion and metabolism provides more information than just imaging perfusion or metabolism. Thus, the detection of perfusion and metabolism mismatch may open a new window of opportunity for surgical intervention.

  4. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511.

    PubMed

    Rodin, Sergey; Domogatskaya, Anna; Ström, Susanne; Hansson, Emil M; Chien, Kenneth R; Inzunza, José; Hovatta, Outi; Tryggvason, Karl

    2010-06-01

    We describe a system for culturing human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells on a recombinant form of human laminin-511, a component of the natural hES cell niche. The system is devoid of animal products and feeder cells and contains only one undefined component, human albumin. The hES cells self-renewed with normal karyotype for at least 4 months (20 passages), after which the cells could produce teratomas containing cell lineages of all three germ layers. When plated on laminin-511 in small clumps, hES cells spread out in a monolayer, maintaining cellular homogeneity with approximately 97% OCT4-positive cells. Adhesion of hES cells was dependent on alpha6beta1 integrin. The use of homogeneous monolayer hES or iPS cell cultures provides more controllable conditions for the design of differentiation methods. This xeno-free and feeder-free system may be useful for the development of cell lineages for therapeutic purposes.

  5. Troglitazone attenuates hypoxia-induced injury in cultured term human trophoblasts.

    PubMed

    Elchalal, Uriel; Humphrey, Rachel G; Smith, Steven D; Hu, Chaobin; Sadovsky, Yoel; Nelson, D Michael

    2004-12-01

    The purpose of this study was to test the hypothesis that the thiazolidinedione troglitazone, a peroxisome proliferator activated receptor-gamma ligand, attenuates hypoxia-induced trophoblast injury. Cytotrophoblasts from 4 term human placentas were cultured in the presence or absence of 10 mumol/L troglitazone in either 20% oxygen (standard conditions) or 1% oxygen (hypoxic conditions) for variable periods before cell harvest. Medium beta-human chorionic gonadotropin and human placental lactogen were analyzed by enzyme-linked immunosorbent assay. Apoptosis was quantified by cytokeratin-18 cleavage products staining; p53 expression was examined by Western blot analysis. beta-human chorionic gonadotropin and human placental lactogen levels were >/=2-fold higher in troglitazone-exposed cells at 16 hours of hypoxia, compared with vehicle control cells ( P <.05). The apoptotic index was reduced by >/=30% ( P <.001), and the expression of p53 was 2-fold lower ( P <.02) in troglitazone-exposed cells under hypoxia for 24 hours of low oxygen. Troglitazone attenuates the influence of acute hypoxia on cultured term human trophoblasts.

  6. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome

    SciTech Connect

    Jakobsson, H.; Jernberg, C.; Andersson, A.F.; Sjolund-Karlsson, M.; Jansson, J.K.; Engstrand, L.

    2010-01-15

    Antibiotic administration is the standard treatment for the bacterium Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer. However, the long-term consequences of this treatment on the human indigenous microbiota are relatively unexplored. Here we studied short- and long-term effects of clarithromycin and metronidazole treatment, a commonly used therapy regimen against H. pylori, on the indigenous microbiota in the throat and in the lower intestine. The bacterial compositions in samples collected over a four year period were monitored by analyzing the 16S rRNA gene using 454-based pyrosequencing and terminal-restriction fragment length polymorphism (T-RFLP). While the microbial communities of untreated control subjects were relatively stable over time, dramatic shifts were observed one week after antibiotic treatment with reduced bacterial diversity in all treated subjects in both locations. While the microbiota of the different subjects responded uniquely to the antibiotic treatment some general trends could be observed; such as a dramatic decline in Actinobacteria in both throat and feces immediately after treatment. Although the diversity of the microbiota subsequently recovered to resemble the pre treatment states, the microbiota remained perturbed in some cases for up to four years post treatment. In addition, four years after treatment high levels of the macrolide resistance gene erm(B) were found, indicating that antibiotic resistance, once selected for, can persist for longer periods of time than previously recognized. This highlights the importance of a restrictive antibiotic usage in order to prevent subsequent treatment failure and potential spread of antibiotic resistance.

  7. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome.

    PubMed

    Jakobsson, Hedvig E; Jernberg, Cecilia; Andersson, Anders F; Sjölund-Karlsson, Maria; Jansson, Janet K; Engstrand, Lars

    2010-03-24

    Antibiotic administration is the standard treatment for the bacterium Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer. However, the long-term consequences of this treatment on the human indigenous microbiota are relatively unexplored. Here we studied short- and long-term effects of clarithromycin and metronidazole treatment, a commonly used therapy regimen against H. pylori, on the indigenous microbiota in the throat and in the lower intestine. The bacterial compositions in samples collected over a four-year period were monitored by analyzing the 16S rRNA gene using 454-based pyrosequencing and terminal-restriction fragment length polymorphism (T-RFLP). While the microbial communities of untreated control subjects were relatively stable over time, dramatic shifts were observed one week after antibiotic treatment with reduced bacterial diversity in all treated subjects in both locations. While the microbiota of the different subjects responded uniquely to the antibiotic treatment some general trends could be observed; such as a dramatic decline in Actinobacteria in both throat and feces immediately after treatment. Although the diversity of the microbiota subsequently recovered to resemble the pre treatment states, the microbiota remained perturbed in some cases for up to four years post treatment. In addition, four years after treatment high levels of the macrolide resistance gene erm(B) were found, indicating that antibiotic resistance, once selected for, can persist for longer periods of time than previously recognized. This highlights the importance of a restrictive antibiotic usage in order to prevent subsequent treatment failure and potential spread of antibiotic resistance.

  8. Construction and validation of a microprocessor controlled extracorporal circuit in rats for the optimization of isolated limb perfusion.

    PubMed

    Gürtler, Ulrich; Fuchs, Peter; Stangelmayer, Achim; Bernhardt, Günther; Buschauer, Armin; Spruss, Thilo

    2004-12-01

    Although a few experimental approaches to isolated limb perfusion (ILP) are described in the literature, none of these animal models mimics the clinical perfusion techniques adequately to improve the technique of ILP on the basis of valid preclinical data. Therefore, we developed an ILP setup in rats allowing online monitoring of essential perfusion parameters such as temperature (in perfusate, various tissues, and rectum), pH (perfusate), perfusion pressure, and O(2) concentration (in perfusate, tissue), by a tailor-made data acquisition system. This setup permits close supervision of vital parameters during ILP. Various interdependencies, concerning the flow rate and the pressure of perfusate as well as tissue oxygenation were registered. For the measurement of pO(2) values in the perfusate and in different regions of the perfused hind limb, a novel type of microoptode based on quenching of a fluorescent dye was devised. Stable normothermic (37 degrees C) perfusion conditions were maintained at a constant perfusion pressure in the range of 40-60 mm Hg by administration of the spasmo lytic moxaverine (0.5 mg/mL of perfusate as initial dose) at a perfusate flow rate of 0.5 mL/min for 60 min. At the end of an ILP, there were no signs of tissue damage, neither concerning laboratory data (K(+), myoglobin, creatine kinase, lactic dehydrogenase) nor histopathological criteria. The reported ILP model is not only well suited to investigate the effects of hyperthermia but also to assess the efficacy of new antineoplastic approaches, when nude rats, bearing human tumours in the hind limbs, are used.

  9. Effect of long-term fluoxetine treatment on the human serotonin transporter in Caco-2 cells.

    PubMed

    Iceta, Ruth; Mesonero, José E; Alcalde, Ana I

    2007-03-27

    Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) broadly used in the treatment of human mood disorders and gastrointestinal diseases involving the serotoninergic system. The effectiveness of this therapy depends on repeated long-term treatment. Most of the long-term studies in vivo of SSRI effects on serotoninergic activity have focused on their effects on autoreceptors or postsynaptic receptors. The chronic effect of SSRIs on the activity of the serotonin transporter (SERT) has been less studied and the results have been contradictory. The aim of this study was to determine the specific effect of long-term fluoxetine treatment on human serotonin transporter (hSERT) in vitro, by using the human enterocyte-like cell line Caco-2. Results show that fluoxetine diminished the 5-HT uptake in a concentration-dependent way and that this effect was reversible. Fluoxetine affected mainly the hSERT transport rate by reducing the availability of the transporter in the membrane with no significant alteration of either the total hSERT protein content or the hSERT mRNA level. These results suggest that the effect of fluoxetine on the expression of hSERT is post-translational and has shown itself to be independent of PKC and PKA activity. This study may be useful to clarify the effect of the long-term fluoxetine therapy in both gastrointestinal and central nervous system disorders.

  10. Extraction of DNA from human embryos after long-term preservation in formalin and Bouin's solutions.

    PubMed

    Nagai, Momoko; Minegishi, Katsura; Komada, Munekazu; Tsuchiya, Maiko; Kameda, Tomomi; Yamada, Shigehito

    2016-05-01

    The "Kyoto Collection of Human Embryos" at Kyoto University was begun in 1961. Although morphological analyses of samples in the Kyoto Collection have been performed, these embryos have been considered difficult to genetically analyze because they have been preserved in formalin or Bouin's solution for 20-50 years. Owing to the recent advances in molecular biology, it has become possible to extract DNA from long-term fixed tissues. The purpose of this study was to extract DNA from wet preparations of human embryo samples after long-term preservation in fixing solution. We optimized the DNA extraction protocol to be suitable for tissues that have been damaged by long-term fixation, including DNA-protein crosslinking damage. Diluting Li2 CO3 with 70% ethanol effectively removed picric acid from samples fixed in Bouin's solution. Additionally, 20.0 mg/mL proteinase was valuable to lyse the long-term fixed samples. The extracted DNA was checked with PCR amplification using several sets of primers and sequence analysis. The PCR products included at least 295- and 838-bp amplicons. These results show that the extracted DNA is applicable for genetic analyses, and indicate that old embryos in the Kyoto Collection should be made available for future studies. The protocol described in this study can successfully extract DNA from old specimens and, with improvements, should be applicable in research aiming to understand the molecular mechanisms of human congenital anomalies.

  11. Importance of organ preservation solution composition in reducing myocardial edema during machine perfusion for heart transplantation.

    PubMed

    Cobert, M L; Peltz, M; West, L M; Jessen, M E

    2010-06-01

    Machine perfusion preservation has been used experimentally to extend the storage interval of donor hearts. We previously demonstrated that machine perfusion with glucose-supplemented Celsior preservation solution led to superior reperfusion function but resulted in increased myocardial edema compared with conventional static preservation. We hypothesized that other solutions that contain an oncotic agent, such as University of Wisconsin Machine Perfusion Solution (UWMPS), might reduce graft edema development while maintaining myocardial oxidative metabolism during long-term storage. Canine hearts were stored and perfused in a perfusion preservation device (LifeCradle; Organ Transport Systems) after cardioplegic arrest and donor cardiectomy. Hearts were perfused either with glucose-supplemented Celsior (which lacks an oncotic agent) or UWMPS (which contains hydroxyethyl starch) at 5 degrees C in the perfusion device over 10 hours. Oxygen consumption (MVO(2)), lactate accumulation, regional flow distribution, and myocardial water content were measured. Hearts in both groups continued to extract oxygen over the entire perfusion interval. Lactate accumulation was minimal in both groups. Both solutions delivered perfusate evenly to all regions of myocardium. Heart weight increase (Celsior 31.3 +/- 4.3%, UWMPS -3.3 +/- 1.9%) and final myocardial water content (Celsior 80.2 +/- 1.3%, UWMPS 75.9 +/- 0.3%) were higher in the Celsior group (P < .005). Donor hearts can be supported by a perfusion device over relatively extended storage intervals. These organs continue to undergo oxidative metabolism with little lactate accumulation. An oncotic agent appears to be important in limiting increases in myocardial water content. UWMPS appears to be superior for perfusion preservation of myocardium by reducing edema development during storage.

  12. Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury.

    PubMed Central

    Kirkpatrick, P J; Smielewski, P; Czosnyka, M; Pickard, J D

    1994-01-01

    A method for monitoring cortical perfusion by laser Doppler flowmetry (LDF) in the neurointensive care unit is described. Out of 22 patients with head injuries, reliable and long term recordings were obtained in 16. Laser Doppler flowmetry registered changes in cortical microcirculatory flow in response to spontaneous waves of raised intracranial pressure, and to therapeutic manoeuvres that altered the cerebral perfusion pressure. Comparisons of variations in flux signal with cerebral perfusion pressure provided an indication of the autoregulatory state of the cortical microcirculation, and analysis of raw LDF data demonstrated an autoregulatory breakpoint of cerebral perfusion pressure of 58 mm Hg, below which cortical perfusion failed. Although middle cerebral artery flow velocities were generally tightly coupled with LDF signal changes, episodes of uncoupling were seen. The potential uses and limitations of LDF in the neurointensive care setting are discussed. Images PMID:7964816

  13. Use of perfusion bioreactors and large animal models for long bone tissue engineering.

    PubMed

    Gardel, Leandro S; Serra, Luís A; Reis, Rui L; Gomes, Manuela E

    2014-04-01

    Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.

  14. Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes.

    PubMed

    Abeles, Shira R; Ly, Melissa; Santiago-Rodriguez, Tasha M; Pride, David T

    2015-01-01

    Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host's resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances.

  15. Long-term human hematopoiesis in the SCID-hu mouse

    PubMed Central

    1990-01-01

    Coimplantation of small fragments of human fetal thymus and fetal liver into immunodeficient SCID mice resulted in the formation of a unique structure (Thy/Liv). Thereafter, the SCID-hu mice showed reproducible and long-term reconstitution of human hematopoietic activity. For periods lasting 5-11 mo after transplantation, active T lymphopoiesis was observed inside the grafts and cells that were negative for T cell markers were found to have colony-forming units for granulocyte/macrophage (CFU-GM) and erythroid burst-forming unit (BFU- E) activity in the methylcellulose colony assay. In addition, structures similar to normal human bone marrow were observed inside the Thy/Liv grafts, consisting of blast cells, mature and immature forms of myelomonocytic cells, and megakaryocytes. These data indicate long-term maintenance, in vivo, of human progenitor cells for the T lymphoid, myelomonocytic, erythroid, and megakaryocytic lineages. The role of the implanted fetal liver fragments was analyzed using HLA-mismatched Thy/Liv implants. The HLA type of the liver donor was found on T cells and macrophages in the graft. In addition, cells grown in the methylcellulose colony assay and cells in a bone marrow-like structure, the "thymic isle," expressed the HLA type of the liver donor. Thus, the Thy/Liv implants provided a microenvironment in which to follow human hematopoietic progenitor cells for multiple lineages. The formation of the Thy/Liv structures also results in a continuous source of human T cells in the peripheral circulation of the SCID-hu mouse. Though present for 5-11 mo, these cells did not engage in a xenograft (graft- versus-host) reaction. This animal model, the first in which multilineage human hematopoietic activity is maintained for long periods of time, should be useful for the analysis of human hematopoiesis in vivo. PMID:2212942

  16. Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes

    PubMed Central

    Abeles, Shira R.; Ly, Melissa; Santiago-Rodriguez, Tasha M.; Pride, David T.

    2015-01-01

    Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host's resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances. PMID:26309137

  17. Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza

    2013-01-01

    Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free

  18. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    PubMed Central

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  19. Impaired Tissue Oxygenation in Metabolic Syndrome Requires Increased Microvascular Perfusion Heterogeneity.

    PubMed

    Mason McClatchey, P; Wu, Fan; Olfert, I Mark; Ellis, Christopher G; Goldman, Daniel; Reusch, Jane E B; Frisbee, Jefferson C

    2017-02-01

    Metabolic syndrome (MS) in obese Zucker rats (OZR) is associated with impaired skeletal muscle performance and blunted hyperemia. Studies suggest that reduced O2 diffusion capacity is required to explain compromised muscle performance and that heterogeneous microvascular perfusion distribution is critical. We modeled tissue oxygenation during muscle contraction in control and OZR skeletal muscle using physiologically realistic relationships. Using a network model of Krogh cylinders with increasing perfusion asymmetry and increased plasma skimming, we predict increased perfusion heterogeneity and decreased muscle oxygenation in OZR, with partial recovery following therapy. Notably, increasing O2 delivery had less impact on VO2 than equivalent decreases in O2 delivery, providing a mechanism for previous empirical work associating perfusion heterogeneity and impaired O2 extraction. We demonstrate that increased skeletal muscle perfusion asymmetry is a defining characteristic of MS and must be considered to effectively model and understand blood-tissue O2 exchange in this model of human disease.

  20. Peptidome analysis of human skim milk in term and preterm milk

    SciTech Connect

    Wan, Jun; Cui, Xian-wei; Zhang, Jun; Fu, Zi-yi; Guo, Xi-rong; Sun, Li-Zhou; Ji, Chen-bo

    2013-08-16

    Highlights: •A method was developed for preparation of peptide extracts from human milk. •Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 peptide-like features. •419 Peptides were identified by LC–MS/MS from 34 proteins. •Isotope dimethyl labeling analysis revealed 41 peptides differentially expressed. -- Abstract: The abundant proteins in human milk have been well characterized and are known to provide nutritional, protective, and developmental advantages to both term and preterm infants. Due to the difficulties associated with detection technology of the peptides, the expression of the peptides present in human milk is not known widely. In recent years, peptidome analysis has received increasing attention. In this report, the analysis of endogenous peptides in human milk was done by mass spectrometry. A method was also developed by our researchers, which can be used in the extraction of peptide from human milk. Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 Da peptide-like features. Out of these, 419 peptides were identified by MS/MS. The identified peptides were found to originate from 34 proteins, of which several have been reported. Analysis of the peptides’ cleavage sites showed that the peptides are cleaved with regulations. This may reflect the protease activity and distribution in human body, and also represent the biological state of the tissue and provide a fresh source for biomarker discovery. Isotope dimethyl labeling analysis was also used to test the effects of premature delivery on milk protein composition in this study. Differences in peptides expression between breast milk in term milk (38–41 weeks gestation) and preterm milk (28–32 weeks gestation) were investigated in this study. 41 Peptides in these two groups were found expressed differently. 23 Peptides were present at higher levels in preterm milk, and 18 were present at higher levels in term milk.

  1. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography.

    PubMed

    Jansen, Sanne M; de Bruin, Daniel M; Faber, Dirk J; Dobbe, Iwan J G G; Heeg, Erik; Milstein, Dan M J; Strackee, Simon D; van Leeuwen, Ton G

    2017-08-01

    Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400  μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20  mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1  mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·min-1·g-1) remain challenging. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M.; de Bruin, Daniel M.; Faber, Dirk J.; Dobbe, Iwan J. G. G.; Heeg, Erik; Milstein, Dan M. J.; Strackee, Simon D.; van Leeuwen, Ton G.

    2017-08-01

    Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400 μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20 mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1 mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·g-1) remain challenging.

  3. Hyperaemic changes in forearm skin perfusion and RBC concentration after increasing occlusion times.

    PubMed

    Farnebo, Simon; Thorfinn, Johan; Henricson, Joakim; Tesselaar, Erik

    2010-12-01

    Tissue occlusion and the hyperaemic response upon reperfusion can be used as a tool to assess microvascular function in various vascular diseases. Currently, laser Doppler flowmetry (LDF) is applied most often to measure hyperaemic responses. In this study, we have applied tissue viability imaging (TiVi) and LDF to measure the change in red blood cell concentration and perfusion in the skin after occlusions of the forearm with increasing duration. We have found that there is a strong correlation between the changes in perfusion and red blood cell (RBC) concentration during post-occlusive hyperaemia (perfusion: r=0.80; RBC concentration: r=0.94). This correlation increases with longer occlusion durations (1, 5 and 10min). Furthermore, for both perfusion and RBC concentration, the maximum responses (perfusion: r(2)=0.59; RBC concentration: r(2)=0.78) and the recovery times (perfusion: r(2)=0.62; RBC concentration: r(2)=0.91) increase linearly with the duration of the occlusion. Maximum responses and recovery times were more reproducible for RBC concentration (as measured with TiVi) than for perfusion (as measured with LDF). These results show that perfusion and RBC concentration are related during post-occlusive hyperaemia and that TiVi can be used as a tool in the assessment of hyperaemic responses that has advantages in terms of reproducibility, sensitivity and ease of use.

  4. Thallium-201 myocardial perfusion imaging in myocarditis

    SciTech Connect

    Tamaki, N.; Yonekura, Y.; Kadota, K.; Kambara, H.; Torizuka, K.

    1985-08-01

    TI-201 myocardial perfusion imaging was performed in six patients with clinically documented myocarditis. Each case manifested electrocardiographic abnormalities with elevation of serum cardiac enzymes and no significant stenosis of the coronary arteries observed on angiogram. Resting TI-201 images were visually assessed by three observers. Focal perfusion defects were observed in three cases (50%), among which two showed multiple perfusion defects. Emission computed tomography using TI-201 clearly delineated multifocal lesions in the first case. On the other hand, no significant perfusion defects were noted in the remaining three cases. Thus, myocarditis should be considered as one of the disease entities that may produce perfusion defects on TI-201 myocardial imaging.

  5. Perfusion studies in cholera: methods and procedures.

    PubMed

    van Loon, F P; Gyr, K; Banik, A K

    1992-09-01

    This paper reviews the characteristics of perfusion techniques in the study of intestinal functions by specifically examining the methods and procedures of perfusion in patients with diarrhoea due to infection with V. cholerae 01. Because of abundant jejunal secretion of water and electrolytes in cholera, perfusion studies require special approaches with regard to patient preparation, use of tubing material, selection of markers, and rate of perfusion. A discussion on specific problems involved in marker perfusion techniques in cholera and on the interpretation of the results is followed by practical recommendations.

  6. Evaluation of Feline Renal Perfusion with Contrast-Enhanced Ultrasonography and Scintigraphy

    PubMed Central

    Vanderperren, Katrien; Bosmans, Tim; Dobbeleir, André; Duchateau, Luc; Hesta, Myriam; Lybaert, Lien; Peremans, Kathelijne; Vandermeulen, Eva; Saunders, Jimmy

    2016-01-01

    Contrast-enhanced ultrasound (CEUS) is an emerging technique to evaluate tissue perfusion. Promising results have been obtained in the evaluation of renal perfusion in health and disease, both in human and veterinary medicine. Renal scintigraphy using 99mTc-Mercaptoacetyltriglycine (MAG3) is another non-invasive technique that can be used to evaluate renal perfusion. However, no data are available on the ability of CEUS or 99mTc- MAG3 scintigraphy to detect small changes in renal perfusion in cats. Therefore, both techniques were applied in a normal feline population to evaluate detection possibilities of perfusion changes by angiotensin II (AT II). Contrast-enhanced ultrasound using a bolus injection of commercially available contrast agent and renal scintigraphy using 99mTc-MAG3 were performed in 11 healthy cats after infusion of 0,9% NaCl (control) and AT II. Angiotensin II induced changes were noticed on several CEUS parameters. Mean peak enhancement, wash-in perfusion index and wash-out rate for the entire kidney decreased significantly after AT II infusion. Moreover, a tendency towards a lower wash-in area-under-the curve was present. Renal scintigraphy could not detect perfusion changes induced by AT II. This study shows that CEUS is able to detect changes in feline renal perfusion induced by AT II infusion. PMID:27736928

  7. Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity

    NASA Technical Reports Server (NTRS)

    Mueller, Thomas; Tucker, Compton J.; Dressler, Gunnar; Pinzon, Jorge E.; Leimgruber, Peter; Dubayah, Ralph O.; Hurtt, George C.; Boehning-Gaese, Katrin; Fagan, William F.

    2014-01-01

    Long-term trends in photosynthetic capacity measured with the satellite-derived Normalized Difference Vegetation Index (NDVI) are usually associated with climate change. Human impacts on the global land surface are typically not accounted for. Here, we provide the first global analysis quantifying the effect of the earth's human footprint on NDVI trends. Globally, more than 20% of the variability in NDVI trends was explained by anthropogenic factors such as land use, nitrogen fertilization, and irrigation. Intensely used land classes, such as villages, showed the greatest rates of increase in NDVI, more than twice than those of forests. These findings reveal that factors beyond climate influence global long-term trends in NDVI and suggest that global climate change models and analyses of primary productivity should incorporate land use effects.

  8. Short-Term Analysis of Human Dental Pulps After Direct Capping with Portland Cement

    PubMed Central

    Barbosa, Antonio Vinicius Holanda; Sampaio, Gerhilde Callou; Gomes, Fábio Almeida; de Oliveira, Daniel Pinto; de Albuquerque, Diana Santana; Sobral, Ana Paula Veras

    2009-01-01

    This study evaluated the short-term response of human pulp tissue when directly capped with Portland cement. In this series of cases, twenty human third molars that were scheduled for extraction were used. After cavity preparation, pulp exposure was achieved and Portland cement pulp capping was performed. Teeth were extracted after 1, 7, 14 and 21 days following treatment and prepared for histological examination and bacterial detection. Each group had 5 teeth. The results were descriptively analysed. Dentin bridge formation was seen in two teeth with some distance from the material interface (14 and 21 days). Soft inflammatory responses were observed in most of the cases. Bacteria were not disclosed in any specimen. PC exhibited some features of biocompatibility and capability of inducing mineral pulp response in short-term evaluation. The results suggested that PC has a potential to be used as a less expensive pulp capping material in comparison to other pulp capping materials. PMID:19444341

  9. Early Support of Intracranial Perfusion

    DTIC Science & Technology

    2008-10-01

    and data collection initiated for the human use sub-projects. 15. SUBJECT TERMS Traumatic Brain Injury (TBI); vital signs; cytokines ; pre-hospital...signs, develop a protocol to examine the contribution of inflammatory cytokines after TBI and to develop an animal model of penetrating brain trauma...approvals 1-Oct-07 31-Jan-08 Vital signs 02-Apr-08 Cytokines 29-Jul-08 ** hiring and training of staff 1-Oct-07 31-Jan-08 **design and

  10. Observations of retinal vessels during intermittent pressure-augmented retrograde cerebral perfusion in clinical cases.

    PubMed

    Endo, Hidehito; Ishii, Hikaru; Tsuchiya, Hiroshi; Takahashi, Yu; Inaba, Yusuke; Nishino, Yoshifumi; Hirakata, Akito; Kubota, Hiroshi

    2016-08-01

    Retrograde cerebral perfusion (RCP) has been used as a cerebroprotective method under hypothermic circulatory arrest (HCA) during aortic surgery. As reported in an animal model in 2005, intermittent pressure-augmented-RCP (IPA-RCP) provides more effective cerebral perfusion than RCP. In 2013, the clinical efficacy of IPA-RCP was described in terms of clinical outcomes and regional cerebral oxygen saturation using infrared spectroscopy. However, the state of cerebral microcirculation during IPA-RCP has not been investigated in humans. The aim of the present study was to investigate cerebral microcirculation during IPA-RCP in humans by assessing the retinal vessels. Between 2013 and 2014, 8 consecutive patients underwent elective total replacement of the aortic arch for true thoracic aortic aneurysms. The IPA-RCP protocol consisted of a continuous venous pressure that was intermittently augmented at 45 mmHg for 30 s and then decreased to 20 mmHg for 120 s after isolated HCA for 300 s. The retinal vessels were assessed via non-invasive direct visualization of the cerebral microcirculation using a fundus camera. Assessments were done before cardiopulmonary bypass, during isolated HCA, and during IPA-RCP at 20 and 45 mmHg. Ratio of the diameter of retinal vessels to that of the optic disc was calculated from the diameters of the retinal arteries, veins and optic disc at each time point and was statistically examined. There were no neurological deficits and mortality. When compared with the control group and both IPA-RCP groups, the retinal vessels in the isolated HCA group were collapsed and the peripheral retinal vessels could not be clearly observed. The RVR was significantly larger in the control group and in both IPA-RCP groups when compared with the isolated HCA group. The RVR of the control group was similar to that of both IPA-RCP groups with regard to the retinal arteries and veins. The RVR of IPA-RCP at 45 mmHg was significantly larger than that at 20 mmHg with

  11. Evidence for a role for the adaptive immune response in human term parturition

    PubMed Central

    Gomez-Lopez, N; Vega-Sanchez, R; Castillo-Castrejon, M; Romero, R; Cubeiro-Arreola, K; Vadillo-Ortega, F

    2013-01-01

    PROBLEM Spontaneous labor at term involves leukocyte recruitment and infiltration into the choriodecidua; yet, characterization of these leukocytes and their immunological mediators is incomplete. The purpose of this study was to characterize the immunophenotype of choriodecidual leukocytes as well as the expression of inflammatory mediators in human spontaneous parturition at term. METHOD OF STUDY Choriodecidual leukocytes were analyzed by FACS, immunohistochemistry, and RT-PCR in three different groups: (i) preterm gestation delivered for medical indications without labor; (ii) term pregnancy without labor; and (iii) term pregnancy after spontaneous labor. RESULTS Two T-cell subsets of memory-like T cells (CD3+CD4+CD45RO+ and CD3+CD4−CD8−CD45RO+ cells) were identified in the choriodecidua of women who had spontaneous labor. Evidence for an extensive immune signaling network composed of chemokines (CXCL8 and CXCL10), chemokine receptors (CXCR1-3), cytokines (IL-1β and TNF-α), cell adhesion molecules, and MMP-9 was identified in these cells during spontaneous labor at term. CONCLUSIONS The influx of memory-like T cells in the choriodecidua and the evidence that they are active by producing chemokines and cytokines, and expressing chemokine receptors, cell adhesion molecules, and a matrix-degrading enzyme provides support for the participation of the adaptive immune system in the mechanisms of spontaneous parturition at term. PMID:23347265

  12. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival.

  13. Short-term memory traces for action bias in human reinforcement learning.

    PubMed

    Bogacz, Rafal; McClure, Samuel M; Li, Jian; Cohen, Jonathan D; Montague, P Read

    2007-06-11

    Recent experimental and theoretical work on reinforcement learning has shed light on the neural bases of learning from rewards and punishments. One fundamental problem in reinforcement learning is the credit assignment problem, or how to properly assign credit to actions that lead to reward or punishment following a delay. Temporal difference learning solves this problem, but its efficiency can be significantly improved by the addition of eligibility traces (ET). In essence, ETs function as decaying memories of previous choices that are used to scale synaptic weight changes. It has been shown in theoretical studies that ETs spanning a number of actions may improve the performance of reinforcement learning. However, it remains an open question whether including ETs that persist over sequences of actions allows reinforcement learning models to better fit empirical data regarding the behaviors of humans and other animals. Here, we report an experiment in which human subjects performed a sequential economic decision game in which the long-term optimal strategy differed from the strategy that leads to the greatest short-term return. We demonstrate that human subjects' performance in the task is significantly affected by the time between choices in a surprising and seemingly counterintuitive way. However, this behavior is naturally explained by a temporal difference learning model which includes ETs persisting across actions. Furthermore, we review recent findings that suggest that short-term synaptic plasticity in dopamine neurons may provide a realistic biophysical mechanism for producing ETs that persist on a timescale consistent with behavioral observations.

  14. Immune activation and autoantibodies in humans with long-term inhalation exposure to formaldehyde

    SciTech Connect

    Thrasher, J.D.; Broughton, A.; Madison, R. )

    1990-07-01

    Four groups of patients with long-term inhalation exposure to formaldehyde (HCHO) were compared with controls who had short-term periodic exposure to HCHO. The following were determined for all groups: total white cell, lymphocyte, and T cell counts; T helper/suppressor ratios; total Ta1+, IL2+, and B cell counts; antibodies to formaldehyde-human serum albumin (HCHO-HSA) conjugate and autoantibodies. When compared with the controls, the patients had significantly higher antibody titers to HCHO-HSA. In addition, significant increases in Ta1+, IL2+, and B cells and autoantibodies were observed. Immune activation, autoantibodies, and anti-HCHO-HSA antibodies are associated with long-term formaldehyde inhalation.

  15. Neural mechanisms of short-term plasticity in the human visual system.

    PubMed

    Parks, Nathan A; Corballis, Paul M

    2012-12-01

    Following circumscribed retinal damage, extensive reorganization of topographically organized visual cortical areas has been demonstrated in several species of mammals (including humans). Although reorganization is often studied over extended time scales, neural response properties change within seconds of retinal deafferentation. Understanding the mechanisms underlying these short-term effects is essential for developing a complete picture of representational plasticity. One approach to the study of short-term plasticity has been to use an artificial scotoma, a stimulus-induced analog of a retinal scotoma, as a model. Here, we use event-related potentials in an artificial scotoma paradigm to examine 2 aspects of short-term plasticity in the human visual system. First, we investigated the changes within visual representations temporarily deprived of patterned visual input by probing the inner boundaries of an artificial scotoma. We found an enhanced early sensory P1, consistent with a reduction in inhibition (disinhibition), a proposed mechanism of short-term visual plasticity. Second, we investigated mechanisms through which representations of surrounding space invade a visually deprived area by probing the outer boundaries of an artificial scotoma. In this case, a later visual component, the N1, was enhanced, suggesting that feedback may provide a source of unmasked, or invading, activity to visually deprived representations.

  16. Space Resources Development: The Link Between Human Exploration and the Long-Term Commercialization of Space

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2000-01-01

    In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.

  17. Continuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding.

    PubMed

    Yu, Zhibin; Moirangthem, Dennis S; Lee, Minho

    2017-01-01

    Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MTRNN) model, which is believed to be a kind of solution, is a useful tool for recording and regenerating a continuous signal for dynamic tasks. However, the conventional MTRNN suffers from the vanishing gradient problem which renders it impossible to be used for longer sequence understanding. To address this problem, we propose a new model named Continuous Timescale Long-Short Term Memory (CTLSTM) in which we inherit the multiple timescales concept into the Long-Short Term Memory (LSTM) recurrent neural network (RNN) that addresses the vanishing gradient problem. We design an additional recurrent connection in the LSTM cell outputs to produce a time-delay in order to capture the slow context. Our experiments show that the proposed model exhibits better context modeling ability and captures the dynamic features on multiple large dataset classification tasks. The results illustrate that the multiple timescales concept enhances the ability of our model to handle longer sequences related with human intentions and hence proving to be more suitable for complex tasks, such as intention recognition.

  18. Lipoprotein lipase, LDL receptors and apo-lipoproteins in human fetal membranes at term.

    PubMed

    Huter, O; Wolf, H J; Schnetzer, A; Pfaller, K

    1997-11-01

    Ultrastructurally, all cells of human fetal membranes strongly exhibit a large amount of lipid deposits throughout pregnancy. Their origin and function is still unknown. The aim of this study was to investigate the localization of key components of lipid metabolism in this tissue. Using immunohistochemical techniques, the distribution of lipoprotein lipase (LPL), low density lipoprotein receptors (LDL receptors), and apo-lipoprotein B and E was investigated in 20 human fetal membranes at term. In addition, electron microscopy was used to study the intracellular localization of lipoprotein-sized particles. Amnionic epithelium and trophoblast cells reacted strongly for LPL. LDL receptors and apo-lipoproteins were present in amnionic epithelium and fibroblasts of the amnion. In none of the investigated cells were lipoprotein-sized particles identified. Similar results were obtained in all 20 cases. The findings indicate that lipoprotein from the amniotic fluid or from the maternal circulation may serve as substrate for lipids in human fetal membranes.

  19. A look‐locker acquisition scheme for quantitative myocardial perfusion imaging with FAIR arterial spin labeling in humans at 3 tesla

    PubMed Central

    Rodgers, Christopher T.; Chappell, Michael A.; Robson, Matthew D.

    2016-01-01

    Purpose A novel method for quantitative measurement of myocardial blood flow (MBF) using arterial spin labeling (ASL) in a single breath‐hold is presented, evaluated by simulations, phantom studies and in vivo studies and tested for reproducibility and variability. Methods A flow‐sensitive alternating inversion recovery (FAIR) ASL method with Look‐Locker readout (LL‐FAIR‐ASL) was implemented at 3 tesla. Scans were performed on 10 healthy volunteers and MBF measured in three slices. The method was investigated for reproducibility by Bland‐Altman analysis and statistical measures, the coefficients of reproducibility (CR) and variation (CV) are reported. Results The MBF values for the basal, mid, and apical slices were 1.04 ± 0.40, 1.06 ± 0.46, and 1.06 ± 0.38 ml/g/min, respectively (mean ± SD), which compare well with literature values. The CV across all scans, 43%, was greater than the between‐session and within‐session values, at 16 and 13%, respectively, for the mid‐ventricular slice. The change in MBF required for detection, from the CR, was 61% between‐session and 53% within‐session for the mid‐ventricle. Conclusion This study shows the feasibility of the LL‐FAIR‐ASL method for the quantification of MBF. The statistical measures reported will allow the planning of future clinical research studies involving rest and stress measurements. Magn Reson Med 78:541–549, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27604183

  20. A look-locker acquisition scheme for quantitative myocardial perfusion imaging with FAIR arterial spin labeling in humans at 3 tesla.

    PubMed

    Keith, Graeme A; Rodgers, Christopher T; Chappell, Michael A; Robson, Matthew D

    2017-08-01

    A novel method for quantitative measurement of myocardial blood flow (MBF) using arterial spin labeling (ASL) in a single breath-hold is presented, evaluated by simulations, phantom studies and in vivo studies and tested for reproducibility and variability. A flow-sensitive alternating inversion recovery (FAIR) ASL method with Look-Locker readout (LL-FAIR-ASL) was implemented at 3 tesla. Scans were performed on 10 healthy volunteers and MBF measured in three slices. The method was investigated for reproducibility by Bland-Altman analysis and statistical measures, the coefficients of reproducibility (CR) and variation (CV) are reported. The MBF values for the basal, mid, and apical slices were 1.04 ± 0.40, 1.06 ± 0.46, and 1.06 ± 0.38 ml/g/min, respectively (mean ± SD), which compare well with literature values. The CV across all scans, 43%, was greater than the between-session and within-session values, at 16 and 13%, respectively, for the mid-ventricular slice. The change in MBF required for detection, from the CR, was 61% between-session and 53% within-session for the mid-ventricle. This study shows the feasibility of the LL-FAIR-ASL method for the quantification of MBF. The statistical measures reported will allow the planning of future clinical research studies involving rest and stress measurements. Magn Reson Med 78:541-549, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  1. Rationale and systems architecture for a near-term human lunar return

    NASA Astrophysics Data System (ADS)

    Willenberg, H. J.; Siegfried, W. H.

    2001-03-01

    Early human missions to the Moon have landed on six different sites on the lunar surface. These have all been in the low-latitude regions of the near side of the Moon. Early missions were designed primarily to assure crew safety rather than for scientific value. While the later missions added increasingly more challenging science, they remained restricted to near-side, low-latitude sites. Since the 1970s, we have learned considerably more about lunar planetology and resources. A return within the next five to ten years can greatly stimulate future human space exploration activities. We can learn much more about the distribution of lunar resources, especially about hydrogen, hydrated minerals, and water ice because they appear to be abundant near the lunar poles. The presence of hydrogen opens the possibility of industrial use of lunar resources to provide fuel for space transportation throughout the solar system. This paper discusses the rationale for near-term return of human crews to the Moon, and the advantages to be gained by selecting the Moon as the next target for human missions beyond low-Earth orbit. It describes a systems architecture for early missions, including transportation and habitation aspects. Specifically, we describe a primary transportation architecture that emphasizes existing Earth-to-orbit transportation systems, using expendable launch vehicles for cargo delivery and the Space Shuttle and its derivatives for human transportation. Transfer nodes should be located at the International Space Station (ISS) and at the Earth-Moon L1 (libration point). Each of the major systems is described, and the requisite technology readiness is assessed. These systems include Earth-to-orbit transportation, lunar transfer, lunar descent and landing, surface habitation and mobility, and return to Earth. With optimum reliance on currently existing space systems and a technology readiness assessment, we estimate the minimum development time required and perform

  2. Human recombinant erythropoietin alters the flow-dependent vasodilatation of in vitro perfused rat mesenteric arteries with unbalanced endothelial endothelin-1 / nitric oxide ratio.

    PubMed

    Barhoumi, Tlili; Jallat, Isabelle; Berthelot, Alain; Laurant, Pascal

    2011-06-01

    Chronic use of human recombinant erythropoietin (r-HuEPO) is accompanied by serious vascular side effects related to the rise in blood viscosity and shear stress. We investigated the direct effects of r-HuEPO on endothelium and nitric oxide (NO)-dependent vasodilatation induced by shear stress of cannulated and pressurized rat mesenteric resistance arteries. Intravascular flow was increased in the presence or absence of the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME; 10(-4) mol/L). In the presence of r-HuEPO, the flow-dependent vasodilatation was attenuated, while L-NAME completely inhibited it. The association of r-HuEPO and L-NAME caused a vasoconstriction in response to the rise in intravascular flow. Bosentan (10(-5) mol/L), an inhibitor of endothelin-1 (ET-1) receptors, corrected the attenuated vasodilatation observed with r-HuEPO and inhibited the vasoconstriction induced by flow in the presence of r-HuEPO and L-NAME. r-HuEPO and L-NAME exacerbated ET-1 vasoconstriction. At shear stress values of 2 and 14 dyn/cm(2) (1 dyn = 10(-5) N), cultured EA.hy926 endothelial cells incubated with r-HuEPO, L-NAME, or both released greater ET-1 than untreated cells. In conclusion, r-HuEPO diminishes flow-induced vasodilatation. This inhibitory effect seems to implicate ET-1 release. NO withdrawal exacerbates the vascular effects of ET-1 in the presence of r-HuEPO. These findings support the importance of a balanced endothelial ET-1:NO ratio to avoid the vasopressor effects of r-HuEPO.

  3. Issues, indications, and controversies regarding intratympanic steroid perfusion

    PubMed Central

    Trune, Dennis

    2009-01-01

    Purpose of Review Office based Intratympanic inner ear steroid perfusion treatment (ITPs) for Meniere’s disease, autoimmune inner ear disease and sudden sensorineural hearing loss has been expanding over the past 10-15 years, yet remains controversial. The purpose of this review is to examine the current literature of basic science and human studies of ITPs treatment. Current Findings Animal studies exist regarding the delivery, distribution, biochemical and microbiological changes in the inner ear post ITPs. However, few clinical studies exist of ITPs treatment in sudden sensorineural hearing loss and even less in treating Meniere’s disease. There are no consistent studies regarding drug delivery methods, type and concentration of steroids. Moreover, there are no studies comparing ITPs results to the natural history of Meniere’s disease. Summary ITPs has impacted otology and neurotology practice due to increased utilization. A sound understanding of the basic science and clinical studies is needed to establish long term efficacy of ITPs in controlling hearing loss in Meniere’s disease by comparison to its natural history, as well as, potential application to other pathologies. PMID:18797285

  4. Diffusion and perfusion: the keys to fat grafting.

    PubMed

    Khouri, Roger K; Khouri, Raoul-Emil R; Lujan-Hernandez, Jorge R; Khouri, Khalil R; Lancerotto, Luca; Orgill, Dennis P

    2014-09-01

    Fat grafting is now widely used in plastic surgery. Long-term graft retention can be unpredictable. Fat grafts must obtain oxygen via diffusion until neovascularization occurs, so oxygen delivery may be the overarching variable in graft retention. We studied the peer-reviewed literature to determine which aspects of a fat graft and the microenvironment surrounding a fat graft affect oxygen delivery and created 3 models relating distinct variables to oxygen delivery and graft retention. Our models confirm that thin microribbons of fat maximize oxygen transport when injected into a large, compliant, well-vascularized recipient site. The "Microribbon Model" predicts that, in a typical human, fat injections larger than 0.16 cm in radius will have a region of central necrosis. Our "Fluid Accommodation Model" predicts that once grafted tissues approach a critical interstitial fluid pressure of 9 mm Hg, any additional fluid will drastically increase interstitial fluid pressure and reduce capillary perfusion and oxygen delivery. Our "External Volume Expansion Effect Model" predicts the effect of vascular changes induced by preoperative external volume expansion that allow for greater volumes of fat to be successfully grafted. These models confirm that initial fat grafting survival is limited by oxygen diffusion. Preoperative expansion increases oxygen diffusion capacity allowing for additional graft retention. These models provide a scientific framework for testing the current fat grafting theories.

  5. Parametric estimation of ventilation-perfusion ratio distributions.

    PubMed

    Stewart, W E; Mastenbrook, S M

    1983-07-01

    We present a model and rigorous statistical approach for recovery of ventilation-perfusion ratio (V/Q) distribution parameters from multiple inert gas elimination data. We model the lung as a parallel combination of shunt, dead space, and one to three log-normal distributions of gas exchange units. This model provides a natural set of parameters for characterizing V/Q distributions. The log-normal terms are adjustable to represent smooth or sharp peaks in the distribution. Since the peak locations and widths are explicit in the model, very few parameters are needed. We select and estimate the significant parameters of the model by use of standard statistical tests and constrained least squares. This method provides two major advances in V/Q distribution estimation: 1) it allows flexible pooling and statistical comparisons of multiple experiments, and 2) it simultaneously gives both point estimates and 95% probability intervals for the V/Q distribution parameters. We present results of our procedure for data from humans in health, stress, and pulmonary disease. A program package, VQPAR, in FORTRAN is available for implementing the procedure.

  6. Measuring perfusion with light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M. A.; de Bruin, Daniel M.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-03-01

    There is no gold standard test for perfusion evaluation in surgery. Optical Imaging techniques are able to image tissue at high resolution and in real-time. Laser Speckle Contrast Imaging, Optical Coherence Tomography, Sidestream Darkfield and Incident Darkfield all use the interaction of light with tissue to create an image. To test their feasibility and explore validity in a controlled setting, we created a phantom with the optical properties of tissue and microvascular channels of 30-400 micrometer. With a Hamilton Syringe Pump we mimicked blood flow velocities of 0-20 mm/sec. Images of all different modalities at different blood flow velocities were compared in terms of imaging depth, resoluation and hemodynamic parameters.

  7. As the world turns: short-term human spatial memory in egocentric and allocentric coordinates.

    PubMed

    Banta Lavenex, Pamela; Lecci, Sandro; Prêtre, Vincent; Brandner, Catherine; Mazza, Christian; Pasquier, Jérôme; Lavenex, Pierre

    2011-05-16

    We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world.

  8. Human Fetal Membranes at Term: Dead Tissue or Signalers of Parturition?

    PubMed Central

    MENON, Ramkumar

    2017-01-01

    Various endocrine, immune, and mechanical factors produced by feto-maternal compartments at term increase intrauterine inflammatory loads to induce labor. The role of fetal (placental) membranes (amniochorion) as providers of parturition signals has not been well investigated. Fetal membranes line the intrauterine cavity and grow with and protect the fetus. Fetal membranes exist as an entity between the mother and fetus and perform unique functions during pregnancy. Membranes undergo a telomere-dependent p38 MAPK-induced senescence and demonstrate a decline in functional and mechanical abilities at term, showing signs of aging. Fetal membrane senescence is also allied with completion of fetal maturation at term as the fetus readies for delivery, which may also indicate the end of independent life and longevity of fetal membranes as their functional role concludes. Fetal membrane senescence is accelerated at term because of oxidative stress and increased stretching. Senescent fetal membranes cells produce senescence-associated secretory phenotype (SASP-inflammation) and also release proinflammatory damage-associated molecular patterns (DAMPs), namely HMGB1 and cell-free fetal telomere fragments. In a feedback loop, SASP and DAMPs increase senescence and enhance the inflammatory load to promote labor. Membranes increase the inflammatory load to disrupt homeostatic balance to transition quiescent uterine tissues toward a labor phenotype. Therefore, along with other well-described labor-promoting signals, senescent fetal membranes may also contribute to human term parturition. PMID:27452431

  9. Assessment of long-term work attendance within human service organisations.

    PubMed

    Dellve, Lotta; Eriksson, Jesper; Vilhelmsson, Rebecka

    2007-01-01

    Terms and theories of work attendance vary according to their use and focus. This paper analyzes long-term work attendance in relation to social, psychosocial, and health-related factors. Register-based and questionnaire-based data covering 3,804 human service organisation workers over a three-year period were analyzed at individual and work-unit level. The results showed positive relationships between work attendance and male gender, high income, work commitment, job satisfaction, and having positive feelings towards work. High work attendance combined with work commitment, stress, or pain did not show any negative long-term effects upon short-term or long-term sick leave. Instead, work attendance seemed to be more associated with stable patterns of behaviour. Register-based measures of work attendance (at most 4-7 days of sick leave per worker per year) may be a useful tool in managing psychosocial work environment and related behaviour, but their inability to encompass information regarding individual health and disease must be borne in mind.

  10. [Quantitative CT perfusion measurements in characterization of solitary pulmonary nodules: new insights and limitations].

    PubMed

    Mazzei, Maria Antonietta; Cioffi Squitieri, Nevada; Guerrini, Susanna; Di Crescenzo, Vincenzo; Rossi, Michele; Fonio, Paolo; Mazzei, Francesco Giuseppe; Volterrani, Luca

    2013-01-01

    Although computed tomography (CT) scans remain the basis of morphologic evaluation in the characterization of solitary pulmonary nodules (SPNs), perfusion CT can represent an additional feasible technique offering reproducible measurements, at least in SPNs with a diameter >10 mm. In particular, CT perfusion could reduce the number of SPNs, diagnosed as undetermined at morphologic CT, avoiding long term follow-up CT, FDG-PET studies, biopsy or unnecessary surgery with a significant reduction in healthcare costs. In order to reduce the radiation dose, an optimization of the CT perfusion protocol could be obtained using axial mode acquisition, using shorter acquisition time and adaptative statistical iterative reconstruction algorithm.

  11. Differential expression of AP-1 proteins in human myometrium after spontaneous term labour onset.

    PubMed

    Lim, Ratana; Lappas, Martha

    2014-06-01

    The aims of this study were (i) to determine the localisation of activator protein (AP)-1 family members (cFos, FosB, cJun, JunB and JunD) in human myometrium; and (ii) to determine the effect of human term labour on the expression of AP-1 family of transcription factors in myometrium. This localised the AP-1 family members cFos, FosB, cJun, JunB and JunD in human myometrium was performed by immunohistochemistry. The effect of term labour on the expression of these family members at the mRNA and protein level was assessed by qRT-PCR and Western blotting, respectively. The effect of pro-inflammatory stimuli on AP-1 transcriptional activity was assessed using a luciferase assay in primary human myometrial cells. Immunohistochemical expression of cFos, FosB, cJun, JunB and JunD were all present in human myometrial tissue and displayed cytoplasmic staining. FosB and JunD also displayed nuclear staining. Term labour was associated with an increase in cFos and JunB mRNA and protein expression. On the other hand, JunD mRNA and protein expression was decreased with labour. FosB mRNA was increased with labour, but there was no change at the protein level. There was no change in cJun mRNA or protein expression. AP-1 transcriptional activity was increased in human myometrial cells by the pro-inflammatory cytokine TNF-α. There was, however, no effect of the bacterial products lipopolysaccharide (LPS; TLR4 ligand), iE-DAP (NOD1 ligand), MDP (NOD2 ligand), FSL-1 (TLR2 ligand) or flagellin (TLR5 ligand) on AP-1 transcriptional activity. This study shows that human labour is associated with changes in AP-1 family members. Further studies are required to determine the exact role of the AP-1 family members in myometrium. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model.

    PubMed

    Riegler, Johannes; Tiburcy, Malte; Ebert, Antje; Tzatzalos, Evangeline; Raaz, Uwe; Abilez, Oscar J; Shen, Qi; Kooreman, Nigel G; Neofytou, Evgenios; Chen, Vincent C; Wang, Mouer; Meyer, Tim; Tsao, Philip S; Connolly, Andrew J; Couture, Larry A; Gold, Joseph D; Zimmermann, Wolfram H; Wu, Joseph C

    2015-09-25

    Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocyte transplantation, thereby potentially preventing dilative remodeling and progression to heart failure. Assessment of transport stability, long-term survival, structural organization, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction model. We constructed EHMs from human embryonic stem cell-derived cardiomyocytes and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). One month after ischemia/reperfusion injury, EHMs were implanted onto immunocompromised rat hearts to simulate chronic ischemia. Bioluminescence imaging showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving ≤25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs, -6.7±1.4% versus control, -10.9±1.5%; n>12; P=0.05), we observed no difference between EHMs containing viable and nonviable human cardiomyocytes in this chronic xenotransplantation model (n>12; P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. EHM transplantation led to high engraftment rates, long-term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic myocardial infarction model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation. © 2015 American Heart Association, Inc.

  13. A Flow Perfusion Bioreactor System for Vocal Fold Tissue Engineering Applications.

    PubMed

    Latifi, Neda; Heris, Hossein K; Thomson, Scott L; Taher, Rani; Kazemirad, Siavash; Sheibani, Sara; Li-Jessen, Nicole Y K; Vali, Hojatollah; Mongeau, Luc

    2016-09-01

    The human vocal folds (VFs) undergo complex biomechanical stimulation during phonation. The aim of the present study was to develop and validate a phono-mimetic VF flow perfusion bioreactor, which mimics the mechanical microenvironment of the human VFs in vitro. The bioreactor uses airflow-induced self-oscillations, which have been shown to produce mechanical loading and contact forces that are representative of human phonation. The bioreactor consisted of two synthetic VF replicas within a silicone body. A cell-scaffold mixture (CSM) consisting of human VF fibroblasts, hyaluronic acid, gelatin, and a polyethylene glycol cross-linker was injected into cavities within the replicas. Cell culture medium (CCM) was perfused through the scaffold by using a customized secondary flow loop. After the injection, the bioreactor was operated with no stimulation over a 3-day period to allow for cell adaptation. Phonation was subsequently induced by using a variable speed centrifugal blower for 2 h each day over a period of 4 days. A similar bioreactor without biomechanical stimulation was used as the nonphonatory control. The CSM was harvested from both VF replicas 7 days after the injection. The results confirmed that the phono-mimetic bioreactor supports cell viability and extracellular matrix proteins synthesis, as expected. Many scaffold materials were found to degrade because of challenges from phonation-induced biomechanical stimulation as well as due to biochemical reactions with the CCM. The bioreactor concept enables future investigations of the effects of different phonatory characteristics, that is, voice regimes, on the behavior of the human VF cells. It will also help study the long-term functional outcomes of the VF-specific biomaterials before animal and clinical studies.

  14. A Flow Perfusion Bioreactor System for Vocal Fold Tissue Engineering Applications

    PubMed Central

    Heris, Hossein K.; Thomson, Scott L.; Taher, Rani; Kazemirad, Siavash; Sheibani, Sara; Li-Jessen, Nicole Y.K.; Vali, Hojatollah; Mongeau, Luc

    2016-01-01

    The human vocal folds (VFs) undergo complex biomechanical stimulation during phonation. The aim of the present study was to develop and validate a phono-mimetic VF flow perfusion bioreactor, which mimics the mechanical microenvironment of the human VFs in vitro. The bioreactor uses airflow-induced self-oscillations, which have been shown to produce mechanical loading and contact forces that are representative of human phonation. The bioreactor consisted of two synthetic VF replicas within a silicone body. A cell-scaffold mixture (CSM) consisting of human VF fibroblasts, hyaluronic acid, gelatin, and a polyethylene glycol cross-linker was injected into cavities within the replicas. Cell culture medium (CCM) was perfused through the scaffold by using a customized secondary flow loop. After the injection, the bioreactor was operated with no stimulation over a 3-day period to allow for cell adaptation. Phonation was subsequently induced by using a variable speed centrifugal blower for 2 h each day over a period of 4 days. A similar bioreactor without biomechanical stimulation was used as the nonphonatory control. The CSM was harvested from both VF replicas 7 days after the injection. The results confirmed that the phono-mimetic bioreactor supports cell viability and extracellular matrix proteins synthesis, as expected. Many scaffold materials were found to degrade because of challenges from phonation-induced biomechanical stimulation as well as due to biochemical reactions with the CCM. The bioreactor concept enables future investigations of the effects of different phonatory characteristics, that is, voice regimes, on the behavior of the human VF cells. It will also help study the long-term functional outcomes of the VF-specific biomaterials before animal and clinical studies. PMID:27537192

  15. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.

    PubMed

    Panfoli, Isabella; Ravera, Silvia; Podestà, Marina; Cossu, Claudia; Santucci, Laura; Bartolucci, Martina; Bruschi, Maurizio; Calzia, Daniela; Sabatini, Federica; Bruschettini, Matteo; Ramenghi, Luca Antonio; Romantsik, Olga; Marimpietri, Danilo; Pistoia, Vito; Ghiggeri, Gianmarco; Frassoni, Francesco; Candiano, Giovanni

    2016-04-01

    Exosomes are secreted nanovesicles that are able to transfer RNA and proteins to target cells. The emerging role of mesenchymal stem cell (MSC) exosomes as promoters of aerobic ATP synthesis restoration in damaged cells, prompted us to assess whether they contain an extramitochondrial aerobic respiration capacity. Exosomes were isolated from culture medium of human MSCs from umbilical cord of ≥37-wk-old newborns or between 28- to 30-wk-old newborns (i.e.,term or preterm infants). Characterization of samples was conducted by cytofluorometry. Oxidative phosphorylation capacity was assessed by Western blot analysis, oximetry, and luminometric and fluorometric analyses. MSC exosomes express functional respiratory complexes I, IV, and V, consuming oxygen. ATP synthesis was only detectable in exosomes from term newborns, suggestive of a specific mechanism that is not completed at an early gestational age. Activities are outward facing and comparable to those detected in mitochondria isolated from term MSCs. MSC exosomes display an unsuspected aerobic respiratory ability independent of whole mitochondria. This may be relevant for their ability to rescue cell bioenergetics. The differential oxidative metabolism of pretermvs.term exosomes sheds new light on the preterm newborn's clinical vulnerability. A reduced ability to repair damaged tissue and an increased capability to cope with anoxic environment for preterm infants can be envisaged.-Panfoli, I., Ravera, S., Podestà, M., Cossu, C., Santucci, L., Bartolucci, M., Bruschi, M., Calzia, D., Sabatini, F., Bruschettini, M., Ramenghi, L. A., Romantsik, O., Marimpietri, D., Pistoia, V., Ghiggeri, G., Frassoni, F., Candiano, G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.

  16. Visualizing tropoelastin in a long-term human elastic fibre cell culture model

    PubMed Central

    Halm, M.; Schenke-Layland, K.; Jaspers, S.; Wenck, H.; Fischer, F.

    2016-01-01

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin–fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models. PMID:26842906

  17. Long-term potentiation (LTP) of human sensory-evoked potentials.

    PubMed

    Kirk, Ian J; McNair, Nicolas A; Hamm, Jeffrey P; Clapp, Wesley C; Mathalon, Daniel H; Cavus, Idil; Teyler, Timothy J

    2010-09-01

    Long-term potentiation (LTP) is the principal candidate synaptic mechanism underlying learning and memory, and has been studied extensively at the cellular and molecular level in laboratory animals. Inquiry into the functional significance of LTP has been hindered by the absence of a human model as, until recently, LTP has only been directly demonstrated in humans in isolated cortical tissue obtained from patients undergoing surgery, where it displays properties identical to those seen in non-human preparations. In this brief review, we describe the results of paradigms recently developed in our laboratory for inducing LTP-like changes in visual-, and auditory-evoked potentials. We describe how rapid, repetitive presentation of sensory stimuli leads to a persistent enhancement of components of sensory-evoked potential in normal humans. Experiments to date, investigating the locus, stimulus specificity, and NMDA receptor dependence of these LTP-like changes suggest that they have the essential characteristics of LTP seen in experimental animals. The ability to elicit LTP from non-surgical patients will provide a human model system allowing the detailed examination of synaptic plasticity in normal subjects and may have future clinical applications in the assessment of cognitive disorders. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

  18. Intestinal perfusion monitoring using photoplethysmography

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-08-01

    In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed.

  19. Infrared face recognition based on modified blood perfusion model and 2DLDA in DWT domain

    NASA Astrophysics Data System (ADS)

    Wu, Shiqian; Liang, Wei; Fang, Zhijun; Yang, Jucheng; Yuan, Jiasheng

    2009-10-01

    A efficient method for infrared face recognition by modified blood perfusion model of human face and 2DLDA in DWT domain is proposed. Then we demonstrate from the theoretical that the 2DLDA subspace projection result remains the same with the original data are transformed using the wavelet transformation. The experiments conducted illustrate that the method proposed in this paper has better performance. While the recognition rate wasn't decrease based on modified blood perfusion model compared to blood perfusion model obviously and have even lightly improved in some cases.

  20. A disposable flexible skin patch for clinical optical perfusion monitoring at multiple depths

    NASA Astrophysics Data System (ADS)

    Farkas, Dana L.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Podolsky, Matthew J.; Christian, James F.; Ward, Brent B.; Vartarian, Mark; Feinberg, Stephen E.; Lee, Seung Yup; Parikh, Urmi; Mycek, Mary-Ann; Joyner, Michael J.; Johnson, Christopher P.; Paradis, Norman A.

    2016-03-01

    Stable, relative localization of source and detection fibers is necessary for clinical implementation of quantitative optical perfusion monitoring methods such as diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy (DRS). A flexible and compact device design is presented as a platform for simultaneous monitoring of perfusion at a range of depths, enabled by precise location of optical fibers in a robust and secure adhesive patch. We will discuss preliminary data collected on human subjects in a lower body negative pressure model for hypovolemic shock. These data indicate that this method facilitates simple and stable simultaneous monitoring of perfusion at multiple depths and within multiple physiological compartments.

  1. Long Term Fate of Human Fetal Liver Progenitor Cells Transplanted in Injured Mouse Livers.

    PubMed

    Irudayaswamy, Antony; Muthiah, Mark; Zhou, Lei; Hung, Hau; Jumat, Nur Halisah Bte; Haque, Jamil; Teoh, Narcissus; Farrell, Geoffrey; Riehle, Kimberly J; Lin, Jaymie Siqi; Su, Lin Lin; Chan, Jerry Ky; Choolani, Mahesh; Wong, P C; Wee, Aileen; Lim, Seng Gee; Campbell, Jean; Fausto, Nelson; Dan, Yock Young

    2017-09-28

    Liver progenitor cells have the potential to repair and regenerate a diseased liver. The success of any translational efforts, however, hinges on thorough understanding of the fate of these cells after transplant, especially in terms of long-term safety and efficacy. Here we report transplantation of a liver progenitor population isolated from human fetal livers into immune-permissive mice with follow-up up to 36 weeks after transplant. We found that human progenitor cells engraft and differentiate into functional human hepatocytes in the mouse, producing albumin, alpha-1-antitrypsin, and glycogen. They create tight junctions with mouse hepatocytes, with no evidence of cell fusion. Interestingly, they also differentiate into functional endothelial cell and bile duct cells. Transplantation of progenitor cells abrogated carbon tetrachloride-induced fibrosis in recipient mice, with down-regulation of procollagen and anti-smooth muscle actin. Paradoxically, the degree of engraftment of human hepatocytes correlated negatively with the anti-fibrotic effect. Progenitor cell expansion was most prominent in cirrhotic animals, and correlated with transcript levels of pro-fibrotic genes. Animals that had resolution of fibrosis had quiescent native progenitor cells in their livers. No evidence of neoplasia was observed, even up to 9 months after transplantation. Human fetal liver progenitor cells successfully attenuate liver fibrosis in mice. They are activated in the setting of liver injury, but become quiescent when injury resolves, mimicking the behavior of de novo progenitor cells. Our data suggest that liver progenitor cells transplanted into injured livers maintain a functional role in the repair and regeneration of the liver. This article is protected by copyright. All rights reserved. © 2017 AlphaMed Press.

  2. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity

    PubMed Central

    Tauber, Svantje; Lauber, Beatrice A.; Paulsen, Katrin; Layer, Liliana E.; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R.; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S.

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC–TOF–MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface–bound fucose. The reduced ICAM-1 expression and the loss of cell surface–bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non

  3. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity.

    PubMed

    Tauber, Svantje; Lauber, Beatrice A; Paulsen, Katrin; Layer, Liliana E; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S; Ullrich, Oliver

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non

  4. Long-term cognitive effects of human stem cell transplantation in the irradiated brain.

    PubMed

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L

    2014-09-01

    Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function.

  5. Evidence for clock genes circadian rhythms in human full-term placenta.

    PubMed

    Pérez, Silvia; Murias, Lucía; Fernández-Plaza, Catalina; Díaz, Irene; González, Celestino; Otero, Jesús; Díaz, Elena

    2015-01-01

    Biological rhythms are driven by endogenous biological clocks; in mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. This master pacemaker can synchronize other peripheral oscillators in several tissues such as some involved in endocrine or reproductive functions. The presence of an endogenous placental clock has received little attention. In fact, there are no studies in human full-term placentas. To test the existence of an endogenous pacemaker in this tissue we have studied the expression of circadian locomoter output cycles kaput (Clock), brain and muscle arnt-like (Bmal)1, period (Per)2, and cryptochrome (Cry)1 mRNAs at 00, 04, 08, 12, 16, and 20 hours by qPCR. The four clock genes studied are expressed in full-term human placenta. The results obtained allow us to suggest that a peripheral oscillator exists in human placenta. Data were analyzed using Fourier series where only the Clock and Bmal1 expression shows a circadian rhythm.

  6. Liver ex-vivo machine perfusion preservation: A review of the methodology and results of large animal studies and clinical trials.

    PubMed

    Marecki, Hazel; Bozorgzadeh, Adel; Porte, Robert; Leuvenink, Henri; Uygun, Korkut; Martins, Paulo

    2017-02-27

    Ex-vivo machine perfusion is a promising way to better preserve livers prior to transplantation. Currently, no methodology has verified benefit over simple cold storage. Before becoming clinically feasible, machine perfusion requires validation in models that reliably predict human performance. Such a model has been found in porcine liver, who's physiological, anatomical, and immunological characteristics closely resemble the human liver. Since the 1930s, researchers have explored machine perfusion as preservation, but only recently have clinical trials been performed. Making this technology clinically available holds the promise of expanding the donor pool through more effective preservation of extended criteria donor livers. Machine perfusion promises to decrease delayed graft function, primary non-function and biliary strictures, all common failure modes of transplanted extended criteria donor livers. While hypothermic machine perfusion has become the standard for kidney ex-vivo preservation, the precise settings and clinical role for liver machine perfusion has not yet been established. In research, there are two schools of thought: normothermic machine perfusion, closely mimicking physiologic conditions, and hypothermic machine perfusion, to maximize preservation. Here, we review the literature for porcine ex-vivo machine perfusion, with aim to summarize perfusion settings and outcomes pertinent to the clinical establishment of machine perfusion. This article is protected by copyright. All rights reserved.

  7. Quantitative pixelwise myocardial perfusion maps from first-pass perfusion MRI.

    PubMed

    Weng, A M; Ritter, C O; Beer, M; Hahn, D; Köstler, H

    2014-07-01

    To calculate and evaluate absolute quantitative myocardial perfusion maps from rest first-pass perfusion MRI. 10 patients after revascularization of myocardial infarction underwent cardiac rest first-pass perfusion MRI. Additionally, perfusion examinations were performed in 12 healthy volunteers. Quantitative myocardial perfusion maps were calculated by using a deconvolution technique, and results were compared were the findings of a sector-based quantification. Maps were typically calculated within 3 min per slice. For the volunteers, myocardial blood flow values of the maps were 0.51 ± 0.16 ml g(-1) per minute, whereas sector-based evaluation delivered 0.52 ± 0.15 ml g(-1) per minute. A t-test revealed no statistical difference between the two sets of values. For the patients, all perfusion defects visually detected in the dynamic perfusion series could be correctly reproduced in the maps. Calculation of quantitative perfusion maps from myocardial perfusion MRI examinations is feasible. The absolute quantitative maps provide additional information on the transmurality of perfusion defects compared with the visual evaluation of the perfusion series and offer a convenient way to present perfusion MRI findings. Voxelwise analysis of myocardial perfusion helps clinicians to assess the degree of tissue damage, and the resulting maps are a good tool to present findings to patients.

  8. A Generic Bioheat Transfer Thermal Model for a Perfused Tissue

    PubMed Central

    Vaughan, J. Thomas

    2009-01-01

    A thermal model was needed to predict temperatures in a perfused tissue, which satisfied the following three criteria. One, the model satisfied conservation of energy. Two, the heat transfer rate from blood vessels to tissue was modeled without following a vessel path. Three, the model applied to any unheated and heated tissue. To meet these criteria, a generic bioheat transfer model (BHTM) was derived here by conserving thermal energy in a heated, vascularized, finite tissue and by making a few simplifying assumptions. Two linear, coupled differential equations were obtained with the following two variables: tissue volume averaged temperature and blood volume averaged temperature. The generic model was compared to the widely employed, empirical Pennes’ BHTM. The comparison showed that the Pennes’ perfusion term wCp(1−ε) should be interpreted as a local vasculature dependent heat transfer coefficient term. Suggestions are presented for further adaptations of the general BHTM for specific tissues using imaging techniques and numerical simulations. PMID:19640142

  9. A generic bioheat transfer thermal model for a perfused tissue.

    PubMed

    Shrivastava, Devashish; Vaughan, J Thomas

    2009-07-01

    A thermal model was needed to predict temperatures in a perfused tissue, which satisfied the following three criteria. One, the model satisfied conservation of energy. Two, the heat transfer rate from blood vessels to tissue was modeled without following a vessel path. Three, the model applied to any unheated and heated tissue. To meet these criteria, a generic bioheat transfer model (BHTM) was derived here by conserving thermal energy in a heated vascularized finite tissue and by making a few simplifying assumptions. Two linear coupled differential equations were obtained with the following two variables: tissue volume averaged temperature and blood volume averaged temperature. The generic model was compared with the widely employed empirical Pennes' BHTM. The comparison showed that the Pennes' perfusion term wC(p)(1-epsilon) should be interpreted as a local vasculature dependent heat transfer coefficient term. Suggestions are presented for further adaptations of the general BHTM for specific tissues using imaging techniques and numerical simulations.

  10. False memory for face in short-term memory and neural activity in human amygdala.

    PubMed

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2014-12-03

    Human memory is often inaccurate. Similar to words and figures, new faces are often recognized as seen or studied items in long- and short-term memory tests; however, the neural mechanisms underlying this false memory remain elusive. In a previous fMRI study using morphed faces and a standard false memory paradigm, we found that there was a U-shaped response curve of the amygdala to old, new, and lure items. This indicates that the amygdala is more active in response to items that are salient (hit and correct rejection) compared to items that are less salient (false alarm), in terms of memory retrieval. In the present fMRI study, we determined whether the false memory for faces occurs within the short-term memory range (a few seconds), and assessed which neural correlates are involved in veridical and illusory memories. Nineteen healthy participants were scanned by 3T MRI during a short-term memory task using morphed faces. The behavioral results indicated that the occurrence of false memories was within the short-term range. We found that the amygdala displayed a U-shaped response curve to memory items, similar to those observed in our previous study. These results suggest that the amygdala plays a common role in both long- and short-term false memory for faces. We made the following conclusions: First, the amygdala is involved in detecting the saliency of items, in addition to fear, and supports goal-oriented behavior by modulating memory. Second, amygdala activity and response time might be related with a subject's response criterion for similar faces. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Heat stress increases long-term human migration in rural Pakistan

    NASA Astrophysics Data System (ADS)

    Mueller, V.; Gray, C.; Kosec, K.

    2014-03-01

    Human migration attributable to climate events has recently received significant attention from the academic and policy communities . Quantitative evidence on the relationship between individual, permanent migration and natural disasters is limited . A 21-year longitudinal survey conducted in rural Pakistan (1991-2012) provides a unique opportunity to understand the relationship between weather and long-term migration. We link individual-level information from this survey to satellite-derived measures of climate variability and control for potential confounders using a multivariate approach. We find that flooding--a climate shock associated with large relief efforts--has modest to insignificant impacts on migration. Heat stress, however--which has attracted relatively little relief--consistently increases the long-term migration of men, driven by a negative effect on farm and non-farm income. Addressing weather-related displacement will require policies that both enhance resilience to climate shocks and lower barriers to welfare-enhancing population movements.

  12. Assessment of the long-term risks of inadvertent human intrusion

    SciTech Connect

    Wuschke, D.M. )

    1993-01-01

    Canada has conducted an extensive research program on the safe disposal of nuclear fuel wastes. The program has focused on the concept of disposal of spent fuel in durable containers in an engineered facility, or vault, 500 to 1000 m deep in intrusive igneous rock in the Canadian Shield. An essential goal of this program has been to develop and demonstrate a methodology to evaluate the performance of the facility against safety criteria established by Canada's regulatory agency, the Atomic Energy Control Board (AECB). These criteria are expressed in terms of risk, where risk is defined as the sum over all significant scenarios of the product of the probability of the scenario, the magnitude of the resultant dose, and the probability of a health effect per unit dose. This paper describes the methodology developed to assess the long-term risk from inadvertent human intrusion into such a facility and the results of its application to a conceptual design of such a facility.

  13. Human Engineered Heart Muscles Engraft and Survive Long-Term in a Rodent Myocardial Infarction Model

    PubMed Central

    Riegler, Johannes; Tiburcy, Malte; Ebert, Antje; Tzatzalos, Evangeline; Raaz, Uwe; Abilez, Oscar J.; Shen, Qi; Kooreman, Nigel G.; Neofytou, Evgenios; Chen, Vincent C.; Wang, Mouer; Meyer, Tim; Tsao, Philip S.; Connolly, Andrew J.; Couture, Larry A.; Gold, Joseph D.; Zimmermann, Wolfram H.; Wu, Joseph C.

    2015-01-01

    Rational Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocte (ESC-CM) transplantation, thereby potentially preventing dilative remodelling and progression to heart failure. Objective Assessment of transport stability, long term survival, structural organisation, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction (MI) model. Methods and Results We constructed EHMs from ESC-CMs and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). After ischemia/reperfusion (I/R) injury, EHMs were implanted onto immunocompromised rat hearts at 1 month to simulate chronic ischemia. Bioluminescence imaging (BLI) showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving up to 25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs −6.7±1.4% vs control −10.9±1.5%, n>12, P=0.05), we observed no difference between EHMs containing viable or non-viable human cardiomyocytes in this chronic xenotransplantation model (n>12, P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. Conclusions EHM transplantation led to high engraftment rates, long term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic MI model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation. PMID:26291556

  14. Long-term effects of cannabis on oculomotor function in humans.

    PubMed

    Huestegge, L; Radach, R; Kunert, H J

    2009-08-01

    Cannabis is known to affect human cognitive and visuomotor skills directly after consumption. Some studies even point to rather long-lasting effects, especially after chronic tetrahydrocannabinol (THC) abuse. However, it is still unknown whether long-term effects on basic visual and oculomotor processing may exist. In the present study, the performance of 20 healthy long-term cannabis users without acute THC intoxication and 20 control subjects were examined in four basic visuomotor paradigms to search for specific long-term impairments. Subjects were asked to perform: 1) reflexive saccades to visual targets (prosaccades), including gap and overlap conditions, 2) voluntary antisaccades, 3) memory-guided saccades and 4) double-step saccades. Spatial and temporal parameters of the saccades were subsequently analysed. THC subjects exhibited a significant increase of latency in the prosaccade and antisaccade tasks, as well as prolonged saccade amplitudes in the antisaccade and memory-guided task, compared with the control subjects. The results point to substantial and specific long-term deficits in basic temporal processing of saccades and impaired visuo-spatial working memory. We suggest that these impairments are a major contributor to degraded performance of chronic users in a vital everyday task like visual search, and they might potentially also affect spatial navigation and reading.

  15. Bursts of seizures in long-term recordings of human focal epilepsy.

    PubMed

    Karoly, Philippa J; Nurse, Ewan S; Freestone, Dean R; Ung, Hoameng; Cook, Mark J; Boston, Ray

    2017-03-01

    We report on temporally clustered seizures detected from continuous long-term ambulatory human electroencephalographic data. The objective was to investigate short-term seizure clustering, which we have termed bursting, and consider implications for patient care, seizure prediction, and evaluating therapies. Chronic ambulatory intracranial electroencephalography (EEG) data collected for the purpose of seizure prediction were annotated to identify seizure events. A detection algorithm was used to identify bursts of events. Burst events were compared to nonburst events to evaluate event dispersion, duration and dynamics. Bursts of seizures were present in 6 of 15 subjects, and detections were consistent over long-term monitoring (>2 years). Subjects with bursts of seizures had highly overdispersed seizure rates, compared to other subjects. There was a complicated relationship between bursts and clinical seizures, although bursts were associated with multimodal distributions of seizure duration, and poorer predictive outcomes. For three subjects, bursts demonstrated distinctive preictal dynamics compared to clinical seizures. We have previously hypothesized that there are distinct physiologic pathways underlying short- and long-duration seizures. Herein we show that burst seizures fall almost exclusively within the short population of seizure durations; however, a short duration event was not sufficient to induce or imply bursting. We can therefore conclude that in addition to distinct mechanisms underlying seizure duration, there are separate factors regulating bursts of seizures. We show that bursts were a robust phenomenon in our patient cohort, which were consistent with overdispersed seizure rates, suggesting long-memory dynamics. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  16. Ultrasound perfusion signal processing for tumor detection

    NASA Astrophysics Data System (ADS)

    Kim, MinWoo; Abbey, Craig K.; Insana, Michael F.

    2016-04-01

    Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity and a sign of a potential malignancy. Ultrasonic pulsed-Doppler imaging is a preferred modality for noninvasive monitoring of blood flow. However, the weak blood echoes and disorganized slow flow make it difficult to detect perfusion using standard methods without the expense and risk of contrast enhancement. Our research measures the efficiency of conventional power-Doppler (PD) methods at discriminating flow states by comparing measurement performance to that of an ideal discriminator. ROC analysis applied to the experimental results shows that power Doppler methods are just 30-50 % efficient at perfusion flows less than 1ml/min, suggesting an opportunity to improve perfusion assessment through signal processing. A new perfusion estimator is proposed by extending the statistical discriminator approach. We show that 2-D perfusion color imaging may be enhanced using this approach.

  17. Vanadium-mediated lipid peroxidation in microsomes from human term placenta

    SciTech Connect

    Byczkowski, J.Z.; Wan, B.; Kulkarni, A.P.

    1988-11-01

    Vanadium is considered an essential element present in living organisms in trace amounts but it is toxic when introduced in excessive doses to animals and humans. Vanadium compounds are extensively used in modern industry and occupational exposure to high doses of vanadium is quite common. In pregnant mice, vanadium accumulates preferentially in the placenta and to lower extent in fetal skeleton and mammary gland during exposure to radioactive vanadium. Accumulation of vanadium in fetoplacental unit may present threat to the fetus by interacting with enzymes and ion-transporting systems in membranes. It is also possible that accumulation of vanadium with its concomitant reduction to vanadyl may lead to lipid peroxidation, followed by damage to biological membranes, lysosomal enzymes release and destruction of placental tissue. To explore some of these possibilities the authors decided to examine whether vanadate can undergo redox cycling in microsomes from human term placenta (HTP) that can lead to lipid peroxidation.

  18. Invasiveness and Ploidy of Human Mammary Carcinomas in Short-Term Culture

    NASA Astrophysics Data System (ADS)

    Smith, Helene S.; Liotta, Lance A.; Hancock, Miriam C.; Wolman, Sandra R.; Hackett, Adeline J.

    1985-03-01

    Invasiveness and ploidy were examined in cultures of human epithelial cells derived from nonmalignant breast tissue, primary breast carcinomas, and breast cancer effusion metastases. Successful short-term culture was achieved from approximately 70% of the primary breast cancers. These primary cancers were essentially diploid by flow cytometry and karyotype in contrast to the effusion metastases, which were mostly aneuploid. The diploid tumor cells retained their malignant phenotype in culture as demonstrated by invasion into a denuded human amnion basement membrane. In contrast, epithelial cells cultured from nonmalignant mammary tissue did not invade the amnion. We suggest that the diploid carcinoma cultures may be useful for investigating the essential differences between normal and malignant cells and may complement information derived from studies of tumor cell lines with grossly aberrant karyotypes.

  19. Long-Term Facilitation of Ventilation in Humans with Chronic Spinal Cord Injury

    PubMed Central

    Fuller, David D.; Fromm, Jason S.; Spiess, Martina R.; Behrman, Andrea L.; Mateika, Jason H.

    2014-01-01

    Rationale: Intermittent stimulation of the respiratory system with hypoxia causes persistent increases in respiratory motor output (i.e., long-term facilitation) in animals with spinal cord injury. This paradigm, therefore, has been touted as a potential respiratory rehabilitation strategy. Objectives: To determine whether acute (daily) exposure to intermittent hypoxia can also evoke long-term facilitation of ventilation after chronic spinal cord injury in humans, and whether repeated daily exposure to intermittent hypoxia enhances the magnitude of this response. Methods: Eight individuals with incomplete spinal cord injury (>1 yr; cervical [n = 6], thoracic [n = 2]) were exposed to intermittent hypoxia (eight 2-min intervals of 8% oxygen) for 10 days. During all exposures, end-tidal carbon dioxide levels were maintained, on average, 2 mm Hg above resting values. Minute ventilation, tidal volume, and breathing frequency were measured before (baseline), during, and 30 minutes after intermittent hypoxia. Sham protocols consisted of exposure to room air and were administered to a subset of the participants (n = 4). Measurements and Main Results: Minute ventilation increased significantly for 30 minutes after acute exposure to intermittent hypoxia (P < 0.001), but not after sham exposure. However, the magnitude of ventilatory long-term facilitation was not enhanced over 10 days of intermittent hypoxia exposures. Conclusions: Ventilatory long-term facilitation can be evoked by brief periods of hypoxia in humans with chronic spinal cord injury. Thus, intermittent hypoxia may represent a strategy for inducing respiratory neuroplasticity after declines in respiratory function that are related to neurological impairment. Clinical trial registered with www.clinicaltrials.gov (NCT01272011). PMID:24224903

  20. Long-term facilitation of ventilation in humans with chronic spinal cord injury.

    PubMed

    Tester, Nicole J; Fuller, David D; Fromm, Jason S; Spiess, Martina R; Behrman, Andrea L; Mateika, Jason H

    2014-01-01

    Intermittent stimulation of the respiratory system with hypoxia causes persistent increases in respiratory motor output (i.e., long-term facilitation) in animals with spinal cord injury. This paradigm, therefore, has been touted as a potential respiratory rehabilitation strategy. To determine whether acute (daily) exposure to intermittent hypoxia can also evoke long-term facilitation of ventilation after chronic spinal cord injury in humans, and whether repeated daily exposure to intermittent hypoxia enhances the magnitude of this response. Eight individuals with incomplete spinal cord injury (>1 yr; cervical [n = 6], thoracic [n = 2]) were exposed to intermittent hypoxia (eight 2-min intervals of 8% oxygen) for 10 days. During all exposures, end-tidal carbon dioxide levels were maintained, on average, 2 mm Hg above resting values. Minute ventilation, tidal volume, and breathing frequency were measured before (baseline), during, and 30 minutes after intermittent hypoxia. Sham protocols consisted of exposure to room air and were administered to a subset of the participants (n = 4). Minute ventilation increased significantly for 30 minutes after acute exposure to intermittent hypoxia (P < 0.001), but not after sham exposure. However, the magnitude of ventilatory long-term facilitation was not enhanced over 10 days of intermittent hypoxia exposures. Ventilatory long-term facilitation can be evoked by brief periods of hypoxia in humans with chronic spinal cord injury. Thus, intermittent hypoxia may represent a strategy for inducing respiratory neuroplasticity after declines in respiratory function that are related to neurological impairment. Clinical trial registered with www.clinicaltrials.gov (NCT01272011).