Science.gov

Sample records for perfused term human

  1. Long-term three-dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors.

    PubMed

    Schmelzer, Eva; Finoli, Anthony; Nettleship, Ian; Gerlach, Jörg C

    2015-04-01

    The construction and long-term maintenance of three-dimensional in vitro bone marrow models is of great interest but still quite challenging. Here we describe the use of a multi-compartment hollow-fiber membrane based three-dimensional perfusion bioreactor for long-term culture of whole human bone marrow mononuclear cells. We also investigated bioreactors with incorporated open-porous foamed hydroxyapatite scaffolds, mimicking the in vivo bone matrix. Cells in bioreactors with and without scaffolds were cultured to 6 weeks and compared to Petri dish controls. Cells were analyzed for gene expression, surface markers by flow cytometry, metabolic activity, hematopoietic potential, viability, and attachment by immunocytochemistry. Cells in bioreactors were metabolic active during long-term culture. The percentages of hematopoietic stem cell and mature endothelial cell fractions were maintained in bioreactors. The expression of most of the analyzed genes stabilized and increased after long-term culture of 6 weeks. Compared to Petri dish culture controls, bioreactor perfusion culture improved in both the short and long-term, the colony formation unit capacity of hematopoietic progenitors. Cells attached to the ample surface area provided by hydroxyapatite scaffolds. The implementation of a hydroxyapatite scaffold did not influence colony formation capacity, percentages of cell type specific fractions, gene expression, cell viability or metabolic turnover when compared to control cells cultured in bioreactors without scaffolds. In conclusion, three-dimensional perfusion bioreactor culture enables long-term maintenance of primary human bone marrow cells, with hydroxyapatite scaffolds providing an in vivo-like scaffold for three-dimensional culture.

  2. Long term perfusion system supporting adipogenesis.

    PubMed

    Abbott, Rosalyn D; Raja, Waseem K; Wang, Rebecca Y; Stinson, Jordan A; Glettig, Dean L; Burke, Kelly A; Kaplan, David L

    2015-08-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogenesis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  3. Long term perfusion system supporting adipogenesis

    PubMed Central

    Abbott, Rosalyn D.; Raja, Waseem K.; Wang, Rebecca Y.; Stinson, Jordan A.; Glettig, Dean L.; Burke, Kelly A.; Kaplan, David L.

    2015-01-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogensis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  4. Long term perfusion system supporting adipogenesis.

    PubMed

    Abbott, Rosalyn D; Raja, Waseem K; Wang, Rebecca Y; Stinson, Jordan A; Glettig, Dean L; Burke, Kelly A; Kaplan, David L

    2015-08-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogenesis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight.

  5. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  6. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta

    SciTech Connect

    Myllynen, Paeivi Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysae, Jaana; Pirilae, Rauna; Lastumaeki, Anni; Vaehaekangas, Kirsi H.

    2008-10-15

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of {sup 14}C-PhIP (2 {mu}M) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 {+-} 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of {sup 14}C-PhIP from maternal to fetal circulation (FM ratio 0.90 {+-} 0.08 at 6 h, p < 0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75 {+-} 0.10, p = 0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of {sup 14}C-PhIP (R = - 0.81, p < 0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: - 0.11, p = 0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of {sup 14}C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells.

  7. Perfused human organs versus Mary Shelley's Frankenstein.

    PubMed

    Leung, Lawrence

    2009-01-01

    Novel drugs have to go through mandatory pre-clinical testing before they can be approved for use in clinical trials. In essence, it is a form of bench-to-bedside (N2B) translational medicine, but the wastage rate of target candidates is immensely high. Effects seen in vitro often do not translate to in vivo human settings. The search is on for better models closer to human physiology to be used in pre-clinical drug screening. The Ex Vivo Metrics system has been introduced where a human organ is harvested and revitalized in a controlled environment suitable for testing of both drug efficacy and potential toxicity. This commentary expresses the author's views regarding this technology of perfused human organs. PMID:19166591

  8. Perfused human organs versus Mary Shelley's Frankenstein.

    PubMed

    Leung, Lawrence

    2009-01-23

    Novel drugs have to go through mandatory pre-clinical testing before they can be approved for use in clinical trials. In essence, it is a form of bench-to-bedside (N2B) translational medicine, but the wastage rate of target candidates is immensely high. Effects seen in vitro often do not translate to in vivo human settings. The search is on for better models closer to human physiology to be used in pre-clinical drug screening. The Ex Vivo Metrics system has been introduced where a human organ is harvested and revitalized in a controlled environment suitable for testing of both drug efficacy and potential toxicity. This commentary expresses the author's views regarding this technology of perfused human organs.

  9. Ventilation-perfusion matching in long-term microgravity

    NASA Technical Reports Server (NTRS)

    Verbandt, Y.; Wantier, M.; Prisk, G. K.; Paiva, M.; West, J. B. (Principal Investigator)

    2000-01-01

    We studied the ventilation-perfusion matching pattern in normal gravity (1 G) and short- and long-duration microgravity (microG) using the cardiogenic oscillations in the sulfur hexaflouride (SF(6)) and CO(2) concentration signals during the phase III portion of vital capacity single-breath washout experiments. The signal power of the cardiogenic concentration variations was assessed by spectral analysis, and the phase angle between the oscillations of the two simultaneously expired gases was obtained through cross-correlation. For CO(2), a significant reduction of cardiogenic power was observed in microG, with respect to 1 G, but the reduction was smaller and more variable in the case of SF(6). A shift from an in-phase condition in 1 G to an out-of-phase condition was found for both short- and long-duration microG. We conclude that, although the distribution of ventilation and perfusion becomes more homogeneous in microG, significant inhomogeneities persist and that areas of high perfusion become associated with areas of relatively lower ventilation. In addition, these modifications seem to remain constant during long-term exposure to microG.

  10. The culture of human embryonic stem cells in microchannel perfusion bioreactors

    NASA Astrophysics Data System (ADS)

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri; Levenberg, Shulamit

    2007-12-01

    The culture of human Embryonic Stem (ES) cells in microchannel bioreactors can be highly beneficial for ES cell biology studies and ES tissue engineering applications. In the present study we examine the use of Human Foreskin Fibroblasts (HFF) cells as feeder cells for human ES culture in a microchannel perfusion bioreactor. PDMS microchannels (depth:130 micron) were fabricated using conventional soft-lithography techniques. The channels were sterilized, coated with a human fibronectin solution and seeded with cells. Following a period of static incubation, culture medium was perfused through the channels at various flow rates and cell growth was monitored throughout the culture process. Mass transport and fluid mechanics models were used to evaluate the culture conditions (shear stress, oxygen levels within the micro-bioreactor as a function of the medium flow rate. The conditions for successful long-term culture (>7 days) of HFF under flow were established. Experiments with human embryonic stem cells cultured in microchannels show that the conditions essential to co-culture human ES cell on HFF cells under perfusion differ from the conditions necessary for HFF cell culture. Human ES cells were found to be highly sensitive to flow and culture conditions and did not grow under flow rates which were suitable for HFF long-term culture. Successful culture of undifferentiated human ES cell colonies in a perfusion micro-bioreactor is a basic step towards utilizing microfluidic techniques to explore stem cell biology.

  11. Ex Vivo Perfusion Treatment of Infection in Human Donor Lungs.

    PubMed

    Nakajima, D; Cypel, M; Bonato, R; Machuca, T N; Iskender, I; Hashimoto, K; Linacre, V; Chen, M; Coutinho, R; Azad, S; Martinu, T; Waddell, T K; Hwang, D M; Husain, S; Liu, M; Keshavjee, S

    2016-04-01

    Ex vivo lung perfusion (EVLP) is a platform to treat infected donor lungs with antibiotic therapy before lung transplantation. Human donor lungs that were rejected for transplantation because of clinical concern regarding infection were randomly assigned to two groups. In the antibiotic group (n = 8), lungs underwent EVLP for 12 h with high-dose antibiotics (ciprofloxacin 400 mg or azithromycin 500 mg, vancomycin 15 mg/kg, and meropenem 2 g). In the control group (n = 7), lungs underwent EVLP for 12 h without antibiotics. A quantitative decrease in bacterial counts in bronchoalveolar lavage (BAL) was found in all antibiotic-treated cases but in only two control cases. Perfusate endotoxin levels at 12 h were significantly lower in the antibiotic group compared with the control group. EVLP with broad-spectrum antibiotic therapy significantly improved pulmonary oxygenation and compliance and reduced pulmonary vascular resistance. Perfusate endotoxin levels at 12 h were strongly correlated with levels of perfusates tumor necrosis factor α, IL-1β and macrophage inflammatory proteins 1α and 1β at 12 h. In conclusion, EVLP treatment of infected donor lungs with broad-spectrum antibiotics significantly reduced BAL bacterial counts and endotoxin levels and improved donor lung function. PMID:26730551

  12. A microfluidically perfused three dimensional human liver model.

    PubMed

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation.

  13. Rapid decrease in tumor perfusion following VEGF blockade predicts long-term tumor growth inhibition in preclinical tumor models.

    PubMed

    Eichten, Alexandra; Adler, Alexander P; Cooper, Blerta; Griffith, Jennifer; Wei, Yi; Yancopoulos, George D; Lin, Hsin Chieh; Thurston, Gavin

    2013-04-01

    Vascular endothelial growth factor (VEGF) is a key upstream mediator of tumor angiogenesis, and blockade of VEGF can inhibit tumor angiogenesis and decrease tumor growth. However, not all tumors respond well to anti-VEGF therapy. Despite much effort, identification of early response biomarkers that correlate with long-term efficacy of anti-VEGF therapy has been difficult. These difficulties arise in part because the functional effects of VEGF inhibition on tumor vessels are still unclear. We therefore assessed rapid molecular, morphologic and functional vascular responses following treatment with aflibercept (also known as VEGF Trap or ziv-aflibercept in the United States) in preclinical tumor models with a range of responses to anti-VEGF therapy, including Colo205 human colorectal carcinoma (highly sensitive), C6 rat glioblastoma (moderately sensitive), and HT1080 human fibrosarcoma (resistant), and correlated these changes to long-term tumor growth inhibition. We found that an overall decrease in tumor vessel perfusion, assessed by dynamic contrast-enhanced ultrasound (DCE-US), and increases in tumor hypoxia correlated well with long-term tumor growth inhibition, whereas changes in vascular gene expression and microvessel density did not. Our findings support previous clinical studies showing that decreased tumor perfusion after anti-VEGF therapy (measured by DCE-US) correlated with response. Thus, measuring tumor perfusion changes shortly after treatment with VEGF inhibitors, or possibly other anti-angiogenic therapies, may be useful to predict treatment efficacy. PMID:23238831

  14. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers.

    PubMed

    op den Dries, S; Karimian, N; Sutton, M E; Westerkamp, A C; Nijsten, M W N; Gouw, A S H; Wiersema-Buist, J; Lisman, T; Leuvenink, H G D; Porte, R J

    2013-05-01

    In contrast to traditional static cold preservation of donor livers, normothermic machine perfusion may reduce preservation injury, improve graft viability and potentially allows ex vivo assessment of graft viability before transplantation. We have studied the feasibility of normothermic machine perfusion in four discarded human donor livers. Normothermic machine perfusion consisted of pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion for 6 h. Two hollow fiber membrane oxygenators provided oxygenation of the perfusion fluid. Biochemical markers in the perfusion fluid reflected minimal hepatic injury and improving function. Lactate levels decreased to normal values, reflecting active metabolism by the liver (mean lactate 10.0 ± 2.3 mmol/L at 30 min to 2.3 ± 1.2 mmol/L at 6 h). Bile production was observed throughout the 6 h perfusion period (mean rate 8.16 ± 0.65 g/h after the first hour). Histological examination before and after 6 h of perfusion showed well-preserved liver morphology without signs of additional hepatocellular ischemia, biliary injury or sinusoidal damage. In conclusion, this study shows that normothermic machine perfusion of human donor livers is technically feasible. It allows assessment of graft viability before transplantation, which opens new avenues for organ selection, therapeutic interventions and preconditioning.

  15. Whole Ovine Ovaries as a Model for Human: Perfusion with Cryoprotectants In Vivo and In Vitro

    PubMed Central

    Isachenko, Vladimir; Rahimi, Gohar; Dattena, Maria; Mallmann, Peter; Baikoshkarova, Saltanat; Kellerwessel, Elisabeth; Otarbaev, Marat; Shalakhmetova, Tamara; Isachenko, Evgenia

    2014-01-01

    These experiments were performed to test the perfusion of ovine as a model for human ovaries by cryoprotectants in vivo at high temperature when the permeability of capillaries is high and when blood is insensibly replaced by the solution of cryoprotectants. By our hypothetical supposition, ovaries could be saturated by cryoprotectants before their surgical removal. The objective was to examine the effectiveness of perfusion of ovine ovaries with vascular pedicle in vivo and in vitro. Arteria ovarica was cannuled and ovaries were perfused by Leibovitz L-15 medium + 100 IU/mL heparin + 5% bovine calf serum + 6% dimethyl sulfoxide + 6% ethylene glycol + 0.15 M sucrose + Indian ink in vivo and in vitro. In the first and second cycle of experiments, ovaries (n = 13 and n = 23) were perfused in vivo and in vitro, respectively, during 60 min with the rate of perfusion 50 mL/h (0.8 mL/min). It was established with in vivo perfusion that only about 10% of ovarian tissues were perfused due to an appearance of multiple anastomoses when the perfusion medium goes from arteria ovarica to arteria uterina without inflow into the ovaries. It was concluded that in vitro perfusion of ovine intact ovaries with vascular pedicle by freezing medium is more effective than this manipulation performed in vivo. PMID:24701576

  16. Functional human liver preservation and recovery by means of subnormothermic machine perfusion.

    PubMed

    Bruinsma, Bote G; Avruch, James H; Weeder, Pepijn D; Sridharan, Gautham V; Uygun, Basak E; Karimian, Negin G; Porte, Robert J; Markmann, James F; Yeh, Heidi; Uygun, Korkut

    2015-04-27

    There is currently a severe shortage of liver grafts available for transplantation. Novel organ preservation techniques are needed to expand the pool of donor livers. Machine perfusion of donor liver grafts is an alternative to traditional cold storage of livers and holds much promise as a modality to expand the donor organ pool. We have recently described the potential benefit of subnormothermic machine perfusion of human livers. Machine perfused livers showed improving function and restoration of tissue ATP levels. Additionally, machine perfusion of liver grafts at subnormothermic temperatures allows for objective assessment of the functionality and suitability of a liver for transplantation. In these ways a great many livers that were previously discarded due to their suboptimal quality can be rescued via the restorative effects of machine perfusion and utilized for transplantation. Here we describe this technique of subnormothermic machine perfusion in detail. Human liver grafts allocated for research are perfused via the hepatic artery and portal vein with an acellular oxygenated perfusate at 21 °C.

  17. Inosculation and perfusion of pre-vascularized tissue patches containing aligned human microvessels after myocardial infarction.

    PubMed

    Riemenschneider, Sonja B; Mattia, Donald J; Wendel, Jacqueline S; Schaefer, Jeremy A; Ye, Lei; Guzman, Pilar A; Tranquillo, Robert T

    2016-08-01

    A major goal of tissue engineering is the creation of pre-vascularized tissues that have a high density of organized microvessels that can be rapidly perfused following implantation. This is especially critical for highly metabolic tissues like myocardium, where a thick myocardial engineered tissue would require rapid perfusion within the first several days to survive transplantation. In the present work, tissue patches containing human microvessels that were either randomly oriented or aligned were placed acutely on rat hearts post-infarction and for each case it was determined whether rapid inosculation could occur and perfusion of the patch could be maintained for 6 days in an infarct environment. Patches containing self-assembled microvessels were formed by co-entrapment of human blood outgrowth endothelial cells and human pericytes in fibrin gel. Cell-induced gel contraction was mechanically-constrained resulting in samples with high densities of microvessels that were either randomly oriented (with 420 ± 140 lumens/mm(2)) or uniaxially aligned (with 940 ± 240 lumens/mm(2)) at the time of implantation. These patches were sutured onto the epicardial surface of the hearts of athymic rats following permanent ligation of the left anterior descending artery. In both aligned and randomly oriented microvessel patches, inosculation occurred and perfusion of the transplanted human microvessels was maintained, proving the in vivo vascularization potential of these engineered tissues. No difference was found in the number of human microvessels that were perfused in the randomly oriented (111 ± 75 perfused lumens/mm(2)) and aligned (173 ± 97 perfused lumens/mm(2)) patches. Our results demonstrate that tissue patches containing a high density of either aligned or randomly oriented human pre-formed microvessels achieve rapid perfusion in the myocardial infarct environment - a necessary first-step toward the creation of a thick, perfusable heart patch.

  18. Kinetic assessment of manganese using magnetic resonance imaging in the dually perfused human placenta in vitro

    SciTech Connect

    Miller, R.K.; Mattison, D.R.; Panigel, M.; Ceckler, T.; Bryant, R.; Thomford, P.

    1987-10-01

    The transfer and distribution of paramagnetic manganese was investigated in the dually perfused human placenta in vitro (using 10, 20, 100 ..mu..M Mn with and without /sup 54/Mn) using magnetic resonance imaging (MRI) and conventional radiochemical techniques. The human placenta concentrated /sup 54/Mn rapidly during the first 15 min of perfusion and by 4 hr was four times greater than the concentrations of Mn in the maternal perfusate, while the concentration of Mn in the fetal perfusate was 25% of the maternal perfusate levels. Within placentae, 45% of the /sup 54/Mn was free in the 100,000g supernatant, with 45% in the 1000g pellet. The magnetic field dependence of proton nuclear spin-lattice relaxation time (T/sub 1/) in placental tissue supports this Mn binding. Mn primarily affected the MRI partial saturation rather than spin-echo images of the human placenta, which provided for the separation of perfusate contributions from those produced by Mn. The washout of the Mn from the placenta was slow compared with its uptake, as determined by MRI. Thus, Mn was concentrated by the human placenta, but transfer of Mn across the placenta was limited in either direction. These studies also illustrate the opportunity for studies of human placental function using magnetic resonance imaging as a noninvasive biomarker.

  19. Procedure for Human Saphenous Veins Ex Vivo Perfusion and External Reinforcement

    PubMed Central

    Berard, Xavier; Alonso, Florian; Haefliger, Jacques-Antoine

    2014-01-01

    The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh. PMID:25350681

  20. Procedure for human saphenous veins ex vivo perfusion and external reinforcement.

    PubMed

    Longchamp, Alban; Allagnat, Florent; Berard, Xavier; Alonso, Florian; Haefliger, Jacques-Antoine; Deglise, Sébastien; Corpataux, Jean-Marc

    2014-01-01

    The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh. PMID:25350681

  1. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  2. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro.

    PubMed

    Killian, Nathaniel J; Vernekar, Varadraj N; Potter, Steve M; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  3. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro

    PubMed Central

    Killian, Nathaniel J.; Vernekar, Varadraj N.; Potter, Steve M.; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  4. Mastication induces long-term increases in blood perfusion of the trigeminal principal nucleus.

    PubMed

    Viggiano, A; Manara, R; Conforti, R; Paccone, A; Secondulfo, C; Lorusso, L; Sbordone, L; Di Salle, F; Monda, M; Tedeschi, G; Esposito, F

    2015-12-17

    Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing. PMID:26477983

  5. Preliminary Study of Open Quotient in an Ex-Vivo Perfused Human Larynx Model

    PubMed Central

    Mendelsohn, Abie H.; Zhang, Zhaoyan; Luegmair, Georg; Orestes, Michael; Berke, Gerald S.

    2016-01-01

    Importance Scientific understanding human voice production to date is a product of indirect investigations including animal models, cadaveric tissue study, or computational modeling. Due to its invasive nature, direct experimentation of human voice production has previously not been possible. The feasibility of an ex-vivo perfused human phonatory model has recently allowed systematic investigation in virtually living human larynges with parametric laryngeal muscle stimulation. Objective In this study, the relationship between adductor muscle group stimulation and the open quotient (OQ) of vocal fold vibration was investigated using an ex-vivo perfused human larynx. Design Human perfused tissue study. Setting Physiology Laboratory. Participants Human larynx is recovered from research-consented organ donors within two hours of cardiac death. Interventions, Main Outcomes and Measures Perfusion with donated human blood is re-established shortly after cardiac death. Human perfused phonation is achieved by providing subglottal airflow under graded neuromuscular electrical stimulation bilaterally to the intrinsic adductor groups and cricothyroid muscles. The phonation resulting from the graded states of neuromuscular stimulations are evaluated through high-speed vibratory imaging. OQ is derived through digital kymography and glottal area waveform analysis. Results Under constant glottal flow, step-wise increase in adductor muscle group stimulation decreased OQ. Quantitatively, OQ values reached a lower limit of 0.42. Increased stimulation above maximal muscle deformation was unable to affect OQ beyond this lower limit. Conclusions and Relevance For the first time in a neuromuscularly activated human larynx, a negative relationship between adductor muscle group stimulation and phonatory OQ was demonstrated. Further experience with the ex-vivo perfused human phonatory model will work to systematically define this causal relationship. PMID:26181642

  6. Transplacental transfer of acrylamide and glycidamide are comparable to that of antipyrine in perfused human placenta.

    PubMed

    Annola, Kirsi; Karttunen, Vesa; Keski-Rahkonen, Pekka; Myllynen, Päivi; Segerbäck, Dan; Heinonen, Seppo; Vähäkangas, Kirsi

    2008-11-10

    Most drugs can penetrate the placenta but there are only a few studies on placental transfer of environmental toxic compounds. In this study, we used dual recirculating human placental perfusion to determine the transfer rate through the placenta of a neurotoxic and carcinogenic compound found in food, acrylamide and its genotoxic metabolite glycidamide. Putative acrylamide metabolism into glycidamide during the 4-h perfusions and acrylamide-derived DNA adducts in placental DNA after perfusions were also analyzed. Placentas were collected immediately after delivery and kept physiologically functional as confirmed by antipyrine kinetics, glucose consumption and leak from fetal to maternal circulation. Acrylamide (5 or 10 microg/ml) or glycidamide (5 microg/ml), both with antipyrine (100 microg/ml), was added to maternal circulation. Acrylamide and glycidamide were analyzed in the perfusion medium by liquid chromatography/mass spectrometry. Acrylamide and glycidamide crossed the placenta from maternal to fetal circulation with similar kinetics to antipyrine, suggesting fetal exposure if the mother is exposed. The concentrations in maternal and fetal circulations equilibrated within 2h for both studied compounds and with both concentrations. Acrylamide metabolism into glycidamide was not detected during the 4-h perfusions. Moreover, DNA adducts were undetectable in the placentas after perfusions. However, fetuses may be exposed to glycidamide after maternal metabolism. Although not found in placental tissue after 4h of perfusion, it is possible that glycidamide adducts are formed in fetal DNA.

  7. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    PubMed

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  8. Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells.

    PubMed

    Li, Lin-Mei; Wang, Wei; Zhang, Shu-Hui; Chen, Shi-Jing; Guo, Shi-Shang; Français, Olivier; Cheng, Jie-Ke; Huang, Wei-Hua

    2011-12-15

    Electrochemical techniques based on ultramicroelectrodes (UMEs) play a significant role in real-time monitoring of chemical messengers' release from single cells. Conversely, precise monitoring of cells in vitro strongly depends on the adequate construction of cellular physiological microenvironment. In this paper, we developed a multilayer microdevice which integrated high aspect ratio poly(dimethylsiloxane) (PDMS) microfluidic device for long-term automated perfusion culture of cells without shear stress and an independently addressable microelectrodes array (IAMEA) for electrochemical monitoring of the cultured cells in real time. Novel design using high aspect ratio between circular "moat" and ring-shaped micropillar array surrounding cell culture chamber combined with automated "circular-centre" and "bottom-up" perfusion model successfully provided continuous fresh medium and a stable and uniform microenvironment for cells. Two weeks automated culture of human umbilical endothelial cell line (ECV304) and neuronal differentiation of rat pheochromocytoma (PC12) cells have been realized using this device. Furthermore, the quantal release of dopamine from individual PC12 cells during their culture or propagation process was amperometrically monitored in real time. The multifunctional microdevice developed in this paper integrated cellular microenvironment construction and real-time monitoring of cells during their physiological process, and would possibly provide a versatile platform for cell-based biomedical analysis.

  9. Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model

    PubMed Central

    Grafmüller, Stefanie; Manser, Pius; Krug, Harald F.; Wick, Peter; von Mandach, Ursula

    2013-01-01

    Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ 1. Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 2 and continuously modified by Schneider et al. in 1972 3, can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data. PMID:23851364

  10. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor.

    PubMed

    Ward, Andrew; Quinn, Kyle P; Bellas, Evangelia; Georgakoudi, Irene; Kaplan, David L

    2013-01-01

    The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively assess tissue engineered human adipose tissue structure and function in vitro. Three-dimensional (3D) vascularized human adipose tissues were engineered in vitro, before being introduced to a perfusion environment and tracked over time by automated quantification of endogenous markers of metabolism using two-photon excited fluorescence (TPEF). Depth-resolved image stacks were analyzed for redox ratio metabolic profiling and compared to prior analyses performed on 3D engineered adipose tissue in static culture. Traditional assessments with H&E staining were used to qualitatively measure extracellular matrix generation and cell density with respect to location within the tissue. The distribution of cells within the tissue and average cellular redox ratios were different between static and perfusion cultures, while the trends of decreased redox ratio and increased cellular proliferation with time in both static and perfusion cultures were similar. These results establish a basis for noninvasive optical tracking of tissue structure and function in vitro, which can be applied to future studies to assess tissue development or drug toxicity screening and disease progression.

  11. Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.

    PubMed

    Zhu, Ge; Mayer-Wagner, Susanne; Schröder, Christian; Woiczinski, Matthias; Blum, Helmut; Lavagi, Ilaria; Krebs, Stefan; Redeker, Julia I; Hölzer, Andreas; Jansson, Volkmar; Betz, Oliver; Müller, Peter E

    2015-09-20

    Hydrostatic pressure and perfusion have been shown to regulate the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed to apply loading (0.1 MPa for 2 h) and perfusion (2 ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls (C) were maintained in static cultures. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. Both treatments changed gene expression levels of human chondrocytes significantly. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of these similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates, adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects.

  12. Characteristics of human cell line, F2N78, for the production of recombinant antibody in fed-batch and perfusion cultures.

    PubMed

    Seo, Joon Serk; Min, Byung Sub; Kwon, Young-Bum; Lee, Soo-Young; Cho, Jong-Moon; Park, Keun-Hee; Yang, Yae Ji; Maeng, Ki Eun; Chang, Shin-Jae; Kim, Dong-Il

    2016-03-01

    A human hybrid cell line, F2N78, was developed by somatic fusion of HEK293 and Namalwa cells for the production recombinant biopharmaceutical proteins. In this study, we performed perfusion culture to verify its potential in culture process used for human cell expression platform. Cell viability could be maintained over 90% and high viable cell density was obtained at higher than 1.0 × 10(7) cells/mL by bleeding process in perfusion culture. The cells were adapted well in both culture modes, but there were apparent differences in protein quality. Compared to fed-batch culture, degalactosylated forms such as G0F and G0 as well as Man5 showed no significant increases in perfusion culture. In terms of charge variants, acidic peaks increased, whereas main peaks constantly decreased according to the length of culture period in both methods.

  13. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells.

    PubMed

    Simão, Daniel; Arez, Francisca; Terasso, Ana P; Pinto, Catarina; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2016-01-01

    Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable

  14. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells.

    PubMed

    Simão, Daniel; Arez, Francisca; Terasso, Ana P; Pinto, Catarina; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2016-01-01

    Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable

  15. Metabolic profiling during ex vivo machine perfusion of the human liver

    PubMed Central

    Bruinsma, Bote G.; Sridharan, Gautham V.; Weeder, Pepijn D.; Avruch, James H.; Saeidi, Nima; Özer, Sinan; Geerts, Sharon; Porte, Robert J.; Heger, Michal; van Gulik, Thomas M.; Martins, Paulo N.; Markmann, James F.; Yeh, Heidi; Uygun, Korkut

    2016-01-01

    As donor organ shortages persist, functional machine perfusion is under investigation to improve preservation of the donor liver. The transplantation of donation after circulatory death (DCD) livers is limited by poor outcomes, but its application may be expanded by ex vivo repair and assessment of the organ before transplantation. Here we employed subnormothermic (21 °C) machine perfusion of discarded human livers combined with metabolomics to gain insight into metabolic recovery during machine perfusion. Improvements in energetic cofactors and redox shifts were observed, as well as reversal of ischemia-induced alterations in selected pathways, including lactate metabolism and increased TCA cycle intermediates. We next evaluated whether DCD livers with steatotic and severe ischemic injury could be discriminated from ‘transplantable’ DCD livers. Metabolomic profiling was able to cluster livers with similar metabolic patterns based on the degree of injury. Moreover, perfusion parameters combined with differences in metabolic factors suggest variable mechanisms that result in poor energy recovery in injured livers. We conclude that machine perfusion combined with metabolomics has significant potential as a clinical instrument for the assessment of preserved livers. PMID:26935866

  16. Human Lung Cancer Cells Grown on Acellular Rat Lung Matrix Create Perfusable Tumor Nodules

    PubMed Central

    Mishra, Dhruva K.; Thrall, Michael J.; Baird, Brandi N.; Ott, Harald C.; Blackmon, Shanda H.; Kurie, Jonathan M.; Kim, Min P.

    2015-01-01

    Background Extracellular matrix allows lung cancer to form its shape and grow. Recent studies on organ reengineering for orthotopic transplantation have provided a new avenue for isolating purified native matrix to use for growing cells. Whether human lung cancer cells grown in a decellularized rat lung matrix would create perfusable human lung cancer nodules was tested. Methods Rat lungs were harvested and native cells were removed using sodium dodecyl sulfate and Triton X-100 in a decellularization chamber to create a decellularized rat lung matrix. Human A549, H460, or H1299 lung cancer cells were placed into the decellularized rat lung matrix and grown in a customized bioreactor with perfusion of oxygenated media for 7 to 14 days. Results Decellularized rat lung matrix showed preservation of matrix architecture devoid of all rat cells. All three human lung cancer cell lines grown in the bioreactor developed tumor nodules with intact vasculature. Moreover, the lung cancer cells developed a pattern of growth similar to the original human lung cancer. Conclusions Overall, this study shows that human lung cancer cells form perfusable tumor nodules in a customized bioreactor on a decellularized rat lung matrix created by a customized decellularization chamber. The lung cancer cells grown in the matrix had features similar to the original human lung cancer. This ex vivo model can be used potentially to gain a deeper understanding of the biologic processes involved in human lung cancer. PMID:22385822

  17. Use of Ex Vivo Normothermic Perfusion for Quality Assessment of Discarded Human Donor Pancreases.

    PubMed

    Barlow, A D; Hamed, M O; Mallon, D H; Brais, R J; Gribble, F M; Scott, M A; Howat, W J; Bradley, J A; Bolton, E M; Pettigrew, G J; Hosgood, S A; Nicholson, M L; Saeb-Parsy, K

    2015-09-01

    A significant number of pancreases procured for transplantation are deemed unsuitable due to concerns about graft quality and the associated risk of complications. However, this decision is subjective and some declined grafts may be suitable for transplantation. Ex vivo normothermic perfusion (EVNP) prior to transplantation may allow a more objective assessment of graft quality and reduce discard rates. We report ex vivo normothermic perfusion of human pancreases procured but declined for transplantation, with ABO-compatible warm oxygenated packed red blood cells for 1-2 h. Five declined human pancreases were assessed using this technique after a median cold ischemia time of 13 h 19 min. One pancreas, with cold ischemia over 30 h, did not appear viable and was excluded. In the remaining pancreases, blood flow and pH were maintained throughout perfusion. Insulin secretion was observed in all four pancreases, but was lowest in an older donation after cardiac death pancreas. Amylase levels were highest in a gland with significant fat infiltration. This is the first study to assess the perfusion, injury, as measured by amylase, and exocrine function of human pancreases using EVNP and demonstrates the feasibility of the approach, although further refinements are required.

  18. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    PubMed

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models.

  19. An Optical Oxygen Sensor for Long-Term Continuous Monitoring of Dissolved Oxygen in Perfused Bioreactors

    NASA Technical Reports Server (NTRS)

    Gao, F. G.; Jeevarajan, A. S.; Anderson, M. M.

    2002-01-01

    For long-term growth of man1ITlalian cells in perfused bioreactors, it is essential to monitor the concentration of dissolved oxygen (DO) present in the culture medium to quantitate and control level of DO. Continuous measurement of the amount of DO in the cell culture medium in-line under sterile conditions in NASA's perfused bioreactor requires that the oxygen sensor provide increased sensitivity and be sterilizable and nontoxic. Additionally, long-term cell culture experiments require that the calibration be maintained several weeks or months. Although there are a number of sensors for dissolved oxygen on the market and under development elsewhere, very few meet these stringent conditions. An optical oxygen sensor (BOXY) based on dynamic fluorescent quenching and a pulsed blue LED light source was developed in our laboratory to address these requirements. Tris( 4,7 -diphenyl-l, 1 O-phenanthroline )ruthenium(II) chloride is employed as the fluorescent dye indicator. The sensing element consists of a glass capillary (OD 4.0 mm; ID 2.0 mm) coated internally with a thin layer of the fluorescent dye in silicone matrix and overlayed with a black shielding layer. Irradiation of the sensing element with blue light (blue LED with emission maximum at 475 nm) generates a red fluorescence centered at 626 nm. The fluorescence intensity is correlated to the concentration of DO present in the culture medium, following the modified non-linear Stern-Volmer equation. By using a pulsed irradiating light source, the problem of dye-bleaching, which is often encountered in long-term continuous measurements of tIns type, 'is minimized. To date we achieved sensor resolution of 0.3 mmHg at 50 mmHg p02, and 0.6 mmHg at 100 mmHg p02, with a response time of about one minute. Calibration was accomplished in sterile phosphate-buffered saline with a blood-gas analyzer (BGA) measurement as reference. Stand-alone software was also developed to control the sensor and bioreactor as well as to

  20. Blood temperature and perfusion to exercising and non‐exercising human limbs

    PubMed Central

    Calbet, José A. L.; Boushel, Robert; Helge, Jørn W.; Søndergaard, Hans; Munch‐Andersen, Thor; van Hall, Gerrit; Mortensen, Stefan P.; Secher, Niels H.

    2015-01-01

    New Findings What is the central question of this study? Temperature‐sensitive mechanisms are thought to contribute to blood‐flow regulation, but the relationship between exercising and non‐exercising limb perfusion and blood temperature is not established. What is the main finding and its importance? The close coupling among perfusion, blood temperature and aerobic metabolism in exercising and non‐exercising extremities across different exercise modalities and activity levels and the tight association between limb vasodilatation and increases in plasma ATP suggest that both temperature‐ and metabolism‐sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes. Temperature‐sensitive mechanisms may contribute to blood‐flow regulation, but the influence of temperature on perfusion to exercising and non‐exercising human limbs is not established. Blood temperature (T B), blood flow and oxygen uptake (V˙O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher than arm blood flow (ABF) in association with higher T B and limb V˙O2. Leg and arm vascular conductance during exercise compared with rest was related closely to T B (r 2 = 0.91; P < 0.05), plasma ATP (r 2 = 0.94; P < 0.05) and limb V˙O2 (r 2 = 0.99; P < 0.05). During incremental leg exercise, LBF increased in association with elevations in T B and limb V˙O2, whereas ABF, arm T B and V˙O2 remained largely unchanged. During incremental arm exercise, both ABF and LBF increased in relationship to similar increases in V˙O2. In 12 trained males, increases in femoral T B and LBF during incremental leg exercise were mirrored by similar pulmonary artery T B and cardiac output dynamics, suggesting that processes in active limbs dominate central

  1. The cerebral imaging using vessel-around method in the perfusion CT of the human brain

    NASA Astrophysics Data System (ADS)

    Ahn, Choong-Il; Choi, Seung-Wook; Park, Seung-Chul; Shin, Yeong-Gil; Kim, Jae-Hyoung; Chong, Gi-Bong

    2005-04-01

    Perfusion CT has been successfully used as a functional imaging technique for diagnosis of patients with hyperacute stroke. However, the commonly used methods based on curve-fitting are time consuming. Numerous researchers have investigated to what extent Perfusion CT can be used for the quantitative assessment of cerebral ischemia and to rapidly obtain comprehensive information regarding the extent of ischemic damage in acute stroke patients. The aim of this study is to propose an alternative approach to rapidly obtain the brain perfusion mapping and to show the proposed cerebral flow imaging of the vessel and tissue in human brain be reliable and useful. Our main design concern was algorithmic speed, robustness and automation in order to allow its potential use in the emergency situation of acute stroke. To obtain a more effective mapping, we analyzed the signal characteristics of Perfusion CT and defined the vessel-around model which includes the vessel and tissue. We proposed a nonparametric vessel-around approach which automatically discriminates the vessel and tissue around vessel from non-interested brain matter stratifying the level of maximum enhancement of pixel-based TAC. The stratification of pixel-based TAC was executed using the mean and standard deviation of the signal intensity of each pixel and mapped to the cerebral flow imaging. The defined vessel-around model was used to show the cerebral flow imaging and to specify the area of markedly reduced perfusion with loss of function of still viable neurons. Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. The vessel-around approach reduces the computation time significantly when compared with the perfusion imaging using the GVF. The proposed cerebral imaging shows reliable results which are validated by physicians and

  2. Attempt to rescue discarded human liver grafts by end ischemic hypothermic oxygenated machine perfusion.

    PubMed

    Vekemans, K; van Pelt, J; Komuta, M; Wylin, T; Heedfeld, V; Detry, O; Monbaliu, D; Pirenne, J

    2011-11-01

    In a porcine liver transplant model, a brief period of oxygenated hypothermic machine perfusion (HMP) at the end of simple cold storage (SCS) has been shown to improve the viability of damaged liver grafts. To test the clinical validity of this strategy, we randomized SCS-discarded human liver grafts to either 4 hours of HMP (n = 13) or an additional 4 hours of SCS (n = 14). All livers were then warm reperfused to mimic ischemia-reperfusion injury ex vivo. The settings for HMP were: portal vein: 3 mm Hg, 300 mL/min and hepatic artery: 20 mm Hg, pO(2): 300 mm Hg. Perfusion used Kidney Machine Perfusion Solution at 4°C to 8°C. During warm reperfusion, aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) values were higher (P < .015) among the SCS versus HMP methods at all times. The AST slope was lower in HMP versus SCS (P = .01). The LDH slope tended to be lower for HMP versus SCS (P = .07). Morphological scores were not different between HMP and SCS. At the start of warm reperfusion, MAPK was lower in HMP versus SCS (P = .02). Endothelin-1 (EDN1) and ICAM-1 tended to be lower in HMP versus SCS (P = .1 and .07, respectively). No difference was noted in MAPK, EDN1, and ICAM-1 after 60 or 120 minutes of warm reperfusion. In conclusion, HMP down-regulated MAPK and tended to reduce EDN1 and ICAM-1 mRNA in human liver grafts. During warm reperfusion, HMP versus SCS livers showed reduced AST and LDH release but no morphological difference. Further optimization of liver HMP may require different timing/duration of perfusion and/or an higher perfusion temperature.

  3. Human placental perfusion method in the assessment of transplacental passage of antiepileptic drugs

    SciTech Connect

    Myllynen, Paeivi . E-mail: paivi.k.myllynen@oulu.fi; Pienimaeki, Paeivi; Vaehaekangas, Kirsi

    2005-09-01

    Epilepsy is one of the most common neurological diseases, affecting about 0.5 to 1% of pregnant women. It is commonly accepted that older antiepileptic drugs bear teratogenic potential. So far, no agreement has been reached about the safest antiepileptic drug during pregnancy. It is known that nearly all drugs cross the placenta at least to some extent. Nowadays, there is very little information available of the pharmacokinetics of drugs in the feto-placental unit. Detailed information about drug transport across the placenta would be valuable for the development of safe and effective treatments. For reasons of safety, human studies on placental transfer are restricted to a limited number of drugs. Interspecies differences limit the extrapolation of animal data to humans. Several in vitro methods for the study of placental transfer have been developed over the past decades. The placental perfusion method is the only experimental method that has been used to study human placental transfer of substances in organized placental tissue. The aim of this article is to review human placental perfusion data on antiepileptic drugs. According to perfusion data, it seems that most of the antiepileptic drugs are transferred across the placenta meaning significant fetal exposure.

  4. Direct In Vivo Human Intestinal Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods.

    PubMed

    Dahlgren, David; Roos, Carl; Sjögren, Erik; Lennernäs, Hans

    2015-09-01

    Regional in vivo human intestinal effective permeability (Peff ) is calculated by measuring the disappearance rate of substances during intestinal perfusion. Peff is the most relevant parameter in the prediction of rate and extent of drug absorption from all parts of the intestine. Today, human intestinal perfusions are not performed on a routine basis in drug development. Therefore, it would be beneficial to increase the accuracy of the in vitro and in silico tools used to evaluate the intestinal Peff of novel drugs. This review compiles historical Peff data from 273 individual measurements of 80 substances from 61 studies performed in all parts of the human intestinal tract. These substances include: drugs, monosaccharaides, amino acids, dipeptides, vitamins, steroids, bile acids, ions, fatty acids, and water. The review also discusses the determination and prediction of Peff using in vitro and in silico methods such as quantitative structure-activity relationship, Caco-2, Ussing chamber, animal intestinal perfusion, and physiologically based pharmacokinetic (PBPK) modeling. Finally, we briefly outline how to acquire accurate human intestinal Peff data by deconvolution of plasma concentration-time profiles following regional intestinal bolus dosing. PMID:25410736

  5. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.

    1998-01-01

    Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P < 0.05) over a 13-d period. Total protein synthesis rates could be determined accurately in the bioreactors for up to 30 h and total protein degradation rates could be measured for up to 3 wk. Special fixation and storage conditions necessary for space flight studies were validated as part of the studies. For example, the anabolic autocrine/paracrine skeletal muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

  6. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans

    PubMed Central

    Elder, Christopher P.; Donahue, Manus J.; Damon, Bruce M.

    2015-01-01

    Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities. PMID:26066829

  7. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans.

    PubMed

    Buck, Amanda K W; Elder, Christopher P; Donahue, Manus J; Damon, Bruce M

    2015-08-01

    Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities.

  8. Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors

    PubMed Central

    de Peppo, Giuseppe Maria; Vunjak-Novakovic, Gordana; Marolt, Darja

    2014-01-01

    Human pluripotent stem cells represent an unlimited source of skeletal tissue progenitors for studies of bone biology, pathogenesis, and the development of new approaches for bone reconstruction and therapies. In order to construct in vitro models of bone tissue development and to grow functional, clinical-size bone substitutes for transplantation, cell cultivation in three-dimensional environments composed of porous osteoconductive scaffolds and dynamic culture systems—bioreactors—has been studied. Here, we describe a stepwise procedure for the induction of human embryonic and induced pluripotent stem cells (collectively termed PSCs) into mesenchymal-like progenitors, and their subsequent cultivation on decellularized bovine bone scaffolds in perfusion bioreactors, to support the development of viable, stable bone-like tissue in defined geometries. PMID:24281874

  9. Engineering a perfusable 3D human liver platform from iPS cells.

    PubMed

    Schepers, Arnout; Li, Cheri; Chhabra, Arnav; Seney, Benjamin Tschudy; Bhatia, Sangeeta

    2016-07-01

    In vitro models of human tissue are crucial to our ability to study human disease as well as develop safe and effective drug therapies. Models of single organs in static and microfluidic culture have been established and shown utility for modeling some aspects of health and disease; however, these systems lack multi-organ interactions that are critical to some aspects of drug metabolism and toxicity. Thus, as part of a consortium of researchers, we have developed a liver chip that meets the following criteria: (1) employs human iPS cells from a patient of interest, (2) cultures cells in perfusable 3D organoids, and (3) is robust to variations in perfusion rate so as to be compatible in series with other specialized tissue chips (e.g. heart, lung). In order to achieve this, we describe methods to form hepatocyte aggregates from primary and iPS-derived cells, alone and in co-culture with support cells. This necessitated a novel culture protocol for the interrupted differentiation of iPS cells that permits their removal from a plated surface and aggregation while maintaining phenotypic hepatic functions. In order to incorporate these 3D aggregates in a perfusable platform, we next encapsulated the cells in a PEG hydrogel to prevent aggregation and overgrowth once on chip. We adapted a C-trap chip architecture from the literature that enabled robust loading with encapsulated organoids and culture over a range of flow rates. Finally, we characterize the liver functions of this iHep organoid chip under perfusion and demonstrate a lifetime of at least 28 days. We envision that such this strategy can be generalized to other microfluidic tissue models and provides an opportunity to query patient-specific liver responses in vitro.

  10. Engineering a perfusable 3D human liver platform from iPS cells.

    PubMed

    Schepers, Arnout; Li, Cheri; Chhabra, Arnav; Seney, Benjamin Tschudy; Bhatia, Sangeeta

    2016-07-01

    In vitro models of human tissue are crucial to our ability to study human disease as well as develop safe and effective drug therapies. Models of single organs in static and microfluidic culture have been established and shown utility for modeling some aspects of health and disease; however, these systems lack multi-organ interactions that are critical to some aspects of drug metabolism and toxicity. Thus, as part of a consortium of researchers, we have developed a liver chip that meets the following criteria: (1) employs human iPS cells from a patient of interest, (2) cultures cells in perfusable 3D organoids, and (3) is robust to variations in perfusion rate so as to be compatible in series with other specialized tissue chips (e.g. heart, lung). In order to achieve this, we describe methods to form hepatocyte aggregates from primary and iPS-derived cells, alone and in co-culture with support cells. This necessitated a novel culture protocol for the interrupted differentiation of iPS cells that permits their removal from a plated surface and aggregation while maintaining phenotypic hepatic functions. In order to incorporate these 3D aggregates in a perfusable platform, we next encapsulated the cells in a PEG hydrogel to prevent aggregation and overgrowth once on chip. We adapted a C-trap chip architecture from the literature that enabled robust loading with encapsulated organoids and culture over a range of flow rates. Finally, we characterize the liver functions of this iHep organoid chip under perfusion and demonstrate a lifetime of at least 28 days. We envision that such this strategy can be generalized to other microfluidic tissue models and provides an opportunity to query patient-specific liver responses in vitro. PMID:27296616

  11. Ectopic Osteogenesis of Macroscopic Tissue Constructs Assembled from Human Mesenchymal Stem Cell-Laden Microcarriers through In Vitro Perfusion Culture

    PubMed Central

    Chen, Maiqin; Zhou, Min; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2014-01-01

    We had previously demonstrated the feasibility of preparing a centimeter-sized bone tissue construct by following a modular approach. In the present study, the objectives were to evaluate osteogenesis and tissue formation of human amniotic mesenchymal stem cells-laden CultiSpher S microcarriers during in vitro perfusion culture and after subcutaneous implantation. Microtissues were prepared in dynamic culture using spinner flasks in 28 days. In comparison with 1-week perfusion culture, microtissues became more obviously fused, demonstrating significantly higher cellularity, metabolic activity, ALP activity and calcium content while maintaining cell viability after 2-week perfusion. After subcutaneous implantation in nude mice for 6 and 12 weeks, all explants showed tight contexture, suggesting profound tissue remodeling in vivo. In addition, 12-week implantation resulted in slightly better tissue properties. However, in vitro perfusion culture time exerted great influence on the properties of corresponding explants. Degradation of microcarriers was more pronounced in the explants of 2-week perfused macrotissues compared to those of 1-week perfusion and directly implanted microtissues. Moreover, more blood vessel infiltration and bone matrix deposition with homogeneous spatial distribution were found in the explants of 2-week perfused macrotissues. Taken together, in vitro perfusion culture time is critical in engineering bone tissue replacements using such a modular approach, which holds great promise for bone regeneration. PMID:25275528

  12. Induction of Hepatic and Endothelial Differentiation by Perfusion in a Three-Dimensional Cell Culture Model of Human Fetal Liver

    PubMed Central

    Pekor, Christopher; Gerlach, Jörg C.; Nettleship, Ian

    2015-01-01

    The development of functional engineered tissue constructs depends on high cell densities and appropriate vascularization. In this study we implemented a four-compartment three-dimensional perfusion bioreactor culture model for studying the effects of medium perfusion on endothelial, hepatic, and hematopoietic cell populations of primary human fetal liver in an in vivo-like environment. Human fetal liver cells were cultured in bioreactors configured to provide either perfusion or diffusion conditions. Metabolic activities of the cultures were monitored daily by measuring glucose consumption and lactate production. Cell viability during culture was analyzed by lactate dehydrogenase activity. Hepatic functionality was determined by the release of albumin and alpha-fetoprotein (AFP) in culture medium samples. After 4 days of culture, cells were analyzed for the expression of a variety of endothelial, hepatic, and hematopoietic genes, as well as the surface marker expression of CD31 and CD34 in flow cytometry. We found that medium perfusion increased the gene expression of endothelial markers such as CD31, von Willebrand factor (vWF), CD140b, CD309, and CD144 while decreasing the gene expression of the erythrocyte-surface marker CD235a. Hepatic differentiation was promoted under perfusion conditions as demonstrated by lower AFP and higher albumin secretion compared with cultures not exposed to medium perfusion. Additionally, cultures exposed to medium perfusion gave higher rates of glucose consumption and lactate production, indicating increased metabolic activity. In conclusion, high-density bioreactors configured to provide constant medium perfusion significantly induced hepatic and endothelial cell differentiation and provided improved conditions for the culture of human fetal liver cells compared with cultures without perfusion. PMID:25559936

  13. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    PubMed

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices.

  14. Active skin perfusion and thermoregulatory response in the hand following nerve injury and repair in human upper extremities.

    PubMed

    Deng, Aidong; Liu, Dan; Gu, Chen; Gu, Xiaosong; Gu, Jianhui; Hu, Wen

    2016-01-01

    Cutaneous vasoconstriction/vasodilatation occurs in response to whole body and local cooling/heating, and the vasomotor activities play a pivotal role in thermal control of the human body. The mechanisms underlying regulation of skin blood flow involve both neurogenic and humeral/local chemical influence, contributing to the initial response to thermal stimuli and the prolonged phase of response, respectively. Previous studies have suggested the impairment of cutaneous thermal regulation after nerve injury. However, the evidence regarding how the skin perfusion and thermoregulatory response evolve after nerve injury and repair remains limited. Here we observed, by utilizing laser-Doppler perfusion imaging, baseline skin perfusion and perfusion change in response to thermal stimuli after median and ulnar nerve injury, and the results showed that baseline perfusion in autonomous skin area profoundly decreased and active rewarming after clod stress dramatically diminished before sensory recovery of the skin became detectable. In addition, baseline cutaneous perfusion was recovered as the skin regained touch sensation, and exhibited positive correlation to touch sensibility of the skin. These data indicate that both active perfusion and thermoregulatory response of the skin are markedly compromised during skin denervation and can be recovered by re-innervation. This suggests the importance of timely repair of injured nerve, especially in the practice of replantation. PMID:26529641

  15. Active skin perfusion and thermoregulatory response in the hand following nerve injury and repair in human upper extremities.

    PubMed

    Deng, Aidong; Liu, Dan; Gu, Chen; Gu, Xiaosong; Gu, Jianhui; Hu, Wen

    2016-01-01

    Cutaneous vasoconstriction/vasodilatation occurs in response to whole body and local cooling/heating, and the vasomotor activities play a pivotal role in thermal control of the human body. The mechanisms underlying regulation of skin blood flow involve both neurogenic and humeral/local chemical influence, contributing to the initial response to thermal stimuli and the prolonged phase of response, respectively. Previous studies have suggested the impairment of cutaneous thermal regulation after nerve injury. However, the evidence regarding how the skin perfusion and thermoregulatory response evolve after nerve injury and repair remains limited. Here we observed, by utilizing laser-Doppler perfusion imaging, baseline skin perfusion and perfusion change in response to thermal stimuli after median and ulnar nerve injury, and the results showed that baseline perfusion in autonomous skin area profoundly decreased and active rewarming after clod stress dramatically diminished before sensory recovery of the skin became detectable. In addition, baseline cutaneous perfusion was recovered as the skin regained touch sensation, and exhibited positive correlation to touch sensibility of the skin. These data indicate that both active perfusion and thermoregulatory response of the skin are markedly compromised during skin denervation and can be recovered by re-innervation. This suggests the importance of timely repair of injured nerve, especially in the practice of replantation.

  16. Effects of Perfusion and Dynamic Loading on Human Neocartilage Formation in Alginate Hydrogels

    PubMed Central

    Grogan, Shawn P.; Sovani, Sujata; Pauli, Chantal; Chen, Jianfen; Hartmann, Andreas; Colwell, Clifford W.; Lotz, Martin K.

    2012-01-01

    Dynamic loading and perfusion culture environments alone are known to enhance cartilage extracellular matrix (ECM) production in dedifferentiated articular chondrocytes. In this study, we explored whether a combination of these factors would enhance these processes over a free-swelling (FS) condition using adult human articular chondrocytes embedded in 2% alginate. The alginate constructs were placed into a bioreactor for perfusion (P) only (100 μL/per minute) or perfusion and dynamic compressive loading (PL) culture (20% for 1 h, at 0.5 Hz), each day. Control FS alginate gels were maintained in six-well static culture. Gene expression analysis was conducted on days 7 and 14, while cell viability, immunostaining, and mechanical property testing were performed on day 14 only. Total glycosaminoglycan (GAG) content and GAG synthesis were assessed after 14 days. Col2a1 mRNA expression levels were significantly higher (at least threefold; p<0.05) in both bioreactor conditions compared with FS by days 7 and 14. For all gene studies, no significant differences were seen between P and PL treatments. Aggrecan mRNA levels were not significantly altered in any condition although both GAG/DNA and 35S GAG incorporation studies indicated higher GAG retention and synthesis in the FS treatment. Collagen type II protein deposition was low in all samples, link protein distribution was more diffuse in FS condition, and aggrecan deposition was located in the outer regions of the alginate constructs in both bioreactor conditions, yet more uniformly in the FS condition. Catabolic gene expression (matrix metalloproteinase 3 [MMP3] and inducible nitric oxide synthase [iNOS]) was higher in bioreactor conditions compared with FS, although iNOS expression levels decreased to approximately fourfold less than the FS condition by day 14. Our data indicate that conditions created in the bioreactor enhanced both anabolic and catabolic responses, similar to other loading studies. Perfusion

  17. Intravital lectin perfusion analysis of vascular permeability in human micro- and macro- blood vessels.

    PubMed

    Debbage, P L; Sölder, E; Seidl, S; Hutzler, P; Hugl, B; Ofner, D; Kreczy, A

    2001-10-01

    We previously applied intravital lectin perfusion in mouse models to elucidate mechanisms underlying vascular permeability. The present work transfers this technique to human models, analysing vascular permeability in macro- and microvessels. Human vascular endothelial surface carbohydrate biochemistry differs significantly from its murine counterpart, lacking alpha-galactosyl epitopes and expressing the L-fucose moiety in the glycocalyx; the poly-N-lactosamine glycan backbone is common to all mammals. We examined extensively lectin binding specificities in sections and in vivo, and then applied the poly-N-lactosamine-specific lectin LEA and the L-fucose-specific lectin UEA-I in human intravital perfusions. Transendothelial transport differed in macrovessels and microvessels. In microvessels of adult human fat tissue, rectal wall and rectal carcinomas, slow transendothelial transport by vesicles was followed by significant retention at the subendothelial basement membrane; paracellular passage was not observed. Passage time exceeded 1 h. Thus we found barrier mechanisms resembling those we described previously in murine tissues. In both adult and fetal macrovessels, the vena saphena magna and the umbilical vein, respectively, rapid passage across the endothelial lining was observed, the tracer localising completely in the subendothelial tissues within 15 min; vesicular transport was more rapid than in microvessels, and retention at the subendothelial basement membrane briefer.

  18. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima.

    PubMed

    Oh, Sung Ho; Kwon, Min Chul; Choi, Woon Yong; Seo, Yong Chang; Kim, Ga Bin; Kang, Do Hyung; Lee, Shin Young; Lee, Hyeon Yong

    2010-08-01

    A unique perfusion process was developed to maintain high concentrations of marine alga, Chlorella minutissima. This method is based on recycling cells by continuous feeding with warm spent sea water from nuclear power plants, which has very similar properties as sea water. A temperature of at least 30 degrees C in a 200 L photo-bioreactor was maintained in this system by perfusion of the thermal plume for 80 days in the coldest season. The maximum cell concentration and total lipid content was 8.3 g-dry wt./L and 23.2 %, w/w, respectively, under mixotrophic conditions. Lipid production was found to be due to a partially or non-growth related process, which implies that large amounts of biomass are needed for a high accumulation of lipids within the cells. At perfusion rates greater than 1.5 L/h, the temperature of the medium inside the reactor was around 30 degrees C, which was optimal for cell growth. For this system, a perfusion rate of 2.8 L/h was determined to be optimal for maintaining rapid cell growth and lipid production during outdoor cultivation. It was absolutely necessary to maintain the appropriate perfusion rate so that the medium temperature was optimal for cell growth. In addition, the lipids produced using this process were shown to be feasible for biodiesel production since the lipid composition of C. minutissima grown under these conditions consisted of 17 % (w/w) of C(16) and 47% (w/w) of C(18). The combined results of this study clearly demonstrated that the discharged energy of the thermal plume could be reused to cultivate marine alga by maintaining a relatively constant temperature in an outdoor photo-bioreactor without the need for supplying any extra energy, which could allow for cheap production of biodiesel from waste energy.

  19. In vivo confocal Raman spectroscopy study of the vitamin A derivative perfusion through human skin

    NASA Astrophysics Data System (ADS)

    dos Santos, Laurita; Téllez Soto, Claudio A.; Favero, Priscila P.; Martin, Airton A.

    2016-03-01

    In vivo confocal Raman spectroscopy is a powerful non-invasive technique able to analyse the skin constituents. This technique was applied to transdermal perfusion studies of the vitamin A derivative in human skin. The composition of the stratum corneum (lipid bilayer) is decisive for the affinity and transport of the vitamin through skin. The vitamin A is significantly absorbed by human skin when applied with water in oil emulsion or hydro-alcoholic gel. The purpose of this study is to elucidate the behaviour of vitamin A derivative into human skin without the presence of enhancers. The results showed that the intensity band of the derivative (around 1600 cm-1), which represents the -C=O vibrational mode, was detected in different stratum corneum depths (up to 20 μm). This Raman peak of vitamin A derivative has non-coincident band with the Raman spectra of the skin epidermis, demonstrating that compound penetrated in forearm skin.

  20. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice

    PubMed Central

    Pernicone, Elizabeth; Korkes, Henri A.; Burke, Suzanne D.; Rajakumar, Augustine; Thadhani, Ravi I.; Roberts, Drucilla J.; Bhasin, Manoj; Karumanchi, S. Ananth

    2016-01-01

    Decidual NK (dNK) cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK) cells by a combination of hypoxia, TGFß-1 and 5-aza-2’-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion. PMID:27736914

  1. Tolerance of human placental tissue to severe hypoxia and its relevance for dual ex vivo perfusion.

    PubMed

    Schneider, H

    2009-03-01

    In the dual ex vivo perfusion of an isolated human placental cotyledon it takes on average 20-30 min to set up stable perfusion circuits for the maternal and fetal vascular compartments. In vivo placental tissue of all species maintains a highly active metabolism and it continues to puzzle investigators how this tissue can survive 30 min of ischemia with more or less complete anoxia following expulsion of the organ from the uterus and do so without severe damage. There seem to be parallels between "depressed metabolism" seen in the fetus and the immature neonate in the peripartum period and survival strategies described in mammals with increased tolerance of severe hypoxia like hibernators in the state of torpor or deep sea diving turtles. Increased tolerance of hypoxia in both is explained by "partial metabolic arrest" in the sense of a temporary suspension of Kleiber's rule. Furthermore the fetus can react to major changes in surrounding oxygen tension by decreasing or increasing the rate of specific basal metabolism, providing protection against severe hypoxia as well as oxidative stress. There is some evidence that adaptive mechanisms allowing increased tolerance of severe hypoxia in the fetus or immature neonate can also be found in placental tissue, of which at least the villous portion is of fetal origin. A better understanding of the molecular details of reprogramming of fetal and placental tissues in late pregnancy may be of clinical relevance for an improved risk assessment of the individual fetus during the critical transition from intrauterine life to the outside and for the development of potential prophylactic measures against severe ante- or intrapartum hypoxia. Responses of the tissue to reperfusion deserve intensive study, since they may provide a rational basis for preventive measures against reperfusion injury and related oxidative stress. Modification of the handling of placental tissue during postpartum ischemia, and adaptation of the

  2. Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging.

    PubMed

    Jahng, Geon-Ho; Song, Enmin; Zhu, Xiao-Ping; Matson, Gerald B; Weiner, Michael W; Schuff, Norbert

    2005-03-01

    The Committee of Human Research of the University of California San Francisco approved this study, and all volunteers provided written informed consent. The goal of this study was to prospectively determine the global and regional reliability and reproducibility of noninvasive brain perfusion measurements obtained with different pulsed arterial spin-labeling (ASL) magnetic resonance (MR) imaging methods and to determine the extent to which within-subject variability and random noise limit reliability and reproducibility. Thirteen healthy volunteers were examined twice within 2 hours. The pulsed ASL methods compared in this study differ mainly with regard to magnetization transfer and eddy current effects. There were two main results: (a) Pulsed ASL MR imaging consistently had high measurement reliability (intraclass correlation coefficients greater than 0.75) and reproducibility (coefficients of variation less than 8.5%), and (b) random noise rather than within-subject variability limited reliability and reproducibility. It was concluded that low signal-to-noise ratios substantially limit the reliability and reproducibility of perfusion measurements.

  3. Mechanisms of alphafetoprotein transfer in the perfused human placental cotyledon from uncomplicated pregnancy.

    PubMed Central

    Brownbill, P; Edwards, D; Jones, C; Mahendran, D; Owen, D; Sibley, C; Johnson, R; Swanson, P; Nelson, D M

    1995-01-01

    We investigated the mechanisms of alphafetoprotein (AFP) transfer across the human placenta by correlating measurements of AFP transfer with cytochemical localization of AFP. Placental cotyledons were dually perfused in vitro with either the fetal or maternal perfusate containing umbilical cord plasma as a source of AFP. Steady state AFP clearance, corrected for release of endogenous AFP, was 0.973 +/- 0.292 microliter/min per gram in the fetal to maternal direction (n = 10), significantly higher (P < 0.02) than that in the maternal to fetal direction (n = 5; 0.022 +/- 0.013 microliter/min per gram). Clearance of a similarly sized protein, horseradish peroxidase was also asymmetric but clearance of the small tracer creatinine was not. Using a monoclonal antibody, we localized AFP to fibrinoid deposits in regions of villi with discontinuities of the syncytiotrophoblast, to cytotrophoblast cells in these deposits, to syncytiotrophoblast on some villi, and to trophoblast cells in the decidua. We conclude that AFP transfer in the placenta is asymmetric and that there are two available pathways for AFP transfer: (a) from the fetal circulation into the villous core and across fibrinoid deposits at discontinuities in the villous syncytiotrophoblast to enter the maternal circulation; and (b) AFP present in the decidua could enter vessels that traverse the basal plate. Images PMID:7593608

  4. A proposed study on the transplacental transport of parabens in the human placental perfusion model.

    PubMed

    Mathiesen, Line; Zuri, Giuseppina; Andersen, Maria H; Knudsen, Lisbeth E

    2013-12-01

    Human exposure to parabens as a preservative used in personal care products is of increasing concern, as there is evidence from in vivo and in vitro studies of hormone disruption in association with exposure to parabens. Transport across the placenta could be critical for risk assessment, but the available data are sparse. The aim is to develop a method for estimating fetal exposure, via the placenta, to the most commonly-used parabens, by using a human placental perfusion model. The use of human tissue is vital for determining human fetal exposure, because animal studies are of little relevance, since the placenta exhibits significant interspecies variation. An HPLC model is currently being established to simultaneously quantify four different parabens, namely, methylparaben, ethylparaben, propylparaben and butylparaben, and their main metabolite, p-hydroxybenzoic acid. With this model, we aim to determine the transport kinetics of these parabens across the human placenta, and to investigate placental metabolism, including differences in transport due to molecular characteristics. This will facilitate assessment of the risks associated with the use of paraben-containing products during pregnancy.

  5. Human T-cell Lymphotropic Virus Type-1 (HTLV-1)-associated Bronchioloalveolar Disorder Presenting with Mosaic Perfusion.

    PubMed

    Yamakawa, Hideaki; Yoshida, Masahiro; Yabe, Masami; Ishikawa, Takeo; Takagi, Masamichi; Tanoue, Susumu; Sano, Koji; Nishiwaki, Kaichi; Sato, Shun; Shimizu, Yoshihiko; Kuwano, Kazuyoshi

    2015-01-01

    Human T-cell lymphotropic virus type-1 (HTLV-1)-associated bronchioloalveolar disorder (HABA) is a specific state with chronic and progressive respiratory symptoms caused by bronchiolar or alveolar disorder characterized by smoldering adult T-cell leukemia or the HTLV-I carrier state. We herein report a rare case of HABA with an initial presentation of mosaic perfusion in the lung. The diagnosis was made according to the results of a flow cytometry analysis of the bronchoalveolar lavage fluid and pathological findings. Clinicians must be careful to recognize that mosaic perfusion may be a radiological finding of HABA. PMID:26631889

  6. Phenylalanine transfer across the isolated perfused human placenta: an experimental and modeling investigation

    PubMed Central

    Lofthouse, E. M.; Perazzolo, S.; Brooks, S.; Crocker, I. P.; Glazier, J. D.; Johnstone, E. D.; Panitchob, N.; Sibley, C. P.; Widdows, K. L.; Sengers, B. G.

    2015-01-01

    Membrane transporters are considered essential for placental amino acid transfer, but the contribution of other factors, such as blood flow and metabolism, is poorly defined. In this study we combine experimental and modeling approaches to understand the determinants of [14C]phenylalanine transfer across the isolated perfused human placenta. Transfer of [14C]phenylalanine across the isolated perfused human placenta was determined at different maternal and fetal flow rates. Maternal flow rate was set at 10, 14, and 18 ml/min for 1 h each. At each maternal flow rate, fetal flow rates were set at 3, 6, and 9 ml/min for 20 min each. Appearance of [14C]phenylalanine was measured in the maternal and fetal venous exudates. Computational modeling of phenylalanine transfer was undertaken to allow comparison of the experimental data with predicted phenylalanine uptake and transfer under different initial assumptions. Placental uptake (mol/min) of [14C]phenylalanine increased with maternal, but not fetal, flow. Delivery (mol/min) of [14C]phenylalanine to the fetal circulation was not associated with fetal or maternal flow. The absence of a relationship between placental phenylalanine uptake and net flux of phenylalanine to the fetal circulation suggests that factors other than flow or transporter-mediated uptake are important determinants of phenylalanine transfer. These observations could be explained by tight regulation of free amino acid levels within the placenta or properties of the facilitated transporters mediating phenylalanine transport. We suggest that amino acid metabolism, primarily incorporation into protein, is controlling free amino acid levels and, thus, placental transfer. PMID:26676251

  7. Esophageal wall blood perfusion during contraction and transient lower esophageal sphincter relaxation in humans

    PubMed Central

    Jiang, Yanfen; Bhargava, Valmik; Kim, Young Sun

    2012-01-01

    We recently reported that esophageal contraction reduces esophageal wall perfusion in an animal study. Our aim was to determine esophageal wall blood perfusion (EWBP) during esophageal contraction and transient lower esophageal sphincter relaxations (TLESRs) in humans. We studied 12 healthy volunteers. A custom-designed laser Doppler probe was anchored to the esophageal wall, 4–6 cm above the LES, by use of the Bravo pH system so that the laser light beam stay directed toward the esophageal mucosa. A high-resolution manometry equipped with impedance electrodes recorded esophageal pressures and reflux events. Synchronized pressure, impedance, pH, and EWBP recordings were obtained during dry and wet swallows and following a meal. Stable recordings of laser Doppler EWBP were only recorded when the laser Doppler probe was firmly anchored to the esophageal wall. Esophageal contractions induced by dry and wet swallows resulted in 46 ± 9% and 60 ± 10% reduction in the EWBP, respectively (compared to baseline). Reduction in EWBP was directly related to the amplitude (curvilinear fit) and duration of esophageal contraction. Atropine reduced the esophageal contraction amplitude and decreased the EWBP reduction associated with esophageal contraction. TLESRs were also associated with reduction in the EWBP, albeit of smaller amplitude (29 ± 3%) but longer duration (19 ± 2 s) compared with swallow-induced esophageal contractions. We report 1) an innovative technique to record EWBP for extended time periods in humans and 2) contraction of circular and longitudinal muscle during peristalsis and selective longitudinal muscle contraction during TLESR causes reduction in the EWBP; 3) using our innovative technique, future studies may determine whether esophageal wall ischemia is the cause of esophageal pain/heartburn. PMID:22790599

  8. Changes in transmural distribution of myocardial perfusion assessed by quantitative intravenous myocardial contrast echocardiography in humans

    PubMed Central

    Fukuda, S; Muro, T; Hozumi, T; Watanabe, H; Shimada, K; Yoshiyama, M; Takeuchi, K; Yoshikawa, J

    2002-01-01

    Objective: To clarify whether changes in transmural distribution of myocardial perfusion under significant coronary artery stenosis can be assessed by quantitative intravenous myocardial contrast echocardiography (MCE) in humans. Methods: 31 patients underwent dipyridamole stress MCE and quantitative coronary angiography. Intravenous MCE was performed by continuous infusion of Levovist. Images were obtained from the apical four chamber view with alternating pulsing intervals both at rest and after dipyridamole infusion. Images were analysed offline by placing regions of interest over both endocardial and epicardial sides of the mid-septum. The background subtracted intensity versus pulsing interval plots were fitted to an exponential function, y = A (1 − e−βt), where A is plateau level and β is rate of rise. Results: Of the 31 patients, 16 had significant stenosis (> 70%) in the left anterior descending artery (group A) and 15 did not (group B). At rest, there were no differences in the A endocardial to epicardial ratio (A-EER) and β-EER between the two groups (mean (SD) 1.2 (0.6) v 1.2 (0.8) and 1.2 (0.7) v 1.1 (0.6), respectively, NS). During hyperaemia, β-EER in group A was significantly lower than that in group B (1.0 (0.5) v 1.4 (0.5), p < 0.05) and A-EER did not differ between the two groups (1.0 (0.5) v 1.2 (0.4), NS). Conclusions: Changes in transmural distribution of myocardial perfusion under significant coronary artery stenosis can be assessed by quantitative intravenous MCE in humans. PMID:12231594

  9. Sources of Intravascular ATP During Exercise in Humans: Critical Role for Skeletal Muscle Perfusion

    PubMed Central

    Kirby, Brett S.; Crecelius, Anne R.; Richards, Jennifer C.; Dinenno, Frank A.

    2013-01-01

    Exercise hyperemia is regulated by several factors and one factor known to increase with exercise that evokes powerful vasomotor action is extracellular ATP. The origination of ATP detectable in plasma from exercising muscle of humans is, however, a matter of debate and ATP has been suggested to arise from sympathetic nerves, blood sources (e.g. erythrocytes), endothelial cells, and skeletal myocytes, among others. Therefore, we tested the hypothesis that acute augmentation of sympathetic nervous system activity (SNA) results in elevated plasma ATP draining skeletal muscle, and that SNA superimposition during exercise further increases ATP vs exercise alone. We show that increased SNA via −40mmHg lower body negative pressure (LBNP) at rest does not increase plasma ATP (51±8 vs 58±7 nmol/L with LBNP), nor does it increase [ATP] above levels observed during rhythmic handgrip exercise (79±11 exercise alone vs 71±8 nmol/L with LBNP). Secondly, we tested the hypothesis that active perfusion of skeletal muscle is essential to observe increased plasma ATP during exercise. We identify that complete obstruction of blood flow to contracting muscle abolishes exercise-mediated increases in plasma ATP (90±19 to 49±12 nmol/L), and further, that cessation of blood flow prior to exercise completely inhibits the typical rise in ATP (3 vs 61%; obstructed vs intact perfusion). The lack of ATP change during occlusion occurred in the face of continued muscle work and elevated SNA, indicating the rise of intravascular ATP is not resultant from these extravascular sources. Our collective observations indicate that the elevation in extracellular ATP observed in blood during exercise is unlikely to originate from sympathetic nerves or the contacting muscle itself, but rather is dependent on intact skeletal muscle perfusion. We conclude that an intravascular source for ATP is essential and points toward an important role for blood sources (e.g. red blood cells) in augmenting and

  10. Human Urinary Kallidinogenase Promotes Angiogenesis and Cerebral Perfusion in Experimental Stroke

    PubMed Central

    Chen, Yanting; Zhang, Meijuan; Qian, Lai; Chen, Yan; Wu, Zhengzheng; Xu, Yun; Li, Jingwei

    2015-01-01

    Angiogenesisis a key restorative mechanism in response to ischemia, and pro-angiogenic therapy could be beneficial in stroke. Accumulating experimental and clinical evidence suggest that human urinary kallidinogenase (HUK) improves stroke outcome, but the underlying mechanisms are not clear. The aim of current study was to verify roles of HUK in post-ischemic angiogenesis and identify relevant mediators. In rat middle cerebral artery occlusion (MCAO) model, we confirmed that HUK treatment could improve stroke outcome, indicated by reduced infarct size and improved neurological function. Notably, the 18F-FDG micro-PET scan indicated that HUK enhanced cerebral perfusion in rats after MCAO treatment. In addition, HUK promotespost-ischemic angiogenesis, with increased vessel density as well as up-regulated VEGF andapelin/APJ expression in HUK-treated MCAO mice. In endothelial cell cultures, induction of VEGF and apelin/APJ expression, and ERK1/2 phosphorylation by HUK was further confirmed. These changes were abrogated by U0126, a selective ERK1/2 inhibitor. Moreover, F13A, a competitive antagonist of APJ receptor, significantly suppressed HUK-induced VEGF expression. Furthermore, angiogenic functions of HUK were inhibited in the presence of selective bradykinin B1 or B2 receptor antagonist both in vitro and in vivo. Our findings indicate that HUK treatment promotes post-ischemic angiogenesis and cerebral perfusion via activation of bradykinin B1 and B2 receptors, which is potentially due to enhancement expression of VEGF and apelin/APJ in ERK1/2 dependent way. PMID:26222055

  11. Perfusion Bioreactor Module

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1990-01-01

    Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

  12. Artificial tissues in perfusion culture.

    PubMed

    Sittinger, M; Schultz, O; Keyszer, G; Minuth, W W; Burmester, G R

    1997-01-01

    In the stagnant environment of traditional culture dishes it is difficult to generate long term experiments or artificial tissues from human cells. For this reason a perfusion culture system with a stable supply of nutrients was developed. Human chondrocytes were seeded three-dimensionally in resorbable polymer fleeces. The cell-polymer tissues were then mounted in newly developed containers (W.W. Minuth et al, Biotechniques, 1996) and continuously perfused by fresh medium for 40 days. Samples from the effluate were analyzed daily, and the pH of the medium and glucose concentration remained stable during this period. The lactid acid concentration increased from 0.17 mg/ml to 0.35 mg/ml, which was influenced by the degradation of the resorbable polymer fibers used as three dimensional support material for the cells. This perfusion system proved to be reliable especially in long term cultures. Any components in the culture medium of the cells could be monitored without disturbances as caused by manual medium replacement. These results suggest the described perfusion culture system to be a valuable and convenient tool for many applications in tissue engineering, especially in the generation of artificial connective tissue.

  13. External-to-Internal Iliac Stent-Graft: Medium-Term Patency Following Exclusion of a Retrogradely Perfused Common Iliac Aneurysm

    SciTech Connect

    Nicholls, Marcus John; McPherson, Simon

    2010-08-15

    Following complicated aortic aneurysm surgery a complete left iliac occlusion resulted in buttock claudication. A retrogradely perfused right common iliac aneurysm expanded. Exclusion was by external-to-internal iliac stent-graft. No deterioration in claudication occurred with medium-term stent-graft patency.

  14. Safety and Feasibility of High-pressure Transvenous Limb Perfusion With 0.9% Saline in Human Muscular Dystrophy

    PubMed Central

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2012-01-01

    We evaluated safety and feasibility of the transvenous limb perfusion gene delivery method in muscular dystrophy. A dose escalation study of single limb perfusion with 0.9% saline starting with 5% of limb volume was carried out in adults with muscular dystrophies under intravenous analgesia/anesthesia. Cardiac, vascular, renal, muscle, and nerve functions were monitored. A tourniquet was placed above the knee with inflated pressure of 310 mm Hg. Infusion was carried out with a clinically approved infuser via an intravenous catheter inserted in the saphenous vein with a goal infusion rate of 80 ml/minute. Infusion volume was escalated stepwise to 20% limb volume in seven subjects. No subject complained of any post procedure pain other than due to needle punctures. Safety warning boundaries were exceeded only for transient depression of limb tissue oximetry and transient elevation of muscle compartment pressures; these were not associated with nerve, muscle, or vascular damage. Muscle magnetic resonant imaging (MRI) demonstrated fluid accumulation in muscles of the perfused lower extremity. High-pressure retrograde transvenous limb perfusion with saline up to 20% of limb volume at above infusion parameters is safe and feasible in adult human muscular dystrophy. This study will serve as a basis for future gene transfer clinical trials. PMID:21772257

  15. Pancreatic Ductal Perfusion at Organ Procurement Enhances Islet Yield in Human Islet Isolation

    PubMed Central

    Shimoda, Masayuki; Kanak, Mazhar A.; Shahbazov, Rauf; Kunnathodi, Faisal; Lawrence, Michael C.; Naziruddin, Bashoo; Levy, Marlon F.

    2015-01-01

    Objective Pancreas preservation is a major factor influencing the results of islet cell transplantation. This study evaluated the effects of two different solutions for pancreatic ductal perfusion (PDP) at organ procurement. Methods Eighteen human pancreases were assigned to three groups: non-PDP (control), PDP with ET-Kyoto solution, and PDP with cold storage/purification stock solution. Pancreatic islets were isolated according to the modified Ricordi method. Results No significant differences in donor characteristics, including cold ischemia time, were observed between the three groups. All islet isolations in the PDP groups had >400,000 IEQ in total islet yield post-purification, a significant increase when compared with the control (P = 0.04 and <0.01). The islet quality assessments—including an in vivo diabetic nude mice assay and the response of high-mobility group box protein 1 to cytokine stimulation—also showed no significant differences. The proportion of TUNEL-positive cells showing apoptosis in islets in the PDP groups was significantly lower than in the control group (P < 0.05). Conclusion Both ET-Kyoto solution and cold storage/purification stock solution are suitable for PDP and consistently resulted in isolation success. Further studies with a larger number of pancreas donors should be done to compare the effects of the PDP solutions. PMID:25058879

  16. Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control.

    PubMed

    Serra, Margarida; Brito, Catarina; Sousa, Marcos F Q; Jensen, Janne; Tostões, Rui; Clemente, João; Strehl, Raimund; Hyllner, Johan; Carrondo, Manuel J T; Alves, Paula M

    2010-08-01

    The successful transfer of human embryonic stem cell (hESC) technology and cellular products into clinical and industrial applications needs to address issues of automation, standardization and the generation of relevant cell numbers of high quality. In this study, we combined microcarrier technology and controlled stirred tank bioreactors, to develop an efficient and scalable system for expansion of pluripotent hESCs. We demonstrate the importance of controlling pO(2) at 30% air saturation to improve hESCs growth. This concentration allowed for a higher energetic cell metabolism, increased growth rate and maximum cell concentration in contrast to 5% pO(2) where a shift to anaerobic metabolism was observed, decreasing cell expansion 3-fold. Importantly, the incorporation of an automated perfusion system in the bioreactor enhanced culture performance and allowed the continuous addition of small molecules assuring higher cell concentrations for a longer time period. The expanded hESCs retained their undifferentiated phenotype and pluripotency. Our results show, for the first time, that the use of controlled bioreactors is critical to ensure the production of high quality hESCs. When compared to the standard colony culture, our strategy improves the final yield of hESCs by 12-fold, providing a potential bioprocess to be transferred to clinical and industrial applications.

  17. Cortical Perfusion in Alcohol Dependent Individuals During Short-term Abstinence: Relationships to Resumption of Hazardous Drinking Following Treatment

    PubMed Central

    Durazzo, Timothy C.; Gazdzinski, Stefan; Mon, Anderson; Meyerhoff, Dieter J.

    2010-01-01

    Relapse to hazardous levels of alcohol consumption following treatment for an alcohol use disorders is common. Investigation of the neurobiological correlates of resumption of hazardous drinking is necessary to clarify the mechanisms contributing to relapse. Fifty-seven treatment-seeking alcohol dependent participants (ALC) completed arterial spin labeling perfusion MRI of the frontal and parietal gray matter (GM) at 7 ± 3 days of abstinence (baseline). ALC participants were restudied after 35 ± 11 days of abstinence (assessment point 2: AP2). Twenty-eight non-smoking, light drinking controls (nsLD) from the community were studied with perfusion MRI. ALC Participants were followed over 12-months after baseline study and were classified as Abstainers (no alcohol consumption; n = 19) and Resumers (any alcohol consumption; n = 38) at follow-up. Cross-sectional and longitudinal perfusion was compared in Abstainers, Resumers and nsLD. At baseline Resumers demonstrated significantly lower frontal and parietal GM perfusion than nsLD and Abstainers. Abstainers and nsLD were not different on frontal or parietal GM perfusion. No significant longitudinal perfusion changes were observed in Abstainers and Resumers. At AP2, Resumers showed significantly lower frontal GM perfusion than nsLD and Abstainers, while no group differences were observed for parietal GM. Abstainers and nsLD were not different on frontal GM perfusion. The significantly decreased frontal GM perfusion in Resumers compared to both Abstainers and nsLD across the assessment interval suggests premorbid and/or acquired neurobiological abnormalities of the frontal GM in Resumers. PMID:20682188

  18. Platelet-activating factor causes ventilation-perfusion mismatch in humans.

    PubMed Central

    Rodriguez-Roisin, R; Félez, M A; Chung, K F; Barberà, J A; Wagner, P D; Cobos, A; Barnes, P J; Roca, J

    1994-01-01

    We hypothesized that platelet-activating factor (PAF), a potent inflammatory mediator, could induce gas exchange abnormalities in normal humans. To this end, the effect of aerosolized PAF (2 mg/ml solution; 24 micrograms) on ventilation-perfusion (VA/Q) relationships, hemodynamics, and resistance of the respiratory system was studied in 14 healthy, nonatopic, and nonsmoking individuals (23 +/- 1 [SEM]yr) before and at 2, 4, 6, 8, 15, and 45 min after inhalation, and compared to that of inhaled lyso-PAF in 10 other healthy individuals (24 +/- 2 yr). PAF induced, compared to lyso-PAF, immediate leukopenia (P < 0.001) followed by a rebound leukocytosis (P < 0.002), increased minute ventilation (P < 0.05) and resistance of the respiratory system (P < 0.01), and decreased systemic arterial pressure (P < 0.05). Similarly, compared to lyso-PAF, PaO2 showed a trend to fall (by 12.2 +/- 4.3 mmHg, mean +/- SEM maximum change from baseline), and arterial-alveolar O2 gradient increased (by 16.7 +/- 4.3 mmHg) (P < 0.02) after PAF, because of VA/Q mismatch: the dispersion of pulmonary blood flow and that of ventilation increased by 0.45 +/- 0.1 (P < 0.01) and 0.29 +/- 0.1 (P < 0.04), respectively. We conclude that in normal subjects, inhaled PAF results in considerable immediate VA/Q inequality and gas exchange impairment. These results reinforce the notion that PAF may play a major role as a mediator of inflammation in the human lung. Images PMID:8282786

  19. Splanchnic neural regulation of somatostatin secretion in the isolated perfused human pancreas.

    PubMed Central

    Brunicardi, F C; Elahi, D; Andersen, D K

    1994-01-01

    OBJECTIVE: The somatostatin-secreting delta cells in the islets of Langerhans appear to be regulated by neural mechanisms that have not been defined clearly. In this study, the celiac neural bundle of the human pancreas was electrically stimulated in the presence and absence of selective neural antagonists. SUMMARY BACKGROUND DATA: The authors previously reported on studies of the splanchnic neural regulation of insulin, glucagon, and pancreatic polypeptide secretion. In these studies, alpha-adrenergic fibers appeared to have a predominant effect, strongly inhibiting the secretion of insulin, glucagon, and pancreatic polypeptide secretion. Cholinergic fibers appeared to stimulate strongly, although beta-adrenergic fibers weakly stimulated, the secretion of these hormones. Investigations of neural regulatory mechanisms governing human somatostatin release in vitro have not been previously reported. METHODS: Pancreata were obtained from eight cadaveric organ donors. The isolated perfused human pancreas technique was used to assess the regulation of somatostatin secretion by the various neural fibers contained within the celiac plexus. The secretory response of somatostatin was examined in the presence of 16.7 mmol/L glucose, with and without neural stimulation, and specific neural antagonists. RESULTS: The basal somatostatin secretion was 88 +/- 26 fmol/g/min and increased 131 +/- 23% (n = 8, p < 0.01) in response to 16.7 mmol/L glucose. The augmentation seen with glucose was inhibited 66 +/- 22% (n = 8, p < 0.05) during celiac neural bundle stimulation. Alpha-adrenergic blockade resulted in a 90 +/- 30% (n = 6, p < 0.01) augmentation of somatostatin release. Beta-adrenergic blockade caused a 13 +/- 2% (n = 6, p < 0.05) suppression of somatostatin release. Complete adrenergic blockade resulted in a 25 +/- 23% (n = 5, p = not significant) inhibition of somatostatin release. Cholinergic blockade resulted in a 40 +/- 10% (n = 6, p < 0.02) suppression of somatostatin

  20. Increased Brain Perfusion Persists over the First Month of Life in Term Asphyxiated Newborns Treated with Hypothermia: Does it Reflect Activated Angiogenesis?

    PubMed

    Shaikh, Henna; Lechpammer, Mirna; Jensen, Frances E; Warfield, Simon K; Hansen, Anne H; Kosaras, Bela; Shevell, Michael; Wintermark, Pia

    2015-06-01

    Many asphyxiated newborns still develop brain injury despite hypothermia therapy. The development of brain injury in these newborns has been related partly to brain perfusion abnormalities. The purposes of this study were to assess brain hyperperfusion over the first month of life in term asphyxiated newborns and to search for some histopathological clues indicating whether this hyperperfusion may be related to activated angiogenesis following asphyxia. In this prospective cohort study, regional cerebral blood flow was measured in term asphyxiated newborns treated with hypothermia around day 10 of life and around 1 month of life using magnetic resonance imaging (MRI) and arterial spin labeling. A total of 32 MRI scans were obtained from 24 term newborns. Asphyxiated newborns treated with hypothermia displayed an increased cerebral blood flow in the injured brain areas around day 10 of life and up to 1 month of life. In addition, we looked at the histopathological clues in a human asphyxiated newborn and in a rat model of neonatal encephalopathy. Vascular endothelial growth factor (VEGF) was expressed in the injured brain of an asphyxiated newborn treated with hypothermia in the first days of life and of rat pups 24-48 h after the hypoxic-ischemic event, and the endothelial cell count increased in the injured cortex of the pups 7 and 11 days after hypoxia-ischemia. Our data showed that the hyperperfusion measured by imaging persisted in the injured areas up to 1 month of life and that angiogenesis was activated in the injured brain of asphyxiated newborns. PMID:25620793

  1. Central pain mechanisms following combined acid and capsaicin perfusion of the human oesophagus.

    PubMed

    Brock, Christina; Andresen, Trine; Frøkjaer, Jens Brøndum; Gale, Jeremy; Olesen, Anne Estrup; Arendt-Nielsen, Lars; Drewes, Asbjørn Mohr

    2010-03-01

    Visceral afferents originating from different gut-segments converge at the spinal level. We hypothesized that chemically-induced hyperalgesia in the oesophagus could provoke widespread visceral hypersensitivity and also influence descending modulatory pain pathways. Fifteen healthy volunteers were studied at baseline, 30, 60 and 90 min after randomized perfusion of the distal oesophagus with either saline or 180 ml 0.1M HCl+2mg capsaicin. Electro-stimulation of the oesophagus, 8 cm proximal to the perfusion site, rectosigmoid electrical stimulation and rectal mechanical and heat stimulations were used. Evoked brain potentials were recorded after electrical stimulations before and after oesophageal perfusion. After the perfusion, rectal hyperalgesia to heat (P<0.01, 37%) and mechanical (P=0.01, 11%) stimulations were demonstrated. In contrast, hypoalgesia to electro-stimulation was observed in both the oesophagus (P<0.03, 23%) and the sigmoid colon (P<0.001, 18%). Referred pain areas to electro-stimulation in oesophagus were reduced by 13% after perfusion (P=0.01). Evoked brain potentials to rectosigmoid stimulations showed decreased latencies and amplitudes of P1, N1 and P2 (P<0.05), whereas oesophagus-evoked brain potentials were unaffected after perfusion. In conclusion, modality-specific hyperalgesia was demonstrated in the lower gut following chemical sensitization of the oesophagus, reflecting widespread central hyperexcitability. Conversely, hypoalgesia to electrical stimulation, decreases in referred pain and latencies of evoked brain potentials was seen. This outcome may reflect a counterbalancing activation of descending inhibitory pathways. As these findings are also seen in the clinical setting, the model may be usable for future basic and pharmacological studies.

  2. A Perfusion-based Human Cadaveric Model for Management of Carotid Artery Injury during Endoscopic Endonasal Skull Base Surgery.

    PubMed

    Pham, Martin; Kale, Aydemir; Marquez, Yvette; Winer, Jesse; Lee, Brian; Harris, Brianna; Minnetti, Michael; Carey, Joseph; Giannotta, Steven; Zada, Gabriel

    2014-10-01

    Objective To create and develop a reproducible and realistic training environment to prepare residents and trainees for arterial catastrophes during endoscopic endonasal surgery. Design An artificial blood substitute was perfused at systolic blood pressures in eight fresh human cadavers to mimic intraoperative scenarios. Setting The USC Keck School of Medicine Fresh Tissue Dissection Laboratory was used as the training site. Participants Trainees were USC neurosurgery residents and junior faculty. Main Outcome A 5-point questionnaire was used to assess pre- and posttraining confidence scores. Results High-pressure extravasation at normal arterial blood pressure mimicked real intraoperative internal carotid artery (ICA) injury. Residents developed psychomotor skills required to achieve hemostasis using suction, cottonoids, and muscle grafts. Questionnaire responses from all trainees reported a realistic experience enhanced by the addition of the perfusion model. Conclusions The addition of an arterial perfusion system to fresh tissue cadavers is among the most realistic training models available. This enables the simulation of rare intraoperative scenarios such as ICA injury. Strategies for rapid hemostasis and implementation of techniques including endoscope manipulation, suction, and packing can all be rehearsed via this novel paradigm. PMID:25301092

  3. Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation.

    PubMed

    Sonnaert, M; Papantoniou, I; Bloemen, V; Kerckhofs, G; Luyten, F P; Schrooten, J

    2014-09-01

    Perfusion bioreactor systems have shown to be a valuable tool for the in vitro development of three-dimensional (3D) cell-carrier constructs. Their use for cell expansion, however, has been much less explored. Since maintenance of the initial cell phenotype is essential in this process, it is imperative to obtain insight into the bioreactor-related variables determining cell fate. Therefore, this study investigated the influence of fluid flow-induced shear stress on the proliferation, differentiation and matrix deposition of human periosteal-derived cells in the absence of additional differentiation-inducing stimuli; 120 000 cells were seeded on additive manufactured 3D Ti6Al4V scaffolds and cultured for up to 28 days at different flow rates in the range 0.04-6 ml/min. DNA measurements showed, on average, a three-fold increase in cell content for all perfused conditions in comparison to static controls, whereas the magnitude of the flow rate did not have an influence. Contrast-enhanced nanofocus X-ray computed tomography showed substantial formation of an engineered neotissue in all perfused conditions, resulting in a filling (up to 70%) of the total internal void volume, and no flow rate-dependent differences were observed. The expression of key osteogenic markers, such as RunX2, OCN, OPN and Col1, did not show any significant changes in comparison to static controls after 28 days of culture, with the exception of OSX at high flow rates. We therefore concluded that, in the absence of additional osteogenic stimuli, the investigated perfusion conditions increased cell proliferation but did not significantly enhance osteogenic differentiation, thus allowing for this process to be used for cell expansion. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25186024

  4. Do perfume additives termed human pheromones warrant being termed pheromones?

    PubMed

    Winman, Anders

    2004-09-30

    Two studies of the effects of perfume additives, termed human pheromones by the authors, have conveyed the message that these substances can promote an increase in human sociosexual behaviour [Physiol. Behav. 75 (2003) R1; Arch. Sex. Behav. 27 (1998) R2]. The present paper presents an extended analysis of this data. It is shown that in neither study is there a statistically significant increase in any of the sociosexual behaviours for the experimental groups. In the control groups of both studies, there are, however, moderate but statistically significant decreases in the corresponding behaviour. Most notably, there is no support in data for the claim that the substances increase the attractiveness of the wearers of the substances to the other sex. It is concluded that more research using matched homogenous groups of participants is needed.

  5. Diffusive transfer of water and glucose across the chorionic plate of the isolated human term placenta.

    PubMed

    Schröder, H J; Dehne, K; Andreas, T; Rägo, S; Rybakowski, C

    1999-01-01

    This study investigated systematically the diffusive transfer of water and glucose across the chorionic plate of the human placenta. Isolated sections of human term placentae were perfused at the fetal side (open loop) with modified Ringer's solution (n=31). An artificial amniotic compartment was created on top of the chorionic plate. 3H- and 14C-labelled tracer pairs were added (donor side) to the fetal perfusion fluid or to the 'amniotic' fluid. Transfer fractions (TF, ratio of acceptor side to donor side radioactivity) were calculated as percentages. TF of water and L-glucose from perfusion fluid into the 'amniotic' fluid were 3.9+/-0.5 per cent (mean+/-SEM) and 1.2+/-0.3 per cent after 60 min and significantly different (n=6). In each sample of the following experiments the transfer fraction of the D-hexose was larger than that of the L-isomer. At 60 min, the TF were 1.6+/-0.2 and 1.1+/-0.2 per cent (D-glucose/L-glucose; fetal to amniotic compartment, n=8), from amniotic compartment to fetal perfusate 0.6+/-0.1 and 0.4+/-0.1 per cent (D-glucose/L-glucose, n=11), and 0.8+/-0.1 and 0.6+/-0.1 per cent (3-O-methyl-D-glucose/L-glucose, n=6). The difference between the latter TF lost its significance after cytochalasin B (0.1-0.2 mmol/l) had been added to the amniotic compartment. It is concluded that a limited diffusive pathway across the chorionic plate of the human placenta exists and that the transfer of D-glucose depends in part on facilitated diffusion.

  6. Prone positioning improves distribution of pulmonary perfusion: noninvasive magnetic resonance imaging study in healthy humans.

    PubMed

    Suzuki, Hisashi; Sato, Yukio; Shindo, Masashi; Yoshioka, Hiroshi; Mizutani, Taro; Onizuka, Masataka; Sakakibara, Yuzuru

    2008-03-01

    The purpose of this study was to evaluate the effects of prone positioning on pulmonary perfusion using flow-sensitive alternating inversion recovery (FAIR), a noninvasive magnetic resonance imaging technique that requires no contrast medium. Seven healthy volunteers were studied in the supine and prone positions under three respiratory conditions: normal breathing of room air, unassisted breathing of 45% O2, and controlled mechanical ventilation (CMV) with positive end-expiratory pressure. Signal intensities (SIs) were obtained from ventral, middle, and dorsal regions on sagittal lung images and dependent/nondependent SI ratios were calculated to evaluate pulmonary perfusion distribution. In the supine position, SIs increased significantly from the ventral to dorsal region under all three respiratory conditions and prone positioning inverted the perfusion distribution under all conditions. Right lung SI ratios were 2.34 +/- 0.29, 2.74 +/- 0.66, and 2.42 +/- 0.73 in the supine position and 1.68 +/- 0.48, 1.78 +/- 0.36, and 1.92 +/- 0.21 in prone for room air, 45% O2, and CMV, respectively. The difference between supine and prone positions was statistically significant. The left lung showed a similar pattern and the difference was significant only under CMV. No difference was observed between the different respiratory conditions in both lungs. This study demonstrated that the distribution of pulmonary perfusion was more uniform in prone than in the supine position.

  7. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans.

    PubMed

    Braz, Igor D; Fisher, James P

    2016-08-15

    Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age-related alterations in cerebral vascular function. During low-to-moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10-30%. Beyond ∼60-70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation-mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial-internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age-related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age-related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved. PMID:26435295

  8. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an ex Vivo Human Placental Perfusion Model

    PubMed Central

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Diener, Pierre-André; Maeder-Althaus, Xenia; Maurizi, Lionel; Jochum, Wolfram; Krug, Harald F.; Buerki-Thurnherr, Tina; von Mandach, Ursula

    2015-01-01

    Background Nanoparticle exposure in utero might not be a major concern yet, but it could become more important with the increasing application of nanomaterials in consumer and medical products. Several epidemiologic and in vitro studies have shown that nanoparticles can have potential toxic effects. However, nanoparticles also offer the opportunity to develop new therapeutic strategies to treat specifically either the pregnant mother or the fetus. Previous studies mainly addressed whether nanoparticles are able to cross the placental barrier. However, the transport mechanisms underlying nanoparticle translocation across the placenta are still unknown. Objectives In this study we examined which transport mechanisms underlie the placental transfer of nanoparticles. Methods We used the ex vivo human placental perfusion model to analyze the bidirectional transfer of plain and carboxylate modified polystyrene particles in a size range between 50 and 300 nm. Results We observed that the transport of polystyrene particles in the fetal to maternal direction was significantly higher than for the maternal to fetal direction. Regardless of their ability to cross the placental barrier and the direction of perfusion, all polystyrene particles accumulated in the syncytiotrophoblast of the placental tissue. Conclusions Our results indicate that the syncytiotrophoblast is the key player in regulating nanoparticle transport across the human placenta. The main mechanism underlying this translocation is not based on passive diffusion, but is likely to involve an active, energy-dependent transport pathway. These findings will be important for reproductive toxicology as well as for pharmaceutical engineering of new drug carriers. Citation Grafmueller S, Manser P, Diener L, Diener PA, Maeder-Althaus X, Maurizi L, Jochum W, Krug HF, Buerki-Thurnherr T, von Mandach U, Wick P. 2015. Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human

  9. Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging

    PubMed Central

    Saalfrank, Dirk; Konduri, Anil Krishna; Latifi, Shahrzad; Habibey, Rouhollah; Golabchi, Asiyeh; Martiniuc, Aurel Vasile; Knoll, Alois; Ingebrandt, Sven; Blau, Axel

    2015-01-01

    Most in vitro electrophysiology studies extract information and draw conclusions from representative, temporally limited snapshot experiments. This approach bears the risk of missing decisive moments that may make a difference in our understanding of physiological events. This feasibility study presents a simple benchtop cell-culture perfusion system adapted to commercial microelectrode arrays (MEAs), multichannel electrophysiology equipment and common inverted microscopy stages for simultaneous and uninterrupted extracellular electrophysiology and time-lapse imaging at ambient CO2 levels. The concept relies on a transparent, replica-casted polydimethylsiloxane perfusion cap, gravity- or syringe-pump-driven perfusion and preconditioning of pH-buffered serum-free cell-culture medium to ambient CO2 levels at physiological temperatures. The low-cost microfluidic in vitro enabling platform, which allows us to image cultures immediately after cell plating, is easy to reproduce and is adaptable to the geometries of different cell-culture containers. It permits the continuous and simultaneous multimodal long-term acquisition or manipulation of optical and electrophysiological parameter sets, thereby considerably widening the range of experimental possibilities. Two exemplary proof-of-concept long-term MEA studies on hippocampal networks illustrate system performance. Continuous extracellular recordings over a period of up to 70 days revealed details on both sudden and gradual neural activity changes in maturing cell ensembles with large intra-day fluctuations. Correlated time-lapse imaging unveiled rather static macroscopic network architectures with previously unreported local morphological oscillations on the timescale of minutes. PMID:26543581

  10. Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging.

    PubMed

    Saalfrank, Dirk; Konduri, Anil Krishna; Latifi, Shahrzad; Habibey, Rouhollah; Golabchi, Asiyeh; Martiniuc, Aurel Vasile; Knoll, Alois; Ingebrandt, Sven; Blau, Axel

    2015-06-01

    Most in vitro electrophysiology studies extract information and draw conclusions from representative, temporally limited snapshot experiments. This approach bears the risk of missing decisive moments that may make a difference in our understanding of physiological events. This feasibility study presents a simple benchtop cell-culture perfusion system adapted to commercial microelectrode arrays (MEAs), multichannel electrophysiology equipment and common inverted microscopy stages for simultaneous and uninterrupted extracellular electrophysiology and time-lapse imaging at ambient CO2 levels. The concept relies on a transparent, replica-casted polydimethylsiloxane perfusion cap, gravity- or syringe-pump-driven perfusion and preconditioning of pH-buffered serum-free cell-culture medium to ambient CO2 levels at physiological temperatures. The low-cost microfluidic in vitro enabling platform, which allows us to image cultures immediately after cell plating, is easy to reproduce and is adaptable to the geometries of different cell-culture containers. It permits the continuous and simultaneous multimodal long-term acquisition or manipulation of optical and electrophysiological parameter sets, thereby considerably widening the range of experimental possibilities. Two exemplary proof-of-concept long-term MEA studies on hippocampal networks illustrate system performance. Continuous extracellular recordings over a period of up to 70 days revealed details on both sudden and gradual neural activity changes in maturing cell ensembles with large intra-day fluctuations. Correlated time-lapse imaging unveiled rather static macroscopic network architectures with previously unreported local morphological oscillations on the timescale of minutes.

  11. Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: key sources of artifacts

    NASA Astrophysics Data System (ADS)

    Grafmueller, Stefanie; Manser, Pius; Diener, Liliane; Maurizi, Lionel; Diener, Pierre-André; Hofmann, Heinrich; Jochum, Wolfram; Krug, Harald F.; Buerki-Thurnherr, Tina; von Mandach, Ursula; Wick, Peter

    2015-08-01

    Nanotechnology is a rapidly expanding and highly promising new technology with many different fields of application. Consequently, the investigation of engineered nanoparticles in biological systems is steadily increasing. Questions about the safety of such engineered nanoparticles are very important and the most critical subject with regard to the penetration of biological barriers allowing particle distribution throughout the human body. Such translocation studies are technically challenging and many issues have to be considered to obtain meaningful and comparable results. Here we report on the transfer of polystyrene nanoparticles across the human placenta using an ex vivo human placenta perfusion model. We provide an overview of several challenges that can potentially occur in any translocation study in relation to particle size distribution, functionalization and stability of labels. In conclusion, a careful assessment of nanoparticle properties in a physiologically relevant milieu is as challenging and important as the actual study of nanoparticle-cell interactions itself.

  12. Step-by-step protocol to perfuse and dissect the mouse parotid gland and isolation of high-quality RNA from murine and human parotid tissue.

    PubMed

    Watermann, Christoph; Valerius, Klaus Peter; Wagner, Steffen; Wittekindt, Claus; Klussmann, Jens Peter; Baumgart-Vogt, Eveline; Karnati, Srikanth

    2016-04-01

    Macroscopic identification and surgical removal of the mouse parotid gland is demanding because of its anatomic location and size. Moreover, the mouse parotid gland contains high concentrations of RNases, making it difficult to isolate high-quality RNA. So far, appropriate methods for optimal perfusion-fixation and dissection of mouse parotid glands, as well as the isolation of high quality RNA from this tissue, are not available. Here we present a simple, optimized, step-by-step surgical method to perfuse and isolate murine parotid glands. We also compared two common RNA extraction methods (RNeasy Mini Kit versus TRIzol) for their yields of high-quality, intact RNA from human and murine parotid gland tissues that were either snap-frozen or immersed in RNAlater stabilization solution. Mouse parotid tissue that was perfused and immersed in RNAlater and human samples immersed in RNAlater exhibited the best RNA quality, independent of the isolation method. PMID:27071609

  13. Human Behaviour in Long-Term Missions

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session WP1, the discussion focuses on the following topics: Psychological Support for International Space Station Mission; Psycho-social Training for Man in Space; Study of the Physiological Adaptation of the Crew During A 135-Day Space Simulation; Interpersonal Relationships in Space Simulation, The Long-Term Bed Rest in Head-Down Tilt Position; Psychological Adaptation in Groups of Varying Sizes and Environments; Deviance Among Expeditioners, Defining the Off-Nominal Act in Space and Polar Field Analogs; Getting Effective Sleep in the Space-Station Environment; Human Sleep and Circadian Rhythms are Altered During Spaceflight; and Methodological Approach to Study of Cosmonauts Errors and Its Instrumental Support.

  14. Circadian Kisspeptin expression in human term placenta.

    PubMed

    de Pedro, M A; Morán, J; Díaz, I; Murias, L; Fernández-Plaza, C; González, C; Díaz, E

    2015-11-01

    Kisspeptin is an essential gatekeeper of reproductive function. During pregnancy high circulating levels of kisspeptin have been described, however the clear role of this neuropeptide in pregnancy remains unknown. We tested the existence of rhythmic kisspeptin expression in human full-term placenta from healthy pregnant women at six different time points during the day. The data obtained by Western blotting were fitted to a mathematical model (Fourier series), demonstrating, for the first time, the existence of a circadian rhythm in placental kisspeptin expression.

  15. Keep on rolling: optimizing human islet transport conditions using a perfused rotary system.

    PubMed

    Hermann, Martin; Wurm, Martin; Lubei, Verena; Pirkebner, Daniela; Draxl, Anna; Margreiter, Raimund; Hengster, Paul

    2012-01-01

    The setup of an islet isolation facility designed along the rules of good manufacturing practice (GMP) is a technically challenging, cost and time intensive process. ( 1) Consequently, several institutions have decided to perform transplantation of islets isolated at another center with an already standing expertise. Such a solution includes the necessity to transport the isolated islets from the isolation to the transplantation facility. In spite of its importance, an ideal solution for the transport of the isolated human islets has still not been established.   Here, we present an islet transport device suited to transport human islet cells under reproducible conditions and minimized cell stress. The transport simulation of the human islets was performed in a transfused "rotary transport system for islets" termed "ROTi." Besides measuring standard metabolic (LDH, lactate, glucose) and physical parameters (pH, dissolved oxygen and temperature), we used five different live stains in combination with real time live confocal microscopy to document islet quality parameters. As live stains we added tetramethylrhodamine methyl ester, cell permeant acetoxymethylester, propidium iodide, annexin-fitc and fluorescent wheat germ agglutinin, and assessed mitochondrial membrane potentials, calcium levels, cell death, apoptosis or cell morphology, respectively. We compared the viability of human islets after 24 h incubation in the ROTi device to an incubation simulating "standard" shipment of islets in 50 ml tubes. All cell viability parameters studied (mitochondrial membrane potentials, calcium content, apoptosis, cell death as well as cell morphology) documented a significantly better cell viability in the ROTi fraction compared with the simulated "standard" shipment fraction. Besides maintaining islet cell viability, the ROTi bears the advantage of a better reproducibility of islet transport conditions.

  16. Placental transfer of the polybrominated diphenyl ethers BDE-47, BDE-99 and BDE-209 in a human placenta perfusion system: an experimental study

    PubMed Central

    2010-01-01

    Background Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants in consumer products. PBDEs may affect thyroid hormone homeostasis, which can result in irreversible damage of cognitive performance, motor skills and altered behaviour. Thus, in utero exposure is of very high concern due to critical windows in fetal development. Methods A human ex vivo placenta perfusion system was used to study the kinetics and extent of the placental transfer of BDE-47, BDE-99 and BDE-209 during four-hour perfusions. The PBDEs were added to the maternal circulation and monitored in the maternal and fetal compartments. In addition, the perfused cotyledon, the surrounding placental tissue as well as pre-perfusion placental tissue and umbilical cord plasma were also analysed. The PBDE analysis included Soxhlet extraction, clean-up by adsorption chromatography and GC-MS analysis. Results and Discussion Placental transfer of BDE-47 was faster and more extensive than for BDE-99. The fetal-maternal ratios (FM-ratio) after four hours of perfusion were 0.47 and 0.25 for BDE-47 and BDE-99, respectively, while the indicative permeability coefficient (IPC) measured after 60 minutes of perfusion was 0.26 h-1 and 0.10 h-1, respectively. The transport of BDE-209 seemed to be limited. These differences between the congeners may be related to the degree of bromination. Significant accumulation was observed for all congeners in the perfused cotyledon as well as in the surrounding placental tissue. Conclusion The transport of BDE-47 and BDE-99 indicates in utero exposure to these congeners. Although the transport of BDE-209 was limited, however, possible metabolic debromination may lead to products which are both more toxic and transportable. Our study demonstrates fetal exposure to PBDEs, which should be included in risk assessment of PBDE exposure of women of child-bearing age. PMID:20598165

  17. Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta.

    PubMed

    Corbel, T; Gayrard, V; Puel, S; Lacroix, M Z; Berrebi, A; Gil, S; Viguié, C; Toutain, P-L; Picard-Hagen, N

    2014-08-01

    The widespread human exposure to Bisphenol A (BPA), an endocrine disruptor interfering with developmental processes, raises the question of the risk for human health of BPA fetal exposure. In humans, highly variable BPA concentrations have been reported in the feto-placental compartment. However the human fetal exposure to BPA still remains unclear. The aim of the study was to characterize placental exchanges of BPA and its main metabolite, Bisphenol A-Glucuronide (BPA-G) using the non-recirculating dual human placental perfusion. This high placental bidirectional permeability to the lipid soluble BPA strongly suggests a transport by passive diffusion in both materno-to-fetal and feto-to-maternal direction, leading to a calculated ratio between fetal and maternal free BPA concentrations of about 1. In contrast, BPA-G has limited placental permeability, particularly in the materno-to-fetal direction. Thus the fetal exposure to BPA conjugates could be explained mainly by its limited capacity to extrude BPA-G.

  18. Preserving the morphology and evaluating the quality of liver grafts by hypothermic machine perfusion: a proof-of-concept study using discarded human livers.

    PubMed

    Monbaliu, Diethard; Liu, Qiang; Libbrecht, Louis; De Vos, Rita; Vekemans, Katrien; Debbaut, Charlotte; Detry, Olivier; Roskams, Tania; van Pelt, Jos; Pirenne, Jacques

    2012-12-01

    The wider use of livers from expanded criteria donors and donation after circulatory death donors may help to improve access to liver transplantation. A prerequisite for safely using these higher risk livers is the development of objective criteria for assessing their condition before transplantation. Compared to simple cold storage, hypothermic machine perfusion (HMP) provides a unique window for evaluating liver grafts between procurement and transplantation. In this proof-of-concept study, we tested basic parameters during HMP that may reflect the condition of human liver grafts, and we assessed their morphology after prolonged HMP. Seventeen discarded human livers were machine-perfused. Eleven livers were nontransplantable (major absolute contraindications and severe macrovesicular steatosis in the majority of the cases). Six livers were found in retrospect to be transplantable but could not be allocated and served as controls. Metabolic parameters (pH, lactate, partial pressure of oxygen, and partial pressure of carbon dioxide), enzyme release in the perfusate [aspartate aminotransferase (AST) and lactate dehydrogenase (LDH)], and arterial/portal resistances were monitored during HMP. Nontransplantable livers released more AST and LDH than transplantable livers. In contrast, arterial/portal vascular resistances and metabolic profiles did not differ between the 2 groups. Morphologically, transplantable livers remained well preserved after 24 hours of HMP. In conclusion, HMP preserves the morphology of human livers for prolonged periods. A biochemical analysis of the perfusate provides information reflecting the extent of the injury endured.

  19. Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells.

    PubMed

    Shestov, Alexander A; Mancuso, Anthony; Lee, Seung-Cheol; Guo, Lili; Nelson, David S; Roman, Jeffrey C; Henry, Pierre-Gilles; Leeper, Dennis B; Blair, Ian A; Glickson, Jerry D

    2016-03-01

    A network model for the determination of tumor metabolic fluxes from (13)C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-(13)C2]glucose under normoxic conditions at 37 °C and monitored by (13)C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼ 50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼ 6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism. PMID:26703469

  20. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. PMID:26700566

  1. Renal perfusion scintiscan

    MedlinePlus

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  2. Microcirculation Perfusion Monitor on the Back of the Health Volunteers

    PubMed Central

    Li, Yanqi; Li, Xiaomei; Zhou, Dan; Wang, Kang; Liu, Yangyang; Guo, Yi; Qiu, Shuang; Zhai, Tianchen; Liu, Shuang; Liu, Jingjing; Ming, Dong

    2013-01-01

    Objective. To observe the dermal microcirculation blood perfusion characterization of meridians channels (acupoints). Methods. 20 healthy human subjects were monitored using Pericam Perfusion Speckle Imager (PSI) for the changes in dermal microcirculation blood perfusion on governor meridian and other respective dermal regions as a control. Result. The microcirculation blood perfusion on Governor Meridian is higher than its control area. Conclusion. The dermal microcirculation blood perfusion on certain parts of Governor Meridian of healthy human subjects showed specifics. PMID:24371463

  3. Long-term effects of cerebral hypoperfusion on neural density and function using misery perfusion animal model.

    PubMed

    Nishino, Asuka; Tajima, Yosuke; Takuwa, Hiroyuki; Masamoto, Kazuto; Taniguchi, Junko; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Urushihata, Takuya; Aoki, Ichio; Kanno, Iwao; Tomita, Yutaka; Suzuki, Norihiro; Ikoma, Yoko; Ito, Hiroshi

    2016-04-27

    We investigated the chronic effects of cerebral hypoperfusion on neuronal density and functional hyperemia using our misery perfusion mouse model under unilateral common carotid artery occlusion (UCCAO). Neuronal density evaluated 28 days after UCCAO using [(11)C]flumazenil-PET and histology indicated no neurologic deficit in the hippocampus and neocortex. CBF response to sensory stimulation was assessed using laser-Doppler flowmetry. Percentage changes in CBF response of the ipsilateral hemisphere to UCCAO were 18.4 ± 3.0%, 6.9 ± 2.8%, 6.8 ± 2.3% and 4.9 ± 2.4% before, and 7, 14 and 28 days after UCCAO, respectively. Statistical significance was found at 7, 14 and 28 days after UCCAO (P < 0.01). Contrary to our previous finding (Tajima et al. 2014) showing recovered CBF response to hypercapnia on 28 days after UCCAO using the same model, functional hyperemia was sustained and became worse 28 days after UCCAO.

  4. Long-term effects of cerebral hypoperfusion on neural density and function using misery perfusion animal model

    PubMed Central

    Nishino, Asuka; Tajima, Yosuke; Takuwa, Hiroyuki; Masamoto, Kazuto; Taniguchi, Junko; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Urushihata, Takuya; Aoki, Ichio; Kanno, Iwao; Tomita, Yutaka; Suzuki, Norihiro; Ikoma, Yoko; Ito, Hiroshi

    2016-01-01

    We investigated the chronic effects of cerebral hypoperfusion on neuronal density and functional hyperemia using our misery perfusion mouse model under unilateral common carotid artery occlusion (UCCAO). Neuronal density evaluated 28 days after UCCAO using [11C]flumazenil-PET and histology indicated no neurologic deficit in the hippocampus and neocortex. CBF response to sensory stimulation was assessed using laser-Doppler flowmetry. Percentage changes in CBF response of the ipsilateral hemisphere to UCCAO were 18.4 ± 3.0%, 6.9 ± 2.8%, 6.8 ± 2.3% and 4.9 ± 2.4% before, and 7, 14 and 28 days after UCCAO, respectively. Statistical significance was found at 7, 14 and 28 days after UCCAO (P < 0.01). Contrary to our previous finding (Tajima et al. 2014) showing recovered CBF response to hypercapnia on 28 days after UCCAO using the same model, functional hyperemia was sustained and became worse 28 days after UCCAO. PMID:27116932

  5. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion.

    PubMed

    Kalsi, Kameljit K; González-Alonso, José

    2012-03-01

    Human limb muscle and skin blood flow increases significantly with elevations in temperature, possibly through physiological processes that involve temperature-sensitive regulatory mechanisms. Here we tested the hypothesis that the release of the vasodilator ATP from human erythrocytes is sensitive to physiological increases in temperature both in vitro and in vivo, and examined potential channel/transporters involved. To investigate the source of ATP release, whole blood, red blood cells (RBCs), plasma and serum were heated in vitro to 33, 36, 39 and 42°C. In vitro heating augmented plasma or 'bathing solution' ATP in whole blood and RBC samples, but not in either isolated plasma or serum samples. Heat-induced ATP release was blocked by niflumic acid and glibenclamide, but was not affected by inhibitors of nucleoside transport or anion exchange. Heating blood to 42°C enhanced (P < 0.05) membrane protein abundance of cystic fibrosis transmembrane conductance regulator (CFTR) in RBCs. In a parallel in vivo study in humans exposed to whole-body heating at rest and during exercise, increases in muscle temperature from 35 to 40°C correlated strongly with elevations in arterial plasma ATP (r(2) = 0.91; P = 0.0001), but not with femoral venous plasma ATP (r(2) = 0.61; P = 0.14). In vitro, however, the increase in ATP release from RBCs was similar in arterial and venous samples heated to 39°C. Our findings demonstrate that erythrocyte ATP release is sensitive to physiological increases in temperature, possibly via activation of CFTR-like channels, and suggest that temperature-dependent release of ATP from erythrocytes might be an important mechanism regulating human limb muscle and skin perfusion in conditions that alter blood and tissue temperature.

  6. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion

    PubMed Central

    Kalsi, Kameljit K; González-Alonso, José

    2012-01-01

    Human limb muscle and skin blood flow increases significantly with elevations in temperature, possibly through physiological processes that involve temperature-sensitive regulatory mechanisms. Here we tested the hypothesis that the release of the vasodilator ATP from human erythrocytes is sensitive to physiological increases in temperature both in vitro and in vivo, and examined potential channel/transporters involved. To investigate the source of ATP release, whole blood, red blood cells (RBCs), plasma and serum were heated in vitro to 33, 36, 39 and 42°C. In vitro heating augmented plasma or ‘bathing solution’ ATP in whole blood and RBC samples, but not in either isolated plasma or serum samples. Heat-induced ATP release was blocked by niflumic acid and glibenclamide, but was not affected by inhibitors of nucleoside transport or anion exchange. Heating blood to 42°C enhanced (P < 0.05) membrane protein abundance of cystic fibrosis transmembrane conductance regulator (CFTR) in RBCs. In a parallel in vivo study in humans exposed to whole-body heating at rest and during exercise, increases in muscle temperature from 35 to 40°C correlated strongly with elevations in arterial plasma ATP (r2 = 0.91; P = 0.0001), but not with femoral venous plasma ATP (r2 = 0.61; P = 0.14). In vitro, however, the increase in ATP release from RBCs was similar in arterial and venous samples heated to 39°C. Our findings demonstrate that erythrocyte ATP release is sensitive to physiological increases in temperature, possibly via activation of CFTR-like channels, and suggest that temperature-dependent release of ATP from erythrocytes might be an important mechanism regulating human limb muscle and skin perfusion in conditions that alter blood and tissue temperature. PMID:22227202

  7. Application of porous glycosaminoglycan-based scaffolds for expansion of human cord blood stem cells in perfusion culture.

    PubMed

    Cho, Cheul H; Eliason, James F; Matthew, Howard W T

    2008-07-01

    In vitro expansion of hematopoietic stem cells (HSCs) has been employed to obtain sufficient numbers of stem cells for successful engraftment after HSC transplantation. A three-dimensional perfusion bioreactor system with a heparin-chitosan scaffold was designed and evaluated for its capability to support maintenance and expansion of HSCs. Porous chitosan scaffolds were fabricated by a freeze-drying technique and N-desulfated heparin was covalently immobilized within the scaffolds using carbodiimide chemistry. CD34+ HSCs isolated from umbilical cord blood by immunomagnetic separation were cultured within the porous scaffold in a perfusion bioreactor system. Control cultures were maintained on dishes coated with similar heparin-chitosan films. Oxygen uptake was measured during the culture period. After 7 days of culture, scaffolds were harvested for analysis. Cellular phenotype and HSC characteristics were evaluated via flow cytometry and colony forming unit assays. The results indicate good cell retention and proliferation within the perfused scaffolds. Oxygen consumption in the perfusion bioreactor system increased continuously during the culture, indicating steady cell growth. Cells from the perfused scaffold cultures showed higher percentages of primitive progenitors and exhibited superior colony forming unit performance as compared to cells from static cultures. In addition, perfusion culture at low oxygen (5%) enhanced the expansion of CD34+ cells and colony-forming activity compared to high oxygen (19%) cultures. The results suggest that perfusion culture of cord blood CD34+ cells under bone marrow-like conditions enhances HSC expansion compared to static cultures.

  8. Interstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges

    PubMed Central

    Talò, Giuseppe; Lovati, Arianna B.; Pasdeloup, Marielle; Riboldi, Stefania A.; Moretti, Matteo; Mallein-Gerin, Frédéric

    2016-01-01

    Articular cartilage has poor healing ability and cartilage injuries often evolve to osteoarthritis. Cell-based strategies aiming to engineer cartilaginous tissue through the combination of biocompatible scaffolds and articular chondrocytes represent an alternative to standard surgical techniques. In this context, perfusion bioreactors have been introduced to enhance cellular access to oxygen and nutrients, hence overcoming the limitations of static culture and improving matrix deposition. Here, we combined an optimized cocktail of soluble factors, the BIT (BMP-2, Insulin, Thyroxin), and clinical-grade collagen sponges with a bidirectional perfusion bioreactor, namely the oscillating perfusion bioreactor (OPB), to engineer in vitro articular cartilage by human articular chondrocytes (HACs) obtained from osteoarthritic patients. After amplification, HACs were seeded and cultivated in collagen sponges either in static or dynamic conditions. Chondrocyte phenotype and the nature of the matrix synthesized by HACs were assessed using western blotting and immunohistochemistry analyses. Finally, the stability of the cartilaginous tissue produced by HACs was evaluated in vivo by subcutaneous implantation in nude mice. Our results showed that perfusion improved the distribution and quality of cartilaginous matrix deposited within the sponges, compared to static conditions. Specifically, dynamic culture in the OPB, in combination with the BIT cocktail, resulted in the homogeneous production of extracellular matrix rich in type II collagen. Remarkably, the production of type I collagen, a marker of fibrous tissues, was also inhibited, indicating that the association of the OPB with the BIT cocktail limits fibrocartilage formation, favoring the reconstruction of hyaline cartilage. PMID:27584727

  9. Interstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges.

    PubMed

    Mayer, Nathalie; Lopa, Silvia; Talò, Giuseppe; Lovati, Arianna B; Pasdeloup, Marielle; Riboldi, Stefania A; Moretti, Matteo; Mallein-Gerin, Frédéric

    2016-01-01

    Articular cartilage has poor healing ability and cartilage injuries often evolve to osteoarthritis. Cell-based strategies aiming to engineer cartilaginous tissue through the combination of biocompatible scaffolds and articular chondrocytes represent an alternative to standard surgical techniques. In this context, perfusion bioreactors have been introduced to enhance cellular access to oxygen and nutrients, hence overcoming the limitations of static culture and improving matrix deposition. Here, we combined an optimized cocktail of soluble factors, the BIT (BMP-2, Insulin, Thyroxin), and clinical-grade collagen sponges with a bidirectional perfusion bioreactor, namely the oscillating perfusion bioreactor (OPB), to engineer in vitro articular cartilage by human articular chondrocytes (HACs) obtained from osteoarthritic patients. After amplification, HACs were seeded and cultivated in collagen sponges either in static or dynamic conditions. Chondrocyte phenotype and the nature of the matrix synthesized by HACs were assessed using western blotting and immunohistochemistry analyses. Finally, the stability of the cartilaginous tissue produced by HACs was evaluated in vivo by subcutaneous implantation in nude mice. Our results showed that perfusion improved the distribution and quality of cartilaginous matrix deposited within the sponges, compared to static conditions. Specifically, dynamic culture in the OPB, in combination with the BIT cocktail, resulted in the homogeneous production of extracellular matrix rich in type II collagen. Remarkably, the production of type I collagen, a marker of fibrous tissues, was also inhibited, indicating that the association of the OPB with the BIT cocktail limits fibrocartilage formation, favoring the reconstruction of hyaline cartilage. PMID:27584727

  10. Chlorine and sodium perfusion and electrolyte balance in human tissue and tumours before and during neutron and photon radiotherapy.

    PubMed

    Koester, L; Knopf, K; Auberger, T

    1997-08-01

    Radiotherapy with nuclear reactor fission neutrons was applied in 49 cases of pretreated patients with superficial metastases or relapses from primary carcinoma. Measurements of the decay rates of the radiation-induced radioactivity of 49Ca, 38Cl and 24Na in the irradiated tissue resulted in values for the simultaneous local kinetics of chlorine and sodium, and in approximate data on the electrolyte masses. The electrolytes were present in non-exchangeable and exchangeable compartments of soft tissue. Exchange times of the intravascular to extravascular turnover and the frequencies of the exchange fractions were determined for a series of irradiations. The results have been interpreted in terms of the mean electrolyte exchange rates, of a standardized functional blood flow, and of the supply capacity of the vascular system. In the average of all cases, the regional perfusion was reduced by about 30% by irradiation up to 14 Gy (equivalent photon dose = 45 Gy) connected with an increase in the non-exchangeable fractions. After fractionated doses higher than 14 Gy, functional blood flow and supply capacity increased to 120%, and fixed electrolytes were removed from the irradiated tissue. Data on electrolyte kinetics and vascularity are compared with the literature.

  11. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and during high-intensity whole-body exercise in humans

    PubMed Central

    Mortensen, Stefan P; Damsgaard, Rasmus; Dawson, Ellen A; Secher, Niels H; González-Alonso, José

    2008-01-01

    Perfusion to exercising skeletal muscle is regulated to match O2 delivery to the O2 demand, but this regulation might be compromised during or approaching maximal whole-body exercise as muscle blood flow for a given work rate is blunted. Whether muscle perfusion is restricted when there is an extreme metabolic stimulus to vasodilate during supramaximal exercise remains unknown. To examine the regulatory limits of systemic and muscle perfusion in exercising humans, we measured systemic and leg haemodynamics, O2 transport, and , and estimated non-locomotor tissue perfusion during constant load supramaximal cycling (498 ± 16 W; 110% of peak power; mean ± s.e.m.) in addition to both incremental cycling and knee-extensor exercise to exhaustion in 13 trained males. During supramaximal cycling, cardiac output (), leg blood flow (LBF), and systemic and leg O2 delivery and reached peak values after 60–90 s and thereafter levelled off at values similar to or ∼6% (P < 0.05) below maximal cycling, while upper body blood flow remained unchanged (∼5.5 l min−1). In contrast, and LBF increased linearly until exhaustion during one-legged knee-extensor exercise accompanying increases in non-locomotor tissue blood flow to ∼12 l min−1. At exhaustion during cycling compared to knee-extensor exercise, , LBF, leg vascular conductance, leg O2 delivery and leg for a given power were reduced by 32–47% (P < 0.05). In conclusion, locomotor skeletal muscle perfusion is restricted during maximal and supramaximal whole–body exercise in association with a plateau in and limb vascular conductance. These observations suggest that limits of cardiac function and muscle vasoconstriction underlie the inability of the circulatory system to meet the increasing metabolic demand of skeletal muscles and other tissues during whole-body exercise. PMID:18372307

  12. Structure-function correlation in the human placenta: the morphometric diffusing capacity for oxygen at full term.

    PubMed Central

    Mayhew, T M; Joy, C F; Haas, J D

    1984-01-01

    A combination of stereology and physiology is used to estimate the morphometric diffusing capacity for oxygen of the normal human placenta at term. The morphometric diffusing capacity is found to be higher than published values determined by physiological methods. The most likely explanation for this discrepancy is that physiological values are too low because of the effects of shunts, placental oxygen consumption and uneven diffusion:perfusion ratios. Despite the discrepancy, morphometry of histological sections offers a valuable and practicable alternative for comparing the functional potential of the placenta in different species, during normal gestation, disease, experimental treatment and environmental hypoxic stress. Images Fig. 2 PMID:6526720

  13. A new recycling technique for human placental cotyledon perfusion: application to studies of the fetomaternal transfer of glucose, inulin, and antipyrine

    SciTech Connect

    Brandes, J.M.; Tavoloni, N.; Potter, B.J.; Sarkozi, L.; Shepard, M.D.; Berk, P.D.

    1983-08-01

    A previously described technique has been modified to permit the continuously recirculating perfusion of the separate maternal and fetal circulations of an isolated cotyledon of human placenta. Viability of the perfused cotyledons was established by measurements of oxygen consumption (average, 0.18 ml/gm/hr), glucose utilization (average, 1.0 mg/gm/hr), and lactate production (less than 0.01 mumol/gm/hr), and integrity of the placental barrier by the failure of India ink, 125I-albumin, or 35S-sulfobromophthalein to cross from fetal to maternal circulation. Clearance of 3H-inulin from the fetal circuit, 0.0059 +/- 0.0005 (SE) ml/min/gm, corresponded to 2.5% of its clearance by the adult human kidney. Clearance of 14C-antipyrine was 0.013 +/- 0.003 ml/min/gm. After introduction into the fetal circuit, the observed appearance of both inulin and antipyrine in the maternal circuit closely paralleled curves predicted by a simple mathematical model. The use of a continuously recirculating perfusion system is technically feasible, and has advantages over the single-pass technique for studying transplacental transfer of metabolites with a low efficiency of extraction.

  14. Failure of human and mouse leptin to affect insulin, glucagon and somatostatin secretion by the perfused rat pancreas at physiological glucose concentration.

    PubMed

    Leclercq-Meyer, V; Malaisse, W J

    1998-06-25

    In isolated perfused pancreas from normal rats, a rise in d-glucose concentration from 3.3 to 8.3 mM provoked a rapid phasic stimulation of both insulin and somatostatin secretion and rapid fall in glucagon output, these changes being reversed when the concentration of the hexose was brought back to its initial low level. In the presence of 8.3 mM d-glucose, the administration of either human or mouse leptin (10 nM in both cases) for 15 min failed to affect significantly the perfusion pressure and release of the three hormones. It is concluded that leptin does not exert any major immediate and direct effect upon pancreatic insulin, glucagon and somatostatin secretion, at least at the physiological concentration of d-glucose normally found in the plasma of fed rats. PMID:9723892

  15. Studying Closed Hydrodynamic Models of “In Vivo” DNA Perfusion in Pig Liver for Gene Therapy Translation to Humans

    PubMed Central

    Sendra, Luis; Miguel, Antonio; Pérez-Enguix, Daniel; Montalvá, Eva; García-Gimeno, María Adelaida; Noguera, Inmaculada; Díaz, Ana; Pérez, Judith; Sanz, Pascual; López-Andújar, Rafael; Martí-Bonmatí, Luis; Aliño, Salvador F.

    2016-01-01

    Introduction Expressing exogenous genes after naked DNA delivery into hepatocytes might achieve sustained and high expression of human proteins. Tail vein DNA injection is an efficient procedure for gene transfer in murine liver. Hydrodynamic procedures in large animals require organ targeting, and improve with liver vascular exclusion. In the present study, two closed liver hydrofection models employing the human alpha-1-antitrypsin (hAAT) gene are compared to reference standards in order to evaluate their potential clinical interest. Material and Methods A solution of naked DNA bearing the hAAT gene was retrogradely injected in 7 pig livers using two different closed perfusion procedures: an endovascular catheterization-mediated procedure (n = 3) with infrahepatic inferior vena cava and portal vein blockage; and a surgery-mediated procedure (n = 4) with completely sealed liver. Gene transfer was performed through the suprahepatic inferior cava vein in the endovascular procedure and through the infrahepatic inferior vena cava in the surgical procedure. The efficiency of the procedures was evaluated 14 days after hydrofection by quantifying the hAAT protein copies per cell in tissue and in plasma. For comparison, samples from mice (n = 7) successfully hydrofected with hAAT and healthy human liver segments (n = 4) were evaluated. Results Gene decoding occurs efficiently using both procedures, with liver vascular arrest improving its efficiency. The surgically closed procedure (sealed organ) reached higher tissue protein levels (4x10^5- copies/cell) than the endovascular procedure, though the levels were lower than in human liver (5x10^6- copies/cell) and hydrofected mouse liver (10^6- copies/cell). However, protein levels in plasma were lower (p<0.001) than the reference standards in all cases. Conclusion Hydrofection of hAAT DNA to “in vivo” isolated pig liver mediates highly efficient gene delivery and protein expression in tissue. Both endovascular and

  16. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor.

    PubMed

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M; Hughes, David J; Ravindra, Kodihalli C; Dyer, Rachel L; Ebrahimkhani, Mohammad R; Wishnok, John S; Griffith, Linda G; Tannenbaum, Steven R

    2015-07-01

    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte-Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase-ultra high-performance liquid chromatography-quadrupole time of flight-mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8-10% of the loss, and 45-52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour(-1), 6.6 × 10(-5) l⋅hour(-1), and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver. PMID:25926431

  17. Technical Terms Used in School Textbooks of Human Biology

    ERIC Educational Resources Information Center

    Evans, J. Daryll

    1975-01-01

    Reports on an analysis of seven tests in use for CSE Human Biology to determine the technical vocabulary to which pupils are exposed. Lists the frequency of occurrence of every term, outlines the scheme used for classifying terms, and presents a selected vocabulary of terms considered to be the most popular. (GS)

  18. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    PubMed Central

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  19. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    PubMed Central

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  20. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor.

    PubMed

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 10(6) hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems

  1. Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study.

    PubMed

    Ren, Jie; Li, Pengcheng; Zhao, Hongyou; Chen, Defu; Zhen, Jie; Wang, Ying; Wang, Yucheng; Gu, Ying

    2014-03-01

    The occlusion effect of vascular targeted photodynamic therapy (V-PDT) for malformed vessels in port wine stains (PWS) often last for some time after the treatment. A relatively longer period after V-PDT is needed to accurately assess the final response of PWS microcirculation to the treatment. In this study, we intended to use laser speckle imaging (LSI) to assess the tissue perfusion changes of PWS at follow-up after V-PDT and preliminarily analyze the relationship between perfusion change and color bleaching. Seventeen patients with 40 PWS lesions were scanned by LSI before and 3-6 months after they received V-PDT. The speckle flow indices of PWS lesions and normal skin before and at follow-up after V-PDT were recorded. We also performed analyses on the correlation between perfusion changes and color bleaching. Before V-PDT, the 40 PWS lesions showed higher perfusion than the normal skin (1,421 ± 463 and 1,115 ± 386 perfusion unit (PU), respectively, P < 0.01). The PWS lesions scanned at follow-up showed decreased perfusion level compared to the preoperative values (1,282 ± 460 and 1,421 ± 463 PU, respectively, P < 0.01). After V-PDT, the perfusion change rates coincide well with the color bleaching rates (correlation coefficient, 0.73). In conclusion, the LSI system is capable of imaging PWS perfusion precisely, and it has shown promising results in assessing the changes of tissue perfusion of V-PDT for PWS, with objective and quantitative data, real-time images, and a shorter detection time. It may also provide an effectiveness assessment method for the treatment of PWS. PMID:23975603

  2. Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study.

    PubMed

    Ren, Jie; Li, Pengcheng; Zhao, Hongyou; Chen, Defu; Zhen, Jie; Wang, Ying; Wang, Yucheng; Gu, Ying

    2014-03-01

    The occlusion effect of vascular targeted photodynamic therapy (V-PDT) for malformed vessels in port wine stains (PWS) often last for some time after the treatment. A relatively longer period after V-PDT is needed to accurately assess the final response of PWS microcirculation to the treatment. In this study, we intended to use laser speckle imaging (LSI) to assess the tissue perfusion changes of PWS at follow-up after V-PDT and preliminarily analyze the relationship between perfusion change and color bleaching. Seventeen patients with 40 PWS lesions were scanned by LSI before and 3-6 months after they received V-PDT. The speckle flow indices of PWS lesions and normal skin before and at follow-up after V-PDT were recorded. We also performed analyses on the correlation between perfusion changes and color bleaching. Before V-PDT, the 40 PWS lesions showed higher perfusion than the normal skin (1,421 ± 463 and 1,115 ± 386 perfusion unit (PU), respectively, P < 0.01). The PWS lesions scanned at follow-up showed decreased perfusion level compared to the preoperative values (1,282 ± 460 and 1,421 ± 463 PU, respectively, P < 0.01). After V-PDT, the perfusion change rates coincide well with the color bleaching rates (correlation coefficient, 0.73). In conclusion, the LSI system is capable of imaging PWS perfusion precisely, and it has shown promising results in assessing the changes of tissue perfusion of V-PDT for PWS, with objective and quantitative data, real-time images, and a shorter detection time. It may also provide an effectiveness assessment method for the treatment of PWS.

  3. Simultaneous determination of acrylamide, its metabolite glycidamide and antipyrine in human placental perfusion fluid and placental tissue by liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Annola, Kirsi; Keski-Rahkonen, Pekka; Vähäkangas, Kirsi; Lehtonen, Marko

    2008-12-15

    A rapid and sensitive method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous determination of acrylamide (AA) and its genotoxic metabolite glycidamide (GA) with a test marker antipyrine (AP) in placental tissue and perfusion medium used in human placental perfusion studies. An internal standard ((13)C-acrylamide) was added to the samples which were then deproteinized with acetonitrile. Chromatographic separation was performed on a reversed phase column with a gradient elution of acetonitrile and 0.01% formic acid at a flow rate of 0.3 mL/min. Detection and quantification of the analytes were carried out with a triple quadrupole mass spectrometer using positive electrospray ionization (ESI) and multiple reaction monitoring (MRM). The method was validated and linear over a concentration range of 0.5-20 microg/mL for acrylamide and glycidamide and 5-200 microg/mL for antipyrine. The lower limit of quantification for acrylamide and glycidamide was 0.5 microg/mL and for antipyrine 5 microg/mL. The method was selective, and good accuracy, precision, recovery, and stability were obtained for concentrations within the standard curve. The method was successfully used to analyze the placental perfusion medium and tissue samples in a toxicokinetic study for transplacental transfer of acrylamide and glycidamide. This is the first time that acrylamide, glycidamide and antipyrine are measured simultaneously.

  4. Distributed perfusion educational model: a shift in perfusion economic realities.

    PubMed

    Austin, Jon W; Evans, Edward L; Hoerr, Harry R

    2005-12-01

    In recent years, a steady decline in the number of perfusion education programs in the United States has been noted. At the same time, there has been a parallel decline in the number of students graduated from perfusion educational programs in the United States. Also, as noted by several authors, there has been an increase in demand for perfusion graduates. The decline in programs and graduates has also been noted in anesthesia and surgical residency programs. The shift is caused by a combination of economic and clinical factors. First, decreased reimbursement has led to reallocation of hospital resources. Second, the original enthusiasm for beating heart coronary artery bypass surgery was grossly overestimated and has led to further reallocation of hospital resources and denigration of cardiopulmonary bypass. This paper describes two models of perfusion education programs: serial perfusion education model (SPEM) and the distributed perfusion education model (DPEM). Arguments are presented that the SPEM has some serious limitations and challenges for long-term economic survival. The authors feel the DPEM along with dependence on tuition funding can survive the current clinical and economic conditions and allow the profession to adapt to changes in scope of practice. PMID:16524152

  5. Human Rights and the Law-Terms to Know.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 1998

    1998-01-01

    Identifies 10 terms on human rights and the law that have been introduced and discussed throughout this issue of "Update on Law-Related Education." Offers students a chance to match each item to its definition by writing the letter of the terms on the line next to the number of the definition. (CMK)

  6. MR Assessment of Myocardial Perfusion, Viability, and Function after Intramyocardial Transfer of VM202, a New Plasmid Human Hepatocyte Growth Factor in Ischemic Swine Myocardium1

    PubMed Central

    Saeed, Maythem; Martin, Alastair; Ursell, Phillip; Do, Loi; Bucknor, Matt; Higgins, Charles B.; Saloner, David

    2008-01-01

    Purpose: VM202, a newly constructed plasmid human hepatocyte growth factor, was transferred intramyocardially after infarction for the purpose of evaluating this strategy as a therapeutic approach for protection from left ventricular (LV) remodeling. Materials and Methods: The institutional animal care and use committee approved this study. Pigs underwent coronary artery occlusion and reperfusion and served as either control (n = 8) or VM202-treated (n = 8) animals. VM202 was transferred intramyocardially into four infarcted and four periinfarcted sites. Cardiac magnetic resonance (MR) imaging (cine, perfusion, delayed enhancement) was performed in acute (3 days) and chronic (50 days ± 3 [standard error of the mean]) infarction. Histopathologic findings were used to characterize and quantify neovascularization. The t test was utilized to compare treated and control groups and to assess changes over time. Results: In acute infarction, MR imaging estimates of function, perfusion, and viability showed no difference between the groups. In chronic infarction, however, VM202 increased maximum signal intensity and upslope at first-pass perfusion imaging and reduced infarct size at perfusion and delayed-enhancement imaging. These changes were associated with a decrease in end-diastolic (2.15 mL/kg ± 0.12 to 1.73 mL/kg ± 0.10, P < .01) and end-systolic (1.33 mL/kg ± 0.07 to 0.92 mL/kg ± 0.08, P < .001) volumes and an increase in ejection fraction (38.2% ± 1.3 to 47.0% ± 1.8, P < .001). In contrast, LV function deteriorated further in control animals. Compared with control animals, VM202-treated animals revealed peninsulas and/or islands of viable myocardium in infarcted and periinfarcted regions and greater number of capillaries (218 per square millimeter ± 19 vs 119 per square millimeter ± 17, P < .05) and arterioles (21 per square millimeter ± 4 vs 3 per square millimeter ± 1, P < .001). Conclusion: Intramyocardial transfer of VM202 improved myocardial

  7. Microfluidic perfusion culture.

    PubMed

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-01-01

    Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS. PMID:24297421

  8. Human islet isolation--a prospective randomized comparison of pancreatic vascular perfusion with hyperosmolar citrate or University of Wisconsin solution.

    PubMed

    Robertson, G S; Chadwick, D; Thirdborough, S; Swift, S; Davies, J; James, R; Bell, P R; London, N J

    1993-09-01

    University of Wisconsin solution has become the most commonly used vascular perfusate during multiorgan donation world-wide. In the UK however, hyperosmolar citrate remains in common use. The purpose of this prospective randomized study was to compare the effect of systemic perfusion with UW or HOC on subsequent islet yield and purification for pancreata with short cold ischemic times. Seven pancreata were randomized to each group, with the donor age, pancreas weight, and period of cold ischemia being similar in both. Perfusion with UW was shown to inhibit collagenase digestion, and a higher concentration of this enzyme was needed to achieve comparable numbers of islets with good separation of exocrine and islet tissue after a similar period of digestion. There were no differences in the number, size, purity, or viability of islets between the two groups. In conclusion, UW solution offers no benefits over HOC for pancreata with short cold ischemic times, and because of its expense and need to use greater amounts of collagenase enzyme, we continue to use HOC.

  9. Human islet isolation--a prospective randomized comparison of pancreatic vascular perfusion with hyperosmolar citrate or University of Wisconsin solution.

    PubMed

    Robertson, G S; Chadwick, D; Thirdborough, S; Swift, S; Davies, J; James, R; Bell, P R; London, N J

    1993-09-01

    University of Wisconsin solution has become the most commonly used vascular perfusate during multiorgan donation world-wide. In the UK however, hyperosmolar citrate remains in common use. The purpose of this prospective randomized study was to compare the effect of systemic perfusion with UW or HOC on subsequent islet yield and purification for pancreata with short cold ischemic times. Seven pancreata were randomized to each group, with the donor age, pancreas weight, and period of cold ischemia being similar in both. Perfusion with UW was shown to inhibit collagenase digestion, and a higher concentration of this enzyme was needed to achieve comparable numbers of islets with good separation of exocrine and islet tissue after a similar period of digestion. There were no differences in the number, size, purity, or viability of islets between the two groups. In conclusion, UW solution offers no benefits over HOC for pancreata with short cold ischemic times, and because of its expense and need to use greater amounts of collagenase enzyme, we continue to use HOC. PMID:8212148

  10. Creation of an ensemble of simulated cardiac cases and a human observer study: tools for the development of numerical observers for SPECT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Pretorius, P. Hendrik; Gifford, Howard C.; Licho, Robert; Joffe, Samuel; McGuiness, Matthew; Mehurg, Shannon; Zacharias, Michael; Brankov, Jovan G.

    2012-02-01

    Our previous Single Photon Emission Computed Tomography (SPECT) myocardial perfusion imaging (MPI) research explored the utility of numerical observers. We recently created two hundred and eighty simulated SPECT cardiac cases using Dynamic MCAT (DMCAT) and SIMIND Monte Carlo tools. All simulated cases were then processed with two reconstruction methods: iterative ordered subset expectation maximization (OSEM) and filtered back-projection (FBP). Observer study sets were assembled for both OSEM and FBP methods. Five physicians performed an observer study on one hundred and seventy-nine images from the simulated cases. The observer task was to indicate detection of any myocardial perfusion defect using the American Society of Nuclear Cardiology (ASNC) 17-segment cardiac model and the ASNC five-scale rating guidelines. Human observer Receiver Operating Characteristic (ROC) studies established the guidelines for the subsequent evaluation of numerical model observer (NO) performance. Several NOs were formulated and their performance was compared with the human observer performance. One type of NO was based on evaluation of a cardiac polar map that had been pre-processed using a gradient-magnitude watershed segmentation algorithm. The second type of NO was also based on analysis of a cardiac polar map but with use of a priori calculated average image derived from an ensemble of normal cases.

  11. Role of hypothermic machine perfusion in liver transplantation.

    PubMed

    Schlegel, Andrea; Dutkowski, Philipp

    2015-06-01

    Machine liver perfusion has significantly evolved during the last ten years to optimize extended criteria liver grafts and to address the worldwide organ shortage. This review gives an overview on available ex vivo and in vivo data on hypothermic machine liver perfusion. We discuss also possible protective pathways and show most recent clinical applications of hypothermic machine liver perfusion in human.

  12. [Design of the Rolling Type Nasal Feeding Perfusion Apparatus].

    PubMed

    Yu, Dong; Yang, Yonghuan; Hu, Huiqin; Luo, Hongjun; Feng, Yunhao; Hao, Xiali

    2015-09-01

    At present, the existing problem in nasal feeding perfusion apparatus is laborious and instability. Designing the rolling type perfusion apparatus by using a roller pump, the problem is solved. Compared with the traditional perfusion apparatus, the advantage lies in liquid carrying only need once and simulating human swallowing process. Through testing and verification, the apparatus can be used in nasal feeding perfusion for elderly or patients.

  13. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation

    SciTech Connect

    Krivokapich, J.; Stevenson, L.W.; Kobashigawa, J.; Huang, S.C.; Schelbert, H.R. )

    1991-08-01

    The maximal exercise capacity of cardiac transplant recipients is reduced compared with that of normal subjects. To determine if this reduced exercise capacity is related to inadequate myocardial perfusion during exercise, myocardial perfusion was measured noninvasively with use of positron emission tomography and nitrogen (N)-13 ammonia. Twelve transplant recipients with no angiographic evidence of accelerated coronary atherosclerosis were studied. Serial N-13 ammonia imaging was performed at rest and during supine bicycle exercise. The results were compared with those from 10 normal volunteers with a low probability of having cardiac disease. A two-compartment kinetic model for estimating myocardial perfusion was applied to the data. Transplant recipients achieved a significant lower exercise work load than did the volunteers (42 {plus minus} 16 vs. 128 {plus minus} 22 W), but a higher venous lactate concentration (31.3 {plus minus} 14.9 vs. 13.7 {plus minus} 4.1 mg/100 ml). Despite the difference in exercise work load, there was no significant difference in the cardiac work achieved by transplant recipients and normal subjects as evidenced by similar rate-pressure products of 24,000 {plus minus} 3,400 versus 21,300 {plus minus} 2,800 betas/min per mm Hg, respectively. In addition, myocardial blood flow during exercise was not significantly different between the two groups (1.70 {plus minus} 0.60 vs. 1.56 {plus minus} 0.71 ml/min per g, respectively). This study demonstrates that the myocardial flow response to the physiologic stress of exercise is appropriate in transplant recipients and does not appear to explain the decreased exercise capacity in these patients.

  14. Pulmonary ventilation/perfusion scan

    MedlinePlus

    V/Q scan; Ventilation/perfusion scan; Lung ventilation/perfusion scan ... A pulmonary ventilation/perfusion scan is actually two tests. They may be done separately or together. During the perfusion scan, a health care ...

  15. Tubular perfusion system culture of human mesenchymal stem cells on poly-l-lactic acid scaffolds produced using a supercritical carbon dioxide-assisted process

    PubMed Central

    Pisanti, Paola; Yeatts, Andrew B.; Cardea, Stefano; Fisher, John P.; Reverchon, Ernesto

    2012-01-01

    In vitro human mesenchymal stem cell (hMSC) proliferation and differentiation is dependent on scaffold design parameters and specific culture conditions. In this study, we investigate how scaffold microstructure influences hMSC behavior in a perfusion bioreactor system. Poly-l-lactic acid (PLLA) scaffolds are fabricated using supercritical carbon dioxide (SC-CO2) gel drying. This production method results in scaffolds fabricated with nanostructure. To introduce a microporous structure, porogen leaching was used in addition to this technique to produce scaffolds of average pore size of 100, 250, and 500 µm. These scaffolds were then cultured in static culture in well plates or dynamic culture in the tubular perfusion system (TPS) bioreactor. Results indicated that hMSCs were able to attach and maintain viability on all scaffolds with higher proliferation in the 250 µm and 500 µm pore sizes of bioreactor cultured scaffolds and 100 µm pore size of statically cultured scaffolds. Osteoblastic differentiation was enhanced in TPS culture as compared to static culture with the highest alkaline phosphatase expression observed in the 250 µm pore size group. Bone morphogenetic protein-2 was also analyzed and expression levels were highest in the 250 µm and 500 µm pore size bioreactor cultured samples. These results demonstrate cellular response to pore size as well as the ability of dynamic culture to enhance these effects. PMID:22528808

  16. Kidneys From α1,3-Galactosyltransferase Knockout/Human Heme Oxygenase-1/Human A20 Transgenic Pigs Are Protected From Rejection During Ex Vivo Perfusion With Human Blood

    PubMed Central

    Ahrens, Hellen E.; Petersen, Björn; Ramackers, Wolf; Petkov, Stoyan; Herrmann, Doris; Hauschild-Quintern, Janet; Lucas-Hahn, Andrea; Hassel, Petra; Ziegler, Maren; Baars, Wiebke; Bergmann, Sabine; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner

    2015-01-01

    Background Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties. Methods The GGTA1-KO/human heme oxygenase-1 (hHO-1)/human A20 (hA20) transgenic pigs were produced in a stepwise approach using zinc finger nuclease vectors targeting the GGTA1 gene and a Sleeping Beauty vector coding for hA20. Two piglets were analyzed by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and sequencing. The biological function of the genetic modifications was tested in a 51Chromium release assay and by ex vivo kidney perfusions with human blood. Results Disruption of the GGTA1 gene by deletion of few basepairs was demonstrated in GGTA1-KO/hHO-1/hA20 transgenic pigs. The hHO-1 and hA20 mRNA expression was confirmed by quantitative reverse-transcription polymerase chain reaction. Ex vivo perfusion of 2 transgenic kidneys was feasible for the maximum experimental time of 240 minutes without symptoms of rejection. Conclusions Results indicate that GGTA1-KO/hHO-1/hA20 transgenic pigs are a promising model to alleviate rejection and ischemia-reperfusion damage in porcine xenografts and could serve as a background for further genetic modifications toward the production of a donor pig that is clinically relevant for xenotransplantation. PMID:27500225

  17. Surgical treatment of acute myocardial ischaemia related to coronary angioplasty with special reference to use of perfusion balloon catheter and long-term outcome.

    PubMed

    Heikkinen, L; Virtanen, K; Heikkila, J; Verkkala, K; Salo, J; Jarvinen, A

    1997-04-01

    Twenty of 569 consecutive patients (3.5%) undergoing percutaneous transluminal coronary angioplasty required emergency coronary artery bypass grafting for acute closure of the dilated vessel. In seven patients an intracoronary autoperfusion balloon catheter was inserted to ensure antegrade blood flow across the injured zone of the coronary artery. The time needed for completion of the bypass grafts ranged from 100 to 399 minutes (mean 180 minutes). An average of 1.9 coronary artery bypasses was inserted. In total, 11 of the 20 patients (55%) developed new Q waves and had elevated CK-MB levels. However, the myocardial infarction rate was only 14% in those with a perfusion balloon catheter as against 77% in those without one. The insertion of a ball-out catheter permitted greater utilization of the internal mammary artery as a bypass graft. Angiographic follow-up was conducted after a mean of 28 months (19 patients). The patency rate of the bypass grafts placed in the emergency setting was relatively good (91%). Thallium tomography revealed a scar of variable size in all 17 patients studied and a reversible exercise perfusion defect requiring coronary reangioplasty in three patients. In conclusion, the insertion of a perfusion balloon catheter after abrupt coronary occlusion during coronary angioplasty solved the problems of acute myocardial ischemia and markedly lowered the definite myocardial infarction rate. This technique ensures favourable haemodynamic conditions for emergency myocardial revascularization. PMID:9201117

  18. Personality factors correlate with regional cerebral perfusion.

    PubMed

    O'Gorman, R L; Kumari, V; Williams, S C R; Zelaya, F O; Connor, S E J; Alsop, D C; Gray, J A

    2006-06-01

    There is an increasing body of evidence pointing to a neurobiological basis of personality. The purpose of this study was to investigate the biological bases of the major dimensions of Eysenck's and Cloninger's models of personality using a noninvasive magnetic resonance perfusion imaging technique in 30 young, healthy subjects. An unbiased voxel-based analysis was used to identify regions where the regional perfusion demonstrated significant correlation with any of the personality dimensions. Highly significant positive correlations emerged between extraversion and perfusion in the basal ganglia, thalamus, inferior frontal gyrus and cerebellum and between novelty seeking and perfusion in the cerebellum, cuneus and thalamus. Strong negative correlations emerged between psychoticism and perfusion in the basal ganglia and thalamus and between harm avoidance and perfusion in the cerebellar vermis, cuneus and inferior frontal gyrus. These observations suggest that personality traits are strongly associated with resting cerebral perfusion in a variety of cortical and subcortical regions and provide further evidence for the hypothesized neurobiological basis of personality. These results may also have important implications for functional neuroimaging studies, which typically rely on the modulation of cerebral hemodynamics for detection of task-induced activation since personality effects may influence the intersubject variability for both task-related activity and resting cerebral perfusion. This technique also offers a novel approach for the exploration of the neurobiological correlates of human personality.

  19. Multiphoton imaging reveals that nanosecond pulsed electric fields collapse tumor and normal vascular perfusion in human glioblastoma xenografts

    PubMed Central

    Bardet, Sylvia M.; Carr, Lynn; Soueid, Malak; Arnaud-Cormos, Delia; Leveque, Philippe; O’Connor, Rodney P.

    2016-01-01

    Despite the biomedical advances of the last century, many cancers including glioblastoma are still resistant to existing therapies leaving patients with poor prognoses. Nanosecond pulsed electric fields (nsPEF) are a promising technology for the treatment of cancer that have thus far been evaluated in vitro and in superficial malignancies. In this paper, we develop a tumor organoid model of glioblastoma and apply intravital multiphoton microscopy to assess their response to nsPEFs. We demonstrate for the first time that a single 10 ns, high voltage electric pulse (35–45 kV/cm), collapses the perfusion of neovasculature, and also alters the diameter of capillaries and larger vessels in normal tissue. These results contribute to the fundamental understanding of nsPEF effects in complex tissue environments, and confirm the potential of nsPEFs to disrupt the microenvironment of solid tumors such as glioblastoma. PMID:27698479

  20. The evolution of human cells in terms of protein innovation.

    PubMed

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  1. Developing a tissue perfusion sensor.

    PubMed

    Harvey, S L R; Parker, K H; O'Hare, D

    2007-01-01

    The development of a electrochemical tissue perfusion sensor is presented. The sensor is a platinum/platinum ring-disc microelectrode that relies on the principle of collector-generator to monitor mass transport within its vicinity. Tissue perfusion is a mass transport mechanism that describes the movement of respiratory gases, nutrients and metabolites in tissue. The sensor's capability of detecting perfusion at the cellular level in a continuous fashion is unique. This sensor will provide insight into the way nutrients and metabolites are transported in tissue especially in cases were perfusion is low such as in wounds or ischemic tissue. We present experimental work for the development and testing of the sensors in vitro. Experimental flow recordings in free steam solutions as well as the flow through tissue-like media are shown. Tests on post operative human tissue are also presented. The sensor's feature such as the continuous recoding capacities, spatial resolution and the measurement range from ml/min to microl/min are highlighted. PMID:18002549

  2. Human cervicovaginal fluid biomarkers to predict term and preterm labor

    PubMed Central

    Heng, Yujing J.; Liong, Stella; Permezel, Michael; Rice, Gregory E.; Di Quinzio, Megan K. W.; Georgiou, Harry M.

    2015-01-01

    Preterm birth (PTB; birth before 37 completed weeks of gestation) remains the major cause of neonatal morbidity and mortality. The current generation of biomarkers predictive of PTB have limited utility. In pregnancy, the human cervicovaginal fluid (CVF) proteome is a reflection of the local biochemical milieu and is influenced by the physical changes occurring in the vagina, cervix and adjacent overlying fetal membranes. Term and preterm labor (PTL) share common pathways of cervical ripening, myometrial activation and fetal membranes rupture leading to birth. We therefore hypothesize that CVF biomarkers predictive of labor may be similar in both the term and preterm labor setting. In this review, we summarize some of the existing published literature as well as our team's breadth of work utilizing the CVF for the discovery and validation of putative CVF biomarkers predictive of human labor. Our team established an efficient method for collecting serial CVF samples for optimal 2-dimensional gel electrophoresis resolution and analysis. We first embarked on CVF biomarker discovery for the prediction of spontaneous onset of term labor using 2D-electrophoresis and solution array multiple analyte profiling. 2D-electrophoretic analyses were subsequently performed on CVF samples associated with PTB. Several proteins have been successfully validated and demonstrate that these biomarkers are associated with term and PTL and may be predictive of both term and PTL. In addition, the measurement of these putative biomarkers was found to be robust to the influences of vaginal microflora and/or semen. The future development of a multiple biomarker bed-side test would help improve the prediction of PTB and the clinical management of patients. PMID:26029118

  3. Hepatic Perfusion Therapy.

    PubMed

    Rajeev, Rahul; Gamblin, T Clark; Turaga, Kiran K

    2016-04-01

    Isolated hepatic perfusion uses the unique vascular supply of hepatic malignancies to deliver cytotoxic chemotherapy. The procedure involves vascular isolation of the liver and delivery of chemotherapy via the hepatic artery and extraction from retrohepatic vena cava. Benefits of hepatic perfusion have been observed in hepatic metastases of ocular melanoma and colorectal cancer and primary hepatocellular carcinoma. Percutaneous and prophylactic perfusions are avenues of ongoing research.

  4. Ventilation-perfusion inequality in the human lung is not increased following no-decompression-stop hyperbaric exposure.

    PubMed

    Moore, Gaea Schwaebe; Wong, Stewart C; Darquenne, Chantal; Neuman, Tom S; West, John B; Kim Prisk, G

    2009-11-01

    Venous gas bubbles occur in recreational SCUBA divers in the absence of decompression sickness, forming venous gas emboli (VGE) which are trapped within pulmonary circulation and cleared by the lung without overt pathology. We hypothesized that asymptomatic VGE would transiently increase ventilation-perfusion mismatch due to their occlusive effects within the pulmonary circulation. Two sets of healthy volunteers (n = 11, n = 12) were recruited to test this hypothesis with a single recreational ocean dive or a baro-equivalent dry hyperbaric dive. Pulmonary studies (intrabreath V (A)/Q (iV/Q), alveolar dead space, and FVC) were conducted at baseline and repeat 1- and 24-h after the exposure. Contrary to our hypothesis V (A)/Q mismatch was decreased 1-h post-SCUBA dive (iV/Q slope 0.023 +/- 0.008 ml(-1) at baseline vs. 0.010 +/- 0.005 NS), and was significantly reduced 24-h post-SCUBA dive (0.000 +/- 0.005, p < 0.05), with improved V (A)/Q homogeneity inversely correlated to dive severity. No changes in V (A)/Q mismatch were observed after the chamber dive. Alveolar dead space decreased 24-h post-SCUBA dive (78 +/- 10 ml at baseline vs. 56 +/- 5, p < 0.05), but not 1-h post dive. FVC rose 1-h post-SCUBA dive (5.01 +/- 0.18 l vs. 5.21 +/- 0.26, p < 0.05), remained elevated 24-h post SCUBA dive (5.06 +/- 0.2, p < 0.05), but was decreased 1-hr after the chamber dive (4.96 +/- 0.31 L to 4.87 +/- 0.32, p < 0.05). The degree of V (A)/Q mismatch in the lung was decreased following recreational ocean dives, and was unchanged following an equivalent air chamber dive, arguing against an impact of VGE on the pulmonary circulation.

  5. Lactoferrin Levels in Human Milk after Preterm and Term Delivery.

    PubMed

    Albenzio, Marzia; Santillo, Antonella; Stolfi, Ilaria; Manzoni, Paolo; Iliceto, Alice; Rinaldi, Matteo; Magaldi, Rosario

    2016-09-01

    Background Lactoferrin (LF) is a highly represented, functional glycoprotein in human milk, exerting a wide range of anti-infective, immunomodulatory, and prebiotic actions in the neonate. Limited data are available assessing the concentrations and levels of LF in maternal milk over time during lactation in mothers who delivered infants at different GAs. Our aim with the present study was to determine the levels of LF in human milk from mothers of preterm and term infants and to evaluate the variations at a different time from delivery, in colostrum and mature milk. Methods Mothers of preterm and term infants from the Neonatology Unit in Foggia, Italy, were approached and enrolled in this study. From each mother, milk samples were collected within the first 3 days after birth (group A, 0-72 hours), between the 5th and 7th day after delivery (group B, 120-168 hours), and after the 10th day (group C, > 240 hours). All milk samples were divided into five groups, according to the GA of the infants: 24 to 27.6 weeks of GA (I), 28 to 31.6 weeks of GA (II), 32 to 34.6 weeks of GA (III), 35 to 37.6 weeks of GA (IV), and > 38 weeks of GA (V). Milk samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the content of LF. Results A total of 84 milk samples were collected from 28 mothers. We found that infant's GA, as well as the time of sampling, affected the levels of LF in milk. On one hand, LF showed higher content in human milk from group I (GA: 24-27.6 weeks) compared with the other groups (p < 0.01), and the levels of LF in colostrum were significantly correlated with GA (r = -0.31; p < 0.05). On the other hand, the LF content of milk had a significant decreasing trend over time. Overall, the highest values of LF were detected in preterm infants' maternal milk with a baby birth weight, lower than 1,400 g. Approximately 350 µg/mL was identified as the mean, physiological LF content in human mature milk

  6. Lactoferrin Levels in Human Milk after Preterm and Term Delivery.

    PubMed

    Albenzio, Marzia; Santillo, Antonella; Stolfi, Ilaria; Manzoni, Paolo; Iliceto, Alice; Rinaldi, Matteo; Magaldi, Rosario

    2016-09-01

    Background Lactoferrin (LF) is a highly represented, functional glycoprotein in human milk, exerting a wide range of anti-infective, immunomodulatory, and prebiotic actions in the neonate. Limited data are available assessing the concentrations and levels of LF in maternal milk over time during lactation in mothers who delivered infants at different GAs. Our aim with the present study was to determine the levels of LF in human milk from mothers of preterm and term infants and to evaluate the variations at a different time from delivery, in colostrum and mature milk. Methods Mothers of preterm and term infants from the Neonatology Unit in Foggia, Italy, were approached and enrolled in this study. From each mother, milk samples were collected within the first 3 days after birth (group A, 0-72 hours), between the 5th and 7th day after delivery (group B, 120-168 hours), and after the 10th day (group C, > 240 hours). All milk samples were divided into five groups, according to the GA of the infants: 24 to 27.6 weeks of GA (I), 28 to 31.6 weeks of GA (II), 32 to 34.6 weeks of GA (III), 35 to 37.6 weeks of GA (IV), and > 38 weeks of GA (V). Milk samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the content of LF. Results A total of 84 milk samples were collected from 28 mothers. We found that infant's GA, as well as the time of sampling, affected the levels of LF in milk. On one hand, LF showed higher content in human milk from group I (GA: 24-27.6 weeks) compared with the other groups (p < 0.01), and the levels of LF in colostrum were significantly correlated with GA (r = -0.31; p < 0.05). On the other hand, the LF content of milk had a significant decreasing trend over time. Overall, the highest values of LF were detected in preterm infants' maternal milk with a baby birth weight, lower than 1,400 g. Approximately 350 µg/mL was identified as the mean, physiological LF content in human mature milk

  7. Logistic ex Vivo Lung Perfusion for Hyperimmunized Patients.

    PubMed

    De Wolf, Julien; Puyo, Philippe; Bonnette, Pierre; Roux, Antoine; Le Guen, Morgan; Parquin, François; Chapelier, Alain; Sage, Edouard

    2016-09-01

    Hyperimmunized patients have restricted access to lung transplantation because of the low rate of donor lung availability. Sensitization to human leukocyte antigen is associated with acute rejection, allograft dysfunction, and decreased survival. Prospective crossmatching could allow matching a lung graft with the recipient; however, such a strategy would increase graft ischemia, with a worse impact on the long-term results of lung transplantation. We used logistic ex vivo lung perfusion for 3 patients at the Foch Hospital while waiting for a negative result of the prospective crossmatching and then moved forward to lung transplantation. All patients are alive 3 years after bilateral lung transplantation.

  8. Logistic ex Vivo Lung Perfusion for Hyperimmunized Patients.

    PubMed

    De Wolf, Julien; Puyo, Philippe; Bonnette, Pierre; Roux, Antoine; Le Guen, Morgan; Parquin, François; Chapelier, Alain; Sage, Edouard

    2016-09-01

    Hyperimmunized patients have restricted access to lung transplantation because of the low rate of donor lung availability. Sensitization to human leukocyte antigen is associated with acute rejection, allograft dysfunction, and decreased survival. Prospective crossmatching could allow matching a lung graft with the recipient; however, such a strategy would increase graft ischemia, with a worse impact on the long-term results of lung transplantation. We used logistic ex vivo lung perfusion for 3 patients at the Foch Hospital while waiting for a negative result of the prospective crossmatching and then moved forward to lung transplantation. All patients are alive 3 years after bilateral lung transplantation. PMID:27549543

  9. Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood

    PubMed Central

    Harris, Donald G.; Quinn, Kevin J.; French, Beth M.; Schwartz, Evan; Kang, Elizabeth; Dahi, Siamak; Phelps, Carol J.; Ayares, David L.; Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Background Genetically modified pigs are a promising potential source of lung xenografts. Ex-vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. Methods Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had 1 genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 hours of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. Results Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 hours generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55 or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. Conclusion This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression

  10. Short-term effects of recombinant human growth hormone and feeding on gluconeogenesis in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After a short-term fast, lactating women have increased rates of glucose production but not gluconeogenesis (GNG) despite relative hypoinsulinemia. We explored the effects of non-insulin-dependent increase in glucose utilization and recombinant human growth hormone (rhGH) on glucose production, glyc...

  11. A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies.

    PubMed

    Srivastava, Shashikant; Pasipanodya, Jotam G; Ramachandran, Geetha; Deshpande, Devyani; Shuford, Stephen; Crosswell, Howland E; Cirrincione, Kayle N; Sherman, Carleton M; Swaminathan, Soumya; Gumbo, Tawanda

    2016-04-01

    Treatment of disseminated tuberculosis in children≤6years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose-response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children≤6years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity. PMID:27211555

  12. A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies

    PubMed Central

    Srivastava, Shashikant; Pasipanodya, Jotam G.; Ramachandran, Geetha; Deshpande, Devyani; Shuford, Stephen; Crosswell, Howland E.; Cirrincione, Kayle N.; Sherman, Carleton M.; Swaminathan, Soumya; Gumbo, Tawanda

    2016-01-01

    Treatment of disseminated tuberculosis in children ≤ 6 years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose–response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100 mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children ≤ 6 years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity. PMID:27211555

  13. 24-h Langendorff-perfused neonatal rat heart used to study the impact of adenoviral gene transfer.

    PubMed

    Wiechert, S; El-Armouche, A; Rau, T; Zimmermann, W-H; Eschenhagen, T

    2003-08-01

    The human genome project has increased the demand for simple experimental systems that allow the impact of gene manipulations to be studied under controlled ex vivo conditions. We hypothesized that, in contrast to adult hearts, neonatal hearts allow long-term perfusion and efficient gene transfer ex vivo. A Langendorff perfusion system was modified to allow perfusion for >24 h with particular emphasis on uncompromised contractile activity, sterility, online measurement of force of contraction, inotropic response to beta-adrenergic stimulation, and efficient gene transfer. The hearts were perfused with serum-free medium (DMEM + medium 199, 4 + 1) supplemented with hydrocortisone, triiodothyronine, ascorbic acid, insulin, pyruvate, l-carnitine, creatine, taurine, l-glutamine, mannitol, and antibiotics recirculating (500 ml/2 hearts) at 1 ml/min. Hearts from 2 day-old rats beat constantly at 135-155 beats/min and developed active force of 1-2 mN. During 24 h of perfusion, twitch tension increased to approximately 165% of initial values (P < 0.05), whereas the inotropic response to isoprenaline remained constant. A decrease in total protein content of 10% and histological examination indicated moderate edema, but actin and calsequestrin concentration remained unchanged and perfusion pressure remained constant at 7-11 mmHg. Perfusion with a LacZ-encoding adenovirus at 3 x 108 active virus particles yielded homogeneous transfection of approximately 80% throughout the heart and did not affect heart rate, force of contraction, or response to isoprenaline compared with uninfected controls (n = 7 each). Taken together, the 24-h Langendorff-perfused neonatal rat heart is a relatively simple, inexpensive, and robust new heart model that appears feasible as a test bed for functional genomics.

  14. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug,...

  15. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug,...

  16. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug,...

  17. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug,...

  18. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a human drug,...

  19. Anatomical reconstructions of the human cardiac venous system using contrast-computed tomography of perfusion-fixed specimens.

    PubMed

    Spencer, Julianne; Fitch, Emily; Iaizzo, Paul A

    2013-01-01

    A detailed understanding of the complexity and relative variability within the human cardiac venous system is crucial for the development of cardiac devices that require access to these vessels. For example, cardiac venous anatomy is known to be one of the key limitations for the proper delivery of cardiac resynchronization therapy (CRT)(1) Therefore, the development of a database of anatomical parameters for human cardiac venous systems can aid in the design of CRT delivery devices to overcome such a limitation. In this research project, the anatomical parameters were obtained from 3D reconstructions of the venous system using contrast-computed tomography (CT) imaging and modeling software (Materialise, Leuven, Belgium). The following parameters were assessed for each vein: arc length, tortuousity, branching angle, distance to the coronary sinus ostium, and vessel diameter. CRT is a potential treatment for patients with electromechanical dyssynchrony. Approximately 10-20% of heart failure patients may benefit from CRT(2). Electromechanical dyssynchrony implies that parts of the myocardium activate and contract earlier or later than the normal conduction pathway of the heart. In CRT, dyssynchronous areas of the myocardium are treated with electrical stimulation. CRT pacing typically involves pacing leads that stimulate the right atrium (RA), right ventricle (RV), and left ventricle (LV) to produce more resynchronized rhythms. The LV lead is typically implanted within a cardiac vein, with the aim to overlay it within the site of latest myocardial activation. We believe that the models obtained and the analyses thereof will promote the anatomical education for patients, students, clinicians, and medical device designers. The methodologies employed here can also be utilized to study other anatomical features of our human heart specimens, such as the coronary arteries. To further encourage the educational value of this research, we have shared the venous models on our

  20. Hepatic Differentiation and Maturation of Human Embryonic Stem Cells Cultured in a Perfused Three-Dimensional Bioreactor

    PubMed Central

    Synnergren, Jane; Jensen, Janne; Björquist, Petter; Ingelman-Sundberg, Magnus

    2013-01-01

    Drug-induced liver injury is a serious and frequently occurring adverse drug reaction in the clinics and is hard to predict during preclinical studies. Today, primary hepatocytes are the most frequently used cell model for drug discovery and prediction of toxicity. However, their use is marred by high donor variability regarding drug metabolism and toxicity, and instable expression levels of liver-specific genes such as cytochromes P450. An in vitro model system based on human embryonic stem cells (hESC), with their unique properties of pluripotency and self-renewal, has potential to provide a stable and unlimited supply of human hepatocytes. Much effort has been made to direct hESC toward the hepatic lineage, mostly using 2-dimensional (2D) cultures. Although the results are encouraging, these cells lack important functionality. Here, we investigate if hepatic differentiation of hESC can be improved by using a 3-dimensional (3D) bioreactor system. Human ESCs were differentiated toward the hepatic lineage using the same cells in either the 3D or 2D system. A global transcriptional analysis identified important differences between the 2 differentiation regimes, and we identified 10 pathways, highly related to liver functions, which were significantly upregulated in cells differentiated in the bioreactor compared to 2D control cultures. The enhanced hepatic differentiation observed in the bioreactor system was also supported by immunocytochemistry. Taken together, our results suggest that hepatic differentiation of hESC is improved when using this 3D bioreactor technology as compared to 2D culture systems. PMID:22970843

  1. A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom

    PubMed Central

    Otton, James; Morton, Geraint; Schuster, Andreas; Bigalke, Boris; Marano, Riccardo; Olivotti, Luca; Nagel, Eike; Chiribiri, Amedeo

    2013-01-01

    Background Direct comparison of CT and magnetic resonance (MR) perfusion techniques has been limited and in vivo assessment is affected by physiological variability, timing of image acquisition, and parameter selection. Objective We precisely compared high-resolution k-t SENSE MR cardiac perfusion at 3 T with single-phase CT perfusion (CTP) under identical imaging conditions. Methods We used a customized MR imaging and CT compatible dynamic myocardial perfusion phantom to represent the human circulation. CT perfusion studies were performed with a Philips iCT (256 slice) CT, with isotropic resolution of 0.6 mm3. MR perfusion was performed with k-t SENSE acceleration at 3 T and spatial resolution of 1.2 × 1.2 × 10 mm. The image contrast between normal and underperfused myocardial compartments was quantified at various perfusion and photon energy settings. Noise estimates were based on published clinical data. Results Contrast by CTP highly depends on photon energy and also timing of imaging within the myocardial perfusion upslope. For an identical myocardial perfusion deficit, the native image contrast-to-noise ratio (CNR) generated by CT and MR are similar. If slice averaging is used, the CNR of a perfusion deficit is expected to be greater for CTP than MR perfusion (MRP). Perfect timing during single time point CTP imaging is difficult to achieve, and CNR by CT decreases by 24%–31% two seconds from the optimal imaging time point. Although single-phase CT perfusion offers higher spatial resolution, MRP allows multiple time point sampling and quantitative analysis. Conclusion The ability of CTP and current optimal MRP techniques to detect simulated myocardial perfusion deficits is similar. PMID:23622506

  2. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System

    PubMed Central

    Knöspel, Fanny; Jacobs, Frank; Freyer, Nora; Damm, Georg; De Bondt, An; van den Wyngaert, Ilse; Snoeys, Jan; Monshouwer, Mario; Richter, Marco; Strahl, Nadja; Seehofer, Daniel; Zeilinger, Katrin

    2016-01-01

    Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro. PMID:27092500

  3. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  4. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study.

    PubMed

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M; Tsui, Benjamin M W

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  5. Task-Based Evaluation of a 4D MAP-RBI-EM Image Reconstruction Method for Gated Myocardial Perfusion SPECT using a Human Observer Study

    PubMed Central

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-01-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  6. Ex Situ Normothermic Machine Perfusion of Donor Livers.

    PubMed

    Karimian, Negin; Matton, Alix P M; Westerkamp, Andrie C; Burlage, Laura C; Op den Dries, Sanna; Leuvenink, Henri G D; Lisman, Ton; Uygun, Korkut; Markmann, James F; Porte, Robert J

    2015-01-01

    In contrast to conventional static cold preservation (0-4 °C), ex situ machine perfusion may provide better preservation of donor livers. Continuous perfusion of organs provides the opportunity to improve organ quality and allows ex situ viability assessment of donor livers prior to transplantation. This video article provides a step by step protocol for ex situ normothermic machine perfusion (37 °C) of human donor livers using a device that provides a pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous perfusion of the portal vein. The perfusion fluid is oxygenated by two hollow fiber membrane oxygenators and the temperature can be regulated between 10 °C and 37 °C. During perfusion, the metabolic activity of the liver as well as the degree of injury can be assessed by biochemical analysis of samples taken from the perfusion fluid. Machine perfusion is a very promising tool to increase the number of livers that are suitable for transplantation.

  7. Short-term potentiation of breathing in humans.

    PubMed

    Fregosi, R F

    1991-09-01

    The purpose of this study was to determine if the increase in ventilation induced by hypoxic stimulation of the carotid bodies (CB) persists after cessation of the stimulus in humans. I reasoned that a short-term potentiation (STP) of breathing, sometimes called an "afterdischarge," could be unmasked by combining hypoxia with exercise, because ventilation increases synergistically under these conditions. Seven young healthy men performed mild bicycle exercise (30% peak power) while breathing O2 for 1.5 min ("control" state), and their CB were then stimulated by 1.5 min of hypoxic exercise (10% O2--balance N2). CB stimulation was then terminated by changing the inspirate back to O2 as exercise continued. Inspiratory and expiratory duration (TI and TE) and inspiratory flow and its time integral [tidal volume (VT)] were measured with a pneumotachometer. Inspired minute ventilation (VI) and mean inspiratory flow (VT/TI) declined exponentially after the cessation of CB stimulation, with first-order time constants of 28.6 +/- 6.7 and 24.6 +/- 1.6 (SD) s, respectively. The slow decay of VI was due primarily to potentiation of both TI and TE, although the effect on the latter predominated. Additional experiments in six subjects showed that brief intense CB stimulation with four to five breaths of N2 during mild exercise induced STP of similar magnitude to that observed in the hypoxic exercise experiments. Finally, the imposition of hyperoxia during air breathing exercise at a level of respiratory drive similar to that induced by the hypoxic exercise did not change VI significantly.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1757326

  8. Short-term effect of antibiotics on human gut microbiota.

    PubMed

    Panda, Suchita; El khader, Ismail; Casellas, Francesc; López Vivancos, Josefa; García Cors, Montserrat; Santiago, Alba; Cuenca, Silvia; Guarner, Francisco; Manichanh, Chaysavanh

    2014-01-01

    From birth onwards, the human gut microbiota rapidly increases in diversity and reaches an adult-like stage at three years of age. After this age, the composition may fluctuate in response to external factors such as antibiotics. Previous studies have shown that resilience is not complete months after cessation of the antibiotic intake. However, little is known about the short-term effects of antibiotic intake on the gut microbial community. Here we examined the load and composition of the fecal microbiota immediately after treatment in 21 patients, who received broad-spectrum antibiotics such as fluoroquinolones and β-lactams. A fecal sample was collected from all participants before treatment and one week after for microbial load and community composition analyses by quantitative PCR and pyrosequencing of the 16S rRNA gene, respectively. Fluoroquinolones and β-lactams significantly decreased microbial diversity by 25% and reduced the core phylogenetic microbiota from 29 to 12 taxa. However, at the phylum level, these antibiotics increased the Bacteroidetes/Firmicutes ratio (p = 0.0007, FDR = 0.002). At the species level, our findings unexpectedly revealed that both antibiotic types increased the proportion of several unknown taxa belonging to the Bacteroides genus, a Gram-negative group of bacteria (p = 0.0003, FDR<0.016). Furthermore, the average microbial load was affected by the treatment. Indeed, the β-lactams increased it significantly by two-fold (p = 0.04). The maintenance of or possible increase detected in microbial load and the selection of Gram-negative over Gram-positive bacteria breaks the idea generally held about the effect of broad-spectrum antibiotics on gut microbiota.

  9. High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline

    PubMed Central

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F.; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2015-01-01

    We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity. PMID:25953425

  10. High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline.

    PubMed

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2015-09-01

    We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.

  11. Cardiac tissue engineering using perfusion bioreactor systems

    PubMed Central

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  12. Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion

    PubMed Central

    Brachat, Sophie; Braccini, Alessandra; Wendt, David; Barbero, Andrea; Jacobi, Carsten; Martin, Ivan

    2014-01-01

    Mesenchymal stromal/stem cell (MSC) expansion in conventional monolayer culture on plastic dishes (2D) leads to progressive loss of functionality and thus challenges fundamental studies on the physiology of skeletal progenitors, as well as translational applications for cellular therapy and molecular medicine. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow nucleated cells within 3D porous scaffolds in a perfusion-based bioreactor system. The 3D-perfusion system generated a stromal tissue that could be enzymatically treated to yield CD45- MSC. As compared to 2D-expanded MSC (control), those derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7–8 doublings) better maintained their progenitor properties, as assessed by a 4.3-fold higher clonogenicity and the superior differentiation capacity towards all typical mesenchymal lineages. Transcriptomic analysis of MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability and a significant upregulation of multipotency-related gene clusters following 3D-perfusion- as compared to 2D-expansion. Interestingly, the differences in functionality and transcriptomics between MSC expanded in 2D or under 3D-perfusion were only partially captured by cytofluorimetric analysis using conventional surface markers. The described system offers a multidisciplinary approach to study how factors of a 3D engineered niche regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems. PMID:25020062

  13. Isolated lung perfusion.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2012-01-01

    Isolated lung perfusion (ILP) has been historically used as a method to study basic lung physiologic concepts using animal models. More recently, ILP has been applied in lung transplantation and thoracic oncology. In lung transplantation, ILP has been used to assess physiological integrity of donor lungs after the organ is removed from the donor. This procedure is called Ex vivo Lung Perfusion (EVLP), and it has also been proposed as a method for active treatment and repair of injured unsuitable donor organs ex vivo. In oncology, ILP is an attractive method to deliver high dose chemotherapy to treat pulmonary metastatic disease. Since the lung vasculature is isolated in vivo, this technique is called in vivo lung perfusion (IVLP). This review will focus on the rationale, technical aspects, experimental and clinical experience of EVLP and IVLP. A perspective on the future use of these techniques is described. PMID:22202033

  14. ["A little scourge of humanity". Notes on the term 'tic'].

    PubMed

    Marazia, Chantal

    2009-01-01

    The assimilation by the medical community of terms belonging to current language is a rare phenomenon. The word 'tic' constitutes a remarkable exception to this rule. In this article, the author explores the origins and some historical and epistemological consequences of this case of osmosis between two different discourses, focusing on the attempts, by the XIX Century French medical community, to appropriate from common language and redefine both the term and the concept of 'tic'. Consequently, I highlight the substantial semantic shifts to which the term was subjected in the course of this dispute.

  15. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.

    PubMed

    Henderson, A Cortney; Sá, Rui Carlos; Theilmann, Rebecca J; Buxton, Richard B; Prisk, G Kim; Hopkins, Susan R

    2013-08-01

    The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (Va/Q) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional Va/Q ratio, the gravitational gradients in proton density, ventilation, perfusion, and Va/Q ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min(-1)·ml(-1)) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min(-1)·ml(-1)) images to obtain regional Va/Q ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (-0.17 ± 0.10 ml·min(-1)·ml(-1)·cm(-1) supine, -0.040 ± 0.03 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02) as was the slope of the perfusion-height relationship (-0.14 ± 0.05 ml·min(-1)·ml(-1)·cm(-1) supine, -0.08 ± 0.09 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02). There was a significant gravitational gradient in Va/Q ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm(-1) supine, 0.04 ± 0.03 cm(-1) prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional Va/Q ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of gravity on Va/Q matching.

  16. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung

    PubMed Central

    Sá, Rui Carlos; Theilmann, Rebecca J.; Buxton, Richard B.; Prisk, G. Kim; Hopkins, Susan R.

    2013-01-01

    The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (V̇a/Q̇) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional V̇a/Q̇ ratio, the gravitational gradients in proton density, ventilation, perfusion, and V̇a/Q̇ ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min−1·ml−1) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min−1·ml−1) images to obtain regional V̇a/Q̇ ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (−0.17 ± 0.10 ml·min−1·ml−1·cm−1 supine, −0.040 ± 0.03 prone ml·min−1·ml−1·cm−1, P = 0.02) as was the slope of the perfusion-height relationship (−0.14 ± 0.05 ml·min−1·ml−1·cm−1 supine, −0.08 ± 0.09 prone ml·min−1·ml−1·cm−1, P = 0.02). There was a significant gravitational gradient in V̇a/Q̇ ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm−1 supine, 0.04 ± 0.03 cm−1 prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional V̇a/Q̇ ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of

  17. Nifedipine and thallium-201 myocardial perfusion in progressive systemic sclerosis

    SciTech Connect

    Kahan, A.; Devaux, J.Y.; Amor, B.; Menkes, C.J.; Weber, S.; Nitenberg, A.; Venot, A.; Guerin, F.; Degeorges, M.; Roucayrol, J.C.

    1986-05-29

    Heart disease in patients with progressive systemic sclerosis may be due in part to myocardial ischemia caused by a disturbance of the coronary microcirculation. To determine whether abnormalities of myocardial perfusion in this disorder are potentially reversible, we evaluated the effect of the coronary vasodilator nifedipine on myocardial perfusion assessed by thallium-201 scanning in 20 patients. Thallium-201 single-photon-emission computerized tomography was performed under control conditions and 90 minutes after 20 mg of oral nifedipine. The mean (+/- SD) number of left ventricular segments with perfusion defects decreased from 5.3 +/- 2.0 to 3.3 +/- 2.2 after nifedipine (P = 0.0003). Perfusion abnormalities were quantified by a perfusion score (0 to 2.0) assigned to each left ventricular segment and by a global perfusion score (0 to 18) for the entire left ventricle. The mean perfusion score in segments with resting defects increased from 0.97 +/- 0.24 to 1.26 +/- 0.44 after nifedipine (P less than 0.00001). The mean global perfusion score increased from 11.2 +/- 1.7 to 12.8 +/- 2.4 after nifedipine (P = 0.003). The global perfusion score increased by at least 2.0 in 10 patients and decreased by at least 2.0 in only 1. These observations reveal short-term improvement in thallium-201 myocardial perfusion with nifedipine in patients with progressive systemic sclerosis. The results are consistent with a potentially reversible abnormality of coronary vasomotion in this disorder, but the long-term therapeutic effects of nifedipine remain to be determined.

  18. A long term model of circulation. [human body

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  19. Aspirate from human stented saphenous vein grafts induces epicardial coronary vasoconstriction and impairs perfusion and left ventricular function in rat bioassay hearts with pharmacologically induced endothelial dysfunction.

    PubMed

    Lieder, Helmut R; Baars, Theodor; Kahlert, Philipp; Kleinbongard, Petra

    2016-08-01

    Stent implantation into aortocoronary saphenous vein grafts (SVG) releases particulate debris and soluble vasoactive mediators, for example, serotonin. We now analyzed effects of the soluble mediators released into the coronary arterial blood during stent implantation on vasomotion of isolated rat epicardial coronary artery segments and on coronary flow and left ventricular developed pressure in isolated perfused rat hearts. Coronary blood was retrieved during percutaneous SVG intervention using a distal occlusion/aspiration protection device in nine symptomatic patients with stable angina pectoris and a flow-limiting SVG stenosis. The blood was separated into particulate debris and plasma. Responses to coronary plasma were determined in isolated rat epicardial coronary arteries and in isolated, constant pressure-perfused rat hearts (±nitric oxide synthase [NOS] inhibition and ±serotonin receptor blockade, respectively). Coronary aspirate plasma taken after stent implantation induced a stronger vasoconstriction of rat epicardial coronary arteries (52 ± 8% of maximal potassium chloride induced vasoconstriction [% KClmax = 100%]) than plasma taken before stent implantation (12 ± 8% of KClmax); NOS inhibition augmented this vasoconstrictor response (to 110 ± 15% and 24 ± 9% of KClmax). Coronary aspirate plasma taken after stent implantation reduced in isolated perfused rat hearts only under NOS inhibition coronary flow by 17 ± 3% and left ventricular developed pressure by 25 ± 4%. Blockade of serotonin receptors abrogated these effects. Coronary aspirate plasma taken after stent implantation induces vasoconstriction in isolated rat epicardial coronary arteries and reduces coronary flow and left ventricular developed pressure in isolated perfused rat hearts with pharmacologically induced endothelial dysfunction. PMID:27482071

  20. Human sperm chromosomes. Long-term effect of cancer treatment

    SciTech Connect

    Genesca, A.; Caballin, M.R.; Miro, R.; Benet, J.; Bonfill, X.; Egozcue, J. )

    1990-06-01

    The long-term cytogenetic effect of radio- or chemotherapy or both on male germ cells was evaluated by study of the chromosomal abnormalities in spermatozoa of four men treated for cancer 5-18 years earlier. The cytogenetic analysis of 422 sperm metaphases showed no differences in the aneuploidy rate. The incidence of structural chromosome aberrations was 14.0%, however, which is much higher than in controls. Thus, the high incidence of structurally aberrant spermatozoa observed in our long-term study indicates that antitumoral treatments affect stem-cell spermatogonia and that aberrant cells can survive germinal selection and produce abnormal spermatozoa.

  1. Human Term Placenta as a Source of Hematopoietic Cells

    PubMed Central

    Serikov, Vladimir; Hounshell, Catherine; Larkin, Sandra; Green, William; Ikeda, Hirokazu; Walters, Mark C.

    2012-01-01

    The main barrier to a broader clinical application of umbilical cord blood (UCB) transplantation is its limiting cellular content. Thus, the discovery of hematopoietic progenitor cells in murine placental tissue led us investigate whether the human placenta contains hematopoietic cells, sites of hematopoiesis, and to develop a procedure of processing and storing placental hematopoietic cells for transplantation. Here we show that the human placenta contains large numbers of CD34-expressing hematopoietic cells, with the potential to provide a cellular yield several-fold greater than that of a typical UCB harvest. Cells from fresh or cryopreserved placental tissue generated erythroid and myeloid colonies in culture, and also produced lymphoid cells after transplantation in immunodeficient mice. These results suggest that human placenta could become an important new source of hematopoietic cells for allogeneic transplantation. PMID:19429852

  2. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    NASA's Human Exploration Plans: A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to

  3. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  4. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    NASA Astrophysics Data System (ADS)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  5. Low dose CT perfusion using k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2016-03-01

    We aim at improving low dose CT perfusion functional parameters maps and CT images quality, preserving quantitative information. In a dynamic CT perfusion dataset, each voxel is measured T times, where T is the number of acquired time points. In this sense, we can think about a voxel as a point in a T-dimensional space, where the coordinates of the voxels would be the values of its time attenuation curve (TAC). Starting from this idea, a k-means algorithm was designed to group voxels in K classes. A modified guided time-intensity profile similarity (gTIPS) filter was implemented and applied only for those voxels belonging to the same class. The approach was tested on a digital brain perfusion phantom as well as on clinical brain and body perfusion datasets, and compared to the original TIPS implementation. The TIPS filter showed the highest CNR improvement, but lowest spatial resolution. gTIPS proved to have the best combination of spatial resolution and CNR improvement for CT images, while k-gTIPS was superior to both gTIPS and TIPS in terms of perfusion maps image quality. We demonstrate k-means clustering analysis can be applied to denoise dynamic CT perfusion data and to improve functional maps. Beside the promising results, this approach has the major benefit of being independent from the perfusion model employed for functional parameters calculation. No similar approaches were found in literature.

  6. Fostering Humane Care of Dying Persons in Long-Term Care. Guidebook for Staff Development Instructors.

    ERIC Educational Resources Information Center

    Wilson, Sarah A.; Daley, Barbara

    This guide is intended for staff development instructors responsible for inservice education on the topic of fostering humane care for dying persons in long-term care. The introduction discusses the guide's development based on input from administrators, staff, and families of residents in long-term care facilities and focus group interviews in…

  7. A compact instrument to measure perfusion of vasculature in transplanted maxillofacial free flaps

    NASA Astrophysics Data System (ADS)

    Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Podolsky, Matthew J.; Farkas, Dana; Ward, Brent B.; Vartarian, Mark; Feinberg, Stephen E.; Lee, Seung Yup; Parikh, Urmi; Mycek, Mary-Ann; Christian, James F.

    2016-03-01

    The vascularization and resulting perfusion of transferred tissues are critical to the success of grafts in buried free flap transplantations. To enable long-term clinical monitoring of grafted tissue perfusion during neovascularization and endothelialization, we are developing an implantable instrument for the continuous monitoring of perfusion using diffuse correlation spectroscopy (DCS), and augmented with diffuse reflectance spectroscopy (DRS). This work discusses instrument construction, integration, and preliminary results using a porcine graft model.

  8. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... from the NHLBI on Twitter. What Is a Lung Ventilation/Perfusion Scan? A lung ventilation/perfusion scan, or VQ scan, is a ... that measures air and blood flow in your lungs. A VQ scan most often is used to ...

  9. Ex-vivo lung perfusion.

    PubMed

    Van Raemdonck, Dirk; Neyrinck, Arne; Cypel, Marcelo; Keshavjee, Shaf

    2015-06-01

    This review outlines the new and promising technique of ex vivo lung perfusion and its clinical potential to increase the number of transplantable lungs and to improve the early and late outcome after transplantation. The rationale, the experimental background, the technique and protocols, and available devices for ex vivo lung perfusion are discussed. The current clinical experience worldwide and ongoing clinical trials are reviewed.

  10. An improved isolated working rabbit heart preparation using red cell enhanced perfusate.

    PubMed Central

    Chen, V.; Chen, Y. H.; Downing, S. E.

    1987-01-01

    The performance of isolated working rabbit hearts perfused with Krebs-Henseleit (KH) buffer was compared with those in which the buffer was supplemented with washed human red blood cells (KH + RBC) at a hematocrit of 15 percent. When perfused with KH alone at 70 cm H2O afterload and paced at 240 beats/minute, coronary flow was more than double, whereas aortic flow was 40-60 percent of that in hearts perfused with KH + RBC, regardless of left atrial filling pressures (LAFP). Peak systolic pressure reached a plateau at 120 mm Hg in KH + RBC, but at 95 mm Hg in the KH group. Stroke work, however, was similar in the two groups. Despite the high coronary flow, oxygen uptake by hearts perfused with KH was substantially less and did not respond to increases in LAFP as in those perfused with KH + RBC. There was a 20 percent drop in ATP and glycogen content after 90 minutes' perfusion. In contrast, isolated hearts perfused with RBC-enriched buffer remained stable for at least 150 minutes. Irrespective of the perfusate, triacylglycerol content of the muscle remained at similar levels throughout the course of study. Increasing RBC in the perfusate from 15 percent to 25 percent had no additional effect on cardiac performance or oxygen consumption. Our findings demonstrate that in the isolated working rabbit heart inclusion of RBC in the perfusate improves mechanical and metabolic stability by providing an adequate oxygen supply. PMID:3604287

  11. Ex vivo lung perfusion.

    PubMed

    Machuca, Tiago N; Cypel, Marcelo

    2014-08-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  12. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  13. Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Milej, Daniel; Janusek, Dariusz; Gerega, Anna; Wojtkiewicz, Stanislaw; Sawosz, Piotr; Treszczanowicz, Joanna; Weigl, Wojciech; Liebert, Adam

    2015-10-01

    The aim of the study was to determine optimal measurement conditions for assessment of brain perfusion with the use of optical contrast agent and time-resolved diffuse reflectometry in the near-infrared wavelength range. The source-detector separation at which the distribution of time of flights (DTOF) of photons provided useful information on the inflow of the contrast agent to the intracerebral brain tissue compartments was determined. Series of Monte Carlo simulations was performed in which the inflow and washout of the dye in extra- and intracerebral tissue compartments was modeled and the DTOFs were obtained at different source-detector separations. Furthermore, tests on diffuse phantoms were carried out using a time-resolved setup allowing the measurement of DTOFs at 16 source-detector separations. Finally, the setup was applied in experiments carried out on the heads of adult volunteers during intravenous injection of indocyanine green. Analysis of statistical moments of the measured DTOFs showed that the source-detector separation of 6 cm is recommended for monitoring of inflow of optical contrast to the intracerebral brain tissue compartments with the use of continuous wave reflectometry, whereas the separation of 4 cm is enough when the higher-order moments of DTOFs are available.

  14. Does Human Milk Modulate Body Composition in Late Preterm Infants at Term-Corrected Age?

    PubMed Central

    Giannì, Maria Lorella; Consonni, Dario; Liotto, Nadia; Roggero, Paola; Morlacchi, Laura; Piemontese, Pasqua; Menis, Camilla; Mosca, Fabio

    2016-01-01

    (1) Background: Late preterm infants account for the majority of preterm births and are at risk of altered body composition. Because body composition modulates later health outcomes and human milk is recommended as the normal method for infant feeding, we sought to investigate whether human milk feeding in early life can modulate body composition development in late preterm infants; (2) Methods: Neonatal, anthropometric and feeding data of 284 late preterm infants were collected. Body composition was evaluated at term-corrected age by air displacement plethysmography. The effect of human milk feeding on fat-free mass and fat mass content was evaluated using multiple linear regression analysis; (3) Results: Human milk was fed to 68% of the infants. According to multiple regression analysis, being fed any human milk at discharge and at  term-corrected and being fed exclusively human milk at term-corrected age were positively associated with fat-free mass content(β = −47.9, 95% confidence interval (CI) = −95.7; −0.18; p = 0.049; β = −89.6, 95% CI = −131.5; −47.7; p < 0.0001; β = −104.1, 95% CI = −151.4; −56.7, p < 0.0001); (4) Conclusion: Human milk feeding appears to be associated with fat-free mass deposition in late preterm infants. Healthcare professionals should direct efforts toward promoting and supporting breastfeeding in these vulnerable infants. PMID:27782098

  15. Psychophysiological effects of human-animal interaction: theoretical issues and long-term interaction effects.

    PubMed

    Virués-Ortega, Javier; Buela-Casal, Gualberto

    2006-01-01

    This paper reviews literature published on the psychophysiological effects of long-term human-animal interaction (i.e., pet ownership, pet adoption). A literature search was conducted using PsycInfo and Medline databases. Although the available evidence is far from being consistent, it can be concluded that, in some cases, long-term relationships with animals may moderate baseline physiological variables, particularly blood pressure. Results proved more coherent in studies where animals were adopted by owners as part of the procedure. This paper examines existing hypotheses seeking to account for these effects and the supporting evidence. Two major hypotheses have been suggested to explain the psychophysiological effects of long-term interaction, namely (1) stress-buffering effects of noncritical social support provided by pets; and (2) classical conditioning of relaxation. These mechanisms may partially account for the long-term health outcomes observed in a number of human-animal interaction studies. PMID:16462556

  16. Maximizing kidneys for transplantation using machine perfusion: from the past to the future

    PubMed Central

    Hameed, Ahmer M.; Pleass, Henry C.; Wong, Germaine; Hawthorne, Wayne J.

    2016-01-01

    Abstract Background: The two main options for renal allograft preservation are static cold storage (CS) and machine perfusion (MP). There has been considerably increased interest in MP preservation of kidneys, however conflicting evidence regarding its efficacy and associated costs have impacted its scale of clinical uptake. Additionally, there is no clear consensus regarding oxygenation, and hypo- or normothermia, in conjunction with MP, and its mechanisms of action are also debated. The primary aims of this article were to elucidate the benefits of MP preservation with and without oxygenation, and/or under normothermic conditions, when compared with CS prior to deceased donor kidney transplantation. Methods: Clinical (observational studies and prospective trials) and animal (experimental) articles exploring the use of renal MP were assessed (EMBASE, Medline, and Cochrane databases). Meta-analyses were conducted for the comparisons between hypothermic MP (hypothermic machine perfusion [HMP]) and CS (human studies) and normothermic MP (warm (normothermic) perfusion [WP]) compared with CS or HMP (animal studies). The primary outcome was allograft function. Secondary outcomes included graft and patient survival, acute rejection and parameters of tubular, glomerular and endothelial function. Subgroup analyses were conducted in expanded criteria (ECD) and donation after circulatory (DCD) death donors. Results: A total of 101 studies (63 human and 38 animal) were included. There was a lower rate of delayed graft function in recipients with HMP donor grafts compared with CS kidneys (RR 0.77; 95% CI 0.69–0.87). Primary nonfunction (PNF) was reduced in ECD kidneys preserved by HMP (RR 0.28; 95% CI 0.09–0.89). Renal function in animal studies was significantly better in WP kidneys compared with both HMP (standardized mean difference [SMD] of peak creatinine 1.66; 95% CI 3.19 to 0.14) and CS (SMD of peak creatinine 1.72; 95% CI 3.09 to 0.34). MP improves renal

  17. [Extracorporeal perfusion of the sheep rumen].

    PubMed

    Leng, L; Bajo, M; Várady, J; Szányiová, M

    1977-06-01

    We constructed a modified perfusion apparatus and elaborated a method of extracorporal perfusion of the rumen of sheep. As perfusates we used the bovine plasma diluted in a ratio of 1:1 of an isotonic sodium chloride (NaCl) solution and the whole autologous blood. Transaminases GOT and GPT, ammonia and pH were determined in the perfusate. The different perfusions were evaluated according to previously determined perfusion conditions and criteria. A subject for discussion is the question of suitability of the parameters under examination for judging the state of the perfused organ. The described method is suitable for the study of metabolical processes in the rumen wal.

  18. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans.

  19. Differential gene expression profiling of enriched human spermatogonia after short- and long-term culture.

    PubMed

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Renninger, Markus; Skutella, Thomas

    2014-01-01

    This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks) and long-term culture (up to more than 14 months) in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen(-)/laminin(+) matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the "spermatogonial" gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.

  20. Supercooling enables long-term transplantation survival following 4 days of liver preservation.

    PubMed

    Berendsen, Tim A; Bruinsma, Bote G; Puts, Catheleyne F; Saeidi, Nima; Usta, O Berk; Uygun, Basak E; Izamis, Maria-Louisa; Toner, Mehmet; Yarmush, Martin L; Uygun, Korkut

    2014-07-01

    The realization of long-term human organ preservation will have groundbreaking effects on the current practice of transplantation. Herein we present a new technique based on subzero nonfreezing preservation and extracorporeal machine perfusion that allows transplantation of rat livers preserved for up to four days, thereby tripling the viable preservation duration.

  1. Ex-vivo lung perfusion.

    PubMed

    Van Raemdonck, Dirk; Neyrinck, Arne; Cypel, Marcelo; Keshavjee, Shaf

    2015-06-01

    This review outlines the new and promising technique of ex vivo lung perfusion and its clinical potential to increase the number of transplantable lungs and to improve the early and late outcome after transplantation. The rationale, the experimental background, the technique and protocols, and available devices for ex vivo lung perfusion are discussed. The current clinical experience worldwide and ongoing clinical trials are reviewed. PMID:24629039

  2. Hydrostatic determinants of cerebral perfusion

    SciTech Connect

    Wagner, E.M.; Traystman, R.J.

    1986-05-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure.

  3. Endogenous Human Milk Peptide Release Is Greater after Preterm Birth than Term Birth123

    PubMed Central

    Dallas, David C; Smink, Christina J; Robinson, Randall C; Tian, Tian; Guerrero, Andres; Parker, Evan A; Smilowitz, Jennifer T; Hettinga, Kasper A; Underwood, Mark A; Lebrilla, Carlito B; German, J Bruce; Barile, Daniela

    2015-01-01

    Background: Hundreds of naturally occurring milk peptides are present in term human milk. Preterm milk is produced before complete maturation of the mammary gland, which could change milk synthesis and secretion processes within the mammary gland, leading to differences in protein expression and enzymatic activity, thereby resulting in an altered peptide profile. Objective: This study examined differences in peptides present between milk from women delivering at term and women delivering prematurely. Methods: Nano-LC tandem mass spectrometry was employed to identify naturally occurring peptides and compare their abundances between term and preterm human milk samples at multiple time points over lactation. Term milk samples were collected from 8 mothers and preterm milk was collected from 14 mothers. The 28 preterm and 32 term human milk samples were divided into 4 groups based on day of collection (<14, 14–28, 29–41, and 42–58 d). Results: Preterm milk peptide counts, ion abundance, and concentration were significantly higher in preterm milk than term milk. Bioinformatic analysis of the cleavage sites for peptides identified suggested that plasmin was more active in preterm milk than term milk and that cytosol aminopeptidase and carboxypeptidase B2 likely contribute to extensive milk protein breakdown. Many identified milk peptides in both term and preterm milk overlapped with known functional peptides, including antihypertensive, antimicrobial, and immunomodulatory peptides. Conclusion: The high protein degradation by endogenous proteases in preterm milk might attenuate problems because of the preterm infant’s immature digestive system. This trial was registered at clinicaltrials.gov as NCT01817127. PMID:25540406

  4. Civil Conflict and Human Capital Accumulation: The Long-Term Effects of Political Violence in Peru

    ERIC Educational Resources Information Center

    Leon, Gianmarco

    2012-01-01

    This paper provides empirical evidence of the persistent effect of exposure to political violence on human capital accumulation. I exploit the variation in conflict location and birth cohorts to identify the long- and short-term effects of the civil war on educational attainment. Conditional on being exposed to violence, the average person…

  5. Reframing Photographic Research Methods in Human Geography: A Long-Term Reflection

    ERIC Educational Resources Information Center

    Hall, Tim

    2015-01-01

    This paper offers a long-term reflection on the introduction of a photographic research project into a third-year undergraduate Human Geography module. The findings indicate that, whilst the students valued the project, it did impact on their overall performance, their evaluation of the module and the ways in which they spoke about it. The paper…

  6. Short-Term Plasticity of the Visuomotor Map during Grasping Movements in Humans

    ERIC Educational Resources Information Center

    Safstrom, Daniel; Edin, Benoni B.

    2005-01-01

    During visually guided grasping movements, visual information is transformed into motor commands. This transformation is known as the "visuomotor map." To investigate limitations in the short-term plasticity of the visuomotor map in normal humans, we studied the maximum grip aperture (MGA) during the reaching phase while subjects grasped objects…

  7. Citizenship, Nationalism, Human Rights and Democracy: A Tangling of Terms in the Kuwaiti Curriculum

    ERIC Educational Resources Information Center

    Al-Nakib, Rania

    2011-01-01

    Background: Citizenship, nationalism, human rights and democracy are four terms and concepts that are inextricably linked. In Kuwait, the status of citizen is based on nationality, gender and age, with women, children, naturalised citizens, expatriates and "bidoon" (stateless people) denied many freedoms, rights and services. Citizenship is…

  8. Long term effects of Climate change on Human adaptation in Middle Gila River Valley

    NASA Astrophysics Data System (ADS)

    Zhu, Tianduowa; Ertsen, Maurits

    2013-04-01

    Climate change has been one of key concerning factors for the origin and evolution of hydraulic engineering projects. The study of ancient irrigation systems in the context of long-term climate change enables us to improve the understanding on the response of human beings to variations on their environment. And niche construction starts to be used to explain the development of early small-scale irrigation canals in a view of biological evolution. Therefore, the study of early irrigation canals within a frame of long-term timescale may help to explore the roles of niche construction theory on canals' operation and further expansion. In this paper, the Hohokam canals in the middle Gila River of Southwest America are used as case study, in order to explore the influences of climate change on human behavior. A prehistoric large-scale irrigation network, the Hohokam irrigation system was composed of interconnected sections organized by local independent communities, rather than under the supervision of a central government. This common operation for water distribution without centralization provides us with the opportunity to focus on the relationship between humans and their environment. The aim of this paper is to model the process of human adaptation to their environment, including water flows, crops production and canal maintenance in long term, with the assistance of archaeological surveys and reconstructed climatological data. The results provide us with an insight on how the variation of the configuration of the canals is clearly conditioned by the interaction and adaptation of human settlements. This evolution can be explained by the combination of human food needs to the restrictions of the changing climate given by water availability. The balance of human demand and water availability guides the direction of human dynamics.

  9. [Short-term memory characteristics of vibration intensity tactile perception on human wrist].

    PubMed

    Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo

    2014-12-25

    In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme. PMID:25516517

  10. Hurricanes vs. Humans: Their Comparative Long-Term Effects on Tropical Landscapes.

    NASA Astrophysics Data System (ADS)

    Lugo, A. E.

    2002-12-01

    Puerto Rico experiences about 50 hurricanes per century. These large-scale events last for hours, but have significant short, medium, and long-term effects on vegetation and landscape processes as shown in studies in the Long-Term Ecological Research program. Forest canopy characteristics, tree mortality rates, life history characteristics of both plants and animals, successional rates, landslide occurrence, and sediment erosion and transport are examples of ecological and landscape attributes that exhibit strong responses to hurricane frequency and intensity. However, Puerto Rico has also undergone dramatic land cover change due to human activity. The island as a whole has experienced a cycle of deforestation, agricultural use, land abandonment, forest recovery, and urbanization. These anthropogenic events leave a long-term legacy on both individual ecosystems and the landscape as a whole. Species composition, structure, and age of forests are significantly influenced by human activity, as are rates of sediment erosion and transport, and frequency and size of landslides. I will present comparative data on the effects of hurricanes and human activity on Puerto Rico's forests and landscape. I address the following questions: which of these two forces that jointly shape the island's biota and landscape has a greater influence on functioning at the ecosystem level and what are the management implications? It appears that human impact on sediment erosion and transport events is greater than that of hurricanes and that humans change species composition of forests more than do hurricanes. However, regardless of the nature of the new ecosystems formed due to human activity, these systems must cope with the forces (rain and winds) of hurricanes in order to persist on the landscape. Regardless of the power of hurricanes, they don't appear to reset the human legacy on the island's landscape.

  11. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome

    SciTech Connect

    Jakobsson, H.; Jernberg, C.; Andersson, A.F.; Sjolund-Karlsson, M.; Jansson, J.K.; Engstrand, L.

    2010-01-15

    Antibiotic administration is the standard treatment for the bacterium Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer. However, the long-term consequences of this treatment on the human indigenous microbiota are relatively unexplored. Here we studied short- and long-term effects of clarithromycin and metronidazole treatment, a commonly used therapy regimen against H. pylori, on the indigenous microbiota in the throat and in the lower intestine. The bacterial compositions in samples collected over a four year period were monitored by analyzing the 16S rRNA gene using 454-based pyrosequencing and terminal-restriction fragment length polymorphism (T-RFLP). While the microbial communities of untreated control subjects were relatively stable over time, dramatic shifts were observed one week after antibiotic treatment with reduced bacterial diversity in all treated subjects in both locations. While the microbiota of the different subjects responded uniquely to the antibiotic treatment some general trends could be observed; such as a dramatic decline in Actinobacteria in both throat and feces immediately after treatment. Although the diversity of the microbiota subsequently recovered to resemble the pre treatment states, the microbiota remained perturbed in some cases for up to four years post treatment. In addition, four years after treatment high levels of the macrolide resistance gene erm(B) were found, indicating that antibiotic resistance, once selected for, can persist for longer periods of time than previously recognized. This highlights the importance of a restrictive antibiotic usage in order to prevent subsequent treatment failure and potential spread of antibiotic resistance.

  12. Extraction of DNA from human embryos after long-term preservation in formalin and Bouin's solutions.

    PubMed

    Nagai, Momoko; Minegishi, Katsura; Komada, Munekazu; Tsuchiya, Maiko; Kameda, Tomomi; Yamada, Shigehito

    2016-05-01

    The "Kyoto Collection of Human Embryos" at Kyoto University was begun in 1961. Although morphological analyses of samples in the Kyoto Collection have been performed, these embryos have been considered difficult to genetically analyze because they have been preserved in formalin or Bouin's solution for 20-50 years. Owing to the recent advances in molecular biology, it has become possible to extract DNA from long-term fixed tissues. The purpose of this study was to extract DNA from wet preparations of human embryo samples after long-term preservation in fixing solution. We optimized the DNA extraction protocol to be suitable for tissues that have been damaged by long-term fixation, including DNA-protein crosslinking damage. Diluting Li2 CO3 with 70% ethanol effectively removed picric acid from samples fixed in Bouin's solution. Additionally, 20.0 mg/mL proteinase was valuable to lyse the long-term fixed samples. The extracted DNA was checked with PCR amplification using several sets of primers and sequence analysis. The PCR products included at least 295- and 838-bp amplicons. These results show that the extracted DNA is applicable for genetic analyses, and indicate that old embryos in the Kyoto Collection should be made available for future studies. The protocol described in this study can successfully extract DNA from old specimens and, with improvements, should be applicable in research aiming to understand the molecular mechanisms of human congenital anomalies. PMID:26662860

  13. Extraction of DNA from human embryos after long-term preservation in formalin and Bouin's solutions.

    PubMed

    Nagai, Momoko; Minegishi, Katsura; Komada, Munekazu; Tsuchiya, Maiko; Kameda, Tomomi; Yamada, Shigehito

    2016-05-01

    The "Kyoto Collection of Human Embryos" at Kyoto University was begun in 1961. Although morphological analyses of samples in the Kyoto Collection have been performed, these embryos have been considered difficult to genetically analyze because they have been preserved in formalin or Bouin's solution for 20-50 years. Owing to the recent advances in molecular biology, it has become possible to extract DNA from long-term fixed tissues. The purpose of this study was to extract DNA from wet preparations of human embryo samples after long-term preservation in fixing solution. We optimized the DNA extraction protocol to be suitable for tissues that have been damaged by long-term fixation, including DNA-protein crosslinking damage. Diluting Li2 CO3 with 70% ethanol effectively removed picric acid from samples fixed in Bouin's solution. Additionally, 20.0 mg/mL proteinase was valuable to lyse the long-term fixed samples. The extracted DNA was checked with PCR amplification using several sets of primers and sequence analysis. The PCR products included at least 295- and 838-bp amplicons. These results show that the extracted DNA is applicable for genetic analyses, and indicate that old embryos in the Kyoto Collection should be made available for future studies. The protocol described in this study can successfully extract DNA from old specimens and, with improvements, should be applicable in research aiming to understand the molecular mechanisms of human congenital anomalies.

  14. Phenotypic and Functional Characterization of Long-Term Cryopreserved Human Adipose-derived Stem Cells

    PubMed Central

    Yong, Kar Wey; Pingguan-Murphy, Belinda; Xu, Feng; Abas, Wan Abu Bakar Wan; Choi, Jane Ru; Omar, Siti Zawiah; Azmi, Mat Adenan Noor; Chua, Kien Hui; Safwani, Wan Kamarul Zaman Wan

    2015-01-01

    Cryopreservation represents an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs) and allows pooling of cells via long-term storage for clinical applications, e.g., cell-based therapies. It is crucial to reduce freezing injury during the cryopreservation process by loading the ASCs with the optimum concentration of suitable cryoprotective agents (CPAs). In this study, human ASCs were preserved for 3 months in different combinations of CPAs, including 1) 0.25 M trehalose; 2) 5% dimethylsulfoxide (DMSO); 3) 10% DMSO; 4) 5% DMSO + 20% fetal bovine serum (FBS); 5) 10% DMSO + 20% FBS; 6) 10% DMSO + 90% FBS. Interestingly, even with a reduction of DMSO to 5% and without FBS, cryopreserved ASCs maintained high cell viability comparable with standard cryomedium (10% DMSO + 90% FBS), with normal cell phenotype and proliferation rate. Cryopreserved ASCs also maintained their differentiation capability (e.g., to adipocytes, osteocytes and chondrocytes) and showed an enhanced expression level of stemness markers (e.g., NANOG, OCT-4, SOX-2 and REX-1). Our findings suggest that 5% DMSO without FBS may be an ideal CPA for an efficient long-term cryopreservation of human ASCs. These results aid in establishing standardized xeno-free long-term cryopreservation of human ASCs for clinical applications. PMID:25872464

  15. Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes.

    PubMed

    Abeles, Shira R; Ly, Melissa; Santiago-Rodriguez, Tasha M; Pride, David T

    2015-01-01

    Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host's resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances. PMID:26309137

  16. Vascular Tissue Engineering: Building Perfusable Vasculature for Implantation

    PubMed Central

    Gui, Liqiong; Niklason, Laura E.

    2014-01-01

    Tissue and organ replacement is required when there are no alternative therapies available. Although vascular tissue engineering was originally developed to meet the clinical demands of small-diameter vascular conduits as bypass grafts, it has evolved into a highly advanced field where perfusable vasculatures are generated for implantation. Herein, we review several cutting-edge techniques that have led to implantable human blood vessels in clinical trials, the novel approaches that build complex perfusable microvascular networks in functional tissues, the use of stem cells to generate endothelial cells for vascularization, as well as the challenges in bringing vascular tissue engineering technologies into the clinics. PMID:24533306

  17. Laser-induced macular holes demonstrate impaired choroidal perfusion

    NASA Astrophysics Data System (ADS)

    Brown, Jeremiah, Jr.; Allen, Ronald D.; Zwick, Harry; Schuschereba, Steven T.; Lund, David J.; Stuck, Bruce E.

    2003-06-01

    Choroidal perfusion was evaluated following the creation of a laser induced macular hole in a nonhuman primate model. Two Rhesus monkeys underwent macular exposures delivered by a Q-switched Nd:YAG laser. The lesions were evaluated with fluorescein angiography and indocyanine green (ICG) angiography . Each lesion produced vitreous hemorrhage and progressed to a full thickness macular hole. ICG angiography revealed no perfusion of the choriocapillaris beneath the lesion centers. Histopathologic evaluation showed replacement of the choriocapillaris with fibroblasts and connective tissue. Nd:YAG, laser-induced macular holes result in long term impairment of choroidal perfusion at the base of the hole due to choroidal scarring and obliteration of the choriocapillaris.

  18. Peptidome analysis of human skim milk in term and preterm milk

    SciTech Connect

    Wan, Jun; Cui, Xian-wei; Zhang, Jun; Fu, Zi-yi; Guo, Xi-rong; Sun, Li-Zhou; Ji, Chen-bo

    2013-08-16

    Highlights: •A method was developed for preparation of peptide extracts from human milk. •Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 peptide-like features. •419 Peptides were identified by LC–MS/MS from 34 proteins. •Isotope dimethyl labeling analysis revealed 41 peptides differentially expressed. -- Abstract: The abundant proteins in human milk have been well characterized and are known to provide nutritional, protective, and developmental advantages to both term and preterm infants. Due to the difficulties associated with detection technology of the peptides, the expression of the peptides present in human milk is not known widely. In recent years, peptidome analysis has received increasing attention. In this report, the analysis of endogenous peptides in human milk was done by mass spectrometry. A method was also developed by our researchers, which can be used in the extraction of peptide from human milk. Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 Da peptide-like features. Out of these, 419 peptides were identified by MS/MS. The identified peptides were found to originate from 34 proteins, of which several have been reported. Analysis of the peptides’ cleavage sites showed that the peptides are cleaved with regulations. This may reflect the protease activity and distribution in human body, and also represent the biological state of the tissue and provide a fresh source for biomarker discovery. Isotope dimethyl labeling analysis was also used to test the effects of premature delivery on milk protein composition in this study. Differences in peptides expression between breast milk in term milk (38–41 weeks gestation) and preterm milk (28–32 weeks gestation) were investigated in this study. 41 Peptides in these two groups were found expressed differently. 23 Peptides were present at higher levels in preterm milk, and 18 were present at higher levels in term milk.

  19. Role of Extracranial Carotid Duplex and Computed Tomography Perfusion Scanning in Evaluating Perfusion Status of Pericarotid Stenting

    PubMed Central

    Lin, Chih-Ming; Chang, Yu-Jun; Liu, Chi-Kuang; Yu, Cheng-Sheng

    2016-01-01

    Carotid stenting is an effective treatment of choice in terms of treating ischemic stroke patients with concomitant carotid stenosis. Though computed tomography perfusion scan has been recognized as a standard tool to monitor/follow up this group of patients, not everyone could endure due to underlying medical illness. In contrast, carotid duplex is a noninvasive assessment tool and could track patient clinical condition in real time. In this study we found that “resistance index” of the carotid ultrasound could detect flow changes before and after the stenting procedure, thus having great capacity to replace the role of computed tomography perfusion exam. PMID:27051669

  20. Modelling of temperature and perfusion during scalp cooling

    NASA Astrophysics Data System (ADS)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  1. Long-term silicone implant arthroplasty. Implications of animal and human autopsy findings.

    PubMed

    Nalbandian, R M; Swanson, A B; Maupin, B K

    1983-09-01

    An examination of host tissue response to implanted material has been conducted as part of a comprehensive research program to study low-modulus of elasticity silicone implants for small-joint arthroplasty. This was performed on animals and in a long-term human clinical evaluation. Autopsy material on three dogs was obtained more than ten years after silicone implants were placed in their limbs, and in one human arthritic patient it was obtained 12 years after hand reconstruction with implants. The benign nature of the tissue reaction to the implant material is noted. It is compared with other implant materials and discussed in terms of host tissue reactions that may occur in joint replacement procedures. PMID:6348328

  2. Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity

    NASA Technical Reports Server (NTRS)

    Mueller, Thomas; Tucker, Compton J.; Dressler, Gunnar; Pinzon, Jorge E.; Leimgruber, Peter; Dubayah, Ralph O.; Hurtt, George C.; Boehning-Gaese, Katrin; Fagan, William F.

    2014-01-01

    Long-term trends in photosynthetic capacity measured with the satellite-derived Normalized Difference Vegetation Index (NDVI) are usually associated with climate change. Human impacts on the global land surface are typically not accounted for. Here, we provide the first global analysis quantifying the effect of the earth's human footprint on NDVI trends. Globally, more than 20% of the variability in NDVI trends was explained by anthropogenic factors such as land use, nitrogen fertilization, and irrigation. Intensely used land classes, such as villages, showed the greatest rates of increase in NDVI, more than twice than those of forests. These findings reveal that factors beyond climate influence global long-term trends in NDVI and suggest that global climate change models and analyses of primary productivity should incorporate land use effects.

  3. Visual short-term memory load affects sensory processing of irrelevant sounds in human auditory cortex.

    PubMed

    Valtonen, Jussi; May, Patrick; Mäkinen, Ville; Tiitinen, Hannu

    2003-07-01

    We used whole-head magnetoencephalography (MEG) to investigate neural activity in human auditory cortex elicited by irrelevant tones while the subjects were engaged in a short-term memory task presented in the visual modality. As compared to a no-memory-task condition, memory load enhanced the amplitude of the auditory N1m response. In addition, the N1m amplitude depended on the phase of the memory task, with larger response amplitudes observed during encoding than retention. Further, these amplitude modulations were accompanied by anterior-posterior shifts in N1m source locations. The results show that a memory task for visually presented stimuli alters sensory processing in human auditory cortex, even when subjects are explicitly instructed to ignore any auditory stimuli. Thus, it appears that task demands requiring attentional allocation and short-term memory result in interaction across visual and auditory brain areas carrying out the processing of stimulus features.

  4. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition.

  5. Quantitative comparison of stem cell marker-positive cells in fetal and term human amnion.

    PubMed

    Izumi, Masanori; Pazin, Benjamin J; Minervini, Crescenzio F; Gerlach, Jörg; Ross, Mark A; Stolz, Donna B; Turner, Morris E; Thompson, Robert L; Miki, Toshio

    2009-07-01

    Scattered in the amniotic epithelium of the human term placenta are pluripotent stem cell marker-positive cells. Unlike other parts of the placenta, amniotic epithelial (AE) cells are derived from pluripotent epiblasts. It is hypothesized that most epiblast-derived fetal AE cells are positive for stem cell markers at the beginning of pregnancy and that the stem cell marker-positive cells scattered through the term amnion are remaining, epiblast-like stem cells. To test this hypothesis, human fetal amnia from early-stage pregnancies were evaluated for expression of the stem cell-specific cell surface markers TRA 1-60 and TRA 1-81 and of the pluripotent stem cell marker genes Oct4, Nanog, and Sox2. Whole-mount immunohistochemical analysis demonstrated that a greater proportion of AE cells in the 17-19 week human fetal amnion are positive for both TRA 1-60 and TRA 1-81 than in the term amnion. Quantitative real-time RT-PCR analysis confirmed that the fetal AE cells exhibit greater stem cell marker gene expression than those in term placentae. Expression of both Nanog and Sox2 mRNAs were significantly higher in the fetal amnion, while Oct4 mRNA expression was not significantly changed. These differences in abundance of stem cell marker-positive cells and stem cell marker gene expression together indicate that some stem cell marker-positive cells are conserved over the course of pregnancy. The results suggest that stem cell marker-positive AE cells in the term amnion are retained from epiblast-derived fetal AE cells.

  6. Short-term memory traces for action bias in human reinforcement learning.

    PubMed

    Bogacz, Rafal; McClure, Samuel M; Li, Jian; Cohen, Jonathan D; Montague, P Read

    2007-06-11

    Recent experimental and theoretical work on reinforcement learning has shed light on the neural bases of learning from rewards and punishments. One fundamental problem in reinforcement learning is the credit assignment problem, or how to properly assign credit to actions that lead to reward or punishment following a delay. Temporal difference learning solves this problem, but its efficiency can be significantly improved by the addition of eligibility traces (ET). In essence, ETs function as decaying memories of previous choices that are used to scale synaptic weight changes. It has been shown in theoretical studies that ETs spanning a number of actions may improve the performance of reinforcement learning. However, it remains an open question whether including ETs that persist over sequences of actions allows reinforcement learning models to better fit empirical data regarding the behaviors of humans and other animals. Here, we report an experiment in which human subjects performed a sequential economic decision game in which the long-term optimal strategy differed from the strategy that leads to the greatest short-term return. We demonstrate that human subjects' performance in the task is significantly affected by the time between choices in a surprising and seemingly counterintuitive way. However, this behavior is naturally explained by a temporal difference learning model which includes ETs persisting across actions. Furthermore, we review recent findings that suggest that short-term synaptic plasticity in dopamine neurons may provide a realistic biophysical mechanism for producing ETs that persist on a timescale consistent with behavioral observations.

  7. Construction and validation of a microprocessor controlled extracorporal circuit in rats for the optimization of isolated limb perfusion.

    PubMed

    Gürtler, Ulrich; Fuchs, Peter; Stangelmayer, Achim; Bernhardt, Günther; Buschauer, Armin; Spruss, Thilo

    2004-12-01

    Although a few experimental approaches to isolated limb perfusion (ILP) are described in the literature, none of these animal models mimics the clinical perfusion techniques adequately to improve the technique of ILP on the basis of valid preclinical data. Therefore, we developed an ILP setup in rats allowing online monitoring of essential perfusion parameters such as temperature (in perfusate, various tissues, and rectum), pH (perfusate), perfusion pressure, and O(2) concentration (in perfusate, tissue), by a tailor-made data acquisition system. This setup permits close supervision of vital parameters during ILP. Various interdependencies, concerning the flow rate and the pressure of perfusate as well as tissue oxygenation were registered. For the measurement of pO(2) values in the perfusate and in different regions of the perfused hind limb, a novel type of microoptode based on quenching of a fluorescent dye was devised. Stable normothermic (37 degrees C) perfusion conditions were maintained at a constant perfusion pressure in the range of 40-60 mm Hg by administration of the spasmo lytic moxaverine (0.5 mg/mL of perfusate as initial dose) at a perfusate flow rate of 0.5 mL/min for 60 min. At the end of an ILP, there were no signs of tissue damage, neither concerning laboratory data (K(+), myoglobin, creatine kinase, lactic dehydrogenase) nor histopathological criteria. The reported ILP model is not only well suited to investigate the effects of hyperthermia but also to assess the efficacy of new antineoplastic approaches, when nude rats, bearing human tumours in the hind limbs, are used.

  8. Aquaticity: A discussion of the term and of how it applies to humans.

    PubMed

    Varveri, Danae; Karatzaferi, Christina; Pollatou, Elizana; Sakkas, Giorgos K

    2016-04-01

    The relationship between humans and water and the effects on aspects related to human performance has never been studied scientifically. The aim of the current systematic review is to attempt to define the term "aquaticity", present the factors that describe it and reveal the form in which it presents itself in today's society, in order to become a distinct scientific field of study. A systematic review of the literature has been conducted using anecdotal reports from the internet and forums as well as scientific articles and books from databases on issues related to aquatic sports. To the best of our knowledge there are no scientific articles dealing with human's aquaticity. In the current systematic review, four factors have been recognized that are closely related to human aquaticity. Those are related to physical condition in the water, to apnea and ability to immerse, to mental health and to parameters related to body composition. According to our findings, "Aquaticity is the capacity of a terrestrial mammalian organism to function and habitualise in the aquatic environment. The level of aquaticity depends on mental and physical characteristics and can be improved by frequent exposure to the water element". The ideal state of aquaticity is achieved through the activation of the diving reflex, when the human body is totally immersed in water. The development of knowledge regarding the aquatic environment leads humans to an improved state of aquaticity. PMID:27210836

  9. Space Resources Development: The Link Between Human Exploration and the Long-Term Commercialization of Space

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2000-01-01

    In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.

  10. Human cytomegalovirus induced pseudotumor of upper gastrointestinal tract mucosa: effects of long-term chronic disease?

    PubMed

    Reggiani Bonetti, Luca; Barresi, Valeria; Bertani, Angela; Maccio, Livia; Palmiere, Cristian

    2015-06-01

    Human cytomegalovirus-induced lesions resembling malignancies have been described in the gastrointestinal tract and include ulcerated or exophytic large masses. The aim of this study was to review the cases registered in the databases of two academic hospitals and formulate a hypothesis concerning the pathogenic mechanisms responsible for cytomegalovirus-induced pseudotumor development. All the diagnoses of human cytomegalovirus infections of the upper gastrointestinal tract recorded from 1991 to 2013 were reviewed. Cases of mucosal alterations misdiagnosed endoscopically as malignancies were selected. Large ulcers occurring in the stomach (three cases) and an irregular exophytic mass at the gastro-jejunal anastomosis were misdiagnosed endoscopically as malignancies (4 cases out of 53). Histologically, all lesions reflected hyperplastic mucosal changes with a prevalence of epithelial and stroma infected cells, without signs of cell atypia. The hypothesis presented is that the development of human cytomegalovirus-induced pseudotumors may be the morphological expression of chronic mucosa damage underlying long-term infection.

  11. Use of perfusion bioreactors and large animal models for long bone tissue engineering.

    PubMed

    Gardel, Leandro S; Serra, Luís A; Reis, Rui L; Gomes, Manuela E

    2014-04-01

    Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.

  12. Long-term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures.

    PubMed

    Jellali, Rachid; Bricks, Thibault; Jacques, Sébastien; Fleury, Marie-José; Paullier, Patrick; Merlier, Franck; Leclerc, Eric

    2016-07-01

    Human primary hepatocytes were cultivated in a microfluidic bioreactor and in Petri dishes for 13 days. mRNA kinetics in biochips showed an increase in the levels of CYP2B6, CYP2C19, CYP2C8, CYP3A4, CYP1A2, CYP2D6, HNF4a, SULT1A1, UGT1A1 mRNA related genes when compared with post extraction levels. In addition, comparison with Petri dishes showed higher levels of CYP2B6, CYP2C19, CYP2C8, CYP3A4, CYP1A2, CYP2D6 related genes at the end of culture. Functional assays illustrated a higher urea and albumin production over the period of culture in biochips. Bioreactor drug metabolism (midazolam and phenacetin) was not superior to the Petri dish after 2 days of culture. The CYP3A4 midazolam metabolism was maintained in biochips after 13 days of culture, whereas it was almost undetectable in Petri dishes. This led to a 5000-fold higher value of the metabolic ratio in the biochips. CYP1A2 phenacetin metabolism was found to be higher in biochips after 5, 9 and 13 days of culture. Thus, a 100-fold higher metabolic ratio of APAP in biochips was measured after 13 days of perfusion. These results demonstrated functional primary human hepatocyte culture in the bioreactor in a long-term culture. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Rationale and systems architecture for a near-term human lunar return

    NASA Astrophysics Data System (ADS)

    Willenberg, H. J.; Siegfried, W. H.

    2001-03-01

    Early human missions to the Moon have landed on six different sites on the lunar surface. These have all been in the low-latitude regions of the near side of the Moon. Early missions were designed primarily to assure crew safety rather than for scientific value. While the later missions added increasingly more challenging science, they remained restricted to near-side, low-latitude sites. Since the 1970s, we have learned considerably more about lunar planetology and resources. A return within the next five to ten years can greatly stimulate future human space exploration activities. We can learn much more about the distribution of lunar resources, especially about hydrogen, hydrated minerals, and water ice because they appear to be abundant near the lunar poles. The presence of hydrogen opens the possibility of industrial use of lunar resources to provide fuel for space transportation throughout the solar system. This paper discusses the rationale for near-term return of human crews to the Moon, and the advantages to be gained by selecting the Moon as the next target for human missions beyond low-Earth orbit. It describes a systems architecture for early missions, including transportation and habitation aspects. Specifically, we describe a primary transportation architecture that emphasizes existing Earth-to-orbit transportation systems, using expendable launch vehicles for cargo delivery and the Space Shuttle and its derivatives for human transportation. Transfer nodes should be located at the International Space Station (ISS) and at the Earth-Moon L1 (libration point). Each of the major systems is described, and the requisite technology readiness is assessed. These systems include Earth-to-orbit transportation, lunar transfer, lunar descent and landing, surface habitation and mobility, and return to Earth. With optimum reliance on currently existing space systems and a technology readiness assessment, we estimate the minimum development time required and perform

  14. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth.

    PubMed

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  15. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    PubMed Central

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  16. As the world turns: short-term human spatial memory in egocentric and allocentric coordinates.

    PubMed

    Banta Lavenex, Pamela; Lecci, Sandro; Prêtre, Vincent; Brandner, Catherine; Mazza, Christian; Pasquier, Jérôme; Lavenex, Pierre

    2011-05-16

    We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world.

  17. Human fetal membranes at term: Dead tissue or signalers of parturition?

    PubMed

    Menon, Ramkumar

    2016-08-01

    Various endocrine, immune, and mechanical factors produced by feto-maternal compartments at term increase intrauterine inflammatory loads to induce labor. The role of fetal (placental) membranes (amniochorion) as providers of parturition signals has not been well investigated. Fetal membranes line the intrauterine cavity and grow with and protect the fetus. Fetal membranes exist as an entity between the mother and fetus and perform unique functions during pregnancy. Membranes undergo a telomere-dependent p38 MAPK-induced senescence and demonstrate a decline in functional and mechanical abilities at term, showing signs of aging. Fetal membrane senescence is also allied with completion of fetal maturation at term as the fetus readies for delivery, which may also indicate the end of independent life and longevity of fetal membranes as their functional role concludes. Fetal membrane senescence is accelerated at term because of oxidative stress and increased stretching. Senescent fetal membranes cells produce senescence-associated secretory phenotype (SASP-inflammation) and also release proinflammatory damage-associated molecular patterns (DAMPs), namely HMGB1 and cell-free fetal telomere fragments. In a feedback loop, SASP and DAMPs increase senescence and enhance the inflammatory load to promote labor. Membranes increase the inflammatory load to disrupt homeostatic balance to transition quiescent uterine tissues toward a labor phenotype. Therefore, along with other well-described labor-promoting signals, senescent fetal membranes may also contribute to human term parturition. PMID:27452431

  18. Culture perfusion schedules influence the metabolic activity and granulocyte-macrophage colony-stimulating factor production rates of human bone marrow stromal cells.

    PubMed

    Caldwell, J; Palsson, B O; Locey, B; Emerson, S G

    1991-05-01

    The metabolic function and GM-CSF production rates of adherent human bone marrow stromal cells were investigated as functions of medium and serum feeding rates. A range of medium exchange schedules was studied, ranging from a typical Dexter culture protocol of one weekly medium exchange to a full media exchange daily, which more closely approximates what bone marrow cells experience in situ. Glucose consumption was found to be significantly higher at full daily exchange rate than at any other exchange schedule examined. However, the lactate yield on glucose was a constant, at 1.8 mol/mol, under all conditions considered. Differential serum vs. medium exchange experiment showed that both serum supply and medium nutrients were responsible for the altered behavior at high exchange rates. Glutamine consumption was found to be insignificant under all culture conditions examined. A change in exchange schedule from 50% daily medium exchange to full daily medium exchange after 14 days of culture was found to result in a transient production of GM-CSF and a change in metabolic behavior to resemble that of cultures which had full daily exchange from day one. These results suggest that both stromal cell metabolism and GM-CSF production are sensitive to medium exchange schedules. Taken together, the data presented indicate that attempts to model the function of human bone marrow in vitro may be well served by beginning with medium exchange schedules that more closely mimic the in vivo physiologic state of bone marrow. PMID:2040665

  19. Evaluation of Feline Renal Perfusion with Contrast-Enhanced Ultrasonography and Scintigraphy

    PubMed Central

    Vanderperren, Katrien; Bosmans, Tim; Dobbeleir, André; Duchateau, Luc; Hesta, Myriam; Lybaert, Lien; Peremans, Kathelijne; Vandermeulen, Eva; Saunders, Jimmy

    2016-01-01

    Contrast-enhanced ultrasound (CEUS) is an emerging technique to evaluate tissue perfusion. Promising results have been obtained in the evaluation of renal perfusion in health and disease, both in human and veterinary medicine. Renal scintigraphy using 99mTc-Mercaptoacetyltriglycine (MAG3) is another non-invasive technique that can be used to evaluate renal perfusion. However, no data are available on the ability of CEUS or 99mTc- MAG3 scintigraphy to detect small changes in renal perfusion in cats. Therefore, both techniques were applied in a normal feline population to evaluate detection possibilities of perfusion changes by angiotensin II (AT II). Contrast-enhanced ultrasound using a bolus injection of commercially available contrast agent and renal scintigraphy using 99mTc-MAG3 were performed in 11 healthy cats after infusion of 0,9% NaCl (control) and AT II. Angiotensin II induced changes were noticed on several CEUS parameters. Mean peak enhancement, wash-in perfusion index and wash-out rate for the entire kidney decreased significantly after AT II infusion. Moreover, a tendency towards a lower wash-in area-under-the curve was present. Renal scintigraphy could not detect perfusion changes induced by AT II. This study shows that CEUS is able to detect changes in feline renal perfusion induced by AT II infusion. PMID:27736928

  20. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.

    PubMed

    Panfoli, Isabella; Ravera, Silvia; Podestà, Marina; Cossu, Claudia; Santucci, Laura; Bartolucci, Martina; Bruschi, Maurizio; Calzia, Daniela; Sabatini, Federica; Bruschettini, Matteo; Ramenghi, Luca Antonio; Romantsik, Olga; Marimpietri, Danilo; Pistoia, Vito; Ghiggeri, Gianmarco; Frassoni, Francesco; Candiano, Giovanni

    2016-04-01

    Exosomes are secreted nanovesicles that are able to transfer RNA and proteins to target cells. The emerging role of mesenchymal stem cell (MSC) exosomes as promoters of aerobic ATP synthesis restoration in damaged cells, prompted us to assess whether they contain an extramitochondrial aerobic respiration capacity. Exosomes were isolated from culture medium of human MSCs from umbilical cord of ≥37-wk-old newborns or between 28- to 30-wk-old newborns (i.e.,term or preterm infants). Characterization of samples was conducted by cytofluorometry. Oxidative phosphorylation capacity was assessed by Western blot analysis, oximetry, and luminometric and fluorometric analyses. MSC exosomes express functional respiratory complexes I, IV, and V, consuming oxygen. ATP synthesis was only detectable in exosomes from term newborns, suggestive of a specific mechanism that is not completed at an early gestational age. Activities are outward facing and comparable to those detected in mitochondria isolated from term MSCs. MSC exosomes display an unsuspected aerobic respiratory ability independent of whole mitochondria. This may be relevant for their ability to rescue cell bioenergetics. The differential oxidative metabolism of pretermvs.term exosomes sheds new light on the preterm newborn's clinical vulnerability. A reduced ability to repair damaged tissue and an increased capability to cope with anoxic environment for preterm infants can be envisaged.-Panfoli, I., Ravera, S., Podestà, M., Cossu, C., Santucci, L., Bartolucci, M., Bruschi, M., Calzia, D., Sabatini, F., Bruschettini, M., Ramenghi, L. A., Romantsik, O., Marimpietri, D., Pistoia, V., Ghiggeri, G., Frassoni, F., Candiano, G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.

  1. Visualizing tropoelastin in a long-term human elastic fibre cell culture model

    PubMed Central

    Halm, M.; Schenke-Layland, K.; Jaspers, S.; Wenck, H.; Fischer, F.

    2016-01-01

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin–fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models. PMID:26842906

  2. Visualizing tropoelastin in a long-term human elastic fibre cell culture model.

    PubMed

    Halm, M; Schenke-Layland, K; Jaspers, S; Wenck, H; Fischer, F

    2016-02-04

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin-fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models.

  3. Ventilation and perfusion alterations after smoke inhalation injury.

    PubMed

    Robinson, N B; Hudson, L D; Robertson, H T; Thorning, D R; Carrico, C J; Heimbach, D M

    1981-08-01

    Previous studies of human victims of smoke inhalation injury have demonstrated retention of intravenously infused 133xenon2, 6 suggesting either: (1) true intrapulmonary shunting (Qs) secondary to alveolar collapse, flooding, or obliteration, or (2) perfusion of low ventilation/perfusion compartments (low VA/Q) secondary to bronchospasm, bronchial constriction, or partial bronchial occlusion by cellular debris. To differentiate between and quantitate the relative contribution of intrapulmonary shunt versus low VA/Q compartments, multiple inert gas analysis, as described by Wagner et al.,12 was applied to human victims of smoke inhalation. Studies of an animal model of injury were subsequently performed to confirm these observations. These experiments suggest that early alterations of ventilation and perfusion resulted from increased high VA/Q and dead-space ventilation. Late alterations included significantly increased perfusion of low VA/Q compartments and return of high VA/Q ventilation to baseline levels. True intrapulmonary shunting was notably absent. This physiologic sequence may represent early regional pulmonary vasospasm followed by regional bronchial obstruction and gradual alveolar secondary to bronchospasm, bronchial edema, or partial occlusion by cellular debris.

  4. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion.

    PubMed

    Miki, Toshio; Mitamura, Keitaro; Ross, Mark A; Stolz, Donna B; Strom, Stephen C

    2007-10-01

    The placenta contains different populations of stem/progenitor cells such as mesenchymal, hematopoietic, trophoblastic and pluripotent stem cells. Although some tissue-specific stem cells are restricted to particular parts of the placenta, the localization of embryonic stem cell-like cells in term human placenta has not been determined. We have used immunofluorescence staining techniques with antibodies to pluripotent stem cell antigens, SSEA-3, SSEA-4, TRA 1-60 and TRA 1-81, and confocal microscopic analysis to identify and localize stem cells within the placenta. Stem cell marker-positive cells were found in amnion but not in choriodecidua, tissues known to contain hematopoietic and trophoblastic stem cells. Amniotic mesenchymal cells did not react with these pluripotent stem cell markers, while all amniotic epithelial cells reacted with at least one antibody. The TRA 1-60 and TRA 1-81 positive cells were solitary and present throughout the surface of amniotic membrane without a specific pattern of distribution, whereas SSEA-3 was negative and SSEA-4 was weakly positive on all amniotic epithelial cells. These data suggest that the human amnion contains stem cell-like cells at different states of differentiation. Human term amnion may be useful source of pluripotent stem cells for regenerative medicine.

  5. Long-term cognitive effects of human stem cell transplantation in the irradiated brain

    PubMed Central

    Acharya, Munjal M.; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L.

    2016-01-01

    Purpose Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Materials and methods Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Results Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Conclusions Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function. PMID:24882389

  6. Evidence for clock genes circadian rhythms in human full-term placenta.

    PubMed

    Pérez, Silvia; Murias, Lucía; Fernández-Plaza, Catalina; Díaz, Irene; González, Celestino; Otero, Jesús; Díaz, Elena

    2015-01-01

    Biological rhythms are driven by endogenous biological clocks; in mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. This master pacemaker can synchronize other peripheral oscillators in several tissues such as some involved in endocrine or reproductive functions. The presence of an endogenous placental clock has received little attention. In fact, there are no studies in human full-term placentas. To test the existence of an endogenous pacemaker in this tissue we have studied the expression of circadian locomoter output cycles kaput (Clock), brain and muscle arnt-like (Bmal)1, period (Per)2, and cryptochrome (Cry)1 mRNAs at 00, 04, 08, 12, 16, and 20 hours by qPCR. The four clock genes studied are expressed in full-term human placenta. The results obtained allow us to suggest that a peripheral oscillator exists in human placenta. Data were analyzed using Fourier series where only the Clock and Bmal1 expression shows a circadian rhythm.

  7. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    PubMed

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  8. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival.

  9. Sodium efflux from perfused giant algal cells.

    PubMed

    Clint, G M; Macrobbie, E A

    1987-06-01

    Internodal cells of the giant alga Chara corallina were perfused internally to replace the native cytoplasm, tonoplast and vacuole with artificial cytoplasm. Sodium efflux from perfused cells, measured by including (22)Na in the perfusion media, was increased by increasing the internal sodium concentration and by decreasing the external pH, and was inhibited by external application of the renal diuretic amiloride. The sodium efflux was markedly ATP-dependent, with a 50-fold decrease in efflux observed after perfusion with media lacking ATP. Efflux in the presence of ATP was reduced by 33% by inclusion of 10 μM N,N'-dicyclohexylcarbodiimide in the perfusion medium. The membrane potential of the perfused cells approximated that of intact cells from the same culture. It is suggested that sodium efflux in perfused Chara cells proceeds via a secondary antiporter with protons, regulated by ATP in a catalytic role and with the proton motive force acting as the energy source.

  10. False memory for face in short-term memory and neural activity in human amygdala.

    PubMed

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2014-12-01

    Human memory is often inaccurate. Similar to words and figures, new faces are often recognized as seen or studied items in long- and short-term memory tests; however, the neural mechanisms underlying this false memory remain elusive. In a previous fMRI study using morphed faces and a standard false memory paradigm, we found that there was a U-shaped response curve of the amygdala to old, new, and lure items. This indicates that the amygdala is more active in response to items that are salient (hit and correct rejection) compared to items that are less salient (false alarm), in terms of memory retrieval. In the present fMRI study, we determined whether the false memory for faces occurs within the short-term memory range (a few seconds), and assessed which neural correlates are involved in veridical and illusory memories. Nineteen healthy participants were scanned by 3T MRI during a short-term memory task using morphed faces. The behavioral results indicated that the occurrence of false memories was within the short-term range. We found that the amygdala displayed a U-shaped response curve to memory items, similar to those observed in our previous study. These results suggest that the amygdala plays a common role in both long- and short-term false memory for faces. We made the following conclusions: First, the amygdala is involved in detecting the saliency of items, in addition to fear, and supports goal-oriented behavior by modulating memory. Second, amygdala activity and response time might be related with a subject's response criterion for similar faces.

  11. Human Engineered Heart Muscles Engraft and Survive Long-Term in a Rodent Myocardial Infarction Model

    PubMed Central

    Riegler, Johannes; Tiburcy, Malte; Ebert, Antje; Tzatzalos, Evangeline; Raaz, Uwe; Abilez, Oscar J.; Shen, Qi; Kooreman, Nigel G.; Neofytou, Evgenios; Chen, Vincent C.; Wang, Mouer; Meyer, Tim; Tsao, Philip S.; Connolly, Andrew J.; Couture, Larry A.; Gold, Joseph D.; Zimmermann, Wolfram H.; Wu, Joseph C.

    2015-01-01

    Rational Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocte (ESC-CM) transplantation, thereby potentially preventing dilative remodelling and progression to heart failure. Objective Assessment of transport stability, long term survival, structural organisation, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction (MI) model. Methods and Results We constructed EHMs from ESC-CMs and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). After ischemia/reperfusion (I/R) injury, EHMs were implanted onto immunocompromised rat hearts at 1 month to simulate chronic ischemia. Bioluminescence imaging (BLI) showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving up to 25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs −6.7±1.4% vs control −10.9±1.5%, n>12, P=0.05), we observed no difference between EHMs containing viable or non-viable human cardiomyocytes in this chronic xenotransplantation model (n>12, P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. Conclusions EHM transplantation led to high engraftment rates, long term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic MI model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation. PMID:26291556

  12. Heat stress increases long-term human migration in rural Pakistan

    NASA Astrophysics Data System (ADS)

    Mueller, V.; Gray, C.; Kosec, K.

    2014-03-01

    Human migration attributable to climate events has recently received significant attention from the academic and policy communities . Quantitative evidence on the relationship between individual, permanent migration and natural disasters is limited . A 21-year longitudinal survey conducted in rural Pakistan (1991-2012) provides a unique opportunity to understand the relationship between weather and long-term migration. We link individual-level information from this survey to satellite-derived measures of climate variability and control for potential confounders using a multivariate approach. We find that flooding--a climate shock associated with large relief efforts--has modest to insignificant impacts on migration. Heat stress, however--which has attracted relatively little relief--consistently increases the long-term migration of men, driven by a negative effect on farm and non-farm income. Addressing weather-related displacement will require policies that both enhance resilience to climate shocks and lower barriers to welfare-enhancing population movements.

  13. Synthesis and secretion of alkaline phosphatase in vitro from first-trimester and term human placentas.

    PubMed Central

    Galski, H; Fridovich, S E; Weinstein, D; De Groot, N; Segal, S; Folman, R; Hochberg, A A

    1981-01-01

    The synthesis and secretion of alkaline phosphatases in vitro by human placental tissue incubated in organ culture were studied. First-trimester placenta synthesizes and secretes two different alkaline phosphatase isoenzymes (heat-labile and heat-stable), whereas in term placenta nearly all the alkaline phosphatase synthesized and secreted is heat-stable. The specific activities of alkaline phosphatases in first-trimester and term placental tissue remain constant throughout the time course of incubation. In the media, specific activities increase with time. Hence, alkaline phosphatase synthesis seems to be the driving force for its own secretion. The rates of synthesis de novo and of alkaline phosphatases were measured. The specific radioactivities of the secreted alkaline phosphatases were higher than the corresponding specific radioactivities in the tissue throughout the entire incubation period. The intracellular distribution of the alkaline phosphatase isoenzymes was compared. PMID:7306029

  14. Assessment of the long-term risks of inadvertent human intrusion

    SciTech Connect

    Wuschke, D.M. )

    1993-01-01

    Canada has conducted an extensive research program on the safe disposal of nuclear fuel wastes. The program has focused on the concept of disposal of spent fuel in durable containers in an engineered facility, or vault, 500 to 1000 m deep in intrusive igneous rock in the Canadian Shield. An essential goal of this program has been to develop and demonstrate a methodology to evaluate the performance of the facility against safety criteria established by Canada's regulatory agency, the Atomic Energy Control Board (AECB). These criteria are expressed in terms of risk, where risk is defined as the sum over all significant scenarios of the product of the probability of the scenario, the magnitude of the resultant dose, and the probability of a health effect per unit dose. This paper describes the methodology developed to assess the long-term risk from inadvertent human intrusion into such a facility and the results of its application to a conceptual design of such a facility.

  15. Oxytocinase-immunohistochemical demonstration in the immature and term human placenta.

    PubMed

    Small, C W; Watkins, W B

    1975-10-27

    Oxytocinase (cystine aminopeptidase) was purified from human retroplacental serum by a combination of fractional precipitation, hydroxylapatite chromatography and gel exlusion chromatography on Sephadex G-200. The purified enzyme possessed a specific activity of 980 mIU/mg using L-cystine-di-p-nitroanilide as substrate. This represented a 3200 fold concentration from the starting material in an overall yield of 12%. Antibodies against oxytocinase were raised in rabbits and the gamma-globulins fraction labelled with fluorescein isothiocyanate prior to its use in the immunofluorescence histochemical localization of the enzyme in human placental tissue. Oxytocinase was confined to the syncytiotrophoblastic cells of normal term, and immature placentas as well as in placentas from patients suffering from severe toxaemia. Specific immunofluorescence was also present in the outer margins of the chorion and to a lesser extent in the amnion.

  16. Human impact on fish sensory systems in the long term: an evolutionary perspective.

    PubMed

    Zakon, Harold H

    2015-01-01

    Humans have severely impacted global ecosystems and this shows few signs of abating. Many aspects of an animal's biology, including its sensory systems, may be adversely influenced by pollutants and environmental noise. This review focuses on whether and/or how various environmental disturbances disrupt the sensory systems of fishes. As critical as it is to document and understand the current effects of the human footprint, it is also important to consider how organisms might adapt to these impacts over the long term. The present paper outlines the sources of genetic and genomic variation upon which natural selection can act and then reviews examples of known genetic contributions of variation in fish chemosensory, visual and acoustico-lateralis systems. PMID:24919803

  17. Influence of short-term dietary measures on dioxin concentrations in human milk.

    PubMed Central

    Pluim, H J; Boersma, E R; Kramer, I; Olie, K; van der Slikke, J W; Koppe, J G

    1994-01-01

    Breast-feeding may expose infants to high levels of toxic chlorinated dioxins. To diminish intake of these lipophilic compounds by the baby, two diets were tested for their ability to reduce concentrations of dioxins in human milk. The diets were a low-fat/high- carbohydrate/low-dioxin diet. (about 20% of energy intake derived from fat) and a high fat /low-carbohydrate/low-dioxin diet. These diets were tested in 16 and 18 breast-feeding women, respectively. The test diets were followed for 5 consecutive days in the fourth week after delivery. Milk was sampled before and at the end of the dietary regimen, and dioxin concentrations and fatty acid concentrations were determined. Despite significant influences of these diets on the fatty acid profiles, no significant influence on the dioxin concentrations in breast milk could be found. We conclude that short-term dietary measures will not reduce dioxin concentration in human milk. PMID:9738212

  18. Vanadium-mediated lipid peroxidation in microsomes from human term placenta

    SciTech Connect

    Byczkowski, J.Z.; Wan, B.; Kulkarni, A.P.

    1988-11-01

    Vanadium is considered an essential element present in living organisms in trace amounts but it is toxic when introduced in excessive doses to animals and humans. Vanadium compounds are extensively used in modern industry and occupational exposure to high doses of vanadium is quite common. In pregnant mice, vanadium accumulates preferentially in the placenta and to lower extent in fetal skeleton and mammary gland during exposure to radioactive vanadium. Accumulation of vanadium in fetoplacental unit may present threat to the fetus by interacting with enzymes and ion-transporting systems in membranes. It is also possible that accumulation of vanadium with its concomitant reduction to vanadyl may lead to lipid peroxidation, followed by damage to biological membranes, lysosomal enzymes release and destruction of placental tissue. To explore some of these possibilities the authors decided to examine whether vanadate can undergo redox cycling in microsomes from human term placenta (HTP) that can lead to lipid peroxidation.

  19. Choriodecidual Cells from Term Human Pregnancies Show Distinctive Functional Properties Related to the Induction of Labor

    PubMed Central

    Castillo-Castrejon, Marisol; Meraz-Cruz, Noemí; Gomez-Lopez, Nardhy; Flores-Pliego, Arturo; Beltrán-Montoya, Jorge; Viveros-Alcaráz, Martín; Vadillo-Ortega, Felipe

    2014-01-01

    Problem Human parturition is associated with an intrauterine pro-inflammatory environment in the choriodecidua. Evidence that some mediators of this signaling cascade also elicit responses leading to labor prompted us to characterize the cellular sources of these mediators in the human choriodecidua. Method of study Leukocyte-enriched preparations from human choriodecidua (ChL) and intervillous placental blood leukocytes (PL) were maintained in culture. Secretions of inflammatory cytokines, chemokines and MMP-9 were documented. Leukocyte phenotype of ChL and PL was determined by flow cytometry using specific fluorochrome-conjugated antibodies. Results and Conclusions ChL showed a distinct pro-inflammatory secretion pattern of cytokines and chemokines when compared with PL, including higher amounts of TNF-α and IL-6, and decreased secretions of IL-4 and IL-1ra. ChL also secreted more MIP-1α and MCP-1 and MMP-9 than PL. No significant differences were found in leukocytes subsets between compartments. Based on our findings, we propose that ChL isolated from fetal membranes at term are functionally different from PL and may collaborate to modulate the microenvironment linked to induction and progression of human labor. PMID:24286217

  20. Stn1 is critical for telomere maintenance and long-term viability of somatic human cells.

    PubMed

    Boccardi, Virginia; Razdan, Neetu; Kaplunov, Jessica; Mundra, Jyoti J; Kimura, Masayuki; Aviv, Abraham; Herbig, Utz

    2015-06-01

    Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA-mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long-term viability of normal somatic mammalian cells.

  1. Short-Term Monocular Deprivation Alters GABA in the Adult Human Visual Cortex

    PubMed Central

    Lunghi, Claudia; Emir, Uzay E.; Morrone, Maria Concetta; Bridge, Holly

    2016-01-01

    Summary Neuroplasticity is a fundamental property of the nervous system that is maximal early in life, within the critical period [1–3]. Resting GABAergic inhibition is necessary to trigger ocular dominance plasticity and to modulate the onset and offset of the critical period [4, 5]. GABAergic inhibition also plays a crucial role in neuroplasticity of adult animals: the balance between excitation and inhibition in the primary visual cortex (V1), measured at rest, modulates the susceptibility of ocular dominance to deprivation [6–10]. In adult humans, short-term monocular deprivation strongly modifies ocular balance, unexpectedly boosting the deprived eye, reflecting homeostatic plasticity [11, 12]. There is no direct evidence, however, to support resting GABAergic inhibition in homeostatic plasticity induced by visual deprivation. Here, we tested the hypothesis that GABAergic inhibition, measured at rest, is reduced by deprivation, as demonstrated by animal studies. GABA concentration in V1 of adult humans was measured using ultra-high-field 7T magnetic resonance spectroscopy before and after short-term monocular deprivation. After monocular deprivation, resting GABA concentration decreased in V1 but was unaltered in a control parietal area. Importantly, across participants, the decrease in GABA strongly correlated with the deprived eye perceptual boost measured by binocular rivalry. Furthermore, after deprivation, GABA concentration measured during monocular stimulation correlated with the deprived eye dominance. We suggest that reduction in resting GABAergic inhibition triggers homeostatic plasticity in adult human V1 after a brief period of abnormal visual experience. These results are potentially useful for developing new therapeutic strategies that could exploit the intrinsic residual plasticity of the adult human visual cortex. PMID:26004760

  2. Short-term safety evaluation of processed calcium montmorillonite clay (NovaSil) in humans.

    PubMed

    Wang, J-S; Luo, H; Billam, M; Wang, Z; Guan, H; Tang, L; Goldston, T; Afriyie-Gyawu, E; Lovett, C; Griswold, J; Brattin, B; Taylor, R J; Huebner, H J; Phillips, T D

    2005-03-01

    NovaSil clay (NS) provides significant protection from the adverse effects of aflatoxins (AFs) in multiple animal species by decreasing bioavailability from the gastrointestinal tract. It is postulated that NS clay can be safely added to human diets to diminish exposure and health risks from AF contaminated food. To determine the safety and tolerance of NS in humans and establish dosimetry protocols for long-term efficacy studies, a randomized and double-blinded phase I clinical trial was conducted. Volunteers (20-45 yr in age), were clinically screened for confirmation of their health status. Fifty subjects (23 males and 27 females) were randomly divided into two groups: The low-dose group received nine capsules containing 1.5 g/day, and the high-dose group received nine capsules containing 3.0 g/day for a period of 2?wk. NS capsules were manufactured in the same color and size and were distributed to each participant three times a day at designated sites where follow-up was taken to record any side effects and complaints. Blood and urine samples were collected before and after the study for laboratory analysis. All participants completed the trial and compliance was 99.1%. Mild GI effects were reported in some participants. Symptoms included abdominal pain (6%, 3/50), bloating (4%, 2/50), constipation (2%, 1/50), diarrhea (2%, 1/50), and flatulence (8%, 4/50). No statistical significance was found between the two groups for these adverse effects (p > 0.25). No significant differences were shown in hematology, liver and kidney function, electrolytes, vitamins A and E, and minerals in either group. These results demonstrate the relative safety of NS clay in human subjects and will serve as a basis for long-term human trials in populations at high risk for aflatoxicosis. PMID:16019795

  3. A Flow Perfusion Bioreactor System for Vocal Fold Tissue Engineering Applications.

    PubMed

    Latifi, Neda; Heris, Hossein K; Thomson, Scott L; Taher, Rani; Kazemirad, Siavash; Sheibani, Sara; Li-Jessen, Nicole Y K; Vali, Hojatollah; Mongeau, Luc

    2016-09-01

    The human vocal folds (VFs) undergo complex biomechanical stimulation during phonation. The aim of the present study was to develop and validate a phono-mimetic VF flow perfusion bioreactor, which mimics the mechanical microenvironment of the human VFs in vitro. The bioreactor uses airflow-induced self-oscillations, which have been shown to produce mechanical loading and contact forces that are representative of human phonation. The bioreactor consisted of two synthetic VF replicas within a silicone body. A cell-scaffold mixture (CSM) consisting of human VF fibroblasts, hyaluronic acid, gelatin, and a polyethylene glycol cross-linker was injected into cavities within the replicas. Cell culture medium (CCM) was perfused through the scaffold by using a customized secondary flow loop. After the injection, the bioreactor was operated with no stimulation over a 3-day period to allow for cell adaptation. Phonation was subsequently induced by using a variable speed centrifugal blower for 2 h each day over a period of 4 days. A similar bioreactor without biomechanical stimulation was used as the nonphonatory control. The CSM was harvested from both VF replicas 7 days after the injection. The results confirmed that the phono-mimetic bioreactor supports cell viability and extracellular matrix proteins synthesis, as expected. Many scaffold materials were found to degrade because of challenges from phonation-induced biomechanical stimulation as well as due to biochemical reactions with the CCM. The bioreactor concept enables future investigations of the effects of different phonatory characteristics, that is, voice regimes, on the behavior of the human VF cells. It will also help study the long-term functional outcomes of the VF-specific biomaterials before animal and clinical studies. PMID:27537192

  4. A disposable flexible skin patch for clinical optical perfusion monitoring at multiple depths

    NASA Astrophysics Data System (ADS)

    Farkas, Dana L.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Podolsky, Matthew J.; Christian, James F.; Ward, Brent B.; Vartarian, Mark; Feinberg, Stephen E.; Lee, Seung Yup; Parikh, Urmi; Mycek, Mary-Ann; Joyner, Michael J.; Johnson, Christopher P.; Paradis, Norman A.

    2016-03-01

    Stable, relative localization of source and detection fibers is necessary for clinical implementation of quantitative optical perfusion monitoring methods such as diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy (DRS). A flexible and compact device design is presented as a platform for simultaneous monitoring of perfusion at a range of depths, enabled by precise location of optical fibers in a robust and secure adhesive patch. We will discuss preliminary data collected on human subjects in a lower body negative pressure model for hypovolemic shock. These data indicate that this method facilitates simple and stable simultaneous monitoring of perfusion at multiple depths and within multiple physiological compartments.

  5. Measuring perfusion with light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M. A.; de Bruin, Daniel M.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-03-01

    There is no gold standard test for perfusion evaluation in surgery. Optical Imaging techniques are able to image tissue at high resolution and in real-time. Laser Speckle Contrast Imaging, Optical Coherence Tomography, Sidestream Darkfield and Incident Darkfield all use the interaction of light with tissue to create an image. To test their feasibility and explore validity in a controlled setting, we created a phantom with the optical properties of tissue and microvascular channels of 30-400 micrometer. With a Hamilton Syringe Pump we mimicked blood flow velocities of 0-20 mm/sec. Images of all different modalities at different blood flow velocities were compared in terms of imaging depth, resoluation and hemodynamic parameters.

  6. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans.

    PubMed

    Soare, Andreea; Cangemi, Roberto; Omodei, Daniela; Holloszy, John O; Fontana, Luigi

    2011-04-01

    Reduction of body temperature has been proposed to contribute to the increased lifespan in calorie restricted animals and mice overexpressing the uncoupling protein-2 in hypocretin neurons. However, nothing is known regarding the long-term effects of calorie restriction (CR) with adequate nutrition on body temperature in humans. In this study, 24-hour core body temperature was measured every minute by using ingested telemetric capsules in 24 men and women (mean age 53.7 ± 9.4 yrs) consuming a CR diet for an average of 6 years, 24 age- and sex-matched sedentary (WD) and 24 body fat-matched exercise-trained (EX) volunteers, who were eating Western diets. The CR and EX groups were significantly leaner than the WD group. Energy intake was lower in the CR group (1769 ± 348 kcal/d) than in the WD (2302 ± 668 kcal/d) and EX (2798 ± 760 kcal/d) groups (P < 0.0001). Mean 24-hour, day-time and night-time core body temperatures were all significantly lower in the CR group than in the WD and EX groups (P ≤ 0.01). Long-term CR with adequate nutrition in lean and weight-stable healthy humans is associated with a sustained reduction in core body temperature, similar to that found in CR rodents and monkeys. This adaptation is likely due to CR itself, rather than to leanness, and may be involved in slowing the rate of aging.

  7. Long-term culture of genome-stable bipotent stem cells from adult human liver.

    PubMed

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M A; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N M; Nieuwenhuis, Edward E S; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R G; van der Laan, Luc J W; Cuppen, Edwin; Clevers, Hans

    2015-01-15

    Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  8. Long-term culture of human odontoma-derived cells with a Rho kinase inhibitor.

    PubMed

    Uzawa, Katsuhiro; Kasamatsu, Atsushi; Saito, Tomoaki; Takahara, Toshikazu; Minakawa, Yasuyuki; Koike, Kazuyuki; Yamatoji, Masanobu; Nakashima, Dai; Higo, Morihiro; Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki

    2016-09-10

    Because of cellular senescence/apoptosis, no effective culture systems are available to maintain replication of cells from odontogenic tumors especially for odontoma, and, thus, the ability to isolate human odontoma-derived cells (hODCs) for functional studies is needed. The current study was undertaken to develop an approach to isolate hODCs and fully characterize the cells in vitro. The hODCs were cultured successfully with a Rho-associated protein kinase inhibitor (Y-27632) for an extended period with stabilized lengths of the telomeres to sustain a similar phenotype/property as the primary tumoral cells. While the hODCs showed stable long-term expansion with expression of major dental epithelial markers including dentin sialophosphoprotein (DSPP) even in the three-dimensional microenvironment, they lack the specific markers for the characteristics of stem cells. Moreover, cells from dental pulp showed significant up-regulation of DSPP when co-cultured with the hODCs, while control fibroblasts with the hODCs did not. Taken together, we propose that the hODCs can be isolated and expanded over the long term with Y-27632 to investigate not only the development of the hODCs but also other types of benign human tumors.

  9. Long-term culture of human odontoma-derived cells with a Rho kinase inhibitor.

    PubMed

    Uzawa, Katsuhiro; Kasamatsu, Atsushi; Saito, Tomoaki; Takahara, Toshikazu; Minakawa, Yasuyuki; Koike, Kazuyuki; Yamatoji, Masanobu; Nakashima, Dai; Higo, Morihiro; Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki

    2016-09-10

    Because of cellular senescence/apoptosis, no effective culture systems are available to maintain replication of cells from odontogenic tumors especially for odontoma, and, thus, the ability to isolate human odontoma-derived cells (hODCs) for functional studies is needed. The current study was undertaken to develop an approach to isolate hODCs and fully characterize the cells in vitro. The hODCs were cultured successfully with a Rho-associated protein kinase inhibitor (Y-27632) for an extended period with stabilized lengths of the telomeres to sustain a similar phenotype/property as the primary tumoral cells. While the hODCs showed stable long-term expansion with expression of major dental epithelial markers including dentin sialophosphoprotein (DSPP) even in the three-dimensional microenvironment, they lack the specific markers for the characteristics of stem cells. Moreover, cells from dental pulp showed significant up-regulation of DSPP when co-cultured with the hODCs, while control fibroblasts with the hODCs did not. Taken together, we propose that the hODCs can be isolated and expanded over the long term with Y-27632 to investigate not only the development of the hODCs but also other types of benign human tumors. PMID:27514999

  10. Short and long-term energy intake patterns and their implications for human body weight regulation.

    PubMed

    Chow, Carson C; Hall, Kevin D

    2014-07-01

    Adults consume millions of kilocalories over the course of a few years, but the typical weight gain amounts to only a few thousand kilocalories of stored energy. Furthermore, food intake is highly variable from day to day and yet body weight is remarkably stable. These facts have been used as evidence to support the hypothesis that human body weight is regulated by active control of food intake operating on both short and long time scales. Here, we demonstrate that active control of human food intake on short time scales is not required for body weight stability and that the current evidence for long term control of food intake is equivocal. To provide more data on this issue, we emphasize the urgent need for developing new methods for accurately measuring energy intake changes over long time scales. We propose that repeated body weight measurements can be used along with mathematical modeling to calculate long-term changes in energy intake and thereby quantify adherence to a diet intervention and provide dynamic feedback to individuals that seek to control their body weight.

  11. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  12. Arachidonic acid supply and metabolism in human infants born at full term.

    PubMed

    Koletzko, B; Decsi, T; Demmelmair, H

    1996-01-01

    Infants need arachidonic acid (AA; C20:4n-6) for eicosanoid synthesis and deposition in growing tissues, including brain. Human milk supplies preformed AA in amounts considered to meet accretion in membrane-rich tissues, but vegetable oil-based infant formulas do not contain AA. We studied two groups of ten healthy infants, each fed human milk or formula, and analyzed plasma lipid composition. Percentage contributions of AA to plasma phospholipids were stable over two months after birth in breast-fed infants, but infants fed formula developed significantly (P < 0.05) lower levels at the ages of two weeks (formula 6.9% vs. breast 9.4%, w/w), one month (6.2 vs. 9.1%), and two months (5.7 vs. 8.4%). In a second trial, we randomized infants to receive (from birth to age four months) formula without or with both AA and docosahexaenoic acid (DHA; C22:6n-3) at levels typical for mature human milk. Infants fed conventional formula showed a continuous decrease of phospholipid AA over time, whereas feeding of formula supplemented with AA and DHA led to significantly higher AA levels, similar to those in breast-fed infants (two months: supplemented 9.6% vs. unsupplemented 7.1%; four months: 8.7 vs. 6.6%). In order to estimate infantile capacity for endogenous synthesis of AA, we fed four term neonates with newly diagnosed phenylketonuria (mean age 18 d) a formula with all fat contributed by corn oil, which has a higher natural 13C-enrichment than European human milk or formula. Analysis of 13C-enrichment in plasma fatty acids over four days allowed us to estimate infantile AA synthesis. We found an increased 13C-value in plasma AA of all infants, which indicates that term neonates can synthesize AA. However, with a simplified isotope balance equation, we estimate that endogenous synthesis contributed only about 23% of total plasma arachidonic acid by day four. We conclude that full-term infants fed formula may require a dietary supply of some preformed AA if the biochemical

  13. Perfusion from angiogram and a priori (PAP) with temporal regularization

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Geschwind, Jean-Francois H.

    2009-02-01

    Perfusion imaging is often used for diagnosis and for assessment of the response to the treatment. If perfusion can be measured during interventional procedures, it could lead to quantitative, more efficient and accurate treatment; however, imaging modalities that allow continuous dynamic scanning are not available in most of procedure rooms. Thus, we developed a method to measure the perfusion-time attenuation curves (TACs)-of regions-of-interest (ROIs) using xray C-arm angiography system with no gantry rotation but with a priori. The previous study revealed a problem of large oscillations in the estimated TACs and the lack of comparison with CT-based approaches. Thus the purposes of this study were (1) to reduce the variance of TDCs; and (2) to compare the performance of the improved PAP with that of the CT-based perfusion method. Our computer simulation study showed that the standard deviation of PAP method was decreased by 10.7-59.0% and that it outperformed (20× or 200× times) higher dose CT methods in terms of the accuracy, variance, and the temporal resolution.

  14. Parallel imaging for first-pass myocardial perfusion.

    PubMed

    Irwan, Roy; Lubbers, Daniël D; van der Vleuten, Pieter A; Kappert, Peter; Götte, Marco J W; Sijens, Paul E

    2007-06-01

    Two parallel imaging methods used for first-pass myocardial perfusion imaging were compared in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and image artifacts. One used adaptive Time-adaptive SENSitivity Encoding (TSENSE) and the other used GeneRalized Autocalibrating Partially Parallel Acquisition (GRAPPA), which are both applied to a gradient-echo sequence. Both methods were tested on 12 patients with coronary artery disease. The order of perfusion sequences was inverted in every other patient. Image acquisition was started during the administration of a contrast bolus followed by a 20-ml saline flush (3 ml/s), and the next perfusion was started at least 15 min thereafter using an identical bolus. An acceleration rate of 2 was used in both methods, and acquisition was performed during breath-holding. Significantly higher SNR, CNR and image quality were obtained with GRAPPA images than with TSENSE images. GRAPPA, however, did not yield a higher CNR when applied after the second bolus. GRAPPA perfusion imaging produced larger differences between subjects than did TSENSE. Compared to TSENSE, GRAPPA produced significantly better CNR on the first bolus. More consistent SNR and CNR were obtained from TSENSE images than from GRAPPA images, indicating that the diagnostic value of TSENSE may be better.

  15. Above and beyond short-term mating, long-term mating is uniquely tied to human personality.

    PubMed

    Holtzman, Nicholas S; Strube, Michael J

    2013-12-16

    To what extent are personality traits and sexual strategies linked? The literature does not provide a clear answer, as it is based on the Sociosexuality model, a one-dimensional model that fails to measure long-term mating (LTM). An improved two-dimensional model separately assesses long-term and short-term mating (STM; Jackson and Kirkpatrick, 2007). In this paper, we link this two-dimensional model to an array of personality traits (Big 5, Dark Triad, and Schizoid Personality). We collected data from different sources (targets and peers; Study 1), and from different nations (United States, Study 1; India, Study 2). We demonstrate for the first time that, above and beyond STM, LTM captures variation in personality.

  16. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term

    PubMed Central

    Mittal, Pooja; Romero, Roberto; Tarca, Adi L.; Gonzalez, Juan; Draghici, Sorin; Xu, Yi; Dong, Zhong; Nhan-Chang, Chia-Ling; Chaiworapongsa, Tinnakorn; Lye, Stephen; Kusanovic, Juan Pedro; Lipovich, Leonard; Mazaki-Tovi, Shali; Hassan, Sonia S.; Mesiano, Sam; Kim, Chong Jai

    2011-01-01

    Aims To characterize the transcriptome of human myometrium during spontaneous labor at term. Methods Myometrium was obtained from women with (n=19) and without labor (n=20). Illumina® HumanHT-12 microarrays were utilized. Moderated t-tests and False Discovery Rate adjustment of p-values were applied. qRT-PCR was performed for a select set of differentially expressed genes in a separate set of samples. ELISA and Western Blot were utilized to confirm differential protein production in a third sample set. Results 1) 471 genes were differentially expressed; 2) Gene Ontology analysis indicated enrichment of 103 biological processes and 18 molecular functions including: a) inflammatory response; b) cytokine activity; and c) chemokine activity; 3) systems biology pathway analysis using Signaling Pathway Impact Analysis indicated 6 significant pathways: a) cytokine-cytokine receptor interaction; b) Jak-Stat signaling; and c) complement and coagulation cascades; d) NOD-like receptor signaling pathway; e) Systemic Lupus Erythematosus; and f) Chemokine signaling pathway; 3) qRT-PCR confirmed over-expression of prostaglandin-endoperoxide synthase-2 (PTGS2/COX2), heparin binding EGF-like growth factor (HBEGF), chemokine C-C motif ligand 2 (CCL2/MCP1), leukocyte immunoglobulin-like receptor, subfamily A member 5 (LILRA5/LIR9), IL-8, IL-6, chemokine C-X-C motif ligand 6 (CXCL6/GCP2), nuclear factor of kappa light chain gene enhancer in B-cells inhibitor zeta (NFKBIZ), suppressor of cytokine signaling 3 (SOCS3) and decreased expression of FK506 binding-protein 5 (FKBP5) and aldehyde dehydrogenase (ALDH2) in labor; 4) IL-6, CXCL6, CCL2 and SOCS3 protein expression was significantly higher in the term labor group compared to the term not in labor group. Conclusions Myometrium of women in spontaneous labor at term is characterized by a stereotypic gene expression pattern consistent with over-expression of the inflammatory response and leukocyte chemotaxis. Differential gene

  17. Engineering Cell-Material Interfaces for Long-term Expansion of Human Pluripotent Stem Cells

    PubMed Central

    Chang, Chien-Wen; Hwang, Yongsung; Brafman, Dave; Hagan, Thomas; Phung, Catherine; Varghese, Shyni

    2014-01-01

    Cost-effective and scalable synthetic matrices that support long-term expansion of human pluripotent stem cells (hPSCs) have many applications, ranging from drug screening platforms to regenerative medicine. Here, we report the development of a hydrogel-based matrix containing synthetic heparin-mimicking moieties that supports the long-term expansion of hPSCs (≥20 passages) in a chemically defined medium. HPSCs expanded on this synthetic matrix maintained their characteristic morphology, colony forming ability, karyotypic stability, and differentiation potential. We also used the synthetic matrix as a platform to investigate the effects of various physicochemical properties of the extracellular environment on the adhesion, growth, and self-renewal of hPSCs. The observed cellular responses can be explained in terms of matrix interface-mediated binding of extracellular matrix proteins, growth factors, and other cell secreted factors, which create an instructive microenvironment to support self-renewal of hPSCs. These synthetic matrices, which comprise of “off-the-shelf” components and are easy to synthesize, provide an ideal tool to elucidate the molecular mechanisms that control stem cell fate. PMID:23131532

  18. Long-term impacts of unconventional drilling operations on human and animal health.

    PubMed

    Bamberger, Michelle; Oswald, Robert E

    2015-01-01

    Public health concerns related to the expansion of unconventional oil and gas drilling have sparked intense debate. In 2012, we published case reports of animals and humans affected by nearby drilling operations. Because of the potential for long-term effects of even low doses of environmental toxicants and the cumulative impact of exposures of multiple chemicals by multiple routes of exposure, a longitudinal study of these cases is necessary. Twenty-one cases from five states were followed longitudinally; the follow-up period averaged 25 months. In addition to humans, cases involved food animals, companion animals and wildlife. More than half of all exposures were related to drilling and hydraulic fracturing operations; these decreased slightly over time. More than a third of all exposures were associated with wastewater, processing and production operations; these exposures increased slightly over time. Health impacts decreased for families and animals moving from intensively drilled areas or remaining in areas where drilling activity decreased. In cases of families remaining in the same area and for which drilling activity either remained the same or increased, no change in health impacts was observed. Over the course of the study, the distribution of symptoms was unchanged for humans and companion animals, but in food animals, reproductive problems decreased and both respiratory and growth problems increased. This longitudinal case study illustrates the importance of obtaining detailed epidemiological data on the long-term health effects of multiple chemical exposures and multiple routes of exposure that are characteristic of the environmental impacts of unconventional drilling operations. PMID:25734821

  19. Transcriptomic signatures of villous cytotrophoblast and syncytiotrophoblast in term human placenta.

    PubMed

    Rouault, Christine; Clément, Karine; Guesnon, Mickael; Henegar, Corneliu; Charles, Marie-Aline; Heude, Barbara; Evain-Brion, Danièle; Degrelle, Séverine A; Fournier, Thierry

    2016-08-01

    During pregnancy, the placenta ensures multiple functions, which are directly involved in the initiation, fetal growth and outcome of gestation. The placental tissue involved in maternal-fetal exchanges and in synthesis of pregnancy hormones is the mononucleated villous cytotrophoblast (VCT) which aggregates and fuses to form and renew the syncytiotrophoblast (ST). Knowledge of the gene expression pattern specific to this endocrine and exchanges tissue of human placenta is of major importance to understand functions of this heterogeneous and complex tissue. Therefore, we undertook a global analysis of the gene expression profiles of primary cultured-VCT (n = 6) and in vitro-differentiated-ST (n = 5) in comparison with whole term placental tissue from which mononucleated VCT were isolated. A total of 880 differentially expressed genes (DEG) were observed between VCT/ST compared to whole placenta, and a total of 37 and 137 genes were significantly up and down-regulated, respectively, in VCT compared to ST. The 37 VCT-genes were involved in cellular processes (assembly, organization, and maintenance), whereas the 137 ST-genes were associated with lipid metabolism and cell morphology. In silico, all networks were linked to 3 transcriptional regulators (PPARγ, RARα and NR2F1) which are known to be essential for trophoblast differentiation. A subset of six DEG was validated by RT-qPCR and four by immunohistochemistry. To conclude, recognition of these pathways is fundamental to increase our understanding of the molecular basis of human trophoblast differentiation. The present study provides for the first time a gene expression signature of the VCT and ST compared to their originated term human placental tissue. PMID:27452442

  20. Long-term impacts of unconventional drilling operations on human and animal health.

    PubMed

    Bamberger, Michelle; Oswald, Robert E

    2015-01-01

    Public health concerns related to the expansion of unconventional oil and gas drilling have sparked intense debate. In 2012, we published case reports of animals and humans affected by nearby drilling operations. Because of the potential for long-term effects of even low doses of environmental toxicants and the cumulative impact of exposures of multiple chemicals by multiple routes of exposure, a longitudinal study of these cases is necessary. Twenty-one cases from five states were followed longitudinally; the follow-up period averaged 25 months. In addition to humans, cases involved food animals, companion animals and wildlife. More than half of all exposures were related to drilling and hydraulic fracturing operations; these decreased slightly over time. More than a third of all exposures were associated with wastewater, processing and production operations; these exposures increased slightly over time. Health impacts decreased for families and animals moving from intensively drilled areas or remaining in areas where drilling activity decreased. In cases of families remaining in the same area and for which drilling activity either remained the same or increased, no change in health impacts was observed. Over the course of the study, the distribution of symptoms was unchanged for humans and companion animals, but in food animals, reproductive problems decreased and both respiratory and growth problems increased. This longitudinal case study illustrates the importance of obtaining detailed epidemiological data on the long-term health effects of multiple chemical exposures and multiple routes of exposure that are characteristic of the environmental impacts of unconventional drilling operations.

  1. Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex

    NASA Technical Reports Server (NTRS)

    Chen, W. R.; Lee, S.; Kato, K.; Spencer, D. D.; Shepherd, G. M.; Williamson, A.

    1996-01-01

    The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.

  2. Susceptibility-Based Analysis Of Dynamic Gadolinium Bolus Perfusion MRI

    PubMed Central

    Bonekamp, David; Barker, Peter B.; Leigh, Richard; van Zijl, Peter C.M.; Li, Xu

    2014-01-01

    Purpose An algorithm is developed for the reconstruction of dynamic, gadolinium (Gd) bolus MR perfusion images of the human brain, based on quantitative susceptibility mapping (QSM). Methods The method is evaluated in 5 perfusion scans obtained from 4 different patients scanned at 3T, and compared to the conventional analysis based on changes in the transverse relaxation rate ΔR2* and to theoretical predictions. QSM images were referenced to ventricular CSF for each dynamic of the perfusion sequence. Results Images of cerebral blood flow and blood volume were successfully reconstructed from the QSM-analysis, and were comparable to those reconstructed using ΔR2*. The magnitudes of the Gd-associated susceptibility effects in gray and white matter were consistent with theoretical predictions. Conclusion QSM-based analysis may have some theoretical advantages compared to ΔR2*, including a simpler relationship between signal change and Gd concentration. However, disadvantages are its much lower contrast-to-noise ratio, artifacts due to respiration and other effects, and more complicated reconstruction methods. More work is required to optimize data acquisition protocols for QSM-based perfusion imaging. PMID:24604343

  3. A review on electrical impedance tomography for pulmonary perfusion imaging.

    PubMed

    Nguyen, D T; Jin, C; Thiagalingam, A; McEwan, A L

    2012-05-01

    Although electrical impedance tomography (EIT) for ventilation monitoring is on the verge of clinical trials, pulmonary perfusion imaging with EIT remains a challenge, especially in spontaneously breathing subjects. In anticipation of more research on this subject, we believe a thorough review is called for. In this paper, findings related to the physiological origins and electrical characteristics of this signal are summarized, highlighting properties that are particularly relevant to EIT. The perfusion impedance change signal is significantly smaller in amplitude compared with the changes due to ventilation. Therefore, the hardware used for this purpose must be more sensitive and more resilient to noise. In previous works, some signal- or image-processing methods have been required to separate these two signals. Three different techniques are reviewed in this paper, including the ECG-gating method, frequency-domain-filtering-based methods and a principal-component-analysis-based method. In addition, we review a number of experimental studies on both human and animal subjects that employed EIT for perfusion imaging, with promising results in the diagnosis of pulmonary embolism (PE) and pulmonary arterial hypertension as well as other potential applications. In our opinion, PE is most likely to become the main focus for perfusion EIT in the future, especially for heavily instrumented patients in the intensive care unit (ICU).

  4. Disposition kinetics of diclofenac in the dual perfused rat liver.

    PubMed

    Sahin, Selma; Rowland, Malcolm

    2013-09-01

    This study investigates the hepatic disposition of diclofenac as a function of route of input: portal vein (PV) versus hepatic artery (HA) in the presence of its binding protein, albumin. The in situ dual perfused rat liver was performed using Krebs bicarbonate buffer containing human serum albumin (HSA, 0.25%-1%) at constant PV (12 mL/min) and HA (3 mL/min) flow rates. Bolus doses of [(14) C]-diclofenac and (125) I-labeled HSA were injected randomly into the HA or PV and then, after an appropriate interval, into the alternate vessel. Regardless of route of input and perfusion medium protein concentration, the hepatic outflow profile of diclofenac displayed a characteristic sharp peak followed by a slower eluting tail, indicating that its radial distribution is not instantaneous. Based on the estimated effective permeability-surface area product/blood flow ratio, hepatic uptake of diclofenac is governed by both perfusion and permeability. Fractional effluent recovery (F) increased as unbound diclofenac fraction in the perfusate decreased. Although no significant difference in hepatic clearance of diclofenac as a function of route of delivery at 0.5% and 1% HSA, it was demonstrable at 0.25% HSA (p < 0.001), when the extraction ratio is higher.

  5. Intestinal perfusion monitoring using photoplethysmography

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-08-01

    In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed.

  6. Long-term human response to uncertain environmental conditions in the Andes

    PubMed Central

    Dillehay, Tom D.; Kolata, Alan L.

    2004-01-01

    Human interaction with the physical environment has increasingly transformed Earth-system processes. Reciprocally, climate anomalies and other processes of environmental change of natural and anthropogenic origin have been affecting, and often disrupting, societies throughout history. Transient impact events, despite their brevity, can have significant long-term impact on society, particularly if they occur in the context of ongoing, protracted environmental change. Major climate events can affect human activities in critical conjunctures that shape particular trajectories of social development. Here we report variable human responses to major environmental events in the Andes with a particular emphasis on the period from anno Domini 500–1500 on the desert north coast of Perú. We show that preindustrial agrarian societies implemented distinct forms of anticipatory response to environmental change and uncertainty. We conclude that innovations in production strategies and agricultural infrastructures in these indigenous societies reflect differential social response to both transient (El Niño–Southern Oscillation events) and protracted (desertification) environmental change. PMID:15024122

  7. Factors implicated in the initiation of human parturition in term and preterm labor: a review.

    PubMed

    Ravanos, Konstantinos; Dagklis, Themistoklis; Petousis, Stamatios; Margioula-Siarkou, Chrysoula; Prapas, Yannis; Prapas, Nikolaos

    2015-01-01

    After accommodating the pregnancy for an average of 40 weeks, the uterus expels the fetus, the placenta and the membranes through the birth canal in a process named parturition. The absolute sequence of events that trigger and sustain human parturition are not yet fully clarified. Evidence suggests that spontaneous preterm and term labor seem to share a common inflammatory pathway. However, there are several other factors being involved in the initiation of human parturition. Placental corticotropin releasing hormone production seems to serve as a placental clock that might be set to ring earlier or later determining the duration of pregnancy and timing of labor. Estrogens do not cause contractions but their properties seem to capacitate uterus to coordinate and enhance contractions. Cytokines, prostaglandins, nitric oxide and steroids seem also to induce ripening by mediating remodeling of the extracellular matrix and collagen. Infection and microbe invasion resulting in chorioamnionitis also represents a common cause of early preterm labour. This review provides an overview of all these factors considered to be implicated in the initiation of human parturition.

  8. A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells

    PubMed Central

    Zhang, Rong; Mjoseng, Heidi K.; Hoeve, Marieke A.; Bauer, Nina G.; Pells, Steve; Besseling, Rut; Velugotla, Srinivas; Tourniaire, Guilhem; Kishen, Ria E. B.; Tsenkina, Yanina; Armit, Chris; Duffy, Cairnan R. E.; Helfen, Martina; Edenhofer, Frank; de Sousa, Paul A.; Bradley, Mark

    2013-01-01

    Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth, while mechanical, enzymatic or chemical cell dissociation methods are used for cellular passaging. However, these methods are ill defined, thus introducing variability into the system, and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate, which support long-term human embryonic stem cell growth and pluripotency over a period of 2–6 months. The hydrogels permitted gentle, reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used, undefined biological substrates represent a flexible and scalable approach for improving the definition, efficacy and safety of human embryonic stem cell culture systems for research, industrial and clinical applications. PMID:23299885

  9. Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas

    PubMed Central

    Yabe, Shinichiro; Alexenko, Andrei P.; Amita, Mitsuyoshi; Yang, Ying; Schust, Danny J.; Ezashi, Toshihiko; Roberts, R. Michael

    2016-01-01

    Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds, an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation, areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast, each with the potential to transport a wide range of solutes and synthesize placental hormones, their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall. PMID:27051068

  10. Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas.

    PubMed

    Yabe, Shinichiro; Alexenko, Andrei P; Amita, Mitsuyoshi; Yang, Ying; Schust, Danny J; Sadovsky, Yoel; Ezashi, Toshihiko; Roberts, R Michael

    2016-05-10

    Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds, an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation, areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast, each with the potential to transport a wide range of solutes and synthesize placental hormones, their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall. PMID:27051068

  11. An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture.

    PubMed

    Xu, Zhang-Run; Yang, Chun-Guang; Liu, Cui-Hong; Zhou, Zhe; Fang, Jin; Wang, Jian-Hua

    2010-01-15

    A novel microfluidic chip integrating an osmosis-based micro-pump was developed and used for perfusion cell culture. The micro-pump includes two sealed chambers, i.e., the inner osmotic reagent chamber and the outer water chamber, sandwiching a semi-permeable membrane. The water in the outer chamber was forced to flow through the membrane into the inner chamber via osmosis, facilitating continuous flow of fluidic zone in the channel. An average flow rate of 0.33microLmin(-1) was obtained within 50h along with a precision of 4.3% RSD (n=51) by using a 100mgmL(-1) polyvinylpyrrolidone (PVP) solution as the osmotic driving reagent and a flow passage area of 0.98cm(2) of the semi-permeable membrane. The power-free micro-pump has been demonstrated to be pulse-free offering stable flow rates during long-term operation. The present microfluidic chip has been successfully applied for the perfusion culture of human colorectal carcinoma cell by continuously refreshing the culture medium with the osmotic micro-pump. In addition, in situ cell immunostaining was also performed on the microchip by driving all the reagent zones with the integrated micro-pump.

  12. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.

    PubMed

    Hung, Paul J; Lee, Philip J; Sabounchi, Poorya; Lin, Robert; Lee, Luke P

    2005-01-01

    We present for the first time a microfluidic cell culture array for long-term cellular monitoring. The 10 x 10 array could potentially assay 100 different cell-based experiments in parallel. The device was designed to integrate the processes used in typical cell culture experiments on a single self-contained microfluidic system. Major functions include repeated cell growth/passage cycles, reagent introduction, and real-time optical analysis. The single unit of the array consists of a circular microfluidic chamber, multiple narrow perfusion channels surrounding the main chamber, and four ports for fluidic access. Human carcinoma (HeLa) cells were cultured inside the device with continuous perfusion of medium at 37 degrees C. The observed doubling time was 1.4 +/- 0.1 days with a peak cell density of approximately 2.5*10(5) cells/cm(2). Cell assay was demonstrated by monitoring the fluorescence localization of calcein AM from 1 min to 10 days after reagent introduction. Confluent cell cultures were passaged within the microfluidic chambers using trypsin and successfully regrown, suggesting a stable culture environment suitable for continuous operation. The cell culture array could offer a platform for a wide range of assays with applications in drug screening, bioinformatics, and quantitative cell biology. PMID:15580587

  13. UV exposure modulates hemidesmosome plasticity, contributing to long-term pigmentation in human skin.

    PubMed

    Coelho, Sergio G; Valencia, Julio C; Yin, Lanlan; Smuda, Christoph; Mahns, Andre; Kolbe, Ludger; Miller, Sharon A; Beer, Janusz Z; Zhang, Guofeng; Tuma, Pamela L; Hearing, Vincent J

    2015-05-01

    Human skin colour, ie pigmentation, differs widely among individuals, as do their responses to various types of ultraviolet radiation (UV) and their risks of skin cancer. In some individuals, UV-induced pigmentation persists for months to years in a phenomenon termed long-lasting pigmentation (LLP). It is unclear whether LLP is an indicator of potential risk for skin cancer. LLP seems to have similar features to other forms of hyperpigmentation, eg solar lentigines or age spots, which are clinical markers of photodamage and risk factors for precancerous lesions. To investigate what UV-induced molecular changes may persist in individuals with LLP, clinical specimens from non-sunburn-inducing repeated UV exposures (UVA, UVB or UVA + UVB) at 4 months post-exposure (short-term LLP) were evaluated by microarray analysis and dataset mining. Validated targets were further evaluated in clinical specimens from six healthy individuals (three LLP+ and three LLP-) followed for more than 9 months (long-term LLP) who initially received a single sunburn-inducing UVA + UVB exposure. The results support a UV-induced hyperpigmentation model in which basal keratinocytes have an impaired ability to remove melanin that leads to a compensatory mechanism by neighbouring keratinocytes with increased proliferative capacity to maintain skin homeostasis. The attenuated expression of SOX7 and other hemidesmosomal components (integrin α6β4 and plectin) leads to increased melanosome uptake by keratinocytes and points to a spatial regulation within the epidermis. The reduced density of hemidesmosomes provides supporting evidence for plasticity at the epidermal-dermal junction. Altered hemidesmosome plasticity, and the sustained nature of LLP, may be mediated by the role of SOX7 in basal keratinocytes. The long-term sustained subtle changes detected are modest, but sufficient to create dramatic visual differences in skin colour. These results suggest that the hyperpigmentation phenomenon

  14. Ultrasound perfusion signal processing for tumor detection

    NASA Astrophysics Data System (ADS)

    Kim, MinWoo; Abbey, Craig K.; Insana, Michael F.

    2016-04-01

    Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity and a sign of a potential malignancy. Ultrasonic pulsed-Doppler imaging is a preferred modality for noninvasive monitoring of blood flow. However, the weak blood echoes and disorganized slow flow make it difficult to detect perfusion using standard methods without the expense and risk of contrast enhancement. Our research measures the efficiency of conventional power-Doppler (PD) methods at discriminating flow states by comparing measurement performance to that of an ideal discriminator. ROC analysis applied to the experimental results shows that power Doppler methods are just 30-50 % efficient at perfusion flows less than 1ml/min, suggesting an opportunity to improve perfusion assessment through signal processing. A new perfusion estimator is proposed by extending the statistical discriminator approach. We show that 2-D perfusion color imaging may be enhanced using this approach.

  15. Functional MRI detects perfusion impairment in renal allografts with delayed graft function.

    PubMed

    Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar

    2015-06-15

    Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF.

  16. Towards a computational reconstruction of the electrodynamics of premature and full term human labour.

    PubMed

    Aslanidi, O; Atia, J; Benson, A P; van den Berg, H A; Blanks, A M; Choi, C; Gilbert, S H; Goryanin, I; Hayes-Gill, B R; Holden, A V; Li, P; Norman, J E; Shmygol, A; Simpson, N A B; Taggart, M J; Tong, W C; Zhang, H

    2011-10-01

    We apply virtual tissue engineering to the full term human uterus with a view to reconstruction of the spatiotemporal patterns of electrical activity of the myometrium that control mechanical activity via intracellular calcium. The three-dimensional geometry of the gravid uterus has been reconstructed from segmented in vivo magnetic resonance imaging as well as ex vivo diffusion tensor magnetic resonance imaging to resolve fine scale tissue architecture. A late-pregnancy uterine smooth muscle cell model is constructed and bursting analysed using continuation algorithms. These cell models are incorporated into partial differential equation models for tissue synchronisation and propagation. The ultimate objective is to develop a quantitative and predictive understanding of the mechanisms that initiate and regulate labour.

  17. [EFFECT OF SHORT-TERM DRY IMMERSION ON PROTEOLYTIC SIGNALING IN HUMAN SOLEUS MUSCLE].

    PubMed

    Vil'chinskaya N A; Mirzoev, T M; Lomonosova, Yu N; Kozlovskaya, I B; Shenkman, B S

    2016-01-01

    The signaling processes initiating proteolytic events in m. soleus of humans during short-term exposure in the non-weight bearing conditions were analyzed. Dry immersion (DI) was used to induce weight deprivation over 3 days. Western blotting was used to define the IRS-1 content, total and phosphorylated neuronal NO-synthase (nNOS), AMP-activated protein kinase (AMPK) that control the anabolic and catabolic pathways, and concentrations of cytoskeletal protein desmin and Ca²⁺-activated protease calpin. Already on day-3 of DI calpain-dependent proteolysis manifests itself by reductions in both the total content and level of nNOS phosphorilation. Moreover, AMPK phosphorilation was decreased drastically. PMID:27344854

  18. Long-term subculture of human keratinocytes under an anoxic condition.

    PubMed

    Kino-oka, Masahiro; Agatahama, Yuka; Haga, Yuki; Inoie, Masukazu; Taya, Masahito

    2005-07-01

    The serial subculturing of human keratinocyte cells under the anoxic and normoxic conditions was examined. The cumulative number of population doublings in the subcultures under the former condition increased 2.1-fold while maintaining an appreciable growth rate of cells, as compared with that under the latter condition. Moreover, the migration ability, which was estimated by the rotation rate of paired cells, was maintained accompanied by fully developed filopodia of F-actin filaments under the anoxic condition, despite of the poor development of stress fibers at the center of the cellular body. The cells passaged under the anoxic condition possessed the sufficient clonogenic potential to form epithelial sheets, supporting the view that the long-term subculture of keratinocytes under the anoxic condition can be applied for cell expansion in the practical production of epithelial sheets.

  19. Perfusion patterns of ischemic stroke on computed tomography perfusion.

    PubMed

    Lin, Longting; Bivard, Andrew; Parsons, Mark W

    2013-09-01

    CT perfusion (CTP) has been applied increasingly in research of ischemic stroke. However, in clinical practice, it is still a relatively new technology. For neurologists and radiologists, the challenge is to interpret CTP results properly in the context of the clinical presentation. In this article, we will illustrate common CTP patterns in acute ischemic stroke using a case-based approach. The aim is to get clinicians more familiar with the information provided by CTP with a view towards inspiring them to incorporate CTP in their routine imaging workup of acute stroke patients.

  20. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    PubMed Central

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  1. Effects of long term supplementation of anabolic androgen steroids on human skeletal muscle.

    PubMed

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  2. The effect of initial and dynamic liver conditions on RF ablation size: a study in perfused and non-perfused animal models

    NASA Astrophysics Data System (ADS)

    Belous, Anna; Podhajsky, Ronald J.

    2009-02-01

    Investigators reporting RF ablation (RFA) studies often use different initial and dynamic conditions, often in porcine or bovine liver models. This study examines the effects of initial temperature, prior freezing, and perfusion in these models. Understanding how these variables affect RFA size provides some basis for comparing data from different studies. We obtained porcine and bovine livers from a slaughterhouse and divided them into experimental groups each with discrete initial temperatures set in the range of 12 to 37°C. The livers were used either the day of harvest or frozen within 1-3 days prior to RFA treatment. A perfused liver model was developed to simulate human blood flow rates and allowed accurate control of the temperature and flow rate. Saline (0.9%) was substituted for blood. The non-perfused liver model group included bovine and porcine tissue; whereas the perfused liver model group included only porcine tissue. One experiment included porcine livers that were perfused at different flow rates and with different saline concentrations. Harvested tissue from this group was examined under a light microscope and the level of edema was assessed using image processing software. The results demonstrate no significant difference in RF lesion sizes between porcine and bovine livers. Freezing the tissue prior to treatment has no significant effect but the initial temperature does significantly affect the size of ablation. The ablation size in perfused liver is similar to in vivo results (earlier study) but is significantly smaller then non-perfused liver. Morphological analysis indicates that perfusion, freezing, and saline concentration cause significant tissue edema.

  3. LONG-TERM HUMAN PLURIPOTENT STEM CELL SELF-RENEWAL ON SYNTHETIC POLYMER SURFACES

    PubMed Central

    Brafman, DA; Chang, CW; Fernandez, A; Willert, K; Varghese, S; Chien, S

    2010-01-01

    Realization of the full potential of human pluripotent stem cells (hPSCs) in regenerative medicine requires the development of well-defined culture conditions for their long-term growth and directed differentiation. Current practices for maintaining hPSCs generally utilize empirically determined combinations of feeder cells and other animal-based products, which are expensive, difficult to isolate, subject to batch-to-batch variations, and unsuitable for cell-based therapies. Using a high-throughput screening approach, we identified several polymers that can support self-renewal of hPSCs. While most of these polymers provide support for only a short period of time, we identified a synthetic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-alt-MA) that supported attachment, proliferation and self-renewal of HUES1, HUES9, and iPSCs over five passages. The hPSCs cultured on PMVE-alt-MA maintained their characteristic morphology, expressed high levels of markers of pluripotency, and retained a normal karyotype. Such cost-effective, polymer-based matrices that support long-term self-renewal and proliferation of hPSCs will not only help to accelerate the translational perspectives of hPSCs, but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation. PMID:20817292

  4. Isolation of Hofbauer Cells from Human Term Placentas with High Yield and Purity

    PubMed Central

    Tang, Zhonghua; Tadesse, Serkalem; Norwitz, Errol; Mor, Gil; Abrahams, Vikki M.; Guller, Seth

    2011-01-01

    Problem Placental villus macrophages (i.e. Hofbauer cells, HBCs) were identified more than 100 years ago. Alterations in their numbers and characteristics are associated with several complications of pregnancy. Although HBCs have previously been isolated and cultured, there is no consensus methodology to obtain these cells with high yield and purity for in vitro studies. Method of Study HBCs were isolated from human term placentas using protocols in which cytotrophoblasts (CTs) and fibroblasts (FIBs), other major villous cell types, were isolated in parallel. Enzymatic digestion, Percoll gradients, and immunoselection were used to isolate the three cell types. Purity was assessed by morphology, flow cytometry, and in phagocytosis assays. Results HBCs were isolated with 98–99% purity and a yield of 130–200 ×106 cells/80 to 100 g of tissue. HBCs exhibited a pleiomorphic and vacuolated appearance for at least 5 days in culture medium with and without serum. High levels of phagocytosis in HBCs, but not in CTs, or FIBs, confirmed macrophage function in HBCs. Phagocytotic activity was maintained across several days in culture. Conclusion HBCs were isolated from term placenta with high yield and purity using protocols in which CTs and FIBs were also obtained. This methodology will foster future studies which examine the role of HBCs in regulating villus function. PMID:21545365

  5. [Biomechanical characteristics of human fetal membranes. Preterm fetal membranes are stronger than term fetal membranes].

    PubMed

    Rangaswamy, N; Abdelrahim, A; Moore, R M; Uyen, L; Mercer, B M; Mansour, J M; Kumar, D; Sawady, J; Moore, J J

    2011-06-01

    The purpose of this study was to determine the biomechanical characteristics of human fetal membranes (FM) throughout gestation. Biomechanical properties were determined for 115 FM of 23-41 weeks gestation using our previously described methodology. The areas of membrane immediately adjacent to the strongest and weakest tested spots were sampled for histomorphometric analysis. Clinical data on the patients whose FM were examined were also collected. FM less than 28 weeks gestation were associated with higher incidence of abruption and chorioamnionitis. Topographically FM at all gestations had heterogeneous biomechanical characteristics over their surfaces with distinct weak areas. The most premature membranes were the strongest. FM strength represented by rupture force and work to rupture decreased with increasing gestation in both weak and strong regions of FM. This decrease in FM strength was most dramatic at more than 38 weeks gestation. The FM component amnion-chorion sublayers were thinner in the weak areas compared to strong areas. Compared to term FM, preterm FM are stronger but have similar heterogeneous weak and strong areas. Following a gradual increase in FM weakness with increasing gestation, there is a major drop-off at term 38 weeks gestation. The FM weak areas are thinner than the stronger areas. Whether the difference in thickness is enough to account for the strength differences is unknown.

  6. Heat Stress Increases Long-term Human Migration in Rural Pakistan

    PubMed Central

    Mueller, V.; Gray, C.; Kosec, K.

    2014-01-01

    Human migration attributable to climate events has recently received significant attention from the academic and policy communities (1-2). Quantitative evidence on the relationship between individual, permanent migration and natural disasters is limited (3-9). A 21-year longitudinal survey conducted in rural Pakistan (1991-2012) provides a unique opportunity to understand the relationship between weather and long-term migration. We link individual-level information from this survey to satellite-derived measures of climate variability and control for potential confounders using a multivariate approach. We find that flooding—a climate shock associated with large relief efforts—has modest to insignificant impacts on migration. Heat stress, however—which has attracted relatively little relief—consistently increases the long-term migration of men, driven by a negative effect on farm and non-farm income. Addressing weather-related displacement will require policies that both enhance resilience to climate shocks and lower barriers to welfare-enhancing population movements. PMID:25132865

  7. Human Performance in a Realistic Instrument-Control Task during Short-Term Microgravity.

    PubMed

    Steinberg, Fabian; Kalicinski, Michael; Dalecki, Marc; Bock, Otmar

    2015-01-01

    Previous studies have documented the detrimental effects of microgravity on human sensorimotor skills. While that work dealt with simple, laboratory-type skills, we now evaluate the effects of microgravity on a complex, realistic instrument-control skill. Twelve participants controlled a simulated power plant during the short-term microgravity intervals of parabolic flight as well as during level flight. To this end they watched multiple displays, made strategic decisions and used multiple actuators to maximize their virtual earnings from the power plant. We quantified control efficiency as the participants' net earnings (revenue minus expenses), motor performance as hand kinematics and dynamics, and stress as cortisol level, self-assessed mood and self-assessed workload. We found that compared to normal gravity, control efficiency substantially decreased in microgravity, hand velocity slowed down, and cortisol level and perceived physical strain increased, but other stress and motor scores didn't change. Furthermore, control efficiency was not correlated with motor and stress scores. From this we conclude that realistic instrument control was degraded in short-term microgravity. This degradation can't be explained by the motor and/or stress indicators under study, and microgravity affected motor performance differently in our complex, realistic skill than in the simple, laboratory-type skills of earlier studies. PMID:26083473

  8. Effects of human pregnancy on fluid regulation responses to short-term exercise.

    PubMed

    Heenan, Aaron P; Wolfe, Larry A; Davies, Gregory A L; McGrath, Michael J

    2003-12-01

    This study tested the hypothesis that human pregnancy alters fluid and electrolyte regulation responses to acute short-term exercise. Responses of 22 healthy pregnant women (PG; gestational age, 37.0 +/- 0.2 wk) and 17 nonpregnant controls (CG) were compared at rest and during cycling at 70 and 110% of the ventilatory threshold (VT). At rest, ANG II concentration was significantly (P < 0.05) higher in PG vs. CG, whereas plasma osmolality and concentrations of AVP, sodium, and potassium were significantly lower. Atrial natriuretic peptide concentration at rest was similar between groups. ANG II and AVP concentrations increased significantly from rest to 110% VT in CG only, whereas increases in atrial natriuretic peptide concentration were similar between groups. Increases in osmolality, and total protein and albumin concentrations from rest to both work rates were similar between the two groups. PG and CG exhibited similar shifts in fluid during acute short-term exercise, but the increases in ANG II and AVP were absent and attenuated, respectively, during pregnancy. This was attributed to the significantly augmented fluid volume state already present at rest in late gestation.

  9. Human Performance in a Realistic Instrument-Control Task during Short-Term Microgravity

    PubMed Central

    Steinberg, Fabian; Kalicinski, Michael; Dalecki, Marc; Bock, Otmar

    2015-01-01

    Previous studies have documented the detrimental effects of microgravity on human sensorimotor skills. While that work dealt with simple, laboratory-type skills, we now evaluate the effects of microgravity on a complex, realistic instrument-control skill. Twelve participants controlled a simulated power plant during the short-term microgravity intervals of parabolic flight as well as during level flight. To this end they watched multiple displays, made strategic decisions and used multiple actuators to maximize their virtual earnings from the power plant. We quantified control efficiency as the participants’ net earnings (revenue minus expenses), motor performance as hand kinematics and dynamics, and stress as cortisol level, self-assessed mood and self-assessed workload. We found that compared to normal gravity, control efficiency substantially decreased in microgravity, hand velocity slowed down, and cortisol level and perceived physical strain increased, but other stress and motor scores didn’t change. Furthermore, control efficiency was not correlated with motor and stress scores. From this we conclude that realistic instrument control was degraded in short-term microgravity. This degradation can’t be explained by the motor and/or stress indicators under study, and microgravity affected motor performance differently in our complex, realistic skill than in the simple, laboratory-type skills of earlier studies. PMID:26083473

  10. Factors associated with prognosis in human breast cancer. III. Estradiol receptors and short term relapse.

    PubMed

    Pascual, M R; Macías, A; Moreno, L; Lage, A

    1983-01-01

    Prognosis in breast cancer is one of the most important subjects currently studied because of the heterogeneity of the disease even inside the same clinical stage. Estrogen receptor determination in human breast cancer has been recognized as a prognostic factor since it is related to the long-term survival and disease-free interval. In a series of papers concerning prognosis in breast cancer this the third one which includes estrogen receptor determination in the multivariate analysis, because of the limitations of the clinical factor to conform stratification groups. We have analyzed the short term probability of relapse in a group of 136 patients treated for breast cancer. Multivariate stratification analysis was performed with the aid of Bintree computer program, which produces binary splits of the population according to the criterion of maximal reduction of variance and generates a binary stratification tree. Lymph node involvement is the most important prognostic factor in the probability of relapse. Patients without nodal involvement lacking estradiol receptor had 25% of relapse. It is therefore evident that estradiol receptor is a factor of prognostic value even inside node negative patients. PMID:6656962

  11. Human Performance in a Realistic Instrument-Control Task during Short-Term Microgravity.

    PubMed

    Steinberg, Fabian; Kalicinski, Michael; Dalecki, Marc; Bock, Otmar

    2015-01-01

    Previous studies have documented the detrimental effects of microgravity on human sensorimotor skills. While that work dealt with simple, laboratory-type skills, we now evaluate the effects of microgravity on a complex, realistic instrument-control skill. Twelve participants controlled a simulated power plant during the short-term microgravity intervals of parabolic flight as well as during level flight. To this end they watched multiple displays, made strategic decisions and used multiple actuators to maximize their virtual earnings from the power plant. We quantified control efficiency as the participants' net earnings (revenue minus expenses), motor performance as hand kinematics and dynamics, and stress as cortisol level, self-assessed mood and self-assessed workload. We found that compared to normal gravity, control efficiency substantially decreased in microgravity, hand velocity slowed down, and cortisol level and perceived physical strain increased, but other stress and motor scores didn't change. Furthermore, control efficiency was not correlated with motor and stress scores. From this we conclude that realistic instrument control was degraded in short-term microgravity. This degradation can't be explained by the motor and/or stress indicators under study, and microgravity affected motor performance differently in our complex, realistic skill than in the simple, laboratory-type skills of earlier studies.

  12. Differential expression of human placental neurotrophic factors in preterm and term deliveries.

    PubMed

    Dhobale, Madhavi V; Pisal, Hemlata R; Mehendale, Savita S; Joshi, Sadhana R

    2013-12-01

    Neurotrophic factors such as brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are involved in development of the placenta and fetal brain. A series of human and animal studies in our department have shown that micronutrients (folic acid, vitamin B12) and omega 3 fatty acids like DHA are all interlinked in the one carbon cycle. Any alterations in one carbon components will lead to changes in methylation patterns that further affect the gene expression at critical periods of development resulting in complications during pregnancy. This may further contribute to risk for neurodevelopmental disorders in children born preterm. Therefore this study for the first time examines the mRNA levels from preterm and term placentae. A total number of 38 women delivering preterm (<37 weeks gestation) and 37 women delivering at term (=>37 weeks gestation) were recruited. The mRNA levels of BDNF and NGF were analyzed by real time quantitative polymerase chain reaction. Our results indicate that BDNF and NGF mRNA levels were lower in preterm group as compared to term group. There was a positive association of placental BDNF and NGF mRNA levels with cord plasma BDNF and NGF levels. The differential expression of BDNF and NGF gene in preterm placentae may also alter the vascular development in preterm deliveries. Our data suggests that the reduced mRNA levels of BDNF and NGF may possibly be a result of altered epigenetic mechanisms and may have an implication for altered fetal programming in children born preterm. PMID:24076518

  13. Absence of short-term effects of UMTS exposure on the human auditory system.

    PubMed

    Parazzini, Marta; Lutman, Mark E; Moulin, Annie; Barnel, Cécile; Sliwinska-Kowalska, Mariola; Zmyslony, Marek; Hernadi, Istvan; Stefanics, Gabor; Thuroczy, Gyorgy; Ravazzani, Paolo

    2010-01-01

    The aim of this study, which was performed in the framework of the European project EMFnEAR, was to investigate the potential effects of Universal Mobile Telecommunications System (UMTS, also known as 3G) exposure at a high specific absorption rate (SAR) on the human auditory system. Participants were healthy young adults with no hearing or ear disorders. Auditory function was assessed immediately before and after exposure to radiofrequency (RF) radiation, and only the exposed ear was tested. Tests for the assessment of auditory function were hearing threshold level (HTL), distortion product otoacoustic emissions (DPOAE), contralateral suppression of transiently evoked otoacoustic emission (CAS effect on TEOAE), and auditory evoked potentials (AEP). The exposure consisted of speech at a typical conversational level delivered via an earphone to one ear, plus genuine or sham RF-radiation exposure obtained by an exposure system based on a patch antenna and controlled by software. Results from 73 participants did not show any consistent pattern of effects on the auditory system after a 20-min UMTS exposure at 1947 MHz at a maximum SAR over 1 g of 1.75 W/kg at a position equivalent to the cochlea. Analysis entailed a double-blind comparison of genuine and sham exposure. It is concluded that short-term UMTS exposure at this relatively high SAR does not cause measurable immediate effects on the human auditory system. PMID:20041763

  14. Long-term culture system for selective growth of human B-cell progenitors.

    PubMed Central

    Rawlings, D J; Quan, S G; Kato, R M; Witte, O N

    1995-01-01

    We describe a simple reproducible system for enrichment and long-term culture of human B-cell progenitors. Enriched CD34+ cord blood mononuclear cells are seeded onto a murine stromal cell line to establish a biphasic culture system. These cultures are characterized by transient growth of myeloid cells followed by outgrowth of cells highly enriched for early B-cell progenitors. Cultures consisting of > 90% early B-lineage cells [expressing CD10, CD19, CD38, and CD45 but lacking CD20, CD22, CD23, and surface IgM] are maintained for > 12 weeks without growth factor addition. Cells remain predominantly germ line at the immunoglobulin locus and express only low levels of cytoplasmic mu chain, terminal deoxynucleotidyltransferase, and recombination-activating gene 1 product. They are unresponsive to the pre-B-cell growth factors interleukin 7 or stem cell factor, or both, suggesting that growth support is provided by a cross-reactive murine stromal cell factor. Cultured B-cell progenitors are generated in large numbers ( > 10(8) cells from a typical cord blood specimen) suitable for use in biochemical analysis and gene-transfer studies. This system should be useful for study of normal and abnormal early human B-lymphopoiesis. Images Fig. 2 Fig. 3 Fig. 4 PMID:7533295

  15. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations.

    PubMed

    Wang, Nancy X R; Olson, Jared D; Ojemann, Jeffrey G; Rao, Rajesh P N; Brunton, Bingni W

    2016-01-01

    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018

  16. Hemodynamic Effects of Long-term Morphological Changes in the Human Carotid Sinus

    PubMed Central

    Seong, Jaehoon; Jeong, Woowon; Smith, Nataliya; Towner, Rheal A.

    2015-01-01

    Previous investigations of morphology for human carotid artery bifurcation from infancy to young adulthood found substantial growth of the internal carotid artery with advancing age, and the development of the carotid sinus at the root of the internal carotid artery during teen age years. Although the reasons for the appearance of the carotid sinus are not clearly understood yet, it has been hypothesized that the dilation of the carotid sinus serves to support pressure sensing, and slows the blood flow to reduce pulsatility to protect the brain. In order to understand this interesting evolvement at the carotid bifurcation in the aspects of fluid mechanics, we performed in vitro phase-contrast MR flow experiments using compliant silicone replicas of age-dependent carotid artery bifurcations. The silicone models in childhood, adolescence, and adulthood were fabricated using a rapid prototyping technique, and incorporated with a bench-top flow mock circulation loop using a computer-controlled piston pump. The results of the in vitro flow study showed highly complex flow characteristics at the bifurcation in all age-dependent models. However, the highest magnitude of kinetic energy was found at the internal carotid artery in the child model. The high kinetic energy in the internal carotid artery during childhood might be one of the local hemodynamic forces that initiate morphological long-term development of the carotid sinus in the human carotid bifurcation. PMID:25702250

  17. Long-Term Expandable SOX9+ Chondrogenic Ectomesenchymal Cells from Human Pluripotent Stem Cells

    PubMed Central

    Umeda, Katsutsugu; Oda, Hirotsugu; Yan, Qing; Matthias, Nadine; Zhao, Jiangang; Davis, Brian R.; Nakayama, Naoki

    2015-01-01

    Summary Here we report the successful generation and long-term expansion of SOX9-expressing CD271+PDGFRα+CD73+ chondrogenic ectomesenchymal cells from the PAX3/SOX10/FOXD3-expressing MIXL1−CD271hiPDGFRαloCD73− neural crest-like progeny of human pluripotent stem cells in a chemically defined medium supplemented with Nodal/Activin/transforming growth factorβ (TGFβ) inhibitor and fibroblast growth factor (FGF). When “primed” with TGFβ, such cells efficiently formed translucent cartilage particles, which were completely mineralized in 12 weeks in immunocompromized mice. The ectomesenchymal cells were expandable without loss of chondrogenic potential for at least 16 passages. They maintained normal karyotype for at least 10 passages and expressed genes representing embryonic progenitors (SOX4/12, LIN28A/B), cranial mesenchyme (ALX1/3/4), and chondroprogenitors (SOX9, COL2A1) of neural crest origin (SOX8/9, NGFR, NES). Ectomesenchyme is a source of many craniofacial bone and cartilage structures. The method we describe for obtaining a large quantity of human ectomesenchymal cells will help to model craniofacial disorders in vitro and potentially provide cells for the repair of craniofacial damage. PMID:25818812

  18. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations

    PubMed Central

    Wang, Nancy X. R.; Olson, Jared D.; Ojemann, Jeffrey G.; Rao, Rajesh P. N.; Brunton, Bingni W.

    2016-01-01

    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018

  19. Propagation of human germ stem cells in long-term culture

    PubMed Central

    Akhondi, Mohammad Mehdi; Mohazzab, Arash; Jeddi-Tehrani, Mahmood; Sadeghi, Mohammad Reza; Eidi, Akram; Khodadadi, Abbas; Piravar, Zeinab

    2013-01-01

    Background: Spermatogonial stem cells (SSCs), a subset of undifferentiated type A spermatogonia, are the foundation of complex process of spermatogenesis and could be propagated in vitro culture conditions for long time for germ cell transplantation and fertility preservation. Objective: The aim of this study was in vitro propagation of human spermatogonial stem cells (SSCs) and improvement of presence of human Germ Stem Cells (hGSCs) were assessed by specific markers POU domain, class 5, transcription factor 1 (POU5F1), also known as Octamer-binding transcription factor 4 (Oct-4) and PLZF (Promyelocytic leukaemia zinc finger protein). Materials and Methods: Human testicular cells were isolated by enzymatic digestion (Collagenase IV and Trypsin). Germ cells were cultured in Stem-Pro 34 media supplemented by growth factors such as glial cell line-derived neurotrophic factor, basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor to support self-renewal divisions. Germline stem cell clusters were passaged and expanded every week. Immunofluorecent study was accomplished by Anti-Oct4 antibody through the culture. The spermatogonial stem cells genes expression, PLZF, was studied in testis tissue and germ stem cells entire the culture. Results: hGSCs clusters from a brain dead patient developed in testicular cell culture and then cultured and propagated up to 6 weeks. During the culture Oct4 were a specific marker for identification of hGSCs in testis tissue. Expression of PLZF was applied on RNA level in germ stem cells. Conclusion: hGSCs indicated by SSCs specific marker can be cultured and propagated for long-term in vitro conditions. This article extracted from Ph.D. Thesis. (Zeinab Piravar) PMID:24639790

  20. Long-term facilitation of genioglossus activity is present in normal humans during NREM sleep

    PubMed Central

    Chowdhuri, Susmita; Pierchala, Lisa; Aboubakr, Salah E.; Shkoukani, Mahdi; Badr, M. Safwan

    2008-01-01

    Episodic hypoxia (EH) is followed by increased ventilatory motor output in the recovery period indicative of long-term facilitation (LTF). We hypothesized that episodic hypoxia evokes LTF of genioglossus (GG) muscle activity in humans during non-rapid eye movement sleep (NREM) sleep. We studied 12 normal non-flow limited humans during stable NREM sleep. We induced 10 brief (3 minute) episodes of isocapnic hypoxia followed by 5 minutes of room air. Measurements were obtained during control, hypoxia, and at 5, 10, 20, 30 and 40 minutes of recovery, respectively, for minute ventilation (V̇I), supraglottic pressure (PSG), upper airway resistance (RUA) and phasic GG electromyogram (EMGGG). In addition, sham studies were conducted on room air. During hypoxia there was a significant increase in phasic EMGGG (202.7±24.1% of control, p<0.01) and in V̇I (123.0±3.3% of control, p<0.05); however, only phasic EMGGG demonstrated a significant persistent increase throughout recovery (198.9±30.9%, 203.6±29.9% and 205.4±26.4% of control, at 5, 10, and 20 minutes of recovery, respectively, p<0.01). In multivariate regression analysis, age and phasic EMGGG activity during hypoxia were significant predictors of EMGGG at recovery 20 minutes. No significant changes in any of the measured parameters were noted during sham studies. Conclusion: 1) EH elicits LTF of GG in normal non-flow limited humans during NREM sleep, without ventilatory or mechanical LTF. 2) GG activity during the recovery period correlates with the magnitude of GG activation during hypoxia, and inversely with age. PMID:17945544

  1. Effects of ethanol and hyperosmotic perfusates on albumin synthesis and release

    SciTech Connect

    Rothschild, M.A.; Oratz, M.; Schreiber, S.S.; Mongelli, J.

    1986-11-01

    Sucrose and ethanol inhibit albumin synthesis; sucrose via an osmotic mechanism and ethanol during its metabolism. The present study was undertaken to compare the effects of both of these agents on albumin synthesis and secretion, and to see if ethanol inhibition could be related to an osmotic effect. Male, fed rabbits served as liver donors in all studies. There were a total of 35 studies: 13 control; 10 ethanol (39 to 52 mM); 4 cycloheximide (0.5 mM), and 8 sucrose (1%). Plasma volume was measured with /sup 125/I-albumin (human) and extracellular volume measured with either /sup 99m/Tc diethylenetriamine pentaacetic acid or (/sup 14/C)sucrose. During perfusion, rabbit albumin content in the perfusate was measured immunologically every 15 to 30 min for 225 min. Interstitial albumin efflux was measured by the rate of appearance in the perfusate of /sup 125/I-albumin given to 10 other rabbits 3 days prior to hepatic removal and perfusion. During the initial 75 min of perfusion, 74% of the in vivo equilibrated exchangeable /sup 125/I-albumin appeared in the perfusate, and during this period the rabbit albumin that entered the perfusate was taken to represent efflux from the interstitial volume plus synthesis. Rabbit albumin appearing in the perfusate during the later period of 150 min was taken to represent mainly synthesis and was used to calculate the amount of albumin that would be synthesized in 75 min. The difference between these two values would be hepatic interstitial albumin appearing in the perfusate.

  2. The ileal brake--inhibition of jejunal motility after ileal fat perfusion in man.

    PubMed Central

    Spiller, R C; Trotman, I F; Higgins, B E; Ghatei, M A; Grimble, G K; Lee, Y C; Bloom, S R; Misiewicz, J J; Silk, D B

    1984-01-01

    The possibility that malabsorbed fat passing through the human ileum exerts an inhibitory feedback control on jejunal motility has been investigated in 24 normal subjects by perfusing the ileum with a fat containing solution designed to produce ileal luminal fat concentrations similar to those in steatorrhoea (30-40 mg/ml). Mean transit times through a 30 cm saline perfused jejunal segment were measured by a dye dilution technique. Thirty minutes after ileal fat perfusion, mean transit times rose markedly to 18.9 +/- 2.5 minutes from a control value of 7.5 +/- 0.9 minutes (n = 5; p less than 0.05). This was associated with an increase in volume of the perfused segment which rose to 175.1 +/- 22.9 ml (control 97.6 +/- 10.3 ml, n = 5; p less than 0.05). Transit times and segmental volumes had returned towards basal values 90 minutes after completing the fat perfusion. Further studies showed that ileal fat perfusion produced a pronounced inhibition of jejunal pressure wave activity, percentage duration of activity falling from a control level of 40.3 +/- 5.0% to 14.9 +/- 2.8% in the hour after ileal perfusion (p less than 0.01). Ileal fat perfusion was associated with marked rises in plasma enteroglucagon and neurotensin, the peak values (218 +/- 37 and 68 +/- 13.1 pmol/l) being comparable with those observed postprandially in coeliac disease. These observations show the existence in man of an inhibitory intestinal control mechanism, whereby ileal fat perfusion inhibits jejunal motility and delays caudal transit of jejunal contents. PMID:6706215

  3. Intestinal perfusion monitoring using photoplethysmography

    PubMed Central

    Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-01-01

    Abstract. In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed. PMID:23942635

  4. Assessment of myocardial perfusion in patients after the arterial switch operation

    SciTech Connect

    Vogel, M.; Smallhorn, J.F.; Gilday, D.; Benson, L.N.; Ash, J.; Williams, W.G.; Freedom, R.M. )

    1991-02-01

    In 21 patients who had undergone the arterial switch operation, the adequacy of myocardial perfusion was evaluated by thallium-201 computed scintigraphy 2.6 +/- 2 (0.3-7) yr after surgery. Fourteen patients had undergone the arterial switch procedure after pulmonary artery banding and seven as a primary repair. Isoproterenol stress increased the heart rate by at least 55%. Tomographic imaging was performed at peak stress and 3 hr later in the reperfusion phase. Nine patients had perfusion defects. The perfusion defects were located at the left ventricular apex in four (with extension to the inferolateral wall in one), left ventricular anterolateral wall in two, ventricular septum in one, left ventricular inferior wall in one, and right ventricular free wall in one. Some of these defects could be due to myocardial damage at the time of surgery, but these results also raise concern about long-term adequacy of myocardial perfusion following the arterial switch procedure.

  5. Volumetric Measurement of Perfusion and Arterial Transit Delay using Hadamard Encoded Continuous Arterial Spin Labeling

    PubMed Central

    Dai, Weiying; Shankaranarayanan, Ajit; Alsop, David C.

    2012-01-01

    Creating images of the transit delay from the labeling location to image tissue can aid the optimization and quantification of arterial spin labeling (ASL) perfusion measurements and may provide diagnostic information independent of perfusion. Unfortunately, measuring transit delay requires acquiring a series of images with different labeling timing that adds to the time cost and increases the noise of the ASL study. Here we implement and evaluate a proposed Hadamard encoding of labeling that speeds the imaging and improves the signal-to-noise ratio (SNR) efficiency. Volumetric images in human volunteers confirmed the theoretical advantages of Hadamard encoding over sequential acquisition of images with multiple labeling timing. Perfusion images calculated from Hadamard encoded acquisition had reduced SNR relative to a dedicated perfusion acquisition with either assumed or separately measured transit delays, however. PMID:22618894

  6. Normothermic machine perfusion of the kidney: better conditioning and repair?

    PubMed

    Hosgood, Sarah A; van Heurn, Ernest; Nicholson, Michael L

    2015-06-01

    Kidney transplantation is limited by hypothermic preservation techniques. Prolonged periods of cold ischaemia increase the risk of early graft dysfunction and reduce long-term survival. To extend the boundaries of transplantation and utilize kidneys from more marginal donors, improved methods of preservation are required. Normothermic perfusion restores energy levels in the kidney allowing renal function to be restored ex vivo. This has several advantages: cold ischaemic injury can be avoided or minimized, the kidney can be maintained in a stable state allowing close observation and assessment of viability and lastly, it provides the ideal opportunity to add therapies to directly manipulate and improve the condition of the kidney. This review explores the experimental and clinical evidence for ex vivo normothermic perfusion in kidney transplantation and its role in conditioning and repair.

  7. Sumatriptan and cerebral perfusion in healthy volunteers.

    PubMed

    Scott, A K; Grimes, S; Ng, K; Critchley, M; Breckenridge, A M; Thomson, C; Pilgrim, A J

    1992-04-01

    1. The effect of sumatriptan on regional cerebral perfusion was studied in healthy volunteers. 2. Intravenous sumatriptan (2 mg) had no detectable effect on regional cerebral perfusion as measured using a SPECT system with 99technetiumm labelled hexemethylpropyleneamineoxime. 3. Sumatriptan had no effect on pulse, blood pressure or ECG indices. 4. All six volunteers experienced minor adverse effects during the intravenous infusion.

  8. Platelet/lymphocyte ratio was associated with impaired myocardial perfusion and both in-hospital and long-term adverse outcome in patients with ST-segment elevation acute myocardial infarction undergoing primary coronary intervention

    PubMed Central

    Tabakci, Mehmet M.; Simsek, Zeki; Arslantas, Ugur; Durmus, Halil I.; Ocal, Lutfi; Demirel, Muhittin; Ozturkeri, Burak; Ozal, Ender; Kargin, Ramazan

    2015-01-01

    Introduction Platelet/lymphocyte ratio (PLR) has been shown to be an inflammatory and thrombotic biomarker for coronary heart disease, but its prognostic value in ST-segment elevation myocardial infarction (STEMI) has not been fully investigated. Aim To investigate the relationship between PLR and no-reflow, along with the in-hospital and long-term outcomes in patients with STEMI. Material and methods In the present study, we included 304 consecutive patients suffering from STEMI who underwent primary percutaneous coronary intervention (p-PCI). Patients were stratified according to PLR tertiles based on the blood samples obtained in the emergency room upon admission. No-reflow after p-PCI was defined as a coronary thrombolysis in myocardial infarction (TIMI) flow grade ≤ 2 after vessel recanalization, or TIMI flow grade 3 together with a final myocardial blush grade (MBG) < 2. Results The mean follow-up period was 24 months (range: 22–26 months). The number of patients characterized with no-reflow was counted to depict increments throughout successive PLR tertiles (14% vs. 20% vs. 45%, p < 0.001). In-hospital major adverse cardiovascular events and death increased as the PLR increased (p < 0.001, p < 0.001). Long-term MACE and death also increased as the PLR increased (p < 0.001, p < 0.001). Multivariable logistic regression analysis revealed that PLR remained an independent predictor for both in-hospital (OR = 1.01, 95% CI: 1.00–1.01; p = 0.002) and major long-term (OR = 1.01, 95% CI: 1.00–1.01; p < 0.001) adverse cardiac events. Conclusions Platelet/lymphocyte ratio on admission is a strong and independent predictor of both the no-reflow phenomenon and long-term prognosis following p-PCI in patients with STEMI. PMID:26677378

  9. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging

    PubMed Central

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-01-01

    Abstract Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning. PMID:26844450

  10. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  11. [Assessing myocardial perfusion with positron emission tomography].

    PubMed

    vom Dahl, J

    2001-11-01

    Positron emission tomography (PET) of the heart has gained widespread scientific and clinical acceptance with regard to two indications: 1) The detection of perfusion abnormalities by qualitative and semiquantitative analyses of perfusion images at rest and during physical or pharmacological stress using well-validated perfusion tracers, such as N-13 ammonia, Rb-82 rubidium chloride, or O-15 labeled water. 2) Viability imaging of myocardial regions with reduced contractility by combining perfusion measurements with substrate metabolism as assessed from F-18 deoxyglucose utilization. This overview summarizes the use of PET as a perfusion imaging method. With a sensitivity > 90% in combination with high specificity, PET is today the best-validated available nuclear imaging technique for the diagnosis of coronary artery disease (CAD). The short half-life of the perfusion tracers in combination with highly sophisticated hard- and software enables rapid PET studies with high patient throughput. The high diagnostic accuracy and the methological advantages as compared to conventional scintigraphy allows one to use PET perfusion imaging to detect subtle changes in the perfusion reserve for the detection of CAD in high risk but asymptomatic patients as well as in patients with proven CAD undergoing various treatment forms such as risk factor reduction or coronary revascularization. In patients following orthotopic heart transplantation, evolving transplant vasculopathy can be detected at an early stage. Quantitative PET imaging at rest allows for detection of myocardial viability since cellular survival is based on maintenance of a minimal perfusion and structural changes correlate to the degree of perfusion reduction. Furthermore, quantitative assessment of the myocardial perfusion reserve detects the magnitude and competence of collaterals in regions with occluded epicardial collaterals and, thus, imaging of several coronary distribution territories in one noninvasive

  12. Optical investigation of functional structures in isolated perfused pig heart

    NASA Astrophysics Data System (ADS)

    Rauh, Robert; Boehnert, Markus; Mahlke, Christine; Kessler, Manfred D.

    2000-11-01

    Light scattering in tissue of mammals and humans is affected by subcellular structures. Since these structures correlate well with the status of cells and tissue, light scattering seems to be ideal for monitoring of functional tissue state. By use of EMPHO SSK Oxyscan we investigated functional parameters in a novel kind of isolated perfused pig heart model. In this perfusion model we use organs obtained by the local slaughterhouse that are reanimated at our institute by application of a heart-lung machine. By creating 3D-images of tissue scattering we found an interesting relation between anatomical structures of myocardium and the 3D-images. Additionally, we detected coherence between backscattered light intensity and functional tissue status. Furthermore, we got a sight into the redox state of cytochrome aa3, b and c by creating difference spectra. We believe that this new kind of tissue imaging method will give us the opportunity to get new insights into myocardial function.

  13. Human cytomegalovirus gene expression in long-term infected glioma stem cells.

    PubMed

    Fiallos, Estefania; Judkins, Jonathon; Matlaf, Lisa; Prichard, Mark; Dittmer, Dirk; Cobbs, Charles; Soroceanu, Liliana

    2014-01-01

    The most common adult primary brain tumor, glioblastoma (GBM), is characterized by fifteen months median patient survival and has no clear etiology. We and others have identified the presence of human cytomegalovirus (HCMV) gene products endogenously expressed in GBM tissue and primary cells, with a subset of viral genes being consistently expressed in most samples. Among these viral genes, several have important oncomodulatory properties, regulating tumor stemness, proliferation, immune evasion, invasion and angiogenesis. These findings lead us to hypothesize that a specific HCMV gene signature may be associated with GBM pathogenesis. To investigate this hypothesis, we used glioma cell lines and primary glioma stem-like cells (GSC) infected with clinical and laboratory HCMV strains and measured relative viral gene expression levels along several time points up to 15 weeks post-infection. While HCMV gene expression was detected in several infected glioma lines through week 5 post-infection, only HCMV-infected GSC expressed viral gene products 15 weeks post-infection. Efficiency of infection across time was higher in GSC compared to cell lines. Importantly, HCMV-infected GSC outlived their uninfected counterparts, and this extended survival was paralleled by increased tumorsphere frequency and upregulation of stemness regulators, such as SOX2, p-STAT3, and BMX (a novel HCMV target identified in this study). Interleukin 6 (IL-6) treatment significantly upregulated HCMV gene expression in long-term infected glioma cultures, suggesting that pro-inflammatory signaling in the tumor milieu may further augment HCMV gene expression and subsequent tumor progression driven by viral-induced cellular signaling. Together, our data support a critical role for long-term, low-level HCMV infection in promoting survival, stemness, and proliferation of GSC that could significantly contribute to GBM pathogenesis. PMID:25549333

  14. Molecular and Immunohistochemical Characterization of Historical Long-Term Preserved Fixed Tissues from Different Human Organs

    PubMed Central

    Hühns, Maja; Röpenack, Paula; Erbersdobler, Andreas

    2015-01-01

    University and museum collections are very important sources of biological samples that can be used to asses the past and present genetic diversity of many species. Modern genetic and immunohistochemical techniques can be used on long-term preserved fixed tissues from museum specimens to answer epidemiological questions. A proof of principle was established to apply modern molecular genetics and immunohistochemical methods to these old specimens and to verify the original diagnosis. We analysed 19 specimens from our university collection including human organs that had been in fixative for more than 80 years. The tissues originated from lung, colon, brain, heart, adrenal gland, uterus and skin. We isolated amplifiable DNA from these wet preparations and performed mutational analysis of BRAF, KRAS and EGFR. The tissues were also embedded in paraffin and used for modern histology and immunohistochemistry. Our data show that amplifiable DNA is extractable and ranged from 0.25 to 22.77 μg of total DNA. In three specimens BRAFV600E or KRASG12D mutations were found. Additionally, expression of different proteins like vimentin and GFAP was detected immunohistochemical in six investigated specimens. On the basis of our results the original diagnosis was altered in three specimens. Our work showed that it is possible to extract amplifiable DNA suitable for sequence analysis from long-term fixed tissue. Furthermore, histology and immunohistochemistry is feasible in specimens fixed long time ago. We conclude that these old preparations are suitable for further epidemiological research and that our methods open up new opportunities for future studies. PMID:26252375

  15. Molecular and Immunohistochemical Characterization of Historical Long-Term Preserved Fixed Tissues from Different Human Organs.

    PubMed

    Hühns, Maja; Röpenack, Paula; Erbersdobler, Andreas

    2015-01-01

    University and museum collections are very important sources of biological samples that can be used to asses the past and present genetic diversity of many species. Modern genetic and immunohistochemical techniques can be used on long-term preserved fixed tissues from museum specimens to answer epidemiological questions. A proof of principle was established to apply modern molecular genetics and immunohistochemical methods to these old specimens and to verify the original diagnosis. We analysed 19 specimens from our university collection including human organs that had been in fixative for more than 80 years. The tissues originated from lung, colon, brain, heart, adrenal gland, uterus and skin. We isolated amplifiable DNA from these wet preparations and performed mutational analysis of BRAF, KRAS and EGFR. The tissues were also embedded in paraffin and used for modern histology and immunohistochemistry. Our data show that amplifiable DNA is extractable and ranged from 0.25 to 22.77 μg of total DNA. In three specimens BRAFV600E or KRASG12D mutations were found. Additionally, expression of different proteins like vimentin and GFAP was detected immunohistochemical in six investigated specimens. On the basis of our results the original diagnosis was altered in three specimens. Our work showed that it is possible to extract amplifiable DNA suitable for sequence analysis from long-term fixed tissue. Furthermore, histology and immunohistochemistry is feasible in specimens fixed long time ago. We conclude that these old preparations are suitable for further epidemiological research and that our methods open up new opportunities for future studies. PMID:26252375

  16. Short-term dietary nitrate supplementation augments cutaneous vasodilatation and reduces mean arterial pressure in healthy humans.

    PubMed

    Keen, Jeremy T; Levitt, Erica L; Hodges, Gary J; Wong, Brett J

    2015-03-01

    Nitrate supplementation in the form of beetroot juice has been shown to increase nitric oxide (NO) where nitrate can be reduced to nitrite and, subsequently, to NO through both nitric oxide synthase (NOS)-dependent and -independent pathways. We tested the hypothesis that nitrate supplementation would augment the NO component of the cutaneous vasodilatation to local skin heating in young, healthy humans. Participants reported to the lab for pre- and post-supplement local heating protocols. Nitrate supplementation consisted of one shot (70 ml) of beetroot juice (0.45 g nitrate; 5mM) for three days. Six participants were equipped with two microdialysis fibers on the ventral forearm and randomly assigned to lactated Ringer's (control) or continuous infusion of 20mM l-NAME (NOS inhibitor). The control site was subsequently perfused with l-NAME once a plateau in skin blood flow was achieved to quantify NOS-dependent cutaneous vasodilatation. Skin blood flow via laser-Doppler flowmetry (LDF) and mean arterial pressure (MAP) were measured; cutaneous vascular conductance (CVC) was calculated as LDF/MAP and normalized to %CVCmax. Beetroot juice reduced MAP (Pre: 90 ± 1 mmHg vs. Post: 83 ± 1 mmHg) and DBP (Pre: 74 ± 2 mmHg vs. Post: 62 ± 3 mmHg) (P<0.05). The plateau phase of the local heating response at control sites was augmented post-beetroot juice (91 ± 5%CVCmax) compared to pre-beetroot juice (79 ± 2%CVCmax) (P<0.05). There was no difference in the %NOS-dependent vasodilatation from pre- to post-beetroot juice. These data suggest that nitrate supplementation via beetroot juice can reduce MAP and DBP as well as augment NOS-independent vasodilatation to local heating in the cutaneous vasculature of healthy humans.

  17. Cortical reorganization after long-term adaptation to retinal lesions in humans.

    PubMed

    Chung, Susana T L

    2013-11-13

    Single-unit recordings demonstrated that the adult mammalian visual cortex is capable of reorganizing after induced retinal lesions. In humans, whether the adult cortex is capable of reorganizing has only been studied using functional magnetic resonance imaging, with equivocal results. Here, we exploited the phenomenon of visual crowding, a major limitation on object recognition, to show that, in humans with long-standing retinal (macular) lesions that afflict the fovea and thus use their peripheral vision exclusively, the signature properties of crowding are distinctly different from those of the normal periphery. Crowding refers to the inability to recognize objects when the object spacing is smaller than the critical spacing. Critical spacing depends only on the retinal location of the object, scales linearly with its distance from the fovea, and is approximately two times larger in the radial than the tangential direction with respect to the fovea, thus demonstrating the signature radial-tangential anisotropy of the crowding zone. Using retinal imaging combined with behavioral measurements, we mapped out the crowding zone at the precise peripheral retinal locations adopted by individuals with macular lesions as the new visual reference loci. At these loci, the critical spacings are substantially smaller along the radial direction than expected based on the normal periphery, resulting in a lower scaling of critical spacing with the eccentricity of the peripheral locus and a loss in the signature radial-tangential anisotropy of the crowding zone. These results imply a fundamental difference in the substrate of cortical processing in object recognition following long-term adaptation to macular lesions.

  18. Reactive oxygen species inhibit polycystin-2 (TRPP2) cation channel activity in term human syncytiotrophoblast.

    PubMed

    Montalbetti, N; Cantero, M R; Dalghi, M G; Cantiello, H F

    2008-06-01

    Pregnancy is often associated with oxidative stress (OS) and lower antioxidant defences, which are both implicated in the pathophysiology of preeclampsia, free radical-induced birth defects, and abortions, as well as gestational diabetes mellitus (GDM), where products of lipid peroxidation are increased. The molecular target(s) of increased oxygen free radicals and consequent lipid peroxidation in the human placenta remains ill defined. The human syncytiotrophoblast (hST) expresses abundant polycystin-2 (PC2, TRPP2), a TRP-type Ca(2+)-permeable non-selective cation channel. Here, we explored the effect of reactive oxygen species (ROS) on PC2 channel activity of term hST. Apical membranes of the hST were reconstituted in a lipid bilayer chamber. Addition of either hydrogen-peroxide (H(2)O(2)) or tert-butyl hydroperoxide (tBHP) to the cis chamber (intracellular side) rapidly and completely inhibited PC2-mediated cation channel activity in reconstituted hST vesicles. A dose-response titration with increasing concentrations of H(2)O(2) gave an IC(50)=131 nM. The effect of H(2)O(2) on the isolated protein from in vitro transcribed/translated material was significantly different. H(2)O(2) inhibited PC2 cation channel activity, with a much lower affinity (IC(50)=193 microM). To correlate these findings with H(2)O(2)-induced lipid peroxidation, TBARS where measured in hST apical membranes incubated with H(2)O(2). Increased TBARS by exposure of hST apical membranes to H(2)O(2) (625 microM) returned to control value in the presence of catalase (167 microg/ml). Taken together these data indicate that ROS affect PC2 channel function by targetting both membrane lipids and the channel protein. Thus, OS in human pregnancy may be linked to dysregulation of channels such as PC2, which allow the transport of Ca(2+) into the placenta. Oxidative complications in pregnancy may implicate dysfunctional cation transfer between mother and fetus. PMID:18417208

  19. Long-term variability and impact on human health of biologically active UV radiation in Moscow

    NASA Astrophysics Data System (ADS)

    Zhdanova, Ekaterina; Chubarova, Natalia

    2014-05-01

    the developed classification for Moscow. Booth, C.R. and S. Madronich, 1994: Radiation amplification factors: improved formulation accounts for large increases in ultraviolet radiation associated with Antarctic ozone depletion. In: Ultraviolet Radiation in Antarctica: Measurements and Biological Research [Weiler, C.S. and P.A. Penhale (eds.)]. AGU Antarctic Research Series, 62, Washington, DC, USA, 39-42. Chubarova N.Y., 2008: UV variability in Moscow according to long-term UV measurements and reconstruction model. Atmos.Chem.Phys., 8, 3025-3031 Oriowo, M. et al., 2001:, Action spectrum for in vitro UV-induced cataract using whole lenses. Invest.Ophthalmol.&Vis.Sci, 42, 2596-2602. CIE, 1993: Reference Action Spectra for Ultraviolet Induced Erythema and Pigmentation of Different Human skin Types. CIE Research Note, CIE Technical Collection., N.3 CIE, 2006: Action spectrum for the production of previtamin D3 in human skin, Technical report 174, International commission on illumination

  20. Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics.

    PubMed

    van den Akker, Chris H P; Schierbeek, Henk; Minderman, Gardi; Vermes, Andras; Schoonderwaldt, Ernst M; Duvekot, Johannes J; Steegers, Eric A P; van Goudoever, Johannes B

    2011-12-01

    Human fetal metabolism is largely unexplored. Understanding how a healthy fetus achieves its fast growth rates could eventually play a pivotal role in improving future nutritional strategies for premature infants. To quantify specific fetal amino acid kinetics, eight healthy pregnant women received before elective cesarean section at term, continuous stable isotope infusions of the essential amino acids [1-13C,15N]leucine, [U-13C5]valine, and [1-13C]methionine. Umbilical blood was collected after birth and analyzed for enrichments and concentrations using mass spectrometry techniques. Fetuses showed considerable leucine, valine, and methionine uptake and high turnover rates. α-Ketoisocaproate, but not α-ketoisovalerate (the leucine and valine ketoacids, respectively), was transported at net rate from the fetus to the placenta. Especially, leucine and valine data suggested high oxidation rates, up to half of net uptake. This was supported by relatively low α-ketoisocaproate reamination rates to leucine. Our data suggest high protein breakdown and synthesis rates, comparable with, or even slightly higher than in premature infants. The relatively large uptakes of total leucine and valine carbon also suggest high fetal oxidation rates of these essential branched chain amino acids.

  1. Intra-individual variation and short-term temporal trend in DNA methylation of human blood

    PubMed Central

    Shvetsov, Yurii B.; Song, Min-Ae; Cai, Qiuyin; Tiirikainen, Maarit; Xiang, Yong-Bing; Shu, Xiao-Ou; Yu, Herbert

    2015-01-01

    Background Between- and within-person variation in DNA methylation levels are important parameters to be considered in epigenome-wide association studies. Temporal change is one source of within-person variation in DNA methylation that has been linked to aging and disease. Methods We analyzed CpG-site-specific intra-individual variation and short-term temporal trend in leukocyte DNA methylation among 24 healthy Chinese women, with blood samples drawn at study entry and after 9 months. Illumina HumanMethylation450 BeadChip was used to measure methylation. Intraclass correlation coefficients (ICC) and trend estimates were summarized by genomic location and probe type. Results The median ICC was 0.36 across nonsex chromosomes and 0.80 on the X chromosome. There was little difference in ICC profiles by genomic region and probe type. Among CpG loci with high variability between participants, over 99% had ICC > 0.8. Statistically significant trend was observed in 10.9% CpG loci before adjustment for cell type composition and in 3.4% loci after adjustment. Conclusions For CpG loci differentially methylated across subjects, methylation levels can be reliably assessed with one blood sample. More samples per subject are needed for low-variability and unmethylated loci. Temporal changes are largely driven by changes in cell type composition of blood samples, but temporal trend unrelated to cell types is detected in a small percentage of CpG sites. PMID:25538225

  2. Analysis of Long-Term Temperature Variations in the Human Body.

    PubMed

    Dakappa, Pradeepa Hoskeri; Mahabala, Chakrapani

    2015-01-01

    Body temperature is a continuous physiological variable. In normal healthy adults, oral temperature is estimated to vary between 36.1°C and 37.2°C. Fever is a complex host response to many external and internal agents and is a potential contributor to many clinical conditions. Despite being one of the foremost vital signs, temperature and its analysis and variations during many pathological conditions has yet to be examined in detail using mathematical techniques. Classical fever patterns based on recordings obtained every 8-12 h have been developed. However, such patterns do not provide meaningful information in diagnosing diseases. Because fever is a host response, it is likely that there could be a unique response to specific etiologies. Continuous long-term temperature monitoring and pattern analysis using specific analytical methods developed in engineering and physics could aid in revealing unique fever responses of hosts and in different clinical conditions. Furthermore, such analysis can potentially be used as a novel diagnostic tool and to study the effect of pharmaceutical agents and other therapeutic protocols. Thus, the goal of our article is to present a comprehensive review of the recent relevant literature and analyze the current state of research regarding temperature variations in the human body.

  3. Long-term effects of prenatal x-ray of human females: mortality and morbidity

    SciTech Connect

    Meyer, M.B.; Tonascia, J.

    1981-09-01

    Experimental studies and long-term studies of humans exposed to ionizing radiation in utero and after birth show that these exposures increase the risk of cancer in childhood and in later life. A possible life-shortening effect has also been reported. This study followed to their mid-twenties 1458 women exposed in utero to diagnostic x-rays and 1458 matched, unexposed controls in Baltimore, Maryland, and obtained responses from over 100 women in each group. Information about general health and specific diseases was obtained from questionnaires. Deaths were ascertained through family members and death certificates. Mortality rates were slightly higher among exposure. Exposed women reported poor general health significantly more often than controls. Specific diseases occurred similarly in the two groups, although exposed women reported more epilepsy or fits, more ovarian tumors, and more high blood pressure. These strong correlation between weight and high blood pressure and the heavier weights of exposed women seemed to account for this difference. In summary, these matched exposed and control women, followed to their mid-twenties, experienced similar rates of morbidity and mortality. Radiation-induced cancers and life-shortening effects, if any, might not become evident until older ages.

  4. Cell fusion in space: plasma membrane fusion in human fibroblasts during short term microgravity

    NASA Astrophysics Data System (ADS)

    Jongkind, J. F.; Visser, P.; Verkerk, A.

    During short-term microgravity in sounding rocket experiments (6 min.) the cytoskeleton undergoes changes and therefore it is possible that cell processes which are dependent on the structure and function of the cytoskeleton are influenced. A cell fusion experiment, initiated by a short electric pulse, was chosen as a model experiment for this sounding rocket experiment. Confluent monolayers of primary human skin fibroblasts, grown on coverslips, were mounted between two electrodes (distance 0.5 cm) and fused by discharging a capacitor (68 muF 250 V; 10 msec) in a low conductive medium. During a microgravity experiment in which nearly all the requirements for an optimal result were met (only the recovery of the payload was delayed) results were found that indicated that microgravity during 6 minutes did not influence cell fusion since the percentage of fused products did not change during microgravity. Within the limits of discrimination using morphological assays microgravity has no influence on the actin/cortical cytoskeleton just after electrofusion.

  5. Long term ultrastructural changes in human corneas after tattooing with non-metallic substances

    PubMed Central

    Sekundo, W.; Seifert, P.; Seitz, B.; Loeffler, K.

    1999-01-01

    AIM—To investigate the ultrastructural appearance and the deposition pattern of dye particles in long term non-metallic corneal tattooing.
METHODS—Two tattooed human corneas were obtained by keratoplasty. One corneal button was fixed in Karnovsky's solution and the other in Trumps' solution. Both corneas were divided and processed for conventional light (LM) and transmission electron microscopy (TEM). Five additional formalin fixed corneas with tattoos were retrieved from paraffin for TEM. The time between tattoo and removal of the corneal button/enucleation ranged from 7 to 61 years. All seven corneas were examined using a Jeol JCXA733 microprobe for wave length dispersive analysis in order to exclude any presence of metallic salts in the tattooed area.
RESULTS—Histologically, clumps of brown-blackish granules were present mainly in the mid stroma, but also in anterior and partially in the posterior half of the stroma. On TEM, numerous round and oval electron dense particles were seen in the cytoplasm of keratocytes arranged as clusters or large islands. The larger particles appeared black, while the smaller particles were grey. In well fixed tissue a unit membrane was observed around these clusters. No granules were detected in the extracellular matrix.
CONCLUSIONS—Keratocytes can actively ingest and retain tattooing particles of non-metallic dyes within their cell membrane for very long periods of time.

 Keywords: corneas; ultrastructure; tattooing; non-metallic substances PMID:10396202

  6. Effect of sexual behavior change on long-term human immunodeficiency virus prevalence among homosexual men.

    PubMed

    Morris, M; Dean, L

    1994-08-01

    Substantial changes in human immunodeficiency virus (HIV)-related sexual behavior have been reported by virtually every survey of homosexual/bisexual men in the last decade. This paper uses a behavior-based simulation to examine how such changes are likely to affect the long-term future of the acquired immunodeficiency syndrome (AIDS) epidemic among homosexual men. Data from the Longitudinal AIDS Impact Project in New York City are used to estimate age-specific patterns of unprotected anogenital contact and behavioral change from 1980 to 1991. Model projections are validated using New York City surveillance data on AIDS incidence from 1981 to 1991. The current levels of unsafe sex reported in the Longitudinal AIDS Impact Project are shown to be almost exactly on the epidemic threshold. If this behavior were maintained, HIV prevalence would slowly decline in the population, but with just one additional unsafe sexual partner per year HIV would instead become endemic, with seroprevalence of about 65% in the oldest group and about 25% in the youngest. Transmission dynamics in the youngest group are analyzed in detail. For this group, the assortative age-matching bias in partner selection patterns raises the unsafe behavior threshold slightly in the long run. PMID:8030625

  7. Long-term effects of prenatal x-ray of human females. II. Growth and development.

    PubMed

    Meyer, M B; Tonascia, J

    1981-09-01

    Experimental studies and studies of survivors of in-utero exposure to atomic bomb blasts have shown significant stunting of growth and mental retardation following these exposures. Central nervous system damage following very low doses of x-ray at around the time of birth has also been observed in experimental animals. This long term follow-up studies of 1458 human females exposed in utero to diagnostic x-rays and of 1458 matched unexposed controls studied in Baltimore, Maryland, included measurements of height, weight and school achievement. Women who had been exposed to x-rays in utero were significantly shorter in their mid-twenties than were their matched, unexposed controls, even after adjustment for other social and economic factors. However, additional follow-up revealed that mothers of exposed women were also shorter than the control mothers. Short stature appeared to be a selective factor for x-ray during pregnancy (mostly pelvimetry, 1947-1952). Mothers' and daughters' heights were similarly correctly among exposed and control mother-daughter pairs, suggesting that the height differences between exposed daughters and their controls were due to these selective factor rather than to any direct effect of radiation on growth. Exposed women reported poorer school achievement than control women. However, except for a higher proportion of exposed women leaving school because of pregnancy, these measurements were no longer significantly different when rates were simultaneously adjusted for socioeconomic differences between exposed and control women.

  8. Long-term effects of prenatal x-ray of human females: growth and development

    SciTech Connect

    Meyer, M.B.; Tonascia, J.

    1981-09-01

    Experimental studies and studies of survivors of in-utero exposure to atomic bomb blasts have shown significant stunting of growth and mental retardation following these exposures. Central nervous system damage following very low dosage of x-ray at around the time of birth has also been observed in experimental animals. This long term followup study of 1458 human females exposed in-utero to diagnostic x-rays and of 1458 matched unexposed controls studied in Baltimore, Maryland, included measurements of height, weight, and school achievement. Women who had been exposed to x-rays in-utero were significantly shorter in their mid-twenties than were their matched, unexposed controls, even after adjustment for other social and economic factors. However, additional followup revealed that mothers of exposed women were also shorter than the control mothers. Short stature appeared to be a selective factor for x-ray during pregnancy (mostly pelvimetry, 1947 to 1952). Mothers' and daughters' heights were similarly correlated among exposed and controlled mother-daughter pairs, suggesting that the height differences between exposed daughters and their controls were due to these selective factors rather than to any direct effect of radiation on growth. Exposed women reported poorer school achievement than control women. However, except for a higher proportion of exposed women leaving school because of pregnancy, these measurements were no longer significantly different when rates were simultaneously adjusted for socioeconomic differences between exposed and control women.

  9. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor

    NASA Technical Reports Server (NTRS)

    Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.

    1999-01-01

    PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.

  10. Effects of Long-Term Dust Exposure on Human Respiratory System Health in Minqin County, China.

    PubMed

    Wang, Jinyu; Li, Sheng; Wang, Shigong; Shang, Kezheng

    2015-01-01

    The aim of this study was to assess the effects of long-term sand dust exposure on human respiratory health. Dust events break out frequently in Minqin County, northwest China, whereas Pingliang City, northwest China, is rarely influenced by dust events. Therefore, Minqin and Pingliang were selected as sand dust exposure region and control area, respectively. The incidence of respiratory system diseases and symptoms was determined through a structured respiratory health questionnaire (ATS-DLD-78-A) and personal interviews. The subjects comprised 728 farmers (Minqin, 424; Pingliang, 304) aged 40 years or older, who had nondocumented occupational history to industrial dust exposure. Prevalences (odds ratio [OR], 95% confidence interval [CI]) of chronic rhinitis, chronic bronchitis, and chronic cough increased 9.6% (3.141, 1.776-5.555), 7.5% (2.468, 1.421-4.286), and 10.2% (1.787, 1.246-2.563) in Minqin comparison with Pingliang, respectively, and the differences were significant (p <.01).

  11. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    PubMed Central

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-01-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand. PMID:27725720

  12. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    NASA Astrophysics Data System (ADS)

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-10-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.

  13. Machine Perfusion Enhances Hepatocyte Isolation Yields From Ischemic Livers

    PubMed Central

    Izamis, Maria-Louisa; Perk, Sinem; Calhoun, Candice; Uygun, Korkut; Yarmush, Martin L.; Berthiaume, François

    2015-01-01

    Background High-quality human hepatocytes form the basis of drug safety and efficacy tests, cell-based therapies, and bridge-to-transplantation devices. Presently the only supply of cells derives from an inadequate pool of suboptimal disqualified donor livers. Here we evaluated whether machine perfusion could ameliorate ischemic injury that many of these livers experience prior to hepatocyte isolation. Methods Non-heparinized female Lewis rat livers were exposed to an hour of warm ischemia (34°C) and then perfused for 3 hours. Five different perfusion conditions that utilized the cell isolation apparatus were investigated, namely: (1) modified Williams Medium E and (2) Lifor, both with active oxygenation (95%O2/5%CO2), as well as (3) Lifor passively oxygenated with ambient air (21%O2/0.04%CO2), all at ambient temperatures (20±2°C). At hypothermic temperatures (5±1°C) and under passive oxygenation were (4) University of Wisconsin solution (UW) and (5) Vasosol. Negative and positive control groups comprised livers that had ischemia (WI) and livers that did not (Fresh) prior to cell isolation, respectively. Results Fresh livers yielded 32±9 million cells/g liver while an hour of ischemia reduced the cell yield to 1.6±0.6 million cells/g liver. Oxygenated Williams medium E and Lifor recovered yields of 39±11 and 31±2.3 million cells/g liver, respectively. The passively oxygenated groups produced 15±7 (Lifor), 13±7 (Vasosol), and 10±6 (UW) million cells/g liver. Oxygenated Williams Medium E was most effective at sustaining pH values, avoiding the accumulation of lactate, minimizing edematous weight gain and producing bile during perfusion. Conclusions Machine perfusion results in a dramatic increase in cell yields from livers that have had up to an hour of warm ischemia, but perfusate choice significantly impacts the extent of recovery. Oxygenated Williams Medium E at room temperature is superior to Lifor, UW and Vasosol, largely facilitated by its high

  14. Detectability of perfusion defect in five-dimensional gated-dynamic cardiac SPECT images

    PubMed Central

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A.; Wernick, Miles N.

    2010-01-01

    Purpose: In previous work, the authors developed and demonstrated the concept of an image reconstruction procedure aimed to unify gated and dynamic nuclear cardiac imaging, which the authors have termed five-dimensional (5D) SPECT. Gated imaging permits the clinician to evaluate wall motion and, through the use of stress and rest scans, allows perfusion defects to be observed. Dynamic imaging depicts kinetics in the myocardium, which can be used to evaluate perfusion, but traditional dynamic images are motionless and do not depict wall motion. In this article, the authors investigate the degree to which perfusion defects can be detected from the dynamic information conveyed by 5D images, a problem that is particularly challenging in the absence of multiple fast camera rotations. Methods: The authors first demonstrate the usefulness of dynamic reconstructed images for perfusion detection by using linear discriminant analyses (Fisher linear discriminant analysis and principal component analysis) and a numerical channelized Hotelling observer. The authors then derive three types of discriminant metrics for characterizing the temporal kinetic information in reconstructed dynamic images for differentiating perfusion defects from normal cardiac perfusion, which are the Fisher linear discriminant map, temporal derivative map, and kinetic parametric images. Results: Results are based on the NURBS-based cardiac-torso phantom with simulation of Tc99m-teboroxime as the imaging agent. The derived metric maps and quantitative contrast-to-noise ratio results demonstrate that the reconstructed dynamic images could yield higher detectability of the perfusion defect than conventional gated reconstruction while providing wall motion information simultaneously. Conclusions: The proposed metrics can be used to produce new types of visualizations, showing wall motion and perfusion information, that may potentially be useful for clinical evaluation. Since 5D imaging permits wall motion

  15. Physostigmine: Improvement of Long-Term Memory Processes in Normal Humans

    ERIC Educational Resources Information Center

    Davis, Kenneth L.; And Others

    1978-01-01

    Nineteen normal male subjects received one milligram of physotigmine or one milligram of saline by slow intravenous infusion on two nonconsecutive days. Physostigmine significantly enhanced storage of information into long-term memory. Retrieval of information from long-term memory was improved. Short-term memory processes were not significantly…

  16. Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; West, John B.

    1994-01-01

    We studied the effects of gravity on the inhomogeneity of pulmonary perfusion in humans by performing hyperventilation-breath-hold single-breath measurements before, during, and after 9 days of continuous exposure to microgravity during the Spacelab Life Sciences-1 (SLS-1) mission. In microgravity the indicators of inhomogeneity of perfusion, especially the size of cardiogenic oscillations in expired CO2 and the height of phase IV, were markedly reduced. Cardiogenic oscillations were reduced to approximately 60% of their preflight standing size, and the height of phase IV was between 0 and -8% (a terminal fall became a small terminal rise) of the preflight standing value. The terminal change in expired CO2 was nearly abolished in microgravity, indicating more uniformity of blood flow between lung units that close and those that remain open at the end of expiration. A possible explanation of this observation is the disappearance of gravity-dependent topographic inequality of blood flow. The residual cardiogenic oscillations in expired CO2 imply a persisting inhomogeneity of perfusion in the absence of gravity, probably in lung regions that are not within the same acinus.

  17. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  18. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  19. Temperature controlled machine perfusion system for liver.

    PubMed

    Obara, H; Matsuno, N; Shigeta, T; Hirano, T; Enosawa, S; Mizunuma, H

    2013-06-01

    Organ preservation using machine perfusion is an effective method compared with conventional preservation techniques using static cold storage. A newly developed MP preservation system to control perfusate temperatures from hypothermic to subnormothermic conditions is introduced. This system is useful not only for liver preservation, but also for evaluation of graft viability for recovery. This novel method has been proposed for preservation of porcine liver grafts. An innovative preservation system is especially important to obtain viable organs from extended criteria or donation after cardiac death donors. In this study, we introduce a new machine perfusion preservation system (NES-01) to evaluate graft viability for recovery of liver functions, using porcine grafts.

  20. Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans.

    PubMed

    Sillay, Karl A; Rutecki, Paul; Cicora, Kathy; Worrell, Greg; Drazkowski, Joseph; Shih, Jerry J; Sharan, Ashwini D; Morrell, Martha J; Williams, Justin; Wingeier, Brett

    2013-09-01

    Long-term stability of the electrode-tissue interface may be required to maintain optimal neural recording with subdural and deep brain implants and to permit appropriate delivery of neuromodulation therapy. Although short-term changes in impedance at the electrode-tissue interface are known to occur, long-term changes in impedance have not previously been examined in detail in humans. To provide further information about short- and long-term impedance changes in chronically implanted electrodes, a dataset from 191 persons with medically intractable epilepsy participating in a trial of an investigational responsive neurostimulation device (the RNS(®) System, NeuroPace, Inc.) was reviewed. Monopolar impedance measurements were available for 391 depth and subdural leads containing a total of 1564 electrodes; measurements were available for median 802 days post-implant (range 28-1634). Although there were statistically significant short-term impedance changes, long-term impedance was stable after one year. Impedances for depth electrodes transiently increased during the third week after lead implantation and impedances for subdural electrodes increased over 12 weeks post-implant, then were stable over the subsequent long-term follow-up. Both depth and subdural electrode impedances demonstrated long-term stability, suggesting that the quality of long-term electrographic recordings (the data used to control responsive brain stimulation) can be maintained over time. PMID:23538208

  1. Fetal sex affects expression of renin-angiotensin system components in term human decidua.

    PubMed

    Wang, Yu; Pringle, Kirsty G; Sykes, Shane D; Marques, Francine Z; Morris, Brian J; Zakar, Tamas; Lumbers, Eugenie R

    2012-01-01

    The maternal decidua expresses the genes of the renin-angiotensin system (RAS). Human decidua was collected at term either before labor (i.e. cesarean delivery) or after spontaneous labor. The mRNA for prorenin (REN), prorenin receptor (ATP6AP2), angiotensinogen (AGT), angiotensin-converting enzymes 1 and 2 (ACE1 and ACE2), angiotensin II type 1 receptor (AGTR1), and angiotensin 1-7 receptor (MAS1) were measured by quantitative real-time RT-PCR. Decidual explants were cultured in duplicate for 24 and 48 h, and all RAS mRNA, and the secretion of prorenin, angiotensin II, and angiotensin 1-7 was measured using quantitative real-time RT-PCR, ELISA, and radioimmunoassay, respectively. In the decidua collected before labor, REN mRNA levels were higher if the fetus was female. In addition, REN, ATP6AP2, AGT, and MAS1 mRNA abundance was greater in decidual explants collected from women carrying a female fetus, as was prorenin protein. After 24 h, ACE1 mRNA was higher in the decidual explants from women with a male fetus, whereas after 48 h, both ACE1 and ACE2 mRNA was higher in decidual explants from women with a female fetus. Angiotensin II was present in all explants, but angiotensin 1-7 levels often registered below the lower limits of sensitivity for the assay. After labor, decidua, when compared with nonlaboring decidua, demonstrated lower REN expression when the fetus was female. Therefore, the maternal decidual RAS is regulated in a sex-specific manner, suggesting that it may function differently when the fetus is male than when it is female. PMID:22045662

  2. Processes driving short-term temporal dynamics of small mammal distribution in human-disturbed environments.

    PubMed

    Martineau, Julie; Pothier, David; Fortin, Daniel

    2016-07-01

    As the impact of anthropogenic activities intensifies worldwide, an increasing proportion of landscape is converted to early successional stages every year. To understand and anticipate the global effects of the human footprint on wildlife, assessing short-term changes in animal populations in response to disturbance events is becoming increasingly important. We used isodar habitat selection theory to reveal the consequences of timber harvesting on the ecological processes that control the distribution dynamics of a small mammal, the red-backed vole (Myodes gapperi). The abundance of voles was estimated in pairs of cut and uncut forest stands, prior to logging and up to 2 years afterwards. A week after logging, voles did not display any preference between cut and uncut stands, and a non-significant isodar indicated that their distribution was not driven by density-dependent habitat selection. One month after harvesting, however, juvenile abundance increased in cut stands, whereas the highest proportions of reproductive females were observed in uncut stands. This distribution pattern appears to result from interference competition, with juveniles moving into cuts where there was weaker competition with adults. In fact, the emergence of source-sink dynamics between uncut and cut stands, driven by interference competition, could explain why the abundance of red-backed voles became lower in cut (the sink) than uncut (the source) stands 1-2 years after logging. Our study demonstrates that the influences of density-dependent habitat selection and interference competition in shaping animal distribution can vary frequently, and for several months, following anthropogenic disturbance. PMID:27003700

  3. Chromium absorption in the vascularly perfused rat intestine

    SciTech Connect

    Dowling, H.J.; Offenbacher, E.G.; Pi-Sunyer, F.X.

    1986-03-01

    The mechanism of chromium (Cr) absorption by the rat small intestine was investigated using a double perfusion technique wherein the luman of the small intestine and the vasculature supplying it were separately perfused. The intestinal perfusate (IP) was a nutrient-rich tissue culture medium (TCM) with added inorganic Cr and /sup 51/Cr. The vascular perfusate (VP) was a Krebs-Ringer bicarbonate solution (KRB) containing 4.7% dextran, 0.1% glucose and 5% human serum. Cr absorption was calculated by the amount of /sup 51/Cr detected in the VP. To determine the transport mechanism for Cr, its absorption into the VP was measured at various Cr concentrations of the IP ranging from 10-400 ppb CrCl/sub 3/. The amount of Cr absorbed into the blood rose linearly with the intestinal Cr concentration suggesting a process of simple diffusion. Manipulations of the VP and IP constituents were made to investigate their effects on Cr absorption. When serum was omitted from the VP, Cr adsorption was suppressed, suggesting that serum component(s) are necessary for optimal Cr absorption. When either of 2 plasma transport proteins (apo-transferrin, albumin) were added to the serum-free VP at physiological levels, Cr absorption returned to, but did not exceed, control levels. When the TCM was replaced with a KRB solution; Cr absorption was suppressed indicating that there are nutrient(s) of the TCM which facilitate Cr absorption. Further suppression occurred when a Cr concentration gradient opposing Cr absorption was created (IP at 100 ppb Cr, VP at 400 ppb Cr).

  4. Low-flow Perfusion of Guinea Pig Isolated Hearts With 26°C Air-saturated Lifor Solution for 20 Hours Preserves Function and Metabolism

    PubMed Central

    Stowe, David F.; Camara, Amadou K. S.; Heisner, James S.; Aldakkak, Mohammed; Harder, David R.

    2009-01-01

    Background Donor human hearts cannot be preserved for >5 hours between explantation and recipient implantation. A better approach is needed to preserve transplantable hearts for longer periods, ideally at ambient conditions for transport. We tested whether Lifor solution could satisfactorily preserve guinea pig isolated hearts perfused at low flow with no added oxygen at room temperature for 20 hours. Methods Hearts were isolated from 18 guinea pigs and perfused initially with oxygenated Krebs–Ringer (KR) solution at 37°C. Hearts were then perfused with recirculated Lifor or cardioplegia (CP) solution (K+ 15 mmol/liter) equilibrated with room air at 20% of control flow at 26°C for 20 hours. Hearts were then perfused at 100% flow with KR for 2 hours at 37°C. Results Lifor and CP arrested all hearts. During the 20-hour low-flow perfusion with Lifor coronary pressure increased by 6 ± 2 mm Hg and percent oxygen extraction by 29 ± 2%, whereas oxygen consumption (MVo2) decreased by 74 ± 4%. Similar changes were noted for CP, except that MVo2 was decreased by 86 ± 7%. After 20-hour low-flow perfusion with Lifor and 2 hours of warm reperfusion with KR solution, diastolic left ventricular pressure (LVP), maximal dLVP/dt and percent oxygen extraction returned completely to baseline values, whereas heart rate returned to 80 ± 3%, developed LVP to 76 ± 3%, minimal dLVP/dt (relaxation) to 65 ± 4%, coronary flow to 80 ± 4%, oxygen consumption to 82 ± 4% and cardiac efficiency to 85 ± 4% of baseline values. Flow responses to adenosine and nitroprusside after Lifor treatment were 65 ± 3% and 64 ± 3% of their baseline values. After cardioplegia, treatment there was no cardiac activity, with a diastolic pressure of 35 ± 14 mm Hg and a return of coronary flow to only 45 ± 3% of baseline value. Conclusions Compared with a cardioplegia solution at ambient air and temperature conditions, Lifor solution is a much better medium for long-term cardiac preservation in this

  5. Engraftment and long-term expression of human fetal hemopoietic stem cells in sheep following transplantation in utero.

    PubMed Central

    Zanjani, E D; Pallavicini, M G; Ascensao, J L; Flake, A W; Langlois, R G; Reitsma, M; MacKintosh, F R; Stutes, D; Harrison, M R; Tavassoli, M

    1992-01-01

    Hemopoietic stem cells from human fetal liver were transplanted in utero into preimmune fetal sheep (48-54 days of gestation). The fate of donor cells was followed using karyotype analysis, by immunofluorescence labeling with anti-CD antibodies, and by fluorescent in situ hybridization using human-specific DNA probes. Engraftment occurred in 13 of 33 recipients. Of five live born sheep that exhibited chimerism, all expressed human cells in the marrow, whereas three expressed them in blood as well. Engraftment was multilineage (erythroid, myeloid, and lymphoid) and human hemopoietic progenitors (multipotent colony-forming units, colony-forming units-granulocyte, macrophage, and erythroid burst-forming units) capable of forming colonies in vitro were detected in all five lambs for greater than 2 yr. These progenitors responded to human-specific growth factors both in vitro and in vivo. Thus the administration of recombinant human IL-3 and granulocyte macrophage-colony-stimulating factor to chimeric sheep resulted in a 2.1-3.4-fold increase in the relative expression of donor (human) cells. These results demonstrate that the permissive environment of the preimmune fetal sheep provides suitable conditions for the engraftment and long-term multilineage expression of human hemopoietic stem cells in a large animal model. In this model, donor human cells appear to retain certain phenotypic and functional characteristics that can be used to manipulate the size of donor cell pool. PMID:1348253

  6. Luminal distension as a possible consequence of experimental intestinal perfusion

    PubMed Central

    Wingate, David; Hyams, Ashley; Phillips, Sidney

    1974-01-01

    In an experimental jejunal perfusion study, distress in healthy subjects occurred during eight out of 16 perfusions in which intestinal secretion was provoked. Calculation demonstrates the volumetric consequences of inadequate recovery of secretory perfusates, and analysis of the perfusion studies shows that distress was significantly associated with poor recovery of the perfusate. These observations are pertinent to increasing interest in the phenomenon of intestinal fluid secretion. PMID:4435588

  7. Relation of global and regional left ventricular function to tomographic thallium-201 myocardial perfusion in patients with prior myocardial infarction

    SciTech Connect

    Stratton, J.R.; Speck, S.M.; Caldwell, J.H.; Martin, G.V.; Cerqueira, M.; Maynard, C.; Davis, K.B.; Kennedy, J.W.; Ritchie, J.L.

    1988-07-01

    To determine the relation between regional myocardial perfusion and regional wall motion in humans, tomographic thallium-201 imaging and two-dimensional echocardiography at rest were performed on the same day in 83 patients 4 to 12 weeks after myocardial infarction. Myocardial perfusion and wall motion were assessed independently in five left ventricular regions (total 415 regions). Regional myocardial perfusion was quantitated as a percent of the region infarcted (range 0 to 100%) using a previously validated method. Wall motion was graded on a four point scale as 1 = normal (n = 266 regions), 2 = hypokinesia (n = 64), 3 = akinesia (n = 70), 4 = dyskinesia (n = 13) or not evaluable (n = 2). Regional wall motion correlated directly with the severity of the perfusion deficit (r = 0.68, p less than 0.0001). Among normally contracting regions, the mean perfusion defect score was only 2 +/- 4. Increasingly severe wall motion abnormalities were associated with larger perfusion defect scores (hypokinesia = 6 +/- 5, akinesia = 11 +/- 7 and dyskinesia = 18 +/- 5, all p less than 0.01 versus normal. Among regions with normal wall motion, only 3% had a perfusion defect score greater than or equal to 10. Conversely, among 68 regions with a large (greater than or equal to 10) perfusion defect, only 13% had normal motion whereas 87% had abnormal wall motion. The relation between perfusion and wall motion noted for the entire cohort was also present in subgroups of patients with anterior or inferior infarction. In patients with prior myocardial infarction, the severity of the tomographic thallium perfusion defect correlates directly with echocardiographically defined wall motion abnormalities, both globally and regionally.

  8. Ex vivo lung perfusion and reconditioning.

    PubMed

    Yeung, Jonathan C; Cypel, Marcelo; Massad, Ehab; Keshavjee, Shaf

    2011-01-01

    Normothermic ex vivo lung perfusion can act as a platform for the evaluation and repair of donor lungs. An acellular hyperosmolar solution is perfused anterograde through the donor lungs at 40% of the estimated cardiac output. Following oxygenation of the perfusate by the lung, it passes through a hollow fiber oxygenator supplied with a hypoxic gas mixture to remove oxygen and to maintain physiological carbon dioxide levels. Flow through a heat exchanger to maintain normothermia and a leukocyte filter to remove demarginated leukocytes completes the circuit. Lung function can be measured by the difference in PO2 between the perfusate postlung and postmembrane and by physiological parameters. Utilization of this method of ex vivo donor lung evaluation should reduce concerns of primary graft dysfunction and increase utilization rates of donor lungs. PMID:24412979

  9. Noninvasive methods of measuring bone blood perfusion

    PubMed Central

    Dyke, J.P.; Aaron, R.K.

    2010-01-01

    Measurement of bone blood flow and perfusion characteristics in a noninvasive and serial manner would be advantageous in assessing revascularization after trauma and the possible risk of avascular necrosis. Many disease states, including osteoporosis, osteoarthritis, and bone neoplasms, result in disturbed bone perfusion. A causal link between bone perfusion and remodeling has shown its importance in sustained healing and regrowth following injury. Measurement of perfusion and permeability within the bone was performed with small and macromolecular contrast media, using dynamic contrast-enhanced magnetic resonance imaging in models of osteoarthritis and the femoral head. Bone blood flow and remodeling was estimated using 18F-Fluoride positron emission tomography in fracture healing and osteoarthritis. Multimodality assessment of bone blood flow, permeability, and remodeling by using noninvasive imaging techniques may provide information essential in monitoring subsequent rates of healing and response to treatment as well as identifying candidates for additional therapeutic or surgical interventions. PMID:20392223

  10. Bubble dynamics in perfused tissue undergoing decompression.

    PubMed

    Meisel, S; Nir, A; Kerem, D

    1981-02-01

    A mathematical model describing bubble dynamics in a perfused tissue undergoing decompression is presented, taking into account physical expansion and inward diffusion from surrounding supersaturated tissue as growth promoting factors and tissue gas elimination by perfusion, tissue elasticity, surface tension and inherent unsaturation as resolving driving forces. The expected behavior after a step reduction of pressure of a bubble initially existing in the tissue, displaying both growth and resolution has been demonstrated. A strong perfusion-dependence of bubble resolution time at low perfusion rates is apparent. The model can account for various exposure pressures and saturation fractions of any inert gas-tissue combination for which a set of physical and physiological parameters is available.

  11. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex.

    PubMed

    Ziemann, Ulf; Ilić, Tihomir V; Iliać, Tihomir V; Pauli, Christian; Meintzschel, Frank; Ruge, Diane

    2004-02-18

    Learning may alter rapidly the output organization of adult motor cortex. It is a long-held hypothesis that modification of synaptic strength along cortical horizontal connections through long-term potentiation (LTP) and long-term depression (LTD) forms one important mechanism for learning-induced cortical plasticity. Strong evidence in favor of this hypothesis was provided for rat primary motor cortex (M1) by showing that motor learning reduced subsequent LTP but increased LTD. Whether a similar relationship exists in humans is unknown. Here, we induced LTP-like and LTD-like plasticity in the intact human M1 by an established paired associative stimulation (PAS) protocol. PAS consisted of 200 pairs of electrical stimulation of the right median nerve, followed by focal transcranial magnetic stimulation of the hand area of the left M1 at an interval equaling the individual N20 latency of the median nerve somatosensory-evoked cortical potential (PAS(N20)) or N20-5 msec (PAS(N20-5)). PAS(N20) induced reproducibly a LTP-like long-lasting (>30 min) increase in motor-evoked potentials from the left M1 to a thumb abductor muscle of the right hand, whereas PAS(N20-5) induced a LTD-like decrease. Repeated fastest possible thumb abduction movements resulted in learning, defined by an increase in maximum peak acceleration of the practiced movements, and prevented subsequent PAS(N20)-induced LTP-like plasticity but enhanced subsequent PAS(N20-5)-induced LTD-like plasticity. The same number of repeated slow thumb abduction movements did not result in learning and had no effects on PAS-induced plasticity. Findings support the view that learning in human M1 occurs through LTP-like mechanisms.

  12. Vicarious Audiovisual Learning in Perfusion Education

    PubMed Central

    Rath, Thomas E.; Holt, David W.

    2010-01-01

    Abstract: Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video. These modules described the setup and operation of the MAQUET ROTAFLOW standalone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today’s perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p < .05). The same was true for test #2 where video learners (n = 10) had an average score of 77% while text learners (n = 9) scored 60% (p < .05). Survey results indicated video learners were more satisfied with their learning module than text learners. Vicarious audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important

  13. Pancreas transplants: Evaluation using perfusion scintigraphy

    SciTech Connect

    Kuni, C.C.; du Cret, R.P.; Boudreau, R.J.

    1989-07-01

    To determine the value of scintigraphic perfusion studies in evaluating pancreas transplant patients, we reviewed 56 of these studies in 22 patients who had 27 transplants. Seventeen patients underwent two or more studies. The perfusion studies were performed with 20 mCi (740 MBq) of 99mTc-DTPA injected as a bolus followed by eight to 16 serial 2-sec images and a 500,000-count immediate static image. Images were evaluated for (1) the time and intensity of pancreatic peak radioactivity relative to the time and intensity of the iliac arterial peak; (2) relative pancreatic to iliac arterial intensity on the static image; and (3) size, homogeneity, and definition of the pancreas. Clinical diagnoses at the time of scintigraphy of normal function (n = 36), rejection (n = 13), pancreatitis (n = 6), or arterial thrombosis (n = 1) were based on insulin requirement, urine amylase, serum glucose, serum amylase, response to therapy, cultures, CT, MR, sonography, scintigraphy with 67Ga or 111In-WBCs, percutaneous drainage results, angiography, surgery, and pathologic examination of resected transplants. Three 99mTc-DTPA perfusion studies showed no pancreatic perfusion, four showed decreasing perfusion on serial studies, and five showed progressive loss of definition of the pancreas on serial studies. Of the three patients with no detectable perfusion, one had a normally functioning transplant, one had arterial thrombosis with transplant infarction, and one had severe rejection with minimal function. Decreasing perfusion was associated with rejection in three patients and pancreatitis in one. Decreasing definition was seen in four patients with rejection and one with pancreatitis. We conclude that perfusion scintigraphy is useful, primarily when performed serially, although nonspecific for evaluating pancreas transplants.

  14. Improved exercise myocardial perfusion during lidoflazine therapy

    SciTech Connect

    Shapiro, W.; Narahara, K.A.; Park, J.

    1983-11-01

    Lidoflazine is a synthetic drug with calcium-channel blocking effects. In a study of 6 patients with severe classic angina pectoris, single-blind administration of lidoflazine was associated with improved myocardial perfusion during exercise as determined by thallium-201 stress scintigraphy. These studies demonstrate that lidoflazine therapy is associated with relief of angina, an increased physical work capacity, and improved regional myocardial perfusion during exercise.

  15. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    PubMed Central

    2010-01-01

    Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term

  16. Perfusion visualization and analysis for pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Vaz, Michael S.; Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Given the nature of pulmonary embolism (PE), timely and accurate diagnosis is critical. Contrast enhanced high-resolution CT images allow physicians to accurately identify segmental and sub-segmental emboli. However, it is also important to assess the effect of such emboli on the blood flow in the lungs. Expanding upon previous research, we propose a method for 3D visualization of lung perfusion. The proposed method allows users to examine perfusion throughout the entire lung volume at a single glance, with areas of diminished perfusion highlighted so that they are visible independent of the viewing location. This may be particularly valuable for better accuracy in assessing the extent of hemodynamic alterations resulting from pulmonary emboli. The method also facilitates user interaction and may help identify small peripheral sub-segmental emboli otherwise overlooked. 19 patients referred for possible PE were evaluated by CT following the administration of IV contrast media. An experienced thoracic radiologist assessed the 19 datasets with 17 diagnosed as being positive for PE with multiple emboli. Since anomalies in lung perfusion due to PE can alter the distribution of parenchymal densities, we analyzed features collected from histograms of the computed perfusion maps and demonstrate their potential usefulness as a preliminary test to suggest the presence of PE. These histogram features also offer the possibility of distinguishing distinct patterns associated with chronic PE and may even be useful for further characterization of changes in perfusion or overall density resulting from associated conditions such as pneumonia or diffuse lung disease.

  17. Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering

    PubMed Central

    Li, Siwei; Glynne-Jones, Peter; Andriotis, Orestis G.; Ching, Kuan Y.; Jonnalagadda, Umesh S.; Oreffo, Richard O. C.; Hill, Martyn

    2014-01-01

    Cartilage grafts generated using conventional static tissue engineering strategies are characterised by low cell viability, suboptimal hyaline cartilage formation and, critically, inferior mechanical competency, which limit their application for resurfacing articular cartilage defects. To address the limitations of conventional static cartilage bioengineering strategies and generate robust, scaffold-free neocartilage grafts of human articular chondrocytes, the present study utilised custom-built microfluidic perfusion bioreactors with integrated ultrasound standing wave traps. The system employed sweeping acoustic drive frequencies over the range of 890 to 910 kHz and continuous perfusion of the chondrogenic culture medium at a low-shear flow rate to promote the generation of three-dimensional agglomerates of human articular chondrocytes, and enhance cartilage formation by cells of the agglomerates via improved mechanical stimulation and mass transfer rates. Histological examination and assessment of micromechanical properties using indentation-type atomic force microscopy confirmed that the neocartilage grafts were analogous to native hyaline cartilage. Furthermore, in the ex vivo organ culture partial thickness cartilage defect model, implantation of the neocartilage grafts into defects for 16 weeks resulted in the formation of hyaline cartilage-like repair tissue that adhered to the host cartilage and contributed to significant improvements to the tissue architecture within the defects, compared to the empty defects. The study has demonstrated the first successful application of the acoustofluidic perfusion bioreactors to bioengineer scaffold-free neocartilage grafts of human articular chondrocytes that have the potential for subsequent use in second generation autologous chondrocyte implantation procedures for the repair of partial thickness cartilage defects. PMID:25272195

  18. Diminished Reactivity of Postmature Human Infants to Sucrose Compared with Term Infants.

    ERIC Educational Resources Information Center

    Smith, Barbara A.; And Others

    1992-01-01

    This study of healthy 39-week-old infants, so-called term infants, and chronically stressed 42-week-old infants, so-called postmature infants, showed that sucrose was extremely effective in calming term infants but less effective in calming postmature infants. Results supported the hypothesis that sucrose engages an opioid system in infants. (BG)

  19. Taste-Mediated Calming in Premature, Preterm, and Full-Term Human Infants.

    ERIC Educational Resources Information Center

    Smith, Barbara A.; Blass, Elliott M.

    1996-01-01

    Preterm and term infants were given a sucrose solution, a glucose solution, or water during a test period in which the amount of their crying was measured. Sucrose reduced crying in preterm and term infants by 91% and 93%, respectively, and glucose by 86% and 81%, respectively. Water was ineffective in reducing crying in both preterm and term…

  20. Temperature control system for water-perfused suits

    NASA Technical Reports Server (NTRS)

    Brengelmann, G. L.; Mckeag, M.; Rowell, L. B.

    1977-01-01

    A system used to control skin temperature in human subjects wearing water-perfused garments is described. It supplies 8 l/min at 10 psi with water temperature controlled within plus or minus 0.1 C. Temperature control is facilitated by a low circulating thermal mass and a fast responding heater based on a commercially available quartz heat lamp. The system is open so that hot or cold water can be added from the building mains to produce rates of change of water temperature exceeding 5 C/min. These capabilities allow semiautomatic control of skin temperature within plus or minus 0.1 C of desired wave forms.

  1. Technical aspects of MR perfusion.

    PubMed

    Sourbron, Steven

    2010-12-01

    The most common methods for measuring perfusion with MRI are arterial spin labelling (ASL), dynamic susceptibility contrast (DSC-MRI), and T(1)-weighted dynamic contrast enhancement (DCE-MRI). This review focuses on the latter approach, which is by far the most common in the body and produces measures of capillary permeability as well. The aim is to present a concise but complete overview of the technical issues involved in DCE-MRI data acquisition and analysis. For details the reader is referred to the references. The presentation of the topic is essentially generic and focuses on technical aspects that are common to all DCE-MRI measurements. For organ-specific problems and illustrations, we refer to the other papers in this issue. In Section 1 "Theory" the basic quantities are defined, and the physical mechanisms are presented that provide a relation between the hemodynamic parameters and the DCE-MRI signal. Section 2 "Data acquisition" discusses the issues involved in the design of an optimal measurement protocol. Section 3 "Data analysis" summarizes the steps that need to be taken to determine the hemodynamic parameters from the measured data. PMID:20363574

  2. Improvement of the embalming perfusion method: the innovation and the results by light and scanning electron microscopy.

    PubMed

    Goyri-O'Neill, João; Pais, Diogo; Freire de Andrade, Francisco; Ribeiro, Paulo; Belo, Ana; O'Neill, Assunção; Ramos, Samuel; Neves Marques, Cláudia

    2013-01-01

    Embalming is a chemical process that aims the preservation and sanitization of the human body indefinitely. The technique of embalming is an important tool in teaching and research in anatomy enabling the preservation of cadaveric material in good conditions (lessening any significant structural changes and maintaining the natural appearance). This article presents the results of embalmed cadavers in the course of arterial perfusion, through the use of a perfusion machine, particularly designed to this objective, and which allows the control of the embalming fluid injection process. The influence of this technique and the optimization of its parameters on the final quality of embalming were evaluated by sequential histological analysis of the cadaveric tissues using an original method of classification of samples collected from 17 deceased corpses of the Corpses Donation Office of the Department of Anatomy of Faculdade de Ciências Médicas from Universidade Nova de Lisboa, subject to the embalming technique developed in the Department. We concluded that, with this method, there is a decrease of the decomposition process at the time of embalming, which is effective at long term (over a year), requiring merely the maintenance of the body at low temperatures (4° C) and it is possible to observe that the tissue best preserved over time is muscle, showing a conservation considered optimal.

  3. Importance of climate, forest fires and human population size on the long-term boreal forest dynamics in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kuosmanen, Niina; Seppä, Heikki; Alenius, Teija; Bradshaw, Richard; Clear, Jennifer; Filimonova, Fludmila; Heikkilä, Maija; Renssen, Hans; Tallavaara, Miikka; Reitalu, Triin

    2016-04-01

    Palaeoecological data provides valuable information for understanding the processes behind the past changes in forest composition, and hence can provide important knowledge regarding the potential effects of future changes in climate on boreal vegetation. Furthermore, it is essential to consider both regional and local factors in order to better understand the processes behind the boreal forest dynamics. The relative importance of climate, forest fires and human population size on long-term boreal forest composition were statistically investigated at regional and local scales in Fennoscandia. Statistical method variation partitioning was employed to assess the relative importance of these three variables. Fossil pollen data reflecting long-term boreal forest composition, at both regional (lake records) and local (small hollow records) scales from Russia, Finland and Sweden, were used as response matrix. Climate, generated from a climate model and oxygen isotope data, past forest fires generated from sedimentary charcoal data and human population size derived from radiocarbon dated archaeological findings were used as potential drivers of long-term boreal vegetation. Though the results clearly demonstrate that climate is the main driver of long-term vegetation changes at the regional scale, the role of climate notably is smaller at local scale and the influence of local site specific factors increases. However, the relative importance of forest fires on long-term changes in boreal forest composition remain generally low both at regional and local scale. The relatively low importance of both climate and forest fires on the variation in long-term boreal forest composition at local scale demonstrates the complexity of factors affecting stand-scale forest dynamics. In general, the relative importance of human population size on long-term changes in boreal vegetation was low. However, this was the first time that this type of human population size data was statistically

  4. Artificial perfusion of the fetal circulation of the in situ mouse placenta: methodology and validation.

    PubMed

    Bond, H; Baker, B; Boyd, R D H; Cowley, E; Glazier, J D; Jones, C J P; Sibley, C P; Ward, B S; Husain, S M

    2006-04-01

    Here we present methodology and validation (including measurement of unidirectional maternofetal clearance (Kmf) of (45)Ca and (14)C-mannitol) for in situ perfusion of the mouse placenta. On day 18 of gestation (term=19 days) mice were anaesthetised and the uterus delivered into a saline bath (40 degrees C). A fetus was selected, the umbilical artery and vein catheterised and perfused with Krebs Ringer (pH 7.4) at 60 microl/min. (45)Ca/(14)C-mannitol (2 microCi/5 microCi in 50 microl saline) was injected via maternal tail vein. Perfusate samples were collected every 5 min for 45 min. Maternal carotid artery pressure was monitored throughout perfusion. A terminal maternal cardiac blood sample was taken and analysed. Placentas were immersion fixed and processed for electron microscopy. Kmf for (45)Ca and (14)C-mannitol was calculated as perfusate [(45)Ca or (14)C-mannitol] x perfusion rate/maternal plasma [(45)Ca or (14)C-mannitol]xplacental weight. Maternal cardiac blood chemistry at termination (n=8-15, mean+/-SEM) was as follows: pH 7.153+/-0.016, PCO(2) 45.48+/-2.06 mmHg, PO(2) 66.47+/-7.10 mmHg, Na(+) 151.4+/-1.2 mmol/l, K(+) 5.54+/-0.17 mmol/l, Ca(2+) 1.15+/-0.03 mmol/l, glucose 7.2+/-0.5 mmol/l, and lactate 1.76+/-0.77 mmol/l. A successful 45 min perfusion in which perfusate recovery was >95% occurred in >50% of animals. Perfusion did not alter placental morphology or carotid pressure. Kmf (microl/min/g placenta) for (45)Ca (66.0+/-8.4 (n=7)) was significantly higher than Kmf for (14)C-mannitol (20.0+/-2.4 (n=5)) (p<0.01). These data demonstrate physiological perfusion of the mouse placenta in situ and its usefulness for measurement of solute transfer.

  5. The plasma cyclic-AMP response to noise in humans and rats—short-term exposure to various noise levels

    NASA Astrophysics Data System (ADS)

    Iwamoto, M.; Dodo, H.; Ishii, F.; Yoneda, J.; Yamazaki, S.; Goto, H.

    1988-12-01

    Rats were exposed to short-term noise which was found to activate the hypothalamohypophyseal-adrenal system and result in a decrease of adrenal ascorbic acid (AAA) and an increase of serum corticosterone (SCS). The threshold limit value lay between 60 and 70 dB(A). To characterize better the effect of noise on the human hypothalamo-hypophyseal-adrenal system, a large group of subjects was exposed to short-term noise at 85 dB(A) and higher, and tested for levels of adrenocortical steroid (cortisol) and anterior pituitary hormones such as ACTH, growth hormone (GH) and prolactin (PRL). Results in humans showed hyperfunction of the hypothalamo-pituitary system. However, as the responses in rats and humans differed, a further experiment was performed using C-AMP, a second messenger mediating many of the effects of a variety of hormones. Plasma C-AMP in humans and rats increased significantly after exposure to noise greater than 70 dB(A). We suggest that plasma C-AMP could be useful as a sensitive index for noise-related stress in the daily living environment of humans and rats.

  6. Expansion and long-term culture of human spermatogonial stem cells via the activation of SMAD3 and AKT pathways

    PubMed Central

    Guo, Ying; Liu, Linhong; Sun, Min; Hai, Yanan; Li, Zheng

    2015-01-01

    Spermatogonial stem cells (SSCs) can differentiate into spermatids, reflecting that they could be used in reproductive medicine for treating male infertility. SSCs are able to become embryonic stem-like cells with the potentials of differentiating into numerous cell types of the three germ layers and they can transdifferentiate to mature and functional cells of other lineages, highlighting significant applications of human SSCs for treating human diseases. However, human SSCs are very rare and a long-term culture system of human SSCs has not yet established. This aim of study was to isolate, identify and culture human SSCs for a long period. We isolated GPR125-positive spermatogonia with high purity and viability from adult human testicular tissues utilizing the two-step enzymatic digestion and magnetic-activated cell sorting with antibody against GPR125. These freshly isolated cells expressed a number of markers for SSCs, including GPR125, PLZF, GFRA1, RET, THY1, UCHL1 and MAGEA4, but not the hallmarks for spermatocytes and spermatozoa, e.g. SYCP1, SYCP3, PRM1, and TNP1. The isolated human SSCs could be cultured for two months with a significant increase of cell number with the defined medium containing growth factors and hydrogel. Notably, the expression of numerous SSC markers was maintained during the cultivation of human SSCs. Furthermore, SMAD3 and AKT phosphorylation was enhanced during the culture of human SSCs. Collectively, these results suggest that human SSCs can be cultivated for a long period and expanded whilst retaining an undifferentiated status via the activation of SMAD3 and AKT pathways. This study could provide sufficient cells of SSCs for their basic research and clinic applications in reproductive and regenerative medicine. PMID:26088866

  7. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    PubMed

    Ghisleni, Carmen; Bollmann, Steffen; Biason-Lauber, Anna; Poil, Simon-Shlomo; Brandeis, Daniel; Martin, Ernst; Michels, Lars; Hersberger, Martin; Suckling, John; Klaver, Peter; O'Gorman, Ruth L

    2015-01-01

    Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS) as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women). Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  8. Comparison of Myocardial Perfusion Estimates From Dynamic Contrast-Enhanced Magnetic Resonance Imaging With Four Quantitative Analysis Methods

    PubMed Central

    Pack, Nathan A.; DiBella, Edward V. R.

    2012-01-01

    Dynamic contrast-enhanced MRI has been used to quantify myocardial perfusion in recent years. Published results have varied widely, possibly depending on the method used to analyze the dynamic perfusion data. Here, four quantitative analysis methods (two-compartment modeling, Fermi function modeling, model-independent analysis, and Patlak plot analysis) were implemented and compared for quantifying myocardial perfusion. Dynamic contrast-enhanced MRI data were acquired in 20 human subjects at rest with low-dose (0.019 ± 0.005 mmol/kg) bolus injections of gadolinium. Fourteen of these subjects were also imaged at adenosine stress (0.021 ± 0.005 mmol/kg). Aggregate rest perfusion estimates were not significantly different between all four analysis methods. At stress, perfusion estimates were not significantly different between two-compartment modeling, model-independent analysis, and Patlak plot analysis. Stress estimates from the Fermi model were significantly higher (~20%) than the other three methods. Myocardial perfusion reserve values were not significantly different between all four methods. Model-independent analysis resulted in the lowest model curve-fit errors. When more than just the first pass of data was analyzed, perfusion estimates from two-compartment modeling and model-independent analysis did not change significantly, unlike results from Fermi function modeling. PMID:20577976

  9. Brain perfusion correlates of visuoperceptual deficits in Mild Cognitive Impairment and mild Alzheimer’s disease

    PubMed Central

    Alegret, Montserrat; Vinyes-Junqué, Georgina; Boada, Mercè; Martínez-Lage, Pablo; Cuberas, Gemma; Espinosa, Ana; Roca, Isabel; Hernández, Isabel; Valero, Sergi; Rosende-Roca, Maitée; Mauleón, Ana; Becker, James T.; Tárraga, Lluís

    2012-01-01

    Background Visuoperceptual processing is impaired early in the clinical course of Alzheimer’s disease (AD). The 15-Objects Test (15-OT) detects such subtle performance deficits in Mild Cognitive Impairment (MCI) and mild AD. Reduced brain perfusion in the temporal, parietal and prefrontal regions have been found in early AD and MCI patients. Objectives To confirm the role of the 15-OT in the diagnosis of MCI and AD, and to investigate the brain perfusion correlates of visuoperceptual dysfunction (15-OT) in subjects with MCI, AD and normal aging. Methods Forty-two AD, 42 MCI and 42 healthy elderly control (EC) subjects underwent a brain Single Photon Emission Tomography (SPECT) and separately completed the 15-OT. An analysis of variance compared 15-OT scores between groups. SPM5 was used to analyse the SPECT data. Results 15-OT performace was impaired in the MCI and AD patients. In terms of the SPECT scans, AD patients showed reduced perfusion in temporal-parietal regions, while the MCI subjects had decreased perfusion in the middle and posterior cingulate. When MCI and AD groups were compared, a significant brain perfusion reduction was found in temporo-parietal regions. In the whole sample, 15-OT performance was significantly correlated with the clinical dementia rating scores, and with the perfusion in the bilateral posterior cingulate and the right temporal pole, with no significant correlation in each separate group. Conclusion Our findings suggest that the 15-OT performance provides a useful gradation of impairment from normal aging to AD, and it seems to be related to perfusion in the bilateral posterior cingulate and the right temporal pole. PMID:20555146

  10. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty.

    PubMed

    Pollock, James; Ho, Sa V; Farid, Suzanne S

    2013-01-01

    This article evaluates the current and future potential of batch and continuous cell culture technologies via a case study based on the commercial manufacture of monoclonal antibodies. The case study compares fed-batch culture to two perfusion technologies: spin-filter perfusion and an emerging perfusion technology utilizing alternating tangential flow (ATF) perfusion. The operational, economic, and environmental feasibility of whole bioprocesses based on these systems was evaluated using a prototype dynamic decision-support tool built at UCL encompassing process economics, discrete-event simulation and uncertainty analysis, and combined with a multi-attribute decision-making technique so as to enable a holistic assessment. The strategies were compared across a range of scales and titres so as to visualize how their ranking changes in different industry scenarios. The deterministic analysis indicated that the ATF perfusion strategy has the potential to offer cost of goods savings of 20% when compared to conventional fed-batch manufacturing processes when a fivefold increase in maximum viable cell densities was assumed. Savings were also seen when the ATF cell density dropped to a threefold increase over the fed-batch strategy for most combinations of titres and production scales. In contrast, the fed-batch strategy performed better in terms of environmental sustainability with a lower water and consumable usage profile. The impact of uncertainty and failure rates on the feasibility of the strategies was explored using Monte Carlo simulation. The risk analysis results demonstrated the enhanced robustness of the fed-batch process but also highlighted that the ATF process was still the most cost-effective option even under uncertainty. The multi-attribute decision-making analysis provided insight into the limited use of spin-filter perfusion strategies in industry. The resulting sensitivity spider plots enabled identification of the critical ratio of weightings of

  11. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network

    PubMed Central

    Sosa, Jose M.; Nielsen, Nathan D.; Vignes, Seth M.; Chen, Tanya G.; Shevkoplyas, Sergey S.

    2013-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0% – 0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks

  12. Short- and Long-Term Effects of Unpredictable Repeated Negative Stimuli on Japanese Quail's Fear of Humans

    PubMed Central

    Laurence, Agathe; Lumineau, Sophie; Calandreau, Ludovic; Arnould, Cécile; Leterrier, Christine; Boissy, Alain; Houdelier, Cécilia

    2014-01-01

    Numerous aversive events occur in poultry production, and if repeated and unpredictable, can result in an impaired welfare. Some events such as handling can be perceived negatively and it is of interest to understand how humans' behaviour could affect poultry's behaviours and especially its avoidance of humans. Our aim was to evaluate short- and long-lasting effects of a 3-week procedure involving unpredictable repeated negative stimuli (URNS) applied during the post-juvenile period on quail's reactivity to humans. We compared the reactions of two sets of quail: URNS was applied to one set (treated quail) and the other set was left undisturbed (control quail). When two weeks old, treated quail were exposed to a variety of negative stimuli, either applied automatically or involving human presence. One and seven weeks after the termination of the procedure, the reactivity of control and treated quail to a passive human being was evaluated. Furthermore, the experimenter with her hand on a trough containing a mealworm assessed the propensity of quail of both groups to habituate to feed close to a human being. In the presence of a seated observer, treated quail were more inhibited and more alert than control quail. Likewise, seven weeks after the end of the URNS procedure, more treated than control quail adopted a fear posture. Moreover, whereas control quail spent as much time in the different areas of their cages, treated quail spent more time in the rear part of their cages. Finally, whereas control quail habituated gradually to feed near the experimenter's hand, treated quail did not. All these tests evidence negative short- and long-term effects on treated quail's reactivity to a passive human being and on their habituation to a human being when her presence is positively reinforced. This highlights the importance of young poultry's experience with humans in production. PMID:24668017

  13. A proposed lexicon of terms and concepts for human-bear management in North America

    USGS Publications Warehouse

    Hopkins, John B.; Herrero, Stephen; Shideler, Richard T.; Gunther, Kerry A.; Schwartz, Charles C.; Kalinowski, Steven T.

    2010-01-01

    We believe that communication within and among agency personnel in the United States and Canada about the successes and failures of their human–bear (Ursidae) management programs will increase the effectiveness of these programs and of bear research. To communicate more effectively, we suggest agencies clearly define terms and concepts used in human–bear management and use them in a consistent manner. We constructed a human–bear management lexicon of terms and concepts using a modified Delphi method to provide a resource that facilitates more effective communication among human–bear management agencies. Specifically, we defined 40 terms and concepts in human–bear management and suggest definitions based on discussions with 13 other professionals from the United States and Canada. Although new terms and concepts will emerge in the future and definitions will evolve as we learn more about bear behavior and ecology, our purpose is to suggest working definitions for terms and concepts to help guide human–bear management and research activities in North America. Applications or revisions of these definitions may be useful outside of North America.

  14. Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor

    PubMed Central

    Maddipati, Krishna Rao; Romero, Roberto; Chaiworapongsa, Tinnakorn; Zhou, Sen-Lin; Xu, Zhonghui; Tarca, Adi L.; Kusanovic, Juan Pedro; Munoz, Hernan; Honn, Kenneth V.

    2014-01-01

    Lipid mediators play an important role in reproductive biology, especially, in parturition. Enhanced biosynthesis of eicosanoids, such as prostaglandin E2 (PGE2) and PGF2α, precedes the onset of labor as a result of increased expression of inducible cyclooxygenase 2 (COX-2) in placental tissues. Metabolism of arachidonic acid results in bioactive lipid mediators beyond prostaglandins that could significantly influence myometrial activity. Therefore, an unbiased lipidomic approach was used to profile the arachidonic acid metabolome of amniotic fluid. In this study, liquid chromatography–mass spectrometry was used for the first time to quantitate these metabolites in human amniotic fluid by comparing patients at midtrimester, at term but not in labor, and at term and in spontaneous labor. In addition to exposing novel aspects of COX pathway metabolism, this lipidomic study revealed a dramatic increase in epoxygenase- and lipoxygenase-pathway-derived lipid mediators in spontaneous labor with remarkable product selectivity. Despite their recognition as anti-inflammatory lipid mediators and regulators of ion channels, little is known about the epoxygenase pathway in labor. Epoxygenase pathway metabolites are established regulators of vascular homeostasis in cardiovascular and renal physiology. Their presence as the dominant lipid mediators in spontaneous labor at term portends a yet undiscovered physiological function in parturition.—Maddipati, K. R., Romero, R., Chaiworapongsa, T., Zhou, S.-L., Xu, Z., Tarca, A. L., Kusanovic, J. P., Munoz, H., Honn, K. V. Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor. PMID:25059230

  15. Longitudinal Study of Cytokine Expression, Lipid Profile and Neuronal Growth Factors in Human Breast Milk from Term and Preterm Deliveries.

    PubMed

    Collado, Maria Carmen; Santaella, Marina; Mira-Pascual, Laia; Martínez-Arias, Elena; Khodayar-Pardo, Parisá; Ros, Gaspar; Martínez-Costa, Cecilia

    2015-10-19

    Breast milk (BM) is considered as a reference for infant nutrition. The role of bioactive components, such as cytokines, hormones, growth factors (GFs) and fatty acids (FAs) is poorly known, but they might be implicated in immune response development. The aim of this study was to identify the lipid profile and the spectrum of cytokines and neuronal GF in BM samples and analyse the influence of gestational age and lactation time on these components. This study used a longitudinal prospective method for the characterization of cytokines, FAs and GFs global profiles in 120 BM samples from 40 healthy mothers (20 preterm and 20 term) collected as colostrum, transitional and mature milk. The cytokines were analysed by protein array (Ray Bio® Human Cytokine Array G6. Ray Biotech, Inc. Norcross, GA, USA) and the FAs were analysed by gas chromatography. The FA profile was similar between the term and the preterm BM samples. Omega-3-α-linoleic and docosahexaenoic acid (DHA) and omega-6-linoleic acid were the most abundant in the term and preterm samples during lactation. Omega-3 ETA and omega-3 EPA we observed exclusively in the preterm samples. The cytokine profile showed a different trend based on gestational age. A significantly higher expression of neurotrophic factors was found in the mature preterm milk samples as compared to the mature term samples. Our study is the first to identify the influence and interactions of perinatal factors on cytokine, GFs and FAs in human milk.

  16. Longitudinal Study of Cytokine Expression, Lipid Profile and Neuronal Growth Factors in Human Breast Milk from Term and Preterm Deliveries

    PubMed Central

    Collado, Maria Carmen; Santaella, Marina; Mira-Pascual, Laia; Martínez-Arias, Elena; Khodayar-Pardo, Parisá; Ros, Gaspar; Martínez-Costa, Cecilia

    2015-01-01

    Breast milk (BM) is considered as a reference for infant nutrition. The role of bioactive components, such as cytokines, hormones, growth factors (GFs) and fatty acids (FAs) is poorly known, but they might be implicated in immune response development. The aim of this study was to identify the lipid profile and the spectrum of cytokines and neuronal GF in BM samples and analyse the influence of gestational age and lactation time on these components. This study used a longitudinal prospective method for the characterization of cytokines, FAs and GFs global profiles in 120 BM samples from 40 healthy mothers (20 preterm and 20 term) collected as colostrum, transitional and mature milk. The cytokines were analysed by protein array (Ray Bio® Human Cytokine Array G6. Ray Biotech, Inc. Norcross, GA, USA) and the FAs were analysed by gas chromatography. The FA profile was similar between the term and the preterm BM samples. Omega-3-α-linoleic and docosahexaenoic acid (DHA) and omega-6-linoleic acid were the most abundant in the term and preterm samples during lactation. Omega-3 ETA and omega-3 EPA we observed exclusively in the preterm samples. The cytokine profile showed a different trend based on gestational age. A significantly higher expression of neurotrophic factors was found in the mature preterm milk samples as compared to the mature term samples. Our study is the first to identify the influence and interactions of perinatal factors on cytokine, GFs and FAs in human milk. PMID:26492267

  17. Impact of human milk pasteurization on the kinetics of peptide release during in vitro dynamic term newborn digestion.

    PubMed

    Deglaire, Amélie; De Oliveira, Samira C; Jardin, Julien; Briard-Bion, Valérie; Emily, Mathieu; Ménard, Olivia; Bourlieu, Claire; Dupont, Didier

    2016-07-01

    Holder pasteurization (62.5°C, 30 min) ensures sanitary quality of donor's human milk but also denatures beneficial proteins. Understanding whether this further impacts the kinetics of peptide release during gastrointestinal digestion of human milk was the aim of the present paper. Mature raw (RHM) or pasteurized (PHM) human milk were digested (RHM, n = 2; PHM, n = 3) by an in vitro dynamic system (term stage). Label-free quantitative peptidomics was performed on milk and digesta (ten time points). Ascending hierarchical clustering was conducted on "Pasteurization × Digestion time" interaction coefficients. Preproteolysis occurred in human milk (159 unique peptides; RHM: 91, PHM: 151), mostly on β-casein (88% of the endogenous peptides). The predicted cleavage number increased with pasteurization, potentially through plasmin activation (plasmin cleavages: RHM, 53; PHM, 76). During digestion, eight clusters resumed 1054 peptides from RHM and PHM, originating for 49% of them from β-casein. For seven clusters (57% of peptides), the kinetics of peptide release differed between RHM and PHM. The parent protein was significantly linked to the clustering (p-value = 1.4 E-09), with β-casein and lactoferrin associated to clusters in an opposite manner. Pasteurization impacted selectively gastric and intestinal kinetics of peptide release in term newborns, which may have further nutritional consequences.

  18. Assessing environmental factors to the replacement of Neanderthals by modern humans in terms of eco-cultural niche modelling

    NASA Astrophysics Data System (ADS)

    Kondo, Yasuhisa; Sano, Katsuhiro; Kadowaki, Seiji; Naganuma, Masaki; Omori, Takayuki; Yoneda, Minoru; Nishiaki, Yoshihiro

    2014-05-01

    Eco-cultural niche modelling (ECNM) is an application of ecological niche modelling (ENM) to estimate the human niche in response to environmental settings. The niche probability is calculated for each spatial pixel, based on (1) the location of known archaeological sites as occurrence data and (2) environmental factors such palaeoclimate (temperature and precipitation), palaeovegetation (biome) and palaeotopography (elevation, slope and aspect). Some ENM software packages, including MaxEnt (maximum entropy model), output the percentage of contribution for each environmental factor, and therefore it is possible to identify and evaluate environmental constraints to the geographic expansion of human populations. Based on this thought, the authors applied ECNM to Palaeolithic stone tool industries in Europe and Siberia at 50-46 kya, the time period during which the first anatomically modern humans (AMHs) are presumed to have appeared in those regions, under the assumption that stone tool groups may reflect different human groups in terms of subsistence strategy. The preliminary results suggested that the population using Emiran and related industries (Bohunician and Bachokirian) were likely to construct their niches in the geographic zones where the long-term variability of the coldest month temperature was larger than in those occupied by the populations using the Late Mousterian, Szeletian and Châtelperronean stone tool industries.

  19. Changes in morphology and permeability of perfused rabbit arteries during acute elevation of the intravascular pressure

    SciTech Connect

    Voino-Yasenetskaya, T.A.; Skuratovskaya, L.N.

    1986-12-01

    This paper presents a study on whether a short-term increase of intravascular pressure causes morphological injuries to the endothelium or accelerates the accumulation of /sup 125/I-labeled low-density lipoproteins (/sup 125/I-LDL) in the wall of perfused arteries of healthy rabbits, and how a raised hydrostatic pressure affects /sup 125/I-LDL transport in denuded areas of perfused arteries. The average number of cells per 1 mm/sup 2/ of luminal surface during perfusion under a pressure of 100-250 mm Hg is shown. Also, the morphology of endothelial lining of rabbit aorta under increased intravascular pressure is presented, as is the incorporation of /sup 125/I-LDL into wall of rabbit aorta under increased intravascular pressure.

  20. Radionuclide cerebral perfusion imaging: Normal pattern

    SciTech Connect

    Goldsmith, S.J.; Stritzke, P.; Losonczy, M.; Vallabhajosula, S.; Holan, V.; DaCosta, M.; Muzinic, M.

    1991-12-31

    Regional cerebral perfusion imaging using a new class of {sup 99m}Tc and {sup 123}I labeled compounds which traverse the blood brain barrier and SPECT imaging technology provides an opportunity to assess this physiologic phenomenon during normal cerebral function and as a manifestation of disease in the central nervous system disease. These applications pose a challenge to the nuclear medicine physician for several reasons: (a) the complex and somewhat unfamiliar functional anatomy, (b) the marked regional differences in regional cerebral perfusion at rest, (c) the lack of understanding of the effect of variations in ambient conditions on regional cerebral perfusion. The difficulties in interpretation are augmented by the display itself. There is frequently no difficulty in differentiating between gray and white matter. However, the frequently used {open_quotes}hot body{close_quotes} color maps, introduce a good deal of contrast, producing displays with apparent interruption in regional cortical perfusion whereas black and white displays provide minimal contrast in the regional cortical activity. The authors sought to define how much variation in regional cerebral perfusion is {open_quotes}allowed{close_quotes} under controlled conditions, to establish a basis to interpret if changes in the environment, psychological interventions, or disease states are accompanied by a measurable change. 2 figs., 1 tab.

  1. Possible psycho-physiological consequences of human long-term space missions

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Kachanova, T. L.; Kalashnikova, I. V.

    Experiments carried out on the Earth s surface during different years and under contrast periods of solar activity have shown that the functional state of biosystems including the human organisms are controlled by global and local geocosmical agents Our finding have a close relation to space research because they demonstrate the reactions of biosystems on variations of global and local geocosmical agents and the mechanisms of modulations of biosystems state by geocosmical agents We revealed the role of variations of the geomagnetic field for the stimulation of immune systems functional state of peripheral blood human brain growth of microflora skin covers and pathogenic microorganisms The study of the psycho-physiological state of the human organism has demonstrated that an increase of the neutron intensity near the Earth s surface is associated with anxiety decrease of normal and increase of paradox reactions of examinees The analysis of the human brain functional state in dependent on the geomagnetic variation structure dose under exposure to the variations of geomagnetic field in a certain amplitude-frequency range and also the intensity of the nucleon component of secondary cosmic rays showed that the stable and unstable states of the human brain are determined by geomagnetic field variations and the intensity of the nucleon component The stable state of the brain manifested under the periodic oscillations of the geomagnetic field in a certain amplitude-frequency range The low level of geomagnetic activity associated with an

  2. Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles.

    PubMed

    Melega, William P; Jorgensen, Matthew J; Laćan, Goran; Way, Baldwin M; Pham, Jamie; Morton, Grenvill; Cho, Arthur K; Fairbanks, Lynn A

    2008-05-01

    Methamphetamine (METH)-associated alterations in the human striatal dopamine (DA) system have been identified with positron emission tomography (PET) imaging and post-mortem studies but have not been well correlated with behavioral changes or cumulative METH intake. Animal studies that model some aspects of human long-term METH abuse can establish dose-dependency profiles of both behavioral changes and potential brain neurotoxicities for identifying consequences of particular cumulative exposures. Based on parameters from human and our monkey pharmacokinetic studies, we modeled a prevalent human METH exposure of daily multiple doses in socially housed vervet monkeys. METH doses were escalated over 33 weeks, with final dosages resulting in estimated peak plasma METH concentrations of 1-3 microM, a range measured in human abusers. With larger METH doses, progressive increases in abnormal behavior and decreases in social behavior were observed on 'injection' days. Anxiety increased on 'no injection' days while aggression decreased throughout the study. Thereafter, during 3 weeks abstinence, differences in baseline vs post-METH behaviors were not observed. Post-mortem analysis of METH brains showed 20% lower striatal DA content while autoradiography studies of precommissural striatum showed 35% lower [3H]WIN35428 binding to the DA transporter. No statistically significant changes were detected for [3H]dihydrotetrabenazine binding to the vesicular monoamine transporter (METH-lower by 10%) or for [3H]SCH 23390 and [3H]raclopride binding to DA D1 and D2 receptors, respectively. Collectively, this long-term, escalating dose METH exposure modeling a human abuse pattern, not associated with high-dose binges, resulted in dose-dependent behavioral effects and caused persistent changes in presynaptic striatal DA system integrity.

  3. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults

    PubMed Central

    Durazzo, Timothy C.; Meyerhoff, Dieter J.; Murray, Donna E.

    2015-01-01

    Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal) on cerebral perfusion (i.e., blood flow). Predominately middle-aged male (47 ± 11 years of age) smokers (n = 34) and non-smokers (n = 27) were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age) was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain. PMID:26193290

  4. Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Li; Bojikian, Karine D.; Xin, Chen; Wen, Joanne C.; Gupta, Divakar; Zhang, Qinqin; Mudumbai, Raghu C.; Johnstone, Murray A.; Chen, Philip P.; Wang, Ruikang K.

    2016-06-01

    Optical coherence tomography angiography (OCTA) has increasingly become a clinically useful technique in ophthalmic imaging. We evaluate the repeatability and reproducibility of blood perfusion in the optic nerve head (ONH) measured using optical microangiography (OMAG)-based OCTA. Ten eyes from 10 healthy volunteers are recruited and scanned three times with a 68-kHz Cirrus HD-OCT 5000-based OMAG prototype system (Carl Zeiss Meditec Inc., Dublin, California) centered at the ONH involving two separate visits within six weeks. Vascular images are generated with OMAG processing by detecting the differences in OCT signals between consecutive B-scans acquired at the same retina location. ONH perfusion is quantified as flux, vessel area density, and normalized flux within the ONH for the prelaminar, lamina cribrosa, and the full ONH. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) are used to evaluate intravisit and intervisit repeatability, and interobserver reproducibility. ONH perfusion measurements show high repeatability [CV≤3.7% (intravisit) and ≤5.2% (intervisit)] and interobserver reproducibility (ICC≤0.966) in all three layers by three metrics. OCTA provides a noninvasive method to visualize and quantify ONH perfusion in human eyes with excellent repeatability and reproducibility, which may add additional insight into ONH perfusion in clinical practice.

  5. In situ perfusion in rodents to explore intestinal drug absorption: challenges and opportunities.

    PubMed

    Stappaerts, Jef; Brouwers, Joachim; Annaert, Pieter; Augustijns, Patrick

    2015-01-30

    The in situ intestinal perfusion technique in rodents is a very important absorption model, not only because of its predictive value, but it is also very suitable to unravel the mechanisms underlying intestinal drug absorption. This literature overview covers a number of specific applications for which the in situ intestinal perfusion set-up can be applied in favor of established in vitro absorption tools, such as the Caco-2 cell model. Qualities including the expression of drug transporters and metabolizing enzymes relevant for human intestinal absorption and compatibility with complex solvent systems render the in situ technique the most designated absorption model to perform transporter-metabolism studies or to evaluate the intestinal absorption from biorelevant media. Over the years, the in situ intestinal perfusion model has exhibited an exceptional ability to adapt to the latest challenges in drug absorption profiling. For instance, the introduction of the mesenteric vein cannulation allows determining the appearance of compounds in the blood and is of great use, especially when evaluating the absorption of compounds undergoing intestinal metabolism. Moreover, the use of the closed loop intestinal perfusion set-up is interesting when compounds or perfusion media are scarce. Compatibility with emerging trends in pharmaceutical profiling, such as the use of knockout or transgenic animals, generates unparalleled possibilities to gain mechanistic insight into specific absorption processes. Notwithstanding the fact that the in situ experiments are technically challenging and relatively time-consuming, the model offers great opportunities to gain insight into the processes determining intestinal drug absorption.

  6. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults.

    PubMed

    Durazzo, Timothy C; Meyerhoff, Dieter J; Murray, Donna E

    2015-07-16

    Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal) on cerebral perfusion (i.e., blood flow). Predominately middle-aged male (47 ± 11 years of age) smokers (n = 34) and non-smokers (n = 27) were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age) was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain.

  7. Comparison of Microdialysis Sampling Perfusion Fluid Components on the Foreign Body Reaction in Rat Subcutaneous Tissue

    PubMed Central

    Keeler, Geoffrey D.; Durdik, Jeannine M.; Stenken, Julie A.

    2013-01-01

    Microdialysis sampling is a commonly used technique for collecting solutes from the extracellular space of tissues in laboratory animals and humans. Large molecular weight solutes can be collected using high molecular weight cutoff (MWCO) membranes (100 kDa or greater). High MWCO membranes require addition of high molecular weight dextrans or albumin to the perfusion fluid to prevent fluid loss via ultrafiltration. While these perfusion fluid additives are commonly used during microdialysis sampling, the tissue response to the loss of these compounds across the membrane is poorly understood. Tissue reactions to implanted microdialysis sampling probes containing different microdialysis perfusion fluids were compared over a 7-day time period in rats. The base perfusion fluid was Ringer’s solution supplemented with either bovine serum albumin (BSA), rat serum albumin (RSA), Dextran-70, or Dextran-500. A significant inflammatory response to Dextran-70 was observed. No differences in the tissue response between BSA and RSA were observed. Among these agents, the BSA, RSA, and Dextran-500 produced a significantly reduced inflammatory response compared to the Dextran-70. This work demonstrates that use of Dextran-70 in microdialysis sampling perfusion fluids should be eliminated and replaced with Dextran-500 or other alternatives. PMID:24239995

  8. Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion

    NASA Astrophysics Data System (ADS)

    Ren, Wenqi; Gan, Qi; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2015-12-01

    Simultaneous and quantitative assessment of multiple tissue parameters may facilitate more effective diagnosis and therapy in many clinical applications, such as wound healing. However, existing wound assessment methods are typically subjective and qualitative, with the need for sequential data acquisition and coregistration between modalities, and lack of reliable standards for performance evaluation or calibration. To overcome these limitations, we developed a multimodal imaging system for quasi-simultaneous assessment of cutaneous tissue oxygenation and perfusion in a quantitative and noninvasive fashion. The system integrated multispectral and laser speckle imaging technologies into one experimental setup. Tissue oxygenation and perfusion were reconstructed by advanced algorithms. The accuracy and reliability of the imaging system were quantitatively validated in calibration experiments and a tissue-simulating phantom test. The experimental results were compared with a commercial oxygenation and perfusion monitor. Dynamic detection of cutaneous tissue oxygenation and perfusion was also demonstrated in vivo by a postocclusion reactive hyperemia procedure in a human subject and a wound healing process in a wounded mouse model. Our in vivo experiments not only validated the performance of the multimodal imaging system for cutaneous tissue oxygenation and perfusion imaging but also demonstrated its technical potential for wound healing assessment in clinical practice.

  9. [Absorption of amino acids from the perfused ovine rumen].

    PubMed

    L' Leng; Tomás, J; Várady, J; Szányiová, M

    1978-06-01

    The experiments with extracoroporeal perfusion of sheep rumen were performed [Leng et al., 1977]. Bovine plasma, diluted in a 1:1ratio with an isotonic solution of sodium chloride, was used for four perfusions, and autologous blood was used for two perfusions in the course of 150 minutes. After 60 minutes perfusion 20 g enzymatic casein hydrolyzate were applied to the rumen. The levels of free amino acids in the perfusate were recorded after 60 minutes' perfusion [the first phase of perfusion] and at the end of the experiment [the second phase]. The levels of lysine, aspartic acid and glutamic acid increased after perfusions with bovine plasma during the first phase, the levels of glutamic acid, phenylalanine, and in one case of alanine, increased after perfusions with autologus blood. Simultaneously the level of valine decreased after perfusions with bovine plasma, and after perfusions with blood the levels of arginine and valine, and/or lysine, dropped. During the second phase of perfusion, the levels of all the observed amino acids except methionine [bovine plasma], and/or orginine and methionine [blood] rose in the perfusate. The experiments showed that the level of amino acids in the rumen content presented a decisive factor affecting amino acid absorption from the rumen into the blood. Transformation of the amino acids during their passage through the remen wall may be assumed, and glutamic acid is one of the chief products of this process.

  10. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  11. Dependence of Brain Intravoxel Incoherent Motion Perfusion Parameters on the Cardiac Cycle

    PubMed Central

    Federau, Christian; Hagmann, Patric; Maeder, Philippe; Müller, Markus; Meuli, Reto; Stuber, Matthias; O’Brien, Kieran

    2013-01-01

    Measurement of microvascular perfusion with Intravoxel Incoherent Motion (IVIM) MRI is gaining interest. Yet, the physiological influences on the IVIM perfusion parameters (“pseudo-diffusion” coefficient D*, perfusion fraction f, and flow related parameter fD*) remain insufficiently characterized. In this article, we hypothesize that D* and fD*, which depend on blood speed, should vary during the cardiac cycle. We extended the IVIM model to include time dependence of D* = D*(t), and demonstrate in the healthy human brain that both parameters D* and fD* are significantly larger during systole than diastole, while the diffusion coefficient D and f do not vary significantly. The results non-invasively demonstrate the pulsatility of the brain’s microvasculature. PMID:24023649

  12. The hippocampus is required for short-term topographical memory in humans

    PubMed Central

    Hartley, Tom; Bird, Chris M.; Chan, Dennis; Cipolotti, Lisa; Husain, Masud; Vargha-Khadem, Faraneh; Burgess, Neil

    2009-01-01

    The hippocampus plays a crucial role within the neural systems for long-term memory, but little if any role in the short-term retention of some types of stimuli. Nonetheless, the hippocampus may be specialized for allocentric topographical processing which impacts on short-term memory or even perception. To investigate this we developed performance-matched tests of perception (match-to-sample) and short-term memory (2s delayed-match-to-sample) for the topography and for the non-spatial aspects of visual scenes. Four patients with focal hippocampal damage and one with more extensive damage, including right parahippocampal gyrus, were tested. All five patients showed impaired topographical memory and spared non-spatial processing in both memory and perception. Topographical perception was profoundly impaired in the patient with parahippocampal damage, mildly impaired in two of the hippocampal cases and clearly preserved in the other two hippocampal cases (including one with dense amnesia). Our results suggest that the hippocampus supports allocentric topographical processing that is indispensable when appropriately tested after even very short delays, while the presence of the sample scene can allow successful topographical perception without it, possibly via a less flexible parahippocampal representation. PMID:17143905

  13. Behavioral Specifications of Reward-Associated Long-Term Memory Enhancement in Humans

    ERIC Educational Resources Information Center

    Wittmann, Bianca C.; Dolan, Raymond J.; Duzel, Emrah

    2011-01-01

    Recent functional imaging studies link reward-related activation of the midbrain substantia nigra-ventral tegmental area (SN/VTA), the site of origin of ascending dopaminergic projections, with improved long-term episodic memory. Here, we investigated in two behavioral experiments how (1) the contingency between item properties and reward, (2) the…

  14. A Neurocognitive Model for Short-Term Sensory and Motor Preparatory Activity in Humans

    ERIC Educational Resources Information Center

    Gomez, Carlos M.; Vaquero, Encarna; Vazquez-Marrufo, Manuel

    2004-01-01

    The purpose of this review is to present information from different experiments that supports the proposal that brain systems are able to predict, in a short-term interval, certain characteristics about the next incoming stimuli. This ability allows the subject to be ready for the stimuli and be more efficient in completing the required task.…

  15. A comparative biomechanical analysis of term fetal membranes in human and domestic species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to biomechanically characterize and compare human, porcine, equine, and ovine fetal membranes. Noncontact metrology was used for topographic analyses. Uniaxial tensile testing was performed to resolve specific biomechanical values. Puncture force and radial stresses we...

  16. Reactive nitrogen and human health: acute and long-term implications.

    PubMed

    Wolfe, Amir H; Patz, Jonathan A

    2002-03-01

    Reactive-nitrogen (Nr) has a wide variety of beneficial and detrimental effects on human health. The most important of the beneficial effects are increasing global and regional food supplies and increased nutritional quality of available foods. However, lack of adequate dietary intake of amino acids and proteins is a serious cause of malnutrition when food supplies are inadequate because of poverty, drought, floods, wars, and displacements of people as refugees. There is sufficient, though limited, quantitative data indicating that increased circulation of Nr in the environment is responsible for significant human health effects via other exposure pathways. Nr can lead to harmful health effects from airborne occupational exposures and population-wide indoor and outdoor air pollution exposures to nitrogen dioxide and ozone. Nr can also affect health via water pollution problems, including methemoglobinemia from contaminated ground water, eutrophication causing fish kills and algal blooms that can be toxic to humans, and via global warming. The environmental pollutants stemming from reactive nitrogen are ubiquitous, making it difficult to identify the extent to which Nr exerts a specific health effect. As all populations are susceptible, continued interdisciplinary investigations are needed to determine the extent and nature of the beneficial and harmful effects on human health of nitrogen-related pollutants and their derivatives. PMID:12078000

  17. Reactive nitrogen and human health: acute and long-term implications.

    PubMed

    Wolfe, Amir H; Patz, Jonathan A

    2002-03-01

    Reactive-nitrogen (Nr) has a wide variety of beneficial and detrimental effects on human health. The most important of the beneficial effects are increasing global and regional food supplies and increased nutritional quality of available foods. However, lack of adequate dietary intake of amino acids and proteins is a serious cause of malnutrition when food supplies are inadequate because of poverty, drought, floods, wars, and displacements of people as refugees. There is sufficient, though limited, quantitative data indicating that increased circulation of Nr in the environment is responsible for significant human health effects via other exposure pathways. Nr can lead to harmful health effects from airborne occupational exposures and population-wide indoor and outdoor air pollution exposures to nitrogen dioxide and ozone. Nr can also affect health via water pollution problems, including methemoglobinemia from contaminated ground water, eutrophication causing fish kills and algal blooms that can be toxic to humans, and via global warming. The environmental pollutants stemming from reactive nitrogen are ubiquitous, making it difficult to identify the extent to which Nr exerts a specific health effect. As all populations are susceptible, continued interdisciplinary investigations are needed to determine the extent and nature of the beneficial and harmful effects on human health of nitrogen-related pollutants and their derivatives.

  18. Capsaicin-sensitive C- and A-fibre nociceptors control long-term potentiation-like pain amplification in humans.

    PubMed

    Henrich, Florian; Magerl, Walter; Klein, Thomas; Greffrath, Wolfgang; Treede, Rolf-Detlef

    2015-09-01

    Long-term potentiation in the spinal dorsal horn requires peptidergic C-fibre activation in animals. Perceptual correlates of long-term potentiation following high-frequency electrical stimulation in humans include increased sensitivity to electrical stimuli at the high frequency stimulation site (homotopic pain-long-term potentiation) and increased sensitivity to pinprick surrounding the high frequency stimulation site (heterotopic pain-long-term potentiation, equivalent to secondary hyperalgaesia). To characterize the peripheral fibre populations involved in induction of pain-long-term potentiation, we performed two selective nerve block experiments in 30 healthy male volunteers. Functional blockade of TRPV1-positive nociceptors by high-concentration capsaicin (verified by loss of heat pain) significantly reduced pain ratings to high frequency stimulation by 47% (P < 0.001), homotopic pain-long-term potentiation by 71% (P < 0.01), heterotopic pain-long-term potentiation by 92% (P < 0.001) and the area of secondary hyperalgesia by 76% (P < 0.001). The selective blockade of A-fibre conduction by nerve compression (verified by loss of first pain to pinprick) significantly reduced pain ratings to high frequency stimulation by 37% (P < 0.01), but not homotopic pain-long-term potentiation (-5%). It had a marginal effect on heterotopic pain-long-term potentiation (-35%, P = 0.059), while the area of secondary hyperalgesia remained unchanged (-2%, P = 0.88). In conclusion, all nociceptor subclasses contribute to high frequency stimulation-induced pain (with a relative contribution of C > Aδ fibres, and an equal contribution of TRPV1-positive and TRPV1-negative fibres). TRPV1-positive C-fibres are the main inducers of both homotopic and heterotopic pain-long-term potentiation. TRPV1-positive A-fibres contribute substantially to the induction of heterotopic pain-long-term potentiation. TRPV1-negative C-fibres induce a component of homotopic self-facilitation but not

  19. The CD44+ALDH+ Population of Human Keratinocytes Is Enriched for Epidermal Stem Cells with Long-Term Repopulating Ability

    PubMed Central

    Szabo, Akos Z.; Fong, Stephen; Yue, Lili; Zhang, Kai; Strachan, Lauren R.; Scalapino, Kenneth; Mancianti, Maria Laura; Ghadially, Ruby

    2014-01-01

    Like for other somatic tissues, isolation of a pure population of stem cells has been a primary goal in epidermal biology. We isolated discrete populations of freshly obtained human neonatal keratinocytes (HNKs) using previously untested candidate stem cell markers aldehyde dehydrogenase (ALDH) and CD44 as well as the previously studied combination of integrin α6 and CD71. An in vivo transplantation assay combined with limiting dilution analysis was used to quantify enrichment for long-term repopulating cells in the isolated populations. The ALDH+CD44+ population was enriched 12.6-fold for long-term repopulating epidermal stem cells (EpiSCs) and the integrin α6hiCD71lo population was enriched 5.6-fold, over unfractionated cells. In addition to long-term repopulation, CD44+ALDH+ keratinocytes exhibited other stem cell properties. CD44+ALDH+ keratinocytes had self-renewal ability, demonstrated by increased numbers of cells expressing nuclear Bmi-1, serial transplantation of CD44+ALDH+ cells, and holoclone formation in vitro. CD44+ALDH+ cells were multipotent, producing greater numbers of hair follicle-like structures than CD44−ALDH− cells. Furthermore, 58% ± 7% of CD44+ALDH+ cells exhibited label-retention. In vitro, CD44+ALDH+ cells showed enhanced colony formation, in both keratinocyte and embryonic stem cell growth media. In summary, the CD44+ALDH+ population exhibits stem cell properties including long-term epidermal regeneration, multipotency, label retention, and holoclone formation. This study shows that it is possible to quantify the relative number of EpiSCs in human keratinocyte populations using long-term repopulation as a functional test of stem cell nature. Future studies will combine isolation strategies as dictated by the results of quantitative transplantation assays, in order to achieve a nearly pure population of EpiSCs. PMID:23335266

  20. The retention and disruption of color information in human short-term visual memory.

    PubMed

    Nemes, Vanda A; Parry, Neil R A; Whitaker, David; McKeefry, Declan J

    2012-01-27

    Previous studies have demonstrated that the retention of information in short-term visual perceptual memory can be disrupted by the presentation of masking stimuli during interstimulus intervals (ISIs) in delayed discrimination tasks (S. Magnussen & W. W. Greenlee, 1999). We have exploited this effect in order to determine to what extent short-term perceptual memory is selective for stimulus color. We employed a delayed hue discrimination paradigm to measure the fidelity with which color information was retained in short-term memory. The task required 5 color normal observers to discriminate between spatially non-overlapping colored reference and test stimuli that were temporally separated by an ISI of 5 s. The points of subjective equality (PSEs) on the resultant psychometric matching functions provided an index of performance. Measurements were made in the presence and absence of mask stimuli presented during the ISI, which varied in hue around the equiluminant plane in DKL color space. For all reference stimuli, we found a consistent mask-induced, hue-dependent shift in PSE compared to the "no mask" conditions. These shifts were found to be tuned in color space, only occurring for a range of mask hues that fell within bandwidths of 29-37 deg. Outside this range, masking stimuli had little or no effect on measured PSEs. The results demonstrate that memory masking for color exhibits selectivity similar to that which has already been demonstrated for other visual attributes. The relatively narrow tuning of these interference effects suggests that short-term perceptual memory for color is based on higher order, non-linear color coding.

  1. Representation of Instantaneous and Short-Term Loudness in the Human Cortex

    PubMed Central

    Thwaites, Andrew; Glasberg, Brian R.; Nimmo-Smith, Ian; Marslen-Wilson, William D.; Moore, Brian C. J.

    2016-01-01

    Acoustic signals pass through numerous transforms in the auditory system before perceptual attributes such as loudness and pitch are derived. However, relatively little is known as to exactly when these transformations happen, and where, cortically or sub-cortically, they occur. In an effort to examine this, we investigated the latencies and locations of cortical entrainment to two transforms predicted by a model of loudness perception for time-varying sounds: the transforms were instantaneous loudness and short-term loudness, where the latter is hypothesized to be derived from the former and therefore should occur later in time. Entrainment of cortical activity was estimated from electro- and magneto-encephalographic (EMEG) activity, recorded while healthy subjects listened to continuous speech. There was entrainment to instantaneous loudness bilaterally at 45, 100, and 165 ms, in Heschl's gyrus, dorsal lateral sulcus, and Heschl's gyrus, respectively. Entrainment to short-term loudness was found in both the dorsal lateral sulcus and superior temporal sulcus at 275 ms. These results suggest that short-term loudness is derived from instantaneous loudness, and that this derivation occurs after processing in sub-cortical structures. PMID:27199645

  2. Representation of Instantaneous and Short-Term Loudness in the Human Cortex.

    PubMed

    Thwaites, Andrew; Glasberg, Brian R; Nimmo-Smith, Ian; Marslen-Wilson, William D; Moore, Brian C J

    2016-01-01

    Acoustic signals pass through numerous transforms in the auditory system before perceptual attributes such as loudness and pitch are derived. However, relatively little is known as to exactly when these transformations happen, and where, cortically or sub-cortically, they occur. In an effort to examine this, we investigated the latencies and locations of cortical entrainment to two transforms predicted by a model of loudness perception for time-varying sounds: the transforms were instantaneous loudness and short-term loudness, where the latter is hypothesized to be derived from the former and therefore should occur later in time. Entrainment of cortical activity was estimated from electro- and magneto-encephalographic (EMEG) activity, recorded while healthy subjects listened to continuous speech. There was entrainment to instantaneous loudness bilaterally at 45, 100, and 165 ms, in Heschl's gyrus, dorsal lateral sulcus, and Heschl's gyrus, respectively. Entrainment to short-term loudness was found in both the dorsal lateral sulcus and superior temporal sulcus at 275 ms. These results suggest that short-term loudness is derived from instantaneous loudness, and that this derivation occurs after processing in sub-cortical structures. PMID:27199645

  3. Perfusion safety: new initiatives and enduring principles.

    PubMed

    Kurusz, M

    2011-09-01

    Perfusion safety has been studied and discussed extensively for decades. Many initiatives occurred through efforts of professional organizations to achieve recognition, establish accreditation and certification, promote consensus practice guidelines, and develop peer-reviewed journals as sources for dissemination of clinical information. Newer initiatives have their basis in other disciplines and include systems approach, Quality Assurance/Quality Improvement processes, error recognition, evidence-based methodologies, registries, equipment automation, simulation, and the Internet. Use of previously established resources such as written protocols, checklists, safety devices, and enhanced communication skills has persisted to the present in promoting perfusion safety and has reduced current complication rates to negligible levels.

  4. Changes in the long-term hydrological regimes and the impacts of human activities in the main Wei River, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Huang, Qiang; Zhang, Qiang; Gu, Lei; Chen, Keyu; Yu, Qijun

    2016-03-01

    Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.

  5. Long-term neural and physiological phenotyping of a single human.

    PubMed

    Poldrack, Russell A; Laumann, Timothy O; Koyejo, Oluwasanmi; Gregory, Brenda; Hover, Ashleigh; Chen, Mei-Yen; Gorgolewski, Krzysztof J; Luci, Jeffrey; Joo, Sung Jun; Boyd, Ryan L; Hunicke-Smith, Scott; Simpson, Zack Booth; Caven, Thomas; Sochat, Vanessa; Shine, James M; Gordon, Evan; Snyder, Abraham Z; Adeyemo, Babatunde; Petersen, Steven E; Glahn, David C; Reese Mckay, D; Curran, Joanne E; Göring, Harald H H; Carless, Melanie A; Blangero, John; Dougherty, Robert; Leemans, Alexander; Handwerker, Daniel A; Frick, Laurie; Marcotte, Edward M; Mumford, Jeanette A

    2015-12-09

    Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders.

  6. Expression and localization of the omega-3 fatty acid receptor GPR120 in human term placenta.

    PubMed

    Lager, S; Ramirez, V I; Gaccioli, F; Jansson, T; Powell, T L

    2014-07-01

    Fatty acids can function as signaling molecules, acting through receptors in the cytosol or on the cell surface. G-Protein Receptor (GPR)120 is a membrane-bound receptor mediating anti-inflammatory and insulin-sensitizing effects of the omega-3 fatty acid docohexaenoic acid (DHA). GPR120 dysfunction is associated with obesity in humans. Cellular localization of GPR120 and the influence of maternal obesity on GPR120 protein expression in the placenta are unknown. Herein we demonstrate that GPR120 is predominantly expressed in the microvillous membrane (MVM) of human placenta and that the expression level of this receptor in MVM is not altered by maternal body mass index (BMI).

  7. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation.

    PubMed

    Soeters, Maarten R; Soeters, Peter B; Schooneman, Marieke G; Houten, Sander M; Romijn, Johannes A

    2012-12-15

    The human organism has tools to cope with metabolic challenges like starvation that are crucial for survival. Lipolysis, lipid oxidation, ketone body synthesis, tailored endogenous glucose production and uptake, and decreased glucose oxidation serve to protect against excessive erosion of protein mass, which is the predominant supplier of carbon chains for synthesis of newly formed glucose. The starvation response shows that the adaptation to energy deficit is very effective and coordinated with different adaptations in different organs. From an evolutionary perspective, this lipid-induced effect on glucose oxidation and uptake is very strong and may therefore help to understand why insulin resistance in obesity and type 2 diabetes mellitus is difficult to treat. The importance of reciprocity in lipid and glucose metabolism during human starvation should be taken into account when studying lipid and glucose metabolism in general and in pathophysiological conditions in particular.

  8. Long-term Interaction of an Iron Fragment with Living Human Tissue

    NASA Astrophysics Data System (ADS)

    Donggao, Zhao; Meifu, Zhou

    An iron fragment was embedded accidentally in a human body and remained inside for nearly 16 years. The fragment underwent significant morphological and chemical changes. The surface of the fragment developed a botryoidal or oolitic form. The fragment was altered to iron oxides and hydroxides and Ca phosphates (likely apatite). Fe, O, P, Ca, Cl, Na, K, and Mg were identified in the fragment. From the rim to the core, the Fe content increased and the P and Ca contents decreased. The fragment absorbed Ca, P, O, Cl, Na, and K from the body. This study shows that apatite or other Ca phosphates can remain stable for as long as 16 years. However, the Ca phosphate is mixed with Fe oxides or hydroxides, and therefore, it may not be strong enough to bond to bone. This study also shows that Fe or Fe-bearing alloys are not stable inside a human body.

  9. Effects of laser acupuncture on blood perfusion rate

    NASA Astrophysics Data System (ADS)

    Wang, Xian-ju; Zeng, Chang-chun; Liu, Han-ping; Liu, Song-hao; Liu, Liang-gang

    2006-09-01

    Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.

  10. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    PubMed Central

    Boivin, Nicole L.; Zeder, Melinda A.; Fuller, Dorian Q.; Crowther, Alison; Larson, Greger; Erlandson, Jon M.; Denham, Tim; Petraglia, Michael D.

    2016-01-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046

  11. [Detection of stimulator-induced cytotoxicity of human mononuclear cells in short-term culture].

    PubMed

    von Baehr, R; Timm, M; Fröbe, I

    1983-01-01

    A new test modification for the detection of stimulant-induced cytotoxicity of human mononuclear blood cells is described. Papain-treated human erythrocytes were used as indicator cells. The effector cells were lymphocytes. The ratio of target cells to effector cells was 10/1. Haemoglobin as a marker of lysis of the erythrocytes, released in the supernatant, was measured quantitatively in form of its pseudoperoxidase-activity. PHA, ConA and tannic acid were ascertained and tested as stimulants of cytotoxicity. The reaction was inhibitable by anti-human-lymphocyte-globulin. The test conditions were optimized in regard to incubation time, -temperature, -vessels, culture medium and target cells. The technique is easy to manipulate, has only slight pretensions to the equipment of the laboratory and appears to be very effective. We recommend to apply this method of stimulant-induced cytotoxicity within the detection of the immune state, especially in the progress of immunopathological diseases and the analysis of efficiency of immunosuppressive therapy. PMID:6224413

  12. Effect of General Anesthesia in Infancy on Long-Term Recognition Memory in Humans and Rats

    PubMed Central

    Stratmann, Greg; Lee, Joshua; Sall, Jeffrey W; Lee, Bradley H; Alvi, Rehan S; Shih, Jennifer; Rowe, Allison M; Ramage, Tatiana M; Chang, Flora L; Alexander, Terri G; Lempert, David K; Lin, Nan; Siu, Kasey H; Elphick, Sophie A; Wong, Alice; Schnair, Caitlin I; Vu, Alexander F; Chan, John T; Zai, Huizhen; Wong, Michelle K; Anthony, Amanda M; Barbour, Kyle C; Ben-Tzur, Dana; Kazarian, Natalie E; Lee, Joyce YY; Shen, Jay R; Liu, Eric; Behniwal, Gurbir S; Lammers, Cathy R; Quinones, Zoel; Aggarwal, Anuj; Cedars, Elizabeth; Yonelinas, Andrew P; Ghetti, Simona

    2014-01-01

    Anesthesia in infancy impairs performance in recognition memory tasks in mammalian animals, but it is unknown if this occurs in humans. Successful recognition can be based on stimulus familiarity or recollection of event details. Several brain structures involved in recollection are affected by anesthesia-induced neurodegeneration in animals. Therefore, we hypothesized that anesthesia in infancy impairs recollection later in life in humans and rats. Twenty eight children ages 6–11 who had undergone a procedure requiring general anesthesia before age 1 were compared with 28 age- and gender-matched children who had not undergone anesthesia. Recollection and familiarity were assessed in an object recognition memory test using receiver operator characteristic analysis. In addition, IQ and Child Behavior Checklist scores were assessed. In parallel, thirty three 7-day-old rats were randomized to receive anesthesia or sham anesthesia. Over 10 months, recollection and familiarity were assessed using an odor recognition test. We found that anesthetized children had significantly lower recollection scores and were impaired at recollecting associative information compared with controls. Familiarity, IQ, and Child Behavior Checklist scores were not different between groups. In rats, anesthetized subjects had significantly lower recollection scores than controls while familiarity was unaffected. Rats that had undergone tissue injury during anesthesia had similar recollection indices as rats that had been anesthetized without tissue injury. These findings suggest that general anesthesia in infancy impairs recollection later in life in humans and rats. In rats, this effect is independent of underlying disease or tissue injury. PMID:24910347

  13. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions.

    PubMed

    Boivin, Nicole L; Zeder, Melinda A; Fuller, Dorian Q; Crowther, Alison; Larson, Greger; Erlandson, Jon M; Denham, Tim; Petraglia, Michael D

    2016-06-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity-the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046

  14. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions.

    PubMed

    Boivin, Nicole L; Zeder, Melinda A; Fuller, Dorian Q; Crowther, Alison; Larson, Greger; Erlandson, Jon M; Denham, Tim; Petraglia, Michael D

    2016-06-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity-the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences.

  15. Uterine perfusion model for analyzing barriers to transport in fibroids.

    PubMed

    Stirland, Darren L; Nichols, Joseph W; Jarboe, Elke; Adelman, Marisa; Dassel, Mark; Janát-Amsbury, Margit-Maria; Bae, You Han

    2015-09-28

    This project uses an ex vivo human perfusion model for studying transport in benign, fibrous tumors. The uterine arteries were cannulated to perfuse the organ with a buffer solution containing blood vessel stain and methylene blue to analyze intratumoral transport. Gross examination revealed tissue expansion effects and a visual lack of methylene blue in the fibroids. Some fibroids exhibited regions with partial methylene blue penetration into the tumor environment. Histological analysis comparing representative sections of fibroids and normal myometrium showed a smaller number of vessels with decreased diameters within the fibroid. Imaging of fluorescently stained vessels exposed a stark contrast between fluorescence within the myometrium and relatively little within the fibroid tissues. Imaging at higher magnification revealed that fibroid blood vessels were indeed perfused and stained with the lipophilic membrane dye; however, the vessels were only the size of small capillaries and the blood vessel coverage was only 12% that of the normal myometrium. The majority of sampled fibroids had a strong negative correlation (Pearson's r=-0.68 or beyond) between collagen and methylene blue staining. As methylene blue was able to passively diffuse into fibroid tissue, the true barrier to transport in these fibroids is likely high interstitial fluid pressure, correlating with high collagen content and solid stress observed in the fibroid tissue. Fibroids had an average elevated interstitial fluid pressure of 4mmHg compared to -1mmHg in normal myometrium. Our findings signify relationships between drug distribution in fibroids and between vasculature characteristics, collagen levels, and interstitial fluid pressure. Understanding these barriers to transport can lead to developments in drug delivery for the treatment of uterine fibroids and tumors of similar composition. PMID:26184049

  16. Ethanol Promotes Arteriogenesis and Restores Perfusion to Chronically Ischemic Myocardium

    PubMed Central

    Lassaletta, Antonio D.; Elmadhun, Nassrene Y.; Liu, Yuhong; Feng, Jun; Burgess, Thomas A.; Karlson, Nicholas W.; Laham, Roger J.; Sellke, Frank W.

    2014-01-01

    Background Moderate alcohol consumption is known to be cardioprotective as compared to either heavy drinking or complete abstinence. We assessed the hypothesis that ethanol supplementation would improve myocardial function in the setting of chronic ischemia. Methods and Results Sixteen male Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic myocardial ischemia. Post-operatively animals were supplemented with either 90 ml of ethanol daily (50%/V, EtOH) or 80 g of sucrose of equal caloric value (SUC) serving as controls. Seven weeks after ameroid placement, arteriolar density (1.74 ± 0.210 vs. 3.11 ± 0.368 % area of arterioles per low-powered field in SUC vs. EtOH, p = 0.004), myocardial perfusion (ratio of blood flow to the at-risk myocardium compared to the normal ventricle during demand pacing was 0.585 ± 0.107 vs. 1.08 ± 0.138 for SUC vs. EtOH, p = 0.014), and microvascular reactivity were significantly increased in the ethanol-treated animals compared to controls in the at-risk myocardium. Analysis of VEGF and NOTCH pathway signaling suggested pro-neovascular and proliferative activity in the ischemic area. The average peak blood alcohol level in the treatment group was 40 ± 4 mg/dL consistent with levels of moderate drinking in humans. Conclusions Ethanol supplementation increased arteriolar density and significantly improved myocardial perfusion and endothelium-dependent vasorelaxation in chronically ischemic myocardium. These findings suggest that at moderate doses, ethanol directly promotes vasculogenesis and improves microvascular function resulting in significant improvements in myocardial perfusion in the setting of chronic ischemia. PMID:24030397

  17. A hybrid microsystem for parallel perfusion experiments on living cells

    NASA Astrophysics Data System (ADS)

    Greve, Frauke; Seemann, Livia; Hierlemann, Andreas; Lichtenberg, Jan

    2007-08-01

    A fully integrated microchip device for performing a complete and automated sample-perfusion experiment on living cells is presented. Cells were trapped and immobilized in a defined grid pattern inside a small 0.5 µl volume incubation chamber by pneumatic anchoring on 1000 5-µm orifices. This new cell trapping technique assures a precise and repeatable cell quantity for each experiment and enables the formation of a homogeneous cell population in the incubation chamber. The microsystem includes a perforated silicon chip seamlessly integrated by a new embedding technique in a larger elastomer substrate, which features the microfluidic network. The latter forms the incubation chamber and allows for economic logarithmic dilution of the sample reagent over a range of three orders of magnitude with subsequent perfusion of the cell population. First, the logarithmic dilution stage was validated using quantitative fluorescent imaging of fluorescein solution. Then, the cell adhesion and culturing inside the incubation chamber was studied using primary normal human dermal fibroblasts (NHDFs). The cells adhered well on laminin-coated surfaces and proliferated to form a confluent cell layer after 6 days in vitro. Finally, the complete system was tested by a perfusion experiment with cultured NHDFs, which were exposed to a fluorescent cell tracker at dilutions of 100 µm, 10 µm, 1 µm, 0.1 µm and 0 µm at a flow rate of 1.25 µl min-1 for 20 min. Fluorescence imaging of the cell array after incubation and image analysis showed a logarithmic relationship between sample concentration and the fluorescence signal. This paper describes the fabrication of the components and the assembly of the microsystem, the design approach and the validation of the sample diluter, cell-adhesion and cell-culturing experiments over several days.

  18. Uterine perfusion model for analyzing barriers to transport in fibroids.

    PubMed

    Stirland, Darren L; Nichols, Joseph W; Jarboe, Elke; Adelman, Marisa; Dassel, Mark; Janát-Amsbury, Margit-Maria; Bae, You Han

    2015-09-28

    This project uses an ex vivo human perfusion model for studying transport in benign, fibrous tumors. The uterine arteries were cannulated to perfuse the organ with a buffer solution containing blood vessel stain and methylene blue to analyze intratumoral transport. Gross examination revealed tissue expansion effects and a visual lack of methylene blue in the fibroids. Some fibroids exhibited regions with partial methylene blue penetration into the tumor environment. Histological analysis comparing representative sections of fibroids and normal myometrium showed a smaller number of vessels with decreased diameters within the fibroid. Imaging of fluorescently stained vessels exposed a stark contrast between fluorescence within the myometrium and relatively little within the fibroid tissues. Imaging at higher magnification revealed that fibroid blood vessels were indeed perfused and stained with the lipophilic membrane dye; however, the vessels were only the size of small capillaries and the blood vessel coverage was only 12% that of the normal myometrium. The majority of sampled fibroids had a strong negative correlation (Pearson's r=-0.68 or beyond) between collagen and methylene blue staining. As methylene blue was able to passively diffuse into fibroid tissue, the true barrier to transport in these fibroids is likely high interstitial fluid pressure, correlating with high collagen content and solid stress observed in the fibroid tissue. Fibroids had an average elevated interstitial fluid pressure of 4mmHg compared to -1mmHg in normal myometrium. Our findings signify relationships between drug distribution in fibroids and between vasculature characteristics, collagen levels, and interstitial fluid pressure. Understanding these barriers to transport can lead to developments in drug delivery for the treatment of uterine fibroids and tumors of similar composition.

  19. Cadmium transport and toxicity in isolated perfused renal proximal tubules

    SciTech Connect

    Robinson, M.E.K.

    1991-01-01

    Cadmium is a potent toxicant preferentially accumulated in the renal cortex of humans and other animals. To assess the renal toxicity of inorganic cadmium, isolated segments (S1, S2, and S3) of rabbit renal proximal tubules were perfused with various concentrations of unlabeled cadmium chloride (CdCl[sub 2]) and a vital dye (FD C green). The tubular epithelial cells were observed under the light microscope for cellular injury and necrosis. Cellular swelling, luminal membrane blebbing, and cellular vacuolization were indicators of cellular injury, and dye uptake was indicative of cellular necrosis. To determine lumen-to-bath transport rates for cadmium, the segments were perfused with a mixture of [sup 109]CdCl[sub 2] and [sup 3]H-L-glucose; unlabeled CdCl[sub 2] was added when necessary to vary the total cadmium concentration from 1.5 [mu]M to 2000 [mu]M. Immediately after perfusion the tubules were extracted with 3% trichoroacetic acid (TCA) or with a modified Ringer's buffer of reduced osmolality to determine the fate of the cadmium removed from the lumen. Based on the toxicant indicators, increased dye uptake, increased luminal membrane blebbing, and increased vacuole formation, as the cadmium concentration was increased, cadmium was found to show toxicity to renal tubular cells at concentrations greater than 500 [mu]M. In transport experiments, increasing the cadmium concentration causes an increase in the leak of L-glucose, also indicating toxicity. A clear imbalance exists between the rate of disappearance of cadmium from the lumen and the rate of appearance in the bath for all three tubular segments. Cadmium appears to bind cellular membrane proteins, but it is extractable with 3% TCA. Cadmium, like mercury, is taken up at the luminal membrane, but very little is transported through the basolateral membrane.

  20. Long-term malignant hematopoiesis in human acute leukemia bone marrow biopsies implanted in severe combined immunodeficiency mice.

    PubMed

    Legrand, F; Khazaal, I; Peuchmaur, M; Fenneteau, O; Cavé, H; Rohrlich, P; Vilmer, E; Péault, B

    1997-09-01

    Bone marrow (BM) trephine biopsies from 15 pediatric patients with acute lymphoid (ALL) or myeloid (AML) leukemia were engrafted subcutaneously into severe combined immunodeficiency (SCID) mice conditioned by 200 cGy total-body irradiation. Implants were harvested 5 to 19 weeks later for histologic, cytologic, and/or flow cytometric analysis of the residing marrow. Eighteen of 19 grafts contained viable human leukemic cells to various extents as assessed by one or more of these methods. Thirteen of 14 implants analyzed by flow cytometry included high numbers of tumor cells, accounting for 85% to 100% of the total nucleated cells in seven of them. Histologically, engrafted marrow samples exhibited areas of blastic infiltration, and tumor-specific gene rearrangements were retrieved in long-term engrafted biopsies. Importantly, engrafted mice remained perfectly healthy even 5 months posttransplantation, and no human tumor cell dissemination was detected in the hematolymphoid and nonhematopoietic tissues at the time of autopsy. These results demonstrate that human malignant hematopoiesis can be sustained long-term in its original, intact marrow stromal environment transplanted in appropriately conditioned immunodeficient mice.

  1. An alternative method for neonatal cerebro-myocardial perfusion.

    PubMed

    Luciani, Giovanni Battista; De Rita, Fabrizio; Faggian, Giuseppe; Mazzucco, Alessandro

    2012-05-01

    Several techniques have already been described for selective cerebral perfusion during repair of aortic arch pathology in children. One method combining cerebral with myocardial perfusion has also been proposed. A novel technique is reported here for selective and independent cerebro-myocardial perfusion for neonatal and infant arch surgery. Technical aspects and potential advantages are discussed.

  2. Bile salt-stimulated lipase of human milk: characterization of the enzyme from preterm and term milk

    SciTech Connect

    Freed, L.M.; Hamosh, P.; Hamosh, M.

    1986-03-01

    The bile salt-stimulated lipase (BSSL) of human milk is an important digestive enzyme in the newborn whose pancreatic function is immature. Milk from mothers delivering premature infants (preterm milk) has similar levels of BSSL activity to that of mothers of term infants (term milk). This study has determined whether the BSSL in preterm milk has the same characteristics as that in term milk. Milk samples were collected during the first 12 wk of lactation from seven mothers of infants born at 26-30 wk (very preterm, VPT), 31-37 wk (preterm, PT) and 37-42 wk (term, T) gestation. BSSL activity was measured using /sup 3/H-triolein emulsion as substrate. Time course, bile salt and enzyme concentration, pH and pH stability were studied, as well as inhibition of BSSL by eserine. The characteristics of BSSL from preterm and term milk were identical as were comparisons between colostrum and mature milk BSSL. BSSL from all milk sources had a neutral-to-alkaline pH optimum (pH 7.3-8.9), was stable at low pH for 60 min, and was 95-100% inhibited by eserine (greater than or equal to 0.6 mM). BSSL activity, regardless of enzyme source, was bile-salt dependent and was stimulated only by primary bile salts (taurocholate, glycocholate). The data indicate that the BSSL in milks of mothers delivering as early as 26 wk gestation is identical to that in term milk.

  3. Absence of oncogenic transformation despite acquisition of cytogenetic aberrations in long-term cultured telomerase-immortalized human fetal hepatocytes.

    PubMed

    Haker, Björn; Fuchs, Sigrid; Dierlamm, Judith; Brümmendorf, Tim H; Wege, Henning

    2007-10-18

    As a culture model to study hepatocarcinogenesis, telomerase-immortalized human fetal hepatocytes were monitored for karyotype changes evolving in long-term culture and development of functional defects in DNA damage response. G-banding revealed acquisition of characteristic karyotype abnormalities, e.g., trisomy 7 and monosomy X, in two independently immortalized and cultured populations after 80-100 population doublings. Interestingly, the detected aneuploidies resemble some of the genetic events observed in hepatocellular cancer. However, these genetic changes were not sufficient to induce oncogenic transformation reflected by absence of anchorage-independent growth. Furthermore, long-term cultured telomerase-immortalized cells preserved p53 expression levels and effective p53-mediated damage response. PMID:17630152

  4. Resveratrol Based Oral Nutritional Supplement Produces Long-Term Beneficial Effects on Structure and Visual Function in Human Patients

    PubMed Central

    Richer, Stuart; Patel, Shana; Sockanathan, Shivani; Ulanski, Lawrence J.; Miller, Luke; Podella, Carla

    2014-01-01

    Background: Longevinex® (L/RV) is a low dose hormetic over-the-counter (OTC) oral resveratrol (RV) based matrix of red wine solids, vitamin D3 and inositol hexaphosphate (IP6) with established bioavailability, safety, and short-term efficacy against the earliest signs of human atherosclerosis, murine cardiac reperfusion injury, clinical retinal neovascularization, and stem cell survival. We previously reported our short-term findings for dry and wet age-related macular degeneration (AMD) patients. Today we report long term (two to three year) clinical efficacy. Methods: We treated three patients including a patient with an AMD treatment resistant variant (polypoidal retinal vasculature disease). We evaluated two clinical measures of ocular structure (fundus autofluorescent imaging and spectral domain optical coherence extended depth choroidal imaging) and qualitatively appraised changes in macular pigment volume. We further evaluated three clinical measures of visual function (Snellen visual acuity, contrast sensitivity, and glare recovery to a cone photo-stress stimulus). Results: We observed broad bilateral improvements in ocular structure and function over a long time period, opposite to what might be expected due to aging and the natural progression of the patient’s pathophysiology. No side effects were observed. Conclusions: These three cases demonstrate that application of epigenetics has long-term efficacy against AMD retinal disease, when the retinal specialist has exhausted other therapeutic modalities. PMID:25329968

  5. Long-Term Persistence of Prevalently Detected Human Papillomavirus Infections in the Absence of Detectable Cervical Precancer and Cancer

    PubMed Central

    Rodríguez, Ana Cecilia; Burk, Robert D.; Herrero, Rolando; Wacholder, Sholom; Hildesheim, Allan; Morales, Jorge; Rydzak, Greg; Schiffman, Mark

    2011-01-01

    Background. Detailed descriptions of long-term persistence of human papillomavirus (HPV) in the absence of cervical precancer are lacking. Methods. In a large, population-based natural study conducted in Guanacaste, Costa Rica, we studied a subset of 810 initially HPV-positive women with ≥3 years of active follow-up with ≥3 screening visits who had no future evidence of cervical precancer. Cervical specimens were tested for >40 HPV genotypes using a MY09/11 L1-targeted polymerase chain reaction method. Results. Seventy-two prevalently-detected HPV infections (5%) in 58 women (7%) persisted until the end of the follow-up period (median duration of follow-up, 7 years) without evidence of cervical precancer. At enrollment, women with long-term persistence were more likely to have multiple prevalently-detected HPV infections (P <.001) than were women who cleared their baseline HPV infections during follow-up. In a logistic regression model, women with long-term persistence were more likely than women who cleared infections to have another newly-detected HPV infection detectable at ≥3 visits (odds ratio, 2.6; 95% confidence interval, 1.2–5.6). Conclusions. Women with long-term persistence of HPV infection appear to be generally more susceptible to other HPV infections, especially longer-lasting infections, than are women who cleared their HPV infections. PMID:21343148

  6. The long-term benefits of human generosity in indirect reciprocity.

    PubMed

    Wedekind, Claus; Braithwaite, Victoria A

    2002-06-25

    Among the theories that have been proposed to explain the evolution of altruism are direct reciprocity and indirect reciprocity. The idea of the latter is that helping someone or refusing to do so has an impact on one's reputation within a group. This reputation is constantly assessed and reassessed by others and is taken into account by them in future social interactions. Generosity in indirect reciprocity can evolve if and only if it eventually leads to a net benefit in the long term. Here, we show that this key assumption is met. We let 114 students play for money in an indirect and a subsequent direct reciprocity game. We found that although being generous, i.e., giving something of value to others, had the obvious short-term costs, it paid in the long run because it builds up a reputation that is rewarded by third parties (who thereby themselves increase their reputation). A reputation of being generous also provided an advantage in the subsequent direct reciprocity game, probably because it builds up trust that can lead to more stable cooperation.

  7. Identification and localization of netrin-4 and neogenin in human first trimester and term placenta.

    PubMed

    Dakouane-Giudicelli, M; Duboucher, C; Fortemps, J; Salama, S; Brulé, A; Rozenberg, P; de Mazancourt, P

    2012-09-01

    We describe here for the first time the characterization of family member of netrins, netrin-4 and its receptor neogenin, during the development of the placenta. By using western blots and RT-PCR, we demonstrated the presence of netrin-4 and its receptor neogenin protein as well as their transcripts. Using immunohistochemistry, we studied the distribution of netrin-4 and neogenin in both the first trimester and term placenta. We observed staining of netrin-4 in villous and extravillous cytotrophoblasts, syncytiotrophoblast, and endothelial cells whereas staining in stromal cells was faint. In decidua, we observed netrin-4 labelling in glandular epithelial cells, perivascular decidualized cells, and endothelial cells. However, neogenin was absent in villous and extravillous cytotrophoblasts and was expressed only on syncytiotrophoblast and placental stromal cells in the first trimester and at term placenta. The pattern of distribution suggests that a functional netrin-4-neogenin pathway might be restricted to syncytiotrophoblasts, mesenchymal cells, and villous endothelial cells. This pathway function might vary with its localization in the placenta. It is possibly involved in angiogenesis, morphogenesis, and differentiation.

  8. Arousal Rather than Basic Emotions Influence Long-Term Recognition Memory in Humans

    PubMed Central

    Marchewka, Artur; Wypych, Marek; Moslehi, Abnoos; Riegel, Monika; Michałowski, Jarosław M.; Jednoróg, Katarzyna

    2016-01-01

    Emotion can influence various cognitive processes, however its impact on memory has been traditionally studied over relatively short retention periods and in line with dimensional models of affect. The present study aimed to investigate emotional effects on long-term recognition memory according to a combined framework of affective dimensions and basic emotions. Images selected from the Nencki Affective Picture System were rated on the scale of affective dimensions and basic emotions. After 6 months, subjects took part in a surprise recognition test during an fMRI session. The more negative the pictures the better they were remembered, but also the more false recognitions they provoked. Similar effects were found for the arousal dimension. Recognition success was greater for pictures with lower intensity of happiness and with higher intensity of surprise, sadness, fear, and disgust. Consecutive fMRI analyses showed a significant activation for remembered (recognized) vs. forgotten (not recognized) images in anterior cingulate and bilateral anterior insula as well as in bilateral caudate nuclei and right thalamus. Further, arousal was found to be the only subjective rating significantly modulating brain activation. Higher subjective arousal evoked higher activation associated with memory recognition in the right caudate and the left cingulate gyrus. Notably, no significant modulation was observed for other subjective ratings, including basic emotion intensities. These results emphasize the crucial role of arousal for long-term recognition memory and support the hypothesis that the memorized material, over time, becomes stored in a distributed cortical network including the core salience network and basal ganglia.

  9. Frequent hepatocyte chimerism in long-term human liver allografts independent of graft outcome.

    PubMed

    Aini, Wulamujiang; Miyagawa-Hayashino, Aya; Ozeki, Munetaka; Tsuruyama, Tatsuaki; Tamaki, Keiji; Uemoto, Shinji; Haga, Hironori

    2013-03-01

    Microchimerism after liver transplantation is considered to promote graft tolerance or tissue repair, but its significance is controversial. By using multiplex polymerase chain reaction (PCR) of short tandem repeat (STR) loci after laser capture microdissection of hepatocyte nuclei, we compared the proportions of recipient-derived hepatocytes in long-term stable liver allografts and late dysfunctional allografts caused by chronic rejection or idiopathic post-transplantation hepatitis. Through fluorescence in situ hybridization (FISH), we also analyzed the presence of recipient-derived Y-positive hepatocytes in the biopsies of livers transplanted from female donors to male recipients. The study population comprised 24 pediatric liver transplant recipients who survived with the initial graft, whose 10-year protocol biopsy records were available, and who had normal liver function (stable graft, SG; n=13) or a late dysfunctional graft (LDG; n=11) with similar follow-up periods (mean 10.8years in the SG group and 11.2years in the LDG group). STR analysis revealed that hepatocyte chimerism occurred in 7 of 13 (54%) SGs and 5 of 11 (45%) LDGs (p=0.68). The proportion of hepatocyte chimerism was low, with a mean of 3% seen in 2 of 3 female-to-male transplanted livers (one each of SG and LDG). In conclusion, hepatocyte chimerism was a constant event. The extent of engraftment of recipient-derived hepatocytes does not seem to correlate with the degree of hepatic injury in long-term liver allografts.

  10. Cardiac effects of long-term active immunization with the second extracellular loop of human β1- and/or β3-adrenoceptors in Lewis rats.

    PubMed

    Montaudon, E; Dubreil, L; Lalanne, V; Vermot Des Roches, M; Toumaniantz, G; Fusellier, M; Desfontis, J-C; Martignat, L; Mallem, M Y

    2015-10-01

    β1- and β3-adrenoceptor (AR) auto-antibodies were detected in patients with dilated cardiomyopathy. Many studies have shown that β1-AR auto-antibodies with partial agonist-like effect play an important role in the pathogenesis of this disease. Moreover, a recent study carried out in our laboratory has shown that β3-AR antibodies (β3-ABs), produced in rats, were able to reduce cardiomyocyte contractility via β3-AR activation. The aims of this study were (1) to investigate, in isolated cardiomyocytes from rabbit, the role of Gi proteins in the β3-ABs-induced cardiac negative inotropy, (2) to determine whether β3-ABs may exhibit β3-AR antagonistic property which is characteristic of partial agonists, and (3) to determine whether long-term active immunization producing both β1-ABs and/or β3-ABs leads to the development of cardiac dysfunction in Lewis rats. Lewis rats were immunized for 6 months with peptidic sequences corresponding to the second extracellular loop of human β3-AR and/or β1-AR. Agonistic effect of β3-ABs was evaluated on electrically field-stimulated isolated cardiomyocytes from adult rabbit by measuring the cell shortening. Echocardiography and ex vivo isolated perfused heart studies were conducted on immunized rats. Finally, β-AR expression was quantified by immunofluorescence and RT-qPCR. SR58611A (10 nM), a preferential β3-AR agonist, and purified β3-ABs (25 μg/ml) induced a decrease in cell shortening (-39.71±4.9% (n=10) and -17.06±3.9% (n=10) respectively). This effect was significantly inhibited when the cardiomyocytes were preincubated with pertussis toxin (0.3 μg/ml), a Gi protein inhibitor (p<0.05). In addition, SR58611A-mediated negative inotropic effect was decreased when cardiomyocytes were preincubated with β3-ABs (p<0.0001). Echocardiography revealed a decrease in the fractional shortening and ejection fraction in rats immunized against β1-AR and both β1- and β3-AR. However, the study on isolated heart showed a

  11. High-resolution renal perfusion mapping using contrast-enhanced ultrasonography in ischemia-reperfusion injury monitors changes in renal microperfusion.

    PubMed

    Fischer, Krisztina; Meral, F Can; Zhang, Yongzhi; Vangel, Mark G; Jolesz, Ferenc A; Ichimura, Takaharu; Bonventre, Joseph V

    2016-06-01

    Alterations in renal microperfusion play an important role in the development of acute kidney injury with long-term consequences. Here we used contrast-enhanced ultrasonography as a novel method for depicting intrarenal distribution of blood flow. After infusion of microbubble contrast agent, bubbles were collapsed in the kidney and postbubble destruction refilling was measured in various regions of the kidney. Local perfusion was monitored in vivo at 15, 30, 45, 60 minutes and 24 hours after 28 minutes of bilateral ischemia in 12 mice. High-resolution, pixel-by-pixel analysis was performed on each imaging clip using customized software, yielding parametric perfusion maps of the kidney, representing relative blood volume in each pixel. These perfusion maps revealed that outer medullary perfusion decreased disproportionately to the reduction in the cortical and inner medullary perfusion after ischemia. Outer medullary perfusion was significantly decreased by 69% at 60 minutes postischemia and remained significantly less (40%) than preischemic levels at 24 hours postischemia. Thus, contrast-enhanced ultrasonography with high-resolution parametric perfusion maps can monitor changes in renal microvascular perfusion in space and time in mice. This novel technique can be translated to clinical use in man. PMID:27165821

  12. Labeling and imaging of human mesenchymal stem cells with quantum dot bioconjugates during proliferation and osteogenic differentiation in long term.

    PubMed

    Shah, B; Clark, P; Stroscio, M; Mao, J

    2006-01-01

    Quantum dots (QDs) are semiconductor nanocrystals that serve as promising alternatives to organic dyes for cell labeling. Because of their unique spectral, physical and chemical properties, QDs are useful for concurrently monitoring several intercellular and intracellular interactions in live normal cells and cancer cells over periods ranging from less than a second to over several days (several divisions of cells). Here, peptide CGGGRGD is immobilized on CdSe-ZnS QDs coated with carboxyl groups by cross linking with amine groups. These conjugates are directed by the peptide to bind with selected integrins on the membrane of human Mesenchymal stem cells. Upon overnight incubation with optimal concentration, QDs effectively labeled all the cells. Here, we report long-term labeling of human bone-marrow-derived mesenchymal stem cells (hMSCs) with RGD-conjugated QDs during self replication and differentiation into osteogenic cell lineages.

  13. Non-invasive long-term recordings of cortical 'direct current' (DC-) activity in humans using magnetoencephalography.

    PubMed

    Mackert, B M; Wübbeler, G; Burghoff, M; Marx, P; Trahms, L; Curio, G

    1999-10-01

    Recently, biomagnetic fields below 0.1 Hz arising from nerve or muscle injury currents have been measured non-invasively using superconducting quantum interference devices (SQUIDs). Here we report first long-term recordings of cortical direct current (DC) fields in humans based on a horizontal modulation (0.4 Hz) of the body and, respectively, head position beneath the sensor array: near-DC fields with amplitudes between 90 and 540 fT were detected in 5/5 subjects over the auditory cortex throughout prolonged stimulation periods (here: 30 s) during which subjects were listening to concert music. These results prove the feasibility to record non-invasively low amplitude near-DC magnetic fields of the human brain and open the perspective for studies on DC-phenomena in stroke, such as anoxic depolarization or periinfarct depolarization, and in migraine patients.

  14. The longer-term effects of human capital enrichment programs on poverty and inequality: Oportunidades in Mexico*

    PubMed Central

    McKee, Douglas; Todd, Petra E.

    2012-01-01

    Previous empirical research has shown that Mexico’s Oportunidades program has succeeded in increasing schooling and improving health of disadvantaged children. This paper studies the program’s potential longer-term consequences for the poverty and inequality of these children. It adapts methods developed in DiNardo, Fortin and Lemieux (1996) and incorporates existing experimental estimates of the program’s effects on human capital to analyze how Oportunidades will affect future earnings of program participants. We nonparametrically simulate earnings distributions, with and without the program, and predict that Oportunidades will increase future mean earnings but have only modest effects on poverty rates and earnings inequality. PMID:22577618

  15. The effect of a short-term ritodrine treatment on the concentration of beta-adrenergic receptors in human myometrium.

    PubMed

    Ekblad, U; Grenman, S; Kaila, T

    1987-01-01

    The concentration of beta-adrenoceptors in human myometrium has been studied of women giving birth by elective cesarean section at term. Eight of the woman were treated with intravenous ritodrine two hours prior to the operation. In the control group seven women received physiological saline with the same infusion rate as ritodrine in the study group. The concentration of beta-receptors in the myometrium of the lower uterine segment was determined with radioligand binding assay. Ritodrine treatment decreased the available beta-receptors significantly.

  16. Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques.

    PubMed

    Hessell, Ann J; Jaworski, J Pablo; Epson, Erin; Matsuda, Kenta; Pandey, Shilpi; Kahl, Christoph; Reed, Jason; Sutton, William F; Hammond, Katherine B; Cheever, Tracy A; Barnette, Philip T; Legasse, Alfred W; Planer, Shannon; Stanton, Jeffrey J; Pegu, Amarendra; Chen, Xuejun; Wang, Keyun; Siess, Don; Burke, David; Park, Byung S; Axthelm, Michael K; Lewis, Anne; Hirsch, Vanessa M; Graham, Barney S; Mascola, John R; Sacha, Jonah B; Haigwood, Nancy L

    2016-04-01

    Prevention of mother-to-child transmission (MTCT) of HIV remains a major objective where antenatal care is not readily accessible. We tested HIV-1-specific human neutralizing monoclonal antibodies (NmAbs) as a post-exposure therapy in an infant macaque model for intrapartum MTCT. One-month-old rhesus macaques were inoculated orally with the simian-human immunodeficiency virus SHIVSF162P3. On days 1, 4, 7 and 10 after virus exposure, we injected animals subcutaneously with NmAbs and quantified systemic distribution of NmAbs in multiple tissues within 24 h after antibody administration. Replicating virus was found in multiple tissues by day 1 in animals that were not treated. All NmAb-treated macaques were free of virus in blood and tissues at 6 months after exposure. We detected no anti-SHIV T cell responses in blood or tissues at necropsy, and no virus emerged after CD8(+) T cell depletion. These results suggest that early passive immunotherapy can eliminate early viral foci and thereby prevent the establishment of viral reservoirs. PMID:26998834

  17. The biostability of cardiac lead insulation materials as assessed from long-term human implants.

    PubMed

    Wilkoff, Bruce L; Rickard, John; Tkatchouk, Ekaterina; Padsalgikar, Ajay D; Gallagher, Genevieve; Runt, James

    2016-02-01

    Accelerated in vitro biostability studies are useful for making relativistic comparisons between materials. However, no in vitro study can completely replicate the complex biochemical and biomechanical environment that a material experiences in the human body. To overcome this limitation, three insulation materials [Optim™ insulation (OPT), Pellethane® 55D (P55D), and silicone elastomer] from cardiac leads that were clinically implanted for up to five years were characterized using visual inspection, SEM, ATR-FTIR, GPC, and tensile testing. Surface cracking was not observed in OPT or silicone samples. Shallow cracking was observed in 17/41 (41%) explanted P55D samples. ATR-FTIR indicated minor surface oxidation in some OPT and P55D samples. OPT molecular weight decreased modestly (∼20%) at 2-3 years before stabilizing at 4-5 years. OPT tensile strength decreased modestly (∼25%) at 2-3 years before stabilizing at 4-5 years. OPT elongation at 4-5 years was unchanged from controls. P55D had no significant changes in molecular weight or tensile properties. Overall, results for OPT and P55D were consistent with and limited to cosmetic surface oxidation. Silicone demonstrated excellent biostability with no identifiable degradation. This study of explanted cardiac leads revealed that OPT, P55D, and silicone elastomer demonstrate similar and excellent biostability through five years of implantation in human patients.

  18. Long-term neural and physiological phenotyping of a single human

    PubMed Central

    Poldrack, Russell A.; Laumann, Timothy O.; Koyejo, Oluwasanmi; Gregory, Brenda; Hover, Ashleigh; Chen, Mei-Yen; Gorgolewski, Krzysztof J.; Luci, Jeffrey; Joo, Sung Jun; Boyd, Ryan L.; Hunicke-Smith, Scott; Simpson, Zack Booth; Caven, Thomas; Sochat, Vanessa; Shine, James M.; Gordon, Evan; Snyder, Abraham Z.; Adeyemo, Babatunde; Petersen, Steven E.; Glahn, David C.; Reese Mckay, D.; Curran, Joanne E.; Göring, Harald H. H.; Carless, Melanie A.; Blangero, John; Dougherty, Robert; Leemans, Alexander; Handwerker, Daniel A.; Frick, Laurie; Marcotte, Edward M.; Mumford, Jeanette A.

    2015-01-01

    Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders. PMID:26648521

  19. Long-Term Calorie Restriction Enhances Cellular Quality-Control Processes in Human Skeletal Muscle.

    PubMed

    Yang, Ling; Licastro, Danilo; Cava, Edda; Veronese, Nicola; Spelta, Francesco; Rizza, Wanda; Bertozzi, Beatrice; Villareal, Dennis T; Hotamisligil, Gökhan S; Holloszy, John O; Fontana, Luigi

    2016-01-26

    Calorie restriction (CR) retards aging, acts as a hormetic intervention, and increases serum corticosterone and HSP70 expression in rodents. However, less is known regarding the effects of CR on these factors in humans. Serum cortisol and molecular chaperones and autophagic proteins were measured in the skeletal muscle of subjects on CR diets for 3-15 years and in control volunteers. Serum cortisol was higher in the CR group than in age-matched sedentary and endurance athlete groups (15.6 ± 4.6 ng/dl versus 12.3 ± 3.9 ng/dl and 11.2 ± 2.7 ng/dl, respectively; p ≤ 0.001). HSP70, Grp78, beclin-1, and LC3 mRNA and/or protein levels were higher in the skeletal muscle of the CR group compared to controls. Our data indicate that CR in humans is associated with sustained rises in serum cortisol, reduced inflammation, and increases in key molecular chaperones and autophagic mediators involved in cellular protein quality control and removal of dysfunctional proteins and organelles. PMID:26774472

  20. Long-Term Calorie Restriction Enhances Cellular Quality-Control Processes in Human Skeletal Muscle.

    PubMed

    Yang, Ling; Licastro, Danilo; Cava, Edda; Veronese, Nicola; Spelta, Francesco; Rizza, Wanda; Bertozzi, Beatrice; Villareal, Dennis T; Hotamisligil, Gökhan S; Holloszy, John O; Fontana, Luigi

    2016-01-26

    Calorie restriction (CR) retards aging, acts as a hormetic intervention, and increases serum corticosterone and HSP70 expression in rodents. However, less is known regarding the effects of CR on these factors in humans. Serum cortisol and molecular chaperones and autophagic proteins were measured in the skeletal muscle of subjects on CR diets for 3-15 years and in control volunteers. Serum cortisol was higher in the CR group than in age-matched sedentary and endurance athlete groups (15.6 ± 4.6 ng/dl versus 12.3 ± 3.9 ng/dl and 11.2 ± 2.7 ng/dl, respectively; p ≤ 0.001). HSP70, Grp78, beclin-1, and LC3 mRNA and/or protein levels were higher in the skeletal muscle of the CR group compared to controls. Our data indicate that CR in humans is associated with sustained rises in serum cortisol, reduced inflammation, and increases in key molecular chaperones and autophagic mediators involved in cellular protein quality control and removal of dysfunctional proteins and organelles.

  1. Methodological and technological implications of quantitative human movement analysis in long term space flights.

    PubMed

    Ferrigno, G; Baroni, G; Pedotti, A

    1999-04-01

    In the frame of the 179-days EUROMIR '95 space mission, two in-flight experiments foresaw the analysis of three-dimensional human movements in microgravity. For this aim, a space qualified opto-electronic motion analyser based on passive markers was installed onboard the MIR Space Station. The paper describes the experimental procedures designed in order to face technical and operational limitations imposed by the critical environment of the orbital module. The reliability of the performed analysis is discussed, focusing two related aspects: accuracy in three-dimensional marker localisation and data comparability among different experimental sessions. The effect of the critical experimental set-up and of TV cameras optical distortions is evaluated on in-flight acquired data, by performing an analysis on Euclidean distance conservation on rigid bodies. An optimisation method for the recovering of a unique reference frame throughout the whole mission is described. Results highlight the potentiality that opto-electronics and close-range photogrammetry have for automatic motion analysis onboard orbital modules. The discussion of the obtained results provides general suggestions for the implementation of experimental human movement analysis in critical environments, based on the suitable trade-off between external constraints and achievable analysis reliability.

  2. Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice

    PubMed Central

    Vegas, Arturo J.; Veiseh, Omid; Gürtler, Mads; Millman, Jeffrey R.; Pagliuca, Felicia W.; Bader, Andrew R.; Doloff, Joshua C.; Li, Jie; Chen, Michael; Olejnik, Karsten; Tam, Hok Hei; Jhunjhunwala, Siddharth; Langan, Erin; Aresta-Dasilva, Stephanie; Gandham, Srujan; McGarrigle, James; Bochenek, Matthew A.; Hollister-Lock, Jennifer; Oberholzer, Jose; Greiner, Dale L.; Weir, Gordon C.; Melton, Douglas A.; Langer, Robert; Anderson, Daniel G.

    2016-01-01

    The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in diabetic patients1. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically2, but are limited by the adverse effects of lifetime immunosuppression and the limited supply of donor tissue3. The latter concern may be addressed by recently described glucose responsive mature β-cells derived from human embryonic stem cells; called SC-β, these cells may represent an unlimited human cell source for pancreas replacement therapy4. Strategies to address the immunosuppression concern include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier5,6. However, clinical implementation has been challenging due to host immune responses to implant materials7. Here, we report the first long term glycemic correction of a diabetic, immune-competent animal model with human SC-β cells. SC-β cells were encapsulated with alginate-derivatives capable of mitigating foreign body responses in vivo, and implanted into the intraperitoneal (IP) space of streptozotocin-treated (STZ) C57BL/6J mice. These implants induced glycemic correction until removal at 174 days without any immunosuppression. Human C-peptide concentrations and in vivo glucose responsiveness demonstrate therapeutically relevant glycemic control. Implants retrieved after 174 days contained viable insulin-producing cells. PMID:26808346

  3. Localization of IL-4 and IL-4 receptors in the human term placenta, decidua and amniochorionic membranes.

    PubMed Central

    de Moraes-Pinto, M I; Vince, G S; Flanagan, B F; Hart, C A; Johnson, P M

    1997-01-01

    There has been much recent interest in cytokine expression at the materno-fetal interface. Although T-helper 2 (Th2)-type cytokines have been described in the murine feto-placental unit, few studies have as yet been performed in human pregnancy. We have examined the production of interleukin-4 (IL-4) and expression of IL-4 receptors in the human term placenta, decidua and amniochorionic membranes. Immunohistochemical analyses revealed that cytotrophoblast, decidual macrophages and both maternal and fetal endothelial cells consistently expressed IL-4, whereas syncytiotrophoblast and placental macrophages showed an inconsistent pattern between specimens. High- and low-affinity IL-4 receptors were demonstrated by immunohistochemistry at the same cellular sites as stained for IL-4, and detection of IL-4 receptors was also variable in syncytiotrophoblast. Reverse-transcribed-polymerase chain reaction (RT-PCR) analysis showed that both IL-4 and its alternative splice variant, IL-482, are produced both in placental villi and in amniochorionic and decidual tissue. Ligand-binding assays identified the presence, on isolated term syncytiotrophoblast microvillous plasma membrane vesicle preparations, of functional high-affinity binding sites for IL-4 with a Kd in the range 102-112 pM and an apparent receptor density in the range 99-102 x 10(8) sites/mg protein. Three human choriocarcinoma (BeWo, JEG-3 and Jar) and one amnion-derived (AV3) cell lines expressed IL-4 and both high- and low-affinity IL-4 receptors. The constitutive expression of both IL-4 and IL-4 receptors, together with the novel finding of the alternative splice variant IL-482 in the immediate tissues at the materno fetal interface suggest an immunobiological role for IL-4 in human pregnancy. Images Figure 1 Figure 2 Figure 3 PMID:9038717

  4. Feasibility of quantitative lung perfusion by 4D CT imaging by a new dynamic-scanning protocol in an animal model

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Goldin, Jonathan G.; Abtin, Fereidoun G.; Brown, Matt; McNitt-Gray, Mike

    2008-03-01

    The purpose of this study is to test a new dynamic Perfusion-CT imaging protocol in an animal model and investigate the feasibility of quantifying perfusion of lung parenchyma to perform functional analysis from 4D CT image data. A novel perfusion-CT protocol was designed with 25 scanning time points: the first at baseline and 24 scans after a bolus injection of contrast material. Post-contrast CT scanning images were acquired with a high sampling rate before the first blood recirculation and then a relatively low sampling rate until 10 minutes after administrating contrast agent. Lower radiation techniques were used to keep the radiation dose to an acceptable level. 2 Yorkshire swine with pulmonary emboli underwent this perfusion- CT protocol at suspended end inspiration. The software tools were designed to measure the quantitative perfusion parameters (perfusion, permeability, relative blood volume, blood flow, wash-in & wash-out enhancement) of voxel or interesting area of lung. The perfusion values were calculated for further lung functional analysis and presented visually as contrast enhancement maps for the volume being examined. The results show increased CT temporal sampling rate provides the feasibility of quantifying lung function and evaluating the pulmonary emboli. Differences between areas with known perfusion defects and those without perfusion defects were observed. In conclusion, the techniques to calculate the lung perfusion on animal model have potential application in human lung functional analysis such as evaluation of functional effects of pulmonary embolism. With further study, these techniques might be applicable in human lung parenchyma characterization and possibly for lung nodule characterization.

  5. Asynchronicity of facial blood perfusion in migraine.

    PubMed

    Zaproudina, Nina; Teplov, Victor; Nippolainen, Ervin; Lipponen, Jukka A; Kamshilin, Alexei A; Närhi, Matti; Karjalainen, Pasi A; Giniatullin, Rashid

    2013-01-01

    Asymmetrical changes in blood perfusion and asynchronous blood supply to head tissues likely contribute to migraine pathophysiology. Imaging was widely used in order to understand hemodynamic variations in migraine. However, mapping of blood pulsations in the face of migraineurs has not been performed so far. We used the Blood Pulsation Imaging (BPI) technique, which was recently developed in our group, to establish whether 2D-imaging of blood pulsations parameters can reveal new biomarkers of migraine. BPI characteristics were measured in migraineurs during the attack-free interval and compared to healthy subjects with and without a family history of migraine. We found a novel phenomenon of transverse waves of facial blood perfusion in migraineurs in contrast to healthy subjects who showed synchronous blood delivery to both sides of the face. Moreover, the amplitude of blood pulsations was symmetrically distributed over the face of healthy subjects, but asymmetrically in migraineurs and subjects with a family history of migraine. In the migraine patients we found a remarkable correlation between the side of unilateral headache and the direction of the blood perfusion wave. Our data suggest that migraine is associated with lateralization of blood perfusion and asynchronous blood pulsations in the facial area, which could be due to essential dysfunction of the autonomic vascular control in the face. These findings may further enhance our understanding of migraine pathophysiology and suggest new easily available biomarkers of this pathology. PMID:24324592

  6. Simplified prototyping of perfusable polystyrene microfluidics

    PubMed Central

    Tran, Reginald; Ahn, Byungwook; R. Myers, David; Qiu, Yongzhi; Sakurai, Yumiko; Moot, Robert; Mihevc, Emma; Trent Spencer, H.; Doering, Christopher; A. Lam, Wilbur

    2014-01-01

    Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries. PMID:25379106

  7. Nuclear cardiology: Myocardial perfusion and function

    SciTech Connect

    Seldin, D.W. )

    1991-08-01

    Myocardial perfusion studies continue to be a major focus of research, with new investigations of the relationship of exercise-redistribution thallium imaging to diagnosis, prognosis, and case management. The redistribution phenomenon, which seemed to be fairly well understood a few years ago, is now recognized to be much more complex than originally thought, and various strategies have been proposed to clarify the meaning of persistent defects. Pharmacologic intervention with dipyridamole and adenosine has become available as an alternative to exercise, and comparisons with exercise imaging and catheterization results have been described. Thallium itself is no longer the sole single-photon perfusion radiopharmaceutical; two new technetium agents are now widely available. In addition to perfusion studies, advances in the study of ventricular function have been made, including reports of studies performed in