Science.gov

Sample records for perfusion mri parameters

  1. Choice of the regularization parameter for perfusion quantification with MRI

    NASA Astrophysics Data System (ADS)

    Sourbron, S.; Luypaert, R.; Van Schuerbeek, P.; Dujardin, M.; Stadnik, T.

    2004-07-01

    Truncated singular value decomposition (TSVD) is an effective method for the deconvolution of dynamic contrast enhanced (DCE) MRI. Two robust methods for the selection of the truncation threshold on a pixel-by-pixel basis—generalized cross validation (GCV) and the L-curve criterion (LCC)—were optimized and compared to paradigms in the literature. GCV and LCC were found to perform optimally when applied with a smooth version of TSVD, known as standard form Tikhonov regularization (SFTR). The methods lead to improvements in the estimate of the residue function and of its maximum, and converge properly with SNR. The oscillations typically observed in the solution vanish entirely, and perfusion is more accurately estimated at small mean transit times. This results in improved image contrast and increased sensitivity to perfusion abnormalities, at the cost of 1-2 min in calculation time and hyperintense clusters in the image. Preliminary experience with clinical data suggests that the latter problem can be resolved using spatial continuity and/or hybrid thresholding methods. In the simulations GCV and LCC are equivalent in terms of performance, but GCV thresholding is faster.

  2. Characteristics of quantitative perfusion parameters on dynamic contrast-enhanced MRI in mammographically occult breast cancer.

    PubMed

    Ryu, Jung Kyu; Rhee, Sun Jung; Song, Jeong Yoon; Cho, Soo Hyun; Jahng, Geon-Ho

    2016-01-01

    The purpose of this study was to compare the characteristics of quantitative per-fusion parameters obtained from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in patients with mammographically occult (MO) breast cancers and those with mammographically visible (MV) breast cancers. Quantitative parameters (AUC, Ktrans, kep, ve, vp, and wi) from 13 MO breast cancers and 16 MV breast cancers were mapped after the DCE-MRI data were acquired. Various prog-nostic factors, including axillary nodal status, estrogen receptor (ER), progesterone receptor (PR), Ki-67, p53, E-cadherin, and human epidermal growth factor receptor 2 (HER2) were obtained in each group. Fisher's exact test was used to compare any differences of the various prognostic factors between the two groups. The Mann- Whitney U test was applied to compare the quantitative parameters between these two groups. Finally, Spearman's correlation was used to investigate the relation-ships between perfusion indices and four factors - age, tumor size, Ki-67, and p53 - for each group. Although age, tumor size, and the prognostic factors were not statistically different between the two groups, the mean values of the quantitative parameters, except wi in the MV group, were higher than those in the MO group without statistical significance (p = 0.219). The kep value was significantly differ-ent between the two groups (p = 0.048), but the other parameters were not. In the MO group, vp with size, ve with p53, and Ktrans and vp with Ki-67 had significant correlations (p < 0.05). However, in the MV group, only kep showed significant correlation with age. The kep value was only the perfusion parameter of statistical significance between MO and MV breast cancers. PMID:27685105

  3. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors.

    PubMed

    Marzi, Simona; Stefanetti, Linda; Sperati, Francesca; Anelli, Vincenzo

    2016-01-01

    Our aim was to evaluate the link between diffusion parameters measured by intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and the perfusion metrics obtained with dynamic contrast-enhanced (DCE) MRI in soft tissue tumors (STTs). Twenty-eight patients affected by histopathologically confirmed STT were included in a prospective study. All patients underwent both DCE MRI and IVIM DWI. The perfusion fraction f, diffusion coefficient D and perfusion-related diffusion coefficient D* were estimated using a bi-exponential function to fit the DWI data. DCE MRI was acquired with a temporal resolution of 3-5 s. Maps of the initial area under the gadolinium concentration curve (IAUGC), time to peak (TTP) and maximum slope of increase (MSI) were derived using commercial software. The relationships between the DCE MRI and IVIM DWI measurements were assessed by Spearman's test. To exclude false positive results under multiple testing, the false discovery rate (FDR) procedure was applied. The Mann-Whitney test was used to evaluate the differences between all variables in patients with non-myxoid and myxoid STT. No significant relationship was found between IVIM parameters and any DCE MRI parameters. Higher f and D*f values were found in non-myxoid tumors compared with myxoid tumors (p = 0.004 and p = 0.003, respectively). MSI was significantly higher in non-myxoid tumors than in myxoid tumors (p = 0.029). From the visual assessments of single clinical cases, both f and D*f maps were in satisfactory agreement with DCE maps in the extreme cases of an avascular mass and a highly vascularized mass, whereas, for tumors with slight vascularity or with a highly heterogeneous perfusion pattern, this association was not straightforward. Although IVIM DWI was demonstrated to be feasible in STT, our data did not support evident relationships between perfusion-related IVIM parameters and perfusion measured by DCE MRI.

  4. DCE-MRI Perfusion and Permeability Parameters as predictors of tumor response to CCRT in Patients with locally advanced NSCLC

    PubMed Central

    Tao, Xiuli; Wang, Lvhua; Hui, Zhouguang; Liu, Li; Ye, Feng; Song, Ying; Tang, Yu; Men, Yu; Lambrou, Tryphon; Su, Zihua; Xu, Xiao; Ouyang, Han; Wu, Ning

    2016-01-01

    In this prospective study, 36 patients with stage III non-small cell lung cancers (NSCLC), who underwent dynamic contrast-enhanced MRI (DCE-MRI) before concurrent chemo-radiotherapy (CCRT) were enrolled. Pharmacokinetic analysis was carried out after non-rigid motion registration. The perfusion parameters [including Blood Flow (BF), Blood Volume (BV), Mean Transit Time (MTT)] and permeability parameters [including endothelial transfer constant (Ktrans), reflux rate (Kep), fractional extravascular extracellular space volume (Ve), fractional plasma volume (Vp)] were calculated, and their relationship with tumor regression was evaluated. The value of these parameters on predicting responders were calculated by receiver operating characteristic (ROC) curve. Multivariate logistic regression analysis was conducted to find the independent variables. Tumor regression rate is negatively correlated with Ve and its standard variation Ve_SD and positively correlated with Ktrans and Kep. Significant differences between responders and non-responders existed in Ktrans, Kep, Ve, Ve_SD, MTT, BV_SD and MTT_SD (P < 0.05). ROC indicated that Ve < 0.24 gave the largest area under curve of 0.865 to predict responders. Multivariate logistic regression analysis also showed Ve was a significant predictor. Baseline perfusion and permeability parameters calculated from DCE-MRI were seen to be a viable tool for predicting the early treatment response after CCRT of NSCLC. PMID:27762331

  5. The Correlations Between MRI Perfusion, Diffusion Parameters, and 18F-FDG PET Metabolic Parameters in Primary Head-and-Neck Cancer

    PubMed Central

    Han, Miran; Kim, Sun Yong; Lee, Su Jin; Choi, Jin Wook

    2015-01-01

    Abstract This study aimed to investigate the relationships among parameters from dynamic contrast-enhanced (DCE) MRI, diffusion-weighted MRI (DWI), and 18F-fluorodeoxyglucose (18F-FDG) PET in patients with primary head-and-neck squamous cell carcinoma (HNSCC). A total of 34 patients with primary HNSCC underwent DCE-MRI, DWI, and 18F-FDG PET before treatment. The perfusion parameters (Ktrans, Ktransmax, Kep, Ve, Vp, and AUC60) from DCE-MRI and ADC (ADCmean, ADCmin) values from DWI were calculated within the manually placed ROI around the main tumor. Standardized uptake value (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG = SUVmean × MTV) were calculated with thresholds of 3.0 SUV. The associations between parameters were evaluated by Pearson correlation analysis. Significant correlations were identified between Ktrans and Kep (r = 0.631), Ktrans and Ve (r = 0.603), Ktrans and ADCmean (r = 0.438), Ktransmax and Kep (r = 0.667), Ktransmax and Vp (r = 0.351), Ve and AUC60 (r = 0.364), Ve and ADCmean (r = 0.590), and Ve and ADCmin (r = 0.361). ADCmin was reversely correlated with TLG (r = –0.347). Tumor volume was significantly associated with Ktransmax (r = 0.348). The demonstrated relationships among parameters from DCE, DWI, and 18F-FDG PET suggest complex interactions among tumor biologic characteristics. Each diagnostic technique may provide complementary information for HNSCC. PMID:26632740

  6. Automatic Characterization of Myocardial Perfusion in Contrast Enhanced MRI

    NASA Astrophysics Data System (ADS)

    Positano, Vincenzo; Santarelli, Maria Filomena; Landini, Luigi

    2003-12-01

    The use of contrast medium in cardiac MRI allows joining the high-resolution anatomical information provided by standard magnetic resonance with functional information obtained by means of the perfusion of contrast agent in myocardial tissues. The current approach to perfusion MRI characterization is the qualitative one, based on visual inspection of images. Moving to quantitative analysis requires extraction of numerical indices of myocardium perfusion by analysis of time/intensity curves related to the area of interest. The main problem in quantitative image sequence analysis is the heart movement, mainly due to patient respiration. We propose an automatic procedure based on image registration, segmentation of the myocardium, and extraction and analysis of time/intensity curves. The procedure requires a minimal user interaction, is robust with respect to the user input, and allows effective characterization of myocardial perfusion. The algorithm was tested on cardiac MR images acquired from voluntaries and in clinical routine.

  7. The correlation of contrast-enhanced ultrasound and MRI perfusion quantitative analysis in rabbit VX2 liver cancer.

    PubMed

    Xiang, Zhiming; Liang, Qianwen; Liang, Changhong; Zhong, Guimian

    2014-12-01

    Our objective is to explore the value of liver cancer contrast-enhanced ultrasound (CEUS) and MRI perfusion quantitative analysis in liver cancer and the correlation between these two analysis methods. Rabbit VX2 liver cancer model was established in this study. CEUS was applied. Sono Vue was applied in rabbits by ear vein to dynamically observe and record the blood perfusion and changes in the process of VX2 liver cancer and surrounding tissue. MRI perfusion quantitative analysis was used to analyze the mean enhancement time and change law of maximal slope increasing, which were further compared with the pathological examination results. Quantitative indicators of liver cancer CEUS and MRI perfusion quantitative analysis were compared, and the correlation between them was analyzed by correlation analysis. Rabbit VX2 liver cancer model was successfully established. CEUS showed that time-intensity curve of rabbit VX2 liver cancer showed "fast in, fast out" model while MRI perfusion quantitative analysis showed that quantitative parameter MTE of tumor tissue increased and MSI decreased: the difference was statistically significant (P < 0.01). The diagnostic results of CEUS and MRI perfusion quantitative analysis were not significantly different (P > 0.05). However, the quantitative parameter of them were significantly positively correlated (P < 0.05). CEUS and MRI perfusion quantitative analysis can both dynamically monitor the liver cancer lesion and surrounding liver parenchyma, and the quantitative parameters of them are correlated. The combined application of both is of importance in early diagnosis of liver cancer.

  8. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability

    NASA Astrophysics Data System (ADS)

    Sourbron, S. P.; Buckley, D. L.

    2012-01-01

    The tracer-kinetic models developed in the early 1990s for dynamic contrast-enhanced MRI (DCE-MRI) have since become a standard in numerous applications. At the same time, the development of MRI hardware has led to increases in image quality and temporal resolution that reveal the limitations of the early models. This in turn has stimulated an interest in the development and application of a second generation of modelling approaches. They are designed to overcome these limitations and produce additional and more accurate information on tissue status. In particular, models of the second generation enable separate estimates of perfusion and capillary permeability rather than a single parameter Ktrans that represents a combination of the two. A variety of such models has been proposed in the literature, and development in the field has been constrained by a lack of transparency regarding terminology, notations and physiological assumptions. In this review, we provide an overview of these models in a manner that is both physically intuitive and mathematically rigourous. All are derived from common first principles, using concepts and notations from general tracer-kinetic theory. Explicit links to their historical origins are included to allow for a transfer of experience obtained in other fields (PET, SPECT, CT). A classification is presented that reveals the links between all models, and with the models of the first generation. Detailed formulae for all solutions are provided to facilitate implementation. Our aim is to encourage the application of these tools to DCE-MRI by offering researchers a clearer understanding of their assumptions and requirements.

  9. Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2003-05-01

    In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.

  10. Analysis of dynamic cerebral contrast-enhanced perfusion MRI time-series based on unsupervised clustering methods

    NASA Astrophysics Data System (ADS)

    Lange, Oliver; Meyer-Baese, Anke; Wismuller, Axel; Hurdal, Monica

    2005-03-01

    We employ unsupervised clustering techniques for the analysis of dynamic contrast-enhanced perfusion MRI time-series in patients with and without stroke. "Neural gas" network, fuzzy clustering based on deterministic annealing, self-organizing maps, and fuzzy c-means clustering enable self-organized data-driven segmentation w.r.t.fine-grained differences of signal amplitude and dynamics, thus identifying asymmetries and local abnormalities of brain perfusion. We conclude that clustering is a useful extension to conventional perfusion parameter maps.

  11. Diagnostic Performance of Dual-Energy CT Stress Myocardial Perfusion Imaging: Direct Comparison With Cardiovascular MRI

    PubMed Central

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K.

    2014-01-01

    OBJECTIVE The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. SUBJECTS AND METHODS One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥ 50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemodynamically significant stenosis was assessed before and after stress perfusion DECT on a pervessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. RESULTS The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p = 0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. CONCLUSION Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically

  12. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    PubMed Central

    Handayani, A.; Dijkstra, H.; Prakken, N. H. J.; Slart, R. H. J. A.; Oudkerk, M.; Van Ooijen, P. M. A.; Vliegenthart, R.; Sijens, P. E.

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  13. Dependence of Brain Intravoxel Incoherent Motion Perfusion Parameters on the Cardiac Cycle

    PubMed Central

    Federau, Christian; Hagmann, Patric; Maeder, Philippe; Müller, Markus; Meuli, Reto; Stuber, Matthias; O’Brien, Kieran

    2013-01-01

    Measurement of microvascular perfusion with Intravoxel Incoherent Motion (IVIM) MRI is gaining interest. Yet, the physiological influences on the IVIM perfusion parameters (“pseudo-diffusion” coefficient D*, perfusion fraction f, and flow related parameter fD*) remain insufficiently characterized. In this article, we hypothesize that D* and fD*, which depend on blood speed, should vary during the cardiac cycle. We extended the IVIM model to include time dependence of D* = D*(t), and demonstrate in the healthy human brain that both parameters D* and fD* are significantly larger during systole than diastole, while the diffusion coefficient D and f do not vary significantly. The results non-invasively demonstrate the pulsatility of the brain’s microvasculature. PMID:24023649

  14. Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients12

    PubMed Central

    Jafari-Khouzani, Kourosh; Emblem, Kyrre E.; Kalpathy-Cramer, Jayashree; Bjørnerud, Atle; Vangel, Mark G.; Gerstner, Elizabeth R.; Schmainda, Kathleen M.; Paynabar, Kamran; Wu, Ona; Wen, Patrick Y.; Batchelor, Tracy; Rosen, Bruce; Stufflebeam, Steven M.

    2015-01-01

    OBJECTIVES This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. METHODS Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. RESULTS CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. CONCLUSIONS DSC-MRI is highly repeatable in high-grade glioma patients. PMID:26055170

  15. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma.

    PubMed

    Wong, Kelvin K; Fung, Steve H; New, Pamela Z; Wong, Stephen T C

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem. PMID:27531989

  16. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma

    PubMed Central

    Wong, Kelvin K.; Fung, Steve H.; New, Pamela Z.; Wong, Stephen T. C.

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem. PMID:27531989

  17. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  18. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  19. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    PubMed

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found

  20. Functional MRI detects perfusion impairment in renal allografts with delayed graft function.

    PubMed

    Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar

    2015-06-15

    Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF.

  1. K-Bayes reconstruction for perfusion MRI. I: concepts and application.

    PubMed

    Kornak, John; Young, Karl; Schuff, Norbert; Du, Antao; Maudsley, Andrew A; Weiner, Michael W

    2010-06-01

    Despite the continued spread of magnetic resonance imaging (MRI) methods in scientific studies and clinical diagnosis, MRI applications are mostly restricted to high-resolution modalities, such as structural MRI. While perfusion MRI gives complementary information on blood flow in the brain, its reduced resolution limits its power for detecting specific disease effects on perfusion patterns. This reduced resolution is compounded by artifacts such as partial volume effects, Gibbs ringing, and aliasing, which are caused by necessarily limited k-space sampling and the subsequent use of discrete Fourier transform (DFT) reconstruction. In this study, a Bayesian modeling procedure (K-Bayes) is developed for the reconstruction of perfusion MRI. The K-Bayes approach (described in detail in Part II: Modeling and Technical Development) combines a process model for the MRI signal in k-space with a Markov random field prior distribution that incorporates high-resolution segmented structural MRI information. A simulation study was performed to determine qualitative and quantitative improvements in K-Bayes reconstructed images compared with those obtained via DFT. The improvements were validated using in vivo perfusion MRI data of the human brain. The K-Bayes reconstructed images were demonstrated to provide reduced bias, increased precision, greater effect sizes, and higher resolution than those obtained using DFT.

  2. Analysis of first-pass myocardial perfusion MRI using independent component analysis

    NASA Astrophysics Data System (ADS)

    Milles, Julien; van der Geest, Rob J.; Jerosch-Herold, Michael; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.

    2006-03-01

    Myocardial perfusion MRI has emerged as a suitable imaging technique for the detection of ischemic regions of the heart. However, manual post-processing is labor intensive, seriously hampering its daily clinical use. We propose a novel, data driven analysis method based on Independent Component Analysis (ICA). By performing ICA on the complete perfusion sequence, physiologically meaningful feature images, representing events occurring during the perfusion sequence, can be factored out. Results obtained using our method are compared with results obtained using manual contouring by a medical expert. The estimated weight functions are correlated against the perfusion time-intensity curves from manual contours, yielding promising results.

  3. Correlation of magnetic resonance signal characteristics and perfusion parameters assessed by volume perfusion computed tomography in hepatocellular carcinoma: Impact on lesion characterization

    PubMed Central

    Grözinger, Gerd; Bitzer, Michael; Syha, Roland; Ketelsen, Dominik; Nikolaou, Konstantin; Lauer, Ulrich; Horger, Marius

    2016-01-01

    AIM To find out if magnetic resonance (MR)-signal characteristics of hepatocellular carcinomas (HCC) correlate with perfusion parameters assessed by volume perfusion computed tomography (VPCT). METHODS From October 2009 to January 2014, 26 (mean age, 69.3 years) patients with 36 HCC lesions who underwent both VPCT and MR liver imaging were analysed. We compared signal intensity in the T1w- and T2w-images and wash-in/wash-out kinetics on post-contrast MR images with mean values of blood flow (BF, mL/100 mL per minute), blood volume (BV, mL/100 mL), k-trans (mL/100 mL per minute), arterial liver perfusion (mL/100 mL per minute), portal venous perfusion and hepatic perfusion index (HPI, %) obtained by VPCT. Signal intensity on magnetic resonance imaging (MRI) was classified hyper/iso/hypointense compared with surrounding liver parenchyma. RESULTS Signal intensity on native T1w- and T2w-images was hyper/iso/hypo in 4/16/16 and 21/14/1 lesions, respectively. Wash-in and wash-out contrast kinetics were found on MRI in 33 of 36 lesions (91.7%) and 25 of 36 lesions (69.4%), respectively. The latter was observed significantly more often in higher graded lesions (P < 0.005). HPI was 94.7% ± 6.5%. There was no significant relationship between lesion’s MR-signal intensity, MR signal combinations, size and any of the VPCT-perfusion parameters. However HPI was constantly high in all HCC lesions. CONCLUSION VPCT parameters add limited value to MR-lesion characterization. However in HCC lesions with atypical MR signal characteristics HPI can add a parameter to ensure HCC diagnosis. PMID:27551338

  4. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty

    PubMed Central

    Anwander, H.; Cron, G. O.; Rakhra, K.

    2016-01-01

    Objectives Hips with metal-on-metal total hip arthroplasty (MoM THA) have a high rate of adverse local tissue reactions (ALTR), often associated with hypersensitivity reactions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures tissue perfusion with the parameter Ktrans (volume transfer constant of contrast agent). Our purpose was 1) to evaluate the feasibility of DCE-MRI in patients with THA and 2) to compare DCE-MRI in patients with MoM bearings with metal-on-polyethylene (MoP) bearings, hypothesising that the perfusion index Ktrans in hips with MoM THA is higher than in hips with MoP THA. Methods In this pilot study, 16 patients with primary THA were recruited (eight MoM, eight MoP). DCE-MRI of the hip was performed at 1.5 Tesla (T). For each patient, Ktrans was computed voxel-by-voxel in all tissue lateral to the bladder. The mean Ktrans for all voxels was then calculated. These values were compared with respect to implant type and gender, and further correlated with clinical parameters. Results There was no significant difference between the two bearing types with both genders combined. However, dividing patients by THA bearing and gender, women with MoM bearings had the highest Ktrans values, exceeding those of women with MoP bearings (0.067 min−1 versus 0.053 min−1; p-value < 0.05) and men with MoM bearings (0.067 min−1 versus 0.034 min−1; p-value < 0.001). Considering only the men, patients with MoM bearings had lower Ktrans than those with MoP bearings (0.034 min−1 versus 0.046 min−1; p < 0.05). Conclusion DCE-MRI is feasible to perform in tissues surrounding THA. Females with MoM THA show high Ktrans values in DCE-MRI, suggesting altered tissue perfusion kinematics which may reflect relatively greater inflammation. Cite this article: Dr P. E. Beaule. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty: A pilot stud. Bone Joint Res 2016;5:73–79. DOI: 10

  5. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain.

    PubMed

    Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang

    2012-11-01

    Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain.

  6. Susceptibility-Based Analysis Of Dynamic Gadolinium Bolus Perfusion MRI

    PubMed Central

    Bonekamp, David; Barker, Peter B.; Leigh, Richard; van Zijl, Peter C.M.; Li, Xu

    2014-01-01

    Purpose An algorithm is developed for the reconstruction of dynamic, gadolinium (Gd) bolus MR perfusion images of the human brain, based on quantitative susceptibility mapping (QSM). Methods The method is evaluated in 5 perfusion scans obtained from 4 different patients scanned at 3T, and compared to the conventional analysis based on changes in the transverse relaxation rate ΔR2* and to theoretical predictions. QSM images were referenced to ventricular CSF for each dynamic of the perfusion sequence. Results Images of cerebral blood flow and blood volume were successfully reconstructed from the QSM-analysis, and were comparable to those reconstructed using ΔR2*. The magnitudes of the Gd-associated susceptibility effects in gray and white matter were consistent with theoretical predictions. Conclusion QSM-based analysis may have some theoretical advantages compared to ΔR2*, including a simpler relationship between signal change and Gd concentration. However, disadvantages are its much lower contrast-to-noise ratio, artifacts due to respiration and other effects, and more complicated reconstruction methods. More work is required to optimize data acquisition protocols for QSM-based perfusion imaging. PMID:24604343

  7. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. PMID:23623332

  8. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment.

  9. Value of Dynamic Susceptibility Contrast Perfusion MRI in the Acute Phase of Transient Global Amnesia

    PubMed Central

    Förster, Alex; Al-Zghloul, Mansour; Kerl, Hans U.; Böhme, Johannes; Mürle, Bettina; Groden, Christoph

    2015-01-01

    Purpose Transient global amnesia (TGA) is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET) or single-photon emission computed tomography (SPECT). In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI) in TGA in the acute phase. Methods From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF) and volume (CBV)) were generated and analyzed by use of Signal Processing In NMR-Software (SPIN). CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL). Results Five TGA patients were included (2 men, 3 women). On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus. Conclusions Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in

  10. Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging.

    PubMed

    Boutelier, Timothé; Kudo, Koshuke; Pautot, Fabrice; Sasaki, Makoto

    2012-07-01

    A delay-insensitive probabilistic method for estimating hemodynamic parameters, delays, theoretical residue functions, and concentration time curves by computed tomography (CT) and magnetic resonance (MR) perfusion weighted imaging is presented. Only a mild stationarity hypothesis is made beyond the standard perfusion model. New microvascular parameters with simple hemodynamic interpretation are naturally introduced. Simulations on standard digital phantoms show that the method outperforms the oscillating singular value decomposition (oSVD) method in terms of goodness-of-fit, linearity, statistical and systematic errors on all parameters, especially at low signal-to-noise ratios (SNRs). Delay is always estimated sharply with user-supplied resolution and is purely arterial, by contrast to oSVD time-to-maximum TMAX that is very noisy and biased by mean transit time (MTT), blood volume, and SNR. Residue functions and signals estimates do not suffer overfitting anymore. One CT acute stroke case confirms simulation results and highlights the ability of the method to reliably estimate MTT when SNR is low. Delays look promising for delineating the arterial occlusion territory and collateral circulation. PMID:22410325

  11. Quantitative Perfusion Analysis of First-Pass Contrast Enhancement Kinetics: Application to MRI of Myocardial Perfusion in Coronary Artery Disease

    PubMed Central

    Shah, Binita; Storey, Pippa; Iqbal, Sohah; Slater, James; Axel, Leon

    2016-01-01

    Purpose Perfusion analysis from first-pass contrast enhancement kinetics requires modeling tissue contrast exchange. This study presents a new approach for numerical implementation of the tissue homogeneity model, incorporating flexible distance steps along the capillary (NTHf). Methods The proposed NTHf model considers contrast exchange in fluid packets flowing along the capillary, incorporating flexible distance steps, thus allowing more efficient and stable calculations of the transit of tracer through the tissue. We prospectively studied 8 patients (62 ± 13 years old) with suspected CAD, who underwent first-pass perfusion CMR imaging at rest and stress prior to angiography. Myocardial blood flow (MBF) and myocardial perfusion reserve index (MPRI) were estimated using both the NTHf and the conventional adiabatic approximation of the TH models. Coronary artery lesions detected at angiography were clinically assigned to one of three categories of stenosis severity (‘insignificant’, ‘mild to moderate’ and ‘severe’) and related to corresponding myocardial territories. Results The mean MBF (ml/g/min) at rest/stress and MPRI were 0.80 ± 0.33/1.25 ± 0.45 and 1.68 ± 0.54 in the insignificant regions, 0.74 ± 0.21/1.09 ± 0.28 and 1.54 ± 0.46 in the mild to moderate regions, and 0.79 ± 0.28/0.63 ± 0.34 and 0.85 ± 0.48 in the severe regions, respectively. The correlation coefficients of MBFs at rest/stress and MPRI between the NTHf and AATH models were r = 0.97/0.93 and r = 0.91, respectively. Conclusions The proposed NTHf model allows efficient quantitative analysis of the transit of tracer through tissue, particularly at higher flow. Results of initial application to MRI of myocardial perfusion in CAD are encouraging. PMID:27583385

  12. MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI

    SciTech Connect

    Song, H; Liu, W; Ruan, D; Jung, S; Gach, M

    2014-06-15

    Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition. During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human

  13. XTC MRI: sensitivity improvement through parameter optimization.

    PubMed

    Ruppert, Kai; Mata, Jaime F; Wang, Hsuan-Tsung J; Tobias, William A; Cates, Gordon D; Brookeman, James R; Hagspiel, Klaus D; Mugler, John P

    2007-06-01

    Xenon polarization Transfer Contrast (XTC) MRI pulse sequences permit the gas exchange of hyperpolarized xenon-129 in the lung to be measured quantitatively. However, the pulse sequence parameter values employed in previously published work were determined empirically without considering the now-known gas exchange rates and the underlying lung physiology. By using a theoretical model for the consumption of magnetization during data acquisition, the noise intensity in the computed gas-phase depolarization maps was minimized as a function of the gas-phase depolarization rate. With such optimization the theoretical model predicted an up to threefold improvement in precision. Experiments in rabbits demonstrated that for typical imaging parameter values the optimized XTC pulse sequence yielded a median noise intensity of only about 3% in the depolarization maps. Consequently, the reliable detection of variations in the average alveolar wall thickness of as little as 300 nm can be expected. This improvement in the precision of the XTC MRI technique should lead to a substantial increase in its sensitivity for detecting pathological changes in lung function.

  14. Brain perfusion SPECT and MRI in foetal alcohol syndrome.

    PubMed

    Riikonen, R; Salonen, I; Partanen, K; Verho, S

    1999-10-01

    Six boys and five girls with a mean age of 8.6 (range 3 to 13) years with foetal alcohol syndrome (FAS) were studied by MRI and single photon emission computed tomography (SPECT) to find specific areas of vulnerability. Morphological anomalies shown in six of 11 patients by MRI were situated both cortically and subcortically: cortical atrophy (N = 2), dilated ventricle (N = 1), corpus callosum hypoplasia (N = 1), cerebellar atrophy (N = 2), one of the latter with Arnold-Chiari malformation (N = 1). Delayed myelination of the white matter was seen in two patients. Volumetric studies of the hippocampus showed morphological left-right asymmetry in five of eight patients. However, SPECT showed mild hypoperfusion of the left hemisphere in all 10 subjects. The negative left-right index was located especially in the left parietooccipital region, i.e. in the brain areas implicated in arithmetical and logical-grammatical functions, which are known to be affected in FAS. Normal left-right dominance was also lacking in the frontal area, i.e. the brain area affected in attention-deficit-hyperactivity disorder (ADHD). Detection of these abnormalities, although they are not unique to FAS, may be helpful in the diagnosis and any attempts at rehabilitation. Diverse morphological and functional abnormalities are more frequent than has usually been believed even in less impaired children with FAS.

  15. MRI monitoring of function, perfusion and viability in microembolized moderately ischemic myocardium.

    PubMed

    Do, Loi; Wilson, Mark W; Krug, Roland; Hetts, Steven W; Saeed, Maythem

    2015-08-01

    Assessment of microembolization after coronary interventions is clinically challenging, thus we longitudinally investigated microemboli effects on moderately ischemic myocardium using MRI and histopathology. Twenty-four pigs (8/group) were divided into: group I (no intervention), group II (45 min LAD occlusion) and group III (45 min LAD occlusion with microembolization). Cine, perfusion and delayed contrast enhanced MRI (DE-MRI), using 1.5T MRI, were used for assessment at 3 days and 5 weeks. Triphenyltetrazolium-chloride (TTC) and Masson-trichrome were used as gold standard references for macro and microscopic quantification of myocardial infarction (MI). Cine MRI showed differential increase in end systolic volume (1.3 ± 0.08 ml/kg group II and 1.6 ± 0.1 ml/kg group III) and decrease in ejection fraction (45 ± 2 and 36 ± 2%, respectively) compared with controls at 3 days (2.1 ± 0.1 ml ESV and 50 ± 1% EF, P < 0.05). At 5 weeks group III, but not II, showed persistent perfusion deficits, wall thinning in the LAD territory and compensatory hypertrophy in remote myocardium. DE-MRI MI at 3 days was significantly smaller in group II (3.3 ± 2.2 g) than III (9.8 ± 0.6 g), at 5 weeks, MI were smaller by 60% (1.3 ± 0.9 g) and 22% (7.7 ± 0.5 g), respectively. TTC MI was similar to DE-MRI in group II (1.6 ± 1.0 g) and III (9.2 ± 1.6 g), but not microscopy (2.8 ± 0.4 and 10.5 ± 1.5 g, respectively). The effects of moderate ischemia with and without microembolization on myocardium could be differentiated using multiple MRI sequences. MRI demonstrated that microemboli in moderately ischemic myocardium, but not solely ischemia, prolonged ventricular dysfunction, created perfusion deficits, poor infarct resorption and enhanced compensatory hypertrophy, while moderate ischemia alone caused minor LV changes.

  16. Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification

    PubMed Central

    Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Granata, Vincenza; Catalano, Orlando; Amato, Daniela Maria; Di Bonito, Maurizio; D'Aiuto, Massimiliano; Capasso, Immacolata; Rinaldo, Massimo; Petrillo, Antonella

    2015-01-01

    Objective. The purpose of our study was to evaluate the diagnostic value of an imaging protocol combining dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in patients with suspicious breast lesions. Materials and Methods. A total of 31 breast lesions (15 malignant and 16 benign proved by histological examination) in 26 female patients were included in this study. For both DCE-MRI and DW-MRI model free and model based parameters were computed pixel by pixel on manually segmented ROIs. Statistical procedures included conventional linear analysis and more advanced techniques for classification of lesions in benign and malignant. Results. Our findings indicated no strong correlation between DCE-MRI and DW-MRI parameters. Results of classification analysis show that combining of DCE parameters or DW-MRI parameter, in comparison of single feature, does not yield a dramatic improvement of sensitivity and specificity of the two techniques alone. The best performance was obtained considering a full combination of all features. Moreover, the classification results combining all features are dominated by DCE-MRI features alone. Conclusion. The combination of DWI and DCE-MRI does not show a potential to dramatically increase the sensitivity and specificity of breast MRI. DCE-MRI alone gave the same performance as in combination with DW-MRI. PMID:26339597

  17. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

    PubMed Central

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  18. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases.

  19. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  20. Detection of the brain response during a cognitive task using perfusion-based event-related functional MRI.

    PubMed

    Yee, S H; Liu, H L; Hou, J; Pu, Y; Fox, P T; Gao, J H

    2000-08-01

    Event-related (ER) fMRI has evoked great interest due to the ability to depict the dynamic features of human brain function during various cognitive tasks. Thus far, all cognitive ER-fMRI studies have been based on blood oxygenation level-dependent (BOLD) contrast techniques. Compared with BOLD-based fMRI techniques, perfusion-based fMRI is able to localize the region of neuronal activity more accurately. This report demonstrates, for the first time, the detection of the brain response to a cognitive task using high temporal resolution perfusion-based ER-fMRI. An English verb generation task was used in this study. Results show that perfusion-based ER-fMRI accurately depicts the activation in Broca's area. Average changes in regional relative cerebral blood flow reached a maximum value of 30.7% at approximately 6.5 s after the start of stimulation and returned to 10% of the maximum value at approximately 12.8 s. Our results show that perfusion-based ER-fMRI is a useful tool for cognitive neuroscience studies, providing comparable temporal resolution and better localization of brain function than BOLD ER-fMRI. PMID:10943717

  1. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural

  2. Comparison of dynamic susceptibility contrast-MRI perfusion quantification methods in the presence of delay and dispersion

    NASA Astrophysics Data System (ADS)

    Maan, Bianca; Simões, Rita Lopes; Meijer, Frederick J. A.; Klaas Jan Renema, W.; Slump, Cornelis H.

    2011-03-01

    The perfusion of the brain is essential to maintain brain function. Stroke is an example of a decrease in blood flow and reduced perfusion. During ischemic stroke the blood flow to tissue is hampered due to a clot inside a vessel. To investigate the recovery of stroke patients, follow up studies are necessary. MRI is the preferred imaging modality for follow up because of the absence of radiation dose concerns, contrary to CT. Dynamic Susceptibility Contrast (DSC) MRI is an imaging technique used for measuring perfusion of the brain, however, is not standard applied in the clinical routine due to lack of immediate patient benefit. Several post processing algorithms are described in the literature to obtain cerebral blood flow (CBF). The quantification of CBF relies on the deconvolution of a tracer concentration-time curve in an arterial and a tissue voxel. There are several methods to obtain this deconvolution based on singular-value decomposition (SVD). This contribution describes a comparison between the different approaches as currently there is no best practice for (all) clinical relevant situations. We investigate the influence of tracer delay, dispersion and recirculation on the performance of the methods. In the presence of negative delays, the truncated SVD approach overestimates the CBF. Block-circulant and reformulated SVD are delay-independent. Due to its delay dependent behavior, the truncated SVD approach performs worse in the presence of dispersion as well. However all SVD approaches are dependent on the amount of dispersion. Moreover, we observe that the optimal truncation parameter varies when recirculation is added to noisy data, suggesting that, in practice, these methods are not immune to tracer recirculation. Finally, applying the methods to clinical data resulted in a large variability of the CBF estimates. Block-circulant SVD will work in all situations and is the method with the highest potential.

  3. Effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies

    NASA Astrophysics Data System (ADS)

    Murase, Kenya; Nanjo, Takafumi; Satoshi, Ii; Miyazaki, Shohei; Hirata, Masaaki; Sugawara, Yoshifumi; Kudo, Masayuki; Sasaki, Kousuke; Mochizuki, Teruhito

    2005-11-01

    The purpose of this study was to investigate the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using multi-detector row CT (MDCT). Following the standard CT perfusion study protocol, continuous (cine) scans (1 s/rotation × 60 s) consisting of four 5 mm thick contiguous slices were performed using an MDCT scanner with a tube voltage of 80 kVp and a tube current of 200 mA. We generated the simulated images with tube currents of 50 mA, 100 mA and 150 mA by adding the corresponding noise to the raw scan data of the original image acquired above using a noise simulation tool. From the original and simulated images, we generated the functional images of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in seven patients with cerebrovascular disease, and compared the correlation coefficients (CCs) between the perfusion parameter values obtained from the original and simulated images. The coefficients of variation (CVs) in the white matter were also compared. The CC values deteriorated with decreasing tube current. There was a significant difference between 50 mA and 100 mA for all perfusion parameters. The CV values increased with decreasing tube current. There were significant differences between 50 mA and 100 mA and between 100 mA and 150 mA for CBF. For CBV and MTT, there was also a significant difference between 150 mA and 200 mA. This study will be useful for understanding the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using MDCT, and for selecting the tube current.

  4. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  5. Myocardial Perfusion MRI Using SW-CG-HYPR in Canine with Stenotic Coronary Arteries

    PubMed Central

    Ge, Lan; Kino, Aya; Lee, Daniel; Dharmakumar, Rohan; Carr, James C.; Li, Debiao

    2010-01-01

    Purpose First-pass perfusion MRI is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, SNR, and cardiac motion related image artifacts. A combination of sliding window and CG-HYPR method has been proposed in healthy volunteer studies to reduce the acquisition window for each slice while maintaining the temporal resolution of one frame per heartbeat in myocardial perfusion MR imaging. This method allows for improved spatial coverage, resolution and SNR. Materials and Methods In this study, we use a controlled animal model to test whether the myocardial territory supplied by a stenotic coronary artery can be detected accurately by SW-CG-HYPR perfusion method under pharmacological stress. Results Results from six mongrel dogs (15–25 kg) studies demonstrate the feasibility of SW-CG-HYPR to detect regional perfusion defects. Using this method, the acquisition time per cardiac cycle was reduced by a factor of 4, and the spatial coverage was increased from 2–3 to 6 slices as compared to the conventional techniques including both turbo-FLASH and EPI. The SNR of the healthy myocardium at peak enhancement with SW-CG-HYPR (12.68±2.46) is significantly higher (p<0.01) than the turbo-FLASH (8.65±1.93) and EPI (5.48±1.24). The spatial resolution of SW-CG-HYPR images is 1.2×1.2×8.0 mm3, which is better than the turbo-FLASH (1.8×1.8×8.0 mm3) and EPI (2.0×1.8×8.0 mm3). Conclusion SW-CG-HYPR is a promising technique for myocardial perfusion MRI. This technique provides higher image quality with respect to significantly improved SNR and spatial resolution of the myocardial perfusion images, which might improve myocardial perfusion imaging in a clinical setting. PMID:20861770

  6. Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study

    PubMed Central

    Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J. J.; Wang, Meiyun; Zhou, Dong; Gong, Qiyong

    2016-01-01

    The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective. PMID:27374369

  7. Semi-automated and automated glioma grading using dynamic susceptibility-weighted contrast-enhanced perfusion MRI relative cerebral blood volume measurements

    PubMed Central

    Friedman, S N; Bambrough, P J; Kotsarini, C; Khandanpour, N; Hoggard, N

    2012-01-01

    Objective Despite the established role of MRI in the diagnosis of brain tumours, histopathological assessment remains the clinically used technique, especially for the glioma group. Relative cerebral blood volume (rCBV) is a dynamic susceptibility-weighted contrast-enhanced perfusion MRI parameter that has been shown to correlate to tumour grade, but assessment requires a specialist and is time consuming. We developed analysis software to determine glioma gradings from perfusion rCBV scans in a manner that is quick, easy and does not require a specialist operator. Methods MRI perfusion data from 47 patients with different histopathological grades of glioma were analysed with custom-designed software. Semi-automated analysis was performed with a specialist and non-specialist operator separately determining the maximum rCBV value corresponding to the tumour. Automated histogram analysis was performed by calculating the mean, standard deviation, median, mode, skewness and kurtosis of rCBV values. All values were compared with the histopathologically assessed tumour grade. Results A strong correlation between specialist and non-specialist observer measurements was found. Significantly different values were obtained between tumour grades using both semi-automated and automated techniques, consistent with previous results. The raw (unnormalised) data single-pixel maximum rCBV semi-automated analysis value had the strongest correlation with glioma grade. Standard deviation of the raw data had the strongest correlation of the automated analysis. Conclusion Semi-automated calculation of raw maximum rCBV value was the best indicator of tumour grade and does not require a specialist operator. Advances in knowledge Both semi-automated and automated MRI perfusion techniques provide viable non-invasive alternatives to biopsy for glioma tumour grading. PMID:23175486

  8. Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room

    PubMed Central

    Jekic, Mihaela; Foster, Eric L; Ballinger, Michelle R; Raman, Subha V; Simonetti, Orlando P

    2008-01-01

    Treadmill exercise stress testing is an essential tool in the prevention, detection, and treatment of a broad spectrum of cardiovascular disease. After maximal exercise, cardiac images at peak stress are typically acquired using nuclear scintigraphy or echocardiography, both of which have inherent limitations. Although CMR offers superior image quality, the lack of MRI-compatible exercise and monitoring equipment has prevented the realization of treadmill exercise CMR. It is critical to commence imaging as quickly as possible after exercise to capture exercise-induced cardiac wall motion abnormalities. We modified a commercial treadmill such that it could be safely positioned inside the MRI room to minimize the distance between the treadmill and the scan table. We optimized the treadmill exercise CMR protocol in 20 healthy volunteers and successfully imaged cardiac function and myocardial perfusion at peak stress, followed by viability imaging at rest. Imaging commenced an average of 30 seconds after maximal exercise. Real-time cine of seven slices with no breath-hold and no ECG-gating was completed within 45 seconds of exercise, immediately followed by stress perfusion imaging of three short-axis slices which showed an average time to peak enhancement within 57 seconds of exercise. We observed a 3.1-fold increase in cardiac output and a myocardial perfusion reserve index of 1.9, which agree with reported values for healthy subjects at peak stress. This study successfully demonstrates in-room treadmill exercise CMR in healthy volunteers, but confirmation of feasibility in patients with heart disease is still needed. PMID:18272005

  9. Fetal Brain during a Binge Drinking Episode: A dynamic susceptibility contrast MRI fetal brain perfusion study

    PubMed Central

    Kochunov, Peter; Castro, Carlos; Davis, Duff M; Dudley, Donald; Wey, Hsiao-Ying; Purdy, David; Fox, Peter T; Simerly, Calvin; Schatten, Gerald

    2010-01-01

    We assessed the effects of a single episode of maternal alcohol intoxication on fetal brain blood perfusion in three pregnant dam (baboons) at the 24th week of pregnancy, using dynamic susceptibility contrast MRI. Following the oral administration of alcohol there was a four-fold increase in the peak contrast concentrations in the fetal brain. Additionally, we observed a two-to-three fold increase in the contrast uptake and washout rates in fetal brain. The underlying mechanisms of these changes are unknown but we hypothesized these could include the alcohol-mediated changes in placental permeability and fetal cerebral blood flow. Our findings indicate that alcohol intoxication produced profound changes, which may detrimentally influence neurodevelopmental processes in the brain. PMID:20505549

  10. Arterial spin labeling-fast imaging with steady-state free precession (ASL-FISP): a rapid and quantitative perfusion technique for high-field MRI.

    PubMed

    Gao, Ying; Goodnough, Candida L; Erokwu, Bernadette O; Farr, George W; Darrah, Rebecca; Lu, Lan; Dell, Katherine M; Yu, Xin; Flask, Chris A

    2014-08-01

    Arterial spin labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either echo-planar imaging (EPI) or true fast imaging with steady-state free precession (true FISP) readouts, which are prone to off-resonance artifacts on high-field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high-field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 s. In this initial implementation, a flow-sensitive alternating inversion recovery (FAIR) ASL preparation was combined with a rapid, centrically encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 and 9.4 T (249 ± 38 and 241 ± 17 mL/min/100 g, respectively). The utility of this method was further demonstrated in the detection of significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high-field MRI scanners with minimal image artifacts.

  11. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma.

    PubMed

    Thomas, Alissa A; Arevalo-Perez, Julio; Kaley, Thomas; Lyo, John; Peck, Kyung K; Shi, Weiji; Zhang, Zhigang; Young, Robert J

    2015-10-01

    Pseudoprogression may present as transient new or increasing enhancing lesions that mimic recurrent tumors in treated glioblastoma. The purpose of this study was to examine the utility of dynamic contrast enhanced T1 magnetic resonance imaging (DCE MRI) in differentiating between pseudoprogression and tumor progression and devise a cut-off value sensitive for pseudoprogression. We retrospectively examined 37 patients with glioblastoma treated with radiation and temozolomide after surgical resection that then developed new or increasing enhancing lesion(s) indeterminate for pseudoprogression versus progression. Volumetric plasma volume (Vp) and time-dependent leakage constant (Ktrans) maps were measured for the enhancing lesion and the mean and ninetieth percentile histogram values recorded. Lesion outcome was determined by clinical follow up with pseudoprogression defined as stable disease not requiring new treatment. Statistical analysis was performed with Wilcoxon rank-sum tests. Patients with pseudoprogression (n = 13) had Vp (mean) = 2.4 and Vp (90 %tile) = 3.2; and Ktrans (mean) = 3.5 and Ktrans (90 %tile) = 4.2. Patients with tumor progression (n = 24) had Vp (mean) = 5.3 and Vp (90 %tile) = 6.6; and Ktrans (mean) = 7.4 and Ktrans (90 %tile) = 9.1. Compared with tumor progression, pseudoprogression demonstrated lower Vp perfusion values (p = 0.0002) with a Vp (mean) cutoff <3.7 yielding 85% sensitivity and 79% specificity for pseudoprogression. Ktrans (mean) of >3.6 had a 69% sensitivity and 79% specificity for disease progression. DCE MRI shows lower plasma volume and time dependent leakage constant values in pseudoprogression than in tumor progression. A cut-off value with high sensitivity for pseudoprogression can be applied to aid in interpretation of DCE MRI.

  12. Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study

    PubMed Central

    Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz

    2014-01-01

    Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are

  13. Non-ECG-Gated Myocardial Perfusion MRI Using Continuous Magnetization-Driven Radial Sampling

    PubMed Central

    Sharif, Behzad; Dharmakumar, Rohan; Arsanjani, Reza; Thomson, Louise; Merz, C. Noel Bairey; Berman, Daniel S.; Li, Debiao

    2014-01-01

    Purpose Establishing a high-resolution non-ECG-gated first-pass perfusion (FPP) cardiac MRI technique may improve accessibility and diagnostic capability of FPP imaging. We propose a non-ECG-gated FPP imaging technique using continuous magnetization-driven golden-angle radial acquisition. The main purpose of this preliminary study is to evaluate whether, in the simple case of single-slice 2D imaging, adequate myocardial contrast can be obtained for accurate visualization of hypoperfused territories in the setting of myocardial ischemia. Methods A T1-weighted pulse sequence with continuous golden-angle radial sampling was developed for non-ECG-gated FPP imaging. A sliding-window scheme with no temporal acceleration was used to reconstruct 8 frames/second. Canines were imaged at 3T with and without coronary stenosis using the proposed scheme and a conventional magnetization-prepared ECG-gated FPP method. Results Our studies showed that the proposed non-ECG-gated method is capable of generating high-resolution (1.7×1.7×6 mm3) artifact-free FPP images of a single slice at high heart rates (92±21 beats/minute), while matching the performance of conventional FPP imaging in terms of hypoperfused-to-normal myocardial contrast-to-noise ratio (proposed: 5.18±0.70, conventional: 4.88±0.43). Furthermore, the detected perfusion defect areas were consistent with the conventional FPP images. Conclusion Non-ECG-gated FPP imaging using optimized continuous golden-angle radial acquisition achieves desirable image quality (i.e., adequate myocardial contrast, high spatial resolution, and minimal artifacts) in the setting of ischemia. PMID:24443160

  14. Tumor classification using perfusion volume fractions in breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Lee, Sang Ho; Kim, Jong Hyo; Park, Jeong Seon; Park, Sang Joon; Jung, Yun Sub; Song, Jung Joo; Moon, Woo Kyung

    2008-03-01

    This study was designed to classify contrast enhancement curves using both three-time-points (3TP) method and clustering approach at full-time points, and to introduce a novel evaluation method using perfusion volume fractions for differentiation of malignant and benign lesions. DCE-MRI was applied to 24 lesions (12 malignant, 12 benign). After region growing segmentation for each lesion, hole-filling and 3D morphological erosion and dilation were performed for extracting final lesion volume. 3TP method and k-means clustering at full-time points were applied for classifying kinetic curves into six classes. Intratumoral volume fraction for each class was calculated. ROC and linear discriminant analyses were performed with distributions of the volume fractions for each class, pairwise and whole classes, respectively. The best performance in each class showed accuracy (ACC), 84.7% (sensitivity (SE), 100%; specificity (SP), 66.7% to a single class) to 3TP method, whereas ACC, 73.6% (SE, 41.7%; SP, 100% to a single class) to k-means clustering. The best performance in pairwise classes showed ACC, 75% (SE, 83.3%; SP, 66.7% to four class pairs and SE, 58.3%; SP, 91.7% to a single class pair) to 3TP method and ACC, 75% (SE, 75%; SP, 75% to a single class pair and SE, 66.7%; SP, 83.3% to three class pairs) to k-means clustering. The performance in whole classes showed ACC, 75% (SE, 83.3%; SP, 66.7%) to 3TP method and ACC, 75% (SE, 91.7%; 58.3%) to k-means clustering. The results indicate that tumor classification using perfusion volume fractions is helpful in selecting meaningful kinetic patterns for differentiation of malignant and benign lesions, and that two different classification methods are complementary to each other.

  15. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress

    NASA Astrophysics Data System (ADS)

    Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.

    2005-12-01

    Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. anterior cingulate cortex | arterial spin labeling | right prefrontal cortex

  16. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress

    PubMed Central

    Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.

    2005-01-01

    Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. PMID:16306271

  17. Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI

    PubMed Central

    Pinkham, Amy; Loughead, James; Ruparel, Kosha; Wu, Wen-Chau; Overton, Eve; Gur, Raquel; Gur, Ruben

    2011-01-01

    Arterial spin labeling imaging (ASL) perfusion MRI is a relatively novel technique that can allow for quantitative measurement of cerebral blood flow (CBF) by using magnetically labeled arterial blood water as an endogenous tracer. Available data on resting CBF in schizophrenia primarily comes from invasive and expensive nuclear medicine techniques that are often limited to small samples and yield mixed results. The noninvasive nature of ASL offers promise for larger-scale studies. The utility of this approach was examined in 24 healthy controls and 30 patients with schizophrenia. Differences between groups in quantitative CBF were assessed, as were relationships between CBF and psychiatric symptoms. Group comparisons demonstrated greater CBF for controls in several regions including bilateral precuneus and middle frontal gyrus. Patients showed increased CBF in left putamen/superior corona radiata and right middle temporal gyrus. For patients, greater severity of negative symptoms was associated with reduced CBF in bilateral superior temporal gyrus, cingulate gyrus, and left middle frontal gyrus. Increased severity of positive symptoms was related to both higher CBF in cingulate gyrus and superior frontal gyrus and decreased CBF in precentral gyrus/middle frontal gyrus. These findings support the feasibility and utility of implementing ASL in schizophrenia research and expand upon previous results. PMID:21831608

  18. Estimation of regional pulmonary perfusion parameters from microfocal angiograms

    NASA Astrophysics Data System (ADS)

    Clough, Anne V.; Al-Tinawi, Amir; Linehan, John H.; Dawson, Christopher A.

    1995-05-01

    An important application of functional imaging is the estimation of regional blood flow and volume using residue detection of vascular indicators. An indicator-dilution model applicable to tissue regions distal from the inlet site was developed. Theoretical methods for determining regional blood flow, volume, and mean transit time parameters from time-absorbance curves arise from this model. The robustness of the parameter estimation methods was evaluated using a computer-simulated vessel network model. Flow through arterioles, networks of capillaries, and venules was simulated. Parameter identification and practical implementation issues were addressed. The shape of the inlet concentration curve and moderate amounts of random noise did not effect the ability of the method to recover accurate parameter estimates. The parameter estimates degraded in the presence of significant dispersion of the measured inlet concentration curve as it traveled through arteries upstream from the microvascular region. The methods were applied to image data obtained using microfocal x-ray angiography to study the pulmonary microcirculation. Time- absorbance curves were acquired from a small feeding artery, the surrounding microvasculature and a draining vein of an isolated dog lung as contrast material passed through the field-of-view. Changes in regional microvascular volume were determined from these curves.

  19. Feasibility Study of Myocardial Perfusion and Oxygenation by Non-Contrast MRI: Comparison with PET Study in a Canine Model

    PubMed Central

    McCommis, Kyle S.; Zhang, Haosen; Herrero, Pilar; Gropler, Robert J.; Zheng, Jie

    2008-01-01

    The purpose of this study was to examine the feasibility of quantifying myocardial blood flow (MBF) and rate of myocardial oxygen consumption (MVO2) during pharmacologically induced stress without using a contrast agent. The former was measured by the arterial spin labeling (ASL) method and the later was obtained by measuring the oxygen extraction fraction (OEF) with the magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) effect and Fick's law. The MRI results were compared with the established positron emission tomography (PET) methods. Six mongrel dogs with induced acute moderate left coronary artery stenosis were scanned using a clinical PET and a 1.5T MRI system, in the same day. Regional MBF, myocardial OEF, and MVO2 were measured with both imaging modalities. Correlation coefficients (R2) of the three myocardial indexes (MBF, OEF, and MVO2) between MRI and PET methods ranged from 0.70 to 0.93. Bland-Altman statistics demonstrated that the estimated precision of the limits of agreement between MRI and PET measurements varied from 18% (OEF), to 37% (MBF), and 45% (MVO2). The detected changes in these indexes, at rest and during dobutamine stress, were similar between two image modalities. The proposed non-contrast MRI technique is a promising method to quantitatively assess myocardial perfusion and oxygenation. PMID:17566684

  20. The Relationship Between Some Complete Blood Count Parameters and Myocardial Perfusion: A Scintigraphic Approach

    PubMed Central

    Ozdemir, Semra; Barutcu, Ahmet; Gazi, Emine; Tan, Yusuf Ziya; Turkon, Hakan

    2015-01-01

    Recent studies have shown that there is a relationship between some inflammatory and biochemical markers derived from complete blood count (CBC) such as neutrophil/lymphocyte (N/L) ratio, platelet/lymphocyte (P/L) ratio, platelet distribution width (PDW), red blood cell distribution width (RDW), and coronary artery disease (CAD). The aim of this study was to determine N/L ratio, P/L ratio, PDW values, and RDW values, which are associated with myocardial perfusion in patients diagnosed with CAD. This study included 262 patients (149 with myocardial ischemia/infarction and 113 with normal myocardial perfusion) undergoing myocardial perfusion scintigraphy (MPS) with CBC within 90 days of MPS. Myocardial perfusion parameters such as summed stress score and summed difference score (SDS) were compared with N/L ratio, P/L ratio, PDW values, and RDW values. Neutrophil counts and N/L ratios were significantly higher in patients diagnosed with myocardial ischemia and/or infarct. However, there was no statistically significant relationship between myocardial perfusion abnormalities and P/L ratio, PDW values, and RDW values. This study showed that N/L ratio is related to myocardial ischemia/infarction and correlated to left ventricular ejection fraction (LVEF). PMID:26420991

  1. [A Patient with Sinking Skin Flap Syndrome who Underwent Perfusion MRI before and after Cranioplasty].

    PubMed

    Kato, Akihito; Morishima, Hiroyuki; Nagashima, Goro

    2016-09-01

    Background:Sinking skin flap syndrome(SSFS)manifests as subjective symptoms, such as headache, dizziness, and undue fatigability, in addition to neurologic symptoms, such as hemiplegia, aphasia, and perceived failure, when the skin over a bone defect sinks in the weeks or months following a decompressive craniectomy. Indeed, these symptoms can improve after a cranioplasty. Case presentation:A 58-year-old woman presented with a disturbance of consciousness. She was found to have a subarachnoid hemorrhage due to a ruptured right middle cerebral artery aneurysm. She underwent a craniotomy with clipping of the affected artery and a decompressive craniectomy on the same day. Post-operatively, the disturbance of consciousness improved, but the left-sided paralysis persisted. She complained of intractable headaches, was disoriented, and a lack of spontaneity emerged as the skin over the bone defect sank. She underwent cranioplasty on the 43rd day after admission, and the symptoms resolved promptly after surgery. Rehabilitation was canceled at the onset of symptoms, but resumed after the symptoms improved. Based on perfusion MRI, the cerebral blood flow(CBF):cerebral blood volume(CBV)ratio of the affected side increased before and after surgery compared with the healthy side. A lumboperitoneal shunt was placed on the 52nd day after admission to manage the hydrocephalus. She was discharged from the hospital with higher brain dysfunction and a mild state of paralysis. Conclusion:The timing of cranioplasty in patients with SSFS has not yet been established, but surgery should be performed before symptoms appear because SSFS impairs rehabilitative efforts. PMID:27605477

  2. The effect of the sample size and location on contrast ultrasound measurement of perfusion parameters.

    PubMed

    Leinonen, Merja R; Raekallio, Marja R; Vainio, Outi M; Ruohoniemi, Mirja O; O'Brien, Robert T

    2011-01-01

    Contrast-enhanced ultrasound can be used to quantify tissue perfusion based on region of interest (ROI) analysis. The effect of the location and size of the ROI on the obtained perfusion parameters has been described in phantom, ex vivo and in vivo studies. We assessed the effects of location and size of the ROI on perfusion parameters in the renal cortex of 10 healthy, anesthetized cats using Definity contrast-enhanced ultrasound to estimate the importance of the ROI on quantification of tissue perfusion with contrast-enhanced ultrasound. Three separate sets of ROIs were placed in the renal cortex, varying in location, size or depth. There was a significant inverse association between increased depth or increased size of the ROI and peak intensity (P < 0.05). There was no statistically significant difference in the peak intensity between the ROIs placed in a row in the near field cortex. There was no significant difference in the ROIs with regard to arrival time, time to peak intensity and wash-in rate. When comparing two different ROIs in a patient with focal lesions, such as suspected neoplasia or infarction, the ROIs should always be placed at same depth and be as similar in size as possible.

  3. Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics.

    PubMed

    Nahrendorf, Matthias; Streif, Jörg U; Hiller, Karl-Heinz; Hu, Kai; Nordbeck, Peter; Ritter, Oliver; Sosnovik, David; Bauer, Lisa; Neubauer, Stefan; Jakob, Peter M; Ertl, Georg; Spindler, Matthias; Bauer, Wolfgang R

    2006-06-01

    A decrease in the supply of ATP from the creatine kinase (CK) system is thought to contribute to the evolution of heart failure. However, previous studies on mice with a combined knockout of the mitochondrial and cytosolic CK (CK(-/-)) have not revealed overt left ventricular dysfunction. The aim of this study was to employ novel MRI techniques to measure maximal myocardial velocity (V(max)) and myocardial perfusion and thus determine whether abnormalities in the myocardial phenotype existed in CK(-/-) mice, both at baseline and 4 wk after myocardial infarction (MI). As a result, myocardial hypertrophy was seen in all CK(-/-) mice, but ejection fraction (EF) remained normal. V(max), however, was significantly reduced in the CK(-/-) mice [wild-type, 2.32 +/- 0.09 vs. CK(-/-), 1.43 +/- 0.16 cm/s, P < 0.05; and wild-type MI, 1.53 +/- 0.11 vs. CK(-/-) MI, 1.26 +/- 0.11 cm/s, P = not significant (NS), P < 0.05 vs. baseline]. Myocardial perfusion was also lower in the CK(-/-) mice (wild-type, 6.68 +/- 0.27 vs. CK(-/-), 4.12 +/- 0.63 ml/g.min, P < 0.05; and wild-type MI, 3.97 +/- 0.65 vs. CK(-/-) MI, 3.71 +/- 0.57 ml/g.min, P = NS, P < 0.05 vs. baseline), paralleled by a significantly reduced capillary density (histology). In conclusion, myocardial function in transgenic mice may appear normal when only gross indexes of performance such as EF are assessed. However, the use of a combination of novel MRI techniques to measure myocardial perfusion and mechanics allowed the abnormalities in the CK(-/-) phenotype to be detected. The myocardium in CK-deficient mice is characterized by reduced perfusion and reduced maximal contraction velocity, suggesting that the myocardial hypertrophy seen in these mice cannot fully compensate for the absence of the CK system.

  4. Using Perfusion fMRI to Measure Continuous Changes in Neural Activity with Learning

    ERIC Educational Resources Information Center

    Olson, Ingrid R.; Rao, Hengyi; Moore, Katherine Sledge; Wang, Jiongjiong; Detre, John A.; Aguirre, Geoffrey K.

    2006-01-01

    In this study, we examine the suitability of a relatively new imaging technique, "arterial spin labeled perfusion imaging," for the study of continuous, gradual changes in neural activity. Unlike BOLD imaging, the perfusion signal is stable over long time-scales, allowing for accurate assessment of continuous performance. In addition, perfusion…

  5. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation

    PubMed Central

    Hall, Sheldon K.; Ooi, Ean H.; Payne, Stephen J.

    2015-01-01

    Abstract Purpose: A sensitivity analysis has been performed on a mathematical model of radiofrequency ablation (RFA) in the liver. The purpose of this is to identify the most important parameters in the model, defined as those that produce the largest changes in the prediction. This is important in understanding the role of uncertainty and when comparing the model predictions to experimental data. Materials and methods: The Morris method was chosen to perform the sensitivity analysis because it is ideal for models with many parameters or that take a significant length of time to obtain solutions. A comprehensive literature review was performed to obtain ranges over which the model parameters are expected to vary, crucial input information. Results: The most important parameters in predicting the ablation zone size in our model of RFA are those representing the blood perfusion, electrical conductivity and the cell death model. The size of the 50 °C isotherm is sensitive to the electrical properties of tissue while the heat source is active, and to the thermal parameters during cooling. Conclusions: The parameter ranges chosen for the sensitivity analysis are believed to represent all that is currently known about their values in combination. The Morris method is able to compute global parameter sensitivities taking into account the interaction of all parameters, something that has not been done before. Research is needed to better understand the uncertainties in the cell death, electrical conductivity and perfusion models, but the other parameters are only of second order, providing a significant simplification. PMID:26000972

  6. Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI.

    PubMed

    Mildner, Toralf; Zysset, Stefan; Trampel, Robert; Driesel, Wolfgang; Möller, Harald E

    2005-10-01

    Multi-slice perfusion-based functional magnetic resonance imaging (p-fMRI) is demonstrated with a color-word Stroop task as an established cognitive paradigm. Continuous arterial spin labeling (CASL) of the blood in the left common carotid artery was applied for all repetitions of the functional run in a quasi-continuous fashion, i.e., it was interrupted only during image acquisition. For comparison, blood oxygen level dependent (BOLD) contrast was detected using conventional gradient-recalled echo (GE) echo planar imaging (EPI). Positive activations in BOLD imaging appeared in p-fMRI as negative signal changes corresponding to an enhanced transport of inverted water spins into the region of interest, i.e., increased cerebral blood flow (CBF). Regional differences between the localization of activations and the sensitivity of p-fMRI and BOLD-fMRI were observed as, for example, in the inferior frontal sulcus and in the intraparietal sulcus. Quantification of CBF changes during cognitive task activation was performed on a multi-subject basis and yielded CBF increases of the order of 20-30%.

  7. Influence of perfusion on high-intensity focused ultrasound prostate ablation: a first-pass MRI study.

    PubMed

    Wiart, Marlène; Curiel, Laura; Gelet, Albert; Lyonnet, Denis; Chapelon, Jean-Yves; Rouvière, Olivier

    2007-07-01

    Our aim was to evaluate the influence of regional prostate blood flow (rPBF) on high-intensity focused ultrasound (HIFU) treatment outcome. A total of 48 patients with clinically localized prostate cancer were examined by dynamic contrast-enhanced (DCE)-MRI prior to HIFU therapy. A prostate-specific antigen (PSA) nadir threshold of 0.2 ng/ml was used to define the populations of responders and nonresponders. A dedicated tracer kinetic model, namely "monoexponential plus constant" (MPC) deconvolution, was implemented to provide quantitative estimates of rPBF. The results were compared with those obtained by semiquantitative (steepest slope, mean gradient) and quantitative (Fermi deconvolution) approaches. Of the four methods studied, quantitative rPBF obtained by MPC deconvolution proved the most sensitive to the perfusion changes encountered in this study. Furthermore, blood-flow values obtained with MPC deconvolution in the prostate and muscle (12 +/- 8 and 5 +/- 3 ml/min/100 g, respectively) were in good agreement with literature data. The mean pretreatment rPBF obtained with MPC deconvolution was significantly higher in nonresponders compared to responders (16 +/- 9 vs. 10 +/- 6 ml/min/100 g), suggesting a correlation between baseline perfusion and treatment outcome. The present work describes and validates the use of dynamic MRI to estimate rPBF in patients, which in the future may help to refine the conduct of HIFU therapy.

  8. Brain perfusion: computed tomography and magnetic resonance techniques.

    PubMed

    Copen, William A; Lev, Michael H; Rapalino, Otto

    2016-01-01

    Cerebral perfusion imaging provides assessment of regional microvascular hemodynamics in the living brain, enabling in vivo measurement of a variety of different hemodynamic parameters. Perfusion imaging techniques that are used in the clinical setting usually rely upon X-ray computed tomography (CT) or magnetic resonance imaging (MRI). This chapter reviews CT- and MRI-based perfusion imaging techniques, with attention to image acquisition, clinically relevant aspects of image postprocessing, and fundamental differences between CT- and MRI-based techniques. Correlations with cerebrovascular physiology and potential clinical applications of perfusion imaging are reviewed, focusing upon the two major classes of neurologic disease in which perfusion imaging is most often performed: primary perfusion disorders (including ischemic stroke, transient ischemic attack, and reperfusion syndrome), and brain tumors.

  9. Quantification of myocardial perfusion based on signal intensity of flow sensitized MRI

    NASA Astrophysics Data System (ADS)

    Abeykoon, Sumeda B.

    The quantitative assessment of perfusion is important for early recognition of a variety of heart diseases, determination of disease severity and their cure. In conventional approach of measuring cardiac perfusion by arterial spin labeling, the relative difference in the apparent T1 relaxation times in response to selective and non-selective inversion of blood entering the region of interest is related to perfusion via a two-compartment tissue model. But accurate determination of T1 in small animal hearts is difficult and prone to errors due to long scan times. The purpose of this study is to develop a fast, robust and simple method to quantitatively assess myocardial perfusion using arterial spin labeling. The proposed method is based on signal intensities (SI) of inversion recovery slice-select, non-select and steady-state images. Especially in this method data are acquired at a single inversion time and at short repetition times. This study began by investigating the accuracy of assessment of perfusion using a two compartment system. First, determination of perfusion by T1 and SI were implemented to a simple, two-compartment phantom model. Mathematical model developed for full spin exchange models (in-vivo experiments) by solving a modified Bloch equation was modified to develop mathematical models (T1 and SI) for a phantom (zero spin exchange). The phantom result at different flow rates shows remarkable evidence of accuracy of the two-compartment model and SI, T1 methods: the SI method has less propagation error and less scan time. Next, twelve healthy C57BL/6 mice were scanned for quantitative perfusion assessment and three of them were repeatedly scanned at three different time points for a reproducibility test. The myocardial perfusion of healthy mice obtained by the SI-method, 5.7+/-1.6 ml/g/min, was similar (p=0.38) to that obtained by the conventional T1 method, 5.6+/- 2.3 ml/g/min. The reproducibility of the SI method shows acceptable results: the

  10. Three-dimensional first-pass myocardial perfusion MRI using a stack-of-spirals acquisition

    PubMed Central

    Shin, Taehoon; Nayak, Krishna S.; Santos, Juan M.; Nishimura, Dwight G.; Hu, Bob S.; McConnell, Michael V.

    2014-01-01

    Three-dimensional (3D) cardiac magnetic resonance (CMR) perfusion imaging is promising for the precise sizing of defects and for providing high perfusion contrast, but remains an experimental approach primarily due to the need for large-dimensional encoding, which, for traditional 3DFT imaging, requires either impractical acceleration factors or sacrifices in spatial resolution. We demonstrated the feasibility of rapid 3D CMR perfusion imaging using a stack-of-spirals acquisition accelerated by non-Cartesian k-t SENSE, which enables entire myocardial coverage with an in-plane resolution of 2.4 mm. The optimal under-sampling pattern was employed to achieve the largest separation between true and aliased signals, which is a pre-requisite for k-t SENSE reconstruction. Flip angle and saturation recovery time were chosen to ensure negligible magnetization variation during the transient data acquisition. We compared the proposed 3D perfusion method with the standard 2DFT approach by consecutively acquiring both data during each R-R interval in cardiac patients. The mean and standard deviation of the correlation coefficients between time intensity curves (TICs) of 3D vs 2DFT were 0.94 and 0.06 across seven subjects. The linear correlation between the two sets of upslope values was significant (r=0.78, P<0.05). PMID:22556062

  11. Peri-infarct ischaemia assessed by cardiovascular MRI: comparison with quantitative perfusion single photon emission CT imaging

    PubMed Central

    Cochet, H; Bullier, E; Ragot, C; Gilbert, S H; Pucheu, Y; Laurent, F; Coste, P; Bordenave, L; Montaudon, M

    2014-01-01

    Objective: To develop a new method for the cardiac MR (CMR) quantification of peri-infarct ischaemia using fused perfusion and delayed–enhanced images and to evaluate this method using quantitative single photon emission CT (SPECT) imaging as a reference. Methods: 40 patients presenting with peri-infarct ischaemia on a routine stress 99mTc-SPECT imaging were recruited. Within 8 days of the SPECT study, myocardial perfusion was evaluated using stress adenosine CMR. Using fused perfusion and delayed–enhanced images, peri-infarct ischaemia was quantified as the percentage of myocardium with stress-induced perfusion defect that was adjacent to and larger than a scar. This parameter was compared with both the percent myocardium ischaemia (SD%) and the ischaemic total perfusion deficit (TPD). The diagnostic performance of CMR in detection of significant coronary artery stenosis (of ≥70%) was also determined. Results: On SPECT imaging, in addition to peri-infarct ischaemia, reversible perfusion abnormalities were detected in a remote zone in seven patients. In the 33 patients presenting with only peri-infarct ischaemia, the agreement between CMR peri-infarct ischaemia and both SD% and ischaemic TPD was excellent [intraclass coefficient of correlation (ICC) = 0.969 and ICC = 0.877, respectively]. CMR-defined peri-infarct ischaemia for the detection of a significant coronary artery stenosis showed an areas under receiver–operating characteristic curve of 0.856 (95% confidence interval, 0.680–0.939). The best cut-off value was 8.1% and allowed a 72% sensitivity, 96% specificity, 60% negative predictive value and 97% positive predictive value. Conclusion: This proof-of-concept study shows that CMR imaging has the potential as a test for quantification of peri-infarct ischaemia. Advances in knowledge: This study demonstrates the proof of concept of a commonly known intuitive idea, that is, evaluating the peri-infarct ischaemic burden by subtracting delayed

  12. Three-dimensional MRI perfusion maps: a step beyond volumetric analysis in mental disorders

    PubMed Central

    Fabene, Paolo F; Farace, Paolo; Brambilla, Paolo; Andreone, Nicola; Cerini, Roberto; Pelizza, Luisa; Versace, Amelia; Rambaldelli, Gianluca; Birbaumer, Niels; Tansella, Michele; Sbarbati, Andrea

    2007-01-01

    A new type of magnetic resonance imaging analysis, based on fusion of three-dimensional reconstructions of time-to-peak parametric maps and high-resolution T1-weighted images, is proposed in order to evaluate the perfusion of selected volumes of interest. Because in recent years a wealth of data have suggested the crucial involvement of vascular alterations in mental diseases, we tested our new method on a restricted sample of schizophrenic patients and matched healthy controls. The perfusion of the whole brain was compared with that of the caudate nucleus by means of intrasubject analysis. As expected, owing to the encephalic vascular pattern, a significantly lower time-to-peak was observed in the caudate nucleus than in the whole brain in all healthy controls, indicating that the suggested method has enough sensitivity to detect subtle perfusion changes even in small volumes of interest. Interestingly, a less uniform pattern was observed in the schizophrenic patients. The latter finding needs to be replicated in an adequate number of subjects. In summary, the three-dimensional analysis method we propose has been shown to be a feasible tool for revealing subtle vascular changes both in normal subjects and in pathological conditions. PMID:17229290

  13. Three-dimensional MRI perfusion maps: a step beyond volumetric analysis in mental disorders.

    PubMed

    Fabene, Paolo F; Farace, Paolo; Brambilla, Paolo; Andreone, Nicola; Cerini, Roberto; Pelizza, Luisa; Versace, Amelia; Rambaldelli, Gianluca; Birbaumer, Niels; Tansella, Michele; Sbarbati, Andrea

    2007-01-01

    A new type of magnetic resonance imaging analysis, based on fusion of three-dimensional reconstructions of time-to-peak parametric maps and high-resolution T1-weighted images, is proposed in order to evaluate the perfusion of selected volumes of interest. Because in recent years a wealth of data have suggested the crucial involvement of vascular alterations in mental diseases, we tested our new method on a restricted sample of schizophrenic patients and matched healthy controls. The perfusion of the whole brain was compared with that of the caudate nucleus by means of intrasubject analysis. As expected, owing to the encephalic vascular pattern, a significantly lower time-to-peak was observed in the caudate nucleus than in the whole brain in all healthy controls, indicating that the suggested method has enough sensitivity to detect subtle perfusion changes even in small volumes of interest. Interestingly, a less uniform pattern was observed in the schizophrenic patients. The latter finding needs to be replicated in an adequate number of subjects. In summary, the three-dimensional analysis method we propose has been shown to be a feasible tool for revealing subtle vascular changes both in normal subjects and in pathological conditions.

  14. [Abnormal cerebral blood flow distributions during the post-ictal phase of febrile status epilepticus in three pediatric patients measured by arterial spin labeling perfusion MRI].

    PubMed

    Hirano, Keiko; Fukuda, Tokiko

    2016-05-01

    The ability to visualize brain perfusion is important for identifying epileptic foci. We present three pediatric cases showing asymmetrical cerebral blood flow (CBF) distributions during the post-ictal phase of febrile status epilepticus measured by arterial spin labeling (ASL) perfusion MRI. During the acute phase, regional CBF measurements in the areas considered including epileptic foci were higher than in the corresponding area of the contralateral hemisphere, though the exact quantitative value varied between cases. We could not identify the correct epileptogenic foci, because those ASL images were taken after the prolonged and extraordinary activation of neurons in the affected area. During the recovery phase, the differences reduced and the average regional CBF measurement was 54.6 ± 6.1 ml/100 g per minute, which was a little less than the number of previous ASL studies. ASL perfusion MRI imaging provides a method for evaluating regional CBF by using magnetically labeled arterial blood water as an endogenous tracer. With this technique, we can repeatedly evaluate both the brain structure and the level of perfusion at the same time. ASL is noninvasive and easily accessible, and therefore it could become a routine tool for assessment of perfusion in daily practice of pediatric neurology. PMID:27349086

  15. Comparison of dual-echo DSC-MRI- and DCE-MRI-derived contrast agent kinetic parameters.

    PubMed

    Quarles, C Chad; Gore, John C; Xu, Lei; Yankeelov, Thomas E

    2012-09-01

    The application of dynamic susceptibility contrast (DSC) MRI methods to assess brain tumors is often confounded by the extravasation of contrast agent (CA). Disruption of the blood-brain barrier allows CA to leak out of the vasculature leading to additional T(1), T(2) and T(2) relaxation effects in the extravascular space, thereby affecting the signal intensity time course in a complex manner. The goal of this study was to validate a dual-echo DSC-MRI approach that separates and quantifies the T(1) and T(2) contributions to the acquired signal and enables the estimation of the volume transfer constant, K(trans), and the volume fraction of the extravascular extracellular space, v(e). To test the validity of this approach, DSC-MRI- and dynamic contrast enhanced (DCE) MRI-derived K(trans) and v(e) estimates were spatially compared in both 9L and C6 rat brain tumor models. A high degree of correlation (concordance correlation coefficients >0.83, Pearson's r>0.84) and agreement was found between the DSC-MRI- and DCE-MRI-derived measurements. These results indicate that dual-echo DSC-MRI can be used to simultaneously extract reliable DCE-MRI kinetic parameters in brain tumors in addition to conventional blood volume and blood flow metrics.

  16. Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies?

    NASA Astrophysics Data System (ADS)

    Salluzzi, M.; Frayne, R.; Smith, M. R.

    2006-01-01

    Several groups have modified the standard singular value decomposition (SVD) algorithm to produce delay-insensitive cerebral blood flow (CBF) estimates from dynamic susceptibility contrast (DSC) perfusion studies. However, new dependences of CBF estimates on bolus arrival times and slice position in multi-slice studies have been recently recognized. These conflicting findings can be reconciled by accounting for several experimental and algorithmic factors. Using simulation and clinical studies, the non-simultaneous measurement of arterial and tissue concentration curves (relative slice position) in a multi-slice study is shown to affect time-related perfusion parameters, e.g. arterial-tissue-delay measurements. However, the current clinical impact of relative slice position on amplitude-related perfusion parameters, e.g. CBF, can be expected to be small unless any of the following conditions are present individually or in combination: (a) high concentration curve signal-to-noise ratios, (b) small tissue mean transit times, (c) narrow arterial input functions or (d) low temporal resolution of the DSC image sequence. Recent improvements in magnetic resonance (MR) technology can easily be expected to lead to scenarios where these effects become increasingly important sources of inaccuracy for all perfusion parameter estimates. We show that using Fourier interpolated (high temporal resolution) residue functions reduces the systematic error of the perfusion parameters obtained from multi-slice studies. Preliminary results associated with this paper were presented at ISMRM 12th Scientific Meeting and Exhibition, Kyoto, Japan, 2004.

  17. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    PubMed

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-04-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials.

  18. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain

    PubMed Central

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-01-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice–water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in

  19. Longitudinal diffusion tensor imaging and perfusion MRI investigation in a macaque model of neuro-AIDS: a preliminary study.

    PubMed

    Li, Chunxia; Zhang, Xiaodong; Komery, Amelia; Li, Yingxia; Novembre, Francis J; Herndon, James G

    2011-09-01

    The Simian immunodeficiency virus (SIV) infected macaque model exhibits neuropathological symptoms similar to those of HIV(+) patients, and is ideal for studying cognitive impairment and neuropathological sequelae of disease in repeated measurements. The aim of this study is to use Diffusion Tensor Imaging (DTI) and perfusion MRI to longitudinally access the disease development in SIV-infected monkeys under controlled conditions and to cross-validate our finding with MRI studies in HIV(+) patients. Three adult male pig-tailed macaques (Macaca nemestrina) were inoculated with the SIVsmmFGb virus. Blood was collected for enumeration of CD4+ and CD8+ T-cells. Serial time-sensitive high-resolution T(2)- weighted structural images, Cerebral Blood Flow (CBF) maps measured with the Continuous Arterial Spin Labeling (CASL) technique, and DTI images were obtained. Animals were sacrificed after 24 weeks. Cognitive behavioral tests were also carried out at each time point. Longitudinal changes in brain volume, CBF, and DTI in selected regions were analyzed statistically. In this study, CD4+ T-cell counts were found declined significantly after SIV infection in all macaques. No significant neurological behavior and brain volume changes were observed following virus inoculation. The CBF was found reduced in the caudate, inferior parietal cortex, and the prefrontal cortex. Fractional Anisotropy (FA) values in the whole brain and several Regions of Interest (ROIs) decreased significantly. These longitudinal changes in CBF and FA are correlated with CD4+ T-cell depletion and/or CD4:CD8 ratio. The MRI findings from this pilot study agree with previous results in HIV(+) patients.

  20. MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment.

    PubMed

    Speelman, Lambert; Teng, Zhongzhao; Nederveen, Aart J; van der Lugt, Aad; Gillard, Jonathan H

    2016-03-01

    Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio. PMID:26791734

  1. High-temporospatial-resolution dynamic contrast-enhanced (DCE) wrist MRI with variable-density pseudo-random circular Cartesian undersampling (CIRCUS) acquisition: evaluation of perfusion in rheumatoid arthritis patients.

    PubMed

    Liu, Jing; Pedoia, Valentina; Heilmeier, Ursula; Ku, Eric; Su, Favian; Khanna, Sameer; Imboden, John; Graf, Jonathan; Link, Thomas; Li, Xiaojuan

    2016-01-01

    This study is to evaluate highly accelerated three-dimensional (3D) dynamic contrast-enhanced (DCE) wrist MRI for assessment of perfusion in rheumatoid arthritis (RA) patients. A pseudo-random variable-density undersampling strategy, circular Cartesian undersampling (CIRCUS), was combined with k-t SPARSE-SENSE reconstruction to achieve a highly accelerated 3D DCE wrist MRI. Two healthy volunteers and 10 RA patients were studied. Two patients were on methotrexate (MTX) only (Group I) and the other eight were treated with a combination therapy of MTX and anti-tumor necrosis factor (TNF) therapy (Group II). Patients were scanned at baseline and 3 month follow-up. DCE MR images were used to evaluate perfusion in synovitis and bone marrow edema pattern in the RA wrist joints. A series of perfusion parameters was derived and compared with clinical disease activity scores of 28 joints (DAS28). 3D DCE wrist MR images were obtained with a spatial resolution of 0.3 × 0.3 × 1.5 mm(3) and temporal resolution of 5 s (with an acceleration factor of 20). The derived perfusion parameters, most notably transition time (dT) of synovitis, showed significant negative correlations with DAS28-ESR (r = -0.80, p < 0.05) and DAS28-CRP (r = -0.87, p < 0.05) at baseline and also correlated significantly with treatment responses evaluated by clinical score changes between baseline and 3 month follow-up (with DAS28-ESR r = -0.79, p < 0.05, and DAS28-CRP r = -0.82, p < 0.05). Highly accelerated 3D DCE wrist MRI with improved temporospatial resolution has been achieved in RA patients and provides accurate assessment of neovascularization and perfusion in RA joints, showing promise as a potential tool for evaluating treatment responses.

  2. Pulmonary Perfusion MRI using Interleaved Variable Density Sampling and HighlY Constrained Cartesian Reconstruction (HYCR)

    PubMed Central

    Wang, Kang; Schiebler, Mark L.; Francois, Christopher J.; Del Rio, A. Munoz; Cornejo, Ma. Daniela; Bell, Laura C.; Korosec, Frank R.; Brittain, Jean H.; Holmes, James H.; Nagle, Scott K.

    2012-01-01

    Purpose To demonstrate the feasibility of performing single breath-hold, non-cardiac gated, ultrafast, high spatial-temporal resolution whole chest MR pulmonary perfusion imaging in humans. Materials and Methods Eight (8) subjects (5 male, 3 female) were scanned with the proposed method on a 3T clinical scanner using a 32-channel phased-array coil. Seven (88%) were healthy volunteers, and one was a patient volunteer with sarcoidosis. The peak lung enhancement phase for each subject was scored for gravitational effect, peak parenchymal enhancement and severity of artifacts by 3 cardiothoracic radiologists independently. Results All studies were successfully performed by MR technologists without any additional training. Mean parenchymal signal was very good, measuring 0.78 ± 0.13 (continuous scale, 0 = “none” → 1 = “excellent”). Mean level of motion artifacts was low, measuring 0.13 ± 0.08 (continuous scale, 0 = “none” → 1 = “severe”). Conclusion It is feasible to perform single breath-hold, non-cardiac gated, ultrafast, high spatial-temporal resolution whole chest MR pulmonary perfusion imaging in humans. PMID:23349079

  3. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    NASA Astrophysics Data System (ADS)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  4. Detection of preclinically latent hyperperfusion due to stroke-like episodes by arterial spin-labeling perfusion MRI in MELAS patients.

    PubMed

    Ikawa, Masamichi; Yoneda, Makoto; Muramatsu, Tomoko; Matsunaga, Akiko; Tsujikawa, Tetsuya; Yamamoto, Tatsuya; Kosaka, Nobuyuki; Kinoshita, Kazuyuki; Yamamura, Osamu; Hamano, Tadanori; Nakamoto, Yasunari; Kimura, Hirohiko

    2013-11-01

    In stroke-like episodes (SEs) of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), the detection of preclinically latent lesions is a challenge. We report regional cerebral hyperperfusion observed on arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) in the preclinical phase more than 3 months before the clinical onset of SEs in 3 MELAS patients. These hyperperfused areas were not detected by conventional MRI in the preclinical phase and developed into acute lesions at the clinical onset of SEs, suggesting that ASL imaging has the potential for predicting the emergence of SEs.

  5. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion.

  6. Diagnostic performance of cardiac stress perfusion MRI in the detection of coronary artery disease using fractional flow reserve as the reference standard: a meta-analysis.

    PubMed

    Desai, Ravi R; Jha, Saurabh

    2013-08-01

    OBJECTIVE. This is an analysis of pooled studies for the determination of the test characteristics of stress perfusion cardiac MRI in the diagnosis of flow-limiting obstructive coronary artery disease (CAD) using fractional flow reserve (FFR) at catheter coronary angiography as the reference standard. MATERIALS AND METHODS. Traditionally, planimetric measurement of coronary stenosis at catheter coronary angiography has been considered the reference standard and has been used to verify the diagnostic characteristics of gatekeeper tests. FFR is a physiologic measure of flow limitation and is considered a more authentic reference standard in the diagnosis of CAD. The emergence of a new reference standard questions the true diagnostic accuracy of gatekeeper tests. A systematic literature review was performed for qualifying studies. The DerSimonian-Laird random effects model and a random-effects symmetric summary receiver operating characteristic curve analysis were performed. RESULTS. Twelve studies (761 patients) met the inclusion criteria. Four hundred six stenotic coronary arteries had FFR less than 0.75. Perfusion stress MRI has a sensitivity of 89.1% (95% CI, 84-93%) and specificity of 84.9% (95% CI, 76.6-91.1%) on a patient basis and a sensitivity of 87.7% (95% CI, 84.4-90.6%) and specificity of 88.6% (95% CI, 86.7-90.4%) on a coronary territory basis. CONCLUSION. Stress perfusion MRI remains an accurate test for the detection of flow-limiting stenosis when adjudicated by a physiologic reference standard.

  7. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. PMID:26353878

  8. Associations of Perfusate Biomarkers and Pump Parameters With Delayed Graft Function and Deceased Donor Kidney Allograft Function.

    PubMed

    Parikh, C R; Hall, I E; Bhangoo, R S; Ficek, J; Abt, P L; Thiessen-Philbrook, H; Lin, H; Bimali, M; Murray, P T; Rao, V; Schröppel, B; Doshi, M D; Weng, F L; Reese, P P

    2016-05-01

    Hypothermic machine perfusion (HMP) is increasingly used in deceased donor kidney transplantation, but controversy exists regarding the value of perfusion biomarkers and pump parameters for assessing organ quality. We prospectively determined associations between perfusate biomarkers (neutrophil gelatinase-associated lipocalin [NGAL], kidney injury molecule 1, IL-18 and liver-type fatty acid-binding protein [L-FABP]) and pump parameters (resistance and flow) with outcomes of delayed graft function (DGF) and 6-mo estimated GFR (eGFR). DGF occurred in 230 of 671 (34%) recipients. Only 1-h flow was inversely associated with DGF. Higher NGAL or L-FABP concentrations and increased resistance were inversely associated with 6-mo eGFR, whereas higher flow was associated with higher adjusted 6-mo eGFR. Discarded kidneys had consistently higher median resistance and lower median flow than transplanted kidneys, but median perfusate biomarker concentrations were either lower or not significantly different in discarded compared with transplanted kidneys. Notably, most recipients of transplanted kidneys with isolated "undesirable" biomarker levels or HMP parameters experienced acceptable 6-mo allograft function, suggesting these characteristics should not be used in isolation for discard decisions. Additional studies must confirm the utility of combining HMP measurements with other characteristics to assess kidney quality. PMID:26695524

  9. [New developments in parameter-oriented roentgen densitometry perfusion analysis within the scope of heart catheter studies].

    PubMed

    Haude, M; Caspari, G; Baumgart, D; Spiller, P; Heusch, G; Erbel, R

    1997-04-01

    X-ray densitometric evaluation of digital subtraction coronary arteriograms allows a qualitative and quantitative detection of contrast medium propagation through the epicardial coronary arteries, the capillary system and the coronary venous system. So-called "time-density-curves" (TDCs) can be generated following Lambert-Beer's law similar to indicator dilution curves by using contrast medium as the indicator. Several time and density parameters can be derived from these TDCs, which are related to local myocardial perfusion. Different animal validation studies have shown the applicability of this concept for in-vivo evaluation of coronary blood flow and myocardial perfusion. Nevertheless, absolute measurement of volumetric coronary blood flow or myocardial perfusion failed. Therefore, relative changes in coronary blood flow or myocardial perfusion in response to pharmacologically induced maximum hyperemia were measured and coronary or myocardial perfusion reserve was calculated as the ratio of hyperemic flow or perfusion divided by baseline values. Despite theoretical attractions for an application during routine cardiac catheterization, this densitometric approach did not get a wide acceptance. Primary reason for this limited use in specialized centers was the time consuming process of densitometric evaluation of the subtraction coronary arteriograms, which require digital cine angiography and necessitates enormous computer hard ware. This main limitation has been overcome since more powerful computer hard ware (processor speed, hard disk space, digitization boards) has become rapidly available during the last years at more moderate pricing and digital techniques today are state of the art in cardiac catheterization laboratories. In addition, soft ware program packages allowed an automatization of the digitization and densitometric evaluation process. These programs include ECG triggered cine image digitization with improved temporal resolution, semiautomatic

  10. Current concepts on magnetic resonance imaging (MRI) perfusion-diffusion assessment in acute ischaemic stroke: a review & an update for the clinicians.

    PubMed

    Roldan-Valadez, Ernesto; Lopez-Mejia, Mariana

    2014-12-01

    Recently, several medical societies published joint statements about imaging recommendations for acute stroke and transient ischaemic attack patients. In following with these published guidelines, we considered it appropriate to present a brief, practical and updated review of the most relevant concepts on the MRI assessment of acute stroke. Basic principles of the clinical interpretation of diffusion, perfusion, and MRI angiography (as part of a global MRI protocol) are discussed with accompanying images for each sequence. Brief comments on incidence and differential diagnosis are also included, together with limitations of the techniques and levels of evidence. The purpose of this article is to present knowledge that can be applied in day-to-day clinical practice in specialized stroke units or emergency rooms to attend patients with acute ischaemic stroke or transient ischaemic attack according to international standards. PMID:25758570

  11. Perfusion MRI Derived Indices of Microvascular Shunting and Flow Control Correlate with Tumor Grade and Outcome in Patients with Cerebral Glioma

    PubMed Central

    Tietze, Anna; Mouridsen, Kim; Lassen-Ramshad, Yasmin; Østergaard, Leif

    2015-01-01

    Objectives Deficient microvascular blood flow control is thought to cause tumor hypoxia and increase resistance to therapy. In glioma patients, we tested whether perfusion-weighted MRI (PWI) based indices of microvascular flow control provide more information on tumor grade and patient outcome than does the established PWI angiogenesis marker, cerebral blood volume (CBV). Material and Methods Seventy-two glioma patients (sixty high-grade, twelve low-grade gliomas) were included. Capillary transit time heterogeneity (CTH) and the coefficient of variation (COV), its ratio to blood mean transit time, provide indices of microvascular flow control and the extent to which oxygen can be extracted by tumor tissue. The ability of these parameters and CBV to differentiate tumor grade were assessed by receiver operating characteristic curves and logistic regression. Their ability to predict time to progression and overall survival was examined by the Cox proportional-hazards regression model, and by survival curves using log-rank tests. Results The best prediction of grade (AUC = 0.876; p < 0.05) was achieved by combining knowledge of CBV and CTH in the enhancing tumor and peri-focal edema, and patients with glioblastoma multiforme were identified best by CTH (AUC = 0.763; p<0.001). CTH outperformed CBV and COV in predicting time to progression and survival in all gliomas and in a subgroup consisting of only high-grade gliomas. Conclusion Our study confirms the importance of microvascular flow control in tumor growth by demonstrating that determining CTH improves tumor grading and outcome prediction in glioma patients compared to CBV alone. PMID:25875182

  12. Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI.

    PubMed

    Kershaw, Lucy E; Buckley, David L

    2006-11-01

    Dynamic contrast-enhanced MRI is used to estimate microvascular parameters by tracer kinetics analysis. The time for the contrast agent to travel from the artery to the tissue of interest (bolus arrival time (BAT)) is an important parameter that must be measured in such studies because inaccurate estimates or neglect of BAT contribute to inaccuracy in model fitting. Furthermore, although the precision with which these parameters are estimated is very important, it is rarely reported. To address these issues, two investigations were undertaken. First, simulated data were used to validate an independent method for estimation of BAT. Second, the adiabatic approximation to the tissue homogeneity model was fitted to experimental data acquired in prostate and muscle tissue of 22 patients with prostate cancer. A bootstrap error analysis was performed to estimate the precision of parameter estimates. The independent method of estimating BAT was found to be more accurate and precise than a model-fitting approach. Estimated precisions for parameters measured in the prostate gland were 14% for extraction fraction (median coefficient of variation), 19% for blood flow, 28% for permeability-surface area product, 35% for volume of the extravascular-extracellular space, and 36% for blood volume. Techniques to further reduce uncertainty are discussed.

  13. [The peripheral perfusion pressure: a new non-invasive parameter for the circulatory monitoring of patients (author's transl)].

    PubMed

    Huch, A; Lübbers, D W; Huch, R

    1975-01-01

    Heating of a skin area to a temperature of 42 degrees to 44 degrees C produces a certain physiological condition which induces maximal vasodilatation. Detailed experiments have shown that local peripheral vascular resistance of such an area remains constant for several hours. The flow in this area is proportional to the actual perfusion pressure. Relative flow was measured by means of a new type of electrode fixed to the skin like and ECG electrode, and compared with simultaneous intra-arterial blood pressure measruements. The changes in arterial blood pressure were also recorded by the skin electrode. This new parameter is defined as "peripheral perfusion pressure". It is appropiate for non-invasive continuous monitoring of the circulatory system of patients.

  14. Perfusion patterns in postictal 99mTc-HMPAO SPECT after coregistration with MRI in patients with mesial temporal lobe epilepsy

    PubMed Central

    Hogan, R; Cook, M.; Binns, D.; Desmond, P.; Kilpatrick, C.; Murrie, V.; Morris, K.

    1997-01-01

    OBJECTIVES—To assess patterns of postictal cerebral blood flow in the mesial temporal lobe by coregistration of postictal 99mTc-HMPAO SPECT with MRI in patients with confirmed mesial temporal lobe epilepsy.
METHODS—Ten postictal and interictal 99mTc-HMPAO SPECT scans were coregistered with MRI in 10 patients with confirmed mesial temporal lobe epilepsy. Volumetric tracings of the hippocampus and amygdala from the MRI were superimposed on the postictal and interictal SPECT. Asymmetries in hippocampal and amygdala SPECT signal were then calculated using the equation:
 % Asymmetry =100 × (right − left) / (right + left)/2.
RESULTS—In the postictal studies, quantitative measurements of amygdala SPECT intensities were greatest on the side of seizure onset in all cases, with an average % asymmetry of 11.1, range 5.2-21.9.Hippocampal intensities were greatest on the side of seizure onset in six studies, with an average % asymmetry of 9.6, range 4.7-12.0.In four scans the hippocampal intensities were less on the side of seizure onset, with an average % asymmetry of 10.2, range 5.7-15.5.There was no localising quantitative pattern in interictal studies.
CONCLUSIONS—Postictal SPECT shows distinctive perfusion patterns when coregistered with MRI, which assist in lateralisation of temporal lobe seizures. Hyperperfusion in the region of the amygdala is more consistently lateralising than hyperperfusion in the region of the hippocampus in postictal studies.

 PMID:9285464

  15. Incremental Diagnostic Performance of Combined Parameters in the Detection of Severe Coronary Artery Disease Using Exercise Gated Myocardial Perfusion Imaging

    PubMed Central

    Liu, Chia-Ju; Wu, Yen-Wen; Ko, Kuan-Yin; Chen, Yi-Chieh; Cheng, Mei-Fang; Yen, Ruoh-Fang; Tzen, Kai-Yuan

    2015-01-01

    Purpose Myocardial perfusion imaging (MPI) using gated single-photon emission tomography (gSPECT) may underestimate the severity of coronary artery disease (CAD). This study aimed to evaluate the significance of combined parameters derived from gSPECT, as well as treadmill stress test parameters, in the detection of severe CAD. Methods A total of 211 consecutive patients referred for exercise MPI between June 2011 and June 2013 (who received invasive coronary angiography within six months after MPI) were retrospectively reviewed. Exercise MPI was performed with Bruce protocol and 201Tl injected at peak exercise. Gated SPECT was performed using a cadmium-zinc-telluride camera and processed by QPS/QGS software. Perfusion defect abnormalities such as sum stress score (SSS); sum difference score, algorithm-derived total perfusion deficits, transient ischemic dilatation ratios of end-diastolic volumes and end-systolic volumes, post-stress changes in ejection fraction, and lung/heart ratio (LHR) were calculated. Treadmill parameters, including ST depression (STD) at the 1st and 3rd minutes of recovery stage (1’STD and 3’STD), maximal STD corrected by heart rate increment (ST/HR), heart rate decline in 1st and 3rd minutes of recovery stage, recovery heart rate ratio (HR ratio), systolic and mean blood pressure ratios (SBP ratio and MAP ratio) during recovery phase were recorded. Diagnostic performances of these parameters were analyzed with receiver operating characteristic (ROC) analysis and logistic regression for detection of left main (≥ 50%) or 3-vessel disease (all ≥ 70% luminal stenosis) on invasive angiography. Results Among various MPI and treadmill parameters used for detection of severe CAD, SSS and ST/HR had the highest AUC (0.78, 0.73, p = NS) and best cut-off values (SSS > 6, ST/HR > 17.39 10-2mV/bpm), respectively. By univariate logistic regression, all parameters except 1’HRR, 3’HRR, SBP and MAP ratios increased the odds ratio of severe CAD

  16. WE-G-18C-09: Separating Perfusion and Diffusion Components From Diffusion Weighted MRI of Rectum Tumors Based On Intravoxel Incoherent Motion (IVIM) Analysis

    SciTech Connect

    Tyagi, N; Wengler, K; Mazaheri, Y; Hunt, M; Deasy, J; Gollub, M

    2014-06-15

    Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*, the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.

  17. Simultaneous Myocardial Strain and Dark-Blood Perfusion Imaging Using a Displacement-Encoded MRI Pulse Sequence

    PubMed Central

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E.; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd’Hotel, Christophe; Lorenz, Christine H.; Croisille, Pierre; Wen, Han

    2010-01-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in 2–3 myocardial slices were repeatedly acquired using a single shot pulse sequence for 3 to 4 minutes, which covers a bolus infusion of Gd. The magnitudes of the images were T1 weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n=9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R2 = 0.765, Bland-Altman standard deviation = 0.15 ml/min/g). In a group of ST-elevation myocardial infarction(STEMI) patients (n=11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R2=0.72), and the pixel-wise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  18. Simultaneous myocardial strain and dark-blood perfusion imaging using a displacement-encoded MRI pulse sequence.

    PubMed

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd'Hotel, Christophe; Lorenz, Christine H; Croisille, Pierre; Wen, Han

    2010-09-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in two to three myocardial slices were repeatedly acquired using a single-shot pulse sequence for 3 to 4 min, which covers a bolus infusion of Gadolinium contrast. The magnitudes of the images were T(1) weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n = 9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R(2) = 0.765, Bland-Altman standard deviation = 0.15 mL/min/g). In a group of ST-elevation myocardial infarction patients (n = 11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R(2) = 0.72), and the pixelwise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  19. Technical aspects of MR perfusion.

    PubMed

    Sourbron, Steven

    2010-12-01

    The most common methods for measuring perfusion with MRI are arterial spin labelling (ASL), dynamic susceptibility contrast (DSC-MRI), and T(1)-weighted dynamic contrast enhancement (DCE-MRI). This review focuses on the latter approach, which is by far the most common in the body and produces measures of capillary permeability as well. The aim is to present a concise but complete overview of the technical issues involved in DCE-MRI data acquisition and analysis. For details the reader is referred to the references. The presentation of the topic is essentially generic and focuses on technical aspects that are common to all DCE-MRI measurements. For organ-specific problems and illustrations, we refer to the other papers in this issue. In Section 1 "Theory" the basic quantities are defined, and the physical mechanisms are presented that provide a relation between the hemodynamic parameters and the DCE-MRI signal. Section 2 "Data acquisition" discusses the issues involved in the design of an optimal measurement protocol. Section 3 "Data analysis" summarizes the steps that need to be taken to determine the hemodynamic parameters from the measured data. PMID:20363574

  20. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  1. First-pass perfusion imaging of solitary pulmonary nodules with 64-detector row CT: comparison of perfusion parameters of malignant and benign lesions.

    PubMed

    Li, Y; Yang, Z-G; Chen, T-W; Yu, J-Q; Sun, J-Y; Chen, H-J

    2010-09-01

    The purpose of this study was to determine the usefulness of first-pass whole nodule perfusion imaging in the differentiation of benign and malignant solitary pulmonary nodules (SPNs). 77 patients with non-calcified SPNs (46 malignant, 22 benign and 9 active inflammatory) underwent first-pass perfusion imaging with a 64-detector row CT scanner. Perfusion, peak enhancement intensity (PEI), time to peak (TTP) and blood volume (BV) were measured and statistically compared among different groups. Mean perfusion, PEI and BV for benign SPNs were significantly lower than those for malignant nodules (p<0.05) and active infections (p<0.05), but the differences were not statistically significant between malignant tumours and active infections (p>0.05). Receiver operating characteristic (ROC) curve analysis showed that SPNs with perfusion greater than 30.6 ml min(-1) ml(-1), PEI higher than 23.3 HU or BV larger than 12.2 ml per 100 g were more likely to be malignant. In conclusion, first-pass perfusion imaging with 64-detector row CT is a feasible way of assessing whole nodule perfusion and helpful in differentiating benign from malignant SPNs.

  2. Implementation and evaluation of a new workflow for registration and segmentation of pulmonary MRI data for regional lung perfusion assessment

    NASA Astrophysics Data System (ADS)

    Böttger, T.; Grunewald, K.; Schöbinger, M.; Fink, C.; Risse, F.; Kauczor, H. U.; Meinzer, H. P.; Wolf, Ivo

    2007-03-01

    Recently it has been shown that regional lung perfusion can be assessed using time-resolved contrast-enhanced magnetic resonance (MR) imaging. Quantification of the perfusion images has been attempted, based on definition of small regions of interest (ROIs). Use of complete lung segmentations instead of ROIs could possibly increase quantification accuracy. Due to the low signal-to-noise ratio, automatic segmentation algorithms cannot be applied. On the other hand, manual segmentation of the lung tissue is very time consuming and can become inaccurate, as the borders of the lung to adjacent tissues are not always clearly visible. We propose a new workflow for semi-automatic segmentation of the lung from additionally acquired morphological HASTE MR images. First the lung is delineated semi-automatically in the HASTE image. Next the HASTE image is automatically registered with the perfusion images. Finally, the transformation resulting from the registration is used to align the lung segmentation from the morphological dataset with the perfusion images. We evaluated rigid, affine and locally elastic transformations, suitable optimizers and different implementations of mutual information (MI) metrics to determine the best possible registration algorithm. We located the shortcomings of the registration procedure and under which conditions automatic registration will succeed or fail. Segmentation results were evaluated using overlap and distance measures. Integration of the new workflow reduces the time needed for post-processing of the data, simplifies the perfusion quantification and reduces interobserver variability in the segmentation process. In addition, the matched morphological data set can be used to identify morphologic changes as the source for the perfusion abnormalities.

  3. Wavelet-based cluster analysis: data-driven grouping of voxel time courses with application to perfusion-weighted and pharmacological MRI of the rat brain.

    PubMed

    Whitcher, Brandon; Schwarz, Adam J; Barjat, Hervé; Smart, Sean C; Grundy, Robert I; James, Michael F

    2005-01-15

    MRI time series experiments produce a wealth of information contained in two or three spatial dimensions that evolve over time. Such experiments can, for example, localize brain response to pharmacological stimuli, but frequently the spatiotemporal characteristics of the cerebral response are unknown a priori and variable, and thus difficult to evaluate using hypothesis-based methods alone. Here we used features in the temporal dimension to group voxels with similar time courses based on a nonparametric discrete wavelet transform (DWT) representation of each time course. Applying the DWT to each voxel decomposes its temporal information into coefficients associated with both time and scale. Discarding scales in the DWT that are associated with high-frequency oscillations (noise) provided a straight-forward data reduction step and decreased the computational burden. Optimization-based clustering was then applied to the remaining wavelet coefficients in order to produce a finite number of voxel clusters. This wavelet-based cluster analysis (WCA) was evaluated using two representative classes of MRI neuroimaging experiments. In perfusion-weighted MRI, following occlusion of the middle cerebral artery (MCAO), WCA differentiated healthy tissue and different regions within the ischemic hemisphere. Following an acute cocaine challenge, WCA localized subtle differences in the pharmacokinetic profile of the cerebral response. We conclude that WCA provides a robust method for blind analysis of time series image data.

  4. Variational Bayesian framework for estimating parameters of integrated E/MEG and fMRI model

    NASA Astrophysics Data System (ADS)

    Babajani-Feremi, Abbas; Bowyer, Susan; Moran, John; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2009-02-01

    The integrated analysis of the Electroencephalography (EEG), Magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) are instrumental for functional neuroimaging of the brain. A bottom-up integrated E/MEG and fMRI model based on physiology as well as a method for estimating its parameters are keys to the integrated analysis. We propose the variational Bayesian expectation maximization (VBEM) method to estimate parameters of our proposed integrated model. VBEM method iteratively optimizes a lower bound on the marginal likelihood. An iteration of the VBEM consists of two steps: a variational Bayesian expectation step implemented using the extended Kalman smoother (EKS) and the posterior probability of the parameters in the previous step, and a variational Bayesian maximization step to estimate the posterior distributions of the parameters. For a given external stimulus, a variety of multi-area models can be considered in which the number of areas and the configuration and strength of connections between the areas are different. The proposed VBEM method can be used to select an optimal model as well as estimate its parameters. The efficiency of the proposed VBEM method is illustrated using simulation and real datasets. The proposed VBEM method can be used to estimate parameters of other non-linear dynamical systems. This study proposes an effective method to integrate E/MEG and fMRI and plans to use these techniques in functional neuroimaging.

  5. Optimization of OSEM parameters in myocardial perfusion imaging reconstruction as a function of body mass index: a clinical approach*

    PubMed Central

    de Barros, Pietro Paolo; Metello, Luis F.; Camozzato, Tatiane Sabriela Cagol; Vieira, Domingos Manuel da Silva

    2015-01-01

    Objective The present study is aimed at contributing to identify the most appropriate OSEM parameters to generate myocardial perfusion imaging reconstructions with the best diagnostic quality, correlating them with patients’ body mass index. Materials and Methods The present study included 28 adult patients submitted to myocardial perfusion imaging in a public hospital. The OSEM method was utilized in the images reconstruction with six different combinations of iterations and subsets numbers. The images were analyzed by nuclear cardiology specialists taking their diagnostic value into consideration and indicating the most appropriate images in terms of diagnostic quality. Results An overall scoring analysis demonstrated that the combination of four iterations and four subsets has generated the most appropriate images in terms of diagnostic quality for all the classes of body mass index; however, the role played by the combination of six iterations and four subsets is highlighted in relation to the higher body mass index classes. Conclusion The use of optimized parameters seems to play a relevant role in the generation of images with better diagnostic quality, ensuring the diagnosis and consequential appropriate and effective treatment for the patient. PMID:26543282

  6. Facing contrast-enhancing gliomas: perfusion MRI in grade III and grade IV gliomas according to tumor area.

    PubMed

    Di Stefano, Anna Luisa; Bergsland, Niels; Berzero, Giulia; Farina, Lisa; Rognone, Elisa; Gastaldi, Matteo; Aquino, Domenico; Frati, Alessandro; Tomasello, Francesco; Ceroni, Mauro; Marchioni, Enrico; Bastianello, Stefano

    2014-01-01

    Tumoral neoangiogenesis characterizes high grade gliomas. Relative Cerebral Blood Volume (rCBV), calculated with Dynamic Susceptibility Contrast (DSC) Perfusion-Weighted Imaging (PWI), allows for the estimation of vascular density over the tumor bed. The aim of the study was to characterize putative tumoral neoangiogenesis via the study of maximal rCBV with a Region of Interest (ROI) approach in three tumor areas-the contrast-enhancing area, the nonenhancing tumor, and the high perfusion area on CBV map-in patients affected by contrast-enhancing glioma (grades III and IV). Twenty-one patients were included: 15 were affected by grade IV and 6 by grade III glioma. Maximal rCBV values for each patient were averaged according to glioma grade. Although rCBV from contrast-enhancement and from nonenhancing tumor areas was higher in grade IV glioma than in grade III (5.58 and 2.68; 3.01 and 2.2, resp.), the differences were not significant. Instead, rCBV recorded in the high perfusion area on CBV map, independently of tumor compartment, was significantly higher in grade IV glioma than in grade III (7.51 versus 3.78, P = 0.036). In conclusion, neoangiogenesis encompasses different tumor compartments and CBV maps appear capable of best characterizing the degree of neovascularization. Facing contrast-enhancing brain tumors, areas of high perfusion on CBV maps should be considered as the reference areas to be targeted for glioma grading.

  7. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study.

    PubMed

    Haller, S; Rodriguez, C; Moser, D; Toma, S; Hofmeister, J; Sinanaj, I; Van De Ville, D; Giannakopoulos, P; Lovblad, K-O

    2013-10-10

    In young individuals, caffeine-mediated blockade of adenosine receptors and vasoconstriction has direct repercussions on task-related activations, changes in functional connectivity, as well as global vascular effects. To date, no study has explored the effect of caffeine on brain activation patterns during highly demanding cognitive tasks in the elderly. This prospective, placebo-controlled crossover design comprises 24 healthy elderly individuals (mean age 68.8 ± 4.0 years, 17 females) performing a 2-back working memory (WM) task in functional magnetic resonance imaging (fMRI). Analyses include complimentary assessment of task-related activations (general linear model, GLM), functional connectivity (tensorial independent component analysis, TICA), and baseline perfusion (arterial spin labeling). Despite a reduction in whole-brain global perfusion (-22.7%), caffeine-enhanced task-related GLM activation in a local and distributed network is most pronounced in the bilateral striatum and to a lesser degree in the right middle and inferior frontal gyrus, bilateral insula, left superior and inferior parietal lobule as well as in the cerebellum bilaterally. TICA was significantly enhanced (+8.2%) in caffeine versus placebo in a distributed and task-relevant network including the pre-frontal cortex, the supplementary motor area, the ventral premotor cortex and the parietal cortex as well as the occipital cortex (visual stimuli) and basal ganglia. The inverse comparison of placebo versus caffeine had no significant difference. Activation strength of the task-relevant-network component correlated with response accuracy for caffeine yet not for placebo, indicating a selective cognitive effect of caffeine. The present findings suggest that acute caffeine intake enhances WM-related brain activation as well as functional connectivity of blood oxygen level-dependent fMRI in elderly individuals.

  8. MRI

    MedlinePlus

    MRI does not use ionizing radiation. No side effects from the magnetic fields and radio waves have been reported. The most common type of contrast (dye) used is gadolinium. It is very safe. Allergic reactions rarely ...

  9. One or 4 h of "in-house" reconditioning by machine perfusion after cold storage improve reperfusion parameters in porcine kidneys.

    PubMed

    Gallinat, Anja; Efferz, Patrik; Paul, Andreas; Minor, Thomas

    2014-11-01

    In-house machine perfusion after cold storage (hypothermic reconditioning) has been proposed as convenient tool to improve kidney graft function. This study investigated the role of machine perfusion duration for early reperfusion parameters in porcine kidneys. Kidney function after cold preservation (4 °C, 18 h) and subsequent reconditioning by one or 4 h of pulsatile, nonoxygenated hypothermic machine perfusion (HMP) was studied in an isolated kidney perfusion model in pigs (n = 6, respectively) and compared with simply cold-stored grafts (CS). Compared with CS alone, one or 4 h of subsequent HMP similarly and significantly improved renal flow and kidney function (clearance and sodium reabsorption) upon warm reperfusion, along with reduced perfusate concentrations of endothelin-1 and increased vascular release of nitric oxide. Molecular effects of HMP comprised a significant (vs CS) mRNA increase in the endothelial transcription factor KLF2 and lower expression of endothelin that were observed already at the end of one-hour HMP after CS. Reconditioning of cold-stored kidneys is possible, even if clinical logistics only permit one hour of therapy, while limited extension of the overall storage time by in-house machine perfusion might also allow for postponing of transplantation from night to early day work.

  10. ROI for outlining an entire tumor is a reliable approach for quantification of lung cancer tumor vascular parameters using CT perfusion

    PubMed Central

    Ma, Ensen; Ren, An; Gao, Baoxiang; Yang, Minxing; Zhao, Qichao; Wang, Wu; Li, Kefeng

    2016-01-01

    Objective To investigate the effect of position and size of tumor region of interest (ROI) on the estimation of lung cancer vascular parameters using 256-slice computed tomography (CT) perfusion. Methods After institutional review board approval and written informed consent, 16 men and 11 women with lung cancer were enrolled in this CT perfusion study. Perfusion, blood volume, and peak enhancement were determined for 60 or 120 mm2 circular ROIs placed at the edge, center, and around (outlining) the visible tumor. Average values were obtained by performing ROI analysis twice by the same observers without any procedural changes. Results Perfusion, blood volume, and peak enhancement measurements were substantially higher at the edge than at the center for both 60 and 120 mm2 ROIs (all P<0.05). Measurements varied substantially depending on the ROI size. Perfusion, blood volume, and peak enhancement for the ROIs outlining tumor were intermediate between those at the tumor edge and center. There were significant correlations between median values and interquartile ranges as follows; perfusion (12.51 [7.91–28.10] mL⋅min−1⋅100 mL−1), blood volume (29.31 [21.82–37.65] mL⋅100 g−1), peak enhancement (12.93 [2.42–22.50]) for the ROIs outlining the tumor, and microvascular density ([19.43±8.78] vessels/0.74 mm2), respectively (r values were 0.732, 0.590, and 0.544 respectively, all P<0.05). Conclusion Spatial and size selection of ROI significantly affects CT perfusion analysis. ROI outlining of entire tumor provides efficient and reliable measurements for clinical assessment of lung cancer using CT perfusion. PMID:27175083

  11. [Development of an Optimizing Program of Scanning Parameters for Double Inversion Recovery MRI].

    PubMed

    Hayashi, Norio; Yarita, Kazuma; Sakata, Kozue; Motegi, Shunichi; Nagase, Hiroyuki; Ujita, Kouichi; Ogura, Akio; Ogura, Toshihiro; Shimada, Takehiro; Tsushima, Yoshito

    2015-06-01

    The purpose of this study was to develop an optimizing program of scanning parameters for double inversion recovery (DIR) MRI. The optimization algorithm consists of the following steps: (1) obtaining the initial parameters (TR, TE, and T1 values of the two attenuated tissues); (2) iterative calculation for minimization of errors; and (3) determination of the optimized TI(1st) and TI(2nd). To evaluate the developed algorithm, we performed the phantom and simulation studies using the phantoms which were imitated T1 values of white and gray matters and cerebrospinal fluid. In addition, white matter attenuated inversion recovery (WAIR) and gray matter attenuated inversion recovery (GAIR) images were obtained by optimized scan parameters in one volunteer. The developed algorithm could calculate the optimized TI(1st) and TI(2nd) values at once. Results of summation of signal intensity (SI) of two attenuated tissues shows that the SI of the two tissues were well-attenuated using the theoretical values which were calculated using the developed algorithm. The correlation coefficient of the SI of the phantom of the gray matter between actual and simulation measurements was r=0.997. The SI obtained by actual measurements well correlated with the SI obtained by the simulation measurements. The WAIR and GAIR images in the volunteer were well enhanced gray or white matters. We thus conclude that it is possible to calculate the optimized parameters for the DIR-MRI using the developed algorithm.

  12. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling.

    PubMed

    Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V; Rooney, William D; Garzotto, Mark G; Springer, Charles S

    2016-08-01

    Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging

  13. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling.

    PubMed

    Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V; Rooney, William D; Garzotto, Mark G; Springer, Charles S

    2016-08-01

    Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging

  14. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V.; Rooney, William D.; Garzotto, Mark G.; Springer, Charles S.

    2016-08-01

    Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (Ktrans) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging

  15. Blood Pressure is Associated With Cerebral Blood Flow Alterations in Patients With T2DM as Revealed by Perfusion Functional MRI.

    PubMed

    Xia, Wenqing; Rao, Hengyi; Spaeth, Andrea M; Huang, Rong; Tian, Sai; Cai, Rongrong; Sun, Jie; Wang, Shaohua

    2015-12-01

    Type 2 diabetes mellitus (T2DM) and hypertension are both associated with cognitive impairment and brain function abnormalities. We investigated whether abnormal cerebral blood flow (CBF) patterns exists in T2DM patients and possible relationships between aberrant CBF and cognitive performance. Furthermore, we examined the influence of hypertension on CBF alterations in T2DM patients. T2DM patients (n = 38) and non-T2DM subjects (n = 40) were recruited from clinics, hospitals, and normal community health screenings. Cerebral blood flow images were collected and analyzed using arterial spin labeling perfusion functional magnetic resonance imaging (fMRI). Regions with major CBF differences between T2DM patients and non-T2DM controls were detected via 1-way ANOVA. The interaction effects between hypertension and T2DM for CBF alterations were also examined. Correlation analyses illustrated the association between CBF values and cognitive performance and between CBF and blood pressure. Compared with non-T2DM controls, T2DM patients exhibited decreased CBF, primarily in the visual area and the default mode network (DMN); decreased CBF in these regions was correlated with cognitive performance. There was a significant interaction effect between hypertension and diabetes for CBF in the precuneus and the middle occipital gyrus. Additionally, blood pressure correlated negatively with CBF in T2DM patients.T2DM patients exhibited reduced CBF in the visual area and DMN. Hypertension may facilitate a CBF decrease in the setting of diabetes. T2DM patients may benefit from blood pressure control to maintain their brain perfusion through CBF preservation. PMID:26632913

  16. Optimization of the filter parameters in (99m)Tc myocardial perfusion SPECT studies: the formulation of flowchart.

    PubMed

    Shibutani, Takayuki; Onoguchi, Masahisa; Yamada, Tomoki; Kamida, Hiroki; Kunishita, Kohei; Hayashi, Yuuki; Nakajima, Tadashi; Kinuya, Seigo

    2016-06-01

    Myocardial perfusion single photon emission computed tomography (SPECT) is typically subject to a variation in image quality due to the use of different acquisition protocols, image reconstruction parameters and image display settings by each institution. One of the principal image reconstruction parameters is the Butterworth filter cut-off frequency, a parameter strongly affecting the quality of myocardial images. The objective of this study was to formulate a flowchart for the determination of the optimal parameters of the Butterworth filter for filtered back projection (FBP), ordered subset expectation maximization (OSEM) and collimator-detector response compensation OSEM (CDR-OSEM) methods using the evaluation system of the myocardial image based on technical grounds phantom. SPECT studies were acquired for seven simulated defects where the average counts of the normal myocardial components of 45° left anterior oblique projections were approximately 10-120 counts/pixel. These SPECT images were then reconstructed by FBP, OSEM and CDR-OSEM methods. Visual and quantitative assessment of short axis images were performed for the defect and normal parts. Finally, we formulated a flowchart indicating the optimal image processing procedure for SPECT images. Correlation between normal myocardial counts and the optimal cut-off frequency could be represented as a regression expression, which had high or medium coefficient of determination. We formulated the flowchart in order to optimize the image reconstruction parameters based on a comprehensive assessment, which enabled us to perform objectively processing. Furthermore, the usefulness of image reconstruction using the flowchart was demonstrated by a clinical case.

  17. Non-invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry.

    PubMed

    Dragonu, Iulius; de Oliveira, Philippe Lourenço; Laurent, Christophe; Mougenot, Charles; Grenier, Nicolas; Moonen, Chrit T W; Quesson, Bruno

    2009-10-01

    A method is proposed for estimating the perfusion rate, thermal diffusivity, and the absorption coefficient that influence the local temperature during high intensity focused ultrasound (HIFU) thermotherapy procedures. For this purpose, HIFU heating experiments (N = 100) were performed ex vivo on perfused porcine kidney (N = 5) under different flow conditions. The resulting spatio-temporal temperature variations were measured non-invasively by rapid volumetric MR-temperature imaging. The bio-heat transfer (BHT) model was adapted to describe the spatio-temporal evolution of tissue temperature in the cortex. Absorption and perfusion coefficients were determined by fitting the integrated thermal load (spatial integration of the thermal maps) curves in time with an analytical solution of the BHT equation proposed for single point HIFU heating. Thermal diffusivity was determined independently by analyzing the spatial spread of the temperature in time during the cooling period. Absorption coefficient and thermal diffusivity were found to be independent of flow, with mean and average values of 11.0 +/- 1.85 mm(3) x K x J(-1) and 0.172 +/- 0.003 mm(2) x s(-1), respectively. A linear dependence of the calculated perfusion rate with flow was observed with a slope of 9.20 +/- 0.75 mm(-3). The perfusion was found to act as a scaling term with respect to temperature but with no effect on the spatial spread of temperature which only depends on the thermal diffusivity. All results were in excellent agreement with the BHT model, indicating that this model is suitable to predict the evolution of temperature in perfused organs. This quantitative approach allows for determination of tissue thermal parameters with excellent precision (within 10%) and may thus help in quantifying the influence of perfusion during MR guided high intensity focused ultrasound (MRgHIFU).

  18. Evidence-based guideline: The role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke

    PubMed Central

    Schellinger, P.D.; Bryan, R.N.; Caplan, L.R.; Detre, J.A.; Edelman, R.R.; Jaigobin, C.; Kidwell, C.S.; Mohr, J.P.; Sloan, M.; Sorensen, A.G.; Warach, S.

    2010-01-01

    Objective: To assess the evidence for the use of diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) in the diagnosis of patients with acute ischemic stroke. Methods: We systematically analyzed the literature from 1966 to January 2008 to address the diagnostic and prognostic value of DWI and PWI. Results and Recommendations: DWI is established as useful and should be considered more useful than noncontrast CT for the diagnosis of acute ischemic stroke within 12 hours of symptom onset. DWI should be performed for the most accurate diagnosis of acute ischemic stroke (Level A); however, the sensitivity of DWI for the diagnosis of ischemic stroke in a general sample of patients with possible acute stroke is not perfect. The diagnostic accuracy of DWI in evaluating cerebral hemorrhage is outside the scope of this guideline. On the basis of Class II and III evidence, baseline DWI volumes probably predict baseline stroke severity in anterior territory stroke (Level B) but possibly do not in vertebrobasilar artery territory stroke (Level C). Baseline DWI lesion volumes probably predict (final) infarct volumes (Level B) and possibly predict early and late clinical outcome measures (Level C). Baseline PWI volumes predict to a lesser degree the baseline stroke severity compared with DWI (Level C). There is insufficient evidence to support or refute the value of PWI in diagnosing acute ischemic stroke (Level U). GLOSSARY ADC = apparent diffusion coefficient; ASPECTS = Alberta Stroke Program Early CT Score; CBF = cerebral blood flow; CI = confidence interval; DWI = diffusion-weighted imaging; ICH = intracerebral hemorrhage; MR = magnetic resonance; NIHSS = National Institute of Health Stroke Scale; PWI = perfusion-weighted imaging; tPA = tissue plasminogen activator. PMID:20625171

  19. Changes in computed tomography perfusion parameters after superficial temporal artery to middle cerebral artery bypass: an analysis of 29 cases.

    PubMed

    Serrone, Joseph C; Jimenez, Lincoln; Hanseman, Dennis J; Carroll, Christopher P; Grossman, Aaron W; Wang, Lily; Vagal, Achala; Choutka, Ondrej; Andaluz, Norberto; Ringer, Andrew J; Abruzzo, Todd; Zuccarello, Mario

    2014-12-01

    Introduction Analysis of computed tomography perfusion (CTP) studies before and after superficial temporal artery to middle cerebral artery (STA-MCA) bypass is warranted to better understand cerebral steno-occlusive pathology. Methods Retrospective review was performed of STA-MCA bypass patients with steno-occlusive disease with CTP before and after surgery. CTP parameters were evaluated for change after STA-MCA bypass. Results A total of 29 hemispheres were bypassed in 23 patients. After STA-MCA bypass, mean transit time (MTT) and time to peak (TTP) improved. When analyzed as a ratio to the contralateral hemisphere, MTT, TTP, and cerebral blood flow (CBF) improved. There was no effect of gender, double vessel versus single vessel bypass, or time until postoperative CTP study to changes in CTP parameters after bypass. Conclusions Blood flow augmentation after STA-MCA bypass may best be assessed by CTP using baseline MTT or TTP and ratios of MTT, TTP, or CBF to the contralateral hemisphere. The failure of cerebrovascular reserve to improve after cerebral bypass may indicate irreversible loss of autoregulation with chronic cerebral vasodilation or the inability of CTP to detect these improvements.

  20. Measuring blood delivery to solitary pulmonary nodules using perfusion magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Zhifeng; Shen, Li; Gao, Ling; Ford, James C.; Makedon, Fillia S.; Pearlman, Justin D.

    2006-03-01

    With perfusion magnetic resonance imaging (pMRI), perfusion describes the amount of blood passing through a block of tissue in a certain period of time. In pMRI, the tissue having more blood passing through will show higher intensity value as more contrast-labeled blood arrives. Perfusion reflects the delivery of essential nutrients to a block of tissue, and is an important parameter for the tissue status. Considering solitary pulmonary nodules (SPN), perfusion differences between malignant and benign nodules have been studied by different techniques. Much effort has been put into its characterization. In this paper, we proposed and implemented extraction of the SPN time intensity profile to measure blood delivery to solitary pulmonary nodules, describing their perfusion effects. In this method, a SPN time intensity profile is created based on intensity values of the solitary pulmonary nodule in lung pMRI images over time. This method has two steps: nodule tracking and profile clustering. Nodule tracking aligns the solitary pulmonary nodule in pMRI images taken at different time points, dealing with nodule movement resulted from breathing and body movement. Profile clustering implements segmentation of the nodule region and extraction of the time intensity profile of a solitary pulmonary nodule. SPN time intensity profiles reflect patterns of blood delivery to solitary pulmonary nodules, giving us a description of perfusion effect and indirect evidence of tumor angiogenesis. Analysis on SPN time intensity profiles will help the diagnosis of malignant nodules for early lung cancer detection.

  1. Assessment of brain perfusion using parametric and factor images extracted from dynamic contrast-enhanced MRI images

    NASA Astrophysics Data System (ADS)

    Martel, Anne L.; Moody, Alan R.

    1998-07-01

    Contrast-enhanced magnetic resonance (MR) imaging offers a minimally invasive method of investigating brain blood flow. This paper describes two different methods of extracting quantitative and qualitative information from this data. The first approach is to generate parametric images showing blood flow, blood volume and time-to-peak activity on a pixel by pixel basis. The second approach uses factor analysis. Principal components are extracted from the data and these orthogonal factors are then rotated to give a set of oblique factors, which satisfy certain simple constraints. In most cases three factors can be identified: a background or non- enhancing factor, an early vascular factor which is strongly correlated to arterial flow, and a late vascular factor which is strongly correlated to venous flow. The parametric and factor images are complimentary in nature: the former provides quantitative information that is readily understood by the clinician, while the latter makes no a priori assumptions about the underlying physiology and also allows more subtle changes in cerebral blood flow to be assessed. The factor images may also be of great value in defining regions of interest over which to carry out a more detailed quantitative analysis. This dual approach can be readily adapted to assess perfusion in other organs such as the heart or kidneys.

  2. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    PubMed

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates.

  3. A comparative analysis of the dependences of the hemodynamic parameters on changes in ROI's position in perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Seok; Cho, Jae-Hwan; Namgung, Jang-Sun; Kim, Hyo-Jin; Yoon, Dae-Young; Lee, Han-Joo

    2013-05-01

    This study performed a comparative analysis of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and mean time-to-peak (TTP) obtained by changing the region of interest's (ROI) anatomical positions, during CT brain perfusion. We acquired axial source images of perfusion CT from 20 patients undergoing CT perfusion exams due to brain trauma. Subsequently, the CBV, CBF, MTT, and TTP values were calculated through data-processing of the perfusion CT images. The color scales for the CBV, CBF, MTT, and TTP maps were obtained using the image data. Anterior cerebral artery (ACA) was taken as the standard ROI for the calculations of the perfusion values. Differences in the hemodynamic average values were compared in a quantitative analysis by placing ROI and the dividing axial images into proximal, middle, and distal segments anatomically. By performing the qualitative analysis using a blind test, we observed changes in the sensory characteristics by using the color scales of the CBV, CBF, and MTT maps in the proximal, middle, and distal segments. According to the qualitative analysis, no differences were found in CBV, CBF, MTT, and TTP values of the proximal, middle, and distal segments and no changes were detected in the color scales of the the CBV, CBF, MTT, and TTP maps in the proximal, middle, and distal segments. We anticipate that the results of the study will useful in assessing brain trauma patients using by perfusion imaging.

  4. Improved parameter extraction and classification for dynamic contrast enhanced MRI of prostate

    NASA Astrophysics Data System (ADS)

    Haq, Nandinee Fariah; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi

    2014-03-01

    Magnetic resonance imaging (MRI), particularly dynamic contrast enhanced (DCE) imaging, has shown great potential in prostate cancer diagnosis and prognosis. The time course of the DCE images provides measures of the contrast agent uptake kinetics. Also, using pharmacokinetic modelling, one can extract parameters from the DCE-MR images that characterize the tumor vascularization and can be used to detect cancer. A requirement for calculating the pharmacokinetic DCE parameters is estimating the Arterial Input Function (AIF). One needs an accurate segmentation of the cross section of the external femoral artery to obtain the AIF. In this work we report a semi-automatic method for segmentation of the cross section of the femoral artery, using circular Hough transform, in the sequence of DCE images. We also report a machine-learning framework to combine pharmacokinetic parameters with the model-free contrast agent uptake kinetic parameters extracted from the DCE time course into a nine-dimensional feature vector. This combination of features is used with random forest and with support vector machine classi cation for cancer detection. The MR data is obtained from patients prior to radical prostatectomy. After the surgery, wholemount histopathology analysis is performed and registered to the DCE-MR images as the diagnostic reference. We show that the use of a combination of pharmacokinetic parameters and the model-free empirical parameters extracted from the time course of DCE results in improved cancer detection compared to the use of each group of features separately. We also validate the proposed method for calculation of AIF based on comparison with the manual method.

  5. Interhemispheric Cerebral Blood Flow Balance during Recovery of Motor Hand Function after Ischemic Stroke—A Longitudinal MRI Study Using Arterial Spin Labeling Perfusion

    PubMed Central

    Missimer, John; Schroth, Gerhard; Hess, Christian W.; Sturzenegger, Matthias; Wang, Danny J. J.; Weder, Bruno; Federspiel, Andrea

    2014-01-01

    Background Unilateral ischemic stroke disrupts the well balanced interactions within bilateral cortical networks. Restitution of interhemispheric balance is thought to contribute to post-stroke recovery. Longitudinal measurements of cerebral blood flow (CBF) changes might act as surrogate marker for this process. Objective To quantify longitudinal CBF changes using arterial spin labeling MRI (ASL) and interhemispheric balance within the cortical sensorimotor network and to assess their relationship with motor hand function recovery. Methods Longitudinal CBF data were acquired in 23 patients at 3 and 9 months after cortical sensorimotor stroke and in 20 healthy controls using pulsed ASL. Recovery of grip force and manual dexterity was assessed with tasks requiring power and precision grips. Voxel-based analysis was performed to identify areas of significant CBF change. Region-of-interest analyses were used to quantify the interhemispheric balance across nodes of the cortical sensorimotor network. Results Dexterity was more affected, and recovered at a slower pace than grip force. In patients with successful recovery of dexterous hand function, CBF decreased over time in the contralesional supplementary motor area, paralimbic anterior cingulate cortex and superior precuneus, and interhemispheric balance returned to healthy control levels. In contrast, patients with poor recovery presented with sustained hypoperfusion in the sensorimotor cortices encompassing the ischemic tissue, and CBF remained lateralized to the contralesional hemisphere. Conclusions Sustained perfusion imbalance within the cortical sensorimotor network, as measured with task-unrelated ASL, is associated with poor recovery of dexterous hand function after stroke. CBF at rest might be used to monitor recovery and gain prognostic information. PMID:25191858

  6. Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI.

    PubMed

    Hadjicharalambous, Myrianthi; Chabiniok, Radomir; Asner, Liya; Sammut, Eva; Wong, James; Carr-White, Gerald; Lee, Jack; Razavi, Reza; Smith, Nicolas; Nordsletten, David

    2015-08-01

    An unresolved issue in patient-specific models of cardiac mechanics is the choice of an appropriate constitutive law, able to accurately capture the passive behavior of the myocardium, while still having uniquely identifiable parameters tunable from available clinical data. In this paper, we aim to facilitate this choice by examining the practical identifiability and model fidelity of constitutive laws often used in cardiac mechanics. Our analysis focuses on the use of novel 3D tagged MRI, providing detailed displacement information in three dimensions. The practical identifiability of each law is examined by generating synthetic 3D tags from in silico simulations, allowing mapping of the objective function landscape over parameter space and comparison of minimizing parameter values with original ground truth values. Model fidelity was tested by comparing these laws with the more complex transversely isotropic Guccione law, by characterizing their passive end-diastolic pressure-volume relation behavior, as well as by considering the in vivo case of a healthy volunteer. These results show that a reduced form of the Holzapfel-Ogden law provides the best balance between identifiability and model fidelity across the tests considered. PMID:25510227

  7. Investigation of parameters affecting treatment time in MRI-guided transurethral ultrasound therapy

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Burtnyk, M.; Chopra, R.; Bronskill, M. J.

    2010-03-01

    MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Real-time MR temperature feedback enables the 3D control of thermal therapy to define an accurate region within the prostate. Previous in-vivo canine studies showed the feasibility of this method using transurethral planar transducers. The aim of this simulation study was to reduce the procedure time, while maintaining treatment accuracy by investigating new combinations of treatment parameters. A numerical model was used to simulate a multi-element heating applicator rotating inside the urethra in 10 human prostates. Acoustic power and rotation rate were varied based on the feedback of the temperature in the prostate. Several parameters were investigated for improving the treatment time. Maximum acoustic power and rotation rate were optimized interdependently as a function of prostate radius and transducer operating frequency, while avoiding temperatures >90° C in the prostate. Other trials were performed on each parameter separately, with the other parameter fixed. The concept of using dual-frequency transducers was studied, using the fundamental frequency or the 3rd harmonic component depending on the prostate radius. The maximum acoustic power which could be used decreased as a function of the prostate radius and the frequency. Decreasing the frequency (9.7-3.0 MHz) or increasing the power (10-20 W.cm-2) led to treatment times shorter by up to 50% under appropriate conditions. Dual-frequency configurations, while helpful, tended to have less impact on treatment times. Treatment accuracy was maintained and critical adjacent tissues like the rectal wall remained protected. The interdependence between power and frequency may require integrating multi-parametric functions inside the controller for future optimizations. As a first approach, however, even slight modifications of key parameters can be sufficient to reduce treatment time.

  8. Effects of Curcumin on Parameters of Myocardial Oxidative Stress and of Mitochondrial Glutathione Turnover in Reoxygenation after 60 Minutes of Hypoxia in Isolated Perfused Working Guinea Pig Hearts

    PubMed Central

    Ilyas, Ermita I. Ibrahim; Nur, Busjra M.; Laksono, Sonny P.; Bahtiar, Anton; Estuningtyas, Ari; Vitasyana, Caecilia; Kusmana, Dede; Suyatna, Frans D.; Tadjudin, Muhammad Kamil; Freisleben, Hans-Joachim

    2016-01-01

    In cardiovascular surgery ischemia-reperfusion injury is a challenging problem, which needs medical intervention. We investigated the effects of curcumin on cardiac, myocardial, and mitochondrial parameters in perfused isolated working Guinea pig hearts. After preliminary experiments to establish the model, normoxia was set at 30 minutes, hypoxia was set at 60, and subsequent reoxygenation was set at 30 minutes. Curcumin was applied in the perfusion buffer at 0.25 and 0.5 μM concentrations. Cardiac parameters measured were afterload, coronary and aortic flows, and systolic and diastolic pressure. In the myocardium histopathology and AST in the perfusate indicated cell damage after hypoxia and malondialdehyde (MDA) levels increased to 232.5% of controls during reoxygenation. Curcumin protected partially against reoxygenation injury without statistically significant differences between the two dosages. Mitochondrial MDA was also increased in reoxygenation (165% of controls), whereas glutathione was diminished (35.2%) as well as glutathione reductase (29.3%), which was significantly increased again to 62.0% by 0.05 μM curcumin. Glutathione peroxidase (GPx) was strongly increased in hypoxia and even more in reoxygenation (255% of controls). Curcumin partly counteracted this increase and attenuated GPx activity independently in hypoxia and in reoxygenation, 0.25 μM concentration to 150% and 0.5 μM concentration to 200% of normoxic activity. PMID:26904113

  9. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    SciTech Connect

    Andersen, Erlend K.F.; Hole, Knut Hakon; Lund, Kjersti V.; Sundfor, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-03-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  10. Comparison of 180° and 360° Arc Data Acquisition to Measure Scintigraphic Parameters from Gated Single Photon Emission Computed Tomography Myocardial Perfusion Imaging: Is There Any Difference?

    PubMed Central

    Javadi, Hamid; Mahmoud-Pashazadeh, Ali; Mogharrabi, Mehdi; Iranpour, Darioush; Amini, Abdollatif; Pourbehi, Mohammadreza; Akbarzadeh, Mehdi; Nabipour, Iraj; Assadi, Majid

    2016-01-01

    Objective: The aim of the current study was to compare 180° and 360° data collection modes to measure end diastolic volume (EDV), end systolic volume (ESV) and ejection fraction (EF) values of the cardiac system by gated myocardial perfusion tomography. Methods: Thirty-three patients underwent gated myocardial perfusion tomography. Single photon emission computed tomography data of patients’ heart were acquired by 180°, 45° left posterior oblique to 45° right anterior oblique, and 360° to obtain EDV, ESV, EF and cardiac volume changes (V1, V2, V3, V4, V5, V6, V7 and V8) throughout each cardiac cycle. Results: Results of the current study indicated that there were no significant differences between 180° and 360° angular sampling in terms of measuring EDV, ESV and EF in myocardial perfusion imaging. Cardiac volume change patterns during a cardiac cycle were also similar in 360° and 180° scans. We also observed that there was no difference in EDV, ESV and EF values between the group with stress induced by exercise and the group with stress imposed by dipyridamole. Conclusion: As there is no difference between 180°and 360° cardiac scanning in terms of EDV, ESV and EF, half-orbit scan is recommended to study these cardiac system parameters because it offers more comfort to patients and a shorter scanning time. PMID:27299285

  11. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion

    PubMed Central

    Gordon, Yaron; Partovi, Sasan; Müller-Eschner, Matthias; Amarteifio, Erick; Bäuerle, Tobias; Weber, Marc-André; Kauczor, Hans-Ulrich

    2014-01-01

    Introduction The ability to ascertain information pertaining to peripheral perfusion through the analysis of tissues’ temporal reaction to the inflow of contrast agent (CA) was first recognized in the early 1990’s. Similar to other functional magnetic resonance imaging (MRI) techniques such as arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, dynamic contrast-enhanced MRI (DCE-MRI) was at first restricted to studies of the brain. Over the last two decades the spectrum of ailments, which have been studied with DCE-MRI, has been extensively broadened and has come to include pathologies of the heart notably infarction, stroke and further cerebral afflictions, a wide range of neoplasms with an emphasis on antiangiogenic treatment and early detection, as well as investigations of the peripheral vascular and musculoskeletal systems. Applications to peripheral perfusion DCE-MRI possesses an unparalleled capacity to quantitatively measure not only perfusion but also other diverse microvascular parameters such as vessel permeability and fluid volume fractions. More over the method is capable of not only assessing blood flowing through an organ, but in contrast to other noninvasive methods, the actual tissue perfusion. These unique features have recently found growing application in the study of the peripheral vascular system and most notably in the diagnosis and treatment of peripheral arterial occlusive disease (PAOD). Review outline The first part of this review will elucidate the fundamentals of data acquisition and interpretation of DCE-MRI, two areas that often remain baffling to the clinical and investigating physician because of their complexity. The second part will discuss developments and exciting perspectives of DCE-MRI regarding the assessment of perfusion in the extremities. Emerging clinical applications of DCE-MRI will be reviewed with a special focus on investigation of physiology and pathophysiology of the microvascular and

  12. Multi-parameter MRI in the 6-OPRI variant of inherited prion disease

    PubMed Central

    De Vita, Enrico; Ridgway, Gerard R.; Scahill, Rachael I; Caine, Diana; Rudge, Peter; Yousry, Tarek A; Mead, Simon; Collinge, John; Jäger, H R; Thornton, John S; Hyare, Harpreet

    2013-01-01

    Background and Purpose To define the distribution of cerebral volumetric and microstructural parenchymal tissue changes in a specific mutation within inherited human prion diseases (IPD) combining voxel-based morphometry (VBM) with voxel-based analysis (VBA) of cerebral magnetization transfer ratio (MTR) and mean diffusivity (MD). Materials and Methods VBM and VBA of cerebral MTR and MD were performed in 16 healthy controls and 9 patients with the 6-octapeptide repeat insertion (6-OPRI) mutation. An ANCOVA consisting of diagnostic grouping with age and total intracranial volume as covariates was performed. Results On VBM there was significant grey matter (GM) volume reduction in patients compared with controls in the basal ganglia, perisylvian cortex, lingual gyrus and precuneus. Significant MTR reduction and MD increases were more anatomically extensive than volume differences on VBM in the same cortical areas, but MTR and MD changes were not seen in the basal ganglia. Conclusions GM and WM changes were seen in brain areas associated with motor and cognitive functions known to be impaired in patients with the 6-OPRI mutation. There were some differences in the anatomical distribution of MTR-VBA and MDVBA changes compared to VBM, likely to reflect regional variations in the type and degree of the respective pathophysiological substrates. Combined analysis of complementary multi-parameter MRI data furthers our understanding of prion disease pathophysiology. PMID:23538406

  13. [Extracorporeal perfusion of the sheep rumen].

    PubMed

    Leng, L; Bajo, M; Várady, J; Szányiová, M

    1977-06-01

    We constructed a modified perfusion apparatus and elaborated a method of extracorporal perfusion of the rumen of sheep. As perfusates we used the bovine plasma diluted in a ratio of 1:1 of an isotonic sodium chloride (NaCl) solution and the whole autologous blood. Transaminases GOT and GPT, ammonia and pH were determined in the perfusate. The different perfusions were evaluated according to previously determined perfusion conditions and criteria. A subject for discussion is the question of suitability of the parameters under examination for judging the state of the perfused organ. The described method is suitable for the study of metabolical processes in the rumen wal.

  14. Microstructural parameter estimation in vivo using diffusion MRI and structured prior information

    PubMed Central

    Nagy, Zoltan; Weiskopf, Nikolaus; Alexander, Daniel C.; Clark, Chris A.

    2015-01-01

    Purpose Diffusion MRI has recently been used with detailed models to probe tissue microstructure. Much of this work has been performed ex vivo with powerful scanner hardware, to gain sensitivity to parameters such as axon radius. By contrast, performing microstructure imaging on clinical scanners is extremely challenging. Methods We use an optimized dual spin‐echo diffusion protocol, and a Bayesian fitting approach, to obtain reproducible contrast (histogram overlap of up to 92%) in estimated maps of axon radius index in healthy adults at a modest, widely‐available gradient strength (35 mT m −1). A key innovation is the use of influential priors. Results We demonstrate that our priors can improve precision in axon radius estimates—a 7‐fold reduction in voxelwise coefficient of variation in vivo—without significant bias. Our results may reflect true axon radius differences between white matter regions, but this interpretation should be treated with caution due to the complexity of the tissue relative to our model. Conclusions Some sensitivity to relatively large axons (3–15 μm) may be available at clinical field and gradient strengths. Future applications at higher gradient strength will benefit from the favorable eddy current properties of the dual spin‐echo sequence, and greater precision available with suitable priors. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1787–1796, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25994918

  15. A dimensionless dynamic contrast enhanced MRI parameter for intra-prostatic tumour target volume delineation: initial comparison with histology

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Gibson, Eli; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; McKenzie, Charles A.; Bauman, Glenn S.; Ward, Aaron D.; Fenster, Aaron; Wong, Eugene

    2014-03-01

    Purpose: T2 weighted and diffusion weighted magnetic resonance imaging (MRI) show promise in isolating prostate tumours. Dynamic contrast enhanced (DCE)-MRI has also been employed as a component in multi-parametric tumour detection schemes. Model-based parameters such as Ktrans are conventionally used to characterize DCE images and require arterial contrast agent (CR) concentration. A robust parameter map that does not depend on arterial input may be more useful for target volume delineation. We present a dimensionless parameter (Wio) that characterizes CR wash-in and washout rates without requiring arterial CR concentration. Wio is compared to Ktrans in terms of ability to discriminate cancer in the prostate, as demonstrated via comparison with histology. Methods: Three subjects underwent DCE-MRI using gadolinium contrast and 7 s imaging temporal resolution. A pathologist identified cancer on whole-mount histology specimens, and slides were deformably registered to MR images. The ability of Wio maps to discriminate cancer was determined through receiver operating characteristic curve (ROC) analysis. Results: There is a trend that Wio shows greater area under the ROC curve (AUC) than Ktrans with median AUC values of 0.74 and 0.69 respectively, but the difference was not statistically significant based on a Wilcoxon signed-rank test (p = 0.13). Conclusions: Preliminary results indicate that Wio shows potential as a tool for Ktrans QA, showing similar ability to discriminate cancer in the prostate as Ktrans without requiring arterial CR concentration.

  16. Mapping MRI/MRS Parameters with Genetic Over-expression Profiles In Human Prostate Cancer: Demonstrating the Potential

    PubMed Central

    Lenkinski, Robert E.; Bloch, B. Nicholas; Liu, Fangbing; Frangioni, John V.; Perner, Sven; Rubin, Mark A.; Genega, Elizabeth; Rofsky, Neil M.; Gaston, Sandra M.

    2009-01-01

    Magnetic resonance imaging (MRI) and MR spectroscopy can probe a variety of physiological (e.g. blood vessel permeability) and metabolic characteristics of prostate cancer. However, little is known about the changes in gene expression that underlie the spectral and imaging features observed in prostate cancer. Tumor induced changes in vascular permeability and angiogenesis are thought to contribute to patterns of dynamic contrast enhanced (DCE) MRI images of prostate cancer even though the genetic basis of tumor vasculogenesis is complex and the specific mechanisms underlying these DCEMRI features have not yet been determined. In order to identify the changes in gene expression that correspond to MRS and DCEMRI patterns in human prostate cancers, we have utilized tissue print micropeel techniques to generate “whole mount” molecular maps of radical prostatectomy specimens that correspond to pre-surgical MRI/MRS studies. These molecular maps include RNA expression profiles from both Affymetrix GeneChip microarrays and quantitative reverse transcriptase PCR (qrt-PCR) analysis, as well as immunohistochemical studies. Using these methods on patients with prostate cancer, we found robust over-expression of choline kinase a in the majority of primary tumors. We also observed overexpression of neuropeptide Y (NPY), a newly identified angiogenic factor, in a subset of DCEMRI positive prostate cancers. These studies set the stage for establishing MRI/MRS parameters as validated biomarkers for human prostate cancer. PMID:18752015

  17. Reproducibility of Kidney Perfusion Measurements With Arterial Spin Labeling at 1.5 Tesla MRI Combined With Semiautomatic Segmentation for Differential Cortical and Medullary Assessment

    PubMed Central

    Hammon, Matthias; Janka, Rolf; Siegl, Christian; Seuss, Hannes; Grosso, Roberto; Martirosian, Petros; Schmieder, Roland E.; Uder, Michael; Kistner, Iris

    2016-01-01

    Abstract Magnetic resonance imaging with arterial spin labeling (ASL) is a noninvasive approach to measure organ perfusion. The purpose of this study was to evaluate the reproducibility of ASL kidney perfusion measurements with semiautomatic segmentation, which allows separate quantification of cortical and medullary perfusion. The right kidneys of 14 healthy volunteers were examined 6 times on 2 occasions (3 times at each occasion). There was a 10-minute pause between each examination and a 14-day interval between the 2 occasions. Cortical, medullary, and whole kidney parenchymal perfusion was determined with customized semiautomatic segmentation software. Coefficient of variances (CVs) and intraclass correlations (ICCs) were calculated. Mean whole, cortical, and medullary kidney perfusion was 307.26 ± 25.65, 337.10 ± 34.83, and 279.61 ± 26.73 mL/min/100 g, respectively. On session 1, mean perfusion for the whole kidney, cortex, and medulla was 307.08 ± 26.91, 336.79 ± 36.54, and 279.60 ± 27.81 mL/min/100 g, respectively, and on session 2, 307.45 ± 24.65, 337.41 ± 33.48, and 279.61 ± 25.94 mL/min/100 g, respectively (P > 0.05; R2 = 0.60/0.59/0.54). For whole, cortical, and medullary kidney perfusion, the total ICC/CV were 0.97/3.43 ± 0.86%, 0.97/4.19 ± 1.33%, and 0.96/4.12 ± 1.36%, respectively. Measurements did not differ significantly and showed a very good correlation (P > 0.05; R2 = 0.75/0.76/0.65). ASL kidney measurements combined with operator-independent semiautomatic segmentation revealed high correlation and low variance of cortical, medullary, and whole kidney perfusion. PMID:26986143

  18. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI-fMRI connectivity correlations in children with and without dysgraphia or dyslexia.

    PubMed

    Richards, T L; Grabowski, T J; Boord, P; Yagle, K; Askren, M; Mestre, Z; Robinson, P; Welker, O; Gulliford, D; Nagy, W; Berninger, V

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4-9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI-fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter-gray matter correlations. Of

  19. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI-fMRI connectivity correlations in children with and without dysgraphia or dyslexia.

    PubMed

    Richards, T L; Grabowski, T J; Boord, P; Yagle, K; Askren, M; Mestre, Z; Robinson, P; Welker, O; Gulliford, D; Nagy, W; Berninger, V

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4-9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI-fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter-gray matter correlations. Of

  20. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia

    PubMed Central

    Richards, T.L.; Grabowski, T.J.; Boord, P.; Yagle, K.; Askren, M.; Mestre, Z.; Robinson, P.; Welker, O.; Gulliford, D.; Nagy, W.; Berninger, V.

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter

  1. Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain

    SciTech Connect

    Wang Silun; Tryggestad, Erik; Zhou Tingting; Armour, Michael; Wen Zhibo; Fu Dexue; Ford, Eric; Zijl, Peter C.M. van; Zhou Jinyuan

    2012-07-01

    Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.

  2. Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til

    2005-04-01

    Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.

  3. Assessment of prognostic value of semiquantitative parameters on gated single photon emission computed tomography myocardial perfusion scintigraphy in a large middle eastern population

    PubMed Central

    Chavoshi, Maryam; Fard-Esfahani, Armaghan; Fallahi, Babak; Emami-Ardekani, Alireza; Beiki, Davood; Hassanzadeh-Rad, Arman; Eftekhari, Mohammad

    2015-01-01

    Objectives: Coronary artery disease is the leading cause of mortality worldwide. The goal of this study is to determine the prognostic value of semiquantitative parameters of electrocardiogram-gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) in a large Middle Eastern (Iranian) population. Materials and Methods: This study was a prospective study including all patients referred to our center for myocardial perfusion scan. The patients were followed annually up to 24 months and their survival information was collected. Results: From 1148 patients, 473 (41.2%) men and 675 (58.8%) women, 40.6% had normal MPI, 13.3% near normal and 46.1% abnormal MPI. After follow-up of 929 patients, 97.4% of patients were alive, and 2.6% succumbed to cardiac deaths. Abnormal ejection fraction was related with cardiac events (P = 0.001), but neither transient ischemic dilation (TID) (P = 0.09) nor lung/heart ratio (P = 0.92) showed such relationship. Association between summed difference score (SDS) and soft cardiac events (P < 0.001) was significant. Summed motion score (SMS) and summed thickening score (STS) showed a significant relation with hard cardiac events, including myocardial infarction and cardiac death (P < 0.001 and P = 0.001, respectively). Totally, risk of all cardiac events was significantly higher in abnormal MPI group than normal group (P < 0.001, 0.02, and 0.025, respectively). No significant relationship was found between TID and total cardiac events (P = 0.478). Conclusion: Semiquantitative variables derived from gated SPECT MPI have independent prognostic value. Rate of total cardiac events is higher in patients with higher summed stress score and SDS. Total and hard cardiac events are higher in upper scores of functional parameters (SMS and STS). Total cardiac events are higher in patients with lower left ventricular ejection fraction. PMID:26170566

  4. Brain tissue compartment density estimated using diffusion-weighted MRI yields tissue parameters consistent with histology.

    PubMed

    Sepehrband, Farshid; Clark, Kristi A; Ullmann, Jeremy F P; Kurniawan, Nyoman D; Leanage, Gayeshika; Reutens, David C; Yang, Zhengyi

    2015-09-01

    We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intracellular and intraneurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different subregions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (diffusion MRI: 42 ± 6%, 36 ± 4%, and 43 ± 5%; electron microscopy: 41 ± 10%, 36 ± 8%, and 44 ± 12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers.

  5. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.

    PubMed

    Sarfeld, Anna-Sophia; Diekhoff, Svenja; Wang, Ling E; Liuzzi, Gianpiero; Uludağ, Kamil; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2012-05-01

    Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system.

  6. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  7. Prolonged Cerebral Circulation Time Is the Best Parameter for Predicting Vasospasm during Initial CT Perfusion in Subarachnoid Hemorrhagic Patients

    PubMed Central

    Lin, Chun Fu; Hsu, Sanford P. C.; Lin, Chung Jung; Guo, Wan Yuo; Liao, Chih Hsiang; Chu, Wei Fa; Hung, Sheng Che; Shih, Yang Shin; Lin, Yen Tzu

    2016-01-01

    Purpose We sought to imitate angiographic cerebral circulation time (CCT) and create a similar index from baseline CT perfusion (CTP) to better predict vasospasm in patients with subarachnoid hemorrhage (SAH). Methods Forty-one SAH patients with available DSA and CTP were retrospectively included. The vasospasm group was comprised of patients with deterioration in conscious functioning and newly developed luminal narrowing; remaining cases were classified as the control group. The angiography CCT (XA-CCT) was defined as the difference in TTP (time to peak) between the selected arterial ROIs and the superior sagittal sinus (SSS). Four arterial ROIs were selected to generate four corresponding XA-CCTs: the right and left anterior cerebral arteries (XA-CCTRA2 and XA-CCTLA2) and right- and left-middle cerebral arteries (XA-CCTRM2 and XA-CCTLM2). The CCTs from CTP (CT-CCT) were defined as the differences in TTP from the corresponding arterial ROIs and the SSS. Correlations of the different CCTs were calculated and diagnostic accuracy in predicting vasospasm was evaluated. Results Intra-class correlations ranged from 0.96 to 0.98. The correlations of XA-CCTRA2, XA-CCTRM2, XA-CCTLA2, and XA-CCTLM2 with the corresponding CT-CCTs were 0.64, 0.65, 0.53, and 0.68, respectively. All CCTs were significantly prolonged in the vasospasm group (5.8–6.4 s) except for XA-CCTLA2. CT-CCTA2 of 5.62 was the optimal cut-off value for detecting vasospasm with a sensitivity of 84.2% and specificity 82.4% Conclusion CT-CCTs can be used to interpret cerebral flow without deconvolution algorithms, and outperform both MTT and TTP in predicting vasospasm risk. This finding may help facilitate management of patients with SAH. PMID:26986626

  8. [The Optimal Reconstruction Parameters by Scatter and Attenuation Corrections Using Multi-focus Collimator System in Thallium-201 Myocardial Perfusion SPECT Study].

    PubMed

    Shibutani, Takayuki; Onoguchi, Masahisa; Funayama, Risa; Nakajima, Kenichi; Matsuo, Shinro; Yoneyama, Hiroto; Konishi, Takahiro; Kinuya, Seigo

    2015-11-01

    The aim of this study was to reveal the optimal reconstruction parameters of ordered subset conjugates gradient minimizer (OSCGM) by no correction (NC), attenuation correction (AC), and AC+scatter correction (ACSC) using IQ-single photon emission computed tomography (SPECT) system in thallium-201 myocardial perfusion SPECT. Myocardial phantom acquired two patterns, with or without defect. Myocardial images were performed 5-point scale visual score and quantitative evaluations using contrast, uptake, and uniformity about the subset and update (subset×iteration) of OSCGM and the full width at half maximum (FWHM) of Gaussian filter by three corrections. We decided on optimal reconstruction parameters of OSCGM by three corrections. The number of subsets to create suitable images were 3 or 5 for NC and AC, 2 or 3 for ACSC. The updates to create suitable images were 30 or 40 for NC, 40 or 60 for AC, and 30 for ACSC. Furthermore, the FWHM of Gaussian filters were 9.6 mm or 12 mm for NC and ACSC, 7.2 mm or 9.6 mm for AC. In conclusion, the following optimal reconstruction parameters of OSCGM were decided; NC: subset 5, iteration 8 and FWHM 9.6 mm, AC: subset 5, iteration 8 and FWHM 7.2 mm, ACSC: subset 3, iteration 10 and FWHM 9.6 mm. PMID:26596202

  9. [The Optimal Reconstruction Parameters by Scatter and Attenuation Corrections Using Multi-focus Collimator System in Thallium-201 Myocardial Perfusion SPECT Study].

    PubMed

    Shibutani, Takayuki; Onoguchi, Masahisa; Funayama, Risa; Nakajima, Kenichi; Matsuo, Shinro; Yoneyama, Hiroto; Konishi, Takahiro; Kinuya, Seigo

    2015-11-01

    The aim of this study was to reveal the optimal reconstruction parameters of ordered subset conjugates gradient minimizer (OSCGM) by no correction (NC), attenuation correction (AC), and AC+scatter correction (ACSC) using IQ-single photon emission computed tomography (SPECT) system in thallium-201 myocardial perfusion SPECT. Myocardial phantom acquired two patterns, with or without defect. Myocardial images were performed 5-point scale visual score and quantitative evaluations using contrast, uptake, and uniformity about the subset and update (subset×iteration) of OSCGM and the full width at half maximum (FWHM) of Gaussian filter by three corrections. We decided on optimal reconstruction parameters of OSCGM by three corrections. The number of subsets to create suitable images were 3 or 5 for NC and AC, 2 or 3 for ACSC. The updates to create suitable images were 30 or 40 for NC, 40 or 60 for AC, and 30 for ACSC. Furthermore, the FWHM of Gaussian filters were 9.6 mm or 12 mm for NC and ACSC, 7.2 mm or 9.6 mm for AC. In conclusion, the following optimal reconstruction parameters of OSCGM were decided; NC: subset 5, iteration 8 and FWHM 9.6 mm, AC: subset 5, iteration 8 and FWHM 7.2 mm, ACSC: subset 3, iteration 10 and FWHM 9.6 mm.

  10. Exhaled CO2 Parameters as a Tool to Assess Ventilation-Perfusion Mismatching during Neonatal Resuscitation in a Swine Model of Neonatal Asphyxia

    PubMed Central

    Li, Elliott Shang-shun; Cheung, Po-Yin; O'Reilly, Megan; LaBossiere, Joseph; Lee, Tze-Fun; Cowan, Shaun; Bigam, David L.; Schmölzer, Georg Marcus

    2016-01-01

    Background End-tidal CO2 (ETCO2), partial pressure of exhaled CO2 (PECO2), and volume of expired CO2 (VCO2) can be continuously monitored non-invasively to reflect pulmonary ventilation and perfusion status. Although ETCO2 ≥14mmHg has been shown to be associated with return of an adequate heart rate in neonatal resuscitation and quantifying the PECO2 has the potential to serve as an indicator of resuscitation quality, there is little information regarding capnometric measurement of PECO2 and ETCO2 in detecting return of spontaneous circulation (ROSC) and survivability in asphyxiated neonates receiving cardiopulmonary resuscitation (CPR). Methods Seventeen newborn piglets were anesthetized, intubated, instrumented, and exposed to 45-minute normocapnic hypoxia followed by apnea to induce asphyxia. Protocolized resuscitation was initiated when heart rate decreased to 25% of baseline. Respiratory and hemodynamic parameters including ETCO2, PECO2, VCO2, heart rate, cardiac output, and carotid artery flow were continuously measured and analyzed. Results There were no differences in respiratory and hemodynamic parameters between surviving and non-surviving piglets prior to CPR. Surviving piglets had significantly higher ETCO2, PECO2, VCO2, cardiac index, and carotid artery flow values during CPR compared to non-surviving piglets. Conclusion Surviving piglets had significantly better respiratory and hemodynamic parameters during resuscitation compared to non-surviving piglets. In addition to optimizing resuscitation efforts, capnometry can assist by predicting outcomes of newborns requiring chest compressions. PMID:26766424

  11. Effect of Imaging Parameter Thresholds on MRI Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes

    PubMed Central

    Jones, Ella F.; Newitt, David C.; Kornak, John; Wilmes, Lisa J.; Esserman, Laura J.; Hylton, Nola M.

    2016-01-01

    The purpose of this study is to evaluate the predictive performance of magnetic resonance imaging (MRI) markers in breast cancer patients by subtype. Sixty-four patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy were enrolled in this study. Each patient received a dynamic contrast-enhanced (DCE-MRI) at baseline, after 1 cycle of chemotherapy and before surgery. Functional tumor volume (FTV), the imaging marker measured by DCE-MRI, was computed at various thresholds of percent enhancement (PEt) and signal-enhancement ratio (SERt). Final FTV before surgery and percent changes of FTVs at the early and final treatment time points were used to predict patients’ recurrence-free survival. The full cohort and each subtype defined by the status of hormone receptor and human epidermal growth factor receptor 2 (HR+/HER2-, HER2+, triple negative) were analyzed. Predictions were evaluated using the Cox proportional hazard model when PEt changed from 30% to 200% in steps of 10% and SERt changed from 0 to 2 in steps of 0.2. Predictions with high hazard ratios and low p-values were considered as strong. Different profiles of FTV as predictors for recurrence-free survival were observed in each breast cancer subtype and strong associations with survival were observed at different PEt/SERt combinations that resulted in different FTVs. Findings from this retrospective study suggest that the predictive performance of imaging markers based on FTV may be improved with enhancement thresholds being optimized separately for clinically-relevant subtypes defined by HR and HER2 receptor expression. PMID:26886725

  12. An Exploratory Study Into the Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging or Perfusion Computed Tomography for Detection of Intratumoral Hypoxia in Head-and-Neck Cancer

    SciTech Connect

    Newbold, Kate Castellano, Isabel; Charles-Edwards, Elizabeth; Mears, Dorothy; Sohaib, Aslam; Leach, Martin; Rhys-Evans, Peter; Clarke, Peter; Fisher, Cyril; Harrington, Kevin; Nutting, Christopher

    2009-05-01

    Purpose: Hypoxia in patients with head-and-neck cancer (HNC) is well established and known to cause radiation resistance and treatment failure in the management of HNC. This study examines the role of parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) as surrogate markers of intratumoral hypoxia, defined by using the exogenous marker of hypoxia pimonidazole and the endogenous marker carbonic anhydrase 9 (CA9). Methods and Materials: Patients with HNC underwent preoperative DCE-MRI, perfusion CT, and pimonidazole infusion. Imaging parameters were correlated with pimonidazole and CA9 staining. The strength of correlations was tested by using a two-tailed Spearman's rank correlation coefficient. Results: Twenty-three regions of interest were analyzed from the 7 patients who completed the DCE-MRI studies. A number of statistically significant correlations were seen between DCE-MRI parameters (volume transfer between blood plasma and extracellular extravascular space [EES], volume of EES, rate constant between EES and blood plasma, time at arrival of contrast inflow, time to peak, average gradient, and time to onset) and areas with a pimonidazole score of 4. In the case of CA9 staining, only a weak correlation was shown with wash-in rate. There were no significant correlations between perfusion CT parameters and pimonidazole staining or CA9 expression. Conclusion: Intratumoral hypoxia in patients with HNC may be predicted by using DCE-MRI; however, perfusion CT requires further investigation.

  13. Estimation of the parameter covariance matrix for aone-compartment cardiac perfusion model estimated from a dynamic sequencereconstructed using map iterative reconstruction algorithms

    SciTech Connect

    Gullberg, Grant T.; Huesman, Ronald H.; Reutter, Bryan W.; Qi,Jinyi; Ghosh Roy, Dilip N.

    2004-01-01

    In dynamic cardiac SPECT estimates of kinetic parameters ofa one-compartment perfusion model are usually obtained in a two stepprocess: 1) first a MAP iterative algorithm, which properly models thePoisson statistics and the physics of the data acquisition, reconstructsa sequence of dynamic reconstructions, 2) then kinetic parameters areestimated from time activity curves generated from the dynamicreconstructions. This paper provides a method for calculating thecovariance matrix of the kinetic parameters, which are determined usingweighted least squares fitting that incorporates the estimated varianceand covariance of the dynamic reconstructions. For each transaxial slicesets of sequential tomographic projections are reconstructed into asequence of transaxial reconstructions usingfor each reconstruction inthe time sequence an iterative MAP reconstruction to calculate themaximum a priori reconstructed estimate. Time-activity curves for a sumof activity in a blood region inside the left ventricle and a sum in acardiac tissue region are generated. Also, curves for the variance of thetwo estimates of the sum and for the covariance between the two ROIestimates are generated as a function of time at convergence using anexpression obtained from the fixed-point solution of the statisticalerror of the reconstruction. A one-compartment model is fit to the tissueactivity curves assuming a noisy blood input function to give weightedleast squares estimates of blood volume fraction, wash-in and wash-outrate constants specifying the kinetics of 99mTc-teboroxime for theleftventricular myocardium. Numerical methods are used to calculate thesecond derivative of the chi-square criterion to obtain estimates of thecovariance matrix for the weighted least square parameter estimates. Eventhough the method requires one matrix inverse for each time interval oftomographic acquisition, efficient estimates of the tissue kineticparameters in a dynamic cardiac SPECT study can be obtained with

  14. Assessment of DCE-MRI parameters for brain tumors through implementation of physiologically-based pharmacokinetic model approaches for Gd-DOTA.

    PubMed

    Spanakis, Marios; Kontopodis, Eleftherios; Van Cauter, Sophie; Sakkalis, Vangelis; Marias, Kostas

    2016-10-01

    Dynamic-contrast enhanced magnetic resonance imaging (DCE-MRI) is used for detailed characterization of pathology of lesions sites, such as brain tumors, by quantitative analysis of tracer's data through the use of pharmacokinetic (PK) models. A key component for PK models in DCE-MRI is the estimation of the concentration-time profile of the tracer in a nearby vessel, referred as Arterial Input Function (AIF). The aim of this work was to assess through full body physiologically-based pharmacokinetic (PBPK) model approaches the PK profile of gadoteric acid (Gd-DOTA) and explore potential application for parameter estimation in DCE-MRI based on PBPK-derived AIFs. The PBPK simulations were generated through Simcyp(®) platform and the predicted PK parameters for Gd-DOTA were compared with available clinical data regarding healthy volunteers and renal impairment patients. The assessment of DCE-MRI parameters was implemented by utilizing similar virtual profiles based on gender, age and weight to clinical profiles of patients diagnosed with glioblastoma multiforme. The PBPK-derived AIFs were then used to compute DCE-MRI parameters through the Extended Tofts Model and compared with the corresponding ones derived from image-based AIF computation. The comparison involved: (i) image measured AIF of patients vs AIF of in silico profile, and, (ii) population average AIF vs in silico mean AIFs. The results indicate that PBPK-derived AIFs allowed the estimation of comparable imaging biomarkers with those calculated from typical DCE-MRI image analysis. The incorporation of PBPK models and potential utilization of in silico profiles to real patient data, can provide new perspectives in DCE-MRI parameter estimation and data analysis. PMID:27647272

  15. Assessment of DCE-MRI parameters for brain tumors through implementation of physiologically-based pharmacokinetic model approaches for Gd-DOTA.

    PubMed

    Spanakis, Marios; Kontopodis, Eleftherios; Van Cauter, Sophie; Sakkalis, Vangelis; Marias, Kostas

    2016-10-01

    Dynamic-contrast enhanced magnetic resonance imaging (DCE-MRI) is used for detailed characterization of pathology of lesions sites, such as brain tumors, by quantitative analysis of tracer's data through the use of pharmacokinetic (PK) models. A key component for PK models in DCE-MRI is the estimation of the concentration-time profile of the tracer in a nearby vessel, referred as Arterial Input Function (AIF). The aim of this work was to assess through full body physiologically-based pharmacokinetic (PBPK) model approaches the PK profile of gadoteric acid (Gd-DOTA) and explore potential application for parameter estimation in DCE-MRI based on PBPK-derived AIFs. The PBPK simulations were generated through Simcyp(®) platform and the predicted PK parameters for Gd-DOTA were compared with available clinical data regarding healthy volunteers and renal impairment patients. The assessment of DCE-MRI parameters was implemented by utilizing similar virtual profiles based on gender, age and weight to clinical profiles of patients diagnosed with glioblastoma multiforme. The PBPK-derived AIFs were then used to compute DCE-MRI parameters through the Extended Tofts Model and compared with the corresponding ones derived from image-based AIF computation. The comparison involved: (i) image measured AIF of patients vs AIF of in silico profile, and, (ii) population average AIF vs in silico mean AIFs. The results indicate that PBPK-derived AIFs allowed the estimation of comparable imaging biomarkers with those calculated from typical DCE-MRI image analysis. The incorporation of PBPK models and potential utilization of in silico profiles to real patient data, can provide new perspectives in DCE-MRI parameter estimation and data analysis.

  16. Renal perfusion scintiscan

    MedlinePlus

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  17. Simultaneous measures of kinematics and fMRI: relation between movement parameters and activation maps in healthy subjects

    NASA Astrophysics Data System (ADS)

    Gandolla, M.; Casellato, C.; Ferrante, S.; Ferrigno, G.; Baselli, G.; Molteni, F.; Martegani, A.; Frattini, T.; Pedrocchi, A.

    2010-03-01

    The objective of this study was to identify on healthy subjects the correlation between motor performances and brain activation maps, by the simultaneous use of functional magnetic resonance imaging (fMRI) and optoelectronic motion analysis system. The specific goal was to individuate how amplitude affects the related cerebral flow maps in active, passive and electrical stimulated (FES) movements. Ankle DorsiFlexion (ADF) was chosen as analyzed task because of its importance in the gait cycle. Firstly FES compatibility with fMRI images acquisition was assessed, both for the safety of the subject and of the device, and for mutual disturbances evaluation. We identified the experimental protocol so as to optimize the measured cerebral maps and the repeatability of the results. Intra-subject analysis of movement parameters along with brain activation mapping was performed. First level analysis to compare different execution modalities have been studied and preliminary qualitative results are reported. The long term application is the exploitation of the combined system in the evaluation of neurological patients where the definition of the motor tasks could be only partially accomplished depending on the patient residual functionality.

  18. Synergistic Effects of Hemoglobin and Tumor Perfusion on Tumor Control and Survival in Cervical Cancer

    SciTech Connect

    Mayr, Nina A. Wang, Jian Z.; Zhang Dongqing; Montebello, Joseph F.; Grecula, John C.; Lo, Simon S.; Fowler, Jeffery M.; Yuh, William T.C.

    2009-08-01

    Purpose: The tumor oxygenation status is likely influenced by two major factors: local tumor blood supply (tumor perfusion) and its systemic oxygen carrier, hemoglobin (Hgb). Each has been independently shown to affect the radiotherapy (RT) outcome in cervical cancer. This study assessed the effect of local tumor perfusion, systemic Hgb levels, and their combination on the treatment outcome in cervical cancer. Methods and Materials: A total of 88 patients with cervical cancer, Stage IB2-IVA, who were treated with RT/chemotherapy, underwent serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) before RT, at 20-22 Gy, and at 45-50 Gy. The DCE-MRI perfusion parameters, mean and lowest 10th percentile of the signal intensity distribution in the tumor pixels, and the Hgb levels, including pre-RT, nadir, and mean Hgb (average of weekly Hgb during RT), were correlated with local control and disease-specific survival. The median follow-up was 4.6 years. Results: Local recurrence predominated in the group with both a low mean Hgb (<11.2 g/dL) and low perfusion (lowest 10th percentile of signal intensity <2.0 at 20-22 Gy), with a 5-year local control rate of 60% vs. 90% for all other groups (p = .001) and a disease-specific survival rate of 41% vs. 72% (p = .008), respectively. In the group with both high mean Hgb and high perfusion, the 5-year local control rate and disease-specific survival rate was 100% and 78%, respectively. Conclusion: These results suggest that the compounded effects of Hgb level and tumor perfusion during RT influence the radioresponsiveness and survival in cervical cancer patients. The outcome was worst when both were impaired. The management of Hgb may be particularly important in patients with low tumor perfusion.

  19. Challenges for non-invasive brain perfusion quantification using arterial spin labeling.

    PubMed

    Sousa, I; Santos, N; Sanches, J; Figueiredo, P

    2011-03-29

    Arterial Spin Labeling (ASL) sequences for perfusion Magnetic Resonance Imaging (MRI) have recently become available to be used in the clinical practice, offering a completely non-invasive technique for the quantitative evaluation of brain perfusion. Despite its great potential, ASL perfusion imaging still presents important methodological challenges before its incorporation in routine protocols. Specifically, in some pathological conditions in which the cerebrovascular dynamics is altered, the standard application of ASL may lead to measurement errors. In these cases, it would be possible to estimate perfusion, as well as arterial transit times, by collecting images at multiple time points and then fitting a mathematical model to the data. This approach can be optimized by selecting a set of optimal imaging time points and incorporating knowledge about the physiological distributions of the parameters into the model estimation procedures. In this study, we address the challenges that arise in the measurement of brain perfusion using PASL, due to variations in the arterial transit times, by estimating the errors produced using different types of acquisitions and proposing methods for minimizing such errors. We show by simulation that multiple inversion time ASL acquisitions are expected to reduce measurement errors relative to standard approaches. In data collected from a group of subjects, we further observed reduced inter-subject variability in perfusion measurements when using a multiple versus single inversion time acquisitions. Both measurement errors and variability were further reduced if optimized acquisition and analysis techniques were employed.

  20. Challenges for non-invasive brain perfusion quantification using arterial spin labeling.

    PubMed

    Sousa, I; Santos, N; Sanches, J; Figueiredo, P

    2011-03-29

    Arterial Spin Labeling (ASL) sequences for perfusion Magnetic Resonance Imaging (MRI) have recently become available to be used in the clinical practice, offering a completely non-invasive technique for the quantitative evaluation of brain perfusion. Despite its great potential, ASL perfusion imaging still presents important methodological challenges before its incorporation in routine protocols. Specifically, in some pathological conditions in which the cerebrovascular dynamics is altered, the standard application of ASL may lead to measurement errors. In these cases, it would be possible to estimate perfusion, as well as arterial transit times, by collecting images at multiple time points and then fitting a mathematical model to the data. This approach can be optimized by selecting a set of optimal imaging time points and incorporating knowledge about the physiological distributions of the parameters into the model estimation procedures. In this study, we address the challenges that arise in the measurement of brain perfusion using PASL, due to variations in the arterial transit times, by estimating the errors produced using different types of acquisitions and proposing methods for minimizing such errors. We show by simulation that multiple inversion time ASL acquisitions are expected to reduce measurement errors relative to standard approaches. In data collected from a group of subjects, we further observed reduced inter-subject variability in perfusion measurements when using a multiple versus single inversion time acquisitions. Both measurement errors and variability were further reduced if optimized acquisition and analysis techniques were employed. PMID:24059574

  1. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling.

    PubMed

    Wong, E C; Buxton, R B; Frank, L R

    1997-01-01

    We describe here experimental considerations in the implementation of quantitative perfusion imaging techniques for functional MRI using pulsed arterial spin labeling. Three tagging techniques: EPISTAR, PICORE, and FAIR are found to give very similar perfusion results despite large differences in static tissue contrast. Two major sources of systematic error in the perfusion measurement are identified: the transit delay from the tagging region to the imaging slice; and the inclusion of intravascular tagged signal. A modified technique called QUIPSS II is described that decreases sensitivity to these effects by explicitly controlling the time width of the tag bolus and imaging after the bolus is entirely deposited into the slice. With appropriate saturation pulses the pulse sequence can be arranged so as to allow for simultaneous collection of perfusion and BOLD data that can be cleanly separated. Such perfusion and BOLD signals reveal differences in spatial location and dynamics that may be useful both for functional brain mapping and for study of the BOLD contrast mechanism. The implementation of multislice perfusion imaging introduces additional complications, primarily in the elimination of signal from static tissue. In pulsed ASL, this appears to be related to the slice profile of the inversion tag pulse in the presence of relaxation, rather than magnetization transfer effects as in continuous arterial spin labeling, and can be alleviated with careful adjustment of inversion pulse parameters. PMID:9430354

  2. Dynamic determination of kinetic parameters for the interaction between polypeptide hormones and cell-surface receptors in the perfused rat liver by the multiple-indicator dilution method

    SciTech Connect

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Sakamoto, S.; Fuwa, T.; Hanano, M. )

    1988-11-01

    Hepatic elimination of epidermal growth factor (EGF) via receptor-mediated endocytosis was studied by a multiple-indicator dilution method in the isolated perfused rat liver, in which cell polarity and spatial organization are maintained. In this method EGF was given with inulin, an extracellular reference, as a bolus into the portal vein, and dilution curves of both compounds in the hepatic vein effluent were analyzed. Analysis of the dilution curve for EGF, compared with that for somatostatin, which showed no specific binding to isolated liver plasma membranes, resulted as follows: (i) both extraction ratio and distribution volume of {sup 125}I-labeled EGF decreased as the injected amount of unlabeled EGF increased; (ii) the ratio plot of the dilution curve for EGF exhibited an upward straight line initially for a short period of time, whereas the ratio plot of somatostatin gradually decreased. The multiple-indicator dilution method was used for other peptides also. Insulin and glucagon, known to have hepatocyte receptors, behaved similarly to EGF in shape of their ratio plots. The kinetic parameters calculated by this analysis were comparable with reported values obtained by in vitro direct binding measurements at equilibrium using liver homogenates. They conclude that the multiple-indicator dilution method is a good tool for analyzing the dynamics of peptide hormones-cell-surface receptor interaction under a condition in which spatial architecture of the liver is maintained.

  3. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging. PMID:25920367

  4. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Lee, Deok Hee

    2016-01-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions. PMID:27390537

  5. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications.

    PubMed

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Lee, Deok Hee; Yang, Dong Hyun; Kim, Namkug

    2016-01-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions. PMID:27390537

  6. Digital angiographic impulse response analysis of regional myocardial perfusion: linearity, reproducibility, accuracy, and comparison with conventional indicator dilution curve parameters in phantom and canine models.

    PubMed

    Eigler, N L; Pfaff, J M; Zeiher, A; Whiting, J S; Forrester, J S

    1989-05-01

    The system mean transit time (Tsys) of the impulse response function describing contrast material transit through the coronary circulation was determined from serial digital angiographic images. The linearity, reproducibility, and relations with regional myocardial perfusion and conventional time-density curve parameters, time to peak concentration (TPC), and exponential washout rate (k) were assessed in a dynamic flow x-ray phantom (n = 46) and in six open-chest dogs (n = 102) while coronary flow was altered by stenosis and/or hyperemic stimuli. In the phantom studies, the inverse of the system mean transit time (Tsys-1) closely predicted flow/volume (r = 0.99, slope = 0.99). In dogs, Tsys-1 was independent of the shape of the contrast bolus injection (single or double-peaked), class of contrast agent (ionic or nonionic), the type of hyperemic stimulus (dipyridamole, dipyridamole plus norepinephrine, transient total occlusion, or ionic contrast media), and was highly reproducible between adjacent myocardial regions served by the same artery (r = 0.98 +/- 0.01). There was a strong correlation between Tsys-1 and regional coronary flow for stenotic and/or hyperemic vessels (r = 0.94, distribution volume = 14.9 ml/100 g) over a wide range (0-514 ml/min/100 g). Tsys-1 performed better than conventional time-density curve parameters TPC-1 and k for predicting phantom flow/volume ratios and regional myocardial blood flow in the dog. These data suggest that both digital coronary angiography and coronary contrast transit can be modeled as linear systems and that impulse response analysis may provide accurate and reproducible estimates of regional myocardial blood flow.

  7. Outcome Prediction After Surgery and Chemoradiation of Squamous Cell Carcinoma in the Oral Cavity, Oropharynx, and Hypopharynx: Use of Baseline Perfusion CT Microcirculatory Parameters vs. Tumor Volume

    SciTech Connect

    Bisdas, Sotirios; Nguyen, Shaun A.; Anand, Sharma K.; Glavina, Gordana; Day, Terry; Rumboldt, Zoran

    2009-04-01

    Purpose: To assess whether pretreatment perfusion computed tomography (PCT) may predict outcome in chemoradiated patients with oral cavity, oropharynx, and hypopharynx squamous cell carcinoma (SCCA) after surgical excision. Materials and Methods: Twenty-one patients with SCCA were examined before treatment. The primary site was oral cavity in 6, oropharynx in 7, and hypopharynx in 8 patients; there were 11 T2, 6 T3, and 4 T4 tumors. PCT was performed at the level of largest tumor diameter based on standard neck CT. The data were processed to obtain blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface area product (PS). Regions of interest were free-hand positioned on the lesions to obtain PCT measurements. Tumor volume was also calculated. Follow-up was performed with positron emission tomography (PET)/CT and endoscopy. Pearson correlation coefficient was used for comparison between the subgroups. A regression model was constructed to predict recurrence based on the following predictors: age, gender, tumor (T) and nodal (N) stage, tumor volume, and PCT parameters. Results: BF{sub mean}, BF{sub max}, BV{sub mean}, BV{sub max}, MTT{sub mean}, PS{sub mean}, and PS{sub max} were significantly different between patients with and without tumor recurrence (0.0001, p < 0.04). T stage, tumor volume, N stage, BF{sub max}, BV{sub max}, MTT{sub mean}, and radiation dose (p < 0.001) were independent predictors for recurrence. Cox proportional hazards model for tumor recurrence revealed significantly increased risk with high tumor volume (p = 0.00001, relative risk [RR] 7.4), low PS{sub mean} (p = 0.0001, RR 14.3), and low BF{sub max} (p = 0.002, RR 5.9). Conclusions: Our data suggest that PCT parameters have a prognostic role in patients with SCCA.

  8. Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer

    SciTech Connect

    Kierkels, Roel G.J.; Backes, Walter H.; Janssen, Marco H.M.; Buijsen, Jeroen; Beets-Tan, Regina G.H.; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.; Aerts, Hugo J.W.L.

    2010-06-01

    Purpose: To compare pretreatment scans with perfusion computed tomography (pCT) vs. dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal tumors. Methods and Materials: Nineteen patients diagnosed with rectal cancer were included in this prospective study. All patients underwent both pCT and DCE-MRI. Imaging was performed on a dedicated 40-slice CT-positron emission tomography system and a 3-T MRI system. Dynamic contrast enhancement was measured in tumor tissue and the external iliac artery. Tumor perfusion was quantified in terms of pharmacokinetic parameters: transfer constant K{sup trans}, fractional extravascular-extracellular space v{sub e}, and fractional plasma volume v{sub p}. Pharmacokinetic parameter values and their heterogeneity (by 80% quantile value) were compared between pCT and DCE-MRI. Results: Tumor K{sup trans} values correlated significantly for the voxel-by-voxel-derived median (Kendall's tau correlation, tau = 0.81, p < 0.001) and 80% quantile (tau = 0.54, p = 0.04), as well as for the averaged uptake (tau = 0.58, p = 0.03). However, no significant correlations were found for v{sub e} and v{sub p} derived from the voxel-by-voxel-derived median and 80% quantile and derived from the averaged uptake curves. Conclusions: This study demonstrated for the first time that pCT provides K{sup trans} values comparable to those of DCE-MRI. However, no correlation was found for the v{sub e} and v{sub p} parameters between CT and MRI. Computed tomography can serve as an alternative modality to MRI for the in vivo evaluation of tumor angiogenesis in terms of the transfer constant K{sup trans}.

  9. DCE-MRI in hepatocellular carcinoma-clinical and therapeutic image biomarker

    PubMed Central

    Chen, Bang-Bin; Shih, Tiffany Ting-Fang

    2014-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables tumor vascular physiology to be assessed. Within the tumor tissue, contrast agents (gadolinium chelates) extravasate from intravascular into the extravascular extracellular space (EES), which results in a signal increase on T1-weighted MRI. The rate of contrast agents extravasation to EES in the tumor tissue is determined by vessel leakiness and blood flow. Thus, the signal measured on DCE-MRI represents a combination of permeability and perfusion. The semi-quantitative analysis is based on the calculation of heuristic parameters that can be extracted from signal intensity-time curves. These enhancing curves can also be deconvoluted by mathematical modeling to extract quantitative parameters that may reflect tumor perfusion, vascular volume, vessel permeability and angiogenesis. Because hepatocellular carcinoma (HCC) is a hypervascular tumor, many emerging therapies focused on the inhibition of angiogenesis. DCE-MRI combined with a pharmacokinetic model allows us to produce highly reproducible and reliable parametric maps of quantitative parameters in HCC. Successful therapies change quantitative parameters of DCE-MRI, which may be used as early indicators of tumor response to anti-angiogenesis agents that modulate tumor vasculature. In the setting of clinical trials, DCE-MRI may provide relevant clinical information on the pharmacodynamic and biologic effects of novel drugs, monitor treatment response and predict survival outcome in HCC patients. PMID:24695624

  10. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival.

  11. The relationship between naming reaction time and functional MRI parameters in Broca's area.

    PubMed

    Cummine, Jacqueline; Borowsky, Ron; Vakorin, Vasily; Bird, Jeff; Sarty, Gordon

    2008-07-01

    We examined the correlation between behavioural reaction time and functional imaging parameters of the blood oxygenated level dependent (BOLD) response in Broca's Area during a word identification task, and whether the correlation [Magnetic Resonance Imaging 22 (2004) 451-455] varies as a function of four stimulus types: regular words (REGs) (e.g., hint), irregular words (IRRs) (e.g., pint), nonwords (NWs) (e.g., bint), and pseudohomophones (PHs) (e.g., pynt). Participants named letter strings aloud during a functional magnetic resonance imaging study. Naming reaction times were recorded during regular gaps in image acquisition, and BOLD parameters were extracted via a Tikhonov regularized BOLD analysis technique. The results revealed that only PH reaction times were correlated with BOLD width, providing evidence that Broca's area supports phonetic decoding accompanied with phonological lexical access. In addition, we advanced the development of equation-based models of cognitive behaviour and neurophysiology, whereby we showed that the relationship of mathematical independence that exists for predicting REG accuracy, given IRR and NW or PH naming accuracy, was present for naming reaction time, BOLD width, BOLD time to peak, and BOLD intensity. Therefore, we provide converging behavioural and neuroanatomical evidence for a mathematically independent relationship between sight vocabulary and phonetic decoding systems, consistent with a dual-route model of reading.

  12. Characterization of bone perfusion by dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography in the Dunkin-Hartley guinea pig model of advanced osteoarthritis.

    PubMed

    Dyke, Jonathan P; Synan, Michael; Ezell, Paula; Ballon, Douglas; Racine, Jennifer; Aaron, Roy K

    2015-03-01

    This study characterizes changes in subchondral bone circulation in OA and examines relationships to bone structure and cartilage degeneration in Dunkin-Hartley guinea pigs. We have used dynamic contrast-enhanced MRI (DCE-MRI) and PET, with pharmacokinetic modeling, to characterize subchondral bone perfusion. Assessments are made of perfusion kinetics and vascular permeability by MRI, and blood volume and flow, and radionuclide incorporation into bone, by PET. These parameters are compared to cartilage lesion severity and bone histomorphometry. Assessments of intraosseous thrombi are made morphologically. Prolonged signal enhancement during the clearance phase of MRI correlated with OA severity and suggested venous stasis. Vascular permeability was not increased indicating that transvascular migration of contrast agent was not responsible for signal enhancement. Intraosseous thrombi were not observed. Decreased perfusion associated with severe OA was confirmed by PET and was associated with reduced radionuclide incorporation and osteoporosis. MRI and PET can be used to characterize kinetic parameters of circulation in OA and correlate them with subchondral bone metabolism of interest to the pathophysiology of OA. The significance of these observations may lie in alterations induced in the expression of cytokines by OA osteoblasts that are related to bone remodeling and cartilage breakdown.

  13. Characterization of Bone Perfusion by Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Positron Emission Tomography in the Dunkin-Hartley Guinea Pig Model of Advanced Osteoarthritis

    PubMed Central

    Dyke, Jonathan P.; Synan, Michael; Ezell, Paula; Ballon, Douglas; Racine, Jennifer; Aaron, Roy K.

    2014-01-01

    Purpose This study characterizes changes in subchondral bone circulation in OA and examines relationships to bone structure and cartilage degeneration in Dunkin-Hartley guinea pigs. Methods We have used dynamic contrast-enhanced MRI (DCE-MRI) and PET, with pharmacokinetic modeling, to characterize subchondral bone perfusion. Assessments are made of perfusion kinetics and vascular permeability by MRI, and blood volume and flow, and radionuclide incorporation into bone, by PET. These parameters are compared to cartilage lesion severity and bone histomorphometry. Assessments of intraosseous thrombi are made morphologically. Results Prolonged signal enhancement during the clearance phase of MRI correlated with OA severity and suggested venous stasis. Vascular permeability was not increased indicating that transvascular migration of contrast agent was not responsible for signal enhancement. Intraosseous thrombi were not observed. Decreased perfusion associated with severe OA was confirmed by PET and was associated with reduced radionuclide incorporation and osteoporosis. Discussion MRI and PET can be used to characterize kinetic parameters of circulation in OA and correlate them with subchondral bone metabolism of interest to the pathophysiology of OA. The significance of these observations may lie in alterations induced in the expression of cytokines by OA osteoblasts that are related to bone remodeling and cartilage breakdown. PMID:25410523

  14. Regional Reproducibility of BOLD Calibration Parameter M, OEF and Resting-State CMRO2 Measurements with QUO2 MRI.

    PubMed

    Lajoie, Isabelle; Tancredi, Felipe B; Hoge, Richard D

    2016-01-01

    The current generation of calibrated MRI methods goes beyond simple localization of task-related responses to allow the mapping of resting-state cerebral metabolic rate of oxygen (CMRO2) in micromolar units and estimation of oxygen extraction fraction (OEF). Prior to the adoption of such techniques in neuroscience research applications, knowledge about the precision and accuracy of absolute estimates of CMRO2 and OEF is crucial and remains unexplored to this day. In this study, we addressed the question of methodological precision by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD calibration parameter M, OEF, O2 delivery and absolute CMRO2 estimates derived from a state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2) approach. We acquired simultaneous measurements of CBF and R2* at rest and during periods of hypercapnia (HC) and hyperoxia (HO) on two separate scan sessions within 24 hours using a clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO2, were estimated from the measured end-tidal O2, CBF0, CBFHC/HO and R2*HC/HO. Variability was assessed by computing the between-subject coefficients of variation (bwCV) and within-subject CV (wsCV) in seven ROIs. All tests GM-averaged values of CBF0, M, OEF, O2 delivery and CMRO2 were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 μmol/100 g/min and 143 ± 34 μmol/100 g/min respectively. The variability of parameter estimates was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions. Among the MRI measurements, the most reproducible across scans was R2*0 (wsCVGM = 0.33%) along with CBF0 (wsCVGM = 3.88%) and R2*HC (wsCVGM = 6.7%). CBFHC and R2*HO were found to have a higher intra-subject variability (wsCVGM = 22.4% and wsCVGM = 16% respectively), which is likely due to propagation of random measurement errors, especially for CBFHC due to the low

  15. Regional Reproducibility of BOLD Calibration Parameter M, OEF and Resting-State CMRO2 Measurements with QUO2 MRI.

    PubMed

    Lajoie, Isabelle; Tancredi, Felipe B; Hoge, Richard D

    2016-01-01

    The current generation of calibrated MRI methods goes beyond simple localization of task-related responses to allow the mapping of resting-state cerebral metabolic rate of oxygen (CMRO2) in micromolar units and estimation of oxygen extraction fraction (OEF). Prior to the adoption of such techniques in neuroscience research applications, knowledge about the precision and accuracy of absolute estimates of CMRO2 and OEF is crucial and remains unexplored to this day. In this study, we addressed the question of methodological precision by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD calibration parameter M, OEF, O2 delivery and absolute CMRO2 estimates derived from a state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2) approach. We acquired simultaneous measurements of CBF and R2* at rest and during periods of hypercapnia (HC) and hyperoxia (HO) on two separate scan sessions within 24 hours using a clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO2, were estimated from the measured end-tidal O2, CBF0, CBFHC/HO and R2*HC/HO. Variability was assessed by computing the between-subject coefficients of variation (bwCV) and within-subject CV (wsCV) in seven ROIs. All tests GM-averaged values of CBF0, M, OEF, O2 delivery and CMRO2 were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 μmol/100 g/min and 143 ± 34 μmol/100 g/min respectively. The variability of parameter estimates was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions. Among the MRI measurements, the most reproducible across scans was R2*0 (wsCVGM = 0.33%) along with CBF0 (wsCVGM = 3.88%) and R2*HC (wsCVGM = 6.7%). CBFHC and R2*HO were found to have a higher intra-subject variability (wsCVGM = 22.4% and wsCVGM = 16% respectively), which is likely due to propagation of random measurement errors, especially for CBFHC due to the low

  16. Regional Reproducibility of BOLD Calibration Parameter M, OEF and Resting-State CMRO2 Measurements with QUO2 MRI

    PubMed Central

    Lajoie, Isabelle; Tancredi, Felipe B.; Hoge, Richard D.

    2016-01-01

    The current generation of calibrated MRI methods goes beyond simple localization of task-related responses to allow the mapping of resting-state cerebral metabolic rate of oxygen (CMRO2) in micromolar units and estimation of oxygen extraction fraction (OEF). Prior to the adoption of such techniques in neuroscience research applications, knowledge about the precision and accuracy of absolute estimates of CMRO2 and OEF is crucial and remains unexplored to this day. In this study, we addressed the question of methodological precision by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD calibration parameter M, OEF, O2 delivery and absolute CMRO2 estimates derived from a state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2) approach. We acquired simultaneous measurements of CBF and R2* at rest and during periods of hypercapnia (HC) and hyperoxia (HO) on two separate scan sessions within 24 hours using a clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO2, were estimated from the measured end-tidal O2, CBF0, CBFHC/HO and R2*HC/HO. Variability was assessed by computing the between-subject coefficients of variation (bwCV) and within-subject CV (wsCV) in seven ROIs. All tests GM-averaged values of CBF0, M, OEF, O2 delivery and CMRO2 were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 μmol/100 g/min and 143 ± 34 μmol/100 g/min respectively. The variability of parameter estimates was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions. Among the MRI measurements, the most reproducible across scans was R2*0 (wsCVGM = 0.33%) along with CBF0 (wsCVGM = 3.88%) and R2*HC (wsCVGM = 6.7%). CBFHC and R2*HO were found to have a higher intra-subject variability (wsCVGM = 22.4% and wsCVGM = 16% respectively), which is likely due to propagation of random measurement errors, especially for CBFHC due to the low

  17. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  18. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0 T: a pilot study

    PubMed Central

    Pineda, F D; Medved, M; Fan, X; Ivancevic, M K; Abe, H; Shimauchi, A; Newstead, G M

    2015-01-01

    Objective: To compare dynamic contrast-enhanced (DCE) MRI parameters from scans of breast lesions at 1.5 and 3.0 T. Methods: 11 patients underwent paired MRI examinations in both Philips 1.5 and 3.0 T systems (Best, Netherlands) using a standard clinical fat-suppressed, T1 weighted DCE-MRI protocol, with 70–76 s temporal resolution. Signal intensity vs time curves were fit with an empirical mathematical model to obtain semi-quantitative measures of uptake and washout rates as well as time-to-peak enhancement (TTP). Maximum percent enhancement and signal enhancement ratio (SER) were also measured for each lesion. Percent differences between parameters measured at the two field strengths were compared. Results: TTP and SER parameters measured at 1.5 and 3.0 T were similar; with mean absolute differences of 19% and 22%, respectively. Maximum percent signal enhancement was significantly higher at 3 T than at 1.5 T (p = 0.006). Qualitative assessment showed that image quality was significantly higher at 3 T (p = 0.005). Conclusion: Our results suggest that TTP and SER are more robust to field strength change than other measured kinetic parameters, and therefore measurements of these parameters can be more easily standardized than measurements of other parameters derived from DCE-MRI. Semi-quantitative measures of overall kinetic curve shape showed higher reproducibility than do discrete classification of kinetic curve early and delayed phases in a majority of the cases studied. Advances in knowledge: Qualitative measures of curve shape are not consistent across field strength even when acquisition parameters are standardized. Quantitative measures of overall kinetic curve shape, by contrast, have higher reproducibility. PMID:25785918

  19. DCE-MRI-Derived Parameters in Evaluating Abraxane-Induced Early Vascular Response and the Effectiveness of Its Synergistic Interaction with Cisplatin.

    PubMed

    Sun, Xilin; Yang, Lili; Yan, Xuefeng; Sun, Yingying; Zhao, Dongliang; Ji, Yang; Wang, Kai; Chen, Xiaoyuan; Shen, Baozhong

    2016-01-01

    Our previous studies revealed molecular alterations of tumor vessels, varying from immature to mature alterations, resulting from Abraxane, and demonstrated that the integrin-specific PET tracer 18F-FPPRGD2 can be used to noninvasively monitor such changes. However, changes in the tumor vasculature at functional levels such as perfusion and permeability are also important for monitoring Abraxane treatment outcomes in patients with cancer. The purpose of this study is to further investigate the vascular response during Abraxane therapy and the effectiveness of its synergistic interaction with cisplatin using Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI). Thirty MDA-MB-435 tumor mice were randomized into three groups: PBS control (C group), Abraxane only (A group), and sequential treatment with Abraxane followed by cisplatin (A-P group). Tumor volume was monitored based on caliper measurements. A DCE-MRI protocol was performed at baseline and day 3. The Ktrans, Kep and Ve were calculated and compared with CD31, α-SMA, and Ki67 histology data. Sequential treatment with Abraxane followed by cisplatin produced a significantly greater inhibition of tumor growth during the three weeks of the observation period. Decreases in Ktrans and Kep for the A and A-P groups were observed on day 3. Immunohistological staining suggested vascular remodeling during the Abraxane therapy. The changes in Ktrans and Kep values were correlated with alterations in the permeability of the tumor vasculature induced by the Abraxane treatment. In conclusion, Abraxane-mediated permeability variations in tumor vasculature can be quantitatively visualized by DCE-MRI, making this a useful method for studying the effects of early cancer treatment, especially the early vascular response. Vascular remodeling by Abraxane improves the efficiency of cisplatin delivery and thus results in a favorable treatment outcome. PMID:27632532

  20. DCE-MRI-Derived Parameters in Evaluating Abraxane-Induced Early Vascular Response and the Effectiveness of Its Synergistic Interaction with Cisplatin

    PubMed Central

    Sun, Xilin; Yang, Lili; Yan, Xuefeng; Sun, Yingying; Zhao, Dongliang; Ji, Yang; Wang, Kai; Chen, Xiaoyuan; Shen, Baozhong

    2016-01-01

    Our previous studies revealed molecular alterations of tumor vessels, varying from immature to mature alterations, resulting from Abraxane, and demonstrated that the integrin-specific PET tracer 18F-FPPRGD2 can be used to noninvasively monitor such changes. However, changes in the tumor vasculature at functional levels such as perfusion and permeability are also important for monitoring Abraxane treatment outcomes in patients with cancer. The purpose of this study is to further investigate the vascular response during Abraxane therapy and the effectiveness of its synergistic interaction with cisplatin using Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI). Thirty MDA-MB-435 tumor mice were randomized into three groups: PBS control (C group), Abraxane only (A group), and sequential treatment with Abraxane followed by cisplatin (A-P group). Tumor volume was monitored based on caliper measurements. A DCE-MRI protocol was performed at baseline and day 3. The Ktrans, Kep and Ve were calculated and compared with CD31, α-SMA, and Ki67 histology data. Sequential treatment with Abraxane followed by cisplatin produced a significantly greater inhibition of tumor growth during the three weeks of the observation period. Decreases in Ktrans and Kep for the A and A-P groups were observed on day 3. Immunohistological staining suggested vascular remodeling during the Abraxane therapy. The changes in Ktrans and Kep values were correlated with alterations in the permeability of the tumor vasculature induced by the Abraxane treatment. In conclusion, Abraxane-mediated permeability variations in tumor vasculature can be quantitatively visualized by DCE-MRI, making this a useful method for studying the effects of early cancer treatment, especially the early vascular response. Vascular remodeling by Abraxane improves the efficiency of cisplatin delivery and thus results in a favorable treatment outcome. PMID:27632532

  1. Glial fibrillary acidic protein (GFAP) immunoreactivity correlates with cortical perfusion parameters determined by bolus tracking arterial spin labelling (bt-ASL) magnetic resonance (MR) imaging in the Wistar Kyoto rat.

    PubMed

    Gormley, Shane; Rouine, Jennifer; McIntosh, Allison; Kerskens, Christian; Harkin, Andrew

    2016-06-01

    Alterations in astrocyte number and function have been implicated in the pathophysiology of a number of psychiatric disorders. The development of magnetic resonance imaging (MRI) as a tool in the animal laboratory has enabled an investigation of the relationship between pathological and neuroimaging markers in animal models. However the physiological processes which underlie these markers and their role in mediating behavioural deficits is still poorly understood. Rodent models have provided us with important insights into physiological and cellular mechanisms which may mediate anxiety and depression-related behaviours. The Wistar-Kyoto (WKY) rat is a strain which endogenously expresses highly anxious and depressive-like behaviours and has previously been reported to exhibit alterations in immunoreactivity for the astrocytic marker glial fibrillary acidic protein (GFAP) in brain sub-regions relative to more stress resilient out-bred strains. Here we report that the depressive and anxiety-like behaviours exhibited by the WKY rat strain are associated with alterations in brain morphology including a decrease in hippocampal volume, coupled with reduced resting state frontal cortical perfusion as assessed by MR bolus tracking arterial spin labelling (bt-ASL) relative to the out-bred Wistar strain. Pre-limbic cortical GFAP immunoreactivity and astrocyte cell number were positively correlated with cortical blood perfusion in the WKY strain. These experiments provide a link between pathological and neuroimaging markers of aberrant astrocytic function and add validity to the WKY rat as a model for co-morbid anxiety and depression.

  2. Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis

    PubMed Central

    Pinter, Daniela; Khalil, Michael; Pichler, Alexander; Langkammer, Christian; Ropele, Stefan; Marschik, Peter B.; Fuchs, Siegrid; Fazekas, Franz; Enzinger, Christian

    2015-01-01

    Objective While many studies correlated cognitive function with changes in brain morphology in multiple sclerosis (MS), few of them used a multi-parametric approach in a single dataset so far. We thus here assessed the predictive value of different conventional and quantitative MRI-parameters both for overall and domain-specific cognitive performance in MS patients from a single center. Methods 69 patients (17 clinically isolated syndrome, 47 relapsing–remitting MS, 5 secondary-progressive MS) underwent the “Brief Repeatable Battery of Neuropsychological Tests” assessing overall cognition, cognitive efficiency and memory function as well as MRI at 3 Tesla to obtain T2-lesion load (T2-LL), normalized brain volume (global brain volume loss), normalized cortical volume (NCV), normalized thalamic volume (NTV), normalized hippocampal volume (NHV), normalized caudate nuclei volume (NCNV), basal ganglia R2* values (iron deposition) and magnetization transfer ratios (MTRs) for cortex and normal appearing brain tissue (NABT). Results Regression models including clinical, demographic variables and MRI-parameters explained 22–27% of variance of overall cognition, 17–26% of cognitive efficiency and 22–23% of memory. NCV, T2-LL and MTR of NABT were the strongest predictors of overall cognitive function. Cognitive efficiency was best predicted by NCV, T2-LL and iron deposition in the basal ganglia. NTV was the strongest predictor for memory function and NHV was particularly related to memory function. Conclusions The predictive value of distinct MRI-parameters differs for specific domains of cognitive function, with a greater impact of cortical volume, focal and diffuse white matter abnormalities on overall cognitive function, an additional role of basal ganglia iron deposition on cognitive efficiency, and thalamic and hippocampal volume on memory function. This suggests the usefulness of using multiparametric MRI to assess (micro)structural correlates of different

  3. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  4. Automatic quantitative analysis of cardiac MR perfusion images

    NASA Astrophysics Data System (ADS)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  5. Influence of pulse sequence parameters at 1.5 T and 3.0 T on MRI artefacts produced by metal–ceramic restorations

    PubMed Central

    Abdala-Junior, R; Weber, M; Arita, E S; Ackerman, J L

    2015-01-01

    Objectives: Susceptibility artefacts from dental materials may compromise MRI diagnosis. However, little is known regarding MRI artefacts of dental material samples with the clinical shapes used in dentistry. The present phantom study aims to clarify how pulse sequences and sequence parameters affect MRI artefacts caused by metal–ceramic restorations. Methods: A phantom consisting of nickel–chromium metal–ceramic restorations (i.e. dental crowns and fixed bridges) and cylindrical reference specimens immersed in agar gel was imaged in 1.5 and 3.0 T MRI scanners. Gradient echo (GRE), spin echo (SE) and ultrashort echo time (UTE) pulse sequences were used. The artefact area in each image was automatically calculated from the pixel values within a region of interest. Mean values for similar pulse sequences differing in one parameter at a time were compared. A comparison between mean artefact area at 1.5 and 3.0 T, and from GRE and SE was also carried out. In addition, a parametric correlation between echo time (TE) and artefact area was performed. Results: A significant correlation was found between TE and artefact area in GRE images. Higher receiver bandwidth significantly reduced artefact area in SE images. UTE images yielded the smallest artefact area at 1.5 T. In addition, a significant difference in mean artefact area was found between images at 1.5 and 3.0 T field strengths (p = 0.028) and between images from GRE and SE pulse sequences (p = 0.005). Conclusions: It is possible to compensate the effect of higher field strength on MRI artefacts by setting optimized pulse sequences for scanning patients with metal–ceramic restorations. PMID:26084475

  6. Evaluation of perfusion-related and true diffusion in vertebral bone marrow: a preliminary study.

    PubMed

    Ohno, Naoki; Miyati, Tosiaki; Kasai, Harumasa; Arai, Nobuyuki; Kawano, Makoto; Shibamoto, Yuta; Kobayashi, Satoshi; Gabata, Toshifumi; Matsui, Osamu

    2015-01-01

    Our aim in this study was to obtain noninvasively more detailed information on perfusion and diffusion in vertebral bone marrow. We analyzed two diffusion components using a biexponential function. Eleven healthy volunteers were examined. By a 1.5-T MRI, we performed single-shot diffusion magnetic resonance imaging to acquire diffusion-weighted images (DWIs) with multiple b values. We determined perfusion-related diffusion and true diffusion coefficients (D* and D), the fraction of the perfusion-related diffusion component (F), and the apparent diffusion coefficient (ADC) in the lumbar vertebral body. Then, we compared these diffusion parameters with the bone mineral density (BMD) obtained with dual-energy X-ray absorptiometry. Moreover, the fat fraction (FF) of the bone marrow was calculated by use of double gradient-echo images with and without spectral adiabatic inversion recovery in the same subject. The BMD showed a significant positive correlation with D*, whereas there was no significant correlation between the other diffusion parameters and BMD. There was a negative correlation between the D or ADC and FF, although no correlation was found between D* or F and FF. Diffusion analysis with a biexponential function made it possible to obtain detailed information on bone perfusion and diffusion in healthy young volunteers.

  7. Microfluidic perfusion culture.

    PubMed

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-01-01

    Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS. PMID:24297421

  8. Functional Imaging: CT and MRI

    PubMed Central

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Synopsis Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advances in magnetic resonance imaging (MRI) of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized helium imaging, which can allow imaging of pulmonary ventilation and .measurement of the size of emphysematous spaces. PMID:18267192

  9. Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma.

    PubMed

    Aryal, Madhava P; Nagaraja, Tavarekere N; Brown, Stephen L; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R

    2014-10-01

    The distribution of dynamic contrast-enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either (1) plasma volume (vp), (2) vp and forward volume transfer constant (K(trans)) or (3) vp, K(trans) and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions--mean, median, variance and skewness--were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p ≥ 0.10; Wilcoxon signed-rank and paired t tests). These and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. PMID:25125367

  10. Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma.

    PubMed

    Aryal, Madhava P; Nagaraja, Tavarekere N; Brown, Stephen L; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R

    2014-10-01

    The distribution of dynamic contrast-enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either (1) plasma volume (vp), (2) vp and forward volume transfer constant (K(trans)) or (3) vp, K(trans) and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions--mean, median, variance and skewness--were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p ≥ 0.10; Wilcoxon signed-rank and paired t tests). These and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects.

  11. Intra-Tumor Distribution and Test-Retest Comparisons of Physiological Parameters quantified by Dynamic Contrast-Enhanced MRI in Rat U251 Glioma

    PubMed Central

    Aryal, Madhava P.; Nagaraja, Tavarekere N.; Brown, Stephen L.; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R.

    2014-01-01

    The distribution of dynamic contrast enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either: 1) CA plasma volume (vp), 2) vp and forward volume transfer constant (Ktrans; or 3) vp, Ktrans, and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA interstitial distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions – mean, median, variance and skewness – were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p≥0.10; Wilcoxon signed-rank and paired t tests). This and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. PMID:25125367

  12. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...

  13. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans . PMID:25995102

  14. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans .

  15. Polarized noble gas MRI

    SciTech Connect

    Brookeman, James R.; Mugler, John P. III; Lange, Eduard E. de; Knight-Scott, Jack; Maier, Therese; Bogorad, Paul; Driehuys, Bastiaan; Cates, Gordon; Happer, William; Daniel, Thomas M.; Truwit, Jonathon D.

    1998-01-20

    The development of convenient methods to polarize liter quantities of the noble gases helium-3 and xenon-129 has provided the opportunity for a new MRI method to visualize the internal air spaces of the human lung. These spaces are usually poorly seen with hydrogen-based MRI, because of the limited water content of the lung and the low thermal polarization of the water protons achieved in conventional magnets. In addition, xenon, which has a relatively high solubility and a sufficiently persistent polarization level in blood and biological tissue, offers the prospect of providing perfusion images of the lung, brain and other organs.

  16. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles.

    PubMed

    Hiepe, Patrick; Gussew, Alexander; Rzanny, Reinhard; Anders, Christoph; Walther, Mario; Scholle, Hans-Christoph; Reichenbach, Jürgen R

    2014-08-01

    Exercise-induced changes of transverse proton relaxation time (T2 ), tissue perfusion and metabolic turnover were investigated in the lower back muscles of volunteers by applying muscle functional MRI (mfMRI) and diffusion-weighted imaging (DWI) before and after as well as dynamic (31) P-MRS during the exercise. Inner (M. multifidus, MF) and outer lower back muscles (M. erector spinae, ES) were examined in 14 healthy young men performing a sustained isometric trunk-extension. Significant phosphocreatine (PCr) depletions ranging from 30% (ES) to 34% (MF) and Pi accumulations between 95% (left ES) and 120%-140% (MF muscles and right ES) were observed during the exercise, which were accompanied by significantly decreased pH values in all muscles (∆pH ≈ -0.05). Baseline T2 values were similar across all investigated muscles (approximately 27 ms at 3 T), but revealed right-left asymmetric increases (T2 ,inc ) after the exercise (right ES/MF: T2 ,inc  = 11.8/9.7%; left ES/MF: T2 ,inc  = 4.6/8.9%). Analyzed muscles also showed load-induced increases in molecular diffusion D (p = .007) and perfusion fraction f (p = .002). The latter parameter was significantly higher in the MF than in the ES muscles both at rest and post exercise. Changes in PCr (p = .03), diffusion (p < .01) and perfusion (p = .03) were strongly associated with T2,inc , and linear mixed model analysis revealed that changes in PCr and perfusion both affect T2,inc (p < .001). These findings support previous assumptions that T2 changes are not only an intra-cellular phenomenon resulting from metabolic stress but are also affected by increased perfusion in loaded muscles.

  17. Pulmonary ventilation/perfusion scan

    MedlinePlus

    V/Q scan; Ventilation/perfusion scan; Lung ventilation/perfusion scan ... A pulmonary ventilation/perfusion scan is actually two tests. They may be done separately or together. During the perfusion scan, a health care ...

  18. Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI

    NASA Astrophysics Data System (ADS)

    Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.

    2016-10-01

    Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility. Thirteen healthy volunteers (28.7  ±  1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n  =  9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland-Altman analysis of agreement. Maximum percent change relative to parameters obtained using zero delays, were  -31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and  -10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p  =  0.0085) and HA fraction (p  <  0.0001), but not other parameters. Improved mean differences and Bland-Altman 95% Limits-of-Agreement for reproducibility of PV perfusion (9.3 ml/min/100 g, ±506.1 ml/min/100 g) and TLBF (43.8 ml/min/100 g, ±586.7 ml/min/100 g) were demonstrated using pre-estimated delays with constrained free modelling. CA bolus arrival delays cause profound differences in liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers.

  19. Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps?

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Siemonsen, Susanne; Dalski, Michael; Verleger, Tobias; Kemmling, Andre; Fiehler, Jens

    2014-03-01

    The acute ischemic stroke is a leading cause for death and disability in the industry nations. In case of a present acute ischemic stroke, the prediction of the future tissue outcome is of high interest for the clinicians as it can be used to support therapy decision making. Within this context, it has already been shown that the voxel-wise multi-parametric tissue outcome prediction leads to more promising results compared to single channel perfusion map thresholding. Most previously published multi-parametric predictions employ information from perfusion maps derived from perfusion-weighted MRI together with other image sequences such as diffusion-weighted MRI. However, it remains unclear if the typically calculated perfusion maps used for this purpose really include all valuable information from the PWI dataset for an optimal tissue outcome prediction. To investigate this problem in more detail, two different methods to predict tissue outcome using a k-nearest-neighbor approach were developed in this work and evaluated based on 18 datasets of acute stroke patients with known tissue outcome. The first method integrates apparent diffusion coefficient and perfusion parameter (Tmax, MTT, CBV, CBF) information for the voxel-wise prediction, while the second method employs also apparent diffusion coefficient information but the complete perfusion information in terms of the voxel-wise residue functions instead of the perfusion parameter maps for the voxel-wise prediction. Overall, the comparison of the results of the two prediction methods for the 18 patients using a leave-one-out cross validation revealed no considerable differences. Quantitatively, the parameter-based prediction of tissue outcome led to a mean Dice coefficient of 0.474, while the prediction using the residue functions led to a mean Dice coefficient of 0.461. Thus, it may be concluded from the results of this study that the perfusion parameter maps typically derived from PWI datasets include all

  20. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

    PubMed Central

    Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry

    2013-01-01

    The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258

  1. Dynamics, NMR parameters and hyperfine coupling constants of the Fe3O4(1 0 0)-water interface: Implications for MRI probes

    NASA Astrophysics Data System (ADS)

    Gonçalves, Mateus A.; Peixoto, Fernando C.; da Cunha, Elaine F. F.; Ramalho, Teodorico C.

    2014-08-01

    Magnetite is an iron oxide widely used as contrast agent in MRI, receiving considerable interest from nanoscience and nanotechnology. In this work, the face 1 0 0 of the magnetite structure was studied with water in order to obtain 1H hyperfine coupling constants (HFCCs). Molecular dynamics (MD) calculations were performed using the ReaxFF program and for statistical inefficiency, structures were selected for HFCC and NMR calculations. From our theoretical findings, the magnetite in solution considerably increases the 1H HFCC of water molecules. From our results, it is essential to incorporate the dynamics and solvent effects into NMR calculations of relaxation parameters.

  2. Dynamic Contrast-Enhanced MRI in Head-and-Neck Cancer: The Impact of Region of Interest Selection on the Intra- and Interpatient Variability of Pharmacokinetic Parameters

    SciTech Connect

    Craciunescu, Oana I.; Yoo, David S.; Cleland, Esi; Muradyan, Naira; Carroll, Madeline D.; MacFall, James R.; Barboriak, Daniel P.; Brizel, David M.

    2012-03-01

    Purpose: Dynamic contrast-enhanced (DCE) MRI-extracted parameters measure tumor microvascular physiology and are usually calculated from an intratumor region of interest (ROI). Optimal ROI delineation is not established. The valid clinical use of DCE-MRI requires that the variation for any given parameter measured within a tumor be less than that observed between tumors in different patients. This work evaluates the impact of tumor ROI selection on the assessment of intra- and interpatient variability. Method and Materials: Head and neck cancer patients received initial targeted therapy (TT) treatment with erlotinib and/or bevacizumab, followed by radiotherapy and concurrent cisplatin with synchronous TT. DCE-MRI data from Baseline and the end of the TT regimen (Lead-In) were analyzed to generate the vascular transfer function (K{sup trans}), the extracellular volume fraction (v{sub e}), and the initial area under the concentration time curve (iAUC{sub 1min}). Four ROI sampling strategies were used: whole tumor or lymph node (Whole), the slice containing the most enhancing voxels (SliceMax), three slices centered in SliceMax (Partial), and the 5% most enhancing contiguous voxels within SliceMax (95Max). The average coefficient of variation (aCV) was calculated to establish intrapatient variability among ROI sets and interpatient variability for each ROI type. The average ratio between each intrapatient CV and the interpatient CV was calculated (aRCV). Results: Baseline primary/nodes aRCVs for different ROIs not including 95Max were, for all three MR parameters, in the range of 0.14-0.24, with Lead-In values between 0.09 and 0.2, meaning a low intrapatient vs. interpatient variation. For 95Max, intrapatient CVs approximated interpatient CVs, meaning similar data dispersion and higher aRCVs (0.6-1.27 for baseline) and 0.54-0.95 for Lead-In. Conclusion: Distinction between different patient's primary tumors and/or nodes cannot be made using 95Max ROIs. The other three

  3. Lag-based effective connectivity applied to fMRI: a simulation study highlighting dependence on experimental parameters and formulation.

    PubMed

    Rodrigues, João; Andrade, Alexandre

    2014-04-01

    A vast repertoire of methods is currently available to study effective brain connectivity based on neuroimaging data, among which lag-based measures can be distinguished. Although several studies have previously assessed the performance of such measures, their validity in different conditions remains unclear. In the current study, several lag-based effective connectivity measures are tested and benchmarked using simulated fMRI data, conceived to reflect a broad range of different situations with practical interest. The main goal is two-fold: 1) to provide a thorough overview of lag-based effective connectivity measures, and 2) to assess their performance in specific experimental conditions, thereby providing guidance for future effective connectivity studies involving fMRI. We focus on well-known lag-based measures, cover existing improvements and alternative formulations in some cases: Granger causality (GC), Geweke's Granger causality (GGC), directed transfer function (DTF), partial directed coherence (PDC), phase slope index (PSI), and transfer entropy (TE). Benchmarking consists in identifying causal relations in local field potential (LFP) networks that have their output convolved with a canonical hemodynamic response function (HRF) with varying node number, topology, coupling strength, neuronal delay, repetition time (TR), signal-to-noise ratio (SNR) and HRF variability. In a first set of simulations, we cover all possible combinations of discretized values of the previous variables, for networks with 2 and 3 nodes, and find that the measure with best performance (time-domain Granger Causality) is able to detect neuronal delays of a few hundreds of milliseconds with TRs between 0.25 and 2s and neuronal delays below 100ms for TRs that are also below 100ms, with more than 80% accuracy in realistic conditions. For networks with more than 3 nodes, we find that the number of nodes and the density of causal links degrade sensitivity, especially if the number of

  4. Hepatic Perfusion Therapy.

    PubMed

    Rajeev, Rahul; Gamblin, T Clark; Turaga, Kiran K

    2016-04-01

    Isolated hepatic perfusion uses the unique vascular supply of hepatic malignancies to deliver cytotoxic chemotherapy. The procedure involves vascular isolation of the liver and delivery of chemotherapy via the hepatic artery and extraction from retrohepatic vena cava. Benefits of hepatic perfusion have been observed in hepatic metastases of ocular melanoma and colorectal cancer and primary hepatocellular carcinoma. Percutaneous and prophylactic perfusions are avenues of ongoing research.

  5. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    PubMed Central

    Cao, Yue; Wang, Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  6. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  7. Pulsatile compared with nonpulsatile perfusion using a centrifugal pump for cardiopulmonary bypass during coronary artery bypass grafting. Effects on systemic haemodynamics, oxygenation, and inflammatory response parameters.

    PubMed

    Driessen, J J; Dhaese, H; Fransen, G; Verrelst, P; Rondelez, L; Gevaert, L; van Becelaere, M; Schelstraete, E

    1995-01-01

    The present study investigated the influence of pulsatile or nonpulsatile flow delivery with a centrifugal pump for cardiopulmonary bypass (CPB) during coronary artery bypass grafting (CABG) in two randomized groups of 19 patients each. All patients received a standard anaesthetic and surgical protocol. Pulsatile perfusion during CPB was created by accelerating the baseline pump speed of the Sarns centrifugal pump at a rate of 50 cycles per minute. Measurements included perioperative systemic haemodynamics and oxygen exchange, total haemolytic complement (CH50), polymorphonuclear (neutrophil) granulocyte (PMN) count and plasma granulocyte elastase bound to alpha 1-proteinase inhibitor (E-alpha 1-PI). Laboratory measurements were corrected for haemodilution. During and after CPB there were only a few significant differences between the groups in systemic haemodynamics and oxygenation, i.e. a lower mean arterial blood pressure after the end of CPB in the nonpulsatile group (65 mmHg, SD = 11 vs 76 mmHg, SD = 11) and a lower SvO2 during rewarming on CPB in the nonpulsatile group (62%, SD = 8 vs 67%, SD = 8). The decrease in percentage of PMNs in the total white blood cell count during CPB was greater in the nonpulsatile group than in the pulsatile group (from 61 to 46% vs 63 to 53% of prebypass value). The steep increase of PMN count at the end of CPB and postoperatively was comparable in both groups. The maximal decrease of CH50 levels, occurring after surgery, was significantly higher in the nonpulsatile group (70% SD = 15 vs 79%, SD = 16, of baseline value), suggesting a greater complement activation. E-alpha 1-PI levels increased significantly in both groups during and after CPB with higher peak levels, obtained at one hour after admission to an intensive care unit, in the nonpulsatile group (316 micrograms/l, SD = 102) than in the pulsatile group (247 micrograms/l, SD = 106). There was a partly inverse correlation between the peak postoperative elastase levels and

  8. Ex vivo lung perfusion and reconditioning.

    PubMed

    Yeung, Jonathan C; Cypel, Marcelo; Massad, Ehab; Keshavjee, Shaf

    2011-01-01

    Normothermic ex vivo lung perfusion can act as a platform for the evaluation and repair of donor lungs. An acellular hyperosmolar solution is perfused anterograde through the donor lungs at 40% of the estimated cardiac output. Following oxygenation of the perfusate by the lung, it passes through a hollow fiber oxygenator supplied with a hypoxic gas mixture to remove oxygen and to maintain physiological carbon dioxide levels. Flow through a heat exchanger to maintain normothermia and a leukocyte filter to remove demarginated leukocytes completes the circuit. Lung function can be measured by the difference in PO2 between the perfusate postlung and postmembrane and by physiological parameters. Utilization of this method of ex vivo donor lung evaluation should reduce concerns of primary graft dysfunction and increase utilization rates of donor lungs. PMID:24412979

  9. Bubble dynamics in perfused tissue undergoing decompression.

    PubMed

    Meisel, S; Nir, A; Kerem, D

    1981-02-01

    A mathematical model describing bubble dynamics in a perfused tissue undergoing decompression is presented, taking into account physical expansion and inward diffusion from surrounding supersaturated tissue as growth promoting factors and tissue gas elimination by perfusion, tissue elasticity, surface tension and inherent unsaturation as resolving driving forces. The expected behavior after a step reduction of pressure of a bubble initially existing in the tissue, displaying both growth and resolution has been demonstrated. A strong perfusion-dependence of bubble resolution time at low perfusion rates is apparent. The model can account for various exposure pressures and saturation fractions of any inert gas-tissue combination for which a set of physical and physiological parameters is available.

  10. Safety and Feasibility of High-pressure Transvenous Limb Perfusion With 0.9% Saline in Human Muscular Dystrophy

    PubMed Central

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2012-01-01

    We evaluated safety and feasibility of the transvenous limb perfusion gene delivery method in muscular dystrophy. A dose escalation study of single limb perfusion with 0.9% saline starting with 5% of limb volume was carried out in adults with muscular dystrophies under intravenous analgesia/anesthesia. Cardiac, vascular, renal, muscle, and nerve functions were monitored. A tourniquet was placed above the knee with inflated pressure of 310 mm Hg. Infusion was carried out with a clinically approved infuser via an intravenous catheter inserted in the saphenous vein with a goal infusion rate of 80 ml/minute. Infusion volume was escalated stepwise to 20% limb volume in seven subjects. No subject complained of any post procedure pain other than due to needle punctures. Safety warning boundaries were exceeded only for transient depression of limb tissue oximetry and transient elevation of muscle compartment pressures; these were not associated with nerve, muscle, or vascular damage. Muscle magnetic resonant imaging (MRI) demonstrated fluid accumulation in muscles of the perfused lower extremity. High-pressure retrograde transvenous limb perfusion with saline up to 20% of limb volume at above infusion parameters is safe and feasible in adult human muscular dystrophy. This study will serve as a basis for future gene transfer clinical trials. PMID:21772257

  11. Possible association between SNAP-25 single nucleotide polymorphisms and alterations of categorical fluency and functional MRI parameters in Alzheimer's disease.

    PubMed

    Guerini, Franca Rosa; Agliardi, Cristina; Sironi, Manuela; Arosio, Beatrice; Calabrese, Elena; Zanzottera, Milena; Bolognesi, Elisabetta; Ricci, Cristian; Costa, Andrea Saul; Galimberti, Daniela; Griffanti, Ludovica; Bianchi, Anna; Savazzi, Federica; Mari, Daniela; Scarpini, Elio; Baglio, Francesca; Nemni, Raffaello; Clerici, Mario

    2014-01-01

    Synaptosomal-associated protein of 25 kDa (SNAP-25) is an age-regulated vesicular SNARE protein involved in the exocytosis of neurotransmitters from synapses, a process that is altered in Alzheimer's disease (AD). Changes in SNAP-25 levels are suggested to contribute to age-related decline of cognitive function, and single nucleotide polymorphisms (SNPs) in the SNAP-25 gene are present in neuropsychiatric conditions and play a role in determining IQ phenotypes. To verify a possible role of SNAP-25 in AD, we analyzed five gene polymorphisms in patients with AD (n = 607), replicating the study in subjects with amnestic mild cognitive impairment (aMCI) (n = 148) and in two groups of age-matched healthy controls (HC1: n = 615 and HC2: n = 310). Results showed that the intronic rs363050 (A) and rs363043 (T) alleles, as well as the rs363050/rs363043 A-T haplotype are significantly more frequent in AD and aMCI and are associated with pathological scores of categorical fluency in AD. Notably, functional MRI analyses indicated that SNAP-25 genotypes correlate with a significantly decreased brain activity in the cingulate cortex and in the frontal (middle and superior gyri) and the temporo-parietal (angular gyrus) area. SNAP-25 polymorphisms may be associated with AD and correlate with alterations in categorical fluency and a reduced localized brain activity. SNAP-25 polymorphisms could be used as surrogate markers for the diagnosis of AD and of cognitive deficit; these SNPs might also have a possible predictive role in the natural history of AD. PMID:25024311

  12. Possible association between SNAP-25 single nucleotide polymorphisms and alterations of categorical fluency and functional MRI parameters in Alzheimer's disease.

    PubMed

    Guerini, Franca Rosa; Agliardi, Cristina; Sironi, Manuela; Arosio, Beatrice; Calabrese, Elena; Zanzottera, Milena; Bolognesi, Elisabetta; Ricci, Cristian; Costa, Andrea Saul; Galimberti, Daniela; Griffanti, Ludovica; Bianchi, Anna; Savazzi, Federica; Mari, Daniela; Scarpini, Elio; Baglio, Francesca; Nemni, Raffaello; Clerici, Mario

    2014-01-01

    Synaptosomal-associated protein of 25 kDa (SNAP-25) is an age-regulated vesicular SNARE protein involved in the exocytosis of neurotransmitters from synapses, a process that is altered in Alzheimer's disease (AD). Changes in SNAP-25 levels are suggested to contribute to age-related decline of cognitive function, and single nucleotide polymorphisms (SNPs) in the SNAP-25 gene are present in neuropsychiatric conditions and play a role in determining IQ phenotypes. To verify a possible role of SNAP-25 in AD, we analyzed five gene polymorphisms in patients with AD (n = 607), replicating the study in subjects with amnestic mild cognitive impairment (aMCI) (n = 148) and in two groups of age-matched healthy controls (HC1: n = 615 and HC2: n = 310). Results showed that the intronic rs363050 (A) and rs363043 (T) alleles, as well as the rs363050/rs363043 A-T haplotype are significantly more frequent in AD and aMCI and are associated with pathological scores of categorical fluency in AD. Notably, functional MRI analyses indicated that SNAP-25 genotypes correlate with a significantly decreased brain activity in the cingulate cortex and in the frontal (middle and superior gyri) and the temporo-parietal (angular gyrus) area. SNAP-25 polymorphisms may be associated with AD and correlate with alterations in categorical fluency and a reduced localized brain activity. SNAP-25 polymorphisms could be used as surrogate markers for the diagnosis of AD and of cognitive deficit; these SNPs might also have a possible predictive role in the natural history of AD.

  13. Reproducibility of Dynamic Contrast-Enhanced MRI in Renal Cell Carcinoma: A Prospective Analysis on Intra- and Interobserver and Scan-Rescan Performance of Pharmacokinetic Parameters.

    PubMed

    Wang, Haiyi; Su, Zihua; Ye, Huiyi; Xu, Xiao; Sun, Zhipeng; Li, Lu; Duan, Feixue; Song, Yuanyuan; Lambrou, Tryphon; Ma, Lin

    2015-09-01

    The objective of this study was to investigate the intra- and interobserver as well as scan-rescan reproducibility of quantitative parameters of renal cell carcinomas (RCCs) with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). A total of 21 patients with clear cell RCCs (17 men, 4 woman; age 37-69 years, mean age 54.6 years, mean size, 5.0 ± 2.2 cm) were prospectively recruited from September 2012 to November 2012. Patients underwent paired DCE-MRI studies on a 3.0 T MR system with an interval of 48 to 72 hours. The extended-Tofts model and population-based arterial input function were used to calculate kinetic parameters. Three observers defined the 2-dimensional whole-tumor region of interest at the slice with the maximum diameter of the RCC. Intraobserver and scan-rescan differences were assessed using paired t tests, whereas interobserver differences using two-way analysis of variance. Intra- and interobserver reproducibility and scan-rescan reproducibility were evaluated using within-subject coefficient of variation (wCoV) and intraclass correlation coefficient (ICC). There were no significant intra-, interobserver, or scan-rescan differences in parameters (all P > 0.05). All ICCs for intra- and interobserver agreements were >0.75 (P < 0.05), whereas the scan-rescan agreement was moderate to good; V(e) (0.764, 95% confidence interval [CI]: 0.378-0.925) and K(ep) (0.906, 95% CI: 0.710-0.972) had higher ICC than K(trans) (0.686; 95% CI: 0.212-0.898) and V(p) (0.657; 95% CI: 0.164-0.888). In intra- and interobserver variability analyses, all parameters except V(p) had low wCoV values. K(trans) and V(e) had slightly lower intraobserver wCoV (1.2% and 0.9%) compared with K(ep) (3.7%), whereas all 3 of these parameters had similar interobserver wCoV values (2.5%, 3.1%, and 2.9%, respectively). Regarding scan-rescan variability, K(trans) and K(ep) showed slightly higher variation (15.6% and 15.4%) than V(e) (10.1%). V(p) had the largest

  14. Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector

    NASA Astrophysics Data System (ADS)

    Lasič, Samo; Szczepankiewicz, Filip; Eriksson, Stefanie; Nilsson, Markus; Topgaard, Daniel

    2014-02-01

    Diffusion tensor imaging (DTI) is the method of choice for non-invasive investigations of the structure of human brain white matter. The results are conventionally reported as maps of the fractional anisotropy (FA), which is a parameter related to microstructural features such as axon density, diameter, and myelination. The interpretation of FA in terms of microstructure becomes ambiguous when there is a distribution of axon orientations within the image voxel. In this paper, we propose a procedure for resolving this ambiguity by determining a new parameter, the microscopic fractional anisotropy (µFA), which corresponds to the FA without the confounding influence of orientation dispersion. In addition, we suggest a method for measuring the orientational order parameter (OP) for the anisotropic objects. The experimental protocol is capitalizing on a recently developed diffusion NMR pulse sequence based on magic-angle spinning of the q-vector. Proof-of-principle experiments are carried out on microimaging and clinical MRI equipment using lyotropic liquid crystals and plant tissues as model materials with high µFA and low FA on account of orientation dispersion. We expect the presented method to be especially fruitful in combination with DTI and high angular resolution acquisition protocols for neuroimaging studies of grey and white matter.

  15. Applications of arterial spin labeled MRI in the brain.

    PubMed

    Detre, John A; Rao, Hengyi; Wang, Danny J J; Chen, Yu Fen; Wang, Ze

    2012-05-01

    Perfusion provides oxygen and nutrients to tissues and is closely tied to tissue function while disorders of perfusion are major sources of medical morbidity and mortality. It has been almost two decades since the use of arterial spin labeling (ASL) for noninvasive perfusion imaging was first reported. While initial ASL magnetic resonance imaging (MRI) studies focused primarily on technological development and validation, a number of robust ASL implementations have emerged, and ASL MRI is now also available commercially on several platforms. As a result, basic science and clinical applications of ASL MRI have begun to proliferate. Although ASL MRI can be carried out in any organ, most studies to date have focused on the brain. This review covers selected research and clinical applications of ASL MRI in the brain to illustrate its potential in both neuroscience research and clinical care.

  16. MRI and low back pain

    MedlinePlus

    Backache - MRI; Low back pain - MRI; Lumbar pain - MRI; Back strain - MRI; Lumbar radiculopathy - MRI; Herniated intervertebral disk - MRI; Prolapsed intervertebral disk - MRI; Slipped disk - MRI; Ruptured ...

  17. Perfusion Estimated With Rapid Dynamic Contrast-Enhanced Magnetic Resonance Imaging Correlates Inversely With Vascular Endothelial Growth Factor Expression and Pimonidazole Staining in Head-and-Neck Cancer: A Pilot Study

    SciTech Connect

    Donaldson, Stephanie B.; Betts, Guy; Bonington, Suzanne C.; Homer, Jarrod J.; Slevin, Nick J.; Kershaw, Lucy E.; Valentine, Helen; West, Catharine M.L.; Buckley, David L.

    2011-11-15

    Purpose: To analyze, in a pilot study, rapidly acquired dynamic contrast-enhanced (DCE)-MRI data with a general two-compartment exchange tracer kinetic model and correlate parameters obtained with measurements of hypoxia and vascular endothelial growth factor (VEGF) expression in patients with squamous cell carcinoma of the head and neck. Methods and Materials: Eight patients were scanned before surgery. The DCE-MRI data were acquired with 1.5-s temporal resolution and analyzed using the two-compartment exchange tracer kinetic model to obtain estimates of parameters including perfusion and permeability surface area. Twelve to 16 h before surgery, patients received an intravenous injection of pimonidazole. Samples taken during surgery were used to determine the level of pimonidazole staining using immunohistochemistry and VEGF expression using quantitative real-time polymerase chain reaction. Correlations between the biological and imaging data were examined. Results: Of the seven tumors fully analyzed, those that were poorly perfused tended to have high levels of pimonidazole staining (r = -0.79, p = 0.03) and VEGF expression (r = -0.82, p = 0.02). Tumors with low permeability surface area also tended to have high levels of hypoxia (r = -0.75, p = 0.05). Hypoxic tumors also expressed higher levels of VEGF (r = 0.82, p = 0.02). Conclusions: Estimates of perfusion obtained with rapid DCE-MRI data in patients with head-and-neck cancer correlate inversely with pimonidazole staining and VEGF expression.

  18. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    SciTech Connect

    Neal, B; Chen, Q

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.

  19. A Phantom Tissue System for the Calibration of Perfusion Measurements

    PubMed Central

    Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Ricketts, Patricia L.; Lanz, Otto I.; Scott, Elaine P.; Diller, Thomas E.

    2008-01-01

    A convenient method for testing and calibrating surface perfusion sensors has been developed. A phantom tissue model is used to simulate the nondirectional blood flow of tissue perfusion. A computational fluid dynamics (CFD) model was constructed in Fluent® to design the phantom tissue and validate the experimental results. The phantom perfusion system was used with a perfusion sensor based on clearance of thermal energy. A heat flux gage measures the heat flux response of tissue when a thermal event (convective cooling) is applied. The blood perfusion and contact resistance are estimated by a parameter estimation code. From the experimental and analytical results, it was concluded that the probe displayed good measurement repeatability and sensitivity. The experimental perfusion measurements in the tissue were in good agreement with those of the CFD models and demonstrated the value of the phantom tissue system. PMID:19045509

  20. Influence of the cardiac cycle on time-intensity curves using multislice dynamic magnetic resonance perfusion.

    PubMed

    Nchimi, Alain; Mancini, Isabelle; Broussaud, Thomas K Y

    2014-10-01

    Flow and pressure variations cause potential changes in magnetic resonance imaging (MRI) signal intensity across the cardiac cycle. Nevertheless, cardiac dynamic contrast-enhanced (perfusion) MRI is performed and analyzed regardless of the cardiac phase. We investigate whether the cardiac phase impacts myocardial and left ventricle (LV) cavity time intensity curves (TICs) at rest and during vasodilatation. Fifteen healthy volunteers (seven females, eight males; mean age: 32.5 ± 9.3 years; age range: 19-49 years) were included in this prospective study. They underwent four separate short-axis multislice (apical, mid and basal) LV perfusion MRI, with different electrocardiogram-triggering during normal vasotone and adenosine-stress. TIC parameters were extracted from the myocardium and the LV cavity. General linear mixed model analyses were used to evaluate their variability according to vasotone, cardiac phase and slice-position. Maximal enhancement and normalized Steepest slopes were higher at stress than at rest (p values <0.001). A similar trend towards higher inflow was shown on systole versus diastole in the LV cavity and diastole versus systole in the myocardium (p < 0.05).These TIC parameters were slice-position dependent, as the inflow decreased from the base to the apex in the LV, and peaked on the mid-slice for the myocardium. There are significant variability of both the LV and the myocardial TICs, with respect to the cardiac cycle phase and the slice position where imaging actually takes place. These appeal to measurement standardization for a better intra- and inter-study reproducibility.

  1. Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques

    PubMed Central

    Li, Ka-Loh; Ostergaard, Leif; Calamante, Fernando

    2014-01-01

    Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI. PMID:25246817

  2. A Proposed Paradigm Shift in Initializing Cancer Predictive Models with DCE-MRI Based PK Parameters: A Feasibility Study

    PubMed Central

    Roniotis, Alexandros; Oraiopoulou, Mariam-Eleni; Tzamali, Eleftheria; Kontopodis, Eleftherios; Van Cauter, Sofie; Sakkalis, Vangelis; Marias, Kostas

    2015-01-01

    Glioblastoma multiforme is the most aggressive type of glioma and the most common malignant primary intra-axial brain tumor. In an effort to predict the evolution of the disease and optimize therapeutical decisions, several models have been proposed for simulating the growth pattern of glioma. One of the latest models incorporates cell proliferation and invasion, angiogenic net rates, oxygen consumption, and vasculature. These factors, particularly oxygenation levels, are considered fundamental factors of tumor heterogeneity and compartmentalization. This paper focuses on the initialization of the cancer cell populations and vasculature based on imaging examinations of the patient and presents a feasibility study on vasculature prediction over time. To this end, pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging using Toft’s model are used in order to feed the model. Ktrans is used as a metric of the density of endothelial cells (vasculature); at the same time, it also helps to discriminate distinct image areas of interest, under a set of assumptions. Feasibility results of applying the model to a real clinical case are presented, including a study on the effect of certain parameters on the pattern of the simulated tumor. PMID:26085787

  3. A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom

    PubMed Central

    Otton, James; Morton, Geraint; Schuster, Andreas; Bigalke, Boris; Marano, Riccardo; Olivotti, Luca; Nagel, Eike; Chiribiri, Amedeo

    2013-01-01

    Background Direct comparison of CT and magnetic resonance (MR) perfusion techniques has been limited and in vivo assessment is affected by physiological variability, timing of image acquisition, and parameter selection. Objective We precisely compared high-resolution k-t SENSE MR cardiac perfusion at 3 T with single-phase CT perfusion (CTP) under identical imaging conditions. Methods We used a customized MR imaging and CT compatible dynamic myocardial perfusion phantom to represent the human circulation. CT perfusion studies were performed with a Philips iCT (256 slice) CT, with isotropic resolution of 0.6 mm3. MR perfusion was performed with k-t SENSE acceleration at 3 T and spatial resolution of 1.2 × 1.2 × 10 mm. The image contrast between normal and underperfused myocardial compartments was quantified at various perfusion and photon energy settings. Noise estimates were based on published clinical data. Results Contrast by CTP highly depends on photon energy and also timing of imaging within the myocardial perfusion upslope. For an identical myocardial perfusion deficit, the native image contrast-to-noise ratio (CNR) generated by CT and MR are similar. If slice averaging is used, the CNR of a perfusion deficit is expected to be greater for CTP than MR perfusion (MRP). Perfect timing during single time point CTP imaging is difficult to achieve, and CNR by CT decreases by 24%–31% two seconds from the optimal imaging time point. Although single-phase CT perfusion offers higher spatial resolution, MRP allows multiple time point sampling and quantitative analysis. Conclusion The ability of CTP and current optimal MRP techniques to detect simulated myocardial perfusion deficits is similar. PMID:23622506

  4. Estimation of Cerebral Blood Flow From Dynamic Susceptibility Contrast MRI Using A Tissue Model

    NASA Astrophysics Data System (ADS)

    Shimony, Joshua S.; Lee, John J.; Bretthorst, G. Larry

    2005-11-01

    Cerebral perfusion measurements are of great clinical and research interest. Positron emission tomography (PET) is considered the gold standard for cerebral perfusion measurement, but is not widely available and entails exposure of the subject to radioactivity. Dynamic susceptibility contrast (DSC) MRI methods are becoming more widely available on the newest generation of MRI scanners. The standard analysis methods of this data have significant disadvantages that include the use of a single, difficult to measure, arterial input function for the entire brain and the need to perform a numerical deconvolution on the logarithm of noisy data. These methods are not yet fully validated and remain qualitative in nature. Using a modification of the standard tracer kinetic principles we implemented a tissue perfusion model that has several advantages over standard methods. The model parameters were estimated using Bayes probability theory in a group of patients with varying degrees of hemodynamic impairment and were found to provide additional physiologic information that was not available using standard techniques.

  5. Practical Dynamic Contrast Enhanced MRI in Small Animal Models of Cancer: Data Acquisition, Data Analysis, and Interpretation

    PubMed Central

    Barnes, Stephanie L.; Whisenant, Jennifer G.; Loveless, Mary E.; Yankeelov, Thomas E.

    2012-01-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) consists of the continuous acquisition of images before, during, and after the injection of a contrast agent. DCE-MRI allows for noninvasive evaluation of tumor parameters related to vascular perfusion and permeability and tissue volume fractions, and is frequently employed in both preclinical and clinical investigations. However, the experimental and analytical subtleties of the technique are not frequently discussed in the literature, nor are its relationships to other commonly used quantitative imaging techniques. This review aims to provide practical information on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though we do frequently refer to clinical studies that are related to these topics). PMID:23105959

  6. [Ischemic heart disease (myocardial perfusion and viability): techniques and results].

    PubMed

    Croisille, P

    2004-10-01

    Over the last two decades, the understanding, diagnosis and treatment of patients with suspected or known coronary artery disease have made tremendous progress, in particular with the help of the development of non-invasive methodologies for assessing myocardial perfusion and viability. Clinically, nuclear medicine techniques (particularly SPECT imaging) have predominated. With the recent technical developments allowing for a combined assessment of perfusion and irreversible damage with late enhancement imaging, MRI will now play a major role in the assessment of ischemic heart disease. PMID:15507837

  7. [New opportunities, MRI biomarkers in the evaluation of head and neck cancer].

    PubMed

    Gődény, Mária; Léránt, Gergely

    2014-12-01

    Magnetic resonance imaging (MRI) has developed rapidly during the past few years and, according to the needs of therapy, has opened new perspectives in oncologic imaging with better and better realization of the latest technological advances. After the introduction of "organ preservation" protocols the role of imaging has become more important. New therapeutic methods (improvement in radiation therapy and chemotherapy) need better tumor characterization and prognostic information along with the most accurate anatomical information. Multiparametric anatomical and functional MR imaging (MM-MRI) using high magnetic field strength (3 Tesla) are useful in determining tumor-specific MRI biomarkers and in evaluating the changes in these parameters during therapy to provide early assessment of the therapeutic response. Diffusion-weighted MRI (DW-MRI) provides information at the cellular level about cell density and the integrity of the plasma membrane. DW-MRI shows potential in improving the detection of cancer due to its high specificity and high negative predictive value. Quantification is performed using an apparent diffusion coefficient (ADC), the values are independent of the magnetic field strength. In the latest publications the accuracy of DW-MRI has been reported around 90% for the differentiation between malignant versus benign tumor using an ADC cut-off mean value of 0.700-1.200 10(-3) mm(2)/s units, but no common threshold ADC value exists in clinical routine for the differentiation of malignant and benign tissues. Dynamic contrast-enhanced MRI (DCE-MRI), as a marker of angiogenesis, provides information about vascularization at the tissue level. Angiogenetic alterations cause changes in the parameters of vascular physiology (perfusion, blood volume, capillary permeability) and thus alter the contrast enhancement observed on contrast MRI. High-grade and/or advanced stage tumors are associated with increased blood volume, increased permeability and increased

  8. Comparing Normothermic Machine Perfusion Preservation With Different Perfusates on Porcine Livers From Donors After Circulatory Death.

    PubMed

    Liu, Q; Nassar, A; Farias, K; Buccini, L; Mangino, M J; Baldwin, W; Bennett, A; O'Rourke, C; Iuppa, G; Soliman, B G; Urcuyo-Llanes, D; Okamoto, T; Uso, T D; Fung, J; Abu-Elmagd, K; Miller, C; Quintini, C

    2016-03-01

    The utilization of normothermic machine perfusion (NMP) may be an effective strategy to resuscitate livers from donation after circulatory death (DCD). There is no consensus regarding the efficacy of different perfusates on graft and bile duct viability. The aim of this study was to compare, in an NMP porcine DCD model, the preservation potential of three different perfusates. Twenty porcine livers with 60 min of warm ischemia were separated into four preservation groups: cold storage (CS), NMP with Steen solution (Steen; XVIVO Perfusion Inc., Denver, CO), Steen plus red blood cells (RBCs), or whole blood (WB). All livers were preserved for 10 h and reperfused to simulate transplantation for 24 h. During preservation, the NMP with Steen group presented the highest hepatocellular injury. At reperfusion, the CS group had the lowest bile production and the worst hepatocellular injury compared with all other groups, followed by NMP with Steen; the Steen plus RBC and WB groups presented the best functional and hepatocellular injury outcomes, with WB livers showing lower aspartate aminotransferase release and a trend toward better results for most parameters. Based on our results, a perfusate that contains an oxygen carrier is most effective in a model of NMP porcine DCD livers compared with Steen solution. Specifically, WB-perfused livers showed a trend toward better outcomes compared with Steen plus RBCs. PMID:26663737

  9. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ...

  10. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  11. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  12. Can arterial spin labeling detect white matter perfusion signal?

    PubMed

    van Osch, Matthias J P; Teeuwisse, Wouter M; van Walderveen, Marianne A A; Hendrikse, Jeroen; Kies, Dennis A; van Buchem, Mark A

    2009-07-01

    Since the invention of arterial spin labeling (ASL) it has been acknowledged that ASL does not allow reliable detection of a white matter (WM) perfusion signal. However, recent developments such as pseudo-continuous labeling and background suppression have improved the quality. The goal of this research was to study the ability of these newer ASL sequences to detect WM perfusion signal. Background suppressed pseudo-continuous ASL was implemented at 3T with multislice 2D readout after 1525 ms. In five volunteers it was shown that 10 min scanning resulted in significant perfusion signal in 70% of WM voxels. Increasing the labeling and delay time did not lead to a higher percentage. In 27 normal volunteers it was found that 35 averages are necessary to detect significant WM signal, but 150 averages are needed to detect signal in the deep WM. Finally, it was shown in a patient with a cerebral arteriovenous malformation that pseudo-continuous ASL enabled the depiction of hypointense WM perfusion signal, although dynamic susceptibility contrast MRI showed that this region was merely showing delayed arrival of contrast agent than hypoperfusion. It can be concluded that, except within the deep WM, ASL is sensitive enough to detect WM perfusion signal and perfusion deficits. PMID:19365865

  13. Myocardial perfusion imaging with dual energy CT.

    PubMed

    Jin, Kwang Nam; De Cecco, Carlo N; Caruso, Damiano; Tesche, Christian; Spandorfer, Adam; Varga-Szemes, Akos; Schoepf, U Joseph

    2016-10-01

    Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  14. The pediatric template of brain perfusion.

    PubMed

    Avants, Brian B; Duda, Jeffrey T; Kilroy, Emily; Krasileva, Kate; Jann, Kay; Kandel, Benjamin T; Tustison, Nicholas J; Yan, Lirong; Jog, Mayank; Smith, Robert; Wang, Yi; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities that quantify both structure and function. These measurements may yield valuable insights into the neural patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the understanding of childhood brain development as seen through the lens of multiple modality neuroimaging and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by Arterial Spin Labeling (ASL), in 120 children 7-18 years of age. We describe the PTBP and show, as a demonstration of validity, that global summary measurements capture the trajectories that demarcate critical turning points in brain maturation. This novel resource will allow a more detailed understanding of the network-level, structural and functional landmarks that are obtained during normal adolescent brain development. PMID:25977810

  15. The pediatric template of brain perfusion

    PubMed Central

    Avants, Brian B; Duda, Jeffrey T; Kilroy, Emily; Krasileva, Kate; Jann, Kay; Kandel, Benjamin T; Tustison, Nicholas J; Yan, Lirong; Jog, Mayank; Smith, Robert; Wang, Yi; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities that quantify both structure and function. These measurements may yield valuable insights into the neural patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the understanding of childhood brain development as seen through the lens of multiple modality neuroimaging and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by Arterial Spin Labeling (ASL), in 120 children 7–18 years of age. We describe the PTBP and show, as a demonstration of validity, that global summary measurements capture the trajectories that demarcate critical turning points in brain maturation. This novel resource will allow a more detailed understanding of the network-level, structural and functional landmarks that are obtained during normal adolescent brain development. PMID:25977810

  16. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. PMID:26700566

  17. Isolated lung perfusion.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2012-01-01

    Isolated lung perfusion (ILP) has been historically used as a method to study basic lung physiologic concepts using animal models. More recently, ILP has been applied in lung transplantation and thoracic oncology. In lung transplantation, ILP has been used to assess physiological integrity of donor lungs after the organ is removed from the donor. This procedure is called Ex vivo Lung Perfusion (EVLP), and it has also been proposed as a method for active treatment and repair of injured unsuitable donor organs ex vivo. In oncology, ILP is an attractive method to deliver high dose chemotherapy to treat pulmonary metastatic disease. Since the lung vasculature is isolated in vivo, this technique is called in vivo lung perfusion (IVLP). This review will focus on the rationale, technical aspects, experimental and clinical experience of EVLP and IVLP. A perspective on the future use of these techniques is described. PMID:22202033

  18. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. PMID:26055434

  19. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

  20. In vivo measurement of gadolinium diffusivity by dynamic contrast-enhanced MRI: a preclinical study of human xenografts.

    PubMed

    Koh, T S; Hartono, S; Thng, C H; Lim, T K H; Martarello, L; Ng, Q S

    2013-01-01

    Compartmental tracer kinetic models currently used for analysis of dynamic contrast-enhanced MRI data yield poor fittings or parameter values that are unphysiological in necrotic regions of the tumor, as these models only describe microcirculation in perfused tissue. In this study, we explore the use of Fick's law of diffusion as an alternative method for analysis of dynamic contrast-enhanced MRI data in the necrotic regions. Xenografts of various human cancer cell lines were implanted in 14 mice that were subjected to dynamic contrast-enhanced MRI performed using a spoiled gradient recalled sequence. Tracer concentration was estimated using the variable flip angle technique. Poorly perfused and necrotic tumor regions exhibiting delayed and slow enhancement were identified using a k-means clustering algorithm. Tracer behavior in necrotic regions was shown to be consistent with Fick's diffusion equation and the in vivo gadolinium diffusivity was estimated to be 2.08 (±0.88) × 10(-4) mm(2)/s. This study proposes the use of gadolinium diffusivity as an alternative parameter for quantifying tracer transport within necrotic tumor regions.

  1. Multi-modal pharmacokinetic modelling for DCE-MRI: using diffusion weighted imaging to constrain the local arterial input function

    NASA Astrophysics Data System (ADS)

    Hamy, Valentin; Modat, Marc; Shipley, Rebecca; Dikaios, Nikos; Cleary, Jon; Punwani, Shonit; Ourselin, Sebastien; Atkinson, David; Melbourne, Andrew

    2014-03-01

    The routine acquisition of multi-modal magnetic resonance imaging data in oncology yields the possibility of combined model fitting of traditionally separate models of tissue structure and function. In this work we hypothesise that diffusion weighted imaging data may help constrain the fitting of pharmacokinetic models to dynamic contrast enhanced (DCE) MRI data. Parameters related to tissue perfusion in the intra-voxel incoherent motion (IVIM) modelling of diffusion weighted MRI provide local information on how tissue is likely to perfuse that can be utilised to guide DCE modelling via local modification of the arterial input function (AIF). In this study we investigate, based on multi-parametric head and neck MRI of 8 subjects (4 with head and neck tumours), the benefit of incorporating parameters derived from the IVIM model within the DCE modelling procedure. Although we find the benefit of this procedure to be marginal on the data used in this work, it is conceivable that a technique of this type will be of greater use in a different application.

  2. Brain perfusion in polysubstance users: Relationship to substance and tobacco use, cognition, and self-regulation*

    PubMed Central

    Murray, Donna E.; Durazzo, Timothy C.; Mon, Anderson; Schmidt, Thomas P.; Meyerhoff, Dieter J.

    2015-01-01

    Background Brain perfusion is altered in both alcohol dependence and stimulant dependence. Although most substance users also abuse/depend on alcohol concurrently (polysubstance users; PSU), rigorous perfusion research in PSU is limited. Also, the relationships of perfusion abnormalities with cognition, impulsivity or decision making are not well known. Methods Arterial spin labeling MRI and neuropsychological measures assessed perfusion levels and neurocognition in 20 alcohol dependent individuals with comorbid stimulant dependence (PSU), 26 individuals dependent on alcohol only (ALC), and 31 light/non-drinking controls (LD). The patient groups included smokers and non-smokers. Results ALC had lower perfusion than LD in subcortical and cortical brain regions including the brain reward/executive oversight system (BREOS). Contrary to our hypothesis, regional perfusion was generally not lower in PSU than ALC. However, smoking PSU had lower perfusion than smoking ALC in several regions, including BREOS. Lower BREOS perfusion related to greater drinking severity in smoking substance users and to greater smoking severity in smoking ALC. Lower regional perfusion in ALC and PSU correlated with worse performance in different cognitive domains; smoking status affected perfusion-cognition relationships in ALC only. Lower BREOS perfusion in both substance using groups related to higher impulsivity. Conclusion Although regional perfusion was not decreased in PSU as a group, the combination of cigarette smoking and polysubstance use is strongly related to hypoperfusion in important cortical and subcortical regions. As lower perfusion relates to greater smoking severity, worse cognition and higher impulsivity, smoking cessation is warranted for treatment-seeking PSU and ALC. PMID:25772434

  3. Cerebral perfusion in children with Alice in Wonderland syndrome.

    PubMed

    Kuo, Y T; Chiu, N C; Shen, E Y; Ho, C S; Wu, M C

    1998-08-01

    Alice in Wonderland syndrome (AIWS) is characterized by visual hallucinations and bizarre perceptual distortions. Technetium-99m hexamethylpropyleneamine tomography (SPECT) brain scans were performed in four patients during the acute stage of AIWS. Two patients were demonstrated to have Epstein-Barr virus infections. One had abnormal (EEG) findings. The visual-evoked potential, cranial CT, and MRI findings were negative. The decreased cerebral perfusion areas in all patients were near the visual tract and visual cortex. All involved some regions of the temporal lobe. In most patients with AIWS, the EEG, CT, and MRI are unable to determine the precise pathologic areas. However, a SPECT brain scan may demonstrate abnormal perfusion areas and explain the clinical presentations. PMID:9744628

  4. Perfusion and thallium single photon emission computed tomography in herpes simplex encephalitis.

    PubMed

    De Deyn, P P; Van den Broucke, P W; Pickut, B A; Appel, B; Crols, R; Cras, P; Martin, J J

    1998-04-15

    This is the first report on 201thallium-single photon emission computed tomography (201Tl-SPECT) brain scan of a patient with herpes simplex encephalitis (HSE). The presented 201Tl-SPECT observations are correlated with 99mtechnetium hexamethylpropylene amine oxime (99mTc-HMPAO) perfusion SPECT and magnetic resonance imaging (MRI) findings. Brain 99mTc-HMPAO perfusion SPECT reveals a hyperperfusion in the right temporal lobe with extension to the parietal lobe and a hypoperfusion in the ipsilateral occipital lobe. 201Tl-SPECT shows a fixation in the right temporal lobe coinciding with the gadolinium enhancement on MRI. The right occipital lesion shown by gadolinium captation on MRI and hypoperfusion on 99mTc-HMPAO perfusion SPECT was not evident on the 201Tl SPECT. These findings could illustrate that the lesions might be different pathophysiologically.

  5. Low dose CT perfusion using k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2016-03-01

    We aim at improving low dose CT perfusion functional parameters maps and CT images quality, preserving quantitative information. In a dynamic CT perfusion dataset, each voxel is measured T times, where T is the number of acquired time points. In this sense, we can think about a voxel as a point in a T-dimensional space, where the coordinates of the voxels would be the values of its time attenuation curve (TAC). Starting from this idea, a k-means algorithm was designed to group voxels in K classes. A modified guided time-intensity profile similarity (gTIPS) filter was implemented and applied only for those voxels belonging to the same class. The approach was tested on a digital brain perfusion phantom as well as on clinical brain and body perfusion datasets, and compared to the original TIPS implementation. The TIPS filter showed the highest CNR improvement, but lowest spatial resolution. gTIPS proved to have the best combination of spatial resolution and CNR improvement for CT images, while k-gTIPS was superior to both gTIPS and TIPS in terms of perfusion maps image quality. We demonstrate k-means clustering analysis can be applied to denoise dynamic CT perfusion data and to improve functional maps. Beside the promising results, this approach has the major benefit of being independent from the perfusion model employed for functional parameters calculation. No similar approaches were found in literature.

  6. Unsupervised nonlinear dimensionality reduction machine learning methods applied to multiparametric MRI in cerebral ischemia: preliminary results

    NASA Astrophysics Data System (ADS)

    Parekh, Vishwa S.; Jacobs, Jeremy R.; Jacobs, Michael A.

    2014-03-01

    The evaluation and treatment of acute cerebral ischemia requires a technique that can determine the total area of tissue at risk for infarction using diagnostic magnetic resonance imaging (MRI) sequences. Typical MRI data sets consist of T1- and T2-weighted imaging (T1WI, T2WI) along with advanced MRI parameters of diffusion-weighted imaging (DWI) and perfusion weighted imaging (PWI) methods. Each of these parameters has distinct radiological-pathological meaning. For example, DWI interrogates the movement of water in the tissue and PWI gives an estimate of the blood flow, both are critical measures during the evolution of stroke. In order to integrate these data and give an estimate of the tissue at risk or damaged; we have developed advanced machine learning methods based on unsupervised non-linear dimensionality reduction (NLDR) techniques. NLDR methods are a class of algorithms that uses mathematically defined manifolds for statistical sampling of multidimensional classes to generate a discrimination rule of guaranteed statistical accuracy and they can generate a two- or three-dimensional map, which represents the prominent structures of the data and provides an embedded image of meaningful low-dimensional structures hidden in their high-dimensional observations. In this manuscript, we develop NLDR methods on high dimensional MRI data sets of preclinical animals and clinical patients with stroke. On analyzing the performance of these methods, we observed that there was a high of similarity between multiparametric embedded images from NLDR methods and the ADC map and perfusion map. It was also observed that embedded scattergram of abnormal (infarcted or at risk) tissue can be visualized and provides a mechanism for automatic methods to delineate potential stroke volumes and early tissue at risk.

  7. Kinetic assessment of manganese using magnetic resonance imaging in the dually perfused human placenta in vitro

    SciTech Connect

    Miller, R.K.; Mattison, D.R.; Panigel, M.; Ceckler, T.; Bryant, R.; Thomford, P.

    1987-10-01

    The transfer and distribution of paramagnetic manganese was investigated in the dually perfused human placenta in vitro (using 10, 20, 100 ..mu..M Mn with and without /sup 54/Mn) using magnetic resonance imaging (MRI) and conventional radiochemical techniques. The human placenta concentrated /sup 54/Mn rapidly during the first 15 min of perfusion and by 4 hr was four times greater than the concentrations of Mn in the maternal perfusate, while the concentration of Mn in the fetal perfusate was 25% of the maternal perfusate levels. Within placentae, 45% of the /sup 54/Mn was free in the 100,000g supernatant, with 45% in the 1000g pellet. The magnetic field dependence of proton nuclear spin-lattice relaxation time (T/sub 1/) in placental tissue supports this Mn binding. Mn primarily affected the MRI partial saturation rather than spin-echo images of the human placenta, which provided for the separation of perfusate contributions from those produced by Mn. The washout of the Mn from the placenta was slow compared with its uptake, as determined by MRI. Thus, Mn was concentrated by the human placenta, but transfer of Mn across the placenta was limited in either direction. These studies also illustrate the opportunity for studies of human placental function using magnetic resonance imaging as a noninvasive biomarker.

  8. Arterial Perfusion Imaging–Defined Subvolume of Intrahepatic Cancer

    SciTech Connect

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-05-01

    Purpose: To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression after RT. Methods and Materials: Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective, institutional review board–approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed before RT (pre-RT), after delivering ∼60% of the planned dose (mid-RT) and 1 month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results: Of the 24 tumors, 6 tumors in 5 patients progressed 5 to 21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors compared with the responsive tumors (P=.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median, −14%; range, −75% to 65%), whereas the progressive tumors had an increase of the subvolumes (median, 57%; range, −7% to 165%) (P=.003). Receiver operating characteristic analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve of 0.90. Conclusion: The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation

  9. Arterial Perfusion Imaging-Defined Subvolume of Intrahepatic Cancer

    PubMed Central

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-01-01

    Purpose To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression post RT. Methods and Materials Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective IRB-approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) were performed prior to RT (pre-RT), after delivering ~60% of the planned dose (mid-RT) and one month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results Of the 24 tumors, 6 tumors in 5 patients progressed 5–21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors comparing to the responsive ones (p=0.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median: −14%, range: −75% – 65%), while the progressing tumors had an increase of the subvolumes (median: 57%, range: −7% – 165%) (p=0.003). Receiver operating characteristic (ROC) analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve (AUC) of 0.90. Conclusion The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate

  10. Liver response to hemorrhagic shock and subsequent resuscitation: MRI analysis.

    PubMed

    Matot, Idit; Cohen, Keren; Pappo, Orit; Barash, Hila; Abramovitch, Rinat

    2008-01-01

    The liver is a target for injury in low flow states. Markers of liver injury are either invasive or not rapidly responding. Magnetic resonance imaging (MRI) may offer a noninvasive alternative to evaluate liver injury due to reduced perfusion. Recently, we reported an MRI method (functional MRI [fMRI]) that enables us to follow liver perfusion by changing the enrichment of inspired gas (air, air-5% carbon dioxide, 95% oxygen-5% carbon dioxide). Rats were subjected to hemorrhagic shock (HS) (bleeding to a MAP of 25 mmHg) and randomized to no resuscitation or resuscitation with Ringer lactate (RL) or adrenaline infusion targeted to a MAP of 50 mmHg or baseline. Significantly decreased fMRI responses to hyperoxia and hypercapnia were observed immediately after HS. Liver enzymes levels, liver histology, and apoptosis assessments were normal immediately after hemorrhage, however, showed significant changes after 6 h. Functional MRI revealed that adrenaline, but not RL infusion, significantly (P < 0.01) improved liver perfusion. Similarly, liver injury, as assessed by liver enzyme levels, liver histology, and apoptosis, was attenuated to a greater extent with adrenaline resuscitation. No significant differences in liver perfusion and injury were noted between resuscitation to low (50 mmHg) versus high (baseline) MAP. This study shows that fMRI enables early assessment of changes in liver perfusion, resulting in liver injury or recovery, and therefore, it may be considered as a noninvasive, rapidly responding tool for following liver outcome subsequent to hemorrhage and resuscitation. Using fMRI, we showed that adrenaline may be preferable to RL as an initial measure to attenuate liver injury after HS.

  11. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    PubMed Central

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  12. Asynchronicity of facial blood perfusion in migraine.

    PubMed

    Zaproudina, Nina; Teplov, Victor; Nippolainen, Ervin; Lipponen, Jukka A; Kamshilin, Alexei A; Närhi, Matti; Karjalainen, Pasi A; Giniatullin, Rashid

    2013-01-01

    Asymmetrical changes in blood perfusion and asynchronous blood supply to head tissues likely contribute to migraine pathophysiology. Imaging was widely used in order to understand hemodynamic variations in migraine. However, mapping of blood pulsations in the face of migraineurs has not been performed so far. We used the Blood Pulsation Imaging (BPI) technique, which was recently developed in our group, to establish whether 2D-imaging of blood pulsations parameters can reveal new biomarkers of migraine. BPI characteristics were measured in migraineurs during the attack-free interval and compared to healthy subjects with and without a family history of migraine. We found a novel phenomenon of transverse waves of facial blood perfusion in migraineurs in contrast to healthy subjects who showed synchronous blood delivery to both sides of the face. Moreover, the amplitude of blood pulsations was symmetrically distributed over the face of healthy subjects, but asymmetrically in migraineurs and subjects with a family history of migraine. In the migraine patients we found a remarkable correlation between the side of unilateral headache and the direction of the blood perfusion wave. Our data suggest that migraine is associated with lateralization of blood perfusion and asynchronous blood pulsations in the facial area, which could be due to essential dysfunction of the autonomic vascular control in the face. These findings may further enhance our understanding of migraine pathophysiology and suggest new easily available biomarkers of this pathology. PMID:24324592

  13. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    PubMed

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy.

  14. Functional MRI and Outcome in Traumatic Coma

    PubMed Central

    Giacino, Joseph T.; Wu, Ona

    2013-01-01

    Advances in task-based functional MRI (fMRI), resting-state fMRI (rs-fMRI), and arterial-spin labeled (ASL) perfusion MRI have occurred at a rapid pace in recent years. These techniques for measuring brain function have great potential to improve the accuracy of prognostication for civilian and military patients with traumatic coma. In addition, fMRI, rs-fMRI, and ASL have provided novel insights into the pathophysiology of traumatic disorders of consciousness, as well as mechanisms of recovery from coma. However, functional neuroimaging techniques have yet to achieve widespread clinical use as prognostic tests for patients with traumatic coma. Rather, a broad spectrum of methodological hurdles currently limits the feasibility of clinical implementation. In this review, we discuss the basic principles of fMRI, rs-fMRI and ASL and their potential applications as prognostic tools for patients with traumatic coma. We also discuss future strategies for overcoming the current barriers to clinical implementation. PMID:23881623

  15. MRI biomarkers identify the differential response of glioblastoma multiforme to anti-angiogenic therapy

    PubMed Central

    Jalali, Shahrzad; Chung, Caroline; Foltz, Warren; Burrell, Kelly; Singh, Sanjay; Hill, Richard; Zadeh, Gelareh

    2014-01-01

    Background Although anti-angiogenic therapy (AATx) holds great promise for treatment of malignant gliomas, its therapeutic efficacy is not well understood and can potentially increase the aggressive recurrence of gliomas. It is essential to establish sensitive, noninvasive biomarkers that can detect failure of AATx and tumor recurrence early so that timely adaptive therapy can be instituted. We investigated the efficacy of MRI biomarkers that can detect response to different classes of AATxs used alone or in combination with radiation. Methods Murine intracranial glioma xenografts (NOD/SCID) were treated with sunitinib, VEGF-trap or B20 (a bevacizumab equivalent) alone or in combination with radiation. MRI images were acquired longitudinally before and after treatment, and various MRI parameters (apparent diffusion coefficient, T1w + contrast, dynamic contrast-enhanced [DCE], initial area under the contrast enhancement curve, and cerebral blood flow) were correlated to tumor cell proliferation, overall tumor growth, and tumor vascularity. Results Combinatorial therapies reduced tumor growth rate more efficiently than monotherapies. Apparent diffusion coefficient was an accurate measure of tumor cell density. Vascular endothelial growth factor (VEGF)-trap or B20, but not sunitinib, resulted in significant reduction or complete loss of contrast enhancement. This reduction was not due to a reduction in tumor growth or microvascular density, but rather was explained by a reduction in vessel permeability and perfusion. We established that contrast enhancement does not accurately reflect tumor volume or vascular density; however, DCE-derived parameters can be used as efficient noninvasive biomarkers of response to AATx. Conclusions MRI parameters following therapy vary based on class of AATx. Validation of clinically relevant MRI parameters for individual AATx agents is necessary before incorporation into routine practice. PMID:24759636

  16. The absolute CBF response to activation is preserved during elevated perfusion: Implications for neurovascular coupling measures.

    PubMed

    Whittaker, Joseph R; Driver, Ian D; Bright, Molly G; Murphy, Kevin

    2016-01-15

    Functional magnetic resonance imaging (fMRI) techniques in which the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) response to a neural stimulus are measured, can be used to estimate the fractional increase in the cerebral metabolic rate of oxygen consumption (CMRO2) that accompanies evoked neural activity. A measure of neurovascular coupling is obtained from the ratio of fractional CBF and CMRO2 responses, defined as n, with the implicit assumption that relative rather than absolute changes in CBF and CMRO2 adequately characterise the flow-metabolism response to neural activity. The coupling parameter n is important in terms of its effect on the BOLD response, and as potential insight into the flow-metabolism relationship in both normal and pathological brain function. In 10 healthy human subjects, BOLD and CBF responses were measured to test the effect of baseline perfusion (modulated by a hypercapnia challenge) on the coupling parameter n during graded visual stimulation. A dual-echo pulsed arterial spin labelling (PASL) sequence provided absolute quantification of CBF in baseline and active states as well as relative BOLD signal changes, which were used to estimate CMRO2 responses to the graded visual stimulus. The absolute CBF response to the visual stimuli were constant across different baseline CBF levels, meaning the fractional CBF responses were reduced at the hyperperfused baseline state. For the graded visual stimuli, values of n were significantly reduced during hypercapnia induced hyperperfusion. Assuming the evoked neural responses to the visual stimuli are the same for both baseline CBF states, this result has implications for fMRI studies that aim to measure neurovascular coupling using relative changes in CBF. The coupling parameter n is sensitive to baseline CBF, which would confound its interpretation in fMRI studies where there may be significant differences in baseline perfusion between groups. The absolute change in

  17. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Pelgrim, Gert Jan; Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Klotz, Ernst; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  18. Multislice CT brain image registration for perfusion studies

    NASA Astrophysics Data System (ADS)

    Lin, Zhong Min; Pohlman, Scott; Chandra, Shalabh

    2002-04-01

    During the last several years perfusion CT techniques have been developed as an effective technique for clinically evaluating cerebral hemodynamics. Perfusion CT techniques are capable of measurings functional parameters such as tissue perfusion, blood flow, blood volume, and mean transit time and are commonly used to evaluate stroke patients. However, the quality of functional images of the brain frequently suffers from patient head motion. Because the time window for an effective treatment of stroke patient is narrow, a fast motion correction is required. The purpose of the paper is to present a fast and accurate registration technique for motion correction of multi-slice CT and to demonstrate the effects of the registration on perfusion calculation.

  19. Fast nonlinear regression method for CT brain perfusion analysis.

    PubMed

    Bennink, Edwin; Oosterbroek, Jaap; Kudo, Kohsuke; Viergever, Max A; Velthuis, Birgitta K; de Jong, Hugo W A M

    2016-04-01

    Although computed tomography (CT) perfusion (CTP) imaging enables rapid diagnosis and prognosis of ischemic stroke, current CTP analysis methods have several shortcomings. We propose a fast nonlinear regression method with a box-shaped model (boxNLR) that has important advantages over the current state-of-the-art method, block-circulant singular value decomposition (bSVD). These advantages include improved robustness to attenuation curve truncation, extensibility, and unified estimation of perfusion parameters. The method is compared with bSVD and with a commercial SVD-based method. The three methods were quantitatively evaluated by means of a digital perfusion phantom, described by Kudo et al. and qualitatively with the aid of 50 clinical CTP scans. All three methods yielded high Pearson correlation coefficients ([Formula: see text]) with the ground truth in the phantom. The boxNLR perfusion maps of the clinical scans showed higher correlation with bSVD than the perfusion maps from the commercial method. Furthermore, it was shown that boxNLR estimates are robust to noise, truncation, and tracer delay. The proposed method provides a fast and reliable way of estimating perfusion parameters from CTP scans. This suggests it could be a viable alternative to current commercial and academic methods. PMID:27413770

  20. Gauging MRI

    NASA Astrophysics Data System (ADS)

    Herron, Ison; Goodman, Jeremy

    2009-11-01

    Axisymmetric stability of viscous resistive magnetized Couette flow is re-examined, with emphasis on flows that would be hydrodynamically stable according to Rayleigh's criterion: opposing gradients of angular velocity and specific angular momentum. A uniform axial magnetic field permeates the fluid. In this regime, magnetorotational instability (MRI) may occur. It is proved that MRI is suppressed, in fact no instability at all occurs, with insulating boundary conditions, when the magnetic resistivity is sufficiently large. This shows conclusively that small magnetic dissipation is a feature of this instability for all magnetic Prandtl numbers. A criterion is provided for the onset of MRI.

  1. Musculoskeletal MRI.

    PubMed

    Sage, Jaime E; Gavin, Patrick

    2016-05-01

    MRI has the unique ability to detect abnormal fluid content, and is therefore unparalleled in its role of detection, diagnosis, prognosis, treatment planning and follow-up evaluation of musculoskeletal disease. MRI in companion animals should be considered in the following circumstances: a definitive diagnosis cannot be made on radiographs; a patient is nonresponsive to medical or surgical therapy; prognostic information is desired; assessing surgical margins and traumatic and/or infectious joint and bone disease; ruling out subtle developmental or early aggressive bone lesions. The MRI features of common disorders affecting the shoulder, elbow, stifle, carpal, and tarsal joints are included in this chapter.

  2. Characterization of stroke lesions using a histogram-based data analysis including diffusion- and perfusion-weighted imaging

    NASA Astrophysics Data System (ADS)

    Grzesik, Alexander; Bernarding, Johannes; Braun, Juergen; Koennecke, Hans-Christian; Wolf, Karl J.; Tolxdorff, Thomas

    2000-04-01

    Diffusion- and perfusion-weighted magnetic resonance imaging (DWI, PWI) allows the diagnosis of ischemic brain injury at a time when ischemic lesions may not yet be detectable in computer tomography or T2-weighted (T2w) MRI. However, regions with pathologic apparent diffusion coefficients (ADC) do not necessarily match with regions of prolonged mean transit times (MTT) or pathologic relative cerebral blood flow (rCBF). Mismatching parts are thought to correlate with tissues that can be saved by appropriate treatment. Ten patients with cerebral ischemia underwent standard T1w and T2w imaging as well as single-shot echo planar imaging (EPI) DWI, and PWI. Multidimensional histograms were constructed from T2w images, DWI, ADC, rCBF, and MTT maps. After segmenting different tissues, signal changes of ischemic tissues relative to unaffected parenchyma were calculated. Combining different information allowed the segmentation of lesions and unaffected tissues. Acute infarcts exhibited decreased ADC values as well as hypo- and hyperperfused areas. Correlating ADC, T2w, and rCBF with clinical symptoms allowed the estimation of age and perfusion state of the lesions. Combining DWI, PWI, and standard imaging overcomes strongly fluctuating parameters such as ADC values. A multidimensional parameter-set characterizes unaffected and pathologic tissues which may help in the evaluation of new therapeutic strategies.

  3. Evaluation of Microvascular Perfusion and Resuscitation after Severe Injury.

    PubMed

    Lee, Yann-Leei L; Simmons, Jon D; Gillespie, Mark N; Alvarez, Diego F; Gonzalez, Richard P; Brevard, Sidney B; Frotan, Mohammad A; Schneider, Andrew M; Richards, William O

    2015-12-01

    Achieving adequate perfusion is a key goal of treatment in severe trauma; however, tissue perfusion has classically been measured by indirect means. Direct visualization of capillary flow has been applied in sepsis, but application of this technology to the trauma population has been limited. The purpose of this investigation was to compare the efficacy of standard indirect measures of perfusion to direct imaging of the sublingual microcirculatory flow during trauma resuscitation. Patients with injury severity scores >15 were serially examined using a handheld sidestream dark-field video microscope. In addition, measurements were also made from healthy volunteers. The De Backer score, a morphometric capillary density score, and total vessel density (TVD) as cumulative vessel area within the image, were calculated using Automated Vascular Analysis (AVA3.0) software. These indices were compared against clinical and laboratory parameters of organ function and systemic metabolic status as well as mortality. Twenty severely injured patients had lower TVD (X = 14.6 ± 0.22 vs 17.66 ± 0.51) and De Backer scores (X = 9.62 ± 0.16 vs 11.55 ± 0.37) compared with healthy controls. These scores best correlated with serum lactate (TVD R(2) = 0.525, De Backer R(2) = 0.576, P < 0.05). Mean arterial pressure, heart rate, oxygen saturation, pH, bicarbonate, base deficit, hematocrit, and coagulation parameters correlated poorly with both TVD and De Backer score. Direct measurement of sublingual microvascular perfusion is technically feasible in trauma patients, and seems to provide real-time assessment of microcirculatory perfusion. This study suggests that in severe trauma, many indirect measurements of perfusion do not correlate with microvascular perfusion. However, visualized perfusion deficiencies do reflect a shift toward anaerobic metabolism. PMID:26736167

  4. Modelling of temperature and perfusion during scalp cooling

    NASA Astrophysics Data System (ADS)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  5. Perfusion Bioreactor Module

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1990-01-01

    Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

  6. Performance of the MRI-Based Virtual Bone Biopsy in the Distal Radius: Serial Reproducibility and Reliability of Structural and Mechanical Parameters in Women Representative of Osteoporosis Study Populations

    PubMed Central

    Lam, Shing Chun Benny; Wald, Michael J.; Rajapakse, Chamith S.; Liu, Yinxiao; Saha, Punam K.; Wehrli, Felix W.

    2011-01-01

    Serial reproducibility and reliability critically determine sensitivity to detect changes in response to intervention and provide a basis for sample size estimates. Here, we evaluated the performance of the MRI-based Virtual Bone Biopsy in terms of 26 structural and mechanical parameters in the distal radius of 20 women in the age range of 50 to 75 years (mean = 62.0 years, S.D. = 8.1 years), representative of typical study populations in drug intervention trials and fracture studies. Subjects were examined three times at average intervals of 20.2 days (S.D. = 14.5 days) by MRI at 1.5 T field strength at a voxel size of 137×137×410 μm3. Methods involved prospective and retrospective 3D image registration and auto-focus motion correction. Analyses were performed from a central 5×5×5 mm3 cuboid subvolume and trabecular volume consisting of a 13 mm axial slab encompassing the entire medullary cavity. Whole-volume axial stiffness and sub-regional Young’s and shear moduli were computed by finite-element analysis. Whole-volume-derived aggregate mean coefficient of variation of all structural parameters was 4.4% (range 1.8% to 7.7%) and 4.0% for axial stiffness; corresponding data in the subvolume were 6.5% (range 1.6% to 13.0%) for structural, and 5.5% (range 4.6% to 6.5%) for mechanical parameters. Aggregate ICC was 0.976 (range 0.947 to 0.986) and 0.992 for whole-volume-derived structural parameters and axial stiffness, and 0.946 (range 0.752 to 0.991) and 0.974 (range 0.965 to 0.978) for subvolume-derived structural and mechanical parameters, respectively. The strongest predictors of whole-volume axial stiffness were BV/TV, junction density, skeleton density and Tb.N (R2 0.79 – 0.87). The same parameters were also highly predictive of sub-regional axial modulus (R2 0.88 – 0.91). The data suggest that the method is suited for longitudinal assessment of the response to therapy. The underlying technology is portable and should be compatible with all general

  7. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... from the NHLBI on Twitter. What Is a Lung Ventilation/Perfusion Scan? A lung ventilation/perfusion scan, or VQ scan, is a ... that measures air and blood flow in your lungs. A VQ scan most often is used to ...

  8. Ex-vivo lung perfusion.

    PubMed

    Van Raemdonck, Dirk; Neyrinck, Arne; Cypel, Marcelo; Keshavjee, Shaf

    2015-06-01

    This review outlines the new and promising technique of ex vivo lung perfusion and its clinical potential to increase the number of transplantable lungs and to improve the early and late outcome after transplantation. The rationale, the experimental background, the technique and protocols, and available devices for ex vivo lung perfusion are discussed. The current clinical experience worldwide and ongoing clinical trials are reviewed.

  9. Quantitative MRI Measures in SIV-Infected Macaque Brains.

    PubMed

    Zhang, Xiaodong; Li, Chunxia

    2013-01-01

    Multiple MRI modalities including Diffusion Tensor Imaging (DTI), perfusion MRI, in vivo MR Spectroscopy (MRS), volumetric MRI, contrast-enhanced MRI, and functional MRI have demonstrated abnormalities of the structural and functional integrity as well as neurochemical alterations of the HIV-infected central nervous system (CNS). MRI has been proposed as a robust imaging approach for the characterization of the stage of progression in HIV infection. However, the interpretation of the MRI findings of HIV patients is complicated by the fact that these clinical studies cannot readily be controlled. Simian immunodeficiency virus (SIV) infected macaques exhibit neuropathological symptoms similar to those of HIV patients, and are an important model for studying the course of CNS infection, cognitive impairment, and neuropathology of HIV disease as well as treatment efficacy. MRI of non-human primates (NHPs) is of limited benefit on most clinical scanners operating at or below 1.5 Tesla because this low field strength does not produce high-quality images of the relatively small NHP brain. Contemporary high field MRI (3T or more) for clinical use provides impressive sensitivity for magnetic resonance signal detection and is now accessible in many imaging centers and hospitals, facilitating the use of various MRI techniques in NHP studies. In this article, several high field MRI techniques and applications in macaque models of neuroAIDS are reviewed and the relation between quantitative MRI measures and blood T-cell alterations is discussed. PMID:24244892

  10. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    PubMed

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent.

  11. USE OF A PROGRAMMABLE CALCULATOR IN CARDIOPULMONARY PERFUSION

    PubMed Central

    Mills, J. David; Tallent, Jerome H.

    1978-01-01

    This study describes a hand-held, battery-powered, programmable instrument (Calculator Model SR-52) that can be taken directly into the operating room by cardiopulmonary perfusionists. Three programs are described in detail: 1) Cardiopulmonary perfusion parameters and estimated blood volume; 2) blood gas parameters and saturations, with temperature corrections; and 3) cardiopulmonary oxygen transfer and oxygenator efficiency. This inexpensive calculator allows perfusion personnel to manipulate easily-derived data into values which heretofore have required elaborate nomograms or special slide rules—or were not available within a reasonable computational time. PMID:15216068

  12. Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas

    PubMed Central

    Van Cauter, Sofie; De Keyzer, Frederik; Sima, Diana M.; Croitor Sava, Anca; D'Arco, Felice; Veraart, Jelle; Peeters, Ronald R.; Leemans, Alexander; Van Gool, Stefaan; Wilms, Guido; Demaerel, Philippe; Van Huffel, Sabine; Sunaert, Stefan; Himmelreich, Uwe

    2014-01-01

    Background We assessed the diagnostic accuracy of diffusion kurtosis imaging (DKI), dynamic susceptibility-weighted contrast-enhanced (DSC) MRI, and short echo time chemical shift imaging (CSI) for grading gliomas. Methods In this prospective study, 35 patients with cerebral gliomas underwent DKI, DSC, and CSI on a 3 T MR scanner. Diffusion parameters were mean diffusivity (MD), fractional anisotropy, and mean kurtosis (MK). Perfusion parameters were mean relative regional cerebral blood volume (rrCBV), mean relative regional cerebral blood flow (rrCBF), mean transit time, and relative decrease ratio (rDR). The diffusion and perfusion parameters along with 12 CSI metabolite ratios were compared among 22 high-grade gliomas and 14 low-grade gliomas (Mann–Whitney U-test, P < .05). Classification accuracy was determined with a linear discriminant analysis for each MR modality independently. Furthermore, the performance of a multimodal analysis is reported, using a decision-tree rule combining the statistically significant DKI, DSC-MRI, and CSI parameters with the lowest P-value. The proposed classifiers were validated on a set of subsequently acquired data from 19 clinical patients. Results Statistically significant differences among tumor grades were shown for MK, MD, mean rrCBV, mean rrCBF, rDR, lipids over total choline, lipids over creatine, sum of myo-inositol, and sum of creatine. DSC-MRI proved to be the modality with the best performance when comparing modalities individually, while the multimodal decision tree proved to be most accurate in predicting tumor grade, with a performance of 86%. Conclusions Combining information from DKI, DSC-MRI, and CSI increases diagnostic accuracy to differentiate low- from high-grade gliomas, possibly providing diagnosis for the individual patient. PMID:24470551

  13. CT Perfusion Characteristics Identify Metastatic Sites in Liver.

    PubMed

    Wang, Yuan; Hobbs, Brian P; Ng, Chaan S

    2015-01-01

    Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT) perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF), blood volume (BV), mean transit time (MTT), permeability (PS), and hepatic arterial fraction (HAF), for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  14. Dynamic chest image analysis: model-based pulmonary perfusion analysis with pyramid images

    NASA Astrophysics Data System (ADS)

    Liang, Jianming; Haapanen, Arto; Jaervi, Timo; Kiuru, Aaro J.; Kormano, Martti; Svedstrom, Erkki; Virkki, Raimo

    1998-07-01

    The aim of the study 'Dynamic Chest Image Analysis' is to develop computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected at different phases of the respiratory/cardiac cycles in a short period of time. We have proposed a framework for ventilation study with an explicit ventilation model based on pyramid images. In this paper, we extend the framework to pulmonary perfusion study. A perfusion model and the truncated pyramid are introduced. The perfusion model aims at extracting accurate, geographic perfusion parameters, and the truncated pyramid helps in understanding perfusion at multiple resolutions and speeding up the convergence process in optimization. Three cases are included to illustrate the experimental results.

  15. Perfusion computed tomography in renal cell carcinoma

    PubMed Central

    Das, Chandan J; Thingujam, Usha; Panda, Ananya; Sharma, Sanjay; Gupta, Arun Kumar

    2015-01-01

    Various imaging modalities are available for the diagnosis, staging and response evaluation of patients with renal cell carcinoma (RCC). While contrast enhanced computed tomography (CT) is used as the standard of imaging for size, morphological evaluation and response assessment in RCC, a new functional imaging technique like perfusion CT (pCT), goes down to the molecular level and provides new perspectives in imaging of RCC. pCT depicts regional tumor perfusion and vascular permeability which are indirect parameters of tumor angiogenesis and thereby provides vital information regarding tumor microenvironment. Also response evaluation using pCT may predate the size criteria used in Response Evaluation Criteria in Solid Tumors, as changes in the perfusion occurs earlier following tissue kinase inhibitors before any actual change in size. This may potentially help in predicting prognosis, better selection of therapy and more accurate and better response evaluation in patients with RCC. This article describes the techniques and role of pCT in staging and response assessment in patients with RCCs. PMID:26217456

  16. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values. PMID:24788075

  17. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values.

  18. Ex vivo lung perfusion.

    PubMed

    Machuca, Tiago N; Cypel, Marcelo

    2014-08-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  19. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  20. The evolution of perfusion education in America.

    PubMed

    Toomasian, John M; Searles, Bruce; Kurusz, Mark

    2003-07-01

    Clinical cardiopulmonary perfusion has evolved significantly during its 50 years. The science, technology and educational processes related to cardiopulmonary bypass have undergone continual change and metamorphosis. Perfusionists were initially trained on the job or in the laboratory, but with the advent of myocardial revascularization and the explosion in cardiac surgery, the need for formal educational training programs became apparent. The American Society of Extracorporeal Technology began the arduous processes of credentialing and developing certification guidelines that have continued under the American Board of Cardiovascular Perfusion. Licensure has also been adopted in many states during the past 10 years where nearly 50% of all perfusionists are covered by some legislative act. One additonal challenge has been developing minimal standards in which perfusionists practice. The initial standards included the use of a checklist and have evolved to monitoring and recording the significant events and parameters of each clinical procedure. The education of perfusionists will continue to be a challenge related primarily to reduced fiscal resources, the applicant pool and the ever-changing demands for extracorporeal circulation services. According to demographic and census information, it is expected the overall number of cardiovascular interventions will increase dramatically towards the latter end of the current decade in the US. The question arises as to what role perfusionists will play, as treatment strategies continue to change. If the number of education programs and new graduates continue to decline, the total number of perfusionists will decline, especially as many senior perfusionists leave the field or retire. It may be difficult to predict the total number of cardiovascular interventions that will be required in the next several years. However, if the total number of cardiovascular interventions that require perfusion services increase as a function

  1. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  2. Evaluation of CT Perfusion Biomarkers of Tumor Hypoxia

    PubMed Central

    Qi, Qi; Yeung, Timothy Pok Chi; Lee, Ting-Yim; Bauman, Glenn; Crukley, Cathie; Morrison, Laura; Hoffman, Lisa; Yartsev, Slav

    2016-01-01

    Background Tumor hypoxia is associated with treatment resistance to cancer therapies. Hypoxia can be investigated by immunohistopathologic methods but such procedure is invasive. A non-invasive method to interrogate tumor hypoxia is an attractive option as such method can provide information before, during, and after treatment for personalized therapies. Our study evaluated the correlations between computed tomography (CT) perfusion parameters and immunohistopathologic measurement of tumor hypoxia. Methods Wistar rats, 18 controls and 19 treated with stereotactic radiosurgery (SRS), implanted with the C6 glioma tumor were imaged using CT perfusion on average every five days to monitor tumor growth. A final CT perfusion scan and the brain were obtained on average 14 days (8–22 days) after tumor implantation. Tumor hypoxia was detected immunohistopathologically with pimonidazole. The tumor, necrotic, and pimonidazole-positive areas on histology samples were measured. Percent necrotic area and percent hypoxic areas were calculated. Tumor volume (TV), blood flow (BF), blood volume (BV), and permeability-surface area product (PS) were obtained from the CT perfusion studies. Correlations between CT perfusion parameters and histological parameters were assessed by Spearman’s ρ correlation. A Bonferroni-corrected P value < 0.05 was considered significant. Results BF and BV showed significant correlations with percent hypoxic area ρ = -0.88, P < 0.001 and ρ = -0.81, P < 0.001, respectively, for control animals and ρ = -0.7, P < 0.001 and ρ = -0.6, P = 0.003, respectively, for all animals, while TV and BV were correlated (ρ = -0.64, P = 0.01 and ρ = -0.43, P = 0.043, respectively) with percent necrotic area. PS was not correlated with either percent necrotic or percent hypoxic areas. Conclusions Percent hypoxic area provided significant correlations with BF and BV, suggesting that CT perfusion parameters are potential non-invasive imaging biomarkers of tumor

  3. Distributed perfusion educational model: a shift in perfusion economic realities.

    PubMed

    Austin, Jon W; Evans, Edward L; Hoerr, Harry R

    2005-12-01

    In recent years, a steady decline in the number of perfusion education programs in the United States has been noted. At the same time, there has been a parallel decline in the number of students graduated from perfusion educational programs in the United States. Also, as noted by several authors, there has been an increase in demand for perfusion graduates. The decline in programs and graduates has also been noted in anesthesia and surgical residency programs. The shift is caused by a combination of economic and clinical factors. First, decreased reimbursement has led to reallocation of hospital resources. Second, the original enthusiasm for beating heart coronary artery bypass surgery was grossly overestimated and has led to further reallocation of hospital resources and denigration of cardiopulmonary bypass. This paper describes two models of perfusion education programs: serial perfusion education model (SPEM) and the distributed perfusion education model (DPEM). Arguments are presented that the SPEM has some serious limitations and challenges for long-term economic survival. The authors feel the DPEM along with dependence on tuition funding can survive the current clinical and economic conditions and allow the profession to adapt to changes in scope of practice. PMID:16524152

  4. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI.

    PubMed

    Sauwen, Nicolas; Sima, Diana M; Van Cauter, Sofie; Veraart, Jelle; Leemans, Alexander; Maes, Frederik; Himmelreich, Uwe; Van Huffel, Sabine

    2015-12-01

    Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor substructures (i.e. viable tumor, necrosis and edema), which could be of added value for the diagnosis, treatment planning and follow-up of individual patients. Twenty-four patients with glioma [10 low-grade gliomas (LGGs), 14 high-grade gliomas (HGGs)] underwent a multi-parametric MRI (MP-MRI) scheme, including conventional MRI (cMRI), perfusion-weighted imaging (PWI), diffusion kurtosis imaging (DKI) and short-TE (1)H MRSI. MP-MRI parameters were derived: T2, T1 + contrast, fluid-attenuated inversion recovery (FLAIR), relative cerebral blood volume (rCBV), mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and the principal metabolites lipids (Lip), lactate (Lac), N-acetyl-aspartate (NAA), total choline (Cho), etc. Hierarchical non-negative matrix factorization (hNMF) was applied to the MP-MRI parameters, providing tissue characterization on a patient-by-patient and voxel-by-voxel basis. Tissue-specific patterns were obtained and the spatial distribution of each tissue type was visualized by means of abundance maps. Dice scores were calculated by comparing tissue segmentation derived from hNMF with the manual segmentation by a radiologist. Correlation coefficients were calculated between each pathologic tissue source and the average feature vector within the corresponding tissue region. For the patients with HGG, mean Dice scores of 78%, 85% and 83% were obtained for viable tumor, the tumor core and the complete tumor region. The mean correlation coefficients were 0.91 for tumor, 0.97 for necrosis and 0.96 for edema. For the patients with LGG, a mean Dice score of 85% and mean correlation coefficient of 0.95 were found for the tumor region. hNMF was

  5. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI.

    PubMed

    Sauwen, Nicolas; Sima, Diana M; Van Cauter, Sofie; Veraart, Jelle; Leemans, Alexander; Maes, Frederik; Himmelreich, Uwe; Van Huffel, Sabine

    2015-12-01

    Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor substructures (i.e. viable tumor, necrosis and edema), which could be of added value for the diagnosis, treatment planning and follow-up of individual patients. Twenty-four patients with glioma [10 low-grade gliomas (LGGs), 14 high-grade gliomas (HGGs)] underwent a multi-parametric MRI (MP-MRI) scheme, including conventional MRI (cMRI), perfusion-weighted imaging (PWI), diffusion kurtosis imaging (DKI) and short-TE (1)H MRSI. MP-MRI parameters were derived: T2, T1 + contrast, fluid-attenuated inversion recovery (FLAIR), relative cerebral blood volume (rCBV), mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and the principal metabolites lipids (Lip), lactate (Lac), N-acetyl-aspartate (NAA), total choline (Cho), etc. Hierarchical non-negative matrix factorization (hNMF) was applied to the MP-MRI parameters, providing tissue characterization on a patient-by-patient and voxel-by-voxel basis. Tissue-specific patterns were obtained and the spatial distribution of each tissue type was visualized by means of abundance maps. Dice scores were calculated by comparing tissue segmentation derived from hNMF with the manual segmentation by a radiologist. Correlation coefficients were calculated between each pathologic tissue source and the average feature vector within the corresponding tissue region. For the patients with HGG, mean Dice scores of 78%, 85% and 83% were obtained for viable tumor, the tumor core and the complete tumor region. The mean correlation coefficients were 0.91 for tumor, 0.97 for necrosis and 0.96 for edema. For the patients with LGG, a mean Dice score of 85% and mean correlation coefficient of 0.95 were found for the tumor region. hNMF was

  6. Comparison of Myocardial Perfusion Estimates From Dynamic Contrast-Enhanced Magnetic Resonance Imaging With Four Quantitative Analysis Methods

    PubMed Central

    Pack, Nathan A.; DiBella, Edward V. R.

    2012-01-01

    Dynamic contrast-enhanced MRI has been used to quantify myocardial perfusion in recent years. Published results have varied widely, possibly depending on the method used to analyze the dynamic perfusion data. Here, four quantitative analysis methods (two-compartment modeling, Fermi function modeling, model-independent analysis, and Patlak plot analysis) were implemented and compared for quantifying myocardial perfusion. Dynamic contrast-enhanced MRI data were acquired in 20 human subjects at rest with low-dose (0.019 ± 0.005 mmol/kg) bolus injections of gadolinium. Fourteen of these subjects were also imaged at adenosine stress (0.021 ± 0.005 mmol/kg). Aggregate rest perfusion estimates were not significantly different between all four analysis methods. At stress, perfusion estimates were not significantly different between two-compartment modeling, model-independent analysis, and Patlak plot analysis. Stress estimates from the Fermi model were significantly higher (~20%) than the other three methods. Myocardial perfusion reserve values were not significantly different between all four methods. Model-independent analysis resulted in the lowest model curve-fit errors. When more than just the first pass of data was analyzed, perfusion estimates from two-compartment modeling and model-independent analysis did not change significantly, unlike results from Fermi function modeling. PMID:20577976

  7. Prediction of postoperative loss of lung function in patients with malignant lung mass. Quantitative regional ventilation-perfusion scanning

    SciTech Connect

    Ryo, U.Y. )

    1990-05-01

    The quantitative measurement of regional ventilation and perfusion distribution is simply and reliably accomplished by using routinely available radioactive gas and perfusion lung scanning agents, and a large field-of-view gamma camera with an on-line computer. The preoperative prediction of postsurgical loss in lung function can be made accurately by using the quantitative ventilation-perfusion lung scan technique. Either a regional ventilation study or perfusion study may be used for the prediction, but analysis of regional ventilation distribution appears to be a better parameter than that of perfusion distribution for the prediction of postoperative loss of FEV1. In the rare case of a patient with a marked ventilation-perfusion deficit, quantitative distribution of both ventilation and perfusion may be needed for an accurate assessment of postsurgical lung function. 18 references.

  8. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth.

    PubMed

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  9. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    PubMed Central

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  10. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition.

  11. Ex-vivo lung perfusion.

    PubMed

    Van Raemdonck, Dirk; Neyrinck, Arne; Cypel, Marcelo; Keshavjee, Shaf

    2015-06-01

    This review outlines the new and promising technique of ex vivo lung perfusion and its clinical potential to increase the number of transplantable lungs and to improve the early and late outcome after transplantation. The rationale, the experimental background, the technique and protocols, and available devices for ex vivo lung perfusion are discussed. The current clinical experience worldwide and ongoing clinical trials are reviewed. PMID:24629039

  12. Hydrostatic determinants of cerebral perfusion

    SciTech Connect

    Wagner, E.M.; Traystman, R.J.

    1986-05-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure.

  13. Construction and validation of a microprocessor controlled extracorporal circuit in rats for the optimization of isolated limb perfusion.

    PubMed

    Gürtler, Ulrich; Fuchs, Peter; Stangelmayer, Achim; Bernhardt, Günther; Buschauer, Armin; Spruss, Thilo

    2004-12-01

    Although a few experimental approaches to isolated limb perfusion (ILP) are described in the literature, none of these animal models mimics the clinical perfusion techniques adequately to improve the technique of ILP on the basis of valid preclinical data. Therefore, we developed an ILP setup in rats allowing online monitoring of essential perfusion parameters such as temperature (in perfusate, various tissues, and rectum), pH (perfusate), perfusion pressure, and O(2) concentration (in perfusate, tissue), by a tailor-made data acquisition system. This setup permits close supervision of vital parameters during ILP. Various interdependencies, concerning the flow rate and the pressure of perfusate as well as tissue oxygenation were registered. For the measurement of pO(2) values in the perfusate and in different regions of the perfused hind limb, a novel type of microoptode based on quenching of a fluorescent dye was devised. Stable normothermic (37 degrees C) perfusion conditions were maintained at a constant perfusion pressure in the range of 40-60 mm Hg by administration of the spasmo lytic moxaverine (0.5 mg/mL of perfusate as initial dose) at a perfusate flow rate of 0.5 mL/min for 60 min. At the end of an ILP, there were no signs of tissue damage, neither concerning laboratory data (K(+), myoglobin, creatine kinase, lactic dehydrogenase) nor histopathological criteria. The reported ILP model is not only well suited to investigate the effects of hyperthermia but also to assess the efficacy of new antineoplastic approaches, when nude rats, bearing human tumours in the hind limbs, are used.

  14. MRI of plants and foods

    NASA Astrophysics Data System (ADS)

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  15. Multimodal imaging in diagnosis of Alzheimer's disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region.

    PubMed

    Zimny, Anna; Szewczyk, Pawel; Trypka, Elzbieta; Wojtynska, Renata; Noga, Leszek; Leszek, Jerzy; Sasiadek, Marek

    2011-01-01

    The purpose of this study was to assess metabolic, perfusion, and microstructural changes within the posterior cingulate area in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) using advanced MR techniques such as: spectroscopy (MRS), perfusion weighted imaging (PWI), and diffusion tensor imaging (DTI). Thirty patients with AD (mean age 71.5 y, MMSE 18), 23 with aMCI (mean age 66 y, MMSE 27.4), and 15 age-matched normal controls (mean age 69 y, MMSE 29.5) underwent conventional MRI followed by MRS, PWI, and DTI on 1.5 Tesla MR unit. Several metabolite ratios (N-acetylaspartate [NAA]/creatine [Cr], choline [Ch]/Cr, myoinositol [mI]/Cr, mI/NAA, mI/Cho) as well as parameters of cerebral blood volume relative to cerebellum and fractional anisotropy were obtained in the posterior cingulate region. The above parameters were correlated with the results of neuropsychological tests. AD patients showed significant abnormalities in all evaluated parameters while subjects with aMCI showed only perfusion and diffusion changes in the posterior cingulate area. Only PWI and DTI measurements revealed significant differences among the three evaluated subject groups. DTI, PWI, and MRS results showed significant correlations with neuropsychological tests. DTI changes correlated with both PWI and MRS abnormalities. Of neuroimaging methods, DTI revealed the highest accuracy in diagnosis of AD and aMCI (0.95, 0.79) followed by PWI (0.87, 0.67) and MRS (0.82, 0.47), respectively. In conclusion, AD is a complex pathology regarding both grey and white matter. DTI seems to be the most useful imaging modality to distinguish between AD, aMCI, and control group, followed by PWI and MRS. PMID:21841260

  16. Quantitative perfusion analysis in pancreatic contrast enhanced ultrasound (DCE-US): a promising tool for the differentiation between autoimmune pancreatitis and pancreatic cancer.

    PubMed

    Vitali, F; Pfeifer, L; Janson, C; Goertz, R S; Neurath, M F; Strobel, D; Wildner, D

    2015-10-01

    In the work-up of focal pancreatic lesions autoimmune pancreatitis (AIP) is a rare differential diagnosis to pancreatic cancer (PC) with similar clinical constellations. The aim of our study was to compare differences between proven AIP and PC using transabdominal dynamic contrast enhanced ultrasound (DCE-US). Therefore we recorded 3-minute-clips of CEUS examinations and analyzed perfusion parameters with VueBox®-quantification software. To obtain DCE-US Parameters, Regions-of-Interest were selected within the lesions and the surrounding pancreas parenchyma, serving as reference tissue. We compared 3 patients with AIP (mean age: 58 years; lesion mean size: 40 mm) to 17 patients with PC (mean age: 68 years; lesion mean size: 35.9 mm). Significant differences between PC and parenchyma could be found in the following parameters: Peak-Enhancement (PE), Wash-in-and-Wash-out-AUC, Wash-in Perfusion-Index. PE of AIP was comparable to normal parenchyma. The relation of PE between parenchyma and lesion (ΔPE) AIP and PC was significantly different [AIP: 0.21 (±0.06); PC: 0.81 (±0.1); p<0.01]. PE of neoplastic lesions was significantly lower as AIP and normal parenchyma (p<0.01). Therefore perfusion analysis in DCE-US can help to differentiate hypovascular PC from AIP presenting nearly isovascular time intensity curves. Diagnostic accuracy of DCE-US in this setting has to be validated in future prospective studies in comparison to CT and MRI. PMID:26480053

  17. Multiparametric-MRI in diagnosis of prostate cancer

    PubMed Central

    Ghai, Sangeet; Haider, Masoom A.

    2015-01-01

    Multiparametric-magnetic resonance imaging (mp-MRI) has shown promising results in diagnosis, localization, risk stratification and staging of clinically significant prostate cancer. It has also opened up opportunities for focal treatment of prostate cancer. Combinations of T2-weighted imaging, diffusion imaging, perfusion (dynamic contrast-enhanced imaging) and spectroscopic imaging have been used in mp-MRI assessment of prostate cancer, but T2 morphologic assessment and functional assessment by diffusion imaging remains the mainstay for prostate cancer diagnosis on mp-MRI. Because assessment on mp-MRI can be subjective, use of the newly developed standardized reporting Prostate Imaging and Reporting Archiving Data System scoring system and education of specialist radiologists are essential for accurate interpretation. This review focuses on the present status of mp-MRI in prostate cancer and its evolving role in the management of prostate cancer. PMID:26166962

  18. Altered resting perfusion and functional connectivity of default mode network in youth with autism spectrum disorder

    PubMed Central

    Jann, Kay; Hernandez, Leanna M; Beck-Pancer, Devora; McCarron, Rosemary; Smith, Robert X; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Background Neuroimaging studies can shed light on the neurobiological underpinnings of autism spectrum disorders (ASD). Studies of the resting brain have shown both altered baseline metabolism from PET/SPECT and altered functional connectivity (FC) of intrinsic brain networks based on resting-state fMRI. To date, however, no study has investigated these two physiological parameters of resting brain function jointly, or explored the relationship between these measures and ASD symptom severity. Methods Here, we used pseudo-continuous arterial spin labeling with 3D background-suppressed GRASE to assess resting cerebral blood flow (CBF) and FC in 17 youth with ASD and 22 matched typically developing (TD) children. Results A pattern of altered resting perfusion was found in ASD versus TD children including frontotemporal hyperperfusion and hypoperfusion in the dorsal anterior cingulate cortex. We found increased local FC in the anterior module of the default mode network (DMN) accompanied by decreased CBF in the same area. In our cohort, both alterations were associated with greater social impairments as assessed with the Social Responsiveness Scale (SRS-total T scores). While FC was correlated with CBF in TD children, this association between FC and baseline perfusion was disrupted in children with ASD. Furthermore, there was reduced long-range FC between anterior and posterior modules of the DMN in children with ASD. Conclusion Taken together, the findings of this study – the first to jointly assess resting CBF and FC in ASD – highlight new avenues for identifying novel imaging markers of ASD symptomatology. PMID:26445698

  19. Perfused Multiwell Plate for 3D Liver Tissue Engineering

    PubMed Central

    Domansky, Karel; Inman, Walker; Serdy, James; Dash, Ajit; Lim, Matthew H. M.

    2014-01-01

    In vitro models that capture the complexity of in vivo tissue and organ behaviors in a scalable and easy-to-use format are desirable for drug discovery. To address this, we have developed a bioreactor that fosters maintenance of 3D tissue cultures under constant perfusion and we have integrated multiple bioreactors into an array in a multiwell plate format. All bioreactors are fluidically isolated from each other. Each bioreactor in the array contains a scaffold that supports formation of hundreds of 3D microscale tissue units. The tissue units are perfused with cell culture medium circulated within the bioreactor by integrated pneumatic diaphragm micropumps. Electronic controls for the pumps are kept outside the incubator and connected to the perfused multiwell by pneumatic lines. The docking design and open-well bioreactor layout make handling perfused multiwell plates similar to using standard multiwell tissue culture plates. A model of oxygen consumption and transport in the circulating culture medium was used to predict appropriate operating parameters for primary liver cultures. Oxygen concentrations at key locations in the system were then measured as a function of flow rate and time after initiation of culture to determine oxygen consumption rates. After seven days in culture, tissue formed from cells seeded in the perfused multiwell reactor remained functionally viable as assessed by immunostaining for hepatocyte and liver sinusoidal endothelial cell (LSEC) phenotypic markers. PMID:20024050

  20. Battlefield MRI

    SciTech Connect

    Espy, Michelle

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  1. An unsupervised approach for measuring myocardial perfusion in MR image sequences

    NASA Astrophysics Data System (ADS)

    Discher, Antoine; Rougon, Nicolas; Preteux, Francoise

    2005-08-01

    Quantitatively assessing myocardial perfusion is a key issue for the diagnosis, therapeutic planning and patient follow-up of cardio-vascular diseases. To this end, perfusion MRI (p-MRI) has emerged as a valuable clinical investigation tool thanks to its ability of dynamically imaging the first pass of a contrast bolus in the framework of stress/rest exams. However, reliable techniques for automatically computing regional first pass curves from 2D short-axis cardiac p-MRI sequences remain to be elaborated. We address this problem and develop an unsupervised four-step approach comprising: (i) a coarse spatio-temporal segmentation step, allowing to automatically detect a region of interest for the heart over the whole sequence, and to select a reference frame with maximal myocardium contrast; (ii) a model-based variational segmentation step of the reference frame, yielding a bi-ventricular partition of the heart into left ventricle, right ventricle and myocardium components; (iii) a respiratory/cardiac motion artifacts compensation step using a novel region-driven intensity-based non rigid registration technique, allowing to elastically propagate the reference bi-ventricular segmentation over the whole sequence; (iv) a measurement step, delivering first-pass curves over each region of a segmental model of the myocardium. The performance of this approach is assessed over a database of 15 normal and pathological subjects, and compared with perfusion measurements delivered by a MRI manufacturer software package based on manual delineations by a medical expert.

  2. Cortical Perfusion in Alcohol Dependent Individuals During Short-term Abstinence: Relationships to Resumption of Hazardous Drinking Following Treatment

    PubMed Central

    Durazzo, Timothy C.; Gazdzinski, Stefan; Mon, Anderson; Meyerhoff, Dieter J.

    2010-01-01

    Relapse to hazardous levels of alcohol consumption following treatment for an alcohol use disorders is common. Investigation of the neurobiological correlates of resumption of hazardous drinking is necessary to clarify the mechanisms contributing to relapse. Fifty-seven treatment-seeking alcohol dependent participants (ALC) completed arterial spin labeling perfusion MRI of the frontal and parietal gray matter (GM) at 7 ± 3 days of abstinence (baseline). ALC participants were restudied after 35 ± 11 days of abstinence (assessment point 2: AP2). Twenty-eight non-smoking, light drinking controls (nsLD) from the community were studied with perfusion MRI. ALC Participants were followed over 12-months after baseline study and were classified as Abstainers (no alcohol consumption; n = 19) and Resumers (any alcohol consumption; n = 38) at follow-up. Cross-sectional and longitudinal perfusion was compared in Abstainers, Resumers and nsLD. At baseline Resumers demonstrated significantly lower frontal and parietal GM perfusion than nsLD and Abstainers. Abstainers and nsLD were not different on frontal or parietal GM perfusion. No significant longitudinal perfusion changes were observed in Abstainers and Resumers. At AP2, Resumers showed significantly lower frontal GM perfusion than nsLD and Abstainers, while no group differences were observed for parietal GM. Abstainers and nsLD were not different on frontal GM perfusion. The significantly decreased frontal GM perfusion in Resumers compared to both Abstainers and nsLD across the assessment interval suggests premorbid and/or acquired neurobiological abnormalities of the frontal GM in Resumers. PMID:20682188

  3. Pattern of brain blood perfusion in tinnitus patients using technetium-99m SPECT imaging

    PubMed Central

    Mahmoudian, Saeid; Farhadi, Mohammad; Gholami, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaei, Mohammad; Ghoreyshi, Esmaeel; Ahmadizadeh, Majid; Lenarz, Thomas

    2012-01-01

    Background and Purpose: Tinnitus is associated with an increased activity in central auditory system as demonstrated by neuroimaging studies. Brain perfusion scanning using single photon emission computed tomography (SPECT) was done to understand the pattern of brain blood perfusion of tinnitus subjects and find the areas which are mostly abnormal in these patients. Materials and Methods: A number of 122 patients with tinnitus were enrolled to this cross-sectional study. They underwent SPECT and magnetic resonance imaging (MRI) of brain, and the images were fused to find the regions with abnormal perfusion. Results: SPECT scan results were abnormal in 101 patients (83%). Most patients had bilateral abnormal perfusion (N = 65, 53.3%), and most subjects had abnormality in middle-temporal gyrus (N = 83, 68%) and temporoparietal cortex (N = 46, 37.7%). Patients with multifocal involvement had the least mean age than other 2 groups (patients with no abnormality and unifocal abnormality) (P value = 0.045). Conclusions: Brain blood perfusion pattern differs in patient with tinnitus than others. These patients have brain perfusion abnormality, mostly in auditory gyrus (middle temporal) and associative cortex (temporoparietal cortex). Multifocal abnormalities might be due to more cognitive and emotional brain centers involvement due to tinnitus or more stress and anxiety of tinnitus in the young patients. PMID:23267375

  4. Injury and repair in perinatal brain injury: Insights from non-invasive MR perfusion imaging.

    PubMed

    Wintermark, Pia

    2015-03-01

    Injury to the developing brain remains an important complication in critically ill newborns, placing them at risk for future neurodevelopment impairments. Abnormal brain perfusion is often a key mechanism underlying neonatal brain injury. A better understanding of how alternations in brain perfusion can affect normal brain development will permit the development of therapeutic strategies that prevent and/or minimize brain injury and improve the neurodevelopmental outcome of these high-risk newborns. Recently, non-invasive MR perfusion imaging of the brain has been successfully applied to the neonatal brain, which is known to be smaller and have lower brain perfusion compared to older children and adults. This article will present an overview of the potential role of non-invasive perfusion imaging by MRI to study maturation, injury, and repair in perinatal brain injury and demonstrate why this perfusion sequence is an important addition to current neonatal imaging protocols, which already include different sequences to assess the anatomy and metabolism of the neonatal brain.

  5. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    PubMed

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  6. Imaging of the myocardium using (18)F-FDG-PET/MRI.

    PubMed

    Ferda, Jiří; Hromádka, Milan; Baxa, Jan

    2016-10-01

    The introduction of the integrated hybrid PET/MRI equipment creates the possibility to perform PET and MRI simultaneously. Depending on the clinical question, the metabolic conversion to glycolytic activity or beta-oxidation is performed before the application of FDG. Since FDG aids to evaluate the energetic metabolism of the myocytes and myocardial MRI reaches the imaging capabilities of perfusion and tissue characterization in the daily routine, FDG-PET/MRI looks to be a promising method of PET/MRI exploitation in cardiac imaging. When myocardial FDG uptake should be evaluated in association with the perfusion distribution, the cross-evaluation of FDG accumulation distribution and perfusion distribution pattern is necessary. The different scenarios may be used in the assessment of myocardium, the conversion to glycolytic activity is used in the imaging of the viable myocardium, but the glycolytic activity suppression might be used in the indications of the identification of injured myocardium by ischemia or inflammation. FDG-PET/MRI might aid to answer the clinical tasks according to the structure, current function and possibilities to improve the function in ischemic heart disease or to display the extent or activity of myocardial inflammation in sarcoidosis. The tight coupling between metabolism, perfusion and contractile function offers an opportunity for the simultaneous assessment of cardiac performance using one imaging modality. PMID:27470994

  7. Imaging of the myocardium using (18)F-FDG-PET/MRI.

    PubMed

    Ferda, Jiří; Hromádka, Milan; Baxa, Jan

    2016-10-01

    The introduction of the integrated hybrid PET/MRI equipment creates the possibility to perform PET and MRI simultaneously. Depending on the clinical question, the metabolic conversion to glycolytic activity or beta-oxidation is performed before the application of FDG. Since FDG aids to evaluate the energetic metabolism of the myocytes and myocardial MRI reaches the imaging capabilities of perfusion and tissue characterization in the daily routine, FDG-PET/MRI looks to be a promising method of PET/MRI exploitation in cardiac imaging. When myocardial FDG uptake should be evaluated in association with the perfusion distribution, the cross-evaluation of FDG accumulation distribution and perfusion distribution pattern is necessary. The different scenarios may be used in the assessment of myocardium, the conversion to glycolytic activity is used in the imaging of the viable myocardium, but the glycolytic activity suppression might be used in the indications of the identification of injured myocardium by ischemia or inflammation. FDG-PET/MRI might aid to answer the clinical tasks according to the structure, current function and possibilities to improve the function in ischemic heart disease or to display the extent or activity of myocardial inflammation in sarcoidosis. The tight coupling between metabolism, perfusion and contractile function offers an opportunity for the simultaneous assessment of cardiac performance using one imaging modality.

  8. [Choice of optimal perfusion flow rate during surgical correction of combined acquired heart diseases].

    PubMed

    Len'kin, A I; Zakharov, V I; Smetkin, A A; Len'kin, P I; Kirov, M Iu

    2013-01-01

    Cardiac output during the use of cardiopulmonary bypass (CPB) is defined by perfusion flow rate, which is calculated by multiplying the perfusion index (PI) on the body surface area. To date, there is no clear definition of an optimal PI and flow rate of perfusion. 60 patients operated with CPB were enrolled in the prospective study to determine the relations between different modes of perfusion and oxygen transport during surgical correction of combined valvular heart disease. Calculation of the CPB flow rate was based on PI 2.5 and 3.0 l/min/m2. Results of the study demonstrate that perfusion based on PI 2.5 l/min/m2 provides more stable oxygen transport parameters and reduces the time of ICU stay in comparison with the flow rate based on PI 3.0 l/min/m2.

  9. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma

    PubMed Central

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-01-01

    Abstract The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC). Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D∗, and f) and DCE-MRI parameters (Ktrans, Kep, and Ve) values and their percentage changes (Δ%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups. None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher Δ%D values than did the residual group (all P <0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P <0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively). IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and Δ%D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  10. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma.

    PubMed

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-08-01

    The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC).Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D*, and f) and DCE-MRI parameters (K, Kep, and Ve) values and their percentage changes (Δ%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups.None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher Δ%D values than did the residual group (all P <0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P <0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively).IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and Δ%D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  11. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging

    PubMed Central

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-01-01

    Abstract Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning. PMID:26844450

  12. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  13. MRI of the lung: state of the art.

    PubMed

    Wielpütz, Mark; Kauczor, Hans-Ulrich

    2012-01-01

    Magnetic resonance imaging (MRI) of the lung is technically challenging due to the low proton density and fast signal decay of the lung parenchyma itself. Additional challenges consist of tissue loss, hyperinflation, and hypoxic hypoperfusion, e.g., in emphysema, a so-called "minus-pathology". However, pathological changes resulting in an increase of tissue ("plus-pathology"), such as atelectases, nodules, infiltrates, mucus, or pleural effusion, are easily depicted with high diagnostic accuracy. Although MRI is inferior or at best equal to multi-detector computed tomography (MDCT) for the detection of subtle morphological features, MRI now offers an increasing spectrum of functional imaging techniques such as perfusion assessment and measurement of ventilation and respiratory mechanics that are superior to what is possible with MDCT. Without putting patients at risk with ionizing radiation, repeated examinations allow for the evaluation of the course of lung disease and monitoring of the therapeutic response through quantitative imaging, providing a level of functional detail that cannot be obtained by any other single imaging modality. As such, MRI will likely be used for clinical applications beyond morphological imaging for many lung diseases. In this article, we review the technical aspects and protocol suggestions for chest MRI and discuss the role of MRI in the evaluation of nodules and masses, airway disease, respiratory mechanics, ventilation, perfusion and hemodynamics, and pulmonary vasculature. PMID:22434450

  14. Pelvis MRI scan

    MedlinePlus

    MRI - pelvis; MRI - hips; Pelvic MRI with prostate probe; Magnetic resonance imaging - pelvis ... care provider if you are afraid of close spaces (have claustrophobia). You may be given a medicine ...

  15. Breast MRI scan

    MedlinePlus

    MRI - breast; Magnetic resonance imaging - breast; Breast cancer - MRI; Breast cancer screening - MRI ... the same breast or the other breast after breast cancer has been diagnosed Distinguish between scar tissue and ...

  16. Evaluation of Feline Renal Perfusion with Contrast-Enhanced Ultrasonography and Scintigraphy

    PubMed Central

    Vanderperren, Katrien; Bosmans, Tim; Dobbeleir, André; Duchateau, Luc; Hesta, Myriam; Lybaert, Lien; Peremans, Kathelijne; Vandermeulen, Eva; Saunders, Jimmy

    2016-01-01

    Contrast-enhanced ultrasound (CEUS) is an emerging technique to evaluate tissue perfusion. Promising results have been obtained in the evaluation of renal perfusion in health and disease, both in human and veterinary medicine. Renal scintigraphy using 99mTc-Mercaptoacetyltriglycine (MAG3) is another non-invasive technique that can be used to evaluate renal perfusion. However, no data are available on the ability of CEUS or 99mTc- MAG3 scintigraphy to detect small changes in renal perfusion in cats. Therefore, both techniques were applied in a normal feline population to evaluate detection possibilities of perfusion changes by angiotensin II (AT II). Contrast-enhanced ultrasound using a bolus injection of commercially available contrast agent and renal scintigraphy using 99mTc-MAG3 were performed in 11 healthy cats after infusion of 0,9% NaCl (control) and AT II. Angiotensin II induced changes were noticed on several CEUS parameters. Mean peak enhancement, wash-in perfusion index and wash-out rate for the entire kidney decreased significantly after AT II infusion. Moreover, a tendency towards a lower wash-in area-under-the curve was present. Renal scintigraphy could not detect perfusion changes induced by AT II. This study shows that CEUS is able to detect changes in feline renal perfusion induced by AT II infusion. PMID:27736928

  17. Positron emission tomography to assess hypoxia and perfusion in lung cancer

    PubMed Central

    Verwer, Eline E; Boellaard, Ronald; van der Veldt, Astrid AM

    2014-01-01

    In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed. PMID:25493221

  18. Perfusion computer tomography: imaging and clinical validation in acute ischaemic stroke.

    PubMed

    Bivard, Andrew; Spratt, Neil; Levi, Christopher; Parsons, Mark

    2011-11-01

    Computed tomography perfusion imaging in acute stroke requires further validation. We aimed to establish the optimal computed tomography perfusion parameters defining the infarct core and critically hypoperfused tissue. Sub-6-h computed tomography perfusion and 24-h magnetic resonance imaging were analysed from 314 consecutive patients with ischaemic stroke. Diffusion-weighted imaging lesion volume at 24 h was used to define the extent of critically hypoperfused tissue (in patients without reperfusion between acute and 24-h time points), and infarct core (in patients with major reperfusion at 24 h). Pixel-based analysis of co-registered computed tomography perfusion and diffusion-weighted imaging was then used to define the optimum computed tomography perfusion thresholds for critically hypoperfused at-risk tissue and infarct core. These optimized acute computed tomography perfusion threshold-based lesion volumes were then compared with 24-h diffusion-weighted imaging infarct volume, as well as 24-h and 90-day clinical outcomes for validation. Relative delay time >2 s was the most accurate computed tomography perfusion threshold in predicting the extent of critically hypoperfused tissue with both receiver operating curve analysis (area under curve 0.86), and the volumetric validation (mean difference between computed tomography perfusion and 24-h diffusion-weighted imaging lesions = 2 cm(2), 95% confidence interval 0.5-3.2 cm(2)). Cerebral blood flow <40% (of contralateral) within the relative delay time >2 s perfusion lesion was the most accurate computed tomography perfusion threshold at defining infarct core with both receiver operating characteristic analysis (area under curve = 0.85) and the volumetric validation. Using these thresholds, the extent of computed tomography perfusion mismatch tissue (the volume of 'at-risk' tissue between the critically hypoperfused and core thresholds) salvaged from infarction correlated with clinical improvement at 24 h (R(2

  19. Motion compensation of ultrasonic perfusion images

    NASA Astrophysics Data System (ADS)

    Schäfer, Sebastian; Nylund, Kim; Gilja, Odd H.; Tönnies, Klaus D.

    2012-03-01

    Contrast-enhanced ultrasound (CEUS) is a rapid and inexpensive medical imaging technique to assess tissue perfusion with a high temporal resolution. It is composed of a sequence with ultrasound brightness values and a contrast sequence acquired simultaneously. However, the image acquisition is disturbed by various motion influences. Registration is needed to obtain reliable information of spatial correspondence and to analyze perfusion characteristics over time. We present an approach to register an ultrasonography sequence by using a feature label map. This label map is generated from the b-mode data sequence by a Markov-Random-Field (MRF) based analysis, where each location is assigned to one of the user-defined regions according to its statistical parameters. The MRF reduces the chance that outliers are represented in the label map and provides stable feature labels over the time frames. A registration consisting of rigid and non-rigid transformations is determined consecutively using the generated label map of the respective frames for similarity calculation. For evaluation, the standard deviation within specific regions in intestinal CEUS images has been measured before and after registration resulting in an average decrease of 8.6 %. Additionally, this technique has proven to be more robust against noise influence compared to similarity calculation based on image intensities only. The latter leads only to 7.6 % decrease of the standard deviation.

  20. Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer's disease

    SciTech Connect

    Perani, D.; Di Piero, V.; Vallar, G.; Cappa, S.; Messa, C.; Bottini, G.; Berti, A.; Passafiume, D.; Scarlato, G.; Gerundini, P.

    1988-09-01

    Regional cerebral perfusion was evaluated by single photon emission computed tomography (SPECT) using technetium-99m hexamethylpropyleneamine oxime ((/sup 99m/Tc)HM-PAO) in sixteen patients with Alzheimer's disease (AD) in early clinical phase and in 16 healthy elderly controls. In all patients transmission computed tomography (TCT) and/or magnetic resonance imaging (MRI) did not show focal brain abnormalities. Relative to normal subjects, AD patients showed significant reductions in cortical/cerebellar activity ratio: cortical perfusion was globally depressed with the largest reductions in frontal and posterior temporo-parietal cortices. Asymmetries of relative perfusion between cerebral hemispheres were also demonstrated when language was affected or visuospatial functions were unevenly impaired. In patients with early AD, SPECT provides functional information to be compared with clinical and psychometric data.

  1. Artificial tissues in perfusion culture.

    PubMed

    Sittinger, M; Schultz, O; Keyszer, G; Minuth, W W; Burmester, G R

    1997-01-01

    In the stagnant environment of traditional culture dishes it is difficult to generate long term experiments or artificial tissues from human cells. For this reason a perfusion culture system with a stable supply of nutrients was developed. Human chondrocytes were seeded three-dimensionally in resorbable polymer fleeces. The cell-polymer tissues were then mounted in newly developed containers (W.W. Minuth et al, Biotechniques, 1996) and continuously perfused by fresh medium for 40 days. Samples from the effluate were analyzed daily, and the pH of the medium and glucose concentration remained stable during this period. The lactid acid concentration increased from 0.17 mg/ml to 0.35 mg/ml, which was influenced by the degradation of the resorbable polymer fibers used as three dimensional support material for the cells. This perfusion system proved to be reliable especially in long term cultures. Any components in the culture medium of the cells could be monitored without disturbances as caused by manual medium replacement. These results suggest the described perfusion culture system to be a valuable and convenient tool for many applications in tissue engineering, especially in the generation of artificial connective tissue.

  2. Developing a tissue perfusion sensor.

    PubMed

    Harvey, S L R; Parker, K H; O'Hare, D

    2007-01-01

    The development of a electrochemical tissue perfusion sensor is presented. The sensor is a platinum/platinum ring-disc microelectrode that relies on the principle of collector-generator to monitor mass transport within its vicinity. Tissue perfusion is a mass transport mechanism that describes the movement of respiratory gases, nutrients and metabolites in tissue. The sensor's capability of detecting perfusion at the cellular level in a continuous fashion is unique. This sensor will provide insight into the way nutrients and metabolites are transported in tissue especially in cases were perfusion is low such as in wounds or ischemic tissue. We present experimental work for the development and testing of the sensors in vitro. Experimental flow recordings in free steam solutions as well as the flow through tissue-like media are shown. Tests on post operative human tissue are also presented. The sensor's feature such as the continuous recoding capacities, spatial resolution and the measurement range from ml/min to microl/min are highlighted. PMID:18002549

  3. Usefulness of MRI to demonstrate the mechanisms of myocardial ischemia in hypertrophic cardiomyopathy with myocardial bridge.

    PubMed

    Thomson, Vivien; Botnar, Rene; Croisille, Pierre

    2007-01-01

    We present a case of symptomatic primary hypertrophic cardiomyopathy (HCM) associated with myocardial bridging of the left anterior descending (LAD) artery and suspected ischemia that could be related either to LAD artery compression or to microvascular perfusion abnormalities. MRI demonstrated the morphological appearance of myocardial hypertrophy, and coronary MR angiography evidenced the myocardial bridge and its functional consequences with stress MR perfusion. In conclusion, as a non-invasive comprehensive imaging technique, MRI should be considered in identifying the mechanisms of myocardial ischemia in HCM with myocardial bridge. PMID:16888385

  4. Deep grey matter MRI abnormalities and cognitive function in relapsing-remitting multiple sclerosis.

    PubMed

    Debernard, Laëtitia; Melzer, Tracy R; Alla, Sridhar; Eagle, Jane; Van Stockum, Saskia; Graham, Charlotte; Osborne, Jonathan R; Dalrymple-Alford, John C; Miller, David H; Mason, Deborah F

    2015-12-30

    Although deep grey matter (GM) involvement in multiple sclerosis (MS) is well documented, in-vivo multi-parameter magnetic resonance imaging (MRI) studies and association with detailed cognitive measures are limited. We investigated volumetric, diffusion and perfusion metrics in thalamus, hippocampus, putamen, caudate nucleus and globus pallidum, and neuropsychological measures, spanning 4 cognitive domains, in 60 relapsing-remitting MS patients (RRMS) (mean disease duration of 5.1 years, median EDSS of 1.5) and 30 healthy controls. There was significantly reduced volume of thalamus, hippocampus and putamen in the RRMS patients, but no diffusion or perfusion changes in these structures. Decreased volume in these deep GM volumes in RRMS patients was associated with a modest reduction in cognitive performance, particularly information processing speed, consistent with a subtle disruption of distributed networks, that subserve cognition, in these patients. Future longitudinal studies are needed to elucidate the influence of deep GM changes on the evolution of cognitive deficits in MS. PMID:26602610

  5. Sodium efflux from perfused giant algal cells.

    PubMed

    Clint, G M; Macrobbie, E A

    1987-06-01

    Internodal cells of the giant alga Chara corallina were perfused internally to replace the native cytoplasm, tonoplast and vacuole with artificial cytoplasm. Sodium efflux from perfused cells, measured by including (22)Na in the perfusion media, was increased by increasing the internal sodium concentration and by decreasing the external pH, and was inhibited by external application of the renal diuretic amiloride. The sodium efflux was markedly ATP-dependent, with a 50-fold decrease in efflux observed after perfusion with media lacking ATP. Efflux in the presence of ATP was reduced by 33% by inclusion of 10 μM N,N'-dicyclohexylcarbodiimide in the perfusion medium. The membrane potential of the perfused cells approximated that of intact cells from the same culture. It is suggested that sodium efflux in perfused Chara cells proceeds via a secondary antiporter with protons, regulated by ATP in a catalytic role and with the proton motive force acting as the energy source.

  6. Novel method of lung area extraction in chest perfusion computed tomography.

    PubMed

    Kalicka, Renata; Lipiński, Seweryn; Browarczyk, Maciej

    2013-02-01

    Chest perfusion computed tomography (pCT) is a useful technique in the medical diagnosis of how organs function. Perfusion CT scans are used to calculate perfusion parameters. In the case of automated methods of lung perfusion parameters calculation, the prior extraction of the lung area is desired to avoid unnecessary calculation in an area outside the lung cross-section and to avoid wasting time on processing signals of no diagnostic importance. Our new method is designed to extract a lung cross-section from a whole series of chest pCT images. It uses a complete sequence of pCT scans to extract the rough lung contour. Next each scan is processed individually, within the rough contour, to obtain a detailed, individual outline of the lungs. The proposed method and obtained results are presented and compared with methods known in literature.

  7. Measuring perfusion with light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M. A.; de Bruin, Daniel M.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-03-01

    There is no gold standard test for perfusion evaluation in surgery. Optical Imaging techniques are able to image tissue at high resolution and in real-time. Laser Speckle Contrast Imaging, Optical Coherence Tomography, Sidestream Darkfield and Incident Darkfield all use the interaction of light with tissue to create an image. To test their feasibility and explore validity in a controlled setting, we created a phantom with the optical properties of tissue and microvascular channels of 30-400 micrometer. With a Hamilton Syringe Pump we mimicked blood flow velocities of 0-20 mm/sec. Images of all different modalities at different blood flow velocities were compared in terms of imaging depth, resoluation and hemodynamic parameters.

  8. The effective connectivity of the seizure onset zone and ictal perfusion changes in amygdala kindled rhesus monkeys.

    PubMed

    Cleeren, Evy; Premereur, Elsie; Casteels, Cindy; Goffin, Karolien; Janssen, Peter; Van Paesschen, Wim

    2016-01-01

    Epileptic seizures are network-level phenomena. Hence, epilepsy may be regarded as a circuit-level disorder that cannot be understood outside this context. Better insight into the effective connectivity of the seizure onset zone and the manner in which seizure activity spreads could lead to specifically-tailored therapies for epilepsy. We applied the electrical amygdala kindling model in two rhesus monkeys until these animals displayed consistent stage IV seizures. At this stage, we investigated the effective connectivity of the amygdala by means of electrical microstimulation during fMRI (EM-fMRI). In addition, we imaged changes in perfusion during a seizure using ictal SPECT perfusion imaging. The spatial overlap between the connectivity network and the ictal perfusion network was assessed both at the regional level, by calculating Dice coefficients using anatomically defined regions of interest, and at the voxel level. The kindled amygdala was extensively connected to bilateral cortical and subcortical structures, which in many cases were connected multisynaptically to the amygdala. At the regional level, the spatial extents of many of these fMRI activations and deactivations corresponded to the respective increases and decreases in perfusion imaged during a stage IV seizure. At the voxel level, however, some regions showed residual seizure-specific activity (not overlapping with the EM-fMRI activations) or fMRI-specific activation (not overlapping with the ictal SPECT activations), indicating that frequently, only a part of a region anatomically connected to the seizure onset zone participated in seizure propagation. Thus, EM-fMRI in the amygdala of electrically-kindled monkeys reveals widespread areas that are often connected multisynaptically to the seizure focus. Seizure activity appears to spread, to a large extent, via these connected areas.

  9. The effective connectivity of the seizure onset zone and ictal perfusion changes in amygdala kindled rhesus monkeys.

    PubMed

    Cleeren, Evy; Premereur, Elsie; Casteels, Cindy; Goffin, Karolien; Janssen, Peter; Van Paesschen, Wim

    2016-01-01

    Epileptic seizures are network-level phenomena. Hence, epilepsy may be regarded as a circuit-level disorder that cannot be understood outside this context. Better insight into the effective connectivity of the seizure onset zone and the manner in which seizure activity spreads could lead to specifically-tailored therapies for epilepsy. We applied the electrical amygdala kindling model in two rhesus monkeys until these animals displayed consistent stage IV seizures. At this stage, we investigated the effective connectivity of the amygdala by means of electrical microstimulation during fMRI (EM-fMRI). In addition, we imaged changes in perfusion during a seizure using ictal SPECT perfusion imaging. The spatial overlap between the connectivity network and the ictal perfusion network was assessed both at the regional level, by calculating Dice coefficients using anatomically defined regions of interest, and at the voxel level. The kindled amygdala was extensively connected to bilateral cortical and subcortical structures, which in many cases were connected multisynaptically to the amygdala. At the regional level, the spatial extents of many of these fMRI activations and deactivations corresponded to the respective increases and decreases in perfusion imaged during a stage IV seizure. At the voxel level, however, some regions showed residual seizure-specific activity (not overlapping with the EM-fMRI activations) or fMRI-specific activation (not overlapping with the ictal SPECT activations), indicating that frequently, only a part of a region anatomically connected to the seizure onset zone participated in seizure propagation. Thus, EM-fMRI in the amygdala of electrically-kindled monkeys reveals widespread areas that are often connected multisynaptically to the seizure focus. Seizure activity appears to spread, to a large extent, via these connected areas. PMID:27489773

  10. Dynamic contrast-enhanced CT of head and neck tumors: perfusion measurements using a distributed-parameter tracer kinetic model. Initial results and comparison with deconvolution-based analysis

    NASA Astrophysics Data System (ADS)

    Bisdas, Sotirios; Konstantinou, George N.; Sherng Lee, Puor; Thng, Choon Hua; Wagenblast, Jens; Baghi, Mehran; San Koh, Tong

    2007-10-01

    The objective of this work was to evaluate the feasibility of a two-compartment distributed-parameter (DP) tracer kinetic model to generate functional images of several physiologic parameters from dynamic contrast-enhanced CT data obtained of patients with extracranial head and neck tumors and to compare the DP functional images to those obtained by deconvolution-based DCE-CT data analysis. We performed post-processing of DCE-CT studies, obtained from 15 patients with benign and malignant head and neck cancer. We introduced a DP model of the impulse residue function for a capillary-tissue exchange unit, which accounts for the processes of convective transport and capillary-tissue exchange. The calculated parametric maps represented blood flow (F), intravascular blood volume (v1), extravascular extracellular blood volume (v2), vascular transit time (t1), permeability-surface area product (PS), transfer ratios k12 and k21, and the fraction of extracted tracer (E). Based on the same regions of interest (ROI) analysis, we calculated the tumor blood flow (BF), blood volume (BV) and mean transit time (MTT) by using a modified deconvolution-based analysis taking into account the extravasation of the contrast agent for PS imaging. We compared the corresponding values by using Bland-Altman plot analysis. We outlined 73 ROIs including tumor sites, lymph nodes and normal tissue. The Bland-Altman plot analysis revealed that the two methods showed an accepted degree of agreement for blood flow, and, thus, can be used interchangeably for measuring this parameter. Slightly worse agreement was observed between v1 in the DP model and BV but even here the two tracer kinetic analyses can be used interchangeably. Under consideration of whether both techniques may be used interchangeably was the case of t1 and MTT, as well as for measurements of the PS values. The application of the proposed DP model is feasible in the clinical routine and it can be used interchangeably for measuring

  11. Can Dynamic Contrast-Enhanced MRI (DCE-MRI) and Diffusion-Weighted MRI (DW-MRI) Evaluate Inflammation Disease

    PubMed Central

    Zhu, Jianguo; Zhang, Faming; Luan, Yun; Cao, Peng; Liu, Fei; He, Wenwen; Wang, Dehang

    2016-01-01

    Abstract The aim of the study was to investigate diagnosis efficacy of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in Crohn's disease (CD). To find out the correlations between functional MRI parameters including Ktrans, Kep, Ve, Vp, and apparent diffusion coefficient (ADC) with a serologic biomarker. The relationships between pharmacokinetic parameters and ADC were also studied. Thirty-two patients with CD (22 men, 10 women; mean age: 30.5 years) and 18 healthy volunteers without any inflammatory disease (10 men, 8 women; mean age, 34.11 years) were enrolled into this approved prospective study. Pearson analysis was used to evaluate the correlation between Ktrans, Kep, Ve, Vp, and C-reactive protein (CRP), ADC, and CRP respectively. The diagnostic efficacy of the functional MRI parameters in terms of sensitivity and specificity were analyzed by receiver operating characteristic (ROC) curve analyses. Optimal cut-off values of each functional MRI parameters for differentiation of inflammatory from normal bowel were determined according to the Youden criterion. Mean value of Ktrans in the CD group was significantly higher than that of normal control group. Similar results were observed for Kep and Ve. On the contrary, the ADC value was lower in the CD group than that in the control group. Ktrans and Ve were shown to be correlated with CRP (r = 0.725, P < 0.001; r = 0.533, P = 0.002), meanwhile ADC showed negative correlation with CRP (r = −0.630, P < 0.001). There were negative correlations between the pharmacokinetic parameters and ADC, such as Ktrans to ADC (r = −0.856, P < 0.001), and Ve to ADC (r = −0.451, P = 0.01). The area under the curve (AUC) was 0.994 for Ktrans (P < 0.001), 0.905 for ADC (P < 0.001), 0.806 for Ve (P < 0.001), and 0.764 for Kep (P = 0.002). The cut-off point of the Ktrans was found to be 0.931 min–1. This value provided the best trade-off between

  12. Intestinal perfusion monitoring using photoplethysmography

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-08-01

    In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed.

  13. Noninvasive measurements of glycogen in perfused mouse livers using chemical exchange saturation transfer NMR and comparison to (13)C NMR spectroscopy.

    PubMed

    Miller, Corin O; Cao, Jin; Chekmenev, Eduard Y; Damon, Bruce M; Cherrington, Alan D; Gore, John C

    2015-06-01

    Liver glycogen represents an important physiological form of energy storage. It plays a key role in the regulation of blood glucose concentrations, and dysregulations in hepatic glycogen metabolism are linked to many diseases including diabetes and insulin resistance. In this work, we develop, optimize, and validate a noninvasive protocol to measure glycogen levels in isolated perfused mouse livers using chemical exchange saturation transfer (CEST) NMR spectroscopy. Model glycogen solutions were used to determine optimal saturation pulse parameters which were then applied to intact perfused mouse livers of varying glycogen content. Glycogen measurements from serially acquired CEST Z-spectra of livers were compared with measurements from interleaved natural abundance (13)C NMR spectra. Experimental data revealed that CEST-based glycogen measurements were highly correlated with (13)C NMR glycogen spectra. Monte Carlo simulations were then used to investigate the inherent (i.e., signal-to-noise-based) errors in the quantification of glycogen with each technique. This revealed that CEST was intrinsically more precise than (13)C NMR, although in practice may be prone to other errors induced by variations in experimental conditions. We also observed that the CEST signal from glycogen in liver was significantly less than that observed from identical amounts in solution. Our results demonstrate that CEST provides an accurate, precise, and readily accessible method to noninvasively measure liver glycogen levels and their changes. Furthermore, this technique can be used to map glycogen distributions via conventional proton magnetic resonance imaging, a capability universally available on clinical and preclinical magnetic resonance imaging (MRI) scanners vs (13)C detection, which is limited to a small fraction of clinical-scale MRI scanners. PMID:25946616

  14. Noninvasive measurements of glycogen in perfused mouse livers using chemical exchange saturation transfer NMR and comparison to (13)C NMR spectroscopy.

    PubMed

    Miller, Corin O; Cao, Jin; Chekmenev, Eduard Y; Damon, Bruce M; Cherrington, Alan D; Gore, John C

    2015-06-01

    Liver glycogen represents an important physiological form of energy storage. It plays a key role in the regulation of blood glucose concentrations, and dysregulations in hepatic glycogen metabolism are linked to many diseases including diabetes and insulin resistance. In this work, we develop, optimize, and validate a noninvasive protocol to measure glycogen levels in isolated perfused mouse livers using chemical exchange saturation transfer (CEST) NMR spectroscopy. Model glycogen solutions were used to determine optimal saturation pulse parameters which were then applied to intact perfused mouse livers of varying glycogen content. Glycogen measurements from serially acquired CEST Z-spectra of livers were compared with measurements from interleaved natural abundance (13)C NMR spectra. Experimental data revealed that CEST-based glycogen measurements were highly correlated with (13)C NMR glycogen spectra. Monte Carlo simulations were then used to investigate the inherent (i.e., signal-to-noise-based) errors in the quantification of glycogen with each technique. This revealed that CEST was intrinsically more precise than (13)C NMR, although in practice may be prone to other errors induced by variations in experimental conditions. We also observed that the CEST signal from glycogen in liver was significantly less than that observed from identical amounts in solution. Our results demonstrate that CEST provides an accurate, precise, and readily accessible method to noninvasively measure liver glycogen levels and their changes. Furthermore, this technique can be used to map glycogen distributions via conventional proton magnetic resonance imaging, a capability universally available on clinical and preclinical magnetic resonance imaging (MRI) scanners vs (13)C detection, which is limited to a small fraction of clinical-scale MRI scanners.

  15. MRI findings in aphasic status epilepticus.

    PubMed

    Toledo, Manuel; Munuera, Josep; Sueiras, Maria; Rovira, Rosa; Alvarez-Sabín, José; Rovira, Alex

    2008-08-01

    Ictal-MRI studies including diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and MR-angiography (MRA) in patients with aphasic status epilepticus (ASE) are lacking. In this report, we aim to describe the consequences of the ASE on DWIs and its impact on cerebral circulation. We retrospectively studied eight patients with ASE confirmed by ictal-EEG, who underwent ictal-MRI shortly after well-documented onset (mean time delay 3 h). ASE consisted in fluctuating aphasia, mostly associated with other subtle contralateral neurological signs such as hemiparesia, hemianopia, or slight clonic jerks. In MRI, six patients showed cortical temporoparietal hyperintensity in DWI and four of them had also ipsilateral pulvinar lesions. Five patients showed close spatial hyperperfusion areas matching the DWI lesions and an enhanced blow flow in the middle cerebral artery. Parenchymal lesions and hemodynamic abnormalities were not associated with seizure duration or severity in any case. The resolution of DWI lesions at follow-up MRI depended on the length of the MRIs interval. In patients with ASE, lesions on DWI in the temporo-parietal cortex and pulvinar nucleus combined with local hyperperfusion can be observed, even when they appear distant from the epileptic focus or the language areas. PMID:18522643

  16. Metabolic imaging of acute and chronic infarction in the perfused rat heart using hyperpolarised [1-13C]pyruvate.

    PubMed

    Ball, Daniel R; Cruickshank, Rachel; Carr, Carolyn A; Stuckey, Daniel J; Lee, Philip; Clarke, Kieran; Tyler, Damian J

    2013-11-01

    Hyperpolarised (13)C MRI can be used to generate metabolic images of the heart in vivo. However, there have been no similar studies performed in the isolated perfused heart. Therefore, the aim of this study was to develop a method for the creation of (13)C metabolite maps of the perfused rat heart and to demonstrate the technique in a study of acute and chronic myocardial infarction. Male Wistar rat hearts were isolated, perfused and imaged before and after occlusion of the left anterior descending (LAD) coronary artery, creating an acute infarct group. In addition, a chronic infarct group was generated from hearts which had their LAD coronary artery occluded in vivo. Four weeks later, hearts were excised, perfused and imaged to generate metabolic maps of infused pyruvate and its metabolites lactate and bicarbonate. Myocardial perfusion and energetics were assessed by first-pass perfusion imaging and (31)P MRS, respectively. In both acute and chronically infarcted hearts, perfusion was reduced to the infarct region, as revealed by reduced gadolinium influx and lower signal intensity in the hyperpolarised pyruvate images. In the acute infarct region, there were significant alterations in the lactate (increased) and bicarbonate (decreased) signal ratios. In the chronically infarcted region, there was a significant reduction in both bicarbonate and lactate signals. (31)P-derived energetics revealed a significant decrease between control and chronic infarcted hearts. Significant decreases in contractile function between control and both acute and chronic infracted hearts were also seen. In conclusion, we have demonstrated that hyperpolarised pyruvate can detect reduced perfusion in the rat heart following both acute and chronic infarction. Changes in lactate and bicarbonate ratios indicate increased anaerobic metabolism in the acute infarct, which is not observed in the chronic infarct. Thus, this study has successfully demonstrated a novel imaging approach to assess

  17. Ultrasound perfusion signal processing for tumor detection

    NASA Astrophysics Data System (ADS)

    Kim, MinWoo; Abbey, Craig K.; Insana, Michael F.

    2016-04-01

    Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity and a sign of a potential malignancy. Ultrasonic pulsed-Doppler imaging is a preferred modality for noninvasive monitoring of blood flow. However, the weak blood echoes and disorganized slow flow make it difficult to detect perfusion using standard methods without the expense and risk of contrast enhancement. Our research measures the efficiency of conventional power-Doppler (PD) methods at discriminating flow states by comparing measurement performance to that of an ideal discriminator. ROC analysis applied to the experimental results shows that power Doppler methods are just 30-50 % efficient at perfusion flows less than 1ml/min, suggesting an opportunity to improve perfusion assessment through signal processing. A new perfusion estimator is proposed by extending the statistical discriminator approach. We show that 2-D perfusion color imaging may be enhanced using this approach.

  18. Predicting radiotherapy-induced cardiac perfusion defects

    SciTech Connect

    Das, Shiva K.; Baydush, Alan H.; Zhou Sumin; Miften, Moyed; Yu Xiaoli; Craciunescu, Oana; Oldham, Mark; Light, Kim; Wong, Terence; Blazing, Michael; Borges-Neto, Salvador; Dewhirst, Mark W.; Marks, Lawrence B.

    2005-01-01

    The purpose of this work is to compare the efficacy of mathematical models in predicting the occurrence of radiotherapy-induced left ventricular perfusion defects assessed using single-photon emission computed tomography (SPECT). The basis of this study is data from 73 left-sided breast/chestwall patients treated with tangential photon fields. The mathematical models compared were three commonly used parametric models [Lyman normal tissue complication probability (LNTCP), relative serialty (RS), generalized equivalent uniform dose (gEUD)] and a nonparametric model (Linear discriminant analysis--LDA). Data used by the models were the left ventricular dose--volume histograms, or SPECT-based dose-function histograms, and the presence/absence of SPECT perfusion defects 6 months postradiation therapy (21 patients developed defects). For the parametric models, maximum likelihood estimation and F-tests were used to fit the model parameters. The nonparametric LDA model step-wise selected features (volumes/function above dose levels) using a method based on receiver operating characteristics (ROC) analysis to best separate the groups with and without defects. Optimistic (upper bound) and pessimistic (lower bound) estimates of each model's predictive capability were generated using ROC curves. A higher area under the ROC curve indicates a more accurate model (a model that is always accurate has area=1). The areas under these curves for different models were used to statistically test for differences between them. Pessimistic estimates of areas under the ROC curve using dose-volume histogram/dose-function histogram inputs, in order of increasing prediction accuracy, were LNTCP (0.79/0.75), RS (0.80/0.77), gEUD (0.81/0.78), and LDA (0.84/0.86). Only the LDA model benefited from SPECT-based regional functional information. In general, the LDA model was statistically superior to the parametric models. The LDA model selected as features the left ventricular volumes above

  19. Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods

    NASA Astrophysics Data System (ADS)

    Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.

    2012-03-01

    In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.

  20. Usefulness of cardiac MRI in the prognosis and follow-up of ischemic heart disease.

    PubMed

    Hidalgo, A; Pons-Lladó, G

    2015-01-01

    Cardiac magnetic resonance imaging (MRI) is an important tool that makes it possible to evaluate patients with cardiovascular disease; in addition to infarction and alterations in myocardial perfusion, cardiac MRI is useful for evaluating other phenomena such as microvascular obstruction and ischemia. The main prognostic factors in cardiac MRI are ventricular dysfunction, necrosis in late enhancement sequences, and ischemia in stress sequences. In acute myocardial infarction, cardiac MRI can evaluate the peri-infarct zone and quantify the size of the infarct. Furthermore, cardiac MRI's ability to detect and evaluate microvascular obstruction makes it a fundamental tool for establishing the prognosis of ischemic heart disease. In patients with chronic ischemic heart disease, cardiac MRI can detect ischemia induced by pharmacological stress and can diagnose infarcts that can be missed on other techniques. PMID:25648795

  1. Usefulness of cardiac MRI in the prognosis and follow-up of ischemic heart disease.

    PubMed

    Hidalgo, A; Pons-Lladó, G

    2015-01-01

    Cardiac magnetic resonance imaging (MRI) is an important tool that makes it possible to evaluate patients with cardiovascular disease; in addition to infarction and alterations in myocardial perfusion, cardiac MRI is useful for evaluating other phenomena such as microvascular obstruction and ischemia. The main prognostic factors in cardiac MRI are ventricular dysfunction, necrosis in late enhancement sequences, and ischemia in stress sequences. In acute myocardial infarction, cardiac MRI can evaluate the peri-infarct zone and quantify the size of the infarct. Furthermore, cardiac MRI's ability to detect and evaluate microvascular obstruction makes it a fundamental tool for establishing the prognosis of ischemic heart disease. In patients with chronic ischemic heart disease, cardiac MRI can detect ischemia induced by pharmacological stress and can diagnose infarcts that can be missed on other techniques.

  2. Perfusion patterns of ischemic stroke on computed tomography perfusion.

    PubMed

    Lin, Longting; Bivard, Andrew; Parsons, Mark W

    2013-09-01

    CT perfusion (CTP) has been applied increasingly in research of ischemic stroke. However, in clinical practice, it is still a relatively new technology. For neurologists and radiologists, the challenge is to interpret CTP results properly in the context of the clinical presentation. In this article, we will illustrate common CTP patterns in acute ischemic stroke using a case-based approach. The aim is to get clinicians more familiar with the information provided by CTP with a view towards inspiring them to incorporate CTP in their routine imaging workup of acute stroke patients.

  3. Is the femoral head dead or alive before surgery of slipped capital femoral epiphysis? Interest of perfusion Magnetic Resonance Imaging

    PubMed Central

    Edouard, Chambenois; Raphaël, Vialle; Hubert, Ducou Le Pointe

    2014-01-01

    Background The most common complication of slipped capital femoral epiphysis (SCFE) is avascular necrosis (AVN) of the femoral head. Surgical treatments including reduction of the femoral head are considered as a risk factor for avascular necrosis. The purpose of this study was to investigate the role of perfusion Magnetic Resonance Imaging (MRI) into the surgical decision-making sequence. Methods Eighteen children with 19 slipped capital femoral epiphysis were retrospectively included. SFCE was unstable in nine cases and stable in ten cases. The slip angle was higher than 60° in 14 cases. Perfusion MRI with dynamic gadolinium-enhanced subtraction sequences were done in all the cases before and after surgical treatment. Results On nineteen hips, eight were devascularized before surgery. All were unstable. After surgery, six on eight had a complete revascularization, one had a focal necrosis and one remained devascularized. A postoperative devascularization with normal preoperative MRI was noted once. On nineteen hips, a total of three avascular necrosis occurred. Conclusion Perfusion MRI is useful to assess preoperative and postoperative vascular status in SFCE. Preoperative devascularization could improve or stay equal after surgical treatment. Persistent devascularization could be responsible for avascular necrosis of the femoral head. PMID:25983464

  4. Clinical Decision Making With Myocardial Perfusion Imaging in Patients With Known or Suspected Coronary Artery Disease

    PubMed Central

    Cremer, Paul; Hachamovitch, Rory; Tamarappoo, Balaji

    2015-01-01

    Myocardial perfusion imaging (MPI) to diagnose coronary artery disease (CAD) is best performed in patients with intermediate pretest likelihood of disease; unfortunately, pretest likelihood is often overestimated, resulting in the inappropriate use of perfusion imaging. A good functional capacity often predicts low risk, and MPI for diagnosing CAD should be reserved for individuals with poor exercise capacity, abnormal resting electrocardiography, or an intermediate or high probability of CAD. With respect to anatomy-based testing, coronary CT angiography has a good negative predictive value, but stenosis severity correlates poorly with ischemia. Therefore decision making with respect to revascularization may be limited when a purely noninvasive anatomical test is used. Regarding perfusion imaging, the diagnostic accuracies of SPECT, PET, and cardiac magnetic resonance are similar, though fewer studies are available with cardiac magnetic resonance. PET coronary flow reserve may offer a negative predictive value sufficiently high to exclude severe CAD such that patients with mild to moderate reversible perfusion defects can forego invasive angiography. In addition, combined anatomical and perfusion-based imaging may eventually offer a definitive evaluation for diagnosing CAD, even in higher risk patients. Any remarkable findings on single-photon emission computed tomography and PET MPI studies are valuable for prognostication. Furthermore, assessment of myocardial blood flow with PET is particularly powerful for prognostication as it reflects the end result of many processes that lead to atherosclerosis. Decision making with respect to revascularization is limited for cardiac MRI and PET MPI. In contrast, retrospective radionuclide studies have identified an ischemic threshold, but randomized trials are needed. In patients with at least moderately reduced left ventricular systolic function, viable myocardium as assessed by PET or MRI, appears to identify patients

  5. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    SciTech Connect

    Janssen, Marco H.M.; Aerts, Hugo J.W.L.; Buijsen, Jeroen; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) and transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG

  6. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  7. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  8. Application of time sampling in brain CT perfusion imaging for dose reduction

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kim, J. H.; Kim, K. G.; Park, S. J.; Im, Jung Gi

    2007-03-01

    The purpose of this study is to determine a stable sampling rate not to be affected by sampling shift for reducing radiation exposure with time sampling and interpolation in cerebral perfusion CT examination. Original images were obtained every 1 second for 40 time series from 3 patients, respectively. Time sampling was performed with sampling intervals (SI) from 2 to 10 seconds. Sampling shift was applied from +1 to SI-1 for each sampling rate. For each patient, 30 tissue concentration time-course data were collected, and arterial input curves were fitted by gamma-variate function. The sinc function was introduced for interpolation. Deconvolution analysis based on SVD was performed for quantifying perfusion parameters. The perfusion values through time-varying sampling and interpolation were statistically compared with the original perfusion values. The mean CBF values with increase of sampling interval and shift magnitude from the collected data had a wider fluctuation pattern centering around the original mean CBF. The mean CBV values had a similar tendency to the mean CBF values, but a relatively narrower deviation. The mean MTT values were fluctuated reversely to the trend of the mean CBF values. The stable sampling interval for quantifying perfusion parameters with lower radiation exposure was statistically acceptable up to 4 seconds. These results indicate that sampling shift limits sampling rate for acquiring acceptable perfusion values. This study will help in selecting more reasonable sampling rate for low-radiation-dose CT examination.

  9. High-performance computing MRI simulations.

    PubMed

    Stöcker, Tony; Vahedipour, Kaveh; Pflugfelder, Daniel; Shah, N Jon

    2010-07-01

    A new open-source software project is presented, JEMRIS, the Jülich Extensible MRI Simulator, which provides an MRI sequence development and simulation environment for the MRI community. The development was driven by the desire to achieve generality of simulated three-dimensional MRI experiments reflecting modern MRI systems hardware. The accompanying computational burden is overcome by means of parallel computing. Many aspects are covered that have not hitherto been simultaneously investigated in general MRI simulations such as parallel transmit and receive, important off-resonance effects, nonlinear gradients, and arbitrary spatiotemporal parameter variations at different levels. The latter can be used to simulate various types of motion, for instance. The JEMRIS user interface is very simple to use, but nevertheless it presents few limitations. MRI sequences with arbitrary waveforms and complex interdependent modules are modeled in a graphical user interface-based environment requiring no further programming. This manuscript describes the concepts, methods, and performance of the software. Examples of novel simulation results in active fields of MRI research are given.

  10. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  11. MRI in multiple myeloma: a pictorial review of diagnostic and post-treatment findings.

    PubMed

    Dutoit, Julie C; Verstraete, Koenraad L

    2016-08-01

    Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity.This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message • Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. • Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. • Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. • Combined morphological and functional MRI provides optimal bone marrow assessment for staging. • Combined morphological and functional MRI is of considerable value in treatment follow-up. PMID:27164915

  12. [MRI and CT-scan in presumed benign ovarian tumors].

    PubMed

    Thomassin-Naggara, I; Bazot, M

    2013-12-01

    Radiological examinations are required for the assessment of complex or indeterminate ovarian masses, mainly using MRI and CT-scan. MRI provides better tissue characterization than Doppler ultrasound or CT-scan (LE2). Pelvic MRI is recommended in case of an indeterminate or complex ovarian ultrasonographic mass (grade B). The protocol of a pelvic MRI should include morphological T1 and T2 sequences (grade B). In case of solid portion, perfusion and diffusion sequences are recommended (grade C). In case of doubt about the diagnosis of ovarian origin, pelvic MRI is preferred over the CT-scan (grade C). MRI is the technique of choice for the difference between functional and organic ovarian lesion diagnosis (grade C). It can be useful in case of clinical diagnostic uncertainty between polycystic ovary syndrome and ovarian hyperstimulation and multilocular ovarian tumor syndrome (grade C). No MRI classification for ovarian masses is currently validated. The establishment of a presumption of risk of malignancy is required in a MRI report of adnexal mass with if possible a guidance on the histological diagnosis. In the absence of clinical or sonographic diagnosis, pelvic CT-scan is recommended in the context of acute painful pelvic mass in non-pregnant patients (grade C). It specifies the anomalies and allows the differential diagnosis with digestive and urinary diseases (LE4). Given the lack of data in the literature, the precautionary principle must be applied to the realization of a pelvic MRI in a pregnant patient. A risk-benefit balance should be evaluated case by case by the clinician and the radiologist and information should be given to the patient. In an emergency situation during pregnancy, pelvic MRI is an alternative to CT-scan for the exploration of acute pelvic pain in case of uncertain sonographic diagnosis (grade C).

  13. Intestinal perfusion monitoring using photoplethysmography

    PubMed Central

    Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-01-01

    Abstract. In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed. PMID:23942635

  14. Optical investigation of functional structures in isolated perfused pig heart

    NASA Astrophysics Data System (ADS)

    Rauh, Robert; Boehnert, Markus; Mahlke, Christine; Kessler, Manfred D.

    2000-11-01

    Light scattering in tissue of mammals and humans is affected by subcellular structures. Since these structures correlate well with the status of cells and tissue, light scattering seems to be ideal for monitoring of functional tissue state. By use of EMPHO SSK Oxyscan we investigated functional parameters in a novel kind of isolated perfused pig heart model. In this perfusion model we use organs obtained by the local slaughterhouse that are reanimated at our institute by application of a heart-lung machine. By creating 3D-images of tissue scattering we found an interesting relation between anatomical structures of myocardium and the 3D-images. Additionally, we detected coherence between backscattered light intensity and functional tissue status. Furthermore, we got a sight into the redox state of cytochrome aa3, b and c by creating difference spectra. We believe that this new kind of tissue imaging method will give us the opportunity to get new insights into myocardial function.

  15. {sup 99m}Tc radiopharmaceuticals for brain perfusion imaging

    SciTech Connect

    Deutsch, E.; Volkert, W.A.

    1991-12-31

    It is well established that small, neutral, lipophilic technetium complexes can diffuse into the brain and then be trapped intracellularly by a variety of mechanisms. A more detailed understanding of the structural and chemical parameters which promote efficient diffusion into the brain, and which underlie the trapping mechanisms, will be necessary to delineate the clinical relevance of current agents, and to design improved technetium 99 pharmaceuticals. Current technetium 99 brain-perfusion imaging agents do not show ideal characteristics of brain uptake and retention. Furthermore, significant fractions of the technetium 99 complexes are lost between site of injection and the brain. Thus, it is difficult to use these current agents to quantitate regional cerebral blood flow. Nevertheless, these agents are proving extremely valuable for the SPECT evaluation of abnormalities in brain perfusion patients with neurological disorders.

  16. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment.

    PubMed

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R; Stockbower, Grace E; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A; Detre, John A; Wolk, David A

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or "stress test", may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease. PMID:27222794

  17. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment.

    PubMed

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R; Stockbower, Grace E; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A; Detre, John A; Wolk, David A

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or "stress test", may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease.

  18. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment

    PubMed Central

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R.; Stockbower, Grace E.; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A.; Detre, John A.; Wolk, David A.

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or “stress test”, may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease. PMID:27222794

  19. Myocardial perfusion assessment with contrast echocardiography

    NASA Astrophysics Data System (ADS)

    Desco, Manuel; Ledesma-Carbayo, Maria J.; Santos, Andres; Garcia-Fernandez, Miguel A.; Marcos-Alberca, Pedro; Malpica, Norberto; Antoranz, Jose C.; Garcia-Barreno, Pedro

    2001-05-01

    Assessment of intramyocardial perfusion by contrast echocardiography is a promising new technique that allows to obtain quantitative parameters for the assessment of ischemic disease. In this work, a new methodology and a software prototype developed for this task are presented. It has been validated with Coherent Contrast Imaging (CCI) images acquired with an Acuson Sequoia scanner. Contrast (Optison microbubbles) is injected continuously during the scan. 150 images are acquired using low mechanical index U/S pulses. A burst of high mechanical index pulses is used to destroy bubbles, thus allowing to detect the contrast wash-in. The stud is performed in two conditions: rest and pharmacologically induced stress. The software developed allows to visualized the study (cine) and to select several ROIs within the heart wall. The position of these ROIs along the cardiac cycle is automatically corrected on the basis of the gradient field, and they can also be manually corrected in case the automatic procedure fails. Time curves are analyzed according to a parametric model that incorporates both contrast inflow rate and cyclic variations. Preliminary clinical results on 80 patients have allowed us to identify normal and pathological patterns and to establish the correlation of quantitative parameters with the real diagnosis.

  20. Perfusion Angiography in Acute Ischemic Stroke

    PubMed Central

    Liebeskind, David S.

    2016-01-01

    Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and Tmax, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely. PMID:27446232

  1. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.

    PubMed

    Abay, Tomas Ysehak; Kyriacou, Panayiotis A

    2015-09-01

    In the last decades, photoplethysmography (PPG) has been used as a noninvasive technique for monitoring arterial oxygen saturation by pulse oximetry (PO), whereas near-infrared spectroscopy (NIRS) has been employed for monitoring tissue blood perfusion. While NIRS offers more parameters to evaluate oxygen delivery and consumption in deep tissues, PO only assesses the state of oxygen delivery. For a broader assessment of blood perfusion, this paper explores the utilization of dual-wavelength PPG by using the pulsatile (ac) and continuous (dc) PPG for the estimation of arterial oxygen saturation (SpO2) by conventional PO. Additionally, the Beer-Lambert law is applied to the dc components only for the estimation of changes in deoxyhemoglobin (HHb), oxyhemoglobin (HbO2), and total hemoglobin (tHb) as in NIRS. The system was evaluated on the forearm of 21 healthy volunteers during induction of venous occlusion (VO) and total occlusion (TO). A reflectance PPG probe and NIRS sensor were applied above the brachioradialis, PO sensors were applied on the fingers, and all the signals were acquired simultaneously. While NIRS and forearm SpO2 indicated VO, SpO2 from the finger did not exhibit any significant drop from baseline. During TO, all the indexes indicated the change in blood perfusion. HHb, HbO2, and tHb changes estimated by PPG presented high correlation with the same parameters obtained by NIRS during VO (r(2) = 0.960, r(2) = 0.821, and r(2) = 0.974, respectively) and during TO (r(2) = 0.988, r(2) = 0.940, and r(2) = 0.938, respectively). The system demonstrated the ability to extract valuable information from PPG signals for a broader assessment of tissue blood perfusion. PMID:25838515

  2. Long term perfusion system supporting adipogenesis.

    PubMed

    Abbott, Rosalyn D; Raja, Waseem K; Wang, Rebecca Y; Stinson, Jordan A; Glettig, Dean L; Burke, Kelly A; Kaplan, David L

    2015-08-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogenesis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  3. Sumatriptan and cerebral perfusion in healthy volunteers.

    PubMed

    Scott, A K; Grimes, S; Ng, K; Critchley, M; Breckenridge, A M; Thomson, C; Pilgrim, A J

    1992-04-01

    1. The effect of sumatriptan on regional cerebral perfusion was studied in healthy volunteers. 2. Intravenous sumatriptan (2 mg) had no detectable effect on regional cerebral perfusion as measured using a SPECT system with 99technetiumm labelled hexemethylpropyleneamineoxime. 3. Sumatriptan had no effect on pulse, blood pressure or ECG indices. 4. All six volunteers experienced minor adverse effects during the intravenous infusion.

  4. Personality factors correlate with regional cerebral perfusion.

    PubMed

    O'Gorman, R L; Kumari, V; Williams, S C R; Zelaya, F O; Connor, S E J; Alsop, D C; Gray, J A

    2006-06-01

    There is an increasing body of evidence pointing to a neurobiological basis of personality. The purpose of this study was to investigate the biological bases of the major dimensions of Eysenck's and Cloninger's models of personality using a noninvasive magnetic resonance perfusion imaging technique in 30 young, healthy subjects. An unbiased voxel-based analysis was used to identify regions where the regional perfusion demonstrated significant correlation with any of the personality dimensions. Highly significant positive correlations emerged between extraversion and perfusion in the basal ganglia, thalamus, inferior frontal gyrus and cerebellum and between novelty seeking and perfusion in the cerebellum, cuneus and thalamus. Strong negative correlations emerged between psychoticism and perfusion in the basal ganglia and thalamus and between harm avoidance and perfusion in the cerebellar vermis, cuneus and inferior frontal gyrus. These observations suggest that personality traits are strongly associated with resting cerebral perfusion in a variety of cortical and subcortical regions and provide further evidence for the hypothesized neurobiological basis of personality. These results may also have important implications for functional neuroimaging studies, which typically rely on the modulation of cerebral hemodynamics for detection of task-induced activation since personality effects may influence the intersubject variability for both task-related activity and resting cerebral perfusion. This technique also offers a novel approach for the exploration of the neurobiological correlates of human personality.

  5. Long term perfusion system supporting adipogenesis

    PubMed Central

    Abbott, Rosalyn D.; Raja, Waseem K.; Wang, Rebecca Y.; Stinson, Jordan A.; Glettig, Dean L.; Burke, Kelly A.; Kaplan, David L.

    2015-01-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogensis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  6. Long term perfusion system supporting adipogenesis.

    PubMed

    Abbott, Rosalyn D; Raja, Waseem K; Wang, Rebecca Y; Stinson, Jordan A; Glettig, Dean L; Burke, Kelly A; Kaplan, David L

    2015-08-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogenesis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight.

  7. Getting an MRI

    MedlinePlus

    ... Help White House Lunch Recipes Getting an MRI (Video) KidsHealth > For Kids > Getting an MRI (Video) A A A en español Obtención de una resonancia magnética, RM (video) An MRI (magnetic resonance imaging) scan creates detailed ...

  8. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    PubMed

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p < 0.01, strong positive correlations were observed between extraversion and resting brain perfusion in the right caudate, brain stem, and cingulate gyrus. Significant negative correlations between neuroticism and regional cerebral perfusion were identified in the left amygdala, bilateral insula, ACC, and orbitofrontal cortex. These results suggest that individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  9. [Assessing myocardial perfusion with positron emission tomography].

    PubMed

    vom Dahl, J

    2001-11-01

    Positron emission tomography (PET) of the heart has gained widespread scientific and clinical acceptance with regard to two indications: 1) The detection of perfusion abnormalities by qualitative and semiquantitative analyses of perfusion images at rest and during physical or pharmacological stress using well-validated perfusion tracers, such as N-13 ammonia, Rb-82 rubidium chloride, or O-15 labeled water. 2) Viability imaging of myocardial regions with reduced contractility by combining perfusion measurements with substrate metabolism as assessed from F-18 deoxyglucose utilization. This overview summarizes the use of PET as a perfusion imaging method. With a sensitivity > 90% in combination with high specificity, PET is today the best-validated available nuclear imaging technique for the diagnosis of coronary artery disease (CAD). The short half-life of the perfusion tracers in combination with highly sophisticated hard- and software enables rapid PET studies with high patient throughput. The high diagnostic accuracy and the methological advantages as compared to conventional scintigraphy allows one to use PET perfusion imaging to detect subtle changes in the perfusion reserve for the detection of CAD in high risk but asymptomatic patients as well as in patients with proven CAD undergoing various treatment forms such as risk factor reduction or coronary revascularization. In patients following orthotopic heart transplantation, evolving transplant vasculopathy can be detected at an early stage. Quantitative PET imaging at rest allows for detection of myocardial viability since cellular survival is based on maintenance of a minimal perfusion and structural changes correlate to the degree of perfusion reduction. Furthermore, quantitative assessment of the myocardial perfusion reserve detects the magnitude and competence of collaterals in regions with occluded epicardial collaterals and, thus, imaging of several coronary distribution territories in one noninvasive

  10. Mastication induces long-term increases in blood perfusion of the trigeminal principal nucleus.

    PubMed

    Viggiano, A; Manara, R; Conforti, R; Paccone, A; Secondulfo, C; Lorusso, L; Sbordone, L; Di Salle, F; Monda, M; Tedeschi, G; Esposito, F

    2015-12-17

    Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing. PMID:26477983

  11. Reduction in Cerebral Perfusion after Heroin Administration: A Resting State Arterial Spin Labeling Study

    PubMed Central

    Denier, Niklaus; Gerber, Hana; Vogel, Marc; Klarhöfer, Markus; Riecher-Rossler, Anita; Wiesbeck, Gerhard A.; Lang, Undine E.; Borgwardt, Stefan; Walter, Marc

    2013-01-01

    Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used pharmacological magnetic resonance imaging (phMRI) in 15 heroin-dependent patients from a stable heroin-assisted treatment program to observe the steady state effects of heroin (60 min after administration). Patients were scanned in a cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo) before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL) sequence based on a flow-sensitive alternating inversion recovery (FAIR) spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo) readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8), using a general linear model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin was associated with reduced perfusion in the left anterior cingulate cortex (ACC), the left medial prefrontal cortex (mPFC) and in the insula (both hemispheres). Analysis of extracted perfusion values indicate strong effect sizes and no gender related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in maintenance treatment. PMID:24039715

  12. Effect of isoproterenol on myocardial perfusion, function, energy metabolism and nitric oxide pathway in the rat heart - a longitudinal MR study.

    PubMed

    Desrois, Martine; Kober, Frank; Lan, Carole; Dalmasso, Christiane; Cole, Mark; Clarke, Kieran; Cozzone, Patrick J; Bernard, Monique

    2014-05-01

    The chronic administration of the β-adrenoreceptor agonist isoproterenol (IsoP) is used in animals to study the mechanisms of cardiac hypertrophy and failure associated with a sustained increase in circulating catecholamines. Time-dependent changes in myocardial blood flow (MBF), morphological and functional parameters were assessed in rats in vivo using multimodal cardiac MRI. Energy metabolism, oxidative stress and the nitric oxide (NO) pathway were evaluated in isolated perfused rat hearts following 7 days of treatment. Male Wistar rats were infused for 7 days with IsoP or vehicle using osmotic pumps. Cine-MRI and arterial spin labeling were used to determine left ventricular morphology, function and MBF at days 1, 2 and 7 after pump implantation. Isolated hearts were then perfused, and high-energy phosphate compounds and intracellular pH were followed using ³¹P MRS with simultaneous measurement of contractile function. Total creatine and malondialdehyde (MDA) contents were measured by high-performance liquid chromatography. The NO pathway was evaluated by NO synthase isoform expression and total nitrate concentration (NO(x)). In IsoP-treated rats, left ventricular mass was increased at day 1 and maintained. Wall thickness was increased with a peak at day 2 and a tendency to return to baseline values at day 7. MBF was markedly increased at day 1 and returned to normal values between days 1 and 2. The rate-pressure product and phosphocreatine/adenosine triphosphate ratio in perfused hearts were reduced. MDA, endothelial NO synthase expression and NO(x) were increased. Sustained high cardiac function and normal MBF after 24 h of IsoP infusion indicate imbalance between functional demand and blood flow, leading to morphological changes. After 1 week, cardiac hypertrophy and decreased function were associated with impaired phosphocreatine, increased oxidative stress and up-regulation of the NO pathway. These results provide supplemental information on the

  13. The development of a multiorgan ex vivo perfused model: results with the porcine liver-kidney circuit over 24 hours.

    PubMed

    Chung, Wen Yuan; Gravante, Gianpiero; Al-Leswas, Dhya; Arshad, Ali; Sorge, Roberto; Watson, Chris C; Pollard, Cristina; Metcalfe, Matthew S; Dennison, Ashley R

    2013-05-01

    We already developed an ex vivo liver-kidney model perfused for 6 h in which the kidney acted as a homeostatic organ to improve the circuit milieu compared to liver alone. In the current study, we extended the multiorgan perfusions to 24 h to evaluate the results and eventual pitfalls manifesting with longer durations. Five livers and kidneys were harvested from female pigs and perfused over 24 h. The extracorporeal circuit included a centrifugal pump, heat exchanger, and oxygenator. The primary end point of the study was the evaluation of the organ functions as gathered from biochemical and acid-base parameters. In the combined liver-kidney circuit, the organs survived and maintained an acceptable homeostasis for different lengths of time, longer for the liver (up to 19-23 h of perfusions) than the kidney (9-13 h of perfusions). Furthermore, glucose and creatinine values decreased significantly over time (from the 5th and 9th hour of perfusion onward). The addition of a kidney to the perfusion circuit improved the biochemical environment by removing excess products from ongoing metabolic processes. The consequence is a more physiological milieu that could improve results from future experimental studies. However, it is likely that long perfusions require some nutritional support over the hours to maintain the organ's vitality and functionality throughout the experiments. PMID:23489088

  14. Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling.

    PubMed

    Ahlgren, André; Wirestam, Ronnie; Petersen, Esben Thade; Ståhlberg, Freddy; Knutsson, Linda

    2014-09-01

    Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion

  15. Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Cantillon-Murphy, P.; Wald, L. L.; Adalsteinsson, E.; Zahn, M.

    2010-03-01

    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 degree Centigrade above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors (approximately 1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002-0.01 solid volume fraction) and nanoparticle radii (1-10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful selection of the rotating or sinusoidal field parameters (field frequency and amplitude). The work indicates that it may be feasible to combine low-field MRI with a magnetic hyperthermia system using superparamagnetic iron oxide nanoparticles.

  16. Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field

    PubMed Central

    Wald, L.L.; Adalsteinsson, E.; Zahn, M.

    2009-01-01

    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle’s time constant, τ. As the magnetic field frequency is increased, the nanoparticle’s magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid’s temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4°C and 7°C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid’s temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002 to 0.01 solid volume fraction) and nanoparticle radii (1 to 10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful selection of the rotating or sinusoidal field parameters (field frequency and amplitude). The work indicates that it may be feasible to combine low-field MRI with a magnetic hyperthermia system using superparamagnetic iron oxide nanoparticles. PMID:20161608

  17. Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability.

    PubMed

    Heye, Anna K; Thrippleton, Michael J; Armitage, Paul A; Valdés Hernández, Maria del C; Makin, Stephen D; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M

    2016-01-15

    There is evidence that subtle breakdown of the blood-brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n=201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a "sham" DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and K(Trans) estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low

  18. Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability

    PubMed Central

    Heye, Anna K.; Thrippleton, Michael J.; Armitage, Paul A.; Valdés Hernández, Maria del C.; Makin, Stephen D.; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M.

    2016-01-01

    There is evidence that subtle breakdown of the blood–brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n = 201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a “sham” DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and KTrans estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model

  19. Ultrasound imaging of breast tumor perfusion and neovascular morphology.

    PubMed

    Hoyt, Kenneth; Umphrey, Heidi; Lockhart, Mark; Robbin, Michelle; Forero-Torres, Andres

    2015-09-01

    A novel image processing strategy is detailed for simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. After normalization and tumor segmentation, a global time-intensity curve describing contrast agent flow was analyzed to derive surrogate measures of tumor perfusion (i.e., peak intensity, time-to-peak intensity, area under the curve, wash-in rate, wash-out rate). A maximum intensity image was generated from these same segmented image sequences, and each vascular component was skeletonized via a thinning algorithm. This skeletonized data set and collection of vessel segments were then investigated to extract parameters related to the neovascular network and physical architecture (i.e., vessel-to-tissue ratio, number of bifurcations, vessel count, average vessel length and tortuosity). An efficient computation of local perfusion parameters was also introduced and operated by averaging time-intensity curve data over each individual neovascular segment. Each skeletonized neovascular segment was then color-coded by these local measures to produce a parametric map detailing spatial properties of tumor perfusion. Longitudinal DCE-US image data sets were collected in six patients diagnosed with invasive breast cancer using a Philips iU22 ultrasound system equipped with a L9-3 transducer and Definity contrast agent. Patients were imaged using US before and after contrast agent dosing at baseline and again at weeks 6, 12, 18 and 24 after treatment started. Preliminary clinical results suggested that breast tumor response to neoadjuvant chemotherapy may be associated with temporal and spatial changes in DCE-US-derived parametric measures of tumor perfusion. Moreover, changes in neovascular morphology parametric measures may also help identify any breast tumor response (or lack thereof) to systemic treatment. Breast cancer management from early detection to therapeutic

  20. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain.

    PubMed

    Welker, K; Boxerman, J; Kalnin, A; Kaufmann, T; Shiroishi, M; Wintermark, M

    2015-06-01

    MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice.

  1. A low-cost, small volume circuit for autologous blood normothermic perfusion of rabbit organs.

    PubMed

    Worner, Murray; Poore, Samuel; Tilkorn, Daniel; Lokmic, Zerina; Penington, Anthony J

    2014-04-01

    We have designed a laboratory extracorporeal normothermic blood perfusion system for whole organs (e.g., kidney) that achieves pulsatile flow, low levels of hemolysis, and a blood priming volume of 60 mL or less. Using this uniquely designed extracorporeal circuit, we have achieved perfusion of two isolated ex vivo constructs. In the first experiment, we successfully perfused a rabbit epigastric flap based on the femoral vessels. In the second experiment, we were able to perfuse the isolated rabbit kidney for 48 h (range for all kidneys was 12-48 h) with excellent urine output, normal arterial blood gasses at 24 h, and normal ex vivo kidney histology at the conclusion of the experiments. These parameters have not been achieved before with any known or previously published laboratory extracorporeal circuits. The study has implications for prolonged organ perfusion prior to transplantation and for tissue engineering of vascularized tissues, such as by the perfusion of decellularized organs.

  2. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse.

    PubMed

    Borges, João Batista; Suarez-Sipmann, Fernando; Bohm, Stephan H; Tusman, Gerardo; Melo, Alexandre; Maripuu, Enn; Sandström, Mattias; Park, Marcelo; Costa, Eduardo L V; Hedenstierna, Göran; Amato, Marcelo

    2012-01-01

    The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.

  3. Lung perfusion and emphysema distribution affect the outcome of endobronchial valve therapy

    PubMed Central

    Thomsen, Christian; Theilig, Dorothea; Herzog, Dominik; Poellinger, Alexander; Doellinger, Felix; Schreiter, Nils; Schreiter, Vera; Schürmann, Dirk; Temmesfeld-Wollbrueck, Bettina; Hippenstiel, Stefan; Suttorp, Norbert; Hubner, Ralf-Harto

    2016-01-01

    The exclusion of collateral ventilation (CV) and other factors affect the clinical success of endoscopic lung volume reduction (ELVR). However, despite its benefits, the outcome of ELVR remains difficult to predict. We investigated whether clinical success could be predicted by emphysema distribution assessed by computed tomography scan and baseline perfusion assessed by perfusion scintigraphy. Data from 57 patients with no CV in the target lobe (TL) were retrospectively analyzed after ELVR with valves. Pulmonary function tests (PFT), St George’s Respiratory Questionnaire (SGRQ), and 6-minute walk tests (6MWT) were performed on patients at baseline. The sample was grouped into high and low levels at the median of TL perfusion, ipsilateral nontarget lobe (INL) perfusion, and heterogeneity index (HI). These groups were analyzed for association with changes in outcome parameters from baseline to 3 months follow-up. Compared to baseline, patients showed significant improvements in PFT, SGRQ, and 6MWT (all P≤0.001). TL perfusion was not associated with changes in the outcome. High INL perfusion was significantly associated with increases in 6MWT (P=0.014), and high HI was associated with increases in forced expiratory volume in 1 second (FEV1), (P=0.012). Likewise, there were significant correlations for INL perfusion and improvement of 6MWT (r=0.35, P=0.03) and for HI and improvement in FEV1 (r=0.45, P=0.001). This study reveals new attributes that associate with positive outcomes for patient selection prior to ELVR. Patients with high perfusions in INL demonstrated greater improvements in 6MWT, while patients with high HI were more likely to respond in FEV1. PMID:27354783

  4. High-sensitivity cerebral perfusion mapping in mice by kbGRASE-FAIR at 9.4 T.

    PubMed

    Zheng, Bingwen; Lee, Philip Teck Hock; Golay, Xavier

    2010-11-01

    The combination of flow-sensitive alternating inversion recovery (FAIR) and single-shot k-space-banded gradient- and spin-echo (kbGRASE) is proposed here to measure perfusion in the mouse brain with high sensitivity and stability. Signal-to-noise ratio (SNR) analysis showed that kbGRASE-FAIR boosts image and temporal SNRs by 2.01 ± 0.08 and 2.50 ± 0.07 times, respectively, when compared with standard single-shot echo planar imaging (EPI)-FAIR implemented in our experimental systems, although the practically achievable spatial resolution was slightly reduced. The effects of varying physiological parameters on the precision and reproducibility of cerebral blood flow (CBF) measurements were studied following changes in anesthesia regime, capnia and body temperature. The functional MRI time courses with kbGRASE-FAIR showed a more stable response to 5% CO(2) than did those with EPI-FAIR. The results establish kbGRASE-FAIR as a practical and robust protocol for quantitative CBF measurements in mice at 9.4 T.

  5. MRI evaluation and safety in the developing brain.

    PubMed

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-03-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  6. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  7. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  8. Prilocaine elimination by isolated perfused rat lung and liver.

    PubMed

    Geng, W P; Ebke, M; Foth, H

    1995-01-01

    Prilocaine is assumed to undergo significant elimination by extrahepatic organs and to differ in this respect from other commonly used local anaesthetics. In order to clarify whether the lung may play an important role as a site of elimination of prilocaine, the kinetic parameters were studied in isolated perfused rat lungs and were compared to those of isolated livers. Furthermore, the structurally related compounds bupivacaine and mepivacaine were also investigated in this system. Prilocaine was dispersed into a relatively large apparent distribution volume in perfused rat lung (139 ml versus 97 ml in controls). In single-pass perfused lungs the observed maximum of concentration was decreased by about 60% compared to controls. The mean residence time was prolonged by about 40%. These observations suggest that prilocaine is substantially retained by rat lung and that this effect occurs particularly during first-pass. However, the ability of rat lung to degrade prilocaine was relatively low. The clearance values were about 0.3 ml/min equal to about 20% of the hepatic capacity calculated per g of tissue. Thus it must be assumed that prilocaine is only transiently retained by the lung and will gain systemic availability later on. In rat lungs the kinetics of prilocaine elimination were not substantially different from those of bupivacaine and mepivacaine (16 and 12%). These observations do not support the assumption that especially prilocaine undergoes extrahepatic elimination.

  9. Simulation model for contrast agent dynamics in brain perfusion scans.

    PubMed

    Bredno, Jörg; Olszewski, Mark E; Wintermark, Max

    2010-07-01

    Standardization efforts are currently under way to reduce the heterogeneity of quantitative brain perfusion methods. A brain perfusion simulation model is proposed to generate test data for an unbiased comparison of these methods. This model provides realistic simulated patient data and is independent of and different from any computational method. The flow of contrast agent solute and blood through cerebral vasculature with disease-specific configurations is simulated. Blood and contrast agent dynamics are modeled as a combination of convection and diffusion in tubular networks. A combination of a cerebral arterial model and a microvascular model provides arterial-input and time-concentration curves for a wide range of flow and perfusion statuses. The model is configured to represent an embolic stroke in one middle cerebral artery territory and provides physiologically plausible vascular dispersion operators for major arteries and tissue contrast agent retention functions. These curves are fit to simpler template curves to allow the use of the simulation results in multiple validation studies. A gamma-variate function with fit parameters is proposed as the vascular dispersion operator, and a combination of a boxcar and exponential decay function is proposed as the retention function. Such physiologically plausible operators should be used to create test data that better assess the strengths and the weaknesses of various analysis methods.

  10. Efficacy of HGF carried by ultrasound microbubble-cationic nano-liposomes complex for treating hepatic fibrosis in a bile duct ligation rat model, and its relationship with the diffusion-weighted MRI parameters.

    PubMed

    Zhang, Shou-hong; Wen, Kun-ming; Wu, Wei; Li, Wen-yan; Zhao, Jian-nong

    2013-12-01

    Hepatic fibrosis is a major consequence of liver aggression. Finding novel ways for counteracting this damaging process, and for evaluating fibrosis with a non-invasive imaging approach, represent important therapeutic and diagnostic challenges. Hepatocyte growth factor (HGF) is an anti-fibrosis cell growth factor that induces apoptosis in activated hepatic stellate cells, reduces excessive collagen deposition, and stimulates hepatocyte regeneration. Thus, using HGF in gene therapy against liver fibrosis is an attractive approach. The aims of the present study were: (i) to explore the efficacy of treating liver fibrosis using HGF expression vector carried by a novel ultrasound microbubble delivery system; (ii) to explore the diagnostic interest of diffusion-weighted MRI (DWI-MRI) in evaluating liver fibrosis. We established a rat model of hepatic fibrosis. The rats were administered HGF linked to novel ultrasound micro-bubbles. Progression of hepatic fibrosis was evaluated by histopathology, hydroxyproline content, and DWI-MRI to determine the apparent diffusion coefficient (ADC). Our targeted gene therapy produced a significant anti-fibrosis effect, as shown by liver histology and significant reduction of hydroxyproline content. Moreover, using DWI-MRI, the b value (diffusion gradient factor) was equal to 300s/mm(2), and the ADC values significantly decreased as the severity of hepatic fibrosis increased. Using this methodology, F0-F2 could be distinguished from F3 and F4 (P<0.01). This is the first in vivo report of using an ultrasound microbubble-cationic nano-liposome complex for gene delivery. The data indicate that, this approach is efficient to counteract the fibrosis process. DWI-MRI appears a promising imaging technique for evaluating liver fibrosis.

  11. Respiratory tract exacerbations revisited: ventilation, inflammation, perfusion, and structure (VIPS) monitoring to redefine treatment.

    PubMed

    Tiddens, Harm A W M; Stick, Stephen M; Wild, Jim M; Ciet, Pierluigi; Parker, Geoffrey J M; Koch, Armin; Vogel-Claussen, Jens

    2015-10-01

    For cystic fibrosis (CF) patients older than 6 years there are convincing data that suggest respiratory tract exacerbations (RTE) play an important role in the progressive loss of functional lung tissue. There is a poor understanding of the pathobiology of RTE and whether specific treatment of RTE reduces lung damage in the long term. In addition, there are limited tools available to measure the various components of CF lung disease and responses to therapy. Therefore, in order to better understand the impact of RTE on CF lung disease we need to develop sensitive measures to characterize RTE and responses to treatment; and improve our understanding of structure-function changes during treatment of RTE. In this paper we review our current knowledge of the impact of RTE on the progression of lung disease and identify strategies to improve our understanding of the pathobiology of RTE. By improving our knowledge regarding RTE in CF we will be better positioned to develop approaches to treatment that are individualized and that can prevent permanent structural damage. We suggest the development of a ventilation, perfusion, inflammation and structure (VIPS)-MRI suite that supplies the clinician with data on ventilation, inflammation, perfusion, and structure in one MRI session. VIPS-MRI could be an important step to better understand the factors that contribute to and limit treatment efficacy of RTE. PMID:26335955

  12. Respiratory tract exacerbations revisited: ventilation, inflammation, perfusion, and structure (VIPS) monitoring to redefine treatment.

    PubMed

    Tiddens, Harm A W M; Stick, Stephen M; Wild, Jim M; Ciet, Pierluigi; Parker, Geoffrey J M; Koch, Armin; Vogel-Claussen, Jens

    2015-10-01

    For cystic fibrosis (CF) patients older than 6 years there are convincing data that suggest respiratory tract exacerbations (RTE) play an important role in the progressive loss of functional lung tissue. There is a poor understanding of the pathobiology of RTE and whether specific treatment of RTE reduces lung damage in the long term. In addition, there are limited tools available to measure the various components of CF lung disease and responses to therapy. Therefore, in order to better understand the impact of RTE on CF lung disease we need to develop sensitive measures to characterize RTE and responses to treatment; and improve our understanding of structure-function changes during treatment of RTE. In this paper we review our current knowledge of the impact of RTE on the progression of lung disease and identify strategies to improve our understanding of the pathobiology of RTE. By improving our knowledge regarding RTE in CF we will be better positioned to develop approaches to treatment that are individualized and that can prevent permanent structural damage. We suggest the development of a ventilation, perfusion, inflammation and structure (VIPS)-MRI suite that supplies the clinician with data on ventilation, inflammation, perfusion, and structure in one MRI session. VIPS-MRI could be an important step to better understand the factors that contribute to and limit treatment efficacy of RTE.

  13. Quantification of brain perfusion with tracers retained by the brain

    SciTech Connect

    Pupi, A.; Bacciottini, L.; De Cristofaro, M.T.R.; Formiconi, A.R.; Castagnoli, A.

    1991-12-31

    Almost a decade ago, tracers, labelled with {sup 123}I and {sup 99m}Tc, that are retained by the brain, started to be used for studies of regional brain perfusion (regional cerebral blood flow, rCBF). To date, these tracers have been used for brain perfusion imaging with SPECT in brain disorders as well as for physiological activation protocols. Only seldom, however, have they been used in protocols that quantitatively measure rCBF. Nevertheless, comparative studies with perfusion reference tracers have repeatedly demonstrated that the brain uptake of these brain-retained tracers is correlated to perfusion, the major determinant of the distribution of these tracers in the brain. The brain kinetics of {sup 99m}Tc HMPAO, which is the tracer most commonly used, was described with a two-compartment tissue model. The theoretical approach, which is, in itself, sufficient for modeling quantitative measurements with {sup 99m}Tc HMPAO, initially suggested the possibility of empirically narrowing the distance between the brain`s regional uptake of the tracer and rCBF with a linearization algorithm which uses the cerebellum as the reference region. The value of this empirical method is hampered by the fact that the cerebellum can be involved in cerebrovascular disease (i.e. cerebellar diaschisis) as well as in several other brain disorders (e.g. anxiety, and dementia of the Alzheimer type). It also was proposed that different reference regions (occipital, whole slice, or whole brain) should be selected in relation to the brain disorder under study. However, this approach does not solve the main problem because it does not equip us with a reliable tool to evaluate rCBF with a high predictive value, and, at the same time, to reduce intersubject variability. The solution would be to measure a quantitative parameter which directly reflects rCBF, such as the unidirectional influx constant of the freely diffusible flow-limited tracers. 45 refs., 3 figs., 1 tab.

  14. Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps.

    PubMed

    Ludolph, Ingo; Arkudas, Andreas; Schmitz, Marweh; Boos, Anja M; Taeger, Christian D; Rother, Ulrich; Horch, Raymund E; Beier, Justus P

    2016-10-01

    The aim of this prospective study was to assess the correlation of flap perfusion analysis based on laser-assisted Indocyanine Green (ICG) angiography with combined laser Doppler spectrophotometry in autologous breast reconstruction using free DIEP/ms-TRAM flaps. Between February 2014 and July 2015, 35 free DIEP/ms-TRAM flaps were included in this study. Besides the clinical evaluation of flaps, intraoperative perfusion dynamics were assessed by means of laser-assisted ICG angiography and post-capillary oxygen saturation and relative haemoglobin content (rHb) using combined laser Doppler spectrophotometry. Correlation of the aforementioned parameters was analysed, as well as the impact on flap design and postoperative complications. Flap survival rate was 100%. There were no partial flap losses. In three cases, flap design was based on the angiography, contrary to clinical evaluation and spectrophotometry. The final decision on the inclusion of flap areas was based on the angiographic perfusion pattern. Angiography and spectrophotometry showed a correlation in most of the cases regarding tissue perfusion, post-capillary oxygen saturation and relative haemoglobin content. Laser-assisted ICG angiography is a useful tool for intraoperative evaluation of flap perfusion in autologous breast reconstruction with DIEP/ms-TRAM flaps, especially in decision making in cases where flap perfusion is not clearly assessable by clinical signs and exact determination of well-perfused flap margins is difficult to obtain. It provides an objective real-time analysis of flap perfusion, with high sensitivity for the detection of poorly perfused flap areas. Concerning the topographical mapping of well-perfused flap areas, laser-assisted angiography is superior to combined laser Doppler spectrophotometry.

  15. Principles of Antegrade Cerebral Perfusion During Arch Reconstruction in Newborns/Infants

    PubMed Central

    Fraser, Charles D.; Andropoulos, Dean B.

    2008-01-01

    Antegrade cerebral perfusion (ACP) is a cardiopulmonary bypass technique that uses special cannulation procedures to perfuse only the brain during neonatal and infant aortic arch reconstruction. It is used in lieu of deep hypothermic circulatory arrest (DHCA), and thus has the theoretical advantage of protecting the brain from hypoxic ischemic injury. Despite this, recent comparative studies have demonstrated no difference in neurodevelopmental outcomes with ACP vs. DHCA for neonatal arch repair. This article presents animal and human data demonstrating that ACP flows less than 30 ml/kg/min are inadequate for many patients, and may be the explanation for lack of outcome difference vs. DHCA. A technique for ACP, its physiologic basis, and a neuromonitoring strategy are presented, and then the results of an outcome study are reviewed demonstrating that with ACP technique at higher flows of 50–80 ml/kg/min guided by neuromonitoring, periventricular leukomalacia (PVL) is eliminated on postoperative brain MRI after neonatal cardiac surgery. PMID:18396227

  16. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  17. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  18. Temperature controlled machine perfusion system for liver.

    PubMed

    Obara, H; Matsuno, N; Shigeta, T; Hirano, T; Enosawa, S; Mizunuma, H

    2013-06-01

    Organ preservation using machine perfusion is an effective method compared with conventional preservation techniques using static cold storage. A newly developed MP preservation system to control perfusate temperatures from hypothermic to subnormothermic conditions is introduced. This system is useful not only for liver preservation, but also for evaluation of graft viability for recovery. This novel method has been proposed for preservation of porcine liver grafts. An innovative preservation system is especially important to obtain viable organs from extended criteria or donation after cardiac death donors. In this study, we introduce a new machine perfusion preservation system (NES-01) to evaluate graft viability for recovery of liver functions, using porcine grafts.

  19. Is the Cerebellum the Optimal Reference Region for Intensity Normalization of Perfusion MR Studies in Early Alzheimer’s Disease?

    PubMed Central

    Lacalle-Aurioles, María; Alemán-Gómez, Yasser; Guzmán-De-Villoria, Juan Adán; Cruz-Orduña, Isabel; Olazarán, Javier; Mateos-Pérez, José María; Martino, María Elena; Desco, Manuel

    2013-01-01

    The cerebellum is the region most commonly used as a reference when normalizing the intensity of perfusion images acquired using magnetic resonance imaging (MRI) in Alzheimer’s disease (AD) studies. In addition, the cerebellum provides unbiased estimations with nuclear medicine techniques. However, no reports confirm the cerebellum as an optimal reference region in MRI studies or evaluate the consequences of using different normalization regions. In this study, we address the effect of using the cerebellum, whole-brain white matter, and whole-brain cortical gray matter in the normalization of cerebral blood flow (CBF) parametric maps by comparing patients with stable mild cognitive impairment (MCI), patients with AD and healthy controls. According to our results, normalization by whole-brain cortical gray matter enables more sensitive detection of perfusion abnormalities in AD patients and reveals a larger number of affected regions than data normalized by the cerebellum or whole-brain white matter. Therefore, the cerebellum is not the most valid reference region in MRI studies for early stages of AD. After normalization by whole-brain cortical gray matter, we found a significant decrease in CBF in both parietal lobes and an increase in CBF in the right medial temporal lobe. We found no differences in perfusion between patients with stable MCI and healthy controls either before or after normalization. PMID:24386081

  20. Is the cerebellum the optimal reference region for intensity normalization of perfusion MR studies in early Alzheimer's disease?

    PubMed

    Lacalle-Aurioles, María; Alemán-Gómez, Yasser; Guzmán-De-Villoria, Juan Adán; Cruz-Orduña, Isabel; Olazarán, Javier; Mateos-Pérez, José María; Martino, María Elena; Desco, Manuel

    2013-01-01

    The cerebellum is the region most commonly used as a reference when normalizing the intensity of perfusion images acquired using magnetic resonance imaging (MRI) in Alzheimer's disease (AD) studies. In addition, the cerebellum provides unbiased estimations with nuclear medicine techniques. However, no reports confirm the cerebellum as an optimal reference region in MRI studies or evaluate the consequences of using different normalization regions. In this study, we address the effect of using the cerebellum, whole-brain white matter, and whole-brain cortical gray matter in the normalization of cerebral blood flow (CBF) parametric maps by comparing patients with stable mild cognitive impairment (MCI), patients with AD and healthy controls. According to our results, normalization by whole-brain cortical gray matter enables more sensitive detection of perfusion abnormalities in AD patients and reveals a larger number of affected regions than data normalized by the cerebellum or whole-brain white matter. Therefore, the cerebellum is not the most valid reference region in MRI studies for early stages of AD. After normalization by whole-brain cortical gray matter, we found a significant decrease in CBF in both parietal lobes and an increase in CBF in the right medial temporal lobe. We found no differences in perfusion between patients with stable MCI and healthy controls either before or after normalization.

  1. Development and application of a high-throughput platform for perfusion-based cell culture processes.

    PubMed

    Villiger-Oberbek, Agata; Yang, Yang; Zhou, Weichang; Yang, Jianguo

    2015-10-20

    A high-throughput (HT) cell culture model has been established for the support of perfusion-based cell culture processes operating at high cell densities. To mimic perfusion, the developed platform takes advantage of shake tubes and operates them in a batch-refeed mode with daily medium exchange to supply the cultures with nutrients and remove toxic byproducts. By adjusting the shaking parameters, such as the speed and setting angle, we have adapted the shake tubes to a semi-continuous production of a recombinant enzyme in a perfusion-like mode. We have demonstrated that the developed model can be used to select clones and cell culture media ahead of process optimization studies in bioreactors and confirmed the applicability of shake tubes to a perfusion-like cell culture reaching ∼50E6 viable cells/mL. Furthermore, through regular cell mass removal and periodic medium exchange we have successfully maintained satellite cultures of bench-top perfusion bioreactors, achieving a sustainable cell culture performance at ≥30E6 viable cells/mL and viabilities >80% for over 58 days. The established HT model is a unique and powerful tool that can be used for the development and screening of media formulations, or for testing selected process parameters during both process optimization and manufacturing support campaigns.

  2. Microcirculation Perfusion Monitor on the Back of the Health Volunteers

    PubMed Central

    Li, Yanqi; Li, Xiaomei; Zhou, Dan; Wang, Kang; Liu, Yangyang; Guo, Yi; Qiu, Shuang; Zhai, Tianchen; Liu, Shuang; Liu, Jingjing; Ming, Dong

    2013-01-01

    Objective. To observe the dermal microcirculation blood perfusion characterization of meridians channels (acupoints). Methods. 20 healthy human subjects were monitored using Pericam Perfusion Speckle Imager (PSI) for the changes in dermal microcirculation blood perfusion on governor meridian and other respective dermal regions as a control. Result. The microcirculation blood perfusion on Governor Meridian is higher than its control area. Conclusion. The dermal microcirculation blood perfusion on certain parts of Governor Meridian of healthy human subjects showed specifics. PMID:24371463

  3. Luminal distension as a possible consequence of experimental intestinal perfusion

    PubMed Central

    Wingate, David; Hyams, Ashley; Phillips, Sidney

    1974-01-01

    In an experimental jejunal perfusion study, distress in healthy subjects occurred during eight out of 16 perfusions in which intestinal secretion was provoked. Calculation demonstrates the volumetric consequences of inadequate recovery of secretory perfusates, and analysis of the perfusion studies shows that distress was significantly associated with poor recovery of the perfusate. These observations are pertinent to increasing interest in the phenomenon of intestinal fluid secretion. PMID:4435588

  4. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  5. Noninvasive methods of measuring bone blood perfusion

    PubMed Central

    Dyke, J.P.; Aaron, R.K.

    2010-01-01

    Measurement of bone blood flow and perfusion characteristics in a noninvasive and serial manner would be advantageous in assessing revascularization after trauma and the possible risk of avascular necrosis. Many disease states, including osteoporosis, osteoarthritis, and bone neoplasms, result in disturbed bone perfusion. A causal link between bone perfusion and remodeling has shown its importance in sustained healing and regrowth following injury. Measurement of perfusion and permeability within the bone was performed with small and macromolecular contrast media, using dynamic contrast-enhanced magnetic resonance imaging in models of osteoarthritis and the femoral head. Bone blood flow and remodeling was estimated using 18F-Fluoride positron emission tomography in fracture healing and osteoarthritis. Multimodality assessment of bone blood flow, permeability, and remodeling by using noninvasive imaging techniques may provide information essential in monitoring subsequent rates of healing and response to treatment as well as identifying candidates for additional therapeutic or surgical interventions. PMID:20392223

  6. Assessment of donor heart viability during ex vivo heart perfusion.

    PubMed

    White, Christopher W; Ambrose, Emma; Müller, Alison; Li, Yun; Le, Hoa; Hiebert, Brett; Arora, Rakesh; Lee, Trevor W; Dixon, Ian; Tian, Ganghong; Nagendran, Jayan; Hryshko, Larry; Freed, Darren

    2015-10-01

    Ex vivo heart perfusion (EVHP) may facilitate resuscitation of discarded donor hearts and expand the donor pool; however, a reliable means of demonstrating organ viability prior to transplantation is required. Therefore, we sought to identify metabolic and functional parameters that predict myocardial performance during EVHP. To evaluate the parameters over a broad spectrum of organ function, we obtained hearts from 9 normal pigs and 37 donation after circulatory death pigs and perfused them ex vivo. Functional parameters obtained from a left ventricular conductance catheter, oxygen consumption, coronary vascular resistance, and lactate concentration were measured, and linear regression analyses were performed to identify which parameters best correlated with myocardial performance (cardiac index: mL·min(-1)·g(-1)). Functional parameters exhibited excellent correlation with myocardial performance and demonstrated high sensitivity and specificity for identifying hearts at risk of poor post-transplant function (ejection fraction: R(2) = 0.80, sensitivity = 1.00, specificity = 0.85; stroke work: R(2) = 0.76, sensitivity = 1.00, specificity = 0.77; minimum dP/dt: R(2) = 0.74, sensitivity = 1.00, specificity = 0.54; tau: R(2) = 0.51, sensitivity = 1.00, specificity = 0.92), whereas metabolic parameters were limited in their ability to predict myocardial performance (oxygen consumption: R(2) = 0.28; coronary vascular resistance: R(2) = 0.20; lactate concentration: R(2) = 0.02). We concluded that evaluation of functional parameters provides the best assessment of myocardial performance during EVHP, which highlights the need for an EVHP device capable of assessing the donor heart in a physiologic working mode.

  7. Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI

    NASA Astrophysics Data System (ADS)

    Gensheimer, Michael F.; Hawkins, Douglas S.; Ermoian, Ralph P.; Trister, Andrew D.

    2015-02-01

    In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment.

  8. Vicarious Audiovisual Learning in Perfusion Education

    PubMed Central

    Rath, Thomas E.; Holt, David W.

    2010-01-01

    Abstract: Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video. These modules described the setup and operation of the MAQUET ROTAFLOW standalone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today’s perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p < .05). The same was true for test #2 where video learners (n = 10) had an average score of 77% while text learners (n = 9) scored 60% (p < .05). Survey results indicated video learners were more satisfied with their learning module than text learners. Vicarious audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important

  9. Pancreas transplants: Evaluation using perfusion scintigraphy

    SciTech Connect

    Kuni, C.C.; du Cret, R.P.; Boudreau, R.J.

    1989-07-01

    To determine the value of scintigraphic perfusion studies in evaluating pancreas transplant patients, we reviewed 56 of these studies in 22 patients who had 27 transplants. Seventeen patients underwent two or more studies. The perfusion studies were performed with 20 mCi (740 MBq) of 99mTc-DTPA injected as a bolus followed by eight to 16 serial 2-sec images and a 500,000-count immediate static image. Images were evaluated for (1) the time and intensity of pancreatic peak radioactivity relative to the time and intensity of the iliac arterial peak; (2) relative pancreatic to iliac arterial intensity on the static image; and (3) size, homogeneity, and definition of the pancreas. Clinical diagnoses at the time of scintigraphy of normal function (n = 36), rejection (n = 13), pancreatitis (n = 6), or arterial thrombosis (n = 1) were based on insulin requirement, urine amylase, serum glucose, serum amylase, response to therapy, cultures, CT, MR, sonography, scintigraphy with 67Ga or 111In-WBCs, percutaneous drainage results, angiography, surgery, and pathologic examination of resected transplants. Three 99mTc-DTPA perfusion studies showed no pancreatic perfusion, four showed decreasing perfusion on serial studies, and five showed progressive loss of definition of the pancreas on serial studies. Of the three patients with no detectable perfusion, one had a normally functioning transplant, one had arterial thrombosis with transplant infarction, and one had severe rejection with minimal function. Decreasing perfusion was associated with rejection in three patients and pancreatitis in one. Decreasing definition was seen in four patients with rejection and one with pancreatitis. We conclude that perfusion scintigraphy is useful, primarily when performed serially, although nonspecific for evaluating pancreas transplants.

  10. Improved exercise myocardial perfusion during lidoflazine therapy

    SciTech Connect

    Shapiro, W.; Narahara, K.A.; Park, J.

    1983-11-01

    Lidoflazine is a synthetic drug with calcium-channel blocking effects. In a study of 6 patients with severe classic angina pectoris, single-blind administration of lidoflazine was associated with improved myocardial perfusion during exercise as determined by thallium-201 stress scintigraphy. These studies demonstrate that lidoflazine therapy is associated with relief of angina, an increased physical work capacity, and improved regional myocardial perfusion during exercise.

  11. [Peripheral lung adenocarcinoma versus squamous cell carcinoma: evaluation with first-pass perfusion imaging using 64-detector row CT].

    PubMed

    Li, Yuan; Yang, Zhigang; Chen, Tianwu; Yu, Jianqun; Deng, Yuping; Li, Zhenlin

    2009-04-01

    The aim of this study was to elucidate the characteristics of time attenuation curve and CT perfusion parameters for pulmonary adenocarcinomas and squamous cell carcinomas. 58 cases of pulmonary adenocarcinomas and 27 cases of squamous cell carcinomas underwent first pass CT perfusion imaging with 64-row MDCT. Data were analyzed using commercial software to generate time attenuation curve (TAC) and CT perfusion parameters, including perfusion, peak enhanced (PE), time to peak (TTP), and blood volume (BV). For TAC, there were 36.2% of type I and 63.8% of type II in adenocarcinomas, while there were 22.2% of type I and 77.8% of type II in squamous cell carcinomas. There was not significant difference (P>0.05). Perfusion, PE, TTP and BV of adenocarcinomas were 63.2 +/- 45.4 ml x min(-1) x ml(-1), 60.2 +/- 46.6 Hu, 34.8 +/- 10.2 s and 34.3 +/- 23.6 ml x 100 g(-1), respectively, while 54.3 +/- 50.2 ml x min(-1) x ml(-1), 48.5 +/- 34.9 Hu, 36.1 +/- 11.2 s and 27.6 +/- 21.7 ml x 100 g(-1), for squamous cell carcinoma, respectively. No significant differences were found between groups (P>0.05). No significant differences in TAC and CT perfusion parameters were found between adenocarcinomas and squamous cell carcinomas.

  12. Perfusion visualization and analysis for pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Vaz, Michael S.; Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Given the nature of pulmonary embolism (PE), timely and accurate diagnosis is critical. Contrast enhanced high-resolution CT images allow physicians to accurately identify segmental and sub-segmental emboli. However, it is also important to assess the effect of such emboli on the blood flow in the lungs. Expanding upon previous research, we propose a method for 3D visualization of lung perfusion. The proposed method allows users to examine perfusion throughout the entire lung volume at a single glance, with areas of diminished perfusion highlighted so that they are visible independent of the viewing location. This may be particularly valuable for better accuracy in assessing the extent of hemodynamic alterations resulting from pulmonary emboli. The method also facilitates user interaction and may help identify small peripheral sub-segmental emboli otherwise overlooked. 19 patients referred for possible PE were evaluated by CT following the administration of IV contrast media. An experienced thoracic radiologist assessed the 19 datasets with 17 diagnosed as being positive for PE with multiple emboli. Since anomalies in lung perfusion due to PE can alter the distribution of parenchymal densities, we analyzed features collected from histograms of the computed perfusion maps and demonstrate their potential usefulness as a preliminary test to suggest the presence of PE. These histogram features also offer the possibility of distinguishing distinct patterns associated with chronic PE and may even be useful for further characterization of changes in perfusion or overall density resulting from associated conditions such as pneumonia or diffuse lung disease.

  13. Dynamic contrast-enhanced MRI for prostate cancer localization.

    PubMed

    Jackson, A S N; Reinsberg, S A; Sohaib, S A; Charles-Edwards, E M; Jhavar, S; Christmas, T J; Thompson, A C; Bailey, M J; Corbishley, C M; Fisher, C; Leach, M O; Dearnaley, D P

    2009-02-01

    Radiotherapy dose escalation improves tumour control in prostate cancer but with increased toxicity. Boosting focal tumour only may allow dose escalation with acceptable toxicity. Intensity-modulated radiotherapy can deliver this, but visualization of the tumour remains limiting. CT or conventional MRI techniques are poor at localizing tumour, but dynamic contrast-enhanced MRI (DCE-MRI) may be superior. 18 patients with prostate cancer had T(2) weighted (T2W) and DCE-MRI prior to prostatectomy. The prostate was sectioned meticulously so as to achieve accurate correlation between imaging and pathology. The accuracy of DCE-MRI for cancer detection was calculated by a pixel-by-pixel correlation of quantitative DCE-MRI parameter maps and pathology. In addition, a radiologist interpreted the DCE-MRI and T2W images. The location of tumour on imaging was compared with histology, and the accuracy of DCE-MRI and T2W images was then compared. Pixel-by-pixel comparison of quantitative parameter maps showed a significant difference between the benign peripheral zone and tumour for the parameters K(trans), v(e) and k(ep). Calculation of areas under the receiver operating characteristic curve showed that the pharmacokinetic parameters were only "fair" discriminators between cancer and benign gland. Interpretation of DCE-MRI and T2W images by a radiologist showed DCE-MRI to be more sensitive than T2W images for tumour localization (50% vs 21%; p = 0.006) and similarly specific (85% vs 81%; p = 0.593). The superior sensitivity of DCE-MRI compared with T2W images, together with its high specificity, is arguably sufficient for its use in guiding radiotherapy boosts in prostate cancer.

  14. Comparative studies on the toxicity of mercury, cadmium, and copper toward the isolated perfused rat liver

    SciTech Connect

    Strubelt, O.; Kremer, J.; Tilse, A.; Keogh, J.; Pentz, K.R.; Younes, M.

    1996-02-01

    The toxic effects of cadmium, mercury, and copper were compared over the range 0.01, 0.03, and 0.1 mM using the isolated perfused rat liver preparation. All metals caused similar changes in various parameters used to describe general toxicity. Reductions in oxygen consumption, perfusion flow, and biliary secretion were found, while lactate dehydrogenase release , as well as liver weight, increased in a dose-dependent fashion. Each metal caused similar magnitudes of changes and exerted similar potency. Measurement of other parameters revealed a number of differences. Although all metals reduced hepatic ATP concentration, mercury and cadmium were more potent than copper. Cadmium was the most potent at decreasing reduced glutathione levels. Mercury was most effective at increasing tissue calcium content, while copper was less so, and cadmium ineffective. Only copper significantly increased tissue malondialdehyde (MDA) content, while all metals increased its release into perfusate, cadmium seemed the most potent metal in increasing MDA release, but it was least efficacious, while copper was the most. Antioxidants such as superoxide dismutase, catalase, and Trolox C only reduced cadmium`s influence on MDA in perfusate; but did not affect cadmium`s ability to alter most other parameters of vitality. Albumin reversed the toxic effects of copper and mercury, but not cadmium. While metal-induced reductions in perfusion flow accounted for some of the toxic effects of the metals, the results as a whole supported the suggestion that all metals exerted toxicity at the mitochondria, since ATP levels were reduced in a manner that could not be reproduced by perfusion flow reduction alone. Lipid peroxidation appears to play little role in determining toxicity induced by any of these metals. Furthermore, albumin may play an important physiological role in preventing hepatic injury that might otherwise be induced through acute metal intoxication. 40 refs., 4 figs., 2 tabs.

  15. Combination of dynamic (11)C-PIB PET and structural MRI improves diagnosis of Alzheimer's disease.

    PubMed

    Liu, Linwen; Fu, Liping; Zhang, Xi; Zhang, Jinming; Zhang, Xiaojun; Xu, Baixuan; Tian, Jiahe; Fan, Yong

    2015-08-30

    Structural magnetic resonance imaging (sMRI) is an established technique for measuring brain atrophy, and dynamic positron emission tomography with (11)C-Pittsburgh compound B ((11)C-PIB PET) has the potential to provide both perfusion and amyloid deposition information. It remains unclear, however, how to better combine perfusion, amyloid deposition and morphological information extracted from dynamic (11)C-PIB PET and sMRI with the goal of improving the diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). We adopted a linear sparse support vector machine to build classifiers for distinguishing AD and MCI subjects from cognitively normal (CN) subjects based on different combinations of regional measures extracted from imaging data, including perfusion and amyloid deposition information extracted from early and late frames of (11)C-PIB separately, and gray matter volumetric information extracted from sMRI data. The experimental results demonstrated that the classifier built upon the combination of imaging measures extracted from early and late frames of (11)C-PIB as well as sMRI achieved the highest classification accuracy in both classification studies of AD (100%) and MCI (85%), indicating that multimodality information could aid in the diagnosis of AD and MCI. PMID:26095348

  16. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  17. Diffusion MRI and its Role in Neuropsychology.

    PubMed

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-09-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition.

  18. Use of CT perfusion to discriminate between brain metastases from different primaries.

    PubMed

    Dolgushin, Mikhail B; Pronin, Igor N; Holodny, Elena A; Fadeeva, Liudmila M; Holodny, Andrei I; Kornienko, Valeri N

    2015-01-01

    Thirty-six metastases in 22 patients were studied prospectively using computed tomography perfusion. Regions of interests were drawn around: the enhancing part of the tumor, necrotic central part, periphery, peritumoral edema, and normal white matter. Cerebral blood volume, cerebral blood flow, and mean transit time were calculated for each zone. The enhancing part of the tumor significantly differed from the other zones in 11 of 12. Metastases of different primaries can be differentiated from one another with statistically significance (P<.05) by at least one perfusion parameter in 57% of cases.

  19. HIFU Therapy Compared with Other Thermal Ablation Methods in a Perfused Organ Model

    NASA Astrophysics Data System (ADS)

    Jenne, Jürgen W.; Risse, Frank; Häcker, Axel; Peters, Kristina; Siegler, Peter; Divkovic, Gabriela Wilzbach; Huber, Peter E.

    2007-05-01

    Therapy with high intensity focused ultrasound (HIFU) has been shown to be both safe and clinically practical in a growing number of patient studies for a variety of different target organs. Especially in cancer therapy there are comparable ablation methods like radio frequency (RFA) or laser (LITT) ablation, which are clinically more accepted. In an ongoing study we compare HIFU with RF- and laser ablation under MRI guidance in a perfused organ model. All evaluated techniques were appropriate to induce defined and localized ablation necrosis in the renal cortex. Our HIFU system and the laser system were completely MRI compatible. The tested RF- system showed local needle artefacts and disturbed the MR images during operation. The ablation rate of HIFU using a spot scanning technique was clearly lower compared to the other ablation techniques. However, advanced HIFU scanning methods might overcome this limitation. In addition HIFU is the only complete non-invasive ablation technique.

  20. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  1. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    SciTech Connect

    Hoffman, J; Martin, T; Young, S; McNitt-Gray, M; Wang, D

    2015-06-15

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152 projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI

  2. CEST MRI reporter genes.

    PubMed

    Liu, Guanshu; Bulte, Jeff W M; Gilad, Assaf A

    2011-01-01

    In recent years, several reporter genes have been developed that can serve as a beacon for non-invasive magnetic resonance imaging (MRI). Here, we provide a brief summary of recent advances in MRI reporter gene technology, as well as detailed "hands-on" protocols for cloning, expression, and imaging of reporter genes based on chemical exchange saturation transfer (CEST).

  3. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    PubMed

    Ghisleni, Carmen; Bollmann, Steffen; Biason-Lauber, Anna; Poil, Simon-Shlomo; Brandeis, Daniel; Martin, Ernst; Michels, Lars; Hersberger, Martin; Suckling, John; Klaver, Peter; O'Gorman, Ruth L

    2015-01-01

    Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS) as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women). Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  4. A spatially-distributed computational model to quantify behaviour of contrast agents in MR perfusion imaging

    PubMed Central

    Cookson, A.N.; Lee, J.; Michler, C.; Chabiniok, R.; Hyde, E.; Nordsletten, D.; Smith, N.P.

    2014-01-01

    Contrast agent enhanced magnetic resonance (MR) perfusion imaging provides an early, non-invasive indication of defects in the coronary circulation. However, the large variation of contrast agent properties, physiological state and imaging protocols means that optimisation of image acquisition is difficult to achieve. This situation motivates the development of a computational framework that, in turn, enables the efficient mapping of this parameter space to provide valuable information for optimisation of perfusion imaging in the clinical context. For this purpose a single-compartment porous medium model of capillary blood flow is developed which is coupled with a scalar transport model, to characterise the behaviour of both blood-pool and freely-diffusive contrast agents characterised by their ability to diffuse through the capillary wall into the extra-cellular space. A parameter space study is performed on the nondimensionalised equations using a 2D model for both healthy and diseased myocardium, examining the sensitivity of system behaviour to Peclet number, Damköhler number (Da), diffusivity ratio and fluid porosity. Assuming a linear MR signal response model, sample concentration time series data are calculated, and the sensitivity of clinically-relevant properties of these signals to the model parameters is quantified. Both upslope and peak values display significant non-monotonic behaviour with regard to the Damköhler number, with these properties showing a high degree of sensitivity in the parameter range relevant to contrast agents currently in use. However, the results suggest that signal upslope is the more robust and discerning metric for perfusion quantification, in particular for correlating with perfusion defect size. Finally, the results were examined in the context of nonlinear signal response, flow quantification via Fermi deconvolution and perfusion reserve index, which demonstrated that there is no single best set of contrast agent parameters

  5. Virtual patient simulator for the perfusion resource management drill.

    PubMed

    Ninomiya, Shinji; Tokaji, Megumi; Tokumine, Asako; Kurosaki, Tatsuya

    2009-12-01

    Perfusionists require a detailed understanding of a patient's physiological status while comprehending the mechanics and engineering of the cardiopulmonary bypass system, so it is beneficial for them to obtain relevant practical skills using extracorporeal circulation technology and educational physiological simulators. We designed a perfusion simulator system (ECCSIM: Extracorporeal Circulation SIMulator system) based on a hybrid of a simple hydraulic mock circulation loop linked to a computer simulation model. Patient physiological conditions (height, weight, and cardiac indices) were determined by a parameter estimation procedure and used to accurately reproduce hemodynamic conditions. Extracorporeal circulation trainees in pre-clinical education were able to maintain venous oxygen saturation levels above 50%, except during cardiac standstill and a brief resumption of pulsation. Infant amplitudes of reservoir volume oscillation and flow rate were greatly increased compared with adult cardiovascular parameters, this enabled the instructor to control the difficulty level of the operation using different hemodynamic variations. High-fidelity simulator systems with controllable difficulty levels and high physiological reproducibility are useful in constructing a perfusion resource management environment that enable basic training and periodic crisis management drills to be performed. PMID:20092074

  6. Virtual Patient Simulator for the Perfusion Resource Management Drill

    PubMed Central

    Ninomiya, Shinji; Tokaji, Megumi; Tokumine, Asako; Kurosaki, Tatsuya

    2009-01-01

    Abstract: Perfusionists require a detailed understanding of a patient’s physiological status while comprehending the mechanics and engineering of the cardiopulmonary bypass system, so it is beneficial for them to obtain relevant practical skills using extra-corporeal circulation technology and educational physiological simulators. We designed a perfusion simulator system (ECCSIM: Extracorporeal Circulation SIMulator system) based on a hybrid of a simple hydraulic mock circulation loop linked to a computer simulation model. Patient physiological conditions (height, weight, and cardiac indices) were determined by a parameter estimation procedure and used to accurately reproduce hemodynamic conditions. Extracorporeal circulation trainees in pre-clinical education were able to maintain venous oxygen saturation levels above 50%, except during cardiac standstill and a brief resumption of pulsation. Infant amplitudes of reservoir volume oscillation and flow rate were greatly increased compared with adult cardiovascular parameters, this enabled the instructor to control the difficulty level of the operation using different hemodynamic variations. High-fidelity simula tor systems with controllable difficulty levels and high physiological reproducibility are useful in constructing a perfusion resource management environment that enable basic training and periodic crisis management drills to be performed. PMID:20092074

  7. Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes.

    PubMed

    Papantoniou, Ioannis; Guyot, Yann; Sonnaert, Maarten; Kerckhofs, Greet; Luyten, Frank P; Geris, Liesbet; Schrooten, Jan

    2014-12-01

    Perfusion bioreactors have shown great promise for tissue engineering applications providing a homogeneous and consistent distribution of nutrients and flow-induced shear stresses throughout tissue-engineered constructs. However, non-uniform fluid-flow profiles found in the perfusion chamber entrance region have been shown to affect tissue-engineered construct quality characteristics during culture. In this study a whole perfusion and construct, three dimensional (3D) computational fluid dynamics approach was used in order to optimize a critical design parameter such as the location of the regular pore scaffolds within the perfusion bioreactor chamber. Computational studies were coupled to bioreactor experiments for a case-study flow rate. Two cases were compared in the first instance seeded scaffolds were positioned immediately after the perfusion chamber inlet while a second group was positioned at the computationally determined optimum distance were a steady state flow profile had been reached. Experimental data showed that scaffold location affected significantly cell content and neo-tissue distribution, as determined and quantified by contrast enhanced nanoCT, within the constructs both at 14 and 21 days of culture. However, gene expression level of osteopontin and osteocalcin was not affected by the scaffold location. This study demonstrates that the bioreactor chamber environment, incorporating a scaffold and its location within it, affects the flow patterns within the pores throughout the scaffold requiring therefore dedicated optimization that can lead to bone tissue engineered constructs with improved quality attributes. PMID:24902541

  8. Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion

    NASA Astrophysics Data System (ADS)

    Ren, Wenqi; Gan, Qi; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2015-12-01

    Simultaneous and quantitative assessment of multiple tissue parameters may facilitate more effective diagnosis and therapy in many clinical applications, such as wound healing. However, existing wound assessment methods are typically subjective and qualitative, with the need for sequential data acquisition and coregistration between modalities, and lack of reliable standards for performance evaluation or calibration. To overcome these limitations, we developed a multimodal imaging system for quasi-simultaneous assessment of cutaneous tissue oxygenation and perfusion in a quantitative and noninvasive fashion. The system integrated multispectral and laser speckle imaging technologies into one experimental setup. Tissue oxygenation and perfusion were reconstructed by advanced algorithms. The accuracy and reliability of the imaging system were quantitatively validated in calibration experiments and a tissue-simulating phantom test. The experimental results were compared with a commercial oxygenation and perfusion monitor. Dynamic detection of cutaneous tissue oxygenation and perfusion was also demonstrated in vivo by a postocclusion reactive hyperemia procedure in a human subject and a wound healing process in a wounded mouse model. Our in vivo experiments not only validated the performance of the multimodal imaging system for cutaneous tissue oxygenation and perfusion imaging but also demonstrated its technical potential for wound healing assessment in clinical practice.

  9. Metabolic profiling during ex vivo machine perfusion of the human liver

    PubMed Central

    Bruinsma, Bote G.; Sridharan, Gautham V.; Weeder, Pepijn D.; Avruch, James H.; Saeidi, Nima; Özer, Sinan; Geerts, Sharon; Porte, Robert J.; Heger, Michal; van Gulik, Thomas M.; Martins, Paulo N.; Markmann, James F.; Yeh, Heidi; Uygun, Korkut

    2016-01-01

    As donor organ shortages persist, functional machine perfusion is under investigation to improve preservation of the donor liver. The transplantation of donation after circulatory death (DCD) livers is limited by poor outcomes, but its application may be expanded by ex vivo repair and assessment of the organ before transplantation. Here we employed subnormothermic (21 °C) machine perfusion of discarded human livers combined with metabolomics to gain insight into metabolic recovery during machine perfusion. Improvements in energetic cofactors and redox shifts were observed, as well as reversal of ischemia-induced alterations in selected pathways, including lactate metabolism and increased TCA cycle intermediates. We next evaluated whether DCD livers with steatotic and severe ischemic injury could be discriminated from ‘transplantable’ DCD livers. Metabolomic profiling was able to cluster livers with similar metabolic patterns based on the degree of injury. Moreover, perfusion parameters combined with differences in metabolic factors suggest variable mechanisms that result in poor energy recovery in injured livers. We conclude that machine perfusion combined with metabolomics has significant potential as a clinical instrument for the assessment of preserved livers. PMID:26935866

  10. [Peripheral circulation in critically ill patients: non-invasive methods for the assessment of the peripheral perfusion].

    PubMed

    van Genderen, Michel E; Lima, Alexandre; Bakker, Jan; van Bommel, Jasper

    2013-01-01

    Peripheral tissues, such as skin and muscles, are sensitive to alterations in perfusion. During circulatory shock, these tissues are the first to receive less blood and the last to recover after treatment. By monitoring peripheral circulation, disturbance of the systemic circulation can be detected at an early stage. Peripheral perfusion is often disturbed in critically ill patients. Peripheral perfusion may remain disturbed, even if conventional hemodynamic parameters such as blood pressure and heart frequency normalize after treatment. Persistent abnormal peripheral perfusion is related to a poorer clinical course. With current non-invasive methods, peripheral circulation in critically ill patients can easily be assessed at the bedside. Interventions that improve peripheral circulation may speed up recovery in critically ill patients.

  11. Low contrast medium and radiation dose for hepatic computed tomography perfusion of rabbit VX2 tumor

    PubMed Central

    Zhang, Cai-Yuan; Cui, Yan-Fen; Guo, Chen; Cai, Jing; Weng, Ya-Fang; Wang, Li-Jun; Wang, Deng-Bin

    2015-01-01

    AIM: To evaluate the feasibility of low contrast medium and radiation dose for hepatic computed tomography (CT) perfusion of rabbit VX2 tumor. METHODS: Eleven rabbits with hepatic VX2 tumor underwent perfusion CT scanning with a 24-h interval between a conventional tube potential (120 kVp) protocol with 350 mgI/mL contrast medium and filtered back projection, and a low tube potential (80 kVp) protocol with 270 mgI/mL contrast medium with iterative reconstruction. Correlation and agreement among perfusion parameters acquired by the conventional and low dose protocols were assessed for the viable tumor component as well as whole tumor. Image noise and tumor-to-liver contrast to noise ratio during arterial and portal venous phases were evaluated. RESULTS: A 38% reduction in contrast medium dose (360.1 ± 13.3 mgI/kg vs 583.5 ± 21.5 mgI/kg, P < 0.001) and a 73% decrease in radiation dose (1898.5 mGy • cm vs 6951.8 mGy • cm) were observed. Interestingly, there was a strong positive correlation in hepatic arterial perfusion (r = 0.907, P < 0.001; r = 0.879, P < 0.001), hepatic portal perfusion (r = 0.819, P = 0.002; r = 0.831, P = 0.002), and hepatic blood flow (r = 0.945, P < 0.001; r = 0.930, P < 0.001) as well as a moderate correlation in hepatic perfusion index (r = 0.736, P = 0.01; r = 0.636, P = 0.035) between the low dose protocol with iterative reconstruction and the conventional protocol for the viable tumor component and the whole tumor. These two imaging protocols provided a moderate but acceptable agreement for perfusion parameters and similar tumor-to-liver CNR during arterial and portal venous phases (5.63 ± 2.38 vs 6.16 ± 2.60, P = 0.814; 4.60 ± 1.27 vs 5.11 ± 1.74, P = 0.587). CONCLUSION: Compared with the conventional protocol, low contrast medium and radiation dose with iterative reconstruction has no significant influence on hepatic perfusion parameters for rabbits VX2 tumor. PMID:25954099

  12. WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI

    SciTech Connect

    Gensheimer, M; Trister, A; Ermoian, R; Hawkins, D

    2014-06-15

    Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segments at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was

  13. Radionuclide cerebral perfusion imaging: Normal pattern

    SciTech Connect

    Goldsmith, S.J.; Stritzke, P.; Losonczy, M.; Vallabhajosula, S.; Holan, V.; DaCosta, M.; Muzinic, M.

    1991-12-31

    Regional cerebral perfusion imaging using a new class of {sup 99m}Tc and {sup 123}I labeled compounds which traverse the blood brain barrier and SPECT imaging technology provides an opportunity to assess this physiologic phenomenon during normal cerebral function and as a manifestation of disease in the central nervous system disease. These applications pose a challenge to the nuclear medicine physician for several reasons: (a) the complex and somewhat unfamiliar functional anatomy, (b) the marked regional differences in regional cerebral perfusion at rest, (c) the lack of understanding of the effect of variations in ambient conditions on regional cerebral perfusion. The difficulties in interpretation are augmented by the display itself. There is frequently no difficulty in differentiating between gray and white matter. However, the frequently used {open_quotes}hot body{close_quotes} color maps, introduce a good deal of contrast, producing displays with apparent interruption in regional cortical perfusion whereas black and white displays provide minimal contrast in the regional cortical activity. The authors sought to define how much variation in regional cerebral perfusion is {open_quotes}allowed{close_quotes} under controlled conditions, to establish a basis to interpret if changes in the environment, psychological interventions, or disease states are accompanied by a measurable change. 2 figs., 1 tab.

  14. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  15. Schizophrenia patients differentiation based on MR vascular perfusion and volumetric imaging

    NASA Astrophysics Data System (ADS)

    Spanier, A. B.; Joskowicz, L.; Moshel, S.; Israeli, D.

    2015-03-01

    Candecomp/Parafac Decomposition (CPD) has emerged as a framework for modeling N-way arrays (higher-order matrices). CPD is naturally well suited for the analysis of data sets comprised of observations of a function of multiple discrete indices. In this study we evaluate the prospects of using CPD for modeling MRI brain properties (i.e. brain volume and gray-level) for schizophrenia diagnosis. Taking into account that 3D imaging data consists of millions of pixels per patient, the diagnosis of a schizophrenia patient based on pixel analysis constitutes a methodological challenge (e.g. multiple comparison problem). We show that the CPD could potentially be used as a dimensionality redaction method and as a discriminator between schizophrenia patients and match control, using the gradient of pre- and post Gd-T1-weighted MRI data, which is strongly correlated with cerebral blood perfusion. Our approach was tested on 68 MRI scans: 40 first-episode schizophrenia patients and 28 matched controls. The CPD subject's scores exhibit statistically significant result (P < 0.001). In the context of diagnosing schizophrenia with MRI, the results suggest that the CPD could potentially be used to discriminate between schizophrenia patients and matched control. In addition, the CPD model suggests for brain regions that might exhibit abnormalities in schizophrenia patients for future research.

  16. [Absorption of amino acids from the perfused ovine rumen].

    PubMed

    L' Leng; Tomás, J; Várady, J; Szányiová, M

    1978-06-01

    The experiments with extracoroporeal perfusion of sheep rumen were performed [Leng et al., 1977]. Bovine plasma, diluted in a 1:1ratio with an isotonic solution of sodium chloride, was used for four perfusions, and autologous blood was used for two perfusions in the course of 150 minutes. After 60 minutes perfusion 20 g enzymatic casein hydrolyzate were applied to the rumen. The levels of free amino acids in the perfusate were recorded after 60 minutes' perfusion [the first phase of perfusion] and at the end of the experiment [the second phase]. The levels of lysine, aspartic acid and glutamic acid increased after perfusions with bovine plasma during the first phase, the levels of glutamic acid, phenylalanine, and in one case of alanine, increased after perfusions with autologus blood. Simultaneously the level of valine decreased after perfusions with bovine plasma, and after perfusions with blood the levels of arginine and valine, and/or lysine, dropped. During the second phase of perfusion, the levels of all the observed amino acids except methionine [bovine plasma], and/or orginine and methionine [blood] rose in the perfusate. The experiments showed that the level of amino acids in the rumen content presented a decisive factor affecting amino acid absorption from the rumen into the blood. Transformation of the amino acids during their passage through the remen wall may be assumed, and glutamic acid is one of the chief products of this process.

  17. Histological Confirmation and Biological Significance of Cartilage Canals Demonstrated Using High Field MRI in Swine at Predilection Sites of Osteochondrosis

    PubMed Central

    Tóth, Ferenc; Nissi, Mikko J.; Zhang, Jinjin; Benson, Michael; Schmitter, Sebastian; Ellermann, Jutta M.; Carlson, Cathy S.

    2014-01-01

    Cartilage canal vessels in epiphyseal cartilage have a pivotal role in the pathogenesis of osteochondrosis/osteochondritis dissecans. The present study aimed to validate high field magnetic resonance imaging (MRI) methods to visualize these vessels in young pigs. Osteochondral samples from the distal femur and distal humerus (predilection sites of osteochondrosis) of piglets were imaged post-mortem: (1) using susceptibility-weighted imaging (SWI) in an MRI scanner, followed by histological evaluation; and (2) after barium perfusion using μCT, followed by clearing techniques. In addition, both stifle joints of a 25-day-old piglet were imaged in vivo using SWI and gadolinium enhanced T1-weighted MRI, after which distal femoral samples were harvested and evaluated using μCT and histology. Histological sections were compared to corresponding MRI slices, and three-dimensional visualizations of vessels identified using MRI were compared to those obtained using μCT and to the cleared specimens. Vessels contained in cartilage canals were identified using MRI, both ex vivo and in vivo; their locations matched those observed in the histological sections, μCT images, and cleared specimens of barium-perfused tissues. The ability to visualize cartilage canal blood vessels by MRI, without using a contrast agent, will allow future longitudinal studies to evaluate their role in developmental orthopedic disease. PMID:23939946

  18. Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI.

    PubMed

    Gilbert, Stephen H; Benoist, David; Benson, Alan P; White, Ed; Tanner, Steven F; Holden, Arun V; Dobrzynski, Halina; Bernus, Olivier; Radjenovic, Aleksandra

    2012-01-01

    It has been shown by histology that cardiac myocytes are organized into laminae and this structure is important in function, both influencing the spread of electrical activation and enabling myocardial thickening in systole by laminar sliding. We have carried out high-spatial resolution three-dimensional MRI of the ventricular myolaminae of the entire volume of the isolated rat heart after contrast perfusion [dimeglumine gadopentate (Gd-DTPA)]. Four ex vivo rat hearts were perfused with Gd-DTPA and fixative and high-spatial resolution MRI was performed on a 9.4T MRI system. After MRI, cryosectioning followed by histology was performed. Images from MRI and histology were aligned, described, and quantitatively compared. In the three-dimensional MR images we directly show the presence of laminae and demonstrate that these are highly branching and are absent from much of the subepicardium. We visualized these MRI volumes to demonstrate laminar architecture and quantitatively demonstrated that the structural features observed are similar to those imaged in histology. We showed qualitatively and quantitatively that laminar architecture is similar in the four hearts. MRI can be used to image the laminar architecture of ex vivo hearts in three dimensions, and the images produced are qualitatively and quantitatively comparable with histology. We have demonstrated in the rat that: 1) laminar architecture is consistent between hearts; 2) myolaminae are absent from much of the subepicardium; and 3) although localized orthotropy is present throughout the myocardium, tracked myolaminae are branching structures and do not have a discrete identity.

  19. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  20. [Technical novelties, latest diagnostic options in the MRI and CT diagnostics of colorectal cancer].

    PubMed

    Jederán, Éva; Gõdény, Mária

    2015-09-01

    Diagnostic and therapeutic options of colorectal cancer (CRC) have changed over the past decade. Imaging plays a major role, thus the use of scanning methods is recommended by guidelines. Accurate staging, evaluation of treatment efficacy and identification of residual and recurrent tumors are required for the modern management of colorectal cancer. If adequate technical background is provided, magnetic resonance imaging (MRI) gives the information upon which therapeutic options may be determined. High-resolution MRI scans can be interpreted as maps providing functional and molecular information. Diffusion-weighted MRI (DW-MRI) has shown promising results regarding the determination of tumor volume and evaluation of treatment efficacy. Perfusion dynamic contrast-enhanced MRI (P-DCE-MRI) is the subject of research in the early assessment of treatment efficacy. Magnetic resonance spectroscopic imaging (MRSI) is a procedure utilizing biochemical analysis. Its application in CRC is under investigation. Clinical effectiveness of PET-MRI (hardware-based combination of MRI and positron emission tomography) is also being studied. Diagnostic value of computed tomographic colonography (CTC) has been proven in the detection of CRC as well as of polyps. PMID:26339907

  1. [Technical novelties, latest diagnostic options in the MRI and CT diagnostics of colorectal cancer].

    PubMed

    Jederán, Éva; Gõdény, Mária

    2015-09-01

    Diagnostic and therapeutic options of colorectal cancer (CRC) have changed over the past decade. Imaging plays a major role, thus the use of scanning methods is recommended by guidelines. Accurate staging, evaluation of treatment efficacy and identification of residual and recurrent tumors are required for the modern management of colorectal cancer. If adequate technical background is provided, magnetic resonance imaging (MRI) gives the information upon which therapeutic options may be determined. High-resolution MRI scans can be interpreted as maps providing functional and molecular information. Diffusion-weighted MRI (DW-MRI) has shown promising results regarding the determination of tumor volume and evaluation of treatment efficacy. Perfusion dynamic contrast-enhanced MRI (P-DCE-MRI) is the subject of research in the early assessment of treatment efficacy. Magnetic resonance spectroscopic imaging (MRSI) is a procedure utilizing biochemical analysis. Its application in CRC is under investigation. Clinical effectiveness of PET-MRI (hardware-based combination of MRI and positron emission tomography) is also being studied. Diagnostic value of computed tomographic colonography (CTC) has been proven in the detection of CRC as well as of polyps.

  2. Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma

    PubMed Central

    Jia, Yali; Wei, Eric; Wang, Xiaogang; Zhang, Xinbo; Morrison, John C.; Parikh, Mansi; Lombardi, Lori H.; Gattey, Devin M.; Armour, Rebecca L.; Edmunds, Beth; Kraus, Martin F.; Fujimoto, James G.; Huang, David

    2014-01-01

    Purpose To compare optic disc perfusion between normal and glaucoma subjects using optical coherence tomography (OCT) angiography and detect optic disc perfusion changes in glaucoma. Design Observational, cross-sectional study. Participants Twenty-four normal subjects and 11 glaucoma patients were included. Methods One eye of each subject was scanned by a high-speed 1050 nm wavelength swept-source OCT instrument. The split-spectrum amplitude-decorrelation angiography algorithm (SSADA) was used to compute three-dimensional optic disc angiography. A disc flow index was computed from four registered scans. Confocal scanning laser ophthalmoscopy (cSLO) was used to measure disc rim area, and stereo photography was used to evaluate cup/disc ratios. Wide field OCT scans over the discs were used to measure retinal nerve fiber layer (NFL) thickness. Main Outcome Measurements Variability was assessed by coefficient of variation (CV). Diagnostic accuracy was assessed by sensitivity and specificity. Comparisons between glaucoma and normal groups were analyzed by Wilcoxon rank-sum test. Correlations between disc flow index, structural assessments, and visual field (VF) parameters were assessed by linear regression. Results In normal discs, a dense microvascular network was visible on OCT angiography. This network was visibly attenuated in glaucoma subjects. The intra-visit repeatability, inter-visit reproducibility, and normal population variability of the optic disc flow index were 1.2%, 4.2%, and 5.0% CV respectively. The disc flow index was reduced by 25% in the glaucoma group (p = 0.003). Sensitivity and specificity were both 100% using an optimized cutoff. The flow index was highly correlated with VF pattern standard deviation (R2 = 0.752, p = 0.001). These correlations were significant even after accounting for age, cup/disc area ratio, NFL, and rim area. Conclusions OCT angiography, generated by the new SSADA algorithm, repeatably measures optic disc perfusion. OCT

  3. A novel oxygenated machine perfusion system for preservation of the liver.

    PubMed

    Dirkes, Marcel C; Post, Ivo C J H; Heger, Michal; van Gulik, Thomas M

    2013-08-01

    Machine perfusion (MP) is a potential method to increase the donor pool for organ transplantation. However, MP systems for liver grafts remain difficult to use because of organ-specific demands. Our aim was to test a novel, portable MP system for hypothermic preservation of the liver. A portable, pressure-regulated, oxygenated MP system designed for kidney preservation was adapted to perfuse liver grafts via the portal vein (PV). Three porcine livers underwent 20 h of hypothermic perfusion using Belzer MP solution. The MP system was assessed for perfusate flow, temperature, venous pressure, and pO2 /pCO2 during the preservation period. Biochemical and histological parameters were analy