Science.gov

Sample records for perfusion mri parameters

  1. Dynamic Contrast-Enhanced MRI Perfusion Parameters as Imaging Biomarkers of Angiogenesis

    PubMed Central

    2016-01-01

    Hypoxia in the tumor microenvironment is the leading factor in angiogenesis. Angiogenesis can be identified by dynamic contrast-enhanced breast MRI (DCE MRI). Here we investigate the relationship between perfusion parameters on DCE MRI and angiogenic and prognostic factors in patients with invasive ductal carcinoma (IDC). Perfusion parameters (Ktrans, kep and ve) of 81 IDC were obtained using histogram analysis. Twenty-fifth, 50th and 75th percentile values were calculated and were analyzed for association with microvessel density (MVD), vascular endothelial growth factor (VEGF) and conventional prognostic factors. Correlation between MVD and ve50 was positive (r = 0.33). Ktrans50 was higher in tumors larger than 2 cm than in tumors smaller than 2 cm. In multivariate analysis, Ktrans50 was affected by tumor size and MVD with 12.8% explanation. There was significant association between Ktrans50 and tumor size and MVD. Therefore we conclude that DCE MRI perfusion parameters are potential imaging biomarkers for prediction of tumor angiogenesis and aggressiveness. PMID:28036342

  2. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors.

    PubMed

    Marzi, Simona; Stefanetti, Linda; Sperati, Francesca; Anelli, Vincenzo

    2016-01-01

    Our aim was to evaluate the link between diffusion parameters measured by intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and the perfusion metrics obtained with dynamic contrast-enhanced (DCE) MRI in soft tissue tumors (STTs). Twenty-eight patients affected by histopathologically confirmed STT were included in a prospective study. All patients underwent both DCE MRI and IVIM DWI. The perfusion fraction f, diffusion coefficient D and perfusion-related diffusion coefficient D* were estimated using a bi-exponential function to fit the DWI data. DCE MRI was acquired with a temporal resolution of 3-5 s. Maps of the initial area under the gadolinium concentration curve (IAUGC), time to peak (TTP) and maximum slope of increase (MSI) were derived using commercial software. The relationships between the DCE MRI and IVIM DWI measurements were assessed by Spearman's test. To exclude false positive results under multiple testing, the false discovery rate (FDR) procedure was applied. The Mann-Whitney test was used to evaluate the differences between all variables in patients with non-myxoid and myxoid STT. No significant relationship was found between IVIM parameters and any DCE MRI parameters. Higher f and D*f values were found in non-myxoid tumors compared with myxoid tumors (p = 0.004 and p = 0.003, respectively). MSI was significantly higher in non-myxoid tumors than in myxoid tumors (p = 0.029). From the visual assessments of single clinical cases, both f and D*f maps were in satisfactory agreement with DCE maps in the extreme cases of an avascular mass and a highly vascularized mass, whereas, for tumors with slight vascularity or with a highly heterogeneous perfusion pattern, this association was not straightforward. Although IVIM DWI was demonstrated to be feasible in STT, our data did not support evident relationships between perfusion-related IVIM parameters and perfusion measured by DCE MRI.

  3. DCE-MRI Perfusion and Permeability Parameters as predictors of tumor response to CCRT in Patients with locally advanced NSCLC

    PubMed Central

    Tao, Xiuli; Wang, Lvhua; Hui, Zhouguang; Liu, Li; Ye, Feng; Song, Ying; Tang, Yu; Men, Yu; Lambrou, Tryphon; Su, Zihua; Xu, Xiao; Ouyang, Han; Wu, Ning

    2016-01-01

    In this prospective study, 36 patients with stage III non-small cell lung cancers (NSCLC), who underwent dynamic contrast-enhanced MRI (DCE-MRI) before concurrent chemo-radiotherapy (CCRT) were enrolled. Pharmacokinetic analysis was carried out after non-rigid motion registration. The perfusion parameters [including Blood Flow (BF), Blood Volume (BV), Mean Transit Time (MTT)] and permeability parameters [including endothelial transfer constant (Ktrans), reflux rate (Kep), fractional extravascular extracellular space volume (Ve), fractional plasma volume (Vp)] were calculated, and their relationship with tumor regression was evaluated. The value of these parameters on predicting responders were calculated by receiver operating characteristic (ROC) curve. Multivariate logistic regression analysis was conducted to find the independent variables. Tumor regression rate is negatively correlated with Ve and its standard variation Ve_SD and positively correlated with Ktrans and Kep. Significant differences between responders and non-responders existed in Ktrans, Kep, Ve, Ve_SD, MTT, BV_SD and MTT_SD (P < 0.05). ROC indicated that Ve < 0.24 gave the largest area under curve of 0.865 to predict responders. Multivariate logistic regression analysis also showed Ve was a significant predictor. Baseline perfusion and permeability parameters calculated from DCE-MRI were seen to be a viable tool for predicting the early treatment response after CCRT of NSCLC. PMID:27762331

  4. Spiral Perfusion Imaging With Consecutive Echoes (SPICE™) for the Simultaneous Mapping of DSC- and DCE-MRI Parameters in Brain Tumor Patients: Theory and Initial Feasibility.

    PubMed

    Paulson, Eric S; Prah, Douglas E; Schmainda, Kathleen M

    2016-12-01

    Dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) are the perfusion imaging techniques most frequently used to probe the angiogenic character of brain neoplasms. With these methods, T1- and T2/T2*-weighted imaging sequences are used to image the distribution of gadolinium (Gd)-based contrast agents. However, it is well known that Gd exhibits combined T1, T2, and T2* shortening effects in tissue, and therefore, the results of both DCE- and DSC-MRI can be confounded by these opposing effects. In particular, residual susceptibility effects compete with T1 shortening, which can confound DCE-MRI parameters, whereas dipolar T1 and T2 leakage and residual susceptibility effects can confound DSC-MRI parameters. We introduce here a novel perfusion imaging acquisition and postprocessing method termed Spiral Perfusion Imaging with Consecutive Echoes (SPICE) that can be used to simultaneously acquire DCE- and DSC-MRI data, which requires only a single dose of the Gd contrast agent, does not require the collection of a precontrast T1 map for DCE-MRI processing, and eliminates the confounding contrast agent effects due to contrast extravasation. A detailed mathematical description of SPICE is provided here along with a demonstration of its utility in patients with high-grade glioma.

  5. Spiral Perfusion Imaging With Consecutive Echoes (SPICE™) for the Simultaneous Mapping of DSC- and DCE-MRI Parameters in Brain Tumor Patients: Theory and Initial Feasibility

    PubMed Central

    Paulson, Eric S.; Prah, Douglas E.; Schmainda, Kathleen M.

    2017-01-01

    Dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) are the perfusion imaging techniques most frequently used to probe the angiogenic character of brain neoplasms. With these methods, T1- and T2/T2*-weighted imaging sequences are used to image the distribution of gadolinium (Gd)-based contrast agents. However, it is well known that Gd exhibits combined T1, T2, and T2* shortening effects in tissue, and therefore, the results of both DCE- and DSC-MRI can be confounded by these opposing effects. In particular, residual susceptibility effects compete with T1 shortening, which can confound DCE-MRI parameters, whereas dipolar T1 and T2 leakage and residual susceptibility effects can confound DSC-MRI parameters. We introduce here a novel perfusion imaging acquisition and postprocessing method termed Spiral Perfusion Imaging with Consecutive Echoes (SPICE) that can be used to simultaneously acquire DCE- and DSC-MRI data, which requires only a single dose of the Gd contrast agent, does not require the collection of a precontrast T1 map for DCE-MRI processing, and eliminates the confounding contrast agent effects due to contrast extravasation. A detailed mathematical description of SPICE is provided here along with a demonstration of its utility in patients with high-grade glioma. PMID:28090589

  6. Perfusion MRI: The Five Most Frequently Asked Clinical Questions

    PubMed Central

    Essig, Marco; Nguyen, Thanh Binh; Shiroishi, Mark S.; Saake, Marc; Provenzale, James M.; Enterline, David S.; Anzalone, Nicoletta; Dörfler, Arnd; Rovira, Àlex; Wintermark, Max; Law, Meng

    2013-01-01

    OBJECTIVE This article addresses questions that radiologists frequently ask when planning, performing, processing, and interpreting MRI perfusion studies in CNS imaging. CONCLUSION Perfusion MRI is a promising tool in assessing stroke, brain tumors, and neurodegenerative diseases. Most of the impediments that have limited the use of perfusion MRI can be overcome to allow integration of these methods into modern neuroimaging protocols. PMID:23971482

  7. Perfusion MRI: The Five Most Frequently Asked Technical Questions

    PubMed Central

    Essig, Marco; Shiroishi, Mark S.; Nguyen, Thanh Binh; Saake, Marc; Provenzale, James M.; Enterline, David; Anzalone, Nicoletta; Dörfler, Arnd; Rovira, Àlex; Wintermark, Max; Law, Meng

    2013-01-01

    OBJECTIVE This and its companion article address the 10 most frequently asked questions that radiologists face when planning, performing, processing, and interpreting different MR perfusion studies in CNS imaging. CONCLUSION Perfusion MRI is a promising tool in assessing stroke, brain tumors, and patients with neurodegenerative diseases. Most of the impediments that have limited the use of perfusion MRI can be overcome to allow integration of these methods into modern neuroimaging protocols. PMID:23255738

  8. The correlation of contrast-enhanced ultrasound and MRI perfusion quantitative analysis in rabbit VX2 liver cancer.

    PubMed

    Xiang, Zhiming; Liang, Qianwen; Liang, Changhong; Zhong, Guimian

    2014-12-01

    Our objective is to explore the value of liver cancer contrast-enhanced ultrasound (CEUS) and MRI perfusion quantitative analysis in liver cancer and the correlation between these two analysis methods. Rabbit VX2 liver cancer model was established in this study. CEUS was applied. Sono Vue was applied in rabbits by ear vein to dynamically observe and record the blood perfusion and changes in the process of VX2 liver cancer and surrounding tissue. MRI perfusion quantitative analysis was used to analyze the mean enhancement time and change law of maximal slope increasing, which were further compared with the pathological examination results. Quantitative indicators of liver cancer CEUS and MRI perfusion quantitative analysis were compared, and the correlation between them was analyzed by correlation analysis. Rabbit VX2 liver cancer model was successfully established. CEUS showed that time-intensity curve of rabbit VX2 liver cancer showed "fast in, fast out" model while MRI perfusion quantitative analysis showed that quantitative parameter MTE of tumor tissue increased and MSI decreased: the difference was statistically significant (P < 0.01). The diagnostic results of CEUS and MRI perfusion quantitative analysis were not significantly different (P > 0.05). However, the quantitative parameter of them were significantly positively correlated (P < 0.05). CEUS and MRI perfusion quantitative analysis can both dynamically monitor the liver cancer lesion and surrounding liver parenchyma, and the quantitative parameters of them are correlated. The combined application of both is of importance in early diagnosis of liver cancer.

  9. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability

    NASA Astrophysics Data System (ADS)

    Sourbron, S. P.; Buckley, D. L.

    2012-01-01

    The tracer-kinetic models developed in the early 1990s for dynamic contrast-enhanced MRI (DCE-MRI) have since become a standard in numerous applications. At the same time, the development of MRI hardware has led to increases in image quality and temporal resolution that reveal the limitations of the early models. This in turn has stimulated an interest in the development and application of a second generation of modelling approaches. They are designed to overcome these limitations and produce additional and more accurate information on tissue status. In particular, models of the second generation enable separate estimates of perfusion and capillary permeability rather than a single parameter Ktrans that represents a combination of the two. A variety of such models has been proposed in the literature, and development in the field has been constrained by a lack of transparency regarding terminology, notations and physiological assumptions. In this review, we provide an overview of these models in a manner that is both physically intuitive and mathematically rigourous. All are derived from common first principles, using concepts and notations from general tracer-kinetic theory. Explicit links to their historical origins are included to allow for a transfer of experience obtained in other fields (PET, SPECT, CT). A classification is presented that reveals the links between all models, and with the models of the first generation. Detailed formulae for all solutions are provided to facilitate implementation. Our aim is to encourage the application of these tools to DCE-MRI by offering researchers a clearer understanding of their assumptions and requirements.

  10. UMMPerfusion: an open source software tool towards quantitative MRI perfusion analysis in clinical routine.

    PubMed

    Zöllner, Frank G; Weisser, Gerald; Reich, Marcel; Kaiser, Sven; Schoenberg, Stefan O; Sourbron, Steven P; Schad, Lothar R

    2013-04-01

    To develop a generic Open Source MRI perfusion analysis tool for quantitative parameter mapping to be used in a clinical workflow and methods for quality management of perfusion data. We implemented a classic, pixel-by-pixel deconvolution approach to quantify T1-weighted contrast-enhanced dynamic MR imaging (DCE-MRI) perfusion data as an OsiriX plug-in. It features parallel computing capabilities and an automated reporting scheme for quality management. Furthermore, by our implementation design, it could be easily extendable to other perfusion algorithms. Obtained results are saved as DICOM objects and directly added to the patient study. The plug-in was evaluated on ten MR perfusion data sets of the prostate and a calibration data set by comparing obtained parametric maps (plasma flow, volume of distribution, and mean transit time) to a widely used reference implementation in IDL. For all data, parametric maps could be calculated and the plug-in worked correctly and stable. On average, a deviation of 0.032 ± 0.02 ml/100 ml/min for the plasma flow, 0.004 ± 0.0007 ml/100 ml for the volume of distribution, and 0.037 ± 0.03 s for the mean transit time between our implementation and a reference implementation was observed. By using computer hardware with eight CPU cores, calculation time could be reduced by a factor of 2.5. We developed successfully an Open Source OsiriX plug-in for T1-DCE-MRI perfusion analysis in a routine quality managed clinical environment. Using model-free deconvolution, it allows for perfusion analysis in various clinical applications. By our plug-in, information about measured physiological processes can be obtained and transferred into clinical practice.

  11. Perfusion deconvolution in DSC-MRI with dispersion-compliant bases.

    PubMed

    Pizzolato, Marco; Boutelier, Timothé; Deriche, Rachid

    2017-02-01

    Perfusion imaging of the brain via Dynamic Susceptibility Contrast MRI (DSC-MRI) allows tissue perfusion characterization by recovering the tissue impulse response function and scalar parameters such as the cerebral blood flow (CBF), blood volume (CBV), and mean transit time (MTT). However, the presence of bolus dispersion causes the data to reflect macrovascular properties, in addition to tissue perfusion. In this case, when performing deconvolution of the measured arterial and tissue concentration time-curves it is only possible to recover the effective, i.e. dispersed, response function and parameters. We introduce Dispersion-Compliant Bases (DCB) to represent the response function in the presence and absence of dispersion. We perform in silico and in vivo experiments, and show that DCB deconvolution outperforms oSVD and the state-of-the-art CPI+VTF techniques in the estimation of effective perfusion parameters, regardless of the presence and amount of dispersion. We also show that DCB deconvolution can be used as a pre-processing step to improve the estimation of dispersion-free parameters computed with CPI+VTF, which employs a model of the vascular transport function to characterize dispersion. Indeed, in silico results show a reduction of relative errors up to 50% for dispersion-free CBF and MTT. Moreover, the DCB method recovers effective response functions that comply with healthy and pathological scenarios, and offers the advantage of making no assumptions about the presence, amount, and nature of dispersion.

  12. Perfusion and diffusion MRI of glioblastoma progression in a four-year prospective temozolomide clinical trial

    SciTech Connect

    Leimgruber, Antoine; Ostermann, Sandrine; Yeon, Eun Jo; Buff, Evelyn; Maeder, Philippe P.; Stupp, Roger; Meuli, Reto A. . E-mail: Reto.Meuli@chuv.ch

    2006-03-01

    Purpose: This study was performed to determine the impact of perfusion and diffusion magnetic resonance imaging (MRI) sequences on patients during treatment of newly diagnosed glioblastoma. Special emphasis has been given to these imaging technologies as tools to potentially anticipate disease progression, as progression-free survival is frequently used as a surrogate endpoint. Methods and Materials: Forty-one patients from a phase II temolozomide clinical trial were included. During follow-up, images were integrated 21 to 28 days after radiochemotherapy and every 2 months thereafter. Assessment of scans included measurement of size of lesion on T1 contrast-enhanced, T2, diffusion, and perfusion images, as well as mass effect. Classical criteria on tumor size variation and clinical parameters were used to set disease progression date. Results: A total of 311 MRI examinations were reviewed. At disease progression (32 patients), a multivariate Cox regression determined 2 significant survival parameters: T1 largest diameter (p < 0.02) and T2 size variation (p < 0.05), whereas perfusion and diffusion were not significant. Conclusion: Perfusion and diffusion techniques cannot be used to anticipate tumor progression. Decision making at disease progression is critical, and classical T1 and T2 imaging remain the gold standard. Specifically, a T1 contrast enhancement over 3 cm in largest diameter together with an increased T2 hypersignal is a marker of inferior prognosis.

  13. Diagnostic Performance of Dual-Energy CT Stress Myocardial Perfusion Imaging: Direct Comparison With Cardiovascular MRI

    PubMed Central

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K.

    2014-01-01

    OBJECTIVE The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. SUBJECTS AND METHODS One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥ 50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemodynamically significant stenosis was assessed before and after stress perfusion DECT on a pervessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. RESULTS The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p = 0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. CONCLUSION Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically

  14. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    PubMed Central

    Handayani, A.; Dijkstra, H.; Prakken, N. H. J.; Slart, R. H. J. A.; Oudkerk, M.; Van Ooijen, P. M. A.; Vliegenthart, R.; Sijens, P. E.

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  15. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma.

    PubMed

    Wong, Kelvin K; Fung, Steve H; New, Pamela Z; Wong, Stephen T C

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem.

  16. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma

    PubMed Central

    Wong, Kelvin K.; Fung, Steve H.; New, Pamela Z.; Wong, Stephen T. C.

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem. PMID:27531989

  17. Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients12

    PubMed Central

    Jafari-Khouzani, Kourosh; Emblem, Kyrre E.; Kalpathy-Cramer, Jayashree; Bjørnerud, Atle; Vangel, Mark G.; Gerstner, Elizabeth R.; Schmainda, Kathleen M.; Paynabar, Kamran; Wu, Ona; Wen, Patrick Y.; Batchelor, Tracy; Rosen, Bruce; Stufflebeam, Steven M.

    2015-01-01

    OBJECTIVES This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. METHODS Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. RESULTS CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. CONCLUSIONS DSC-MRI is highly repeatable in high-grade glioma patients. PMID:26055170

  18. Dependence of Brain Intravoxel Incoherent Motion Perfusion Parameters on the Cardiac Cycle

    PubMed Central

    Federau, Christian; Hagmann, Patric; Maeder, Philippe; Müller, Markus; Meuli, Reto; Stuber, Matthias; O’Brien, Kieran

    2013-01-01

    Measurement of microvascular perfusion with Intravoxel Incoherent Motion (IVIM) MRI is gaining interest. Yet, the physiological influences on the IVIM perfusion parameters (“pseudo-diffusion” coefficient D*, perfusion fraction f, and flow related parameter fD*) remain insufficiently characterized. In this article, we hypothesize that D* and fD*, which depend on blood speed, should vary during the cardiac cycle. We extended the IVIM model to include time dependence of D* = D*(t), and demonstrate in the healthy human brain that both parameters D* and fD* are significantly larger during systole than diastole, while the diffusion coefficient D and f do not vary significantly. The results non-invasively demonstrate the pulsatility of the brain’s microvasculature. PMID:24023649

  19. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  20. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  1. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    PubMed

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found

  2. Dynamic contrast-enhanced MRI perfusion for differentiating between melanoma and lung cancer brain metastases.

    PubMed

    Hatzoglou, Vaios; Tisnado, Jamie; Mehta, Alpesh; Peck, Kyung K; Daras, Mariza; Omuro, Antonio M; Beal, Kathryn; Holodny, Andrei I

    2017-04-01

    Brain metastases originating from different primary sites overlap in appearance and are difficult to differentiate with conventional MRI. Dynamic contrast-enhanced (DCE)-MRI can assess tumor microvasculature and has demonstrated utility in characterizing primary brain tumors. Our aim was to evaluate the performance of plasma volume (Vp) and volume transfer coefficient (K(trans) ) derived from DCE-MRI in distinguishing between melanoma and nonsmall cell lung cancer (NSCLC) brain metastases. Forty-seven NSCLC and 23 melanoma brain metastases were retrospectively assessed with DCE-MRI. Regions of interest were manually drawn around the metastases to calculate Vpmean and Kmeantrans. The Mann-Whitney U test and receiver operating characteristic analysis (ROC) were performed to compare perfusion parameters between the two groups. The Vpmean of melanoma brain metastases (4.35, standard deviation [SD] = 1.31) was significantly higher (P = 0.03) than Vpmean of NSCLC brain metastases (2.27, SD = 0.96). The Kmeantrans values were higher in melanoma brain metastases, but the difference between the two groups was not significant (P = 0.12). Based on ROC analysis, a cut-off value of 3.02 for Vpmean (area under curve = 0.659 with SD = 0.074) distinguished between melanoma brain metastases and NSCLC brain metastases (P < 0.01) with 72% specificity. Our data show the DCE-MRI parameter Vpmean can differentiate between melanoma and NSCLC brain metastases. The ability to noninvasively predict tumor histology of brain metastases in patients with multiple malignancies can have important clinical implications.

  3. Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis.

    PubMed

    Choi, Sang Hyun; Jung, Seung Chai; Kim, Kyung Won; Lee, Ja Youn; Choi, Yoonseok; Park, Seong Ho; Kim, Ho Sung

    2016-06-01

    This study aims to evaluate the value of perfusion MRI as a predictive/prognostic biomarker and a pharmacodynamic biomarker in patients with recurrent glioma treated with a bevacizumab-based regimen. We identified thirteen literature reports that investigated dynamic susceptibility-contrast (DSC) MRI or dynamic contrast-enhanced (DCE) MRI for predicting the patient outcome and analyzing the anti-angiogenic effect of bevacizumab by performing a systematic search of MEDLINE and EMBASE. The relative cerebral volume (rCBV) of DSC-MRI is currently the most common perfusion MRI parameter used as a predictive/prognostic biomarker. Pooled hazard ratios between responders and non-responders, as determined by rCBV, were 0.46 (95 % CI 0.28-0.76) for progression-free survival from five articles with a total 226 patients and 0.47 (95 % CI 0.29-0.76) for overall survival from six articles with a total 247 patients, and thus indicating that rCBV is helpful for predicting disease progression and the eventual outcome after treatment. Regarding the pharmacodynamic value of perfusion MRI parameters derived from either DSC-MRI or DCE-MRI, most perfusion MRI parameters (rCBV, Ktrans, CBVmax, Kpsmax, fpv, Ve and Kep) demonstrated a consistent decrease on the follow-up MRI after treatment, indicating that perfusion MRI may be helpful for evaluating the anti-angiogenic effect of a bevacizumab-based treatment regimen. However, the lack of standardization of imaging acquisition and analysis techniques for various perfusion MRI parameters needs to be resolved in the future. Despite these unsolved issues, the current evidence favoring the use of perfusion MRI as a predictive/prognostic or pharmacodynamic biomarker should be considered in patients with glioma treated using a bevacizumab-based regimen.

  4. [An evaluation of ischemic stroke using dynamic contrast enhanced perfusion MRI].

    PubMed

    Yamaguchi, H; Igarashi, H; Katayama, Y; Terashi, A

    1998-04-01

    Thrombolytic therapy during the hyperacute stage is important for salvaging dying cerebral tissue. To date, however, accurate non-invasive assessment of an ischemic lesion during the hyperacute stage has not been possible. Perfusion MRI may be the key to the quick diagnosis of ischemic lesions. To assess the feasibility of dynamic contrast enhanced perfusion MRI, echo planar imaging was performed in 10 patients with ischemic stroke. The relative cerebral blood volume (rCBV), mean transit time (MTT), and relative cerebral blood flow(rCBF) were measured based on moment analysis and the gamma variate method. These measurements, however, are not suitable for the detection of cerebral ischemia during the hyperacute stage. Therefore, we additionally studied the changes in a concentration curve (time-delta R* curve) of Gd-DTPA, injected into the median vein of the forearm. From the curve the SUM (delta R*) time to peak and the delta R* peak, which may be calculated quickly, were determined and were compared to rCBV, MTT, and rCBF, respectively. The rCBV and the rCBF in the ischemic regions were less than those in the contralateral healthy regions (p < 0.05), and the MTT in the ischemic regions was longer than that in the contralateral healthy regions (p < 0.05). Additionally, SUM (delta R*) and the delta R* peak in the ischemic regions were less, and the time to peak in the ischemic regions was longer than the value in the contralateral healthy regions (p < 0.05), correlating well to the rCBV, rCBF, and MTT measurements. Also, images of these parameters, depicting the ischemic lesion earlier than conventional T2 weighted images, can be easily made by using an MRI console. These results suggest that the SUM (delta R*), time to peak and the delta R* peak images calculated with dynamic contrast enhanced perfusion MRI may be one of the best techniques for the detection of cerebral ischemic lesions during the hyperacute stage.

  5. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.

    PubMed

    Behzadi, Yashar; Restom, Khaled; Liau, Joy; Liu, Thomas T

    2007-08-01

    A component based method (CompCor) for the reduction of noise in both blood oxygenation level-dependent (BOLD) and perfusion-based functional magnetic resonance imaging (fMRI) data is presented. In the proposed method, significant principal components are derived from noise regions-of-interest (ROI) in which the time series data are unlikely to be modulated by neural activity. These components are then included as nuisance parameters within general linear models for BOLD and perfusion-based fMRI time series data. Two approaches for the determination of the noise ROI are considered. The first method uses high-resolution anatomical data to define a region of interest composed primarily of white matter and cerebrospinal fluid, while the second method defines a region based upon the temporal standard deviation of the time series data. With the application of CompCor, the temporal standard deviation of resting-state perfusion and BOLD data in gray matter regions was significantly reduced as compared to either no correction or the application of a previously described retrospective image based correction scheme (RETROICOR). For both functional perfusion and BOLD data, the application of CompCor significantly increased the number of activated voxels as compared to no correction. In addition, for functional BOLD data, there were significantly more activated voxels detected with CompCor as compared to RETROICOR. In comparison to RETROICOR, CompCor has the advantage of not requiring external monitoring of physiological fluctuations.

  6. Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains

    PubMed Central

    Chen, Rongjun; Gutberlet, Marcel; Jang, Mi-Sun; Meier, Martin; Mengel, Michael; Hartung, Dagmar; Wacker, Frank; Rong, Song; Hueper, Katja

    2017-01-01

    Purpose The purpose was to characterize acute kidney injury (AKI) in C57BL/6 (B6)- and 129/Sv (Sv)-mice by noninvasive measurement of renal perfusion and tissue edema using functional MRI. Methods Different severities of AKI were induced in B6- and Sv-mice by renal ischemia reperfusion injury (IRI). Unilateral clamping of the renal pedicle for 35 min (moderate AKI) or 45 min (severe AKI) was done. MRI (7-Tesla) was performed 1, 7 and 28 days after surgery using a flow alternating inversion recovery (FAIR) arterial spin labeling (ASL) sequence. Maps of perfusion and T1-relaxation time were calculated. Relative MRI-parameters of the IRI kidney compared to the contralateral not-clipped kidney were compared between AKI severities and between mouse strains using unpaired t-tests. In addition, fibrosis was assessed by Masson Trichrome and collagen IV staining. Results After moderate AKI relative perfusion impairment was significantly higher in B6- than in Sv-mice at d7 (55±7% vs. 82±8%, p<0.05) and d28 (76±7% vs. 102±3%, p<0.01). T1-values increased in the early phase after AKI in both mouse strains. T1-increase was more severe after prolonged ischemia times of 45 min compared to 35 min in both mouse strains, measured in the renal cortex and outer stripe of outer medulla. Kidney volume loss (compared to the contralateral kidney) occurred already after 7 days but proceeded markedly towards 4 weeks in severe AKI. Early renal perfusion impairment was predictive for later kidney volume loss. The progression to chronic kidney disease (CKD) in the severe AKI model was similar in both mouse strains as revealed by histology. Conclusion Quantification of renal perfusion and tissue edema by functional MRI allows characterization of strain differences upon AKI. Renal perfusion impairment was stronger in B6- compared to Sv-animals following moderate AKI. Prolonged ischemia times were associated with more severe perfusion impairment and edema formation in the early phase and

  7. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty

    PubMed Central

    Anwander, H.; Cron, G. O.; Rakhra, K.

    2016-01-01

    Objectives Hips with metal-on-metal total hip arthroplasty (MoM THA) have a high rate of adverse local tissue reactions (ALTR), often associated with hypersensitivity reactions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures tissue perfusion with the parameter Ktrans (volume transfer constant of contrast agent). Our purpose was 1) to evaluate the feasibility of DCE-MRI in patients with THA and 2) to compare DCE-MRI in patients with MoM bearings with metal-on-polyethylene (MoP) bearings, hypothesising that the perfusion index Ktrans in hips with MoM THA is higher than in hips with MoP THA. Methods In this pilot study, 16 patients with primary THA were recruited (eight MoM, eight MoP). DCE-MRI of the hip was performed at 1.5 Tesla (T). For each patient, Ktrans was computed voxel-by-voxel in all tissue lateral to the bladder. The mean Ktrans for all voxels was then calculated. These values were compared with respect to implant type and gender, and further correlated with clinical parameters. Results There was no significant difference between the two bearing types with both genders combined. However, dividing patients by THA bearing and gender, women with MoM bearings had the highest Ktrans values, exceeding those of women with MoP bearings (0.067 min−1 versus 0.053 min−1; p-value < 0.05) and men with MoM bearings (0.067 min−1 versus 0.034 min−1; p-value < 0.001). Considering only the men, patients with MoM bearings had lower Ktrans than those with MoP bearings (0.034 min−1 versus 0.046 min−1; p < 0.05). Conclusion DCE-MRI is feasible to perform in tissues surrounding THA. Females with MoM THA show high Ktrans values in DCE-MRI, suggesting altered tissue perfusion kinematics which may reflect relatively greater inflammation. Cite this article: Dr P. E. Beaule. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty: A pilot stud. Bone Joint Res 2016;5:73–79. DOI: 10

  8. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain.

    PubMed

    Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang

    2012-11-01

    Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain.

  9. Brain/language relationships identified with diffusion and perfusion MRI: Clinical applications in neurology and neurosurgery.

    PubMed

    Hillis, Argye E

    2005-12-01

    Diffusion and perfusion MRI have contributed to stroke management by identifying patients with tissue "at risk" for further damage in acute stroke. However, the potential usefulness of these imaging modalities, along with diffusion tensor imaging, can be expanded by using these imaging techniques with concurrent assessment of language and other cognitive skills to identify the specific cognitive deficits that are associated with diffusion and perfusion abnormalities in particular brain regions. This paper illustrates how this combined behavioral and imaging methodology can yield information that is useful for predicting specific positive effects of intervention to restore blood flow in hypoperfused regions of brain identified with perfusion MRI, and for predicting negative effects of resection of particular brain regions or fiber bundles. Such data allow decisions about neurological and neurosurgical interventions to be based on specific risks and benefits in terms of functional consequences.

  10. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural

  11. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment.

  12. Resting State Brain Function Analysis Using Concurrent BOLD in ASL Perfusion fMRI

    PubMed Central

    Zhu, Senhua; Fang, Zhuo; Hu, Siyuan; Wang, Ze; Rao, Hengyi

    2013-01-01

    The past decade has seen astounding discoveries about resting-state brain activity patterns in normal brain as well as their alterations in brain diseases. While the vast majority of resting-state studies are based on the blood-oxygen-level-dependent (BOLD) functional MRI (fMRI), arterial spin labeling (ASL) perfusion fMRI can simultaneously capture BOLD and cerebral blood flow (CBF) signals, providing a unique opportunity for assessing resting brain functions with concurrent BOLD (ccBOLD) and CBF signals. Before taking that benefit, it is necessary to validate the utility of ccBOLD signal for resting-state analysis using conventional BOLD (cvBOLD) signal acquired without ASL modulations. To address this technical issue, resting cvBOLD and ASL perfusion MRI were acquired from a large cohort (n = 89) of healthy subjects. Four widely used resting-state brain function analyses were conducted and compared between the two types of BOLD signal, including the posterior cingulate cortex (PCC) seed-based functional connectivity (FC) analysis, independent component analysis (ICA), analysis of amplitude of low frequency fluctuation (ALFF), and analysis of regional homogeneity (ReHo). Consistent default mode network (DMN) as well as other resting-state networks (RSNs) were observed from cvBOLD and ccBOLD using PCC-FC analysis and ICA. ALFF from both modalities were the same for most of brain regions but were different in peripheral regions suffering from the susceptibility gradients induced signal drop. ReHo showed difference in many brain regions, likely reflecting the SNR and resolution differences between the two BOLD modalities. The DMN and auditory networks showed highest CBF values among all RSNs. These results demonstrated the feasibility of ASL perfusion MRI for assessing resting brain functions using its concurrent BOLD in addition to CBF signal, which provides a potentially useful way to maximize the utility of ASL perfusion MRI. PMID:23750275

  13. Quantitative Perfusion Analysis of First-Pass Contrast Enhancement Kinetics: Application to MRI of Myocardial Perfusion in Coronary Artery Disease

    PubMed Central

    Shah, Binita; Storey, Pippa; Iqbal, Sohah; Slater, James; Axel, Leon

    2016-01-01

    Purpose Perfusion analysis from first-pass contrast enhancement kinetics requires modeling tissue contrast exchange. This study presents a new approach for numerical implementation of the tissue homogeneity model, incorporating flexible distance steps along the capillary (NTHf). Methods The proposed NTHf model considers contrast exchange in fluid packets flowing along the capillary, incorporating flexible distance steps, thus allowing more efficient and stable calculations of the transit of tracer through the tissue. We prospectively studied 8 patients (62 ± 13 years old) with suspected CAD, who underwent first-pass perfusion CMR imaging at rest and stress prior to angiography. Myocardial blood flow (MBF) and myocardial perfusion reserve index (MPRI) were estimated using both the NTHf and the conventional adiabatic approximation of the TH models. Coronary artery lesions detected at angiography were clinically assigned to one of three categories of stenosis severity (‘insignificant’, ‘mild to moderate’ and ‘severe’) and related to corresponding myocardial territories. Results The mean MBF (ml/g/min) at rest/stress and MPRI were 0.80 ± 0.33/1.25 ± 0.45 and 1.68 ± 0.54 in the insignificant regions, 0.74 ± 0.21/1.09 ± 0.28 and 1.54 ± 0.46 in the mild to moderate regions, and 0.79 ± 0.28/0.63 ± 0.34 and 0.85 ± 0.48 in the severe regions, respectively. The correlation coefficients of MBFs at rest/stress and MPRI between the NTHf and AATH models were r = 0.97/0.93 and r = 0.91, respectively. Conclusions The proposed NTHf model allows efficient quantitative analysis of the transit of tracer through tissue, particularly at higher flow. Results of initial application to MRI of myocardial perfusion in CAD are encouraging. PMID:27583385

  14. MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI

    SciTech Connect

    Song, H; Liu, W; Ruan, D; Jung, S; Gach, M

    2014-06-15

    Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition. During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human

  15. The diagnostic performance of perfusion MRI for differentiating glioma recurrence from pseudoprogression

    PubMed Central

    Wan, Bing; Wang, Siqi; Tu, Mengqi; Wu, Bo; Han, Ping; Xu, Haibo

    2017-01-01

    Abstract Background: The purpose of this meta-analysis was to evaluate the diagnostic accuracy of perfusion magnetic resonance imaging (MRI) as a method for differentiating glioma recurrence from pseudoprogression. Methods: The PubMed, Embase, Cochrane Library, and Chinese Biomedical databases were searched comprehensively for relevant studies up to August 3, 2016 according to specific inclusion and exclusion criteria. The quality of the included studies was assessed according to the quality assessment of diagnostic accuracy studies (QUADAS-2). After performing heterogeneity and threshold effect tests, pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. Publication bias was evaluated visually by a funnel plot and quantitatively using Deek funnel plot asymmetry test. The area under the summary receiver operating characteristic curve was calculated to demonstrate the diagnostic performance of perfusion MRI. Results: Eleven studies covering 416 patients and 418 lesions were included in this meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.88 (95% confidence interval [CI] 0.84–0.92), 0.77 (95% CI 0.69–0.84), 3.93 (95% CI 2.83–5.46), 0.16 (95% CI 0.11–0.22), and 27.17 (95% CI 14.96–49.35), respectively. The area under the summary receiver operating characteristic curve was 0.8899. There was no notable publication bias. Sensitivity analysis showed that the meta-analysis results were stable and credible. Conclusion: While perfusion MRI is not the ideal diagnostic method for differentiating glioma recurrence from pseudoprogression, it could improve diagnostic accuracy. Therefore, further research on combining perfusion MRI with other imaging modalities is warranted. PMID:28296759

  16. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

    PubMed Central

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  17. Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification

    PubMed Central

    Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Granata, Vincenza; Catalano, Orlando; Amato, Daniela Maria; Di Bonito, Maurizio; D'Aiuto, Massimiliano; Capasso, Immacolata; Rinaldo, Massimo; Petrillo, Antonella

    2015-01-01

    Objective. The purpose of our study was to evaluate the diagnostic value of an imaging protocol combining dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in patients with suspicious breast lesions. Materials and Methods. A total of 31 breast lesions (15 malignant and 16 benign proved by histological examination) in 26 female patients were included in this study. For both DCE-MRI and DW-MRI model free and model based parameters were computed pixel by pixel on manually segmented ROIs. Statistical procedures included conventional linear analysis and more advanced techniques for classification of lesions in benign and malignant. Results. Our findings indicated no strong correlation between DCE-MRI and DW-MRI parameters. Results of classification analysis show that combining of DCE parameters or DW-MRI parameter, in comparison of single feature, does not yield a dramatic improvement of sensitivity and specificity of the two techniques alone. The best performance was obtained considering a full combination of all features. Moreover, the classification results combining all features are dominated by DCE-MRI features alone. Conclusion. The combination of DWI and DCE-MRI does not show a potential to dramatically increase the sensitivity and specificity of breast MRI. DCE-MRI alone gave the same performance as in combination with DW-MRI. PMID:26339597

  18. Comparison of dynamic susceptibility contrast-MRI perfusion quantification methods in the presence of delay and dispersion

    NASA Astrophysics Data System (ADS)

    Maan, Bianca; Simões, Rita Lopes; Meijer, Frederick J. A.; Klaas Jan Renema, W.; Slump, Cornelis H.

    2011-03-01

    The perfusion of the brain is essential to maintain brain function. Stroke is an example of a decrease in blood flow and reduced perfusion. During ischemic stroke the blood flow to tissue is hampered due to a clot inside a vessel. To investigate the recovery of stroke patients, follow up studies are necessary. MRI is the preferred imaging modality for follow up because of the absence of radiation dose concerns, contrary to CT. Dynamic Susceptibility Contrast (DSC) MRI is an imaging technique used for measuring perfusion of the brain, however, is not standard applied in the clinical routine due to lack of immediate patient benefit. Several post processing algorithms are described in the literature to obtain cerebral blood flow (CBF). The quantification of CBF relies on the deconvolution of a tracer concentration-time curve in an arterial and a tissue voxel. There are several methods to obtain this deconvolution based on singular-value decomposition (SVD). This contribution describes a comparison between the different approaches as currently there is no best practice for (all) clinical relevant situations. We investigate the influence of tracer delay, dispersion and recirculation on the performance of the methods. In the presence of negative delays, the truncated SVD approach overestimates the CBF. Block-circulant and reformulated SVD are delay-independent. Due to its delay dependent behavior, the truncated SVD approach performs worse in the presence of dispersion as well. However all SVD approaches are dependent on the amount of dispersion. Moreover, we observe that the optimal truncation parameter varies when recirculation is added to noisy data, suggesting that, in practice, these methods are not immune to tracer recirculation. Finally, applying the methods to clinical data resulted in a large variability of the CBF estimates. Block-circulant SVD will work in all situations and is the method with the highest potential.

  19. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  20. Combination of Compressed Sensing and Parallel Imaging for Highly Accelerated First-Pass Cardiac Perfusion MRI

    PubMed Central

    Otazo, Ricardo; Kim, Daniel; Axel, Leon; Sodickson, Daniel K.

    2010-01-01

    First-pass cardiac perfusion MRI is a natural candidate for compressed sensing acceleration since its representation in the combined temporal Fourier and spatial domain is sparse and the required incoherence can be effectively accomplished by k-t random undersampling. However, the required number of samples in practice (three to five times the number of sparse coefficients) limits the acceleration for compressed sensing alone. Parallel imaging may also be used to accelerate cardiac perfusion MRI, with acceleration factors ultimately limited by noise amplification. In this work, compressed sensing and parallel imaging are combined by merging the k-t SPARSE technique with SENSE reconstruction to substantially increase the acceleration rate for perfusion imaging. We also present a new theoretical framework for understanding the combination of k-t SPARSE with SENSE based on distributed compressed sensing theory. This framework, which identifies parallel imaging as a distributed multisensor implementation of compressed sensing, enables an estimate of feasible acceleration for the combined approach. We demonstrate feasibility of 8-fold acceleration in vivo with whole-heart coverage and high spatial and temporal resolution using standard coil arrays. The method is relatively insensitive to respiratory motion artifacts and presents similar temporal fidelity and image quality when compared to GRAPPA with 2-fold acceleration. PMID:20535813

  1. Stepwise heterogeneity analysis of breast tumors in perfusion DCE-MRI datasets

    NASA Astrophysics Data System (ADS)

    Mohajer, Mojgan; Schmid, Volker J.; Engels, Nina A.; Noel, Peter B.; Rummeny, Ernst; Englmeier, Karl-Hans

    2012-03-01

    The signal curves in perfusion dynamic contrast enhanced MRI (DCE-MRI) of cancerous breast tissue reveal valuable information about tumor angiogenesis. Pathological studies have illustrated that breast tumors consist of different subregions, especially with more homogeneous properties during their growth. Differences should be identifiable in DCEMRI signal curves if the characteristics of these sub-regions are related to the perfusion and angiogenesis. We introduce a stepwise clustering method which in a first step uses a new similarity measure. The new similarity measure (PM) compares how parallel washout phases of two curves are. To distinguish the starting point of the washout phase, a linear regression method is partially fitted to the curves. In the next step, the minimum signal value of the washout phase is normalized to zero. Finally, PM is calculated according to maximal variation among the point wise differences during washout phases. In the second step of clustering the groups of signal curves with parallel washout are clustered using Euclidean distance. The introduced method is evaluated on 15 DCE-MRI breast datasets with different types of breast tumors. The use of our new heterogeneity analysis is feasible in single patient examination and improves breast MR diagnostics.

  2. Free-breathing myocardial perfusion MRI using SW-CG-HYPR and motion correction.

    PubMed

    Ge, Lan; Kino, Aya; Griswold, Mark; Carr, James C; Li, Debiao

    2010-10-01

    First-pass perfusion MRI is a promising technique to detect ischemic heart disease. Sliding window (SW) conjugate-gradient (CG) highly constrained back-projection reconstruction (HYPR) (SW-CG-HYPR) has been proposed to increase spatial coverage, spatial resolution, and SNR. However, this method is sensitive to respiratory motion and thus requires breath-hold. This work presents a non-model-based motion correction method combined with SW-CG-HYPR to perform free-breathing myocardial MR imaging. Simulation studies were first performed to show the effectiveness of the proposed motion correction method and its independence from the pattern of the respiratory motion. After that, in vivo studies were performed in six healthy volunteers. From all of the volunteer studies, the image quality score of free breathing perfusion images with motion correction (3.11 ± 0.34) is improved compared with that of images without motion correction (2.27 ± 0.32), and is comparable with that of successful breath-hold images (3.12 ± 0.38). This result was further validated by a quantitative sharpness analysis. The left ventricle and myocardium signal changes in motion corrected free-breathing perfusion images were closely correlated to those observed in breath-hold images. The correlation coefficient is 0.9764 for myocardial signals. Bland-Altman analysis confirmed the agreement between the free-breathing SW-CG-HYPR method with motion correction and the breath-hold SW-CG-HYPR. This technique may allow myocardial perfusion MRI during free breathing.

  3. Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging

    PubMed Central

    Teune, Laura K.; Renken, Remco J.; de Jong, Bauke M.; Willemsen, Antoon T.; van Osch, Matthias J.; Roerdink, Jos B.T.M.; Dierckx, Rudi A.; Leenders, Klaus L.

    2014-01-01

    Introduction Under normal conditions, the spatial distribution of resting cerebral blood flow and cerebral metabolic rate of glucose are closely related. A relatively new magnetic resonance (MR) technique, pseudo-continuous arterial spin labeling (PCASL), can be used to measure regional brain perfusion. We identified a Parkinson's disease (PD)-related perfusion and metabolic covariance pattern in the same patients using PCASL and FDG-PET imaging and assessed (dis)similarities in the disease-related pattern between perfusion and metabolism in PD patients. Methods Nineteen PD patients and seventeen healthy controls underwent [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging. Of 14 PD patients and all healthy controls PCASL-MRI could be obtained. Data were analyzed using scaled subprofile model/principal component analysis (SSM/PCA). Results Unique Parkinson's disease-related perfusion and metabolic covariance patterns were identified using PCASL and FDG-PET in the same patients. The PD-related metabolic covariance brain pattern is in high accordance with previously reports. Also our disease-related perfusion pattern is comparable to the earlier described perfusion pattern. The most marked difference between our perfusion and metabolic patterns is the larger perfusion decrease in cortical regions including the insula. Conclusion We identified PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in the same patients which were comparable with results of existing research. In this respect, PCASL appears to be a promising addition in the early diagnosis of individual parkinsonian patients. PMID:25068113

  4. Accelerating free breathing myocardial perfusion MRI using multi coil radial k-t SLR

    PubMed Central

    Lingala, Sajan Goud; DiBella, Edward; Adluru, Ganesh; McGann, Christopher; Jacob, Mathews

    2013-01-01

    The clinical utility of myocardial perfusion MR imaging (MPI) is often restricted by the inability of current acquisition schemes to simultaneously achieve high spatio-temporal resolution, good volume coverage, and high signal to noise ratio. Moreover, many subjects often find it difficult to hold their breath for sufficiently long durations making it difficult to obtain reliable MPI data. Accelerated acquisition of free breathing MPI data can overcome some of these challenges. Recently, an algorithm termed as k − t SLR has been proposed to accelerate dynamic MRI by exploiting sparsity and low rank properties of dynamic MRI data. The main focus of this paper is to further improve k − t SLR and demonstrate its utility in considerably accelerating free breathing MPI. We extend its previous implementation to account for multi-coil radial MPI acquisitions. We perform k − t sampling experiments to compare different radial trajectories and determine the best sampling pattern. We also introduce a novel augmented Lagrangian framework to considerably improve the algorithm's convergence rate. The proposed algorithm is validated using free breathing rest and stress radial perfusion data sets from two normal subjects and one patient with ischemia. k − t SLR was observed to provide faithful reconstructions at high acceleration levels with minimal artifacts compared to existing MPI acceleration schemes such as spatio-temporal constrained reconstruction (STCR) and k − t SPARSE/SENSE. PMID:24077063

  5. Diagnosis of pseudoprogression using MRI perfusion in patients with glioblastoma multiforme may predict improved survival

    PubMed Central

    Gahramanov, Seymur; Varallyay, Csanad; Tyson, Rose Marie; Lacy, Cynthia; Fu, Rongwei; Netto, Joao Prola; Nasseri, Morad; White, Tricia; Woltjer, Randy L; Gultekin, Sakir Humayun; Neuwelt, Edward A

    2015-01-01

    SUMMARY Aims This retrospective study determined the survival of glioblastoma patients with or without pseudoprogression. Methods A total of 68 patients were included. Overall survival was compared between patients showing pseudoprogression (in most cases diagnosed using perfusion MRI with ferumoxytol) and in patients without pseudoprogession. MGMT methylation status was also analyzed in the pseudoprogression cases. Results Median survival in 24 (35.3%) patients with pseudoprogression was 34.7 months (95% CI: 20.3–54.1), and 13.4 months (95% CI: 11.1–19.5) in 44 (64.7%) patients without pseudoprogression (p < 0.0001). The longest survival was a median of 54.1 months in patients with combination of pseudoprogression and (MGMT) promoter methylation. Conclusion Pseudoprogression is associated with better outcome, especially if concurring with MGMT promoter methylation. Patients never diagnosed with pseudoprogression had poor survival. This study emphasizes the importance of differentiating tumor progression and pseudoprogression using perfusion MRI. PMID:25438810

  6. Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room

    PubMed Central

    Jekic, Mihaela; Foster, Eric L; Ballinger, Michelle R; Raman, Subha V; Simonetti, Orlando P

    2008-01-01

    Treadmill exercise stress testing is an essential tool in the prevention, detection, and treatment of a broad spectrum of cardiovascular disease. After maximal exercise, cardiac images at peak stress are typically acquired using nuclear scintigraphy or echocardiography, both of which have inherent limitations. Although CMR offers superior image quality, the lack of MRI-compatible exercise and monitoring equipment has prevented the realization of treadmill exercise CMR. It is critical to commence imaging as quickly as possible after exercise to capture exercise-induced cardiac wall motion abnormalities. We modified a commercial treadmill such that it could be safely positioned inside the MRI room to minimize the distance between the treadmill and the scan table. We optimized the treadmill exercise CMR protocol in 20 healthy volunteers and successfully imaged cardiac function and myocardial perfusion at peak stress, followed by viability imaging at rest. Imaging commenced an average of 30 seconds after maximal exercise. Real-time cine of seven slices with no breath-hold and no ECG-gating was completed within 45 seconds of exercise, immediately followed by stress perfusion imaging of three short-axis slices which showed an average time to peak enhancement within 57 seconds of exercise. We observed a 3.1-fold increase in cardiac output and a myocardial perfusion reserve index of 1.9, which agree with reported values for healthy subjects at peak stress. This study successfully demonstrates in-room treadmill exercise CMR in healthy volunteers, but confirmation of feasibility in patients with heart disease is still needed. PMID:18272005

  7. Perfusion MRI Indexes Variability in the Functional Brain Effects of Theta-Burst Transcranial Magnetic Stimulation

    PubMed Central

    Gratton, Caterina; Lee, Taraz G.; Nomura, Emi M.; D’Esposito, Mark

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is an important tool for testing causal relationships in cognitive neuroscience research. However, the efficacy of TMS can be variable across individuals and difficult to measure. This variability is especially a challenge when TMS is applied to regions without well-characterized behavioral effects, such as in studies using TMS on multi-modal areas in intrinsic networks. Here, we examined whether perfusion fMRI recordings of Cerebral Blood Flow (CBF), a quantitative measure sensitive to slow functional changes, reliably index variability in the effects of stimulation. Twenty-seven participants each completed four combined TMS-fMRI sessions during which both resting state Blood Oxygen Level Dependent (BOLD) and perfusion Arterial Spin Labeling (ASL) scans were recorded. In each session after the first baseline day, continuous theta-burst TMS (TBS) was applied to one of three locations: left dorsolateral prefrontal cortex (L dlPFC), left anterior insula/frontal operculum (L aI/fO), or left primary somatosensory cortex (L S1). The two frontal targets are components of intrinsic networks and L S1 was used as an experimental control. CBF changes were measured both before and after TMS on each day from a series of interleaved resting state and perfusion scans. Although TBS led to weak selective increases under the coil in CBF measurements across the group, individual subjects showed wide variability in their responses. TBS-induced changes in rCBF were related to TBS-induced changes in functional connectivity of the relevant intrinsic networks measured during separate resting-state BOLD scans. This relationship was selective: CBF and functional connectivity of these networks were not related before TBS or after TBS to the experimental control region (S1). Furthermore, subject groups with different directions of CBF change after TBS showed distinct modulations in the functional interactions of targeted networks. These results suggest

  8. DCE-MRI of hepatocellular carcinoma: perfusion quantification with Tofts model versus shutter-speed model—initial experience

    PubMed Central

    Jajamovich, Guido H.; Huang, Wei; Besa, Cecilia; Li, Xin; Afzal, Aneela; Dyvorne, Hadrien A.; Taouli, Bachir

    2016-01-01

    Objective To quantify hepatocellular carcinoma (HCC) perfusion and flow with the fast exchange regime-allowed Shutter-Speed model (SSM) compared to the Tofts model (TM). Materials and methods In this prospective study, 25 patients with HCC underwent DCE-MRI. ROIs were placed in liver parenchyma, portal vein, aorta and HCC lesions. Signal intensities were analyzed employing dual-input TM and SSM models. ART (arterial fraction), Ktrans (contrast agent transfer rate constant from plasma to extravascular extracellular space), ve (extravascular extracellular volume fraction), kep (contrast agent intravasation rate constant), and τi (mean intracellular water molecule lifetime) were compared between liver parenchyma and HCC, and ART, Ktrans, ve and kep were compared between models using Wilcoxon tests and limits of agreement. Test–retest reproducibility was assessed in 10 patients. Results ART and ve obtained with TM; ART, ve, ke and τi obtained with SSM were significantly different between liver parenchyma and HCC (p < 0.04). Parameters showed variable reproducibility (CV range 14.7–66.5 % for both models). Liver Ktrans and ve; HCC ve and kep were significantly different when estimated with the two models (p < 0.03). Conclusion Our results show differences when computed between the TM and the SSM. However, these differences are smaller than parameter reproducibilities and may be of limited clinical significance. PMID:26646522

  9. Non-ECG-Gated Myocardial Perfusion MRI Using Continuous Magnetization-Driven Radial Sampling

    PubMed Central

    Sharif, Behzad; Dharmakumar, Rohan; Arsanjani, Reza; Thomson, Louise; Merz, C. Noel Bairey; Berman, Daniel S.; Li, Debiao

    2014-01-01

    Purpose Establishing a high-resolution non-ECG-gated first-pass perfusion (FPP) cardiac MRI technique may improve accessibility and diagnostic capability of FPP imaging. We propose a non-ECG-gated FPP imaging technique using continuous magnetization-driven golden-angle radial acquisition. The main purpose of this preliminary study is to evaluate whether, in the simple case of single-slice 2D imaging, adequate myocardial contrast can be obtained for accurate visualization of hypoperfused territories in the setting of myocardial ischemia. Methods A T1-weighted pulse sequence with continuous golden-angle radial sampling was developed for non-ECG-gated FPP imaging. A sliding-window scheme with no temporal acceleration was used to reconstruct 8 frames/second. Canines were imaged at 3T with and without coronary stenosis using the proposed scheme and a conventional magnetization-prepared ECG-gated FPP method. Results Our studies showed that the proposed non-ECG-gated method is capable of generating high-resolution (1.7×1.7×6 mm3) artifact-free FPP images of a single slice at high heart rates (92±21 beats/minute), while matching the performance of conventional FPP imaging in terms of hypoperfused-to-normal myocardial contrast-to-noise ratio (proposed: 5.18±0.70, conventional: 4.88±0.43). Furthermore, the detected perfusion defect areas were consistent with the conventional FPP images. Conclusion Non-ECG-gated FPP imaging using optimized continuous golden-angle radial acquisition achieves desirable image quality (i.e., adequate myocardial contrast, high spatial resolution, and minimal artifacts) in the setting of ischemia. PMID:24443160

  10. Quantification of pulmonary blood flow (PBF): validation of perfusion MRI and nonlinear contrast agent (CA) dose correction with H(2)15O positron emission tomography (PET).

    PubMed

    Neeb, Daniel; Kunz, Rainer Peter; Ley, Sebastian; Szábo, Gábor; Strauss, Ludwig G; Kauczor, Hans-Ulrich; Kreitner, Karl-Friedrich; Schreiber, Laura Maria

    2009-08-01

    Validation of quantification of pulmonary blood flow (PBF) with dynamic, contrast-enhanced MRI is still missing. A possible reason certainly lies in difficulties based on the nonlinear dependence of signal intensity (SI) from contrast agent (CA) concentration. Both aspects were addressed in this study. Nine healthy pigs were examined by first-pass perfusion MRI using gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) and H(2)(15)O positron emission tomography (PET) imaging. Calculations of hemodynamic parameters were based on a one-compartment model (MR) and a two-compartment model (PET). Simulations showed a significant error when assuming a linear relation between MR SI and CA dose in the arterial input function (AIF), even at low doses of 0.025 mmol/kg body weight (BW). To correct for nonlinearity, a calibration curve was calculated on the basis of the signal equation. The required accuracy of equation parameters (like longitudinal relaxation time) was evaluated. Error analysis estimates <5% over-/underestimation of the corrected SI. Comparison of PET and MR flow values yielded a significant correlation (P < 0.001) in dorsal regions where signal-to-noise ratio (SNR) was sufficient. Changes in PBF due to the correction method were significant (P < 0.001) and resulted in a better agreement: mean values (standard deviation) in units of ml/min/100 ml lung tissue were 59 (15) for PET, 112 (28) for uncorrected MRI, and 80 (21) for corrected MRI.

  11. Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study

    PubMed Central

    Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz

    2014-01-01

    Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are

  12. Differentiation of recurrent spinal ependymoma from postradiation treatment necrosis through multiparametric PET-MR and perfusion MRI.

    PubMed

    Hojjati, Mojgan; Garg, Vasant; Badve, Chaitra A; Abboud, Salim E; Sloan, Andrew E; Wolansky, Leo J

    A 67-year-old male presented with papilledema and back pain localized to the T10 level. Initial workup revealed multifocal spinal ependymoma which was resected and treated with external beam radiotherapy. Nine years after treatment, the patient had a relapse of back pain, and MRI was inconclusive in distinguishing posttreatment radiation necrosis from recurrent tumor. We present the first described report with the utilization of multiparametric positron emission tomography-magnetic resonance imaging and perfusion MRI to distinguish recurrent spinal ependymoma from radiation necrosis.

  13. Neural Substrates Associated with Weather-Induced Mood Variability: An Exploratory Study Using ASL Perfusion fMRI

    PubMed Central

    Gillihan, Seth J.; Detre, John A.; Farah, Martha J.; Rao, Hengyi

    2013-01-01

    Daily variations in weather are known to be associated with variations in mood. However, little is known about the specific brain regions that instantiate weather-related mood changes. We used a data-driven approach and ASL perfusion fMRI to assess the neural substrates associated with weather-induced mood variability. The data-driven approach was conducted with mood ratings under various weather conditions (N = 464). Forward stepwise regression was conducted to develop a statistical model of mood as a function of weather conditions. The model results were used to calculate the mood-relevant weather index which served as the covariate in the regression analysis of the resting CBF (N = 42) measured by ASL perfusion fMRI under various weather conditions. The resting CBF activities in the left insula-prefrontal cortex and left superior parietal lobe were negatively correlated (corrected p<0.05) with the weather index, indicating that better mood-relevant weather conditions were associated with lower CBF in these regions within the brain’s emotional network. The present study represents a first step toward the investigation of the effect of natural environment on baseline human brain function, and suggests the feasibility of ASL perfusion fMRI for such study. PMID:24834022

  14. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress

    NASA Astrophysics Data System (ADS)

    Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.

    2005-12-01

    Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. anterior cingulate cortex | arterial spin labeling | right prefrontal cortex

  15. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model

    PubMed Central

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav

    2016-01-01

    Objectives Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. Methods We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. Results In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Conclusion Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development. PMID:28005983

  16. Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI.

    PubMed

    Cuenod, C A; Balvay, D

    2013-12-01

    The microvascular network formed by the capillaries supplies the tissues and permits their function. It provides a considerable surface area for exchanges between blood and tissues. All pathological conditions cause changes in the microcirculation. These changes can be used as imaging biomarkers for the diagnosis of lesions and optimisation of treatment. Among the many imaging techniques developed to study the microcirculation, the analysis of the tissue kinetics of intravenously injected contrast agents is the most widely used, either as positive enhancement for CT, T1-weighted MRI and ultrasound - dynamic contrast-enhanced-imaging (DCE-imaging) - or negative enhancement in T2*-weighted brain MRI - dynamic susceptibility contrast-MRI (DSC-MRI) -. Acquisition involves an injection of contrast agent during the acquisition of a dynamic series of images on a zone of interest. These kinetics may be analyzed visually, to define qualitative criteria, or with software using mathematical modelling, to extract quantitative physiological parameters. The results depend on the acquisition conditions (type of imaging device, imaging mode, frequency and total duration of acquisition), the type of contrast agent, the data pre-processing (motion correction, conversion of the signal into concentration) and the data analysis method. Because of these multiple choices it is necessary to understand the physiological processes involved and understand the advantages and limits of each strategy.

  17. The value of resting-state functional MRI in subacute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced perfusion MRI.

    PubMed

    Ni, Ling; Li, Jingwei; Li, Weiping; Zhou, Fei; Wang, Fangfang; Schwarz, Christopher G; Liu, Renyuan; Zhao, Hui; Wu, Wenbo; Zhang, Xin; Li, Ming; Yu, Haiping; Zhu, Bin; Villringer, Arno; Zang, Yufeng; Zhang, Bing; Lv, Yating; Xu, Yun

    2017-01-31

    To evaluate the potential clinical value of the time-shift analysis (TSA) approach for resting-state fMRI (rs-fMRI) blood oxygenation level-dependent (BOLD) data in detecting hypoperfusion of subacute stroke patients through comparison with dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI). Forty patients with subacute stroke (3-14 days after neurological symptom onset) underwent MRI examination. Cohort A: 31 patients had MRA, DSC-PWI and BOLD data. Cohort B: 9 patients had BOLD and MRA data. The time delay between the BOLD time course in each voxel and the mean signal of global and contralateral hemisphere was calculated using TSA. Time to peak (TTP) was employed to detect hypoperfusion. Among cohort A, 14 patients who had intracranial large-vessel occlusion/stenosis with sparse collaterals showed hypoperfusion by both of the two approaches, one with abundant collaterals showed neither TTP nor TSA time delay. The remaining 16 patients without obvious MRA lesions showed neither TTP nor TSA time delay. Among cohort B, eight patients showed time delay areas. The TSA approach was a promising alternative to DSC-PWI for detecting hypoperfusion in subacute stroke patients who had obvious MRA lesions with sparse collaterals, those with abundant collaterals would keep intact local perfusion.

  18. The value of resting-state functional MRI in subacute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced perfusion MRI

    PubMed Central

    Ni, Ling; Li, Jingwei; Li, Weiping; Zhou, Fei; Wang, Fangfang; Schwarz, Christopher G.; Liu, Renyuan; Zhao, Hui; Wu, Wenbo; Zhang, Xin; Li, Ming; Yu, Haiping; Zhu, Bin; Villringer, Arno; Zang, Yufeng; Zhang, Bing; Lv, Yating; Xu, Yun

    2017-01-01

    To evaluate the potential clinical value of the time-shift analysis (TSA) approach for resting-state fMRI (rs-fMRI) blood oxygenation level-dependent (BOLD) data in detecting hypoperfusion of subacute stroke patients through comparison with dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI). Forty patients with subacute stroke (3–14 days after neurological symptom onset) underwent MRI examination. Cohort A: 31 patients had MRA, DSC-PWI and BOLD data. Cohort B: 9 patients had BOLD and MRA data. The time delay between the BOLD time course in each voxel and the mean signal of global and contralateral hemisphere was calculated using TSA. Time to peak (TTP) was employed to detect hypoperfusion. Among cohort A, 14 patients who had intracranial large-vessel occlusion/stenosis with sparse collaterals showed hypoperfusion by both of the two approaches, one with abundant collaterals showed neither TTP nor TSA time delay. The remaining 16 patients without obvious MRA lesions showed neither TTP nor TSA time delay. Among cohort B, eight patients showed time delay areas. The TSA approach was a promising alternative to DSC-PWI for detecting hypoperfusion in subacute stroke patients who had obvious MRA lesions with sparse collaterals, those with abundant collaterals would keep intact local perfusion. PMID:28139701

  19. Using Perfusion fMRI to Measure Continuous Changes in Neural Activity with Learning

    ERIC Educational Resources Information Center

    Olson, Ingrid R.; Rao, Hengyi; Moore, Katherine Sledge; Wang, Jiongjiong; Detre, John A.; Aguirre, Geoffrey K.

    2006-01-01

    In this study, we examine the suitability of a relatively new imaging technique, "arterial spin labeled perfusion imaging," for the study of continuous, gradual changes in neural activity. Unlike BOLD imaging, the perfusion signal is stable over long time-scales, allowing for accurate assessment of continuous performance. In addition, perfusion…

  20. Dynamic contrast-enhanced MRI as a valuable non-invasive tool to evaluate tissue perfusion of free flaps: Preliminary results.

    PubMed

    Fellner, Claudia; Jung, Ernst M; Prantl, Lukas

    2010-01-01

    Early detection of a compromised circulation of free flaps and an immediate revision may lead to higher rates of flap salvage. The aim of this study was to evaluate the perfusion of the entire flap using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). DCE was performed in 11 patients after flap transplantation using an optimized 3D gradient echo sequence to cover the whole flap. The percentage increase of signal intensity over time was evaluated for the free flap as well as for a reference tissue. Furthermore, normalized signal increase was calculated as the ratio of signal increase within the flaps to the signal increase in the reference tissue. Signal increase in free flaps and reference tissue was compared using the Wilcoxon-test (p < 0.05), normalized signal increase in normally perfused (n = 9) and in flaps with compromised perfusion (n = 2) using Mann-Whitney-test (p < 0.05). Signal increase within normally perfused flaps was similar to the reference tissue. In flaps with compromised perfusion the increase was significantly lower than in reference tissue. Normalized signal increase in adequately perfused flaps and flaps with compromised perfusion also showed a significant difference. DCE MRI may be a valuable non-invasive tool to evaluate tissue perfusion of the complete free flap.

  1. Longitudinal assessment of renal perfusion and oxygenation in transplant donor-recipient pairs using ASL and BOLD MRI

    PubMed Central

    Niles, David J; Artz, Nathan S; Djamali, Arjang; Sadowski, Elizabeth A; Grist, Thomas M; Fain, Sean B

    2015-01-01

    Objectives To assess renal function in kidney transplant recipients and their respective donors over two years using arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, and to prospectively evaluate the effect of losartan on functional MRI measures in recipients. Materials and Methods The study included 15 matched pairs of renal transplant donors and recipients. ASL and BOLD MRI of the kidneys were performed on donors prior to transplant surgery (baseline) and on both donors and recipients at 3 months, 1 year and 2 years post-transplant. After 3 months, seven of the 15 recipients were prescribed 25–50 mg/day losartan for the remainder of the study. A linear mixed-effects model was used to evaluate perfusion, R2*, estimated glomerular filtration rate (eGFR), and fractional excretion of sodium (FENa) for changes across time or associated with losartan treatment. Results In donors, cortical perfusion in the remaining kidney decreased by 50 ± 19 ml/min/100g (11.8%) between baseline and 2 years (P < 0.05), while cortical R2* declined modestly by 0.7 ± 0.3 s−1 (5.6%; P < 0.05). In transplanted kidneys, cortical perfusion decreased markedly by 141 ± 21 ml/min/100g (34.2%) between baseline and 2 years (P < 0.001), while medullary R2* declined by 1.5 ± 0.8 s−1 (8.3%; P = 0.06). Single-kidney eGFR increased between baseline and 2 years by 17.7 ± 2.7 ml/min/1.73m2 (40.3%; P < 0.0001) in donors and to 14.6 ± 4.3 ml/min/1.73m2 (33.3%; P < 0.01) in recipients. Cortical perfusion at 1 and 2 years in recipients receiving 25–50 mg/day losartan was 62 ± 24 ml/min/100g higher than recipients not receiving the drug (P < 0.05). No significant effects of losartan were observed for any other markers of renal function. Conclusions The results suggest an important role for non-invasive functional monitoring with ASL and BOLD MRI in kidney transplant recipients and donors, and they indicate a potentially beneficial effect of losartan in recipients. PMID

  2. 3D pulmonary perfusion MRI and MR angiography of pulmonary embolism in pigs after a single injection of a blood pool MR contrast agent.

    PubMed

    Fink, Christian; Ley, Sebastian; Puderbach, Michael; Plathow, Christian; Bock, Michael; Kauczor, Hans-Ulrich

    2004-07-01

    The purpose of this study was to assess the feasibility of contrast-enhanced 3D perfusion MRI and MR angiography (MRA) of pulmonary embolism (PE) in pigs using a single injection of the blood pool contrast Gadomer. PE was induced in five domestic pigs by injection of autologous blood thrombi. Contrast-enhanced first-pass 3D perfusion MRI (TE/TR/FA: 1.0 ms/2.2 ms/40 degrees; voxel size: 1.3 x 2.5 x 4.0 mm3; TA: 1.8 s per data set) and high-resolution 3D MRA (TE/TR/FA: 1.4 ms/3.4 ms/40 degrees; voxel size: 0.8 x 1.0 x 1.6 mm3) was performed during and after a single injection of 0.1 mmol/kg body weight of Gadomer. Image data were compared to pre-embolism Gd-DTPA-enhanced MRI and post-embolism thin-section multislice CT (n = 2). SNR measurements were performed in the pulmonary arteries and lung. One animal died after induction of PE. In all other animals, perfusion MRI and MRA could be acquired after a single injection of Gadomer. At perfusion MRI, PE could be detected by typical wedge-shaped perfusion defects. While the visualization of central PE at MRA correlated well with the CT, peripheral PE were only visualized by CT. Gadomer achieved a higher peak SNR of the lungs compared to Gd-DTPA (21 +/- 8 vs. 13 +/- 3). Contrast-enhanced 3D perfusion MRI and MRA of PE can be combined using a single injection of the blood pool contrast agent Gadomer.

  3. Myocardial perfusion imaging parameters: IQ-SPECT and conventional SPET system comparison.

    PubMed

    Havel, Martin; Kolacek, Michal; Kaminek, Milan; Dedek, Vladimir; Kraft, Otakar; Sirucek, Pavel

    2014-01-01

    Technological advancement in hardware and software development in myocardial perfusion imaging (MPI) leads to the shortening of acquisition time and reduction of the radiation burden to patients. We compared semiquantitative perfusion results and functional parameters of the left ventricle between new dedicated cardiac system with astigmatic collimators called IQ-SPECT (Siemens Medical Solutions, USA) and conventional single photon emission tomography (SPET) system equipped with standard low energy high resolution collimators. A group of randomly selected 81 patients underwent consecutively the MPI procedure on IQ-SPECT and on conventional SPET systen, both without attenuation correction. The summed scores and the values of the functional parameters of the left ventricle: ejection fraction (EF), end-systolic and end-diastolic volumes (ESV, EDV) received from the automatic analysis software were compared and statistically analyzed. Our results showed that summed scores values were significantly higher for the IQ-SPECT system in comparison to the conventional one. Calculated EF were significantly lower for IQ-SPECT, whereas evaluated left ventricular volumes (LVV) were significantly higher for this system. In conclusion, we recorded significant differences in automatically calculated semiquantitative perfusion and functional parameters when compared uncorrected studies obtained by the IQ-SPECT with the conventional SPET system.

  4. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI.

    PubMed

    Bauman, Grzegorz; Puderbach, Michael; Deimling, Michael; Jellus, Vladimir; Chefd'hotel, Christophe; Dinkel, Julien; Hintze, Christian; Kauczor, Hans-Ulrich; Schad, Lothar R

    2009-09-01

    Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow-up of pulmonary diseases. In this work a new method of non-contrast-enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two-dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole-body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion- and ventilation-weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non-contrast-enhanced perfusion and ventilation data.

  5. Influence of perfusion on high-intensity focused ultrasound prostate ablation: a first-pass MRI study.

    PubMed

    Wiart, Marlène; Curiel, Laura; Gelet, Albert; Lyonnet, Denis; Chapelon, Jean-Yves; Rouvière, Olivier

    2007-07-01

    Our aim was to evaluate the influence of regional prostate blood flow (rPBF) on high-intensity focused ultrasound (HIFU) treatment outcome. A total of 48 patients with clinically localized prostate cancer were examined by dynamic contrast-enhanced (DCE)-MRI prior to HIFU therapy. A prostate-specific antigen (PSA) nadir threshold of 0.2 ng/ml was used to define the populations of responders and nonresponders. A dedicated tracer kinetic model, namely "monoexponential plus constant" (MPC) deconvolution, was implemented to provide quantitative estimates of rPBF. The results were compared with those obtained by semiquantitative (steepest slope, mean gradient) and quantitative (Fermi deconvolution) approaches. Of the four methods studied, quantitative rPBF obtained by MPC deconvolution proved the most sensitive to the perfusion changes encountered in this study. Furthermore, blood-flow values obtained with MPC deconvolution in the prostate and muscle (12 +/- 8 and 5 +/- 3 ml/min/100 g, respectively) were in good agreement with literature data. The mean pretreatment rPBF obtained with MPC deconvolution was significantly higher in nonresponders compared to responders (16 +/- 9 vs. 10 +/- 6 ml/min/100 g), suggesting a correlation between baseline perfusion and treatment outcome. The present work describes and validates the use of dynamic MRI to estimate rPBF in patients, which in the future may help to refine the conduct of HIFU therapy.

  6. Quantification of myocardial perfusion based on signal intensity of flow sensitized MRI

    NASA Astrophysics Data System (ADS)

    Abeykoon, Sumeda B.

    The quantitative assessment of perfusion is important for early recognition of a variety of heart diseases, determination of disease severity and their cure. In conventional approach of measuring cardiac perfusion by arterial spin labeling, the relative difference in the apparent T1 relaxation times in response to selective and non-selective inversion of blood entering the region of interest is related to perfusion via a two-compartment tissue model. But accurate determination of T1 in small animal hearts is difficult and prone to errors due to long scan times. The purpose of this study is to develop a fast, robust and simple method to quantitatively assess myocardial perfusion using arterial spin labeling. The proposed method is based on signal intensities (SI) of inversion recovery slice-select, non-select and steady-state images. Especially in this method data are acquired at a single inversion time and at short repetition times. This study began by investigating the accuracy of assessment of perfusion using a two compartment system. First, determination of perfusion by T1 and SI were implemented to a simple, two-compartment phantom model. Mathematical model developed for full spin exchange models (in-vivo experiments) by solving a modified Bloch equation was modified to develop mathematical models (T1 and SI) for a phantom (zero spin exchange). The phantom result at different flow rates shows remarkable evidence of accuracy of the two-compartment model and SI, T1 methods: the SI method has less propagation error and less scan time. Next, twelve healthy C57BL/6 mice were scanned for quantitative perfusion assessment and three of them were repeatedly scanned at three different time points for a reproducibility test. The myocardial perfusion of healthy mice obtained by the SI-method, 5.7+/-1.6 ml/g/min, was similar (p=0.38) to that obtained by the conventional T1 method, 5.6+/- 2.3 ml/g/min. The reproducibility of the SI method shows acceptable results: the

  7. A patient-specific visualization tool for comprehensive analysis of coronary CTA and perfusion MRI data

    NASA Astrophysics Data System (ADS)

    Kirisli, H. A.; Gupta, V.; Kirschbaum, S.; Neefjes, L.; van Geuns, R. J.; Mollet, N.; Lelieveldt, B. P. F.; Reiber, J. H. C.; van Walsum, T.; Niessen, W. J.

    2011-03-01

    Cardiac magnetic resonance perfusion imaging (CMR) and computed tomography angiography (CTA) are widely used to assess heart disease. CMR is used to measure the global and regional myocardial function and to evaluate the presence of ischemia; CTA is used for diagnosing coronary artery disease, such as coronary stenoses. Nowadays, the hemodynamic significance of coronary artery stenoses is determined subjectively by combining information on myocardial function with assumptions on coronary artery territories. As the anatomy of coronary arteries varies greatly between individuals, we developed a patient-specific tool for relating CTA and perfusion CMR data. The anatomical and functional information extracted from CTA and CMR data are combined into a single frame of reference. Our graphical user interface provides various options for visualization. In addition to the standard perfusion Bull's Eye Plot (BEP), it is possible to overlay a 2D projection of the coronary tree on the BEP, to add a 3D coronary tree model and to add a 3D heart model. The perfusion BEP, the 3D-models and the CTA data are also interactively linked. Using the CMR and CTA data of 14 patients, our tool directly established a spatial correspondence between diseased coronary artery segments and myocardial regions with abnormal perfusion. The location of coronary stenoses and perfusion abnormalities were visualized jointly in 3D, thereby facilitating the study of the relationship between the anatomic causes of a blocked artery and the physiological effects on the myocardial perfusion. This tool is expected to improve diagnosis and therapy planning of early-stage coronary artery disease.

  8. Correlation between CT Perfusion Parameters and Microvessel Density and Vascular Endothelial Growth Factor in Adrenal Tumors

    PubMed Central

    Wang, Xifu; Bai, Renju; Li, Yajun; Zhao, Jinkun

    2013-01-01

    We evaluated the correlation between computed tomography (CT) perfusion parameters and markers of angiogenesis in adrenal adenomas and non-adenomas to determine if perfusion CT can be used to distinguish between them. Thirty-four patients with pathologically-confirmed adrenal tumors (17 adenomas, 17 non-adenomas) received CT perfusion imaging before surgery. CT perfusion parameters (blood flow [BF], blood volume [BV], mean transit time [MTT], and permeability surface area product [PS]) were calculated. Tumor tissue sections were examined with immunohistochemical methods for vascular endothelial growth factor (VEGF) expression and microvessel density (MVD). The mean age of the 34 patients was 43 years. The median BV was significantly higher in adenomas than in non-adenomas [12.3 ml/100 g, inter-quartile range (IQR): 10.4 to 16.5 ml/100 g vs. 8.8 ml/100 g, IQR: 3.3 to 9.4 ml/100 g, p = 0.001]. Differences in BF, MTT, and PS parameter values between adenomas and non-adenomas were not significant (p>0.05). The mean MVD was significantly higher in adenomas compared to non-adenomas (98.5±28.5 vs. 53.5±27.0, p<0.0001). Adenomas also expressed significantly higher median VEGF than non-adenomas (65%, IQR: 50 to 79% vs. 45%, IQR: 35 to 67%, p = 0.02). A moderately strong correlation between BF and VEGF (r = 0.53, p = 0.03) and between BV and MVD among adenomas (r = 0.57, p = 0.02) exist. Morphology, MVD, and VEGF expression in adenomas differ significantly from non-adenomas. Of the CT perfusion parameters examined, both BF and BV correlate with MVD, but only BF correlates with VEGF, and only in adenomas. The significant difference in BV suggests that BV may be used to differentiate adenomas from non-adenomas. However, the small difference in BV shows that it may only be possible to use BV to identify adenomas vs. non-adenomas at extreme BV values. PMID:24260316

  9. Decreased Cerebral Blood Flow in Chronic Pediatric Mild TBI: An MRI Perfusion Study

    PubMed Central

    Wang, Yang; West, John D.; Bailey, Jessica N.; Westfall, Daniel R.; Xiao, Hui; Arnold, Todd W.; Kersey, Patrick A.; Saykin, Andrew J.; McDonald, Brenna C.

    2015-01-01

    We evaluated cerebral blood flow (CBF) in chronic pediatric mild traumatic brain injury (mTBI) using arterial spin labeling (ASL) magnetic resonance imaging perfusion. mTBI patients showed lower CBF than controls in bilateral frontotemporal regions, with no between-group cognitive differences. Findings suggest ASL may be useful to assess functional abnormalities in pediatric mTBI. PMID:25649779

  10. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    NASA Astrophysics Data System (ADS)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  11. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy.

    PubMed

    Grova, C; Jannin, P; Biraben, A; Buvat, I; Benali, H; Bernard, A M; Scarabin, J M; Gibaud, B

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  12. Characterization of Enhancing MS Lesions by Dynamic Texture Parameter Analysis of Dynamic Susceptibility Perfusion Imaging

    PubMed Central

    Verma, Rajeev K.; Slotboom, Johannes; Locher, Cäcilia; Heldner, Mirjam R.; Weisstanner, Christian; Abela, Eugenio; Kellner-Weldon, Frauke; Zbinden, Martin; Kamm, Christian P.; Wiest, Roland

    2016-01-01

    Purpose. The purpose of this study was to investigate statistical differences with MR perfusion imaging features that reflect the dynamics of Gadolinium-uptake in MS lesions using dynamic texture parameter analysis (DTPA). Methods. We investigated 51 MS lesions (25 enhancing, 26 nonenhancing lesions) of 12 patients. Enhancing lesions (n = 25) were prestratified into enhancing lesions with increased permeability (EL+; n = 11) and enhancing lesions with subtle permeability (EL−; n = 14). Histogram-based feature maps were computed from the raw DSC-image time series and the corresponding texture parameters were analyzed during the inflow, outflow, and reperfusion time intervals. Results. Significant differences (p < 0.05) were found between EL+ and EL− and between EL+ and nonenhancing inactive lesions (NEL). Main effects between EL+ versus EL− and EL+ versus NEL were observed during reperfusion (mainly in mean and standard deviation (SD): EL+ versus EL− and EL+ versus NEL), while EL− and NEL differed only in their SD during outflow. Conclusion. DTPA allows grading enhancing MS lesions according to their perfusion characteristics. Texture parameters of EL− were similar to NEL, while EL+ differed significantly from EL− and NEL. Dynamic texture analysis may thus be further investigated as noninvasive endogenous marker of lesion formation and restoration. PMID:26885524

  13. On the Dark Rim Artifact in Dynamic Contrast-Enhanced MRI Myocardial Perfusion Studies

    PubMed Central

    Di Bella, E.V.R.; Parker, D.L.; Sinusas, A.J.

    2008-01-01

    A dark band or rim along parts of the subendocardial border of the left ventricle (LV) and the myocardium has been noticed in some dynamic contrast-enhanced MR perfusion studies. The artifact is thought to be due to susceptibility effects from the gadolinium bolus, motion, or resolution, or a combination of these. Here motionless ex vivo hearts in which the cavity was filled with gadolinium are used to show that dark rim artifacts can be consistent with resolution effects alone. PMID:16200553

  14. Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations.

    PubMed

    Wang, Ze

    2012-12-01

    Denoising is critical to improving the quality and stability of cerebral blood flow (CBF) quantification in arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI) due to the intrinsic low signal-to-noise-ratio (SNR) of ASL data. Previous studies have been focused on reducing the spatial or temporal noise using standard filtering techniques, and less attention has been paid to two global nuisance effects, the residual motion artifacts and the global signal fluctuations. Since both nuisances affect the whole brain, removing them in advance should enhance the CBF quantification quality for ASL MRI. The purpose of this paper was to assess this potential benefit. Three methods were proposed to suppress each or both of the two global nuisances. Their performances for CBF quantification were validated using ASL data acquired from 13 subjects. Evaluation results showed that covarying out both global nuisances significantly improved temporal SNR and test-retest stability of CBF measurement. Although the concept of removing both nuisances is not technically novel per se, this paper clearly showed the benefits for ASL CBF quantification. Dissemination of the proposed methods in a free ASL data processing toolbox should be of interest to a broad range of ASL users.

  15. Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies?

    PubMed

    Salluzzi, M; Frayne, R; Smith, M R

    2006-01-21

    Several groups have modified the standard singular value decomposition (SVD) algorithm to produce delay-insensitive cerebral blood flow (CBF) estimates from dynamic susceptibility contrast (DSC) perfusion studies. However, new dependences of CBF estimates on bolus arrival times and slice position in multi-slice studies have been recently recognized. These conflicting findings can be reconciled by accounting for several experimental and algorithmic factors. Using simulation and clinical studies, the non-simultaneous measurement of arterial and tissue concentration curves (relative slice position) in a multi-slice study is shown to affect time-related perfusion parameters, e.g. arterial-tissue-delay measurements. However, the current clinical impact of relative slice position on amplitude-related perfusion parameters, e.g. CBF, can be expected to be small unless any of the following conditions are present individually or in combination: (a) high concentration curve signal-to-noise ratios, (b) small tissue mean transit times, (c) narrow arterial input functions or (d) low temporal resolution of the DSC image sequence. Recent improvements in magnetic resonance (MR) technology can easily be expected to lead to scenarios where these effects become increasingly important sources of inaccuracy for all perfusion parameter estimates. We show that using Fourier interpolated (high temporal resolution) residue functions reduces the systematic error of the perfusion parameters obtained from multi-slice studies.

  16. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    NASA Astrophysics Data System (ADS)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  17. Comparison of dual-echo DSC-MRI- and DCE-MRI-derived contrast agent kinetic parameters.

    PubMed

    Quarles, C Chad; Gore, John C; Xu, Lei; Yankeelov, Thomas E

    2012-09-01

    The application of dynamic susceptibility contrast (DSC) MRI methods to assess brain tumors is often confounded by the extravasation of contrast agent (CA). Disruption of the blood-brain barrier allows CA to leak out of the vasculature leading to additional T(1), T(2) and T(2) relaxation effects in the extravascular space, thereby affecting the signal intensity time course in a complex manner. The goal of this study was to validate a dual-echo DSC-MRI approach that separates and quantifies the T(1) and T(2) contributions to the acquired signal and enables the estimation of the volume transfer constant, K(trans), and the volume fraction of the extravascular extracellular space, v(e). To test the validity of this approach, DSC-MRI- and dynamic contrast enhanced (DCE) MRI-derived K(trans) and v(e) estimates were spatially compared in both 9L and C6 rat brain tumor models. A high degree of correlation (concordance correlation coefficients >0.83, Pearson's r>0.84) and agreement was found between the DSC-MRI- and DCE-MRI-derived measurements. These results indicate that dual-echo DSC-MRI can be used to simultaneously extract reliable DCE-MRI kinetic parameters in brain tumors in addition to conventional blood volume and blood flow metrics.

  18. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain

    PubMed Central

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-01-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice–water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in

  19. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    PubMed

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-04-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials.

  20. Effects of subcortical cerebrovascular lesions on cortical hemodynamic parameters assessed by perfusion magnetic resonance imaging.

    PubMed

    Nighoghossian, N; Berthezene, Y; Adeleine, P; Wiart, M; Damien, J; Derex, L; Itti, R; Froment, J C; Trouillas, P

    1999-01-01

    A simultaneous decrease of cerebral blood volume (CBV) and cerebral blood flow (CBF) has been described after subcortical stroke with positron emission tomography. However, this imaging modality cannot be applied routinely to stroke patients. Dynamic susceptibility contrast-enhanced MRI techniques (DSC-MRI) might be interesting in the assessment of these effects. Dynamic T2-weighted echo planar imaging was used to produce DSC-MR images during an intravenous bolus injection of gadopentetate dimeglumine in 9 patients who experienced a subcortical stroke involving thalamus or basal ganglia and in 8 control subjects. A series of 50 consecutive images at 1-second intervals was acquired at the anatomic level of the centrum semiovale quite distant from the subcortical lesion, rCBF and rCBV were determined over frontal and parietal regions of interest and through the entire cortical mantle. DSC-MRI enabled the detection of hemodynamic changes induced by subcortical stroke. Analysis of rCBV and rCBF values showed that the hemodynamic parameters were significantly decreased on the affected side. In controls mean rCBF and rCBV values recorded over the whole cortical mantle of each hemisphere showed no significant interhemispheric asymmetry.

  1. Increased cortical capillary transit time heterogeneity in Alzheimer's disease: a DSC-MRI perfusion study.

    PubMed

    Eskildsen, Simon F; Gyldensted, Louise; Nagenthiraja, Kartheeban; Nielsen, Rune B; Hansen, Mikkel Bo; Dalby, Rikke B; Frandsen, Jesper; Rodell, Anders; Gyldensted, Carsten; Jespersen, Sune N; Lund, Torben E; Mouridsen, Kim; Brændgaard, Hans; Østergaard, Leif

    2017-02-01

    Alzheimer's disease (AD) is characterized by the accumulation of hyperphosphorylated tau and neurotoxic Aβ in the brain parenchyma. Hypoxia caused by microvascular changes and disturbed capillary flows could stimulate this build-up of AD-specific proteins in the brain. In this study, we compared cerebral microcirculation in a cohort of AD and mild cognitive impairment (MCI) patients with that of age-matched controls, all without a history of diabetes or of hypertension for more than 2 years, using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). Vascular flow disturbances were quantified using a parametric model and mapped to the mid-cortical surface for group-wise statistical analysis. We found widespread hypoperfusion in patients compared with controls and identified areas of increased relative capillary transit time heterogeneity (RTH), consistent with low tissue oxygen tension. Notably, RTH was positively correlated with white matter hyperintensities and positively correlated with symptom severity in the patient cohort. These correlations extended over large parts of the temporal, parietal, and frontal cortices. The results support the hypothesis of disturbed capillary flow patterns in AD and suggest that DSC-MRI may provide imaging biomarkers of impaired cerebral microcirculation in AD.

  2. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion.

  3. Effect of clinical and RBC hemorheological parameters on myocardial perfusion in patients with type 2 diabetes mellitus.

    PubMed

    Cho, Minhee; Shin, Sehyun; Kwon, Hyuck Moon; Chung, Hyemoon; Lee, Byoung Kwon

    2014-01-01

    Myocardial ischemia may be present even when there is no significant stenosis of the epicardial coronary artery, or after coronary angioplasty for significant coronary artery disease. This phenomenon is related to disturbance of the coronary microcirculation or vasomotor tone. The aim of this study was to determine the influence of clinical and RBC hemorheological factors, such as RBC deformability and aggregation, on myocardial perfusion in patients with type 2 diabetes mellitus (DM) when compared to patients without DM, presenting with stable angina or acute coronary syndrome. Myocardial perfusion was graded using the myocardial blush grade (MBG) which describes the relative "blush" or intensity of the radio-opacity of myocardial tissue observed after an epicardial coronary injection of contrast medium during coronary angiography. MBG was counted before any medical or mechanical intervention, and in the myocardial territory without anatomical flow limitation (<50% of luminal narrowing on coronary angiogram), in order to remove the direct influence of anatomical stenosis. Myocardial perfusion in this region was associated with diabetes, renal function, LV diastolic function, inflammatory biomarkers such as hs-CRP, fibrinogen and ESR, but not with the clinical presentation. Among the hemorheological parameters, reduced myocardial perfusion was linked to increased RBC aggregation, but not to variation in RBC deformability. In conclusion, myocardial perfusion was affected by diabetes, left ventricular diastolic function, and inflammatory activity indicated by clinical parameters, and by the hemorheological factor RBC aggregation.

  4. Associations of Perfusate Biomarkers and Pump Parameters With Delayed Graft Function and Deceased Donor Kidney Allograft Function.

    PubMed

    Parikh, C R; Hall, I E; Bhangoo, R S; Ficek, J; Abt, P L; Thiessen-Philbrook, H; Lin, H; Bimali, M; Murray, P T; Rao, V; Schröppel, B; Doshi, M D; Weng, F L; Reese, P P

    2016-05-01

    Hypothermic machine perfusion (HMP) is increasingly used in deceased donor kidney transplantation, but controversy exists regarding the value of perfusion biomarkers and pump parameters for assessing organ quality. We prospectively determined associations between perfusate biomarkers (neutrophil gelatinase-associated lipocalin [NGAL], kidney injury molecule 1, IL-18 and liver-type fatty acid-binding protein [L-FABP]) and pump parameters (resistance and flow) with outcomes of delayed graft function (DGF) and 6-mo estimated GFR (eGFR). DGF occurred in 230 of 671 (34%) recipients. Only 1-h flow was inversely associated with DGF. Higher NGAL or L-FABP concentrations and increased resistance were inversely associated with 6-mo eGFR, whereas higher flow was associated with higher adjusted 6-mo eGFR. Discarded kidneys had consistently higher median resistance and lower median flow than transplanted kidneys, but median perfusate biomarker concentrations were either lower or not significantly different in discarded compared with transplanted kidneys. Notably, most recipients of transplanted kidneys with isolated "undesirable" biomarker levels or HMP parameters experienced acceptable 6-mo allograft function, suggesting these characteristics should not be used in isolation for discard decisions. Additional studies must confirm the utility of combining HMP measurements with other characteristics to assess kidney quality.

  5. Current concepts on magnetic resonance imaging (MRI) perfusion-diffusion assessment in acute ischaemic stroke: a review & an update for the clinicians

    PubMed Central

    Roldan-Valadez, Ernesto; Lopez-Mejia, Mariana

    2014-01-01

    Recently, several medical societies published joint statements about imaging recommendations for acute stroke and transient ischaemic attack patients. In following with these published guidelines, we considered it appropriate to present a brief, practical and updated review of the most relevant concepts on the MRI assessment of acute stroke. Basic principles of the clinical interpretation of diffusion, perfusion, and MRI angiography (as part of a global MRI protocol) are discussed with accompanying images for each sequence. Brief comments on incidence and differential diagnosis are also included, together with limitations of the techniques and levels of evidence. The purpose of this article is to present knowledge that can be applied in day-to-day clinical practice in specialized stroke units or emergency rooms to attend patients with acute ischaemic stroke or transient ischaemic attack according to international standards. PMID:25758570

  6. Reproducibility of BOLD, Perfusion, and CMRO2 Measurements with Calibrated-BOLD fMRI

    PubMed Central

    Leontiev, Oleg; Buxton, Richard B.

    2007-01-01

    The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO2 change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO2) were measured, and these data were used to compute the BOLD scaling factor M, %CMRO2 change with activation, and the coupling index n. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF–activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO2 and n, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO2 responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain. PMID:17208013

  7. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI.

    PubMed

    Leontiev, Oleg; Buxton, Richard B

    2007-03-01

    The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO(2) change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO(2)) were measured, and these data were used to compute the BOLD scaling factor M, %CMRO(2) change with activation, and the coupling index n. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF-activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO(2) and n, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO(2) responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain.

  8. Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke

    PubMed Central

    Yu, Songlin; Liebeskind, David S; Dua, Sumit; Wilhalme, Holly; Elashoff, David; Qiao, Xin J; Alger, Jeffry R; Sanossian, Nerses; Starkman, Sidney; Ali, Latisha K; Scalzo, Fabien; Lou, Xin; Yoo, Bryan; Saver, Jeffrey L; Salamon, Noriko; Wang, Danny JJ

    2015-01-01

    The purpose of this study was to investigate the relationship between hyperperfusion and hemorrhagic transformation (HT) in acute ischemic stroke (AIS). Pseudo-continuous arterial spin labeling (ASL) with background suppressed 3D GRASE was performed during routine clinical magnetic resonance imaging (MRI) on AIS patients at various time points. Arterial spin labeling cerebral blood flow (CBF) maps were visually inspected for the presence of hyperperfusion. Hemorrhagic transformation was followed during hospitalization and was graded on gradient recalled echo (GRE) scans into hemorrhagic infarction (HI) and parenchymal hematoma (PH). A total of 361 ASL scans were collected from 221 consecutive patients with middle cerebral artery stroke from May 2010 to September 2013. Hyperperfusion was more frequently detected posttreatment (odds ratio (OR)=4.8, 95% confidence interval (CI) 2.5 to 8.9, P<0.001) and with high National Institutes of Health Stroke Scale (NIHSS) scores at admission (P<0.001). There was a significant association between having hyperperfusion at any time point and HT (OR=3.5, 95% CI 2.0 to 6.3, P<0.001). There was a positive relationship between the grade of HT and time–hyperperfusion with the Spearman's rank correlation of 0.44 (P=0.003). Arterial spin labeling hyperperfusion may provide an imaging marker of HT, which may guide the management of AIS patients post tissue-type plasminogen activator (tPA) and/or endovascular treatments. Late hyperperfusion should be given more attention to prevent high-grade HT. PMID:25564233

  9. FAIR exempting separate T (1) measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI.

    PubMed

    Lai, S; Wang, J; Jahng, G H

    2001-01-01

    A new pulse sequence, dubbed FAIR exempting separate T(1) measurement (FAIREST) in which a slice-selective saturation recovery acquisition is added in addition to the standard FAIR (flow-sensitive alternating inversion recovery) scheme, was developed for quantitative perfusion imaging and multi-contrast fMRI. The technique allows for clean separation between and thus simultaneous assessment of BOLD and perfusion effects, whereas quantitative cerebral blood flow (CBF) and tissue T(1) values are monitored online. Online CBF maps were obtained using the FAIREST technique and the measured CBF values were consistent with the off-line CBF maps obtained from using the FAIR technique in combination with a separate sequence for T(1) measurement. Finger tapping activation studies were carried out to demonstrate the applicability of the FAIREST technique in a typical fMRI setting for multi-contrast fMRI. The relative CBF and BOLD changes induced by finger-tapping were 75.1 +/- 18.3 and 1.8 +/- 0.4%, respectively, and the relative oxygen consumption rate change was 2.5 +/- 7.7%. The results from correlation of the T(1) maps with the activation images on a pixel-by-pixel basis show that the mean T(1) value of the CBF activation pixels is close to the T(1) of gray matter while the mean T(1) value of the BOLD activation pixels is close to the T(1) range of blood and cerebrospinal fluid.

  10. Perfusion parameters as potential imaging biomarkers for the early prediction of radiotherapy response in a rat tumor model

    PubMed Central

    Lee, Ho Yun; Kim, Namkug; Goo, Jin Mo; Chie, Eui Kyu; Song, Hye Jong

    2016-01-01

    PURPOSE We aimed to compare various tumor-related radiologic morphometric changes and computed tomography (CT) perfusion parameters before and after treatment, and to determine the optimal imaging assessment technique for the prediction of early response in a rat tumor model treated with radiotherapy. METHODS Among paired tumors of FN13762 murine breast cancer cells implanted bilaterally in the necks of eight Fischer rats, tumors on the right side were treated with a single 20 Gy dose of radiotherapy. Perfusion CT studies were performed on day 0 before radiotherapy, and on days 1 and 5 after radiotherapy. Variables based on the size, including the longest diameter, tumor area, and volume, were measured. Quantitative perfusion analysis was performed for the whole tumor volume and permeabilities and blood volumes (BVs) were obtained. The area under the curve (AUC) difference in the histograms of perfusion parameters and texture analyses of uniformity and entropy were quantified. Apoptotic cell density was measured on pathology specimens immediately after perfusion imaging on day 5. RESULTS On day 1 after radiotherapy, differences in size between the irradiated and nonirradiated tumors were not significant. In terms of percent changes in the uniformity of permeabilities between tumors before irradiation and on day 1 after radiotherapy, the changes were significantly higher in the irradiated tumors than in the nonirradiated tumors (0.085 [−0.417, 0.331] vs. −0.131 [−0.536, 0.261], respectively; P = 0.042). The differences in AUCs of the histogram of voxel-by-voxel vascular permeability and BV in tumors between day 0 and day 1 were significantly higher in treated tumors compared with the control group (permeability, 21.4 [−2.2, 37.5] vs. 9.5 [−8.9, 33.8], respectively, P = 0.030; BV, 52.9 [−6186.0, 419.2] vs. 11.9 [−198.3, 346.7], respectively, P = 0.049). Apoptotic cell density showed a significantly positive correlation with the AUC difference of BV, the

  11. Perfusion patterns in postictal 99mTc-HMPAO SPECT after coregistration with MRI in patients with mesial temporal lobe epilepsy

    PubMed Central

    Hogan, R; Cook, M.; Binns, D.; Desmond, P.; Kilpatrick, C.; Murrie, V.; Morris, K.

    1997-01-01

    OBJECTIVES—To assess patterns of postictal cerebral blood flow in the mesial temporal lobe by coregistration of postictal 99mTc-HMPAO SPECT with MRI in patients with confirmed mesial temporal lobe epilepsy.
METHODS—Ten postictal and interictal 99mTc-HMPAO SPECT scans were coregistered with MRI in 10 patients with confirmed mesial temporal lobe epilepsy. Volumetric tracings of the hippocampus and amygdala from the MRI were superimposed on the postictal and interictal SPECT. Asymmetries in hippocampal and amygdala SPECT signal were then calculated using the equation:
 % Asymmetry =100 × (right − left) / (right + left)/2.
RESULTS—In the postictal studies, quantitative measurements of amygdala SPECT intensities were greatest on the side of seizure onset in all cases, with an average % asymmetry of 11.1, range 5.2-21.9.Hippocampal intensities were greatest on the side of seizure onset in six studies, with an average % asymmetry of 9.6, range 4.7-12.0.In four scans the hippocampal intensities were less on the side of seizure onset, with an average % asymmetry of 10.2, range 5.7-15.5.There was no localising quantitative pattern in interictal studies.
CONCLUSIONS—Postictal SPECT shows distinctive perfusion patterns when coregistered with MRI, which assist in lateralisation of temporal lobe seizures. Hyperperfusion in the region of the amygdala is more consistently lateralising than hyperperfusion in the region of the hippocampus in postictal studies.

 PMID:9285464

  12. Simultaneous myocardial strain and dark-blood perfusion imaging using a displacement-encoded MRI pulse sequence.

    PubMed

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd'Hotel, Christophe; Lorenz, Christine H; Croisille, Pierre; Wen, Han

    2010-09-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in two to three myocardial slices were repeatedly acquired using a single-shot pulse sequence for 3 to 4 min, which covers a bolus infusion of Gadolinium contrast. The magnitudes of the images were T(1) weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n = 9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R(2) = 0.765, Bland-Altman standard deviation = 0.15 mL/min/g). In a group of ST-elevation myocardial infarction patients (n = 11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R(2) = 0.72), and the pixelwise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images.

  13. Simultaneous Myocardial Strain and Dark-Blood Perfusion Imaging Using a Displacement-Encoded MRI Pulse Sequence

    PubMed Central

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E.; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd’Hotel, Christophe; Lorenz, Christine H.; Croisille, Pierre; Wen, Han

    2010-01-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in 2–3 myocardial slices were repeatedly acquired using a single shot pulse sequence for 3 to 4 minutes, which covers a bolus infusion of Gd. The magnitudes of the images were T1 weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n=9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R2 = 0.765, Bland-Altman standard deviation = 0.15 ml/min/g). In a group of ST-elevation myocardial infarction(STEMI) patients (n=11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R2=0.72), and the pixel-wise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  14. WE-G-18C-09: Separating Perfusion and Diffusion Components From Diffusion Weighted MRI of Rectum Tumors Based On Intravoxel Incoherent Motion (IVIM) Analysis

    SciTech Connect

    Tyagi, N; Wengler, K; Mazaheri, Y; Hunt, M; Deasy, J; Gollub, M

    2014-06-15

    Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*, the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.

  15. Organic Nitrate Maintains Bone Marrow Blood Perfusion in Ovariectomized Female Rats: A Dynamic, Contrast-Enhanced Magnetic Resonance Imaging (MRI) Study

    PubMed Central

    Wang, Yi-Xiang J.; Ko, Chun Hay; Griffith, James F.; Deng, Min; Wong, Hing Lok; Gu, Tao; Huang, Yu

    2012-01-01

    This study investigated the effects of nitrate on bone mineral density (BMD) and bone marrow perfusion in ovariectomized (OVX) female rats, and also the effects of nitrate on in vitro osteoblastic activity and osteoclastic differentiation of murine monocyte/macrophage RAW 264.7 cells. Female Sprague–Dawley rats were divided into OVX + nitrate group (isosorbide-5-mononitrate, ISM, 150 mg/kg/ day b.i.d), OVX + vehicle group, and control group. Lumbar spine CT bone densitometry and perfusion MRI were performed on the rats at baseline and week 8 post-OVX. The OVX rats’ BMD decreased by 22.5% ± 5.7% at week 8 (p < 0.001); while the OVX + ISM rats’ BMD decreased by 13.1% ± 2.7% (p < 0.001). The BMD loss difference between the two groups of rats was significant (p = 0.018). The OVX rats’ lumbar vertebral perfusion MRI maximum enhancement (Emax) decreased by 10.3% ± 5.0% at week 8 (p < 0.005), while in OVX + ISM rats, the Emax increased by 5.5% ± 6.9% (p > 0.05). The proliferation of osteoblast-like UMR-106 cells increased significantly with ISM treatment at 0.78 µM to 50 μM. Treatment of UMR-106 cells with ISM also stimulated the BrdU uptake. After the RAW 264.7 cells were co-treated with osteoclastogenesis inducer RANKL and 6.25 μM ~ 100 μM of ISM for 3 days, a trend of dose-dependent increase of osteoclast number was noted. PMID:24300395

  16. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia.

    PubMed

    Alsop, David C; Detre, John A; Golay, Xavier; Günther, Matthias; Hendrikse, Jeroen; Hernandez-Garcia, Luis; Lu, Hanzhang; MacIntosh, Bradley J; Parkes, Laura M; Smits, Marion; van Osch, Matthias J P; Wang, Danny J J; Wong, Eric C; Zaharchuk, Greg

    2015-01-01

    This review provides a summary statement of recommended implementations of arterial spin labeling (ASL) for clinical applications. It is a consensus of the ISMRM Perfusion Study Group and the European ASL in Dementia consortium, both of whom met to reach this consensus in October 2012 in Amsterdam. Although ASL continues to undergo rapid technical development, we believe that current ASL methods are robust and ready to provide useful clinical information, and that a consensus statement on recommended implementations will help the clinical community to adopt a standardized approach. In this review, we describe the major considerations and trade-offs in implementing an ASL protocol and provide specific recommendations for a standard approach. Our conclusion is that as an optimal default implementation, we recommend pseudo-continuous labeling, background suppression, a segmented three-dimensional readout without vascular crushing gradients, and calculation and presentation of both label/control difference images and cerebral blood flow in absolute units using a simplified model.

  17. Clinical investigation survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT

    SciTech Connect

    Cao Yue . E-mail: yuecao@med.umich.edu; Tsien, Christina I.; Nagesh, Vijaya; Junck, Larry; Haken, Randall ten; Ross, Brian D.; Chenevert, Thomas L.; Lawrence, Theodore S.

    2006-03-01

    Purpose: To determine whether cerebral blood volume (CBV) and cerebral blood flow can predict the response of high-grade gliomas to radiotherapy (RT) by taking into account spatial heterogeneity and temporal changes in perfusion. Methods and Materials: Twenty-three patients with high-grade gliomas underwent conformal RT, with magnetic resonance imaging perfusion before and at Weeks 1-2 and 3-4 during RT. Tumor perfusion was classified as high, medium, or low. The prognostic values of pre-RT perfusion and the changes during RT for early prediction of tumor response to RT were evaluated. Results: The fractional high-CBV tumor volume before RT and the fluid-attenuated inversion recovery imaging tumor volume were identified as predictors for survival (p = 0.01). Changes in tumor CBV during the early treatment course also predicted for survival. Better survival was predicted by a decrease in the fractional low-CBV tumor volume at Week 1 of RT vs. before RT, a decrease in the fractional high-CBV tumor volume at Week 3 vs. Week 1 of RT, and a smaller pre-RT fluid-attenuated inversion recovery imaging tumor volume (p = 0.01). Conclusion: Early temporal changes during RT in heterogeneous regions of high and low perfusion in gliomas might predict for different physiologic responses to RT. This might also open the opportunity to identify tumor subvolumes that are radioresistant and might benefit from intensified RT.

  18. Implementation and evaluation of a new workflow for registration and segmentation of pulmonary MRI data for regional lung perfusion assessment.

    PubMed

    Böttger, T; Grunewald, K; Schöbinger, M; Fink, C; Risse, F; Kauczor, H U; Meinzer, H P; Wolf, Ivo

    2007-03-07

    Recently it has been shown that regional lung perfusion can be assessed using time-resolved contrast-enhanced magnetic resonance (MR) imaging. Quantification of the perfusion images has been attempted, based on definition of small regions of interest (ROIs). Use of complete lung segmentations instead of ROIs could possibly increase quantification accuracy. Due to the low signal-to-noise ratio, automatic segmentation algorithms cannot be applied. On the other hand, manual segmentation of the lung tissue is very time consuming and can become inaccurate, as the borders of the lung to adjacent tissues are not always clearly visible. We propose a new workflow for semi-automatic segmentation of the lung from additionally acquired morphological HASTE MR images. First the lung is delineated semi-automatically in the HASTE image. Next the HASTE image is automatically registered with the perfusion images. Finally, the transformation resulting from the registration is used to align the lung segmentation from the morphological dataset with the perfusion images. We evaluated rigid, affine and locally elastic transformations, suitable optimizers and different implementations of mutual information (MI) metrics to determine the best possible registration algorithm. We located the shortcomings of the registration procedure and under which conditions automatic registration will succeed or fail. Segmentation results were evaluated using overlap and distance measures. Integration of the new workflow reduces the time needed for post-processing of the data, simplifies the perfusion quantification and reduces interobserver variability in the segmentation process. In addition, the matched morphological data set can be used to identify morphologic changes as the source for the perfusion abnormalities.

  19. Imaging of myocardial perfusion with magnetic resonance.

    PubMed

    Barkhausen, Jörg; Hunold, Peter; Jochims, Markus; Debatin, Jörg F

    2004-06-01

    Coronary artery disease (CAD) is currently the leading cause of death in developed nations. Reflecting the complexity of cardiac function and morphology, noninvasive diagnosis of CAD represents a major challenge for medical imaging. Although coronary artery stenoses can be depicted with magnetic resonance (MR) and computed tomography (CT) techniques, its functional or hemodynamic impact frequently remains elusive. Therefore, there is growing interest in other, target organ-specific parameters such as myocardial function at stress and first-pass myocardial perfusion imaging to assess myocardial blood flow. This review explores the pathophysiologic background, recent technical developments, and current clinical status of first-pass MR imaging (MRI) of myocardial perfusion.

  20. Optimization of OSEM parameters in myocardial perfusion imaging reconstruction as a function of body mass index: a clinical approach*

    PubMed Central

    de Barros, Pietro Paolo; Metello, Luis F.; Camozzato, Tatiane Sabriela Cagol; Vieira, Domingos Manuel da Silva

    2015-01-01

    Objective The present study is aimed at contributing to identify the most appropriate OSEM parameters to generate myocardial perfusion imaging reconstructions with the best diagnostic quality, correlating them with patients’ body mass index. Materials and Methods The present study included 28 adult patients submitted to myocardial perfusion imaging in a public hospital. The OSEM method was utilized in the images reconstruction with six different combinations of iterations and subsets numbers. The images were analyzed by nuclear cardiology specialists taking their diagnostic value into consideration and indicating the most appropriate images in terms of diagnostic quality. Results An overall scoring analysis demonstrated that the combination of four iterations and four subsets has generated the most appropriate images in terms of diagnostic quality for all the classes of body mass index; however, the role played by the combination of six iterations and four subsets is highlighted in relation to the higher body mass index classes. Conclusion The use of optimized parameters seems to play a relevant role in the generation of images with better diagnostic quality, ensuring the diagnosis and consequential appropriate and effective treatment for the patient. PMID:26543282

  1. [Total cardiopulmonary bypass in rabbits. Techniques and the effect of pulsatile perfusion pressure on hemodynamic parameters].

    PubMed

    Chevalier-Cholat, A M; Friggi, A; Torresani, J

    1975-11-01

    Fifty-two total cardiopulmonary bypasses (CA) have been performed in rabbits in order to obtain a stable preparation. The present paper deals with techniques and haemodynamic results. 1. Two kinds of priming solution have been used. Best results were obtained by using Ringer-lactate-gelatin (65 ml) and T.H.A.M. (5 ml). 2. Pulsatile arterial perfusion was performed either at uniform frequency (series A:10 experiments) or in accordance with the arterial mechanical resonance frequency of each animal (series B: experiments). The later setting resulted in better levels of maximal arterial pressure throughout the experiments (p less than 0,001). 3. The perfusion pressure flows (integrated at minute intervals), and total peripheral resistances, were studied on two groups of 4 animals each, A' and B' forming a part of A and B respectively. The flows were higher in B' after 5 min of CA (p less than 0,001), and after 40 min of CA (p less than 0,025); the flow increased during the experiment in group A' but remained in a steady state in group B'. The differences in total peripheral resistances were not statistically significant after 5 min of CA, but were smaller in A' after 40 min of CA (p less than or equal to 0,025); the difference in the variation of total peripheral resistances was statistically significant (p less than 0,025).

  2. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study.

    PubMed

    Haller, S; Rodriguez, C; Moser, D; Toma, S; Hofmeister, J; Sinanaj, I; Van De Ville, D; Giannakopoulos, P; Lovblad, K-O

    2013-10-10

    In young individuals, caffeine-mediated blockade of adenosine receptors and vasoconstriction has direct repercussions on task-related activations, changes in functional connectivity, as well as global vascular effects. To date, no study has explored the effect of caffeine on brain activation patterns during highly demanding cognitive tasks in the elderly. This prospective, placebo-controlled crossover design comprises 24 healthy elderly individuals (mean age 68.8 ± 4.0 years, 17 females) performing a 2-back working memory (WM) task in functional magnetic resonance imaging (fMRI). Analyses include complimentary assessment of task-related activations (general linear model, GLM), functional connectivity (tensorial independent component analysis, TICA), and baseline perfusion (arterial spin labeling). Despite a reduction in whole-brain global perfusion (-22.7%), caffeine-enhanced task-related GLM activation in a local and distributed network is most pronounced in the bilateral striatum and to a lesser degree in the right middle and inferior frontal gyrus, bilateral insula, left superior and inferior parietal lobule as well as in the cerebellum bilaterally. TICA was significantly enhanced (+8.2%) in caffeine versus placebo in a distributed and task-relevant network including the pre-frontal cortex, the supplementary motor area, the ventral premotor cortex and the parietal cortex as well as the occipital cortex (visual stimuli) and basal ganglia. The inverse comparison of placebo versus caffeine had no significant difference. Activation strength of the task-relevant-network component correlated with response accuracy for caffeine yet not for placebo, indicating a selective cognitive effect of caffeine. The present findings suggest that acute caffeine intake enhances WM-related brain activation as well as functional connectivity of blood oxygen level-dependent fMRI in elderly individuals.

  3. [Comparison of various parameters for determining an index of myocardial perfusion reserve in detecting coronary stenosis with cardiovascular magnetic resonance tomography].

    PubMed

    al-Saadi, N; Gross, M; Bornstedt, A; Schnackenburg, B; Klein, C; Fleck, E; Nagel, E

    2001-11-01

    For the assessment of myocardial perfusion with cardiac magnetic resonance imaging, different semiquantitative parameters of the first pass signal intensity time curves can be calculated and myocardial perfusion reserve indices can be determined. In this study we evaluated the feasibility of different perfusion parameters and their perfusion reserve indices for the detection of significant coronary artery stenosis. The signal intensity time curves of the first pass of a gadolinium-DTPA bolus injected via a central vein catheter before and after dipyridamole infusion were investigated in 15 patients with single vessel (stenosis > or = 75% area reduction) and five patients without significant coronary artery disease. For the distinction of ischemic and nonischemic myocardial segments, semiquantitative parameters, such as maximal signal intensity, contrast appearance time, time to maximal signal intensity and the steepness of the signal intensity curve's upslope determined by a linear fit, were assessed after correction for the input function. For each parameter a myocardial perfusion reserve index was calculated and cut off values for the detection of significant coronary stenosis were defined. The diagnostic accuracy of each parameter was then examined prospectively in 36 patients with coronary artery disease and compared with coronary angiography. Where as a distinction of ischemic and normal myocardium was possible with myocardial perfusion reserve indices, semiquantitative parameters at rest or after vasodilation alone did not allow such a distinction. The perfusion reserve index calculated from the upslope showed the most significant difference between ischemic and nonischemic myocardial segments (1.19 +/- 0.4 and 2.38 +/- 0.45, p < 0.001) followed by maximum signal intensity, time to maximum signal intensity and contrast apperance time. Sensitivity, specificity and diagnostic accuracy was 87, 82 and 85% for the detection of hypoperfusion induced by significant

  4. Assessing parameter identifiability for dynamic causal modeling of fMRI data

    PubMed Central

    Arand, Carolin; Scheller, Elisa; Seeber, Benjamin; Timmer, Jens; Klöppel, Stefan; Schelter, Björn

    2015-01-01

    Deterministic dynamic causal modeling (DCM) for fMRI data is a sophisticated approach to analyse effective connectivity in terms of directed interactions between brain regions of interest. To date it is difficult to know if acquired fMRI data will yield precise estimation of DCM parameters. Focusing on parameter identifiability, an important prerequisite for research questions on directed connectivity, we present an approach inferring if parameters of an envisaged DCM are identifiable based on information from fMRI data. With the freely available “attention to motion” dataset, we investigate identifiability of two DCMs and show how different imaging specifications impact on identifiability. We used the profile likelihood, which has successfully been applied in systems biology, to assess the identifiability of parameters in a DCM with specified scanning parameters. Parameters are identifiable when minima of the profile likelihood as well as finite confidence intervals for the parameters exist. Intermediate epoch duration, shorter TR and longer session duration generally increased the information content in the data and thus improved identifiability. Irrespective of biological factors such as size and location of a region, attention should be paid to densely interconnected regions in a DCM, as those seem to be prone to non-identifiability. Our approach, available in the DCMident toolbox, enables to judge if the parameters of an envisaged DCM are sufficiently determined by underlying data without priors as opposed to primarily reflecting the Bayesian priors in a SPM–DCM. Assessments with the DCMident toolbox prior to a study will lead to improved identifiability of the parameters and thus might prevent suboptimal data acquisition. Thus, the toolbox can be used as a preprocessing step to provide immediate statements on parameter identifiability. PMID:25750612

  5. Impairments in Brain Perfusion, Metabolites, Functional Connectivity, and Cognition in Severe Asymptomatic Carotid Stenosis Patients: An Integrated MRI Study

    PubMed Central

    Wang, Tao

    2017-01-01

    Carotid artery stenosis without transient ischemic attack (TIA) or stroke is considered as “asymptomatic.” However, recent studies have demonstrated that these asymptomatic carotid artery stenosis (aCAS) patients had cognitive impairment in tests of executive function, psychomotor speed, and memory, indicating that “asymptomatic” carotid stenosis may not be truly asymptomatic. In this study, when 19 aCAS patients compared with 24 healthy controls, aCAS patients showed significantly poorer performance on global cognition, memory, and executive function. By utilizing an integrated MRI including pulsed arterial spin labeling (pASL) MRI, Proton MR Spectroscopy (MRS), and resting-state functional MRI (R-fMRI), we also found that aCAS patients suffered decreased cerebral blood flow (CBF) mainly in the Left Frontal Gyrus and had decreased NAA/Cr ratio in the left hippocampus and decreased connectivity to the posterior cingulate cortex (PCC) in the anterior part of default mode network (DMN). PMID:28255464

  6. One or 4 h of "in-house" reconditioning by machine perfusion after cold storage improve reperfusion parameters in porcine kidneys.

    PubMed

    Gallinat, Anja; Efferz, Patrik; Paul, Andreas; Minor, Thomas

    2014-11-01

    In-house machine perfusion after cold storage (hypothermic reconditioning) has been proposed as convenient tool to improve kidney graft function. This study investigated the role of machine perfusion duration for early reperfusion parameters in porcine kidneys. Kidney function after cold preservation (4 °C, 18 h) and subsequent reconditioning by one or 4 h of pulsatile, nonoxygenated hypothermic machine perfusion (HMP) was studied in an isolated kidney perfusion model in pigs (n = 6, respectively) and compared with simply cold-stored grafts (CS). Compared with CS alone, one or 4 h of subsequent HMP similarly and significantly improved renal flow and kidney function (clearance and sodium reabsorption) upon warm reperfusion, along with reduced perfusate concentrations of endothelin-1 and increased vascular release of nitric oxide. Molecular effects of HMP comprised a significant (vs CS) mRNA increase in the endothelial transcription factor KLF2 and lower expression of endothelin that were observed already at the end of one-hour HMP after CS. Reconditioning of cold-stored kidneys is possible, even if clinical logistics only permit one hour of therapy, while limited extension of the overall storage time by in-house machine perfusion might also allow for postponing of transplantation from night to early day work.

  7. Estimation of x-ray parameters in digital coronary angiography for compensation of myocardial perfusion measurements

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2008-03-01

    Coronary angiography is the primary technique for diagnosing coronary abnormalities as it is able to locate precisely the coronary artery lesions. However, the clinical relevance of an appearing stenosis is not that easy to assess. In previous work we have analyzed the myocardial perfusion by comparing basal and hyperemic coronary flow. This comparison is the basis of a Relative Coronary Flow Reserve (RCFR) measure. In a Region-of-Interest (ROI) on the angiogram the contrast is measured as a function of time (the so-called time-density curve). The required hyperemic state of exercise is induced artificially by the injection of a vasodilator drug e.g. papaverine. In previous work we have presented the results of a small study of 20 patients. In this paper we present an analysis of the sensitivity of the method for variations in X-ray exposure between the two runs due to the Automatic Exposure Control (AEC) unit. The AEC is a system unit with the task to ensure a constant dose rate at the entrance of the detector by making the appropriate adaptations in X-ray factor settings for patients which range from slim to more obese. We have setup a phantom study to reveal the expected exposure variations. We present several of the developed phantoms together with a compensation strategy.

  8. Combination of volume and perfusion parameters reveals different types of grey matter changes in schizophrenia.

    PubMed

    Xu, Lixue; Qin, Wen; Zhuo, Chuanjun; Liu, Huaigui; Zhu, Jiajia; Yu, Chunshui

    2017-03-27

    Diverse brain structural and functional changes have been reported in schizophrenia. Identifying different types of brain changes may help to understand the neural mechanisms and to develop reliable biomarkers in schizophrenia. We aimed to categorize different grey matter changes in schizophrenia based on grey matter volume (GMV) and cerebral blood flow (CBF). Structural and perfusion magnetic resonance imaging data were acquired in 100 schizophrenia patients and 95 healthy comparison subjects. Voxel-based GMV comparison was used to show structural changes, CBF analysis was used to demonstrate functional changes. We identified three types of grey matter changes in schizophrenia: structural and functional impairments in the anterior cingulate cortex and insular cortex, displaying reduction in both GMV and CBF; structural impairment with preserved function in the frontal and temporal cortices, demonstrating decreased GMV with normal CBF; pure functional abnormality in the anterior cingulate cortex and lateral prefrontal cortex and putamen, showing altered CBF with normal GMV. By combination of GMV and CBF, we identified three types of grey matter changes in schizophrenia. These findings may help to understand the complex manifestations and to develop reliable biomarkers in schizophrenia.

  9. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V.; Rooney, William D.; Garzotto, Mark G.; Springer, Charles S.

    2016-08-01

    Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (Ktrans) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging

  10. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling.

    PubMed

    Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V; Rooney, William D; Garzotto, Mark G; Springer, Charles S

    2016-08-01

    Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging

  11. Severe Portal Hypertension in Cirrhosis: Evaluation of Perfusion Parameters with Contrast-Enhanced Ultrasonography

    PubMed Central

    Sohn, Joo Hyun; Kim, Yongsoo; Kim, Jinoo

    2015-01-01

    Objective To investigate the role of contrast-enhanced ultrasonography (CEUS) and Doppler ultrasonography (DUS) in the diagnosis of severe portal hypertension (PH) in patients with liver cirrhosis (LC). Methods Patients with PH scheduled to receive hepatic venous pressure gradient (HVPG) measurement were recruited for this study. Hepatic DUS and CEUS were performed successively. Several Doppler and CEUS parameters were explored for correlation with HVPG values and their association with severe PH (≥ 12 mmHg of HVPG). Comparison of the parameters between the severe and non-severe PH groups and their correlation with HVPG values was evaluated. A receiver operating characteristic (ROC) curve analysis was also performed to investigate the performance in order to diagnose severe PH. Results Fifty-three consecutive patients were enrolled in this study. Among them, 43 patients did not have significant ascites. Compared with the non-severe PH group, portal venous velocity and intrahepatic transit time (ITT) were significantly reduced in the severe PH group (all p<0.05). Difference between inspiratory and expiratory hepatic venous damping indices (ΔHVDI), hepatic venous arrival time (HVAT) and ITT moderately correlated with HVPG (r = -0.358, -0.338, and -0.613, respectively). Areas under the curves for severe PH were 0.94 of ITT and 0.72 of HVAT, respectively (all p<0.05). ITT under 6 seconds indicated severe PH with a sensitivity of 92% and a specificity of 89%. Conclusions Hepatic CEUS may be more useful in estimating the HVPG value and determining the presence of severe PH compared to DUS, and ITT was the most accurate parameter to diagnose severe PH. PMID:25798930

  12. Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters.

    PubMed

    Liu, Ryan Wen; Shi, Lin; Huang, Wenhua; Xu, Jing; Yu, Simon Chun Ho; Wang, Defeng

    2014-07-01

    Magnetic resonance imaging (MRI) is an outstanding medical imaging modality but the quality often suffers from noise pollution during image acquisition and transmission. The purpose of this study is to enhance image quality using feature-preserving denoising method. In current literature, most existing MRI denoising methods did not simultaneously take the global image prior and local image features into account. The denoising method proposed in this paper is implemented based on an assumption of spatially varying Rician noise map. A two-step wavelet-domain estimation method is developed to extract the noise map. Following a Bayesian modeling approach, a generalized total variation-based MRI denoising model is proposed based on global hyper-Laplacian prior and Rician noise assumption. The proposed model has the properties of backward diffusion in local normal directions and forward diffusion in local tangent directions. To further improve the denoising performance, a local variance estimator-based method is introduced to calculate the spatially adaptive regularization parameters related to local image features and spatially varying noise map. The main benefit of the proposed method is that it takes full advantage of the global MR image prior and local image features. Numerous experiments have been conducted on both synthetic and real MR data sets to compare our proposed model with some state-of-the-art denoising methods. The experimental results have demonstrated the superior performance of our proposed model in terms of quantitative and qualitative image quality evaluations.

  13. Measuring blood delivery to solitary pulmonary nodules using perfusion magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Zhifeng; Shen, Li; Gao, Ling; Ford, James C.; Makedon, Fillia S.; Pearlman, Justin D.

    2006-03-01

    With perfusion magnetic resonance imaging (pMRI), perfusion describes the amount of blood passing through a block of tissue in a certain period of time. In pMRI, the tissue having more blood passing through will show higher intensity value as more contrast-labeled blood arrives. Perfusion reflects the delivery of essential nutrients to a block of tissue, and is an important parameter for the tissue status. Considering solitary pulmonary nodules (SPN), perfusion differences between malignant and benign nodules have been studied by different techniques. Much effort has been put into its characterization. In this paper, we proposed and implemented extraction of the SPN time intensity profile to measure blood delivery to solitary pulmonary nodules, describing their perfusion effects. In this method, a SPN time intensity profile is created based on intensity values of the solitary pulmonary nodule in lung pMRI images over time. This method has two steps: nodule tracking and profile clustering. Nodule tracking aligns the solitary pulmonary nodule in pMRI images taken at different time points, dealing with nodule movement resulted from breathing and body movement. Profile clustering implements segmentation of the nodule region and extraction of the time intensity profile of a solitary pulmonary nodule. SPN time intensity profiles reflect patterns of blood delivery to solitary pulmonary nodules, giving us a description of perfusion effect and indirect evidence of tumor angiogenesis. Analysis on SPN time intensity profiles will help the diagnosis of malignant nodules for early lung cancer detection.

  14. Use of femoral vein catheters for the assessment of perfusion parameters

    PubMed Central

    Marti, Yara Nishiyama; Machado, Flávia Ribeiro

    2013-01-01

    The use of central venous oxygen saturation (SvcO2) and arterial lactate in the diagnosis of severe tissue hypoperfusion is well established, and the optimization of these parameters is currently under investigation, particularly in patients with severe sepsis/septic shock. However, the only place for deep venous puncture or the first choice for puncture is often the femoral vein. Although venous saturation obtained from blood sampling from this catheter, instead of SvcO2, has already been used in the diagnosis of severe tissue hypoperfusion, little is known about the accuracy of the results. The venous lactate in place of arterial puncture has also been used to guide therapeutic decisions. We conducted this literature review to seek evidence on the correlation and concordance of parameters obtained by collecting femoral venous blood gases in relation to SvcO2 and arterial lactate. Few studies in the literature have evaluated the use of femoral venous oxygen saturation (SvfO2) or venous lactate. The results obtained thus far demonstrate no adequate agreement between SvfO2 and SvcO2, which limits the clinical use of SvfO2. However, the apparent strong correlation between arterial and peripheral and central venous lactate values suggests that venous lactate obtained from the femoral vein could eventually be used instead of arterial lactate, although there is insufficient evidence on which to base this procedure at this time. PMID:23917983

  15. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    PubMed

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates.

  16. M2 occlusions as targets for endovascular therapy: comprehensive analysis of diffusion/perfusion MRI, angiography, and clinical outcomes

    PubMed Central

    Sheth, Sunil A; Yoo, Bryan; Saver, Jeffrey L; Starkman, Sidney; Ali, Latisha K; Kim, Doojin; Gonzalez, Nestor R; Jahan, Reza; Tateshima, Satoshi; Duckwiler, Gary; Vinuela, Fernando; Liebeskind, David S

    2014-01-01

    Background The ideal population of patients for endovascular therapy (ET) in acute ischemic stroke remains undefined. Recent ET trials have moved towards selecting patients with proximal middle cerebral artery (MCA) or internal carotid artery occlusions, which will likely leave a gap in our understanding of the treatment outcomes of M2 occlusions. Objective and methods To examine the presentation, treatment, and outcomes of M2 compared with M1 MCA occlusions in patients undergoing ET by assessing comprehensive MRI, angiography, and clinical data. Results We found that M2 occlusions can lead to massive strokes defined by hypoperfused and infarcted volumes as well as death or moderate to severe disability in nearly 50% of patients at discharge. Compared with M1 occlusions, M2 occlusions achieved similar Thrombolysis in Cerebral Infarction (TICI) 2b/3 recanalization rates, with significantly less hemorrhage. M2 occlusions presented with smaller infarct and hypoperfused volumes and had smaller final infarct volumes regardless of recanalization. TICI 2b/3 recanalization of M2 occlusions was associated with smaller infarct volumes compared with TICI 0–2a recanalization, as well as less infarct expansion, in patients who received IV tissue plasminogen activator as well as those that did not. Successful reperfusion of M2 occlusions was associated with improved discharge modified Rankin scale. Conclusions If suitable as targets of ET, M2 occlusions should be given the same consideration as M1 occlusions. PMID:24821842

  17. Temporal Feature Extraction from DCE-MRI to Identify Poorly Perfused Subvolumes of Tumors Related to Outcomes of Radiation Therapy in Head and Neck Cancer

    PubMed Central

    You, Daekeun; Aryal, Madhava; Samuels, Stuart E.; Eisbruch, Avraham; Cao, Yue

    2017-01-01

    This study aimed to develop an automated model to extract temporal features from DCE-MRI in head-and-neck (HN) cancers to localize significant tumor subvolumes having low blood volume (LBV) for predicting local and regional failure after chemoradiation therapy. Temporal features were extracted from time-intensity curves to build classification model for differentiating voxels with LBV from those with high BV. Support vector machine (SVM) classification was trained on the extracted features for voxel classification. Subvolumes with LBV were then assembled from the classified voxels with LBV. The model was trained and validated on independent datasets created from 456 873 DCE curves. The resultant subvolumes were compared to ones derived by a 2-step method via pharmacokinetic modeling of blood volume, and evaluated for classification accuracy and volumetric similarity by DSC. The proposed model achieved an average voxel-level classification accuracy and DSC of 82% and 0.72, respectively. Also, the model showed tolerance on different acquisition parameters of DCE-MRI. The model could be directly used for outcome prediction and therapy assessment in radiation therapy of HN cancers, or even supporting boost target definition in adaptive clinical trials with further validation. The model is fully automatable, extendable, and scalable to extract temporal features of DCE-MRI in other tumors. PMID:28111634

  18. A comparative analysis of the dependences of the hemodynamic parameters on changes in ROI's position in perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Seok; Cho, Jae-Hwan; Namgung, Jang-Sun; Kim, Hyo-Jin; Yoon, Dae-Young; Lee, Han-Joo

    2013-05-01

    This study performed a comparative analysis of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and mean time-to-peak (TTP) obtained by changing the region of interest's (ROI) anatomical positions, during CT brain perfusion. We acquired axial source images of perfusion CT from 20 patients undergoing CT perfusion exams due to brain trauma. Subsequently, the CBV, CBF, MTT, and TTP values were calculated through data-processing of the perfusion CT images. The color scales for the CBV, CBF, MTT, and TTP maps were obtained using the image data. Anterior cerebral artery (ACA) was taken as the standard ROI for the calculations of the perfusion values. Differences in the hemodynamic average values were compared in a quantitative analysis by placing ROI and the dividing axial images into proximal, middle, and distal segments anatomically. By performing the qualitative analysis using a blind test, we observed changes in the sensory characteristics by using the color scales of the CBV, CBF, and MTT maps in the proximal, middle, and distal segments. According to the qualitative analysis, no differences were found in CBV, CBF, MTT, and TTP values of the proximal, middle, and distal segments and no changes were detected in the color scales of the the CBV, CBF, MTT, and TTP maps in the proximal, middle, and distal segments. We anticipate that the results of the study will useful in assessing brain trauma patients using by perfusion imaging.

  19. Arterial Spin-Labeling MRI Can Identify the Presence and Intensity of Collateral Perfusion in Patients With Moyamoya Disease

    PubMed Central

    Zaharchuk, Greg; Do, Huy M.; Marks, Michael P.; Rosenberg, Jarrett; Moseley, Michael E.; Steinberg, Gary K.

    2011-01-01

    Background and Purpose Determining the presence and adequacy of collateral blood flow is important in cerebrovascular disease. Therefore, we explored whether a noninvasive imaging modality, arterial spin labeling (ASL) MRI, could be used to detect the presence and intensity of collateral flow using digital subtraction angiography (DSA) and stable xenon CT cerebral blood flow as gold standards for collaterals and cerebral blood flow, respectively. Methods ASL and DSA were obtained within 4 days of each other in 18 patients with Moyamoya disease. Two neurointerventionalists scored DSA images using a collateral grading scale in regions of interest corresponding to ASPECTS methodology. Two neuroradiologists similarly scored ASL images based on the presence of arterial transit artifact. Agreement of ASL and DSA consensus scores was determined, including kappa statistics. In 15 patients, additional quantitative xenon CT cerebral blood flow measurements were performed and compared with collateral grades. Results The agreement between ASL and DSA consensus readings was moderate to strong, with a weighted kappa value of 0.58 (95% confidence interval, 0.52–0.64), but there was better agreement between readers for ASL compared with DSA. Sensitivity and specificity for identifying collaterals with ASL were 0.83 (95% confidence interval, 0.77–0.88) and 0.82 (95% confidence interval, 0.76–0.87), respectively. Xenon CT cerebral blood flow increased with increasing DSA and ASL collateral grade (P<0.05). Conclusions ASL can noninvasively predict the presence and intensity of collateral flow in patients with Moyamoya disease using DSA as a gold standard. Further study of other cerebrovascular diseases, including acute ischemic stroke, is warranted. PMID:21799169

  20. The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging.

    PubMed

    Thomas, D L; Lythgoe, M F; Pell, G S; Calamante, F; Ordidge, R J

    2000-08-01

    The aim of this review is to describe two recent developments in the use of magnetic resonance imaging (MRI) in the study of biological systems: diffusion and perfusion MRI. Diffusion MRI measures the molecular mobility of water in tissue, while perfusion MRI measures the rate at which blood is delivered to tissue. Therefore, both these techniques measure quantities which have direct physiological relevance. It is shown that diffusion in biological systems is a complex phenomenon, influenced directly by tissue microstructure, and that its measurement can provide a large amount of information about the organization of this structure in normal and diseased tissue. Perfusion reflects the delivery of essential nutrients to tissue, and so is directly related to its status. The concepts behind the techniques are explained, and the theoretical models that are used to convert MRI data to quantitative physical parameters are outlined. Examples of current applications of diffusion and perfusion MRI are given. In particular, the use of the techniques to study the pathophysiology of cerebral ischaemia/stroke is described. It is hoped that the biophysical insights provided by this approach will help to define the mechanisms of cell damage and allow evaluation of therapies aimed at reducing this damage.

  1. No evidence of perfusion abnormalities in the basal ganglia of a patient with generalized chorea-ballism and polycythaemia vera: analysis using subtraction SPECT co-registered to MRI.

    PubMed

    Kim, Woojun; Kim, Joong-Seok; Lee, Kwang-Soo; Kim, Yeong-In; Park, Chong-Won; Chung, Yong-An

    2008-10-01

    Polycythaemia vera is a well-known cause of symptomatic chorea, however, the pathophysiology of this correlation remains unclear. We report on a patient with generalized chorea-ballism associated with polycythaemia vera, and we present the findings of 99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT done in both the choreic state and the non-choreic state. The SPECT during both the choreic and the non-choreic states did not reveal any definite perfusion changes in specific regions of the brain, as compared with 6 age-matched controls. In addition, the subtraction SPECT co-registered to MRI (SISCOM) analysis did not show any difference in cerebral blood flow during the choreic and non-choreic states. This result suggests that the basic mechanism of chorea associated with polycythaemia vera does not appear to be associated with a reduction in cerebral perfusion to a specific cerebral area, such as the basal ganglia or its thalamocortical connections.

  2. Detection of ischaemic myocardial lesions with coronary CT angiography and adenosine-stress dynamic perfusion imaging using a 128-slice dual-source CT: diagnostic performance in comparison with cardiac MRI

    PubMed Central

    Kim, S M; Choi, J-H; Chang, S-A

    2013-01-01

    Objective: We assessed the diagnostic performance of adenosine-stress dynamic CT perfusion (ASDCTP) imaging and coronary CT angiography (CCTA) for the detection of ischaemic myocardial lesions using 128-slice dual-source CT compared with that of 1.5 T cardiac MRI. Methods: This prospective study included 33 patients (61±8 years, 82% male) with suspected coronary artery diseases who underwent ASDCTP imaging and adenosine-stress cardiac MRI. Two investigators independently evaluated ASDCTP images in correlation with significant coronary stenosis on CCTA using two different thresholds of 50% and 70% diameter stenosis. Hypoattenuated myocardial lesions on ASDCTP associated with significant coronary stenoses on CCTA were regarded as true perfusion defects. All estimates of diagnostic performance were calculated and compared with those of cardiac MRI. Results: With use of a threshold of 50% diameter stenosis on CCTA, the diagnostic estimates per-myocardial segment were as follows: sensitivity, 81% [95% confidence interval (CI): 70–92%]; specificity, 94% (95% CI: 92–96%); and accuracy 93% (95% CI: 91–95%). With use of a threshold of 70%, the diagnostic estimates were as follows: sensitivity, 48% (95% CI: 34–62%); specificity, 99% (95% CI: 98–100%); and accuracy, 94% (95% CI: 92–96%). Conclusion: Dynamic CTP using 128-slice dual-source CT enables the assessment of the physiological significance of coronary artery lesions with high diagnostic accuracy in patients with clinically suspected coronary artery disease. Advances in knowledge: Combined CCTA and ASDCTP yielded high accuracy in the detection of perfusion defects regardless of the threshold of significant coronary stenosis. PMID:24096592

  3. Effects of Curcumin on Parameters of Myocardial Oxidative Stress and of Mitochondrial Glutathione Turnover in Reoxygenation after 60 Minutes of Hypoxia in Isolated Perfused Working Guinea Pig Hearts

    PubMed Central

    Ilyas, Ermita I. Ibrahim; Nur, Busjra M.; Laksono, Sonny P.; Bahtiar, Anton; Estuningtyas, Ari; Vitasyana, Caecilia; Kusmana, Dede; Suyatna, Frans D.; Tadjudin, Muhammad Kamil; Freisleben, Hans-Joachim

    2016-01-01

    In cardiovascular surgery ischemia-reperfusion injury is a challenging problem, which needs medical intervention. We investigated the effects of curcumin on cardiac, myocardial, and mitochondrial parameters in perfused isolated working Guinea pig hearts. After preliminary experiments to establish the model, normoxia was set at 30 minutes, hypoxia was set at 60, and subsequent reoxygenation was set at 30 minutes. Curcumin was applied in the perfusion buffer at 0.25 and 0.5 μM concentrations. Cardiac parameters measured were afterload, coronary and aortic flows, and systolic and diastolic pressure. In the myocardium histopathology and AST in the perfusate indicated cell damage after hypoxia and malondialdehyde (MDA) levels increased to 232.5% of controls during reoxygenation. Curcumin protected partially against reoxygenation injury without statistically significant differences between the two dosages. Mitochondrial MDA was also increased in reoxygenation (165% of controls), whereas glutathione was diminished (35.2%) as well as glutathione reductase (29.3%), which was significantly increased again to 62.0% by 0.05 μM curcumin. Glutathione peroxidase (GPx) was strongly increased in hypoxia and even more in reoxygenation (255% of controls). Curcumin partly counteracted this increase and attenuated GPx activity independently in hypoxia and in reoxygenation, 0.25 μM concentration to 150% and 0.5 μM concentration to 200% of normoxic activity. PMID:26904113

  4. Effects of Curcumin on Parameters of Myocardial Oxidative Stress and of Mitochondrial Glutathione Turnover in Reoxygenation after 60 Minutes of Hypoxia in Isolated Perfused Working Guinea Pig Hearts.

    PubMed

    Ilyas, Ermita I Ibrahim; Nur, Busjra M; Laksono, Sonny P; Bahtiar, Anton; Estuningtyas, Ari; Vitasyana, Caecilia; Kusmana, Dede; Suyatna, Frans D; Tadjudin, Muhammad Kamil; Freisleben, Hans-Joachim

    2016-01-01

    In cardiovascular surgery ischemia-reperfusion injury is a challenging problem, which needs medical intervention. We investigated the effects of curcumin on cardiac, myocardial, and mitochondrial parameters in perfused isolated working Guinea pig hearts. After preliminary experiments to establish the model, normoxia was set at 30 minutes, hypoxia was set at 60, and subsequent reoxygenation was set at 30 minutes. Curcumin was applied in the perfusion buffer at 0.25 and 0.5 μM concentrations. Cardiac parameters measured were afterload, coronary and aortic flows, and systolic and diastolic pressure. In the myocardium histopathology and AST in the perfusate indicated cell damage after hypoxia and malondialdehyde (MDA) levels increased to 232.5% of controls during reoxygenation. Curcumin protected partially against reoxygenation injury without statistically significant differences between the two dosages. Mitochondrial MDA was also increased in reoxygenation (165% of controls), whereas glutathione was diminished (35.2%) as well as glutathione reductase (29.3%), which was significantly increased again to 62.0% by 0.05 μM curcumin. Glutathione peroxidase (GPx) was strongly increased in hypoxia and even more in reoxygenation (255% of controls). Curcumin partly counteracted this increase and attenuated GPx activity independently in hypoxia and in reoxygenation, 0.25 μM concentration to 150% and 0.5 μM concentration to 200% of normoxic activity.

  5. Investigation of parameters affecting treatment time in MRI-guided transurethral ultrasound therapy

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Burtnyk, M.; Chopra, R.; Bronskill, M. J.

    2010-03-01

    MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Real-time MR temperature feedback enables the 3D control of thermal therapy to define an accurate region within the prostate. Previous in-vivo canine studies showed the feasibility of this method using transurethral planar transducers. The aim of this simulation study was to reduce the procedure time, while maintaining treatment accuracy by investigating new combinations of treatment parameters. A numerical model was used to simulate a multi-element heating applicator rotating inside the urethra in 10 human prostates. Acoustic power and rotation rate were varied based on the feedback of the temperature in the prostate. Several parameters were investigated for improving the treatment time. Maximum acoustic power and rotation rate were optimized interdependently as a function of prostate radius and transducer operating frequency, while avoiding temperatures >90° C in the prostate. Other trials were performed on each parameter separately, with the other parameter fixed. The concept of using dual-frequency transducers was studied, using the fundamental frequency or the 3rd harmonic component depending on the prostate radius. The maximum acoustic power which could be used decreased as a function of the prostate radius and the frequency. Decreasing the frequency (9.7-3.0 MHz) or increasing the power (10-20 W.cm-2) led to treatment times shorter by up to 50% under appropriate conditions. Dual-frequency configurations, while helpful, tended to have less impact on treatment times. Treatment accuracy was maintained and critical adjacent tissues like the rectal wall remained protected. The interdependence between power and frequency may require integrating multi-parametric functions inside the controller for future optimizations. As a first approach, however, even slight modifications of key parameters can be sufficient to reduce treatment time.

  6. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    SciTech Connect

    Andersen, Erlend K.F.; Hole, Knut Hakon; Lund, Kjersti V.; Sundfor, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-03-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  7. Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer

    SciTech Connect

    Kirisits, Christian . E-mail: Christian.Kirisits@meduniwien.ac.at; Poetter, Richard; Lang, Stefan; Dimopoulos, Johannes; Wachter-Gerstner, Natascha; Georg, Dietmar

    2005-07-01

    Purpose: Magnetic resonance imaging (MRI)-based treatment planning in intracavitary brachytherapy allows optimization of the dose distribution on a patient-by-patient basis. In addition to traditionally used point dose and volume parameters, dose-volume histogram (DVH) analysis enables further possibilities for prescribing and reporting. This study reports the systematic development of our concept applied in clinical routine. Methods and Materials: A group of 22 patients treated with 93 fractions using a tandem-ring applicator and MRI-based individual treatment planning for each application was analyzed in detail. High-risk clinical target volumes and gross tumor volumes were contoured. The dose to bladder, rectum, and sigma was analyzed according to International Commission of Radiation Units and Measurements (ICRU) Report 38 and DVH parameters (e.g., D{sub 2cc} represents the minimal dose for the most irradiated 2 cm{sup 3}). Total doses, including external beam radiotherapy and the values for each individual brachytherapy fraction, were biologically normalized to conventional 2-Gy fractions ({alpha}/{beta} 10 Gy for target, 3 Gy for organs at risk). Results: The total prescribed dose was about 85 Gy{sub {alpha}}{sub {beta}}{sub 10}, which was mainly achieved by 45 Gy external beam radiotherapy plus 4 x 7 Gy brachytherapy (total 84 Gy{sub {alpha}}{sub {beta}}{sub 10}). The mean value was 82 Gy{sub {alpha}}{sub {beta}}{sub 10} for the point A dose (left, right) and 84 cm{sup 3} for the volume of the prescribed dose. The average dose to the clinical target volume was 66 Gy{sub {alpha}}{sub {beta}}{sub 10} for the minimum target dose, 87 Gy{sub {alpha}}{sub {beta}}{sub 10} for the dose received by at least 90% of the volume, with a mean volume treated with at least the prescribed dose of 89%. The mean D{sub 2cc} for the bladder was 83 Gy{sub {alpha}}{sub {beta}}{sub 3}, the ICRU point dose was 75 Gy{sub {alpha}}{sub {beta}}{sub 3}, and the dose at the ICRU point

  8. Reproducibility of Kidney Perfusion Measurements With Arterial Spin Labeling at 1.5 Tesla MRI Combined With Semiautomatic Segmentation for Differential Cortical and Medullary Assessment

    PubMed Central

    Hammon, Matthias; Janka, Rolf; Siegl, Christian; Seuss, Hannes; Grosso, Roberto; Martirosian, Petros; Schmieder, Roland E.; Uder, Michael; Kistner, Iris

    2016-01-01

    Abstract Magnetic resonance imaging with arterial spin labeling (ASL) is a noninvasive approach to measure organ perfusion. The purpose of this study was to evaluate the reproducibility of ASL kidney perfusion measurements with semiautomatic segmentation, which allows separate quantification of cortical and medullary perfusion. The right kidneys of 14 healthy volunteers were examined 6 times on 2 occasions (3 times at each occasion). There was a 10-minute pause between each examination and a 14-day interval between the 2 occasions. Cortical, medullary, and whole kidney parenchymal perfusion was determined with customized semiautomatic segmentation software. Coefficient of variances (CVs) and intraclass correlations (ICCs) were calculated. Mean whole, cortical, and medullary kidney perfusion was 307.26 ± 25.65, 337.10 ± 34.83, and 279.61 ± 26.73 mL/min/100 g, respectively. On session 1, mean perfusion for the whole kidney, cortex, and medulla was 307.08 ± 26.91, 336.79 ± 36.54, and 279.60 ± 27.81 mL/min/100 g, respectively, and on session 2, 307.45 ± 24.65, 337.41 ± 33.48, and 279.61 ± 25.94 mL/min/100 g, respectively (P > 0.05; R2 = 0.60/0.59/0.54). For whole, cortical, and medullary kidney perfusion, the total ICC/CV were 0.97/3.43 ± 0.86%, 0.97/4.19 ± 1.33%, and 0.96/4.12 ± 1.36%, respectively. Measurements did not differ significantly and showed a very good correlation (P > 0.05; R2 = 0.75/0.76/0.65). ASL kidney measurements combined with operator-independent semiautomatic segmentation revealed high correlation and low variance of cortical, medullary, and whole kidney perfusion. PMID:26986143

  9. Dynamic contrast enhanced MRI parameters and tumor cellularity in a rat model of cerebral glioma at 7T

    NASA Astrophysics Data System (ADS)

    Aryal, Madhava Prasad

    This dissertation mainly focuses on establishing and evaluating a stable and reproducible procedure for assessing tumor microvasculature by measuring the tissue parameters: plasma volume (vp), forward transfer constant (Ktrans), interstitial volume (ve) and distribution volume (VD), utilizing T1-weighted dynamic contrast enhanced MRI (DCE-MRI) and examining their relationship with a histo measure, cell counting. In the first part of the work, two T1-weighted DCE-MRI studies at 24 hrs time interval, using a dual-echo gradient-echo pulse sequence, were performed in 18 athymic rats implanted with U251 cerebral glioma. Using the "standard," or "consensus" model, and a separate Logan graphical analysis, T1-weighted images before, during and after the injection of a gadolinium contrast agent were used to estimate the tissue parameters mentioned above. After MRI study rats were sacrificed, and sectioned brain tissues were stained with Hematoxylin and Eosin for cell counting. Measurements in a region where a model selection process demonstrates that it can be reliably shown that contrast agent leaks from the capillary into the interstitial space quickly enough, and a concentration sufficient to measure its back flux to the vasculature, especially for Ktrans and ve, showed a remarkable stability. The combined mean parameter values in this region were: vp = (0.79+/-0.36)%, Ktrans = (2.23+/-0.71) x10-2 min -1, ve = (6.99+/-2.14)%, and VD = (7.57+/-2.32)%. In the second part of this work, the Logan graphical approach, after establishing its stability in an untreated control group, was applied to investigate a cohort of animals in which a therapeutic dose of 20 Gy radiation had been administered. In this cohort, tissue normalization appeared to be the most effective at 8 h after irradiation; this implies that the 8 hrs post-treatment time might be an ideal combination time for optimized therapeutic outcome in combined modalities. The relationship between non-invasive DCE-MRI

  10. Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: experimental and clinical applications.

    PubMed

    Ewing, James R; Bagher-Ebadian, Hassan

    2013-08-01

    A review of the selection of models in dynamic contrast-enhanced MRI (DCE-MRI) is conducted, with emphasis on the balance between the bias and variance required to produce stable and accurate estimates of vascular parameters. The vascular parameters considered as a first-order model are the forward volume transfer constant K(trans) , the plasma volume fraction vp and the interstitial volume fraction ve . To illustrate the critical issues in model selection, a data-driven selection of models in an animal model of cerebral glioma is followed. Systematic errors and extended models are considered. Studies with nested and non-nested pharmacokinetic models are reviewed; models considering water exchange are considered.

  11. Mapping MRI/MRS Parameters with Genetic Over-expression Profiles In Human Prostate Cancer: Demonstrating the Potential

    PubMed Central

    Lenkinski, Robert E.; Bloch, B. Nicholas; Liu, Fangbing; Frangioni, John V.; Perner, Sven; Rubin, Mark A.; Genega, Elizabeth; Rofsky, Neil M.; Gaston, Sandra M.

    2009-01-01

    Magnetic resonance imaging (MRI) and MR spectroscopy can probe a variety of physiological (e.g. blood vessel permeability) and metabolic characteristics of prostate cancer. However, little is known about the changes in gene expression that underlie the spectral and imaging features observed in prostate cancer. Tumor induced changes in vascular permeability and angiogenesis are thought to contribute to patterns of dynamic contrast enhanced (DCE) MRI images of prostate cancer even though the genetic basis of tumor vasculogenesis is complex and the specific mechanisms underlying these DCEMRI features have not yet been determined. In order to identify the changes in gene expression that correspond to MRS and DCEMRI patterns in human prostate cancers, we have utilized tissue print micropeel techniques to generate “whole mount” molecular maps of radical prostatectomy specimens that correspond to pre-surgical MRI/MRS studies. These molecular maps include RNA expression profiles from both Affymetrix GeneChip microarrays and quantitative reverse transcriptase PCR (qrt-PCR) analysis, as well as immunohistochemical studies. Using these methods on patients with prostate cancer, we found robust over-expression of choline kinase a in the majority of primary tumors. We also observed overexpression of neuropeptide Y (NPY), a newly identified angiogenic factor, in a subset of DCEMRI positive prostate cancers. These studies set the stage for establishing MRI/MRS parameters as validated biomarkers for human prostate cancer. PMID:18752015

  12. To Find a Better Dosimetric Parameter in the Predicting of Radiation-Induced Lung Toxicity Individually: Ventilation, Perfusion or CT based

    PubMed Central

    Xiao, Lin-Lin; Yang, Guoren; Chen, Jinhu; Wang, Xiaohui; Wu, Qingwei; Huo, Zongwei; Yu, Qingxi; Yu, Jinming; Yuan, Shuanghu

    2017-01-01

    This study aimed to find a better dosimetric parameter in predicting of radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) individually: ventilation(V), perfusion (Q) or computerized tomography (CT) based. V/Q single-photon emission computerized tomography (SPECT) was performed within 1 week prior to radiotherapy (RT). All V/Q imaging data was integrated into RT planning system, generating functional parameters based on V/Q SPECT. Fifty-seven NSCLC patients were enrolled in this prospective study. Fifteen (26.3%) patients underwent grade ≥2 RILT, the remaining forty-two (73.7%) patients didn’t. Q-MLD, Q-V20, V-MLD, V-V20 of functional parameters correlated more significantly with the occurrence of RILT compared to V20, MLD of anatomical parameters (r = 0.630; r = 0.644; r = 0.617; r = 0.651 vs. r = 0.424; r = 0.520 p < 0.05, respectively). In patients with chronic obstructive pulmonary diseases (COPD), V functional parameters reflected significant advantage in predicting RILT; while in patients without COPD, Q functional parameters reflected significant advantage. Analogous results were existed in fractimal analysis of global pulmonary function test (PFT). In patients with central-type NSCLC, V parameters were better than Q parameters; while in patients with peripheral-type NSCLC, the results were inverse. Therefore, this study demonstrated that choosing a suitable dosimetric parameter individually can help us predict RILT accurately. PMID:28294159

  13. MRI-derived body segment parameters of children differ from age-based estimates derived using photogrammetry.

    PubMed

    Bauer, Jeremy J; Pavol, Michael J; Snow, Christine M; Hayes, Wilson C

    2007-01-01

    Body segment parameters are required when researching joint kinetics using inverse dynamics models. However, the only regression equations for estimating pediatric body segment parameters across a wide age range were developed, using photogrammetry, based on 12 boys and have not been validated to date (Jensen, R.K., 1986. Body segment mass, radius and radius of gyration proportions of children. Journal of Biomechanics 19, 359-368). To assess whether these equations could validly be applied to girls, we asked whether body segment parameters estimated by the equations differ from parameters measured using a validated magnetic resonance imaging (MRI) method. If so, do the differences cause significant differences in joint kinetics during normal gait? Body segment parameters were estimated from axial MRIs of the left thigh and shank of 10 healthy girls (9.6 +/- 0.9 years) and compared to those from Jensen's equations. Kinematics and kinetics were collected for 10 walking trials. Extrema in hip and knee moments and powers were compared between the two sets of body segment parameters. With the exception of the shank mass center and radius of gyration, body segment parameters measured using MRI were significantly different from those estimated using regression equations. These systematic differences in body segment parameters resulted in significant differences in sagittal-plane joint moments and powers during gait. Nevertheless, it is doubtful that even the greatest differences in kinetics are practically meaningful (0.3% BW x HT and 0.7% BW x HT/s for moments and power at the hip, respectively). Therefore, body segment parameters estimated using Jensen's regression equations are a suitable substitute for more detailed anatomical imaging of 8-10-year-old girls when quantifying joint kinetics during gait.

  14. Quantitative longitudinal evaluation of diaschisis-related cerebellar perfusion and diffusion parameters in patients with supratentorial hemispheric high-grade gliomas after surgery.

    PubMed

    Patay, Zoltan; Parra, Carlos; Hawk, Harris; George, Arun; Li, Yimei; Scoggins, Matthew; Broniscer, Alberto; Ogg, Robert J

    2014-10-01

    Decreased cerebral blood volume (CBV) in contralateral cerebellar gray matter (cGM) in conjunction with cerebellar white matter (cWM) damage, consistent with crossed cerebro-cerebellar diaschisis (cCCD) develop following supratentorial hemispheric stroke. In this study, we investigated the longitudinal evolution of diaschisis-related cerebellar perfusion and diffusion tensor-imaging (DTI) changes in patients after surgery for supratentorial brain tumors. Eight patients (M:F 5:3, age 8-22 years) who received surgery for supratentorial high-grade gliomas were evaluated. Initial MRI studies were performed 19-54 days postoperatively, with follow-ups at 2- to 3-month intervals. For each study, parametric maps of the cerebellum were generated and coregistered to T1-weighted images that had been previously segmented for cGM and cWM. Aggregate mean values of CBV, cerebral blood flow (CBF), and fractional anisotropy (FA) were obtained separately for cGM and cWM, and asymmetry indices (AIs) were calculated. Hemodynamic changes were more robust in cGM than in cWM. Seven patients showed decreased perfusion within cGM contralateral to the supratentorial lesion on the first postoperative study, and asymmetry was significant for both CBV (p = 0.008) and CBF (p < 0.01). For CBV, follow-up studies showed a significant trend towards recovery (p < 0.02). DTI changes were more pronounced in cWM. FA values suggested a "paradoxical" increase at initial follow-up, but steadily declined thereafter (p = 0.0003), without evidence of subsequent recovery. Diaschisis-related hemodynamic alterations within cGM appear on early postoperative studies, but CBV recovers over time. Conversely, cWM DTI changes are delayed and progressive. Although the clinical correlates of cCCD are yet to be elucidated, better understanding of longitudinal structural and hemodynamic changes within brain remote from the area of primary insult could have implications in research and clinical

  15. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  16. Prolonged Cerebral Circulation Time Is the Best Parameter for Predicting Vasospasm during Initial CT Perfusion in Subarachnoid Hemorrhagic Patients

    PubMed Central

    Lin, Chun Fu; Hsu, Sanford P. C.; Lin, Chung Jung; Guo, Wan Yuo; Liao, Chih Hsiang; Chu, Wei Fa; Hung, Sheng Che; Shih, Yang Shin; Lin, Yen Tzu

    2016-01-01

    Purpose We sought to imitate angiographic cerebral circulation time (CCT) and create a similar index from baseline CT perfusion (CTP) to better predict vasospasm in patients with subarachnoid hemorrhage (SAH). Methods Forty-one SAH patients with available DSA and CTP were retrospectively included. The vasospasm group was comprised of patients with deterioration in conscious functioning and newly developed luminal narrowing; remaining cases were classified as the control group. The angiography CCT (XA-CCT) was defined as the difference in TTP (time to peak) between the selected arterial ROIs and the superior sagittal sinus (SSS). Four arterial ROIs were selected to generate four corresponding XA-CCTs: the right and left anterior cerebral arteries (XA-CCTRA2 and XA-CCTLA2) and right- and left-middle cerebral arteries (XA-CCTRM2 and XA-CCTLM2). The CCTs from CTP (CT-CCT) were defined as the differences in TTP from the corresponding arterial ROIs and the SSS. Correlations of the different CCTs were calculated and diagnostic accuracy in predicting vasospasm was evaluated. Results Intra-class correlations ranged from 0.96 to 0.98. The correlations of XA-CCTRA2, XA-CCTRM2, XA-CCTLA2, and XA-CCTLM2 with the corresponding CT-CCTs were 0.64, 0.65, 0.53, and 0.68, respectively. All CCTs were significantly prolonged in the vasospasm group (5.8–6.4 s) except for XA-CCTLA2. CT-CCTA2 of 5.62 was the optimal cut-off value for detecting vasospasm with a sensitivity of 84.2% and specificity 82.4% Conclusion CT-CCTs can be used to interpret cerebral flow without deconvolution algorithms, and outperform both MTT and TTP in predicting vasospasm risk. This finding may help facilitate management of patients with SAH. PMID:26986626

  17. Brain Tissue Compartment Density Estimated Using Diffusion-Weighted MRI Yields Tissue Parameters Consistent With Histology

    PubMed Central

    Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi

    2015-01-01

    We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639

  18. Exhaled CO2 Parameters as a Tool to Assess Ventilation-Perfusion Mismatching during Neonatal Resuscitation in a Swine Model of Neonatal Asphyxia

    PubMed Central

    Li, Elliott Shang-shun; Cheung, Po-Yin; O'Reilly, Megan; LaBossiere, Joseph; Lee, Tze-Fun; Cowan, Shaun; Bigam, David L.; Schmölzer, Georg Marcus

    2016-01-01

    Background End-tidal CO2 (ETCO2), partial pressure of exhaled CO2 (PECO2), and volume of expired CO2 (VCO2) can be continuously monitored non-invasively to reflect pulmonary ventilation and perfusion status. Although ETCO2 ≥14mmHg has been shown to be associated with return of an adequate heart rate in neonatal resuscitation and quantifying the PECO2 has the potential to serve as an indicator of resuscitation quality, there is little information regarding capnometric measurement of PECO2 and ETCO2 in detecting return of spontaneous circulation (ROSC) and survivability in asphyxiated neonates receiving cardiopulmonary resuscitation (CPR). Methods Seventeen newborn piglets were anesthetized, intubated, instrumented, and exposed to 45-minute normocapnic hypoxia followed by apnea to induce asphyxia. Protocolized resuscitation was initiated when heart rate decreased to 25% of baseline. Respiratory and hemodynamic parameters including ETCO2, PECO2, VCO2, heart rate, cardiac output, and carotid artery flow were continuously measured and analyzed. Results There were no differences in respiratory and hemodynamic parameters between surviving and non-surviving piglets prior to CPR. Surviving piglets had significantly higher ETCO2, PECO2, VCO2, cardiac index, and carotid artery flow values during CPR compared to non-surviving piglets. Conclusion Surviving piglets had significantly better respiratory and hemodynamic parameters during resuscitation compared to non-surviving piglets. In addition to optimizing resuscitation efforts, capnometry can assist by predicting outcomes of newborns requiring chest compressions. PMID:26766424

  19. Effect of Imaging Parameter Thresholds on MRI Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes

    PubMed Central

    Jones, Ella F.; Newitt, David C.; Kornak, John; Wilmes, Lisa J.; Esserman, Laura J.; Hylton, Nola M.

    2016-01-01

    The purpose of this study is to evaluate the predictive performance of magnetic resonance imaging (MRI) markers in breast cancer patients by subtype. Sixty-four patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy were enrolled in this study. Each patient received a dynamic contrast-enhanced (DCE-MRI) at baseline, after 1 cycle of chemotherapy and before surgery. Functional tumor volume (FTV), the imaging marker measured by DCE-MRI, was computed at various thresholds of percent enhancement (PEt) and signal-enhancement ratio (SERt). Final FTV before surgery and percent changes of FTVs at the early and final treatment time points were used to predict patients’ recurrence-free survival. The full cohort and each subtype defined by the status of hormone receptor and human epidermal growth factor receptor 2 (HR+/HER2-, HER2+, triple negative) were analyzed. Predictions were evaluated using the Cox proportional hazard model when PEt changed from 30% to 200% in steps of 10% and SERt changed from 0 to 2 in steps of 0.2. Predictions with high hazard ratios and low p-values were considered as strong. Different profiles of FTV as predictors for recurrence-free survival were observed in each breast cancer subtype and strong associations with survival were observed at different PEt/SERt combinations that resulted in different FTVs. Findings from this retrospective study suggest that the predictive performance of imaging markers based on FTV may be improved with enhancement thresholds being optimized separately for clinically-relevant subtypes defined by HR and HER2 receptor expression. PMID:26886725

  20. Renal perfusion scintiscan

    MedlinePlus

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  1. Selection of Optimal Hyper-Parameters for Estimation of Uncertainty in MRI-TRUS Registration of the Prostate

    PubMed Central

    Janoos, Firdaus; Pursley, Jennifer; Fedorov, Andriy; Tempany, Clare; Cormack, Robert A.; Wells, William M.

    2013-01-01

    Transrectal ultrasound (TRUS) facilitates intra-treatment delineation of the prostate gland (PG) to guide insertion of brachytherapy seeds, but the prostate substructure and apex are not always visible which may make the seed placement sub-optimal. Based on an elastic model of the prostate created from MRI, where the prostate substructure and apex are clearly visible, we use a Bayesian approach to estimate the posterior distribution on deformations that aligns the pre-treatment MRI with intra-treatment TRUS. Without apex information in TRUS, the posterior prediction of the location of the prostate boundary, and the prostate apex boundary in particular, is mainly determined by the pseudo stiffness hyper-parameter of the prior distribution. We estimate the optimal value of the stiffness through likelihood maximization that is sensitive to the accuracy as well as the precision of the posterior prediction at the apex boundary. From a data-set of 10 pre- and intra-treatment prostate images with ground truth delineation of the total PG, 4 cases were used to establish an optimal stiffness hyper-parameter when 15% of the prostate delineation was removed to simulate lack of apex information in TRUS, while the remaining 6 cases were used to cross-validate the registration accuracy and uncertainty over the PG and in the apex. PMID:23286120

  2. Harmonic analysis of perfusion pumps.

    PubMed

    Dougherty, F Carroll; Donovan, F M; Townsley, Mary I

    2003-12-01

    The controversy over the use of nonpulsatile versus pulsatile pumps for maintenance of normal organ function during ex vivo perfusion has continued for many years, but resolution has been limited by lack of a congruent mathematical definition of pulsatility. We hypothesized that the waveform frequency and amplitude, as well as the underlying mean distending pressure are all key parameters controlling vascular function. Using discrete Fourier Analysis, our data demonstrate the complexity of the pulmonary arterial pressure waveform in vivo and the failure of commonly available perfusion pumps to mimic in vivo dynamics. In addition, our data show that the key harmonic signatures are intrinsic to the perfusion pumps, are similar for flow and pressure waveforms, and are unchanged by characteristics of the downstream perfusion circuit or perfusate viscosity.

  3. Estimation of the parameter covariance matrix for aone-compartment cardiac perfusion model estimated from a dynamic sequencereconstructed using map iterative reconstruction algorithms

    SciTech Connect

    Gullberg, Grant T.; Huesman, Ronald H.; Reutter, Bryan W.; Qi,Jinyi; Ghosh Roy, Dilip N.

    2004-01-01

    In dynamic cardiac SPECT estimates of kinetic parameters ofa one-compartment perfusion model are usually obtained in a two stepprocess: 1) first a MAP iterative algorithm, which properly models thePoisson statistics and the physics of the data acquisition, reconstructsa sequence of dynamic reconstructions, 2) then kinetic parameters areestimated from time activity curves generated from the dynamicreconstructions. This paper provides a method for calculating thecovariance matrix of the kinetic parameters, which are determined usingweighted least squares fitting that incorporates the estimated varianceand covariance of the dynamic reconstructions. For each transaxial slicesets of sequential tomographic projections are reconstructed into asequence of transaxial reconstructions usingfor each reconstruction inthe time sequence an iterative MAP reconstruction to calculate themaximum a priori reconstructed estimate. Time-activity curves for a sumof activity in a blood region inside the left ventricle and a sum in acardiac tissue region are generated. Also, curves for the variance of thetwo estimates of the sum and for the covariance between the two ROIestimates are generated as a function of time at convergence using anexpression obtained from the fixed-point solution of the statisticalerror of the reconstruction. A one-compartment model is fit to the tissueactivity curves assuming a noisy blood input function to give weightedleast squares estimates of blood volume fraction, wash-in and wash-outrate constants specifying the kinetics of 99mTc-teboroxime for theleftventricular myocardium. Numerical methods are used to calculate thesecond derivative of the chi-square criterion to obtain estimates of thecovariance matrix for the weighted least square parameter estimates. Eventhough the method requires one matrix inverse for each time interval oftomographic acquisition, efficient estimates of the tissue kineticparameters in a dynamic cardiac SPECT study can be obtained with

  4. Synergistic Effects of Hemoglobin and Tumor Perfusion on Tumor Control and Survival in Cervical Cancer

    SciTech Connect

    Mayr, Nina A. Wang, Jian Z.; Zhang Dongqing; Montebello, Joseph F.; Grecula, John C.; Lo, Simon S.; Fowler, Jeffery M.; Yuh, William T.C.

    2009-08-01

    Purpose: The tumor oxygenation status is likely influenced by two major factors: local tumor blood supply (tumor perfusion) and its systemic oxygen carrier, hemoglobin (Hgb). Each has been independently shown to affect the radiotherapy (RT) outcome in cervical cancer. This study assessed the effect of local tumor perfusion, systemic Hgb levels, and their combination on the treatment outcome in cervical cancer. Methods and Materials: A total of 88 patients with cervical cancer, Stage IB2-IVA, who were treated with RT/chemotherapy, underwent serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) before RT, at 20-22 Gy, and at 45-50 Gy. The DCE-MRI perfusion parameters, mean and lowest 10th percentile of the signal intensity distribution in the tumor pixels, and the Hgb levels, including pre-RT, nadir, and mean Hgb (average of weekly Hgb during RT), were correlated with local control and disease-specific survival. The median follow-up was 4.6 years. Results: Local recurrence predominated in the group with both a low mean Hgb (<11.2 g/dL) and low perfusion (lowest 10th percentile of signal intensity <2.0 at 20-22 Gy), with a 5-year local control rate of 60% vs. 90% for all other groups (p = .001) and a disease-specific survival rate of 41% vs. 72% (p = .008), respectively. In the group with both high mean Hgb and high perfusion, the 5-year local control rate and disease-specific survival rate was 100% and 78%, respectively. Conclusion: These results suggest that the compounded effects of Hgb level and tumor perfusion during RT influence the radioresponsiveness and survival in cervical cancer patients. The outcome was worst when both were impaired. The management of Hgb may be particularly important in patients with low tumor perfusion.

  5. [Evaluation by statistical brain perfusion SPECT analysis on MRI findings, kana pick-out test and Mini-Mental State Examination results in patients with forgetfulness].

    PubMed

    Nakatsuka, Hiroki; Matsubara, Ichirou; Ohtani, Haruhiko

    2003-04-01

    The aim of this single photon emission computed tomography(SPECT) study was to determine the abnormality of the regional cerebral blood flow(rCBF) using a three-dimensional stereotactic surface projection (3 D-SSP) in 18 patients who were referred to the hospital because of forgetfulness. Two intergroup comparison by 3 D-SSP analysis was conducted based on MRI, kana pick-out test and Mini-Mental State Examination (MMSE) results. Of the MRI findings, in the brain atrophy group, rCBF was decreased in the posterior cingulate gyrus, medial temporal structure and parieto-temporal association cortex; these rCBF-decreased areas are similar to the Alzheimer disease pattern. In the group where the MMSE was normal but the kana pick-out test was abnormal, rCBF was decreased in the posterior cingulate gyrus and cinguloparietal transitional area. In the group where both the MMSE and kana pick-out test were abnormal, rCBF was decreased in the parieto-temporal association cortex, temporal cortex and medial temporal structure. These results suggest that 3 D-SSP analysis of the SPECT with MMSE and the kana pick-out test provides the possibility of early diagnosis of initial stage of Alzheimer's disease.

  6. fMRI and EEG Predictors of Dynamic Decision Parameters during Human Reinforcement Learning

    PubMed Central

    Gagne, Chris; Nyhus, Erika; Masters, Sean; Wiecki, Thomas V.; Cavanagh, James F.; Badre, David

    2015-01-01

    What are the neural dynamics of choice processes during reinforcement learning? Two largely separate literatures have examined dynamics of reinforcement learning (RL) as a function of experience but assuming a static choice process, or conversely, the dynamics of choice processes in decision making but based on static decision values. Here we show that human choice processes during RL are well described by a drift diffusion model (DDM) of decision making in which the learned trial-by-trial reward values are sequentially sampled, with a choice made when the value signal crosses a decision threshold. Moreover, simultaneous fMRI and EEG recordings revealed that this decision threshold is not fixed across trials but varies as a function of activity in the subthalamic nucleus (STN) and is further modulated by trial-by-trial measures of decision conflict and activity in the dorsomedial frontal cortex (pre-SMA BOLD and mediofrontal theta in EEG). These findings provide converging multimodal evidence for a model in which decision threshold in reward-based tasks is adjusted as a function of communication from pre-SMA to STN when choices differ subtly in reward values, allowing more time to choose the statistically more rewarding option. PMID:25589744

  7. fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning.

    PubMed

    Frank, Michael J; Gagne, Chris; Nyhus, Erika; Masters, Sean; Wiecki, Thomas V; Cavanagh, James F; Badre, David

    2015-01-14

    What are the neural dynamics of choice processes during reinforcement learning? Two largely separate literatures have examined dynamics of reinforcement learning (RL) as a function of experience but assuming a static choice process, or conversely, the dynamics of choice processes in decision making but based on static decision values. Here we show that human choice processes during RL are well described by a drift diffusion model (DDM) of decision making in which the learned trial-by-trial reward values are sequentially sampled, with a choice made when the value signal crosses a decision threshold. Moreover, simultaneous fMRI and EEG recordings revealed that this decision threshold is not fixed across trials but varies as a function of activity in the subthalamic nucleus (STN) and is further modulated by trial-by-trial measures of decision conflict and activity in the dorsomedial frontal cortex (pre-SMA BOLD and mediofrontal theta in EEG). These findings provide converging multimodal evidence for a model in which decision threshold in reward-based tasks is adjusted as a function of communication from pre-SMA to STN when choices differ subtly in reward values, allowing more time to choose the statistically more rewarding option.

  8. Outcome Prediction After Surgery and Chemoradiation of Squamous Cell Carcinoma in the Oral Cavity, Oropharynx, and Hypopharynx: Use of Baseline Perfusion CT Microcirculatory Parameters vs. Tumor Volume

    SciTech Connect

    Bisdas, Sotirios; Nguyen, Shaun A.; Anand, Sharma K.; Glavina, Gordana; Day, Terry; Rumboldt, Zoran

    2009-04-01

    Purpose: To assess whether pretreatment perfusion computed tomography (PCT) may predict outcome in chemoradiated patients with oral cavity, oropharynx, and hypopharynx squamous cell carcinoma (SCCA) after surgical excision. Materials and Methods: Twenty-one patients with SCCA were examined before treatment. The primary site was oral cavity in 6, oropharynx in 7, and hypopharynx in 8 patients; there were 11 T2, 6 T3, and 4 T4 tumors. PCT was performed at the level of largest tumor diameter based on standard neck CT. The data were processed to obtain blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface area product (PS). Regions of interest were free-hand positioned on the lesions to obtain PCT measurements. Tumor volume was also calculated. Follow-up was performed with positron emission tomography (PET)/CT and endoscopy. Pearson correlation coefficient was used for comparison between the subgroups. A regression model was constructed to predict recurrence based on the following predictors: age, gender, tumor (T) and nodal (N) stage, tumor volume, and PCT parameters. Results: BF{sub mean}, BF{sub max}, BV{sub mean}, BV{sub max}, MTT{sub mean}, PS{sub mean}, and PS{sub max} were significantly different between patients with and without tumor recurrence (0.0001, p < 0.04). T stage, tumor volume, N stage, BF{sub max}, BV{sub max}, MTT{sub mean}, and radiation dose (p < 0.001) were independent predictors for recurrence. Cox proportional hazards model for tumor recurrence revealed significantly increased risk with high tumor volume (p = 0.00001, relative risk [RR] 7.4), low PS{sub mean} (p = 0.0001, RR 14.3), and low BF{sub max} (p = 0.002, RR 5.9). Conclusions: Our data suggest that PCT parameters have a prognostic role in patients with SCCA.

  9. Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer

    SciTech Connect

    Kierkels, Roel G.J.; Backes, Walter H.; Janssen, Marco H.M.; Buijsen, Jeroen; Beets-Tan, Regina G.H.; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.; Aerts, Hugo J.W.L.

    2010-06-01

    Purpose: To compare pretreatment scans with perfusion computed tomography (pCT) vs. dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal tumors. Methods and Materials: Nineteen patients diagnosed with rectal cancer were included in this prospective study. All patients underwent both pCT and DCE-MRI. Imaging was performed on a dedicated 40-slice CT-positron emission tomography system and a 3-T MRI system. Dynamic contrast enhancement was measured in tumor tissue and the external iliac artery. Tumor perfusion was quantified in terms of pharmacokinetic parameters: transfer constant K{sup trans}, fractional extravascular-extracellular space v{sub e}, and fractional plasma volume v{sub p}. Pharmacokinetic parameter values and their heterogeneity (by 80% quantile value) were compared between pCT and DCE-MRI. Results: Tumor K{sup trans} values correlated significantly for the voxel-by-voxel-derived median (Kendall's tau correlation, tau = 0.81, p < 0.001) and 80% quantile (tau = 0.54, p = 0.04), as well as for the averaged uptake (tau = 0.58, p = 0.03). However, no significant correlations were found for v{sub e} and v{sub p} derived from the voxel-by-voxel-derived median and 80% quantile and derived from the averaged uptake curves. Conclusions: This study demonstrated for the first time that pCT provides K{sup trans} values comparable to those of DCE-MRI. However, no correlation was found for the v{sub e} and v{sub p} parameters between CT and MRI. Computed tomography can serve as an alternative modality to MRI for the in vivo evaluation of tumor angiogenesis in terms of the transfer constant K{sup trans}.

  10. Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods.

    PubMed

    Ramani, Sathish; Liu, Zhihao; Rosen, Jeffrey; Nielsen, Jon-Fredrik; Fessler, Jeffrey A

    2012-08-01

    Regularized iterative reconstruction algorithms for imaging inverse problems require selection of appropriate regularization parameter values. We focus on the challenging problem of tuning regularization parameters for nonlinear algorithms for the case of additive (possibly complex) Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE) approaches (based on Steinfs Unbiased Risk Estimate. SURE) need the Jacobian matrix of the nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast variant of the standard iterative reweighted least-squares method and the contemporary split-Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-type regularizers. The proposed approach iteratively computes two weighted SURE-type measures: Predicted-SURE and Projected-SURE (that require knowledge of noise variance Ð2), and GCV (that does not need Ð2) for these algorithms. We apply the methods to image restoration and to magnetic resonance image (MRI) reconstruction using total variation (TV) and an analysis-type .1-regularization. We demonstrate through simulations and experiments with real data that minimizing Predicted-SURE and Projected-SURE consistently lead to near-MSE-optimal reconstructions. We also observed that minimizing GCV yields reconstruction results that are near-MSE-optimal for image restoration and slightly suboptimal for MRI. Theoretical derivations in this work related to Jacobian matrix evaluations can be extended, in principle, to other types of regularizers and reconstruction algorithms.

  11. Neural signatures of economic parameters during decision-making: a functional MRI (FMRI), electroencephalography (EEG) and autonomic monitoring study.

    PubMed

    Minati, Ludovico; Grisoli, Marina; Franceschetti, Silvana; Epifani, Francesca; Granvillano, Alice; Medford, Nick; Harrison, Neil A; Piacentini, Sylvie; Critchley, Hugo D

    2012-01-01

    Adaptive behaviour requires an ability to obtain rewards by choosing between different risky options. Financial gambles can be used to study effective decision-making experimentally, and to distinguish processes involved in choice option evaluation from outcome feedback and other contextual factors. Here, we used a paradigm where participants evaluated 'mixed' gambles, each presenting a potential gain and a potential loss and an associated variable outcome probability. We recorded neural responses using autonomic monitoring, electroencephalography (EEG) and functional neuroimaging (fMRI), and used a univariate, parametric design to test for correlations with the eleven economic parameters that varied across gambles, including expected value (EV) and amount magnitude. Consistent with behavioural economic theory, participants were risk-averse. Gamble evaluation generated detectable autonomic responses, but only weak correlations with outcome uncertainty were found, suggesting that peripheral autonomic feedback does not play a major role in this task. Long-latency stimulus-evoked EEG potentials were sensitive to expected gain and expected value, while alpha-band power reflected expected loss and amount magnitude, suggesting parallel representations of distinct economic qualities in cortical activation and central arousal. Neural correlates of expected value representation were localized using fMRI to ventromedial prefrontal cortex, while the processing of other economic parameters was associated with distinct patterns across lateral prefrontal, cingulate, insula and occipital cortices including default-mode network and early visual areas. These multimodal data provide complementary evidence for distributed substrates of choice evaluation across multiple, predominantly cortical, brain systems wherein distinct regions are preferentially attuned to specific economic features. Our findings extend biologically-plausible models of risky decision-making while providing

  12. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging.

  13. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival.

  14. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  15. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Lee, Deok Hee

    2016-01-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions. PMID:27390537

  16. Possibilities of improving the parameters of hyperthermia in regional isolated limb perfusion using epidural bupivacaine and accurate temperature measurement of the three layers of limb tissue.

    PubMed

    Jastrzebski, Tomasz; Sommer, Anna; Swierblewski, Maciej; Lass, Piotr; Rogowski, Jan; Drucis, Kamil; Kopacz, Andrzej

    2006-06-01

    The present study presents the author's modification of the method, which aims to create proper parameters of the treatment. The selected group consisted of 15 women and eight men, with a mean age of 57.2 years (range from 26 to 72 years). The patients were divided into two groups, depending on whether they were given epidural bupivacaine (group I - 13 patients treated between the years 2001 and 2004) or not [group II (control) - 10 patients treated earlier, between the years 1997 and 2000]. We observed a significant change in the temperature of thigh muscles (P=0.009) and shank muscles (P=0.006). In the control group II, there was a statistically significant difference (P=0.048) in the temperatures between the muscles and subcutaneous tissue on the one hand and the shank skin on the other. That difference was mean 0.67 degrees Celsius (from 0.4 to 0.9) during the perfusion after applying the cytostatic. The temperature of the skin was lower than the temperature of the deeper tissues of the shank and did not exceed 39.9 degrees Celsius. Such a difference in the temperatures was not observed in case of the group I patients who were given bupivacaine into the extrameningeal space before applying the cytostatic. The difference in the temperatures was on average 0.26 degrees Celsius and was not statistically significant (P=0.99), whereas the shank skin temperature was 40.0-40.6 degrees Celsius. The attained results imply that despite the noticeable improvement in the heating of the limb muscles after application of bupivacaine, the improvement in the heating of the skin and subcutaneous tissue is still not satisfactory, although the growing tendency implies such a possibility.

  17. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  18. Assessment of Longitudinal Reproducibility of Mice LV Function Parameters at 11.7 T Derived from Self-Gated CINE MRI

    PubMed Central

    Zuo, Zhi; Subgang, Anne; Abaei, Alireza; Rottbauer, Wolfgang; Stiller, Detlef; Ma, Genshan

    2017-01-01

    The objective of this work was the assessment of the reproducibility of self-gated cardiac MRI in mice at ultra-high-field strength. A group of adult mice (n = 5) was followed over 360 days with a standardized MR protocol including reproducible animal position and standardized planning of the scan planes. From the resulting CINE MRI data, global left ventricular (LV) function parameters including end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and left ventricular mass (LVM) were quantified. The reproducibility of the self-gated technique as well as the intragroup variability and longitudinal changes of the investigated parameters was assessed. Self-gated cardiac MRI proved excellent reproducibility of the global LV function parameters, which was in the order of the intragroup variability. Longitudinal assessment did not reveal any significant variations for EDV, ESV, SV, and EF but an expected increase of the LVM with increasing age. In summary, self-gated MRI in combination with a standardized protocol for animal positioning and scan plane planning ensures reproducible assessment of global LV function parameters. PMID:28321415

  19. Regional Reproducibility of BOLD Calibration Parameter M, OEF and Resting-State CMRO2 Measurements with QUO2 MRI

    PubMed Central

    Lajoie, Isabelle; Tancredi, Felipe B.; Hoge, Richard D.

    2016-01-01

    The current generation of calibrated MRI methods goes beyond simple localization of task-related responses to allow the mapping of resting-state cerebral metabolic rate of oxygen (CMRO2) in micromolar units and estimation of oxygen extraction fraction (OEF). Prior to the adoption of such techniques in neuroscience research applications, knowledge about the precision and accuracy of absolute estimates of CMRO2 and OEF is crucial and remains unexplored to this day. In this study, we addressed the question of methodological precision by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD calibration parameter M, OEF, O2 delivery and absolute CMRO2 estimates derived from a state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2) approach. We acquired simultaneous measurements of CBF and R2* at rest and during periods of hypercapnia (HC) and hyperoxia (HO) on two separate scan sessions within 24 hours using a clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO2, were estimated from the measured end-tidal O2, CBF0, CBFHC/HO and R2*HC/HO. Variability was assessed by computing the between-subject coefficients of variation (bwCV) and within-subject CV (wsCV) in seven ROIs. All tests GM-averaged values of CBF0, M, OEF, O2 delivery and CMRO2 were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 μmol/100 g/min and 143 ± 34 μmol/100 g/min respectively. The variability of parameter estimates was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions. Among the MRI measurements, the most reproducible across scans was R2*0 (wsCVGM = 0.33%) along with CBF0 (wsCVGM = 3.88%) and R2*HC (wsCVGM = 6.7%). CBFHC and R2*HO were found to have a higher intra-subject variability (wsCVGM = 22.4% and wsCVGM = 16% respectively), which is likely due to propagation of random measurement errors, especially for CBFHC due to the low

  20. Stroke mimic: Perfusion magnetic resonance imaging of a patient with ictal paralysis

    PubMed Central

    Sanghvi, D; Goyal, C; Mani, J

    2016-01-01

    We present an uncommon case of clinically diagnosed window period stroke subsequently recognised on diffusion – perfusion MRI as ictal paralysis due to focal inhibitory seizures or negative motor seizures. This case highlights the importance of MRI with perfusion imaging in establishing the diagnosis of stroke mimics and avoiding unnecessary thrombolysis. PMID:27763486

  1. Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ).

    PubMed

    Draganski, B; Ashburner, J; Hutton, C; Kherif, F; Frackowiak, R S J; Helms, G; Weiskopf, N

    2011-04-15

    Normal ageing is associated with characteristic changes in brain microstructure. Although in vivo neuroimaging captures spatial and temporal patterns of age-related changes of anatomy at the macroscopic scale, our knowledge of the underlying (patho)physiological processes at cellular and molecular levels is still limited. The aim of this study is to explore brain tissue properties in normal ageing using quantitative magnetic resonance imaging (MRI) alongside conventional morphological assessment. Using a whole-brain approach in a cohort of 26 adults, aged 18-85years, we performed voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) of diffusion tensor, magnetization transfer (MT), R1, and R2* relaxation parameters. We found age-related reductions in cortical and subcortical grey matter volume paralleled by changes in fractional anisotropy (FA), mean diffusivity (MD), MT and R2*. The latter were regionally specific depending on their differential sensitivity to microscopic tissue properties. VBQ of white matter revealed distinct anatomical patterns of age-related change in microstructure. Widespread and profound reduction in MT contrasted with local FA decreases paralleled by MD increases. R1 reductions and R2* increases were observed to a smaller extent in overlapping occipito-parietal white matter regions. We interpret our findings, based on current biophysical models, as a fingerprint of age-dependent brain atrophy and underlying microstructural changes in myelin, iron deposits and water. The VBQ approach we present allows for systematic unbiased exploration of the interaction between imaging parameters and extends current methods for detection of neurodegenerative processes in the brain. The demonstrated parameter-specific distribution patterns offer insights into age-related brain structure changes in vivo and provide essential baseline data for studying disease against a background of healthy ageing.

  2. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    PubMed

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation.

  3. DCE-MRI-Derived Parameters in Evaluating Abraxane-Induced Early Vascular Response and the Effectiveness of Its Synergistic Interaction with Cisplatin

    PubMed Central

    Sun, Xilin; Yang, Lili; Yan, Xuefeng; Sun, Yingying; Zhao, Dongliang; Ji, Yang; Wang, Kai; Chen, Xiaoyuan; Shen, Baozhong

    2016-01-01

    Our previous studies revealed molecular alterations of tumor vessels, varying from immature to mature alterations, resulting from Abraxane, and demonstrated that the integrin-specific PET tracer 18F-FPPRGD2 can be used to noninvasively monitor such changes. However, changes in the tumor vasculature at functional levels such as perfusion and permeability are also important for monitoring Abraxane treatment outcomes in patients with cancer. The purpose of this study is to further investigate the vascular response during Abraxane therapy and the effectiveness of its synergistic interaction with cisplatin using Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI). Thirty MDA-MB-435 tumor mice were randomized into three groups: PBS control (C group), Abraxane only (A group), and sequential treatment with Abraxane followed by cisplatin (A-P group). Tumor volume was monitored based on caliper measurements. A DCE-MRI protocol was performed at baseline and day 3. The Ktrans, Kep and Ve were calculated and compared with CD31, α-SMA, and Ki67 histology data. Sequential treatment with Abraxane followed by cisplatin produced a significantly greater inhibition of tumor growth during the three weeks of the observation period. Decreases in Ktrans and Kep for the A and A-P groups were observed on day 3. Immunohistological staining suggested vascular remodeling during the Abraxane therapy. The changes in Ktrans and Kep values were correlated with alterations in the permeability of the tumor vasculature induced by the Abraxane treatment. In conclusion, Abraxane-mediated permeability variations in tumor vasculature can be quantitatively visualized by DCE-MRI, making this a useful method for studying the effects of early cancer treatment, especially the early vascular response. Vascular remodeling by Abraxane improves the efficiency of cisplatin delivery and thus results in a favorable treatment outcome. PMID:27632532

  4. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function.

    PubMed

    Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M

    2014-02-01

    Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment.

  5. [CT perfusion for assessment of brain stem ischemic lesions].

    PubMed

    Saifullina, E I; Iksanova, G R

    2007-01-01

    Modern neurovisualization modalities - CT and MRI with cerebral circulation assessment was used for diagnosis of cerebrovascular disturbances in patients admitted to the Emergency Care Hospital of Ufa. CT and MRI perfusion methods appeared to be highly effective both in diagnosis and treatment efficacy monitoring of acute stroke.

  6. Automatic quantitative analysis of cardiac MR perfusion images

    NASA Astrophysics Data System (ADS)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  7. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  8. Magnetic resonance imaging of luxury perfusion of the optic nerve head in anterior ischemic optic neuropathy.

    PubMed

    Yovel, Oren S; Katz, Miriam; Leiba, Hana

    2012-09-01

    A 49-year-old woman with painless reduction in visual acuity in her left eye was found to have nonarteritic anterior ischemic optic neuropathy (NAION). Fluorescein angiography revealed optic disc capillary leakage consistent with "luxury perfusion." Contrast-enhanced FLAIR magnetic resonance imaging (MRI) showed marked enhancement of the left optic disc. Resolution of the optic disc edema and the MRI abnormalities followed a similar time course. This report appears unique in documenting the MRI findings of luxury perfusion in NAION.

  9. A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer

    NASA Astrophysics Data System (ADS)

    Li, Xia; Welch, E. Brian; Arlinghaus, Lori R.; Bapsi Chakravarthy, A.; Xu, Lei; Farley, Jaime; Loveless, Mary E.; Mayer, Ingrid A.; Kelley, Mark C.; Meszoely, Ingrid M.; Means-Powell, Julie A.; Abramson, Vandana G.; Grau, Ana M.; Gore, John C.; Yankeelov, Thomas E.

    2011-09-01

    Quantitative analysis of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data requires the accurate determination of the arterial input function (AIF). A novel method for obtaining the AIF is presented here and pharmacokinetic parameters derived from individual and population-based AIFs are then compared. A Philips 3.0 T Achieva MR scanner was used to obtain 20 DCE-MRI data sets from ten breast cancer patients prior to and after one cycle of chemotherapy. Using a semi-automated method to estimate the AIF from the axillary artery, we obtain the AIF for each patient, AIFind, and compute a population-averaged AIF, AIFpop. The extended standard model is used to estimate the physiological parameters using the two types of AIFs. The mean concordance correlation coefficient (CCC) for the AIFs segmented manually and by the proposed AIF tracking approach is 0.96, indicating accurate and automatic tracking of an AIF in DCE-MRI data of the breast is possible. Regarding the kinetic parameters, the CCC values for Ktrans, vp and ve as estimated by AIFind and AIFpop are 0.65, 0.74 and 0.31, respectively, based on the region of interest analysis. The average CCC values for the voxel-by-voxel analysis are 0.76, 0.84 and 0.68 for Ktrans, vp and ve, respectively. This work indicates that Ktrans and vp show good agreement between AIFpop and AIFind while there is a weak agreement on ve.

  10. Functional Imaging: CT and MRI

    PubMed Central

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Synopsis Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advances in magnetic resonance imaging (MRI) of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized helium imaging, which can allow imaging of pulmonary ventilation and .measurement of the size of emphysematous spaces. PMID:18267192

  11. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...

  12. Water-Exchange-Modified Kinetic Parameters from Dynamic Contrast-Enhanced MRI as Prognostic Biomarkers of Survival in Advanced Hepatocellular Carcinoma Treated with Antiangiogenic Monotherapy

    PubMed Central

    Lee, Sang Ho; Hayano, Koichi; Zhu, Andrew X.; Sahani, Dushyant V.; Yoshida, Hiroyuki

    2015-01-01

    Background To find prognostic biomarkers in pretreatment dynamic contrast-enhanced MRI (DCE-MRI) water-exchange-modified (WX) kinetic parameters for advanced hepatocellular carcinoma (HCC) treated with antiangiogenic monotherapy. Methods Twenty patients with advanced HCC underwent DCE-MRI and were subsequently treated with sunitinib. Pretreatment DCE-MRI data on advanced HCC were analyzed using five different WX kinetic models: the Tofts-Kety (WX-TK), extended TK (WX-ETK), two compartment exchange, adiabatic approximation to tissue homogeneity (WX-AATH), and distributed parameter (WX-DP) models. The total hepatic blood flow, arterial flow fraction (γ), arterial blood flow (BFA), portal blood flow, blood volume, mean transit time, permeability-surface area product, fractional interstitial volume (vI), extraction fraction, mean intracellular water molecule lifetime (τC), and fractional intracellular volume (vC) were calculated. After receiver operating characteristic analysis with leave-one-out cross-validation, individual parameters for each model were assessed in terms of 1-year-survival (1YS) discrimination using Kaplan-Meier analysis, and association with overall survival (OS) using univariate Cox regression analysis with permutation testing. Results The WX-TK-model-derived γ (P = 0.022) and vI (P = 0.010), and WX-ETK-model-derived τC (P = 0.023) and vC (P = 0.042) were statistically significant prognostic biomarkers for 1YS. Increase in the WX-DP-model-derived BFA (P = 0.025) and decrease in the WX-TK, WX-ETK, WX-AATH, and WX-DP-model-derived vC (P = 0.034, P = 0.038, P = 0.028, P = 0.041, respectively) were significantly associated with an increase in OS. Conclusions The WX-ETK-model-derived vC was an effective prognostic biomarker for advanced HCC treated with sunitinib. PMID:26366997

  13. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.

    PubMed

    Pekkan, Kerem; Dur, Onur; Sundareswaran, Kartik; Kanter, Kirk; Fogel, Mark; Yoganathan, Ajit; Undar, Akif

    2008-12-01

    The objective of this study is to quantify the detailed three-dimensional (3D) pulsatile hemodynamics, mechanical loading, and perfusion characteristics of a patient-specific neonatal aortic arch during cardiopulmonary bypass (CPB). The 3D cardiac magnetic resonance imaging (MRI) reconstruction of a pediatric patient with a normal aortic arch is modified based on clinical literature to represent the neonatal morphology and flow conditions. The anatomical dimensions are verified from several literature sources. The CPB is created virtually in the computer by clamping the ascending aorta and inserting the computer-aided design model of the 10 Fr tapered generic cannula. Pulsatile (130 bpm) 3D blood flow velocities and pressures are computed using the commercial computational fluid dynamics (CFD) software. Second order accurate CFD settings are validated against particle image velocimetry experiments in an earlier study with a complex cardiovascular unsteady benchmark. CFD results in this manuscript are further compared with the in vivo physiological CPB pressure waveforms and demonstrated excellent agreement. Cannula inlet flow waveforms are measured from in vivo PC-MRI and 3 kg piglet neonatal animal model physiological experiments, distributed equally between the head-neck vessels and the descending aorta. Neonatal 3D aortic hemodynamics is also compared with that of the pediatric and fetal aortic stages. Detailed 3D flow fields, blood damage, wall shear stress (WSS), pressure drop, perfusion, and hemodynamic parameters describing the pulsatile energetics are calculated for both the physiological neonatal aorta and for the CPB aorta assembly. The primary flow structure is the high-speed canulla jet flow (approximately 3.0 m/s at peak flow), which eventually stagnates at the anterior aortic arch wall and low velocity flow in the cross-clamp pouch. These structures contributed to the reduced flow pulsatility (85%), increased WSS (50%), power loss (28%), and blood

  14. Intra-Tumor Distribution and Test-Retest Comparisons of Physiological Parameters quantified by Dynamic Contrast-Enhanced MRI in Rat U251 Glioma

    PubMed Central

    Aryal, Madhava P.; Nagaraja, Tavarekere N.; Brown, Stephen L.; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R.

    2014-01-01

    The distribution of dynamic contrast enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either: 1) CA plasma volume (vp), 2) vp and forward volume transfer constant (Ktrans; or 3) vp, Ktrans, and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA interstitial distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions – mean, median, variance and skewness – were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p≥0.10; Wilcoxon signed-rank and paired t tests). This and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. PMID:25125367

  15. Evaluation of IAUGC indices and two DCE-MRI pharmacokinetic parameters assessed by two different theoretical algorithms in patients with brain tumors.

    PubMed

    Bergamino, Maurizio; Barletta, Laura; Castellan, Lucio; Saitta, Laura; Mancardi, Giovanni Luigi; Roccatagliata, Luca

    2014-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) quantifies blood-brain barrier (BBB) microvascular permeability in brain tumors where it is structurally and functionally abnormal. Twenty-five patients with glioblastomas (105 regions of interest) were compared using DCE-MRI metrics obtained with Tofts-Kety (TK) and extended TK (ETK) models using different arterial input function assessments and different initial area under the gadolinium curve (IAUGC) indices. Strong correlations between ve and IAUGC90 were found (EKT model: R=0.75 and R=0.69), while correlations of K(trans) with both IAUGC80/90 indices were weak. Differences in the permeability parameters, calculated by these two models, were found. While the IAUGC method can be implemented more easily than pharmacokinetic models, at this time, the IAUGC approach alone does not substitute pharmacokinetic models in BBB permeability characterization.

  16. In Vivo Correlation of Glucose Metabolism, Cell Density and Microcirculatory Parameters in Patients with Head and Neck Cancer: Initial Results Using Simultaneous PET/MRI

    PubMed Central

    Kubiessa, Klaus; Boehm, Andreas; Barthel, Henryk; Kluge, Regine; Kahn, Thomas; Sabri, Osama; Stumpp, Patrick

    2015-01-01

    Objective To demonstrate the feasibility of simultaneous acquisition of 18F-FDG-PET, diffusion-weighted imaging (DWI) and T1-weighted dynamic contrast-enhanced MRI (T1w-DCE) in an integrated simultaneous PET/MRI in patients with head and neck squamous cell cancer (HNSCC) and to investigate possible correlations between these parameters. Methods 17 patients that had given informed consent (15 male, 2 female) with biopsy-proven HNSCC underwent simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE. SUVmax, SUVmean, ADCmean, ADCmin and Ktrans, kep and ve were measured for each tumour and correlated using Spearman’s ρ. Results Significant correlations were observed between SUVmean and Ktrans (ρ = 0.43; p ≤ 0.05); SUVmean and kep (ρ = 0.44; p ≤ 0.05); Ktrans and kep (ρ = 0.53; p ≤ 0.05); and between kep and ve (ρ = -0.74; p ≤ 0.01). There was a trend towards statistical significance when correlating SUVmax and ADCmin (ρ = -0.35; p = 0.08); SUVmax and Ktrans (ρ = 0.37; p = 0.07); SUVmax and kep (ρ = 0.39; p = 0.06); and ADCmean and ve (ρ = 0.4; p = 0.06). Conclusion Simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE in patients with HNSCC is feasible and allows depiction of complex interactions between glucose metabolism, microcirculatory parameters and cellular density. PMID:26270054

  17. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles.

    PubMed

    Hiepe, Patrick; Gussew, Alexander; Rzanny, Reinhard; Anders, Christoph; Walther, Mario; Scholle, Hans-Christoph; Reichenbach, Jürgen R

    2014-08-01

    Exercise-induced changes of transverse proton relaxation time (T2 ), tissue perfusion and metabolic turnover were investigated in the lower back muscles of volunteers by applying muscle functional MRI (mfMRI) and diffusion-weighted imaging (DWI) before and after as well as dynamic (31) P-MRS during the exercise. Inner (M. multifidus, MF) and outer lower back muscles (M. erector spinae, ES) were examined in 14 healthy young men performing a sustained isometric trunk-extension. Significant phosphocreatine (PCr) depletions ranging from 30% (ES) to 34% (MF) and Pi accumulations between 95% (left ES) and 120%-140% (MF muscles and right ES) were observed during the exercise, which were accompanied by significantly decreased pH values in all muscles (∆pH ≈ -0.05). Baseline T2 values were similar across all investigated muscles (approximately 27 ms at 3 T), but revealed right-left asymmetric increases (T2 ,inc ) after the exercise (right ES/MF: T2 ,inc  = 11.8/9.7%; left ES/MF: T2 ,inc  = 4.6/8.9%). Analyzed muscles also showed load-induced increases in molecular diffusion D (p = .007) and perfusion fraction f (p = .002). The latter parameter was significantly higher in the MF than in the ES muscles both at rest and post exercise. Changes in PCr (p = .03), diffusion (p < .01) and perfusion (p = .03) were strongly associated with T2,inc , and linear mixed model analysis revealed that changes in PCr and perfusion both affect T2,inc (p < .001). These findings support previous assumptions that T2 changes are not only an intra-cellular phenomenon resulting from metabolic stress but are also affected by increased perfusion in loaded muscles.

  18. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans .

  19. Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps?

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Siemonsen, Susanne; Dalski, Michael; Verleger, Tobias; Kemmling, Andre; Fiehler, Jens

    2014-03-01

    The acute ischemic stroke is a leading cause for death and disability in the industry nations. In case of a present acute ischemic stroke, the prediction of the future tissue outcome is of high interest for the clinicians as it can be used to support therapy decision making. Within this context, it has already been shown that the voxel-wise multi-parametric tissue outcome prediction leads to more promising results compared to single channel perfusion map thresholding. Most previously published multi-parametric predictions employ information from perfusion maps derived from perfusion-weighted MRI together with other image sequences such as diffusion-weighted MRI. However, it remains unclear if the typically calculated perfusion maps used for this purpose really include all valuable information from the PWI dataset for an optimal tissue outcome prediction. To investigate this problem in more detail, two different methods to predict tissue outcome using a k-nearest-neighbor approach were developed in this work and evaluated based on 18 datasets of acute stroke patients with known tissue outcome. The first method integrates apparent diffusion coefficient and perfusion parameter (Tmax, MTT, CBV, CBF) information for the voxel-wise prediction, while the second method employs also apparent diffusion coefficient information but the complete perfusion information in terms of the voxel-wise residue functions instead of the perfusion parameter maps for the voxel-wise prediction. Overall, the comparison of the results of the two prediction methods for the 18 patients using a leave-one-out cross validation revealed no considerable differences. Quantitatively, the parameter-based prediction of tissue outcome led to a mean Dice coefficient of 0.474, while the prediction using the residue functions led to a mean Dice coefficient of 0.461. Thus, it may be concluded from the results of this study that the perfusion parameter maps typically derived from PWI datasets include all

  20. Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI

    NASA Astrophysics Data System (ADS)

    Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.

    2016-10-01

    Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility. Thirteen healthy volunteers (28.7  ±  1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n  =  9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland-Altman analysis of agreement. Maximum percent change relative to parameters obtained using zero delays, were  -31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and  -10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p  =  0.0085) and HA fraction (p  <  0.0001), but not other parameters. Improved mean differences and Bland-Altman 95% Limits-of-Agreement for reproducibility of PV perfusion (9.3 ml/min/100 g, ±506.1 ml/min/100 g) and TLBF (43.8 ml/min/100 g, ±586.7 ml/min/100 g) were demonstrated using pre-estimated delays with constrained free modelling. CA bolus arrival delays cause profound differences in liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers.

  1. Acute Temporal Changes of MRI-Tracked Tumor Vascular Parameters after Combined Anti-angiogenic and Radiation Treatments in a Rat Glioma Model: Identifying Signatures of Synergism.

    PubMed

    Elmghirbi, Rasha; Nagaraja, Tavarekere N; Brown, Stephen L; Panda, Swayamprava; Aryal, Madhava P; Keenan, Kelly A; Bagher-Ebadian, Hassan; Cabral, Glauber; Ewing, James R

    2017-01-01

    In this study we used magnetic resonance imaging (MRI) biomarkers to monitor the acute temporal changes in tumor vascular physiology with the aim of identifying the vascular signatures that predict response to combined anti-angiogenic and radiation treatments. Forty-three athymic rats implanted with orthotopic U-251 glioma cells were studied for approximately 21 days after implantation. Two MRI studies were performed on each animal, pre- and post-treatment, to measure tumor vascular parameters. Two animal groups received treatment comprised of Cilengitide, an anti-angiogenic agent and radiation. The first group received a subcurative regimen of Cilengitide 1 h before irradiation, while the second group received a curative regimen of Cilengitide 8 h before irradiation. Cilengitide was given as a single dose (4 mg/kg; intraperitoneal) after the pretreatment MRI study and before receiving a 20 Gy radiation dose. After irradiation, the post-treatment MRI study was performed at selected time points: 2, 4, 8 and 12 h (n = ≥5 per time point). Significant changes in vascular parameters were observed at early time points after combined treatments in both treatment groups (1 and 8 h). The temporal changes in vascular parameters in the first group (treated 1 h before exposure) resembled a previously reported pattern associated with radiation exposure alone. Conversely, in the second group (treated 8 h before exposure), all vascular parameters showed an initial response at 2-4 h postirradiation, followed by an apparent lack of response at later time points. The signature time point to define the "synergy" of Cilengitide and radiation was 4 h postirradiation. For example, 4 h after combined treatments using a 1 h separation (which followed the subcurative regimen), tumor blood flow was significantly decreased, nearly 50% below baseline (P = 0.007), whereas 4 h after combined treatments using an 8 h separation (which followed the curative regimen), tumor blood flow was only 10

  2. Can Parameters Other than Minimal Axial Diameter in MRI and PET/CT Further Improve Diagnostic Accuracy for Equivocal Retropharyngeal Lymph Nodes in Nasopharyngeal Carcinoma?

    PubMed Central

    Wu, Chin-Shun; Zhang, Guo-Yi; Chang, Chih-Han; Cheng, Kuo-Sheng; Yao, Wei-Jen; Chang, Yu-Kang; Chien, Tsair-Wei; Lin, Li-Ching; Lin, Keng-Ren

    2016-01-01

    Purpose Minimal axial diameter (MIAD) in magnetic resonance imaging (MRI) was recognized as the most useful parameter in diagnosing lateral retropharyngeal lymph (LRPL) nodes in nasopharyngeal carcinoma (NPC). This study aims to explore the additional nodal parameters in MRI and positron emission tomography–computed tomography for increasing the prediction accuracy. Materials and Methods A total of 663 LRPL nodes were retrospectively collected from 335 patients with NPC. The LRPL nodes ascertained on follow-up MRI were considered positive for metastases. First, the optimal cutoff value of each parameter was derived for each parameter. In addition, neural network (NN) nodal evaluation was tested for all combinations of three parameters, namely MIAD, maximal axial diameter (MAAD), and maximal coronal diameter (MACD). The optimal approach was determined through brute force attack, and the results of two methods were compared using a bootstrap sampling method. Second, the mean standard uptake value (NSUVmean) was added as the fourth parameter and tested in the same manner for 410 nodes in 219 patients. Results In first and second analysis, the accuracy rate (percentage) for the MIAD was 89.0% (590/663) and 89.0% (365/410), with the optimal cutoff values being 6.1 mm and 6.0 mm, respectively. With the combination of all three and four parameters, the accuracy rate of the NN was 89% (288/332) and 88.8% (182/205), respectively. In prediction, the optimal combinations of the three and four parameters resulted in correct identification of three (accuracy: 593/663, 89.4%) and six additional nodes (371/410, 90.5%), representing 4% (3/73) and 13.3% (6/45) decreases in incorrect prediction, respectively. Conclusion NPC LRPL nodes with an MIAD ≥ 6.1 mm are positive. Among nodes with an MIAD < 6.1 mm, if the NSUVmean ≥ 2.6 or MACD ≥ 25 mm and MAAD ≥ 8 mm, the nodes are positive; otherwise, they are negative. PMID:27736927

  3. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

    PubMed Central

    Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry

    2013-01-01

    The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258

  4. Multimodal MRI of experimental stroke

    PubMed Central

    Duong, Timothy Q

    2014-01-01

    Stroke is the fourth leading cause of death and the leading cause of long-term disability in the United States. Brain imaging data from experimental stroke models and stroke patients have shown that there is often a gradual progression of potentially reversible ischemic injury toward infarction. Reestablishing tissue perfusion and/or treating with neuroprotective drugs in a timely fashion are expected to salvage some ischemic tissues. Diffusion-weighted imaging based on magnetic resonance imaging (MRI) in which contrast is based on water motion can detect ischemic injury within minutes after onsets, whereas computed tomography and other imaging modalities fail to detect stroke injury for at least a few hours. Along with quantitative perfusion imaging, the perfusion-diffusion mismatch which approximates the ischemic penumbra could be imaged non-invasively. This review describes recent progresses in the development and application of multimodal MRI and image analysis techniques to study ischemic tissue at risk in experimental stroke in rats. PMID:24323751

  5. Evaluation of head and neck tumors with functional MRI

    PubMed Central

    Jansen, Jacobus F.A.; Parra, Carlos; Lu, Yonggang; Shukla-Dave, Amita

    2015-01-01

    Synopsys Head and neck (HN) cancer is one of the most common cancers worldwide. Magnetic Resonance Imaging (MRI) based diffusion and perfusion techniques enable the non-invasive assessment of tumor biology and physiology, which supplement information obtained from standard structural scans. Diffusion and perfusion MRI techniques provide novel biomarkers that can aid the monitoring pre-, during, and post-treatment stages to improve patient selection for therapeutic strategies, provide evidence for change of therapy regime, and evaluation of treatment response. This review discusses pertinent aspects of the role of diffusion and perfusion MRI and computational analysis methods in studying HN cancer. PMID:26613878

  6. Reversible changes in diffusion- and perfusion-based imaging in cerebral venous sinus thrombosis.

    PubMed

    Lin, Ning; Wong, Andrew K; Lipinski, Lindsay J; Mokin, Maxim; Siddiqui, Adnan H

    2016-02-01

    Diffusion- and perfusion-based imaging studies are regularly used in patients with ischemic stroke. Cerebral venous sinus thrombosis (CVST) is a rare cause of stroke and is primarily treated by systemic anticoagulation. Endovascular intervention can be considered in cases of failed medical therapy, yet the prognostic value of diffusion- and perfusion-based imaging for CVST has not been clearly established. We present a patient with CVST whose abnormal findings on MRI and CT perfusion images were largely reversed after endovascular treatment.

  7. Magnetic resonance perfusion imaging in neuro-oncology

    PubMed Central

    O’Connor, James; Thompson, Gerard; Mills, Samantha

    2008-01-01

    Abstract Recent advances in magnetic resonance imaging (MRI) have seen the development of techniques that allow quantitative imaging of a number of anatomical and physiological descriptors. These techniques have been increasingly applied to cancer imaging where they can provide some insight into tumour microvascular structure and physiology. This review details technical approaches and application of quantitative MRI, focusing particularly on perfusion imaging and its role in neuro-oncology. PMID:18980870

  8. Magnetic resonance perfusion imaging in neuro-oncology.

    PubMed

    Jackson, Alan; O'Connor, James; Thompson, Gerard; Mills, Samantha

    2008-10-13

    Recent advances in magnetic resonance imaging (MRI) have seen the development of techniques that allow quantitative imaging of a number of anatomical and physiological descriptors. These techniques have been increasingly applied to cancer imaging where they can provide some insight into tumour microvascular structure and physiology. This review details technical approaches and application of quantitative MRI, focusing particularly on perfusion imaging and its role in neuro-oncology.

  9. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    PubMed Central

    Cao, Yue; Wang, Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  10. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  11. Safety and Feasibility of High-pressure Transvenous Limb Perfusion With 0.9% Saline in Human Muscular Dystrophy

    PubMed Central

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2012-01-01

    We evaluated safety and feasibility of the transvenous limb perfusion gene delivery method in muscular dystrophy. A dose escalation study of single limb perfusion with 0.9% saline starting with 5% of limb volume was carried out in adults with muscular dystrophies under intravenous analgesia/anesthesia. Cardiac, vascular, renal, muscle, and nerve functions were monitored. A tourniquet was placed above the knee with inflated pressure of 310 mm Hg. Infusion was carried out with a clinically approved infuser via an intravenous catheter inserted in the saphenous vein with a goal infusion rate of 80 ml/minute. Infusion volume was escalated stepwise to 20% limb volume in seven subjects. No subject complained of any post procedure pain other than due to needle punctures. Safety warning boundaries were exceeded only for transient depression of limb tissue oximetry and transient elevation of muscle compartment pressures; these were not associated with nerve, muscle, or vascular damage. Muscle magnetic resonant imaging (MRI) demonstrated fluid accumulation in muscles of the perfused lower extremity. High-pressure retrograde transvenous limb perfusion with saline up to 20% of limb volume at above infusion parameters is safe and feasible in adult human muscular dystrophy. This study will serve as a basis for future gene transfer clinical trials. PMID:21772257

  12. GPU-accelerated voxelwise hepatic perfusion quantification.

    PubMed

    Wang, H; Cao, Y

    2012-09-07

    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using compute unified device architecture-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, nonlinear least-squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626 400 voxels in a patient's liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10(-6). The method will be useful for generating liver perfusion images in clinical settings.

  13. Coupling between resting cerebral perfusion and EEG.

    PubMed

    O'Gorman, R L; Poil, S-S; Brandeis, D; Klaver, P; Bollmann, S; Ghisleni, C; Lüchinger, R; Martin, E; Shankaranarayanan, A; Alsop, D C; Michels, L

    2013-07-01

    While several studies have investigated interactions between the electroencephalography (EEG) and functional magnetic resonance imaging BOLD signal fluctuations, less is known about the associations between EEG oscillations and baseline brain haemodynamics, and few studies have examined the link between EEG power outside the alpha band and baseline perfusion. Here we compare whole-brain arterial spin labelling perfusion MRI and EEG in a group of healthy adults (n = 16, ten females, median age: 27 years, range 21-48) during an eyes closed rest condition. Correlations emerged between perfusion and global average EEG power in low (delta: 2-4 Hz and theta: 4-7 Hz), middle (alpha: 8-13 Hz), and high (beta: 13-30 Hz and gamma: 30-45 Hz) frequency bands in both cortical and sub-cortical regions. The correlations were predominately positive in middle and high-frequency bands, and negative in delta. In addition, central alpha frequency positively correlated with perfusion in a network of brain regions associated with the modulation of attention and preparedness for external input, and central theta frequency correlated negatively with a widespread network of cortical regions. These results indicate that the coupling between average EEG power/frequency and local cerebral blood flow varies in a frequency specific manner. Our results are consistent with longstanding concepts that decreasing EEG frequencies which in general map onto decreasing levels of activation.

  14. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI.

    PubMed

    Buckley, David L

    2002-03-01

    In recent years a number of physiological models have gained prominence in the analysis of dynamic contrast-enhanced T1-weighted MRI data. However, there remains little evidence to support their use in estimating the absolute values of tissue physiological parameters such as perfusion, capillary permeability, and blood volume. In an attempt to address this issue, data were simulated using a distributed pathway model of tracer kinetics, and three published models were fitted to the resultant concentration-time curves. Parameter estimates obtained from these fits were compared with the parameters used for the simulations. The results indicate that the use of commonly accepted models leads to systematic overestimation of the transfer constant, Ktrans, and potentially large underestimates of the blood plasma volume fraction, Vp. In summary, proposals for a practical approach to physiological modeling using MRI data are outlined.

  15. Abdominal perfusion computed tomography.

    PubMed

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-02-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis.

  16. Abdominal Perfusion Computed Tomography

    PubMed Central

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M. Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-01-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis. PMID:25610249

  17. Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques

    PubMed Central

    Li, Ka-Loh; Ostergaard, Leif; Calamante, Fernando

    2014-01-01

    Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI. PMID:25246817

  18. Perfusion Estimated With Rapid Dynamic Contrast-Enhanced Magnetic Resonance Imaging Correlates Inversely With Vascular Endothelial Growth Factor Expression and Pimonidazole Staining in Head-and-Neck Cancer: A Pilot Study

    SciTech Connect

    Donaldson, Stephanie B.; Betts, Guy; Bonington, Suzanne C.; Homer, Jarrod J.; Slevin, Nick J.; Kershaw, Lucy E.; Valentine, Helen; West, Catharine M.L.; Buckley, David L.

    2011-11-15

    Purpose: To analyze, in a pilot study, rapidly acquired dynamic contrast-enhanced (DCE)-MRI data with a general two-compartment exchange tracer kinetic model and correlate parameters obtained with measurements of hypoxia and vascular endothelial growth factor (VEGF) expression in patients with squamous cell carcinoma of the head and neck. Methods and Materials: Eight patients were scanned before surgery. The DCE-MRI data were acquired with 1.5-s temporal resolution and analyzed using the two-compartment exchange tracer kinetic model to obtain estimates of parameters including perfusion and permeability surface area. Twelve to 16 h before surgery, patients received an intravenous injection of pimonidazole. Samples taken during surgery were used to determine the level of pimonidazole staining using immunohistochemistry and VEGF expression using quantitative real-time polymerase chain reaction. Correlations between the biological and imaging data were examined. Results: Of the seven tumors fully analyzed, those that were poorly perfused tended to have high levels of pimonidazole staining (r = -0.79, p = 0.03) and VEGF expression (r = -0.82, p = 0.02). Tumors with low permeability surface area also tended to have high levels of hypoxia (r = -0.75, p = 0.05). Hypoxic tumors also expressed higher levels of VEGF (r = 0.82, p = 0.02). Conclusions: Estimates of perfusion obtained with rapid DCE-MRI data in patients with head-and-neck cancer correlate inversely with pimonidazole staining and VEGF expression.

  19. MRI and low back pain

    MedlinePlus

    Backache - MRI; Low back pain - MRI; Lumbar pain - MRI; Back strain - MRI; Lumbar radiculopathy - MRI; Herniated intervertebral disk - MRI; Prolapsed intervertebral disk - MRI; Slipped disk - MRI; Ruptured ...

  20. rf enhancement and shielding in MRI caused by conductive implants: dependence on electrical parameters for a tube model.

    PubMed

    Graf, Hansjörg; Steidle, Günter; Lauer, Ulrike A; Schick, Fritz

    2005-02-01

    Radio frequency (rf) eddy-currents induced in implants made of conductive material might cause significant image artifacts in magnetic resonance imaging (MRI) such as shielding of the lumen of vascular stents. rf alteration near metal parts was assessed theoretically in the approximation of alternating current electrodynamics: The implant was modeled as tube with diameter d(o), resistance R, and reactance Y, constituting the secondary winding of a transformer. The transmitter coil of the scanner acted as primary winding and generated the linearly polarized rf field B1,app. Tube axis was assumed parallel to B1,app. The results of the calculations were as follows: Ninety percent of the applied rf-field amplitude is reached in the lumen at a ratio chi=R/Y approximately 2. A rapid drop occurs with the reduction of chi, whereas a further increase of chi causes only a small effect. With chi approximately 1/d(o)(Y approximately d2o,R approximately d(o)), conditions for rf alteration clearly depend on the diameter of the tube. Inside tubes with smaller diameter, rf shielding is less pronounced. rf alteration increases in good approximation with the square root of the strength of the static field B0. The following experiments were carried out: Tubes of similar diameter (d(o) approximately 8 mm) made of material of different conductivity (Cu, Nitinol, carbon fiber reinforced plastic with three different fiber structures) were examined at B0=0.2 and 1.5 T in water phantoms. Tube axis was aligned perpendicular to B0 and spin-echo technique was applied. Local rf enhancement near the outer surface of the metal tubes was detected applying manual reduction of the transmitter amplitude. Shielding inside a carbon fiber tube with d(o) approximately 8 mm and inside a smaller tube with d(o)=3.3 mm was compared. Both tubes showed the same wall structure and thickness (d(w)=0.4 mm). All measurements confirmed the theoretical results. Consequences for the construction of vascular stents

  1. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    SciTech Connect

    Neal, B; Chen, Q

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.

  2. Quantitative myocardial perfusion SPECT.

    PubMed

    Tsui, B M; Frey, E C; LaCroix, K J; Lalush, D S; McCartney, W H; King, M A; Gullberg, G T

    1998-01-01

    In recent years, there has been much interest in the clinical application of attenuation compensation to myocardial perfusion single photon emission computed tomography (SPECT) with the promise that accurate quantitative images can be obtained to improve clinical diagnoses. The different attenuation compensation methods that are available create confusion and some misconceptions. Also, attenuation-compensated images reveal other image-degrading effects including collimator-detector blurring and scatter that are not apparent in uncompensated images. This article presents basic concepts of the major factors that degrade the quality and quantitative accuracy of myocardial perfusion SPECT images, and includes a discussion of the various image reconstruction and compensation methods and misconceptions and pitfalls in implementation. The differences between the various compensation methods and their performance are demonstrated. Particular emphasis is directed to an approach that promises to provide quantitative myocardial perfusion SPECT images by accurately compensating for the 3-dimensional (3-D) attenuation, collimator-detector response, and scatter effects. With advances in the computer hardware and optimized implementation techniques, quantitatively accurate and high-quality myocardial perfusion SPECT images can be obtained in clinically acceptable processing time. Examples from simulation, phantom, and patient studies are used to demonstrate the various aspects of the investigation. We conclude that quantitative myocardial perfusion SPECT, which holds great promise to improve clinical diagnosis, is an achievable goal in the near future.

  3. Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma

    PubMed Central

    Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F

    2016-01-01

    We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review. PMID:27761184

  4. Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application.

    PubMed

    Hartkamp, Nolan S; Petersen, Esben T; De Vis, Jill B; Bokkers, Reinoud P H; Hendrikse, Jeroen

    2013-08-01

    A knowledge of the exact cerebral perfusion territory which is supplied by any artery is of great importance in the understanding and diagnosis of cerebrovascular disease. The development and optimization of territorial arterial spin labeling (T-ASL) MRI techniques in the past two decades have made it possible to visualize and determine the cerebral perfusion territories in individual patients and, more importantly, to do so without contrast agents or otherwise invasive procedures. This review provides an overview of the development of ASL techniques that aim to visualize the general cerebral perfusion territories or the territory of a specific artery of interest. The first efforts of T-ASL with pulsed, continuous and pseudo-continuous techniques are summarized and subsequent clinical studies using T-ASL are highlighted. In the healthy population, the perfusion territories of the brain-feeding arteries are highly variable. This high variability requires special consideration in specific patient groups, such as patients with cerebrovascular disease, stroke, steno-occlusive disease of the large arteries and arteriovenous malformations. In the past, catheter angiography with selective contrast injection was the only available method to visualize the cerebral perfusion territories in vivo. Several T-ASL methods, sometimes referred to as regional perfusion imaging, are now available that can easily be combined with conventional brain MRI examinations to show the relationship between the cerebral perfusion territories, vascular anatomy and brain infarcts or other pathology. Increased availability of T-ASL techniques on clinical MRI scanners will allow radiologists and other clinicians to gain further knowledge of the relationship between vasculature and patient diagnosis and prognosis. Treatment decisions, such as surgical revascularization, may, in the near future, be guided by information provided by T-ASL MRI in close correlation with structural MRI and quantitative

  5. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation.

  6. Practical Dynamic Contrast Enhanced MRI in Small Animal Models of Cancer: Data Acquisition, Data Analysis, and Interpretation

    PubMed Central

    Barnes, Stephanie L.; Whisenant, Jennifer G.; Loveless, Mary E.; Yankeelov, Thomas E.

    2012-01-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) consists of the continuous acquisition of images before, during, and after the injection of a contrast agent. DCE-MRI allows for noninvasive evaluation of tumor parameters related to vascular perfusion and permeability and tissue volume fractions, and is frequently employed in both preclinical and clinical investigations. However, the experimental and analytical subtleties of the technique are not frequently discussed in the literature, nor are its relationships to other commonly used quantitative imaging techniques. This review aims to provide practical information on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though we do frequently refer to clinical studies that are related to these topics). PMID:23105959

  7. Quantitative measurement of tissue perfusion and diffusion in vivo.

    PubMed

    Chenevert, T L; Pipe, J G; Williams, D M; Brunberg, J A

    1991-01-01

    Magnetic resonance imaging techniques designed for sensitivity to microscopic motions of water diffusion and blood flow in the capillary network are also exceptionally sensitive to bulk motion properties of the tissue, which may lead to contrast artifact and large quantitative errors. The magnitude of bulk motion error that exists in human brain perfusion/diffusion imaging and the inability of cardiac gating to adequately control this motion are demonstrated by direct measurement of phase stability of voxels localized in the brain. Two methods are introduced to reduce bulk motion phase error. The first, a postprocessing phase correction algorithm, reduces coarse phase error but is inadequate by itself for quantitative perfusion/diffusion MRI. The second method employs orthogonal slice selection gradients to define a column of tissue in the object, from which echoes may be combined in a phase-insensitive manner to measure more reliably the targeted signal attenuation. Applying this acquisition technique and a simplistic model of perfusion and diffusion signal attenuations yields an estimated perfusion fraction of 3.4 +/- 1.1% and diffusion coefficient of 1.1 +/- 0.2 x 10(-5) cm2/s in the white matter of one normal volunteer. Successful separation of perfusion and diffusion effects by this technique is supported in a dynamic study of calf muscle. Periods of normal blood flow, low flow, and reactive hyperemia are clearly distinguished in the quantitative perfusion results, whereas measured diffusion remained nearly constant.

  8. [Portable peristaltic perfusion pumps].

    PubMed

    Magallón Pedrera, I; Soto Torres, I

    1999-11-01

    Portable peristaltic perfusion pumps allow one to administer pharmaceuticals in hospitals as well as in primary health care centers and furthermore these pumps present multiple advantages for patients and their families since they make it possible to carry out treatment in a patient's home while at the same time lowering the costs involved. The authors analyze the most out standing aspects of portable peristaltic perfusion pumps along with their characteristics, installation, programming, and how to turn them on; in addition, the authors list the maintenance care which these pumps require.

  9. The pediatric template of brain perfusion

    PubMed Central

    Avants, Brian B; Duda, Jeffrey T; Kilroy, Emily; Krasileva, Kate; Jann, Kay; Kandel, Benjamin T; Tustison, Nicholas J; Yan, Lirong; Jog, Mayank; Smith, Robert; Wang, Yi; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities that quantify both structure and function. These measurements may yield valuable insights into the neural patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the understanding of childhood brain development as seen through the lens of multiple modality neuroimaging and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by Arterial Spin Labeling (ASL), in 120 children 7–18 years of age. We describe the PTBP and show, as a demonstration of validity, that global summary measurements capture the trajectories that demarcate critical turning points in brain maturation. This novel resource will allow a more detailed understanding of the network-level, structural and functional landmarks that are obtained during normal adolescent brain development. PMID:25977810

  10. The pediatric template of brain perfusion.

    PubMed

    Avants, Brian B; Duda, Jeffrey T; Kilroy, Emily; Krasileva, Kate; Jann, Kay; Kandel, Benjamin T; Tustison, Nicholas J; Yan, Lirong; Jog, Mayank; Smith, Robert; Wang, Yi; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities that quantify both structure and function. These measurements may yield valuable insights into the neural patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the understanding of childhood brain development as seen through the lens of multiple modality neuroimaging and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by Arterial Spin Labeling (ASL), in 120 children 7-18 years of age. We describe the PTBP and show, as a demonstration of validity, that global summary measurements capture the trajectories that demarcate critical turning points in brain maturation. This novel resource will allow a more detailed understanding of the network-level, structural and functional landmarks that are obtained during normal adolescent brain development.

  11. Pseudo-continuous arterial spin labeling imaging of cerebral blood perfusion asymmetry in drug-naïve patients with first-episode major depression

    PubMed Central

    Chen, Guangdong; Bian, Haiman; Jiang, Deguo; Cui, Mingwei; Ji, Shengzhang; Liu, Mei; Lang, Xu; Zhuo, Chuanjun

    2016-01-01

    Many previous studies have reported that regional cerebral blood flow (rCBF) aberrations may be one of the pathological characteristics of depression and rCBF has demonstrated a certain degree of asymmetry. However, studies investigating the cerebral blood perfusion asymmetry changes of drug-naïve patients experiencing their first episode of major depression using pseudo-continuous arterial spin labeling (pCASL) are rare. Ten drug-naïve patients experiencing their first major depression episode and 15 healthy volunteers were enrolled in the current study. A novel pCASL method was applied to whole brain MRI scans of all of the samples. The Statistics Parameter Mapping and Relative Expression Software Tool software packages were used for the pre-processing and statistical analysis of the two sets of images, and the differences in the cerebral blood perfusion at the whole brain level were compared between the two groups. Compared with the healthy control group, the cerebral perfusion of the depression patients showed an asymmetric pattern. Decreased cerebral blood perfusion regions were primarily located in the left hemisphere, specifically in the left temporal lobe, frontal lobe and cingulate cortex [P<0.05 and cluster size ≥30 with false discovery rate (FDR) correction]. Simultaneously, increased perfusion regions were predominantly located in the right hemisphere, specifically in the right cerebellum, thalamus, frontal lobe and anterior cingulate cortex (P<0.05 and cluster size ≥30, with FDR correction). Thus, pCASL may characterize the alterations in cerebral blood perfusion of patients with depression. PMID:28101340

  12. Differential diagnosis of prostate cancer and noncancerous tissue in the peripheral zone and central gland using the quantitative parameters of DCE-MRI

    PubMed Central

    Gao, Peng; Shi, Changzheng; Zhao, Lianping; Zhou, Quan; Luo, Liangping

    2016-01-01

    Abstract Background: The objective of this meta-analysis was to evaluate the clinical usefulness of Ktrans, Kep, and Ve values in the differential diagnosis of prostate cancer (PCa) and noncancerous tissue in the peripheral zone (PZ) and central gland (CG). Methods: A search was conducted of the PubMed, MEDLINE, EMBASE, Cochrane Library, China National Knowledge Infrastructure, and Wanfang databases from January 2000 to October 2015 using the search terms “prostate cancer,” “ dynamic contrast-enhanced (DCE),” “magnetic resonance imaging,” “Ktrans,” “Kep,” and “Ve.” Studies were selected and included according to strict eligibility criteria. Standardized mean differences (SMDs) and 95% confidence intervals (CIs) were used to compare Ktrans, Kep, and Ve values between PCa and noncancerous tissue. Results: Fourteen studies representing 484 patients highly suspicious for prostate adenocarcinoma were selected for the meta-analysis. We found that Ktrans values measured by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were significantly higher in PCa tissue than in noncancerous tissue in the PZ (SMD 1.57, 95% CI 0.98–2.16; z = 5.21, P <0.00001) and CG (SMD 1.19, 95% CI 0.46–1.91; z = 3.21, P = 0.001). Kep values measured by DCE-MRI were significantly higher in PCa than in noncancerous tissue in the PZ (SMD 1.41, 95% CI 0.92–1.91; z = 5.59, P < 0.00001) and CG (SMD 1.57, 95% CI 0.69–2.46; z = 3.49, P = 0.0005). Ve values generated by DCE-MRI were slightly higher in PCa than in noncancerous tissue in the PZ (SMD 0.72, 95% CI 0.17–1.27; z = 2.58, P = 0.010), but sensitivity analysis found that the Ve value was unstable for differentiation between PCa and noncancerous PZ tissue. However, there was no significant difference in the Ve value between PCa and noncancerous CG tissue (SMD −0.29, 95% CI −1.18, 0.59; z = 0.65, P = 0.51). Conclusion: Our meta-analysis shows that Ktrans and Kep were the most

  13. The adverse effects of reduced cerebral perfusion on cognition and brain structure in older adults with cardiovascular disease

    PubMed Central

    Alosco, Michael L; Gunstad, John; Jerskey, Beth A; Xu, Xiaomeng; Clark, Uraina S; Hassenstab, Jason; Cote, Denise M; Walsh, Edward G; Labbe, Donald R; Hoge, Richard; Cohen, Ronald A; Sweet, Lawrence H

    2013-01-01

    Background It is well established that aging and vascular processes interact to disrupt cerebral hemodynamics in older adults. However, the independent effects of cerebral perfusion on neurocognitive function among older adults remain poorly understood. We examined the associations among cerebral perfusion, cognitive function, and brain structure in older adults with varying degrees of vascular disease using perfusion magnetic resonance imaging (MRI) arterial spin labeling (ASL). Materials and methods 52 older adults underwent neuroimaging and were administered the Mini Mental State Examination (MMSE), the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and measures of attention/executive function. ASL and T1-weighted MRI were used to quantify total brain perfusion, total brain volume (TBV), and cortical thickness. Results Regression analyses showed reduced total brain perfusion was associated with poorer performance on the MMSE, RBANS total index, immediate and delayed memory composites, and Trail Making Test B. Reduced frontal lobe perfusion was associated with worse executive and memory function. A similar pattern emerged between temporal lobe perfusion and immediate memory. Regression analyses revealed that decreased total brain perfusion was associated with smaller TBV and mean cortical thickness. Regional effects of reduced total cerebral perfusion were found on temporal and parietal lobe volumes and frontal and temporal cortical thickness. Discussion Reduced cerebral perfusion is independently associated with poorer cognition, smaller TBV, and reduced cortical thickness in older adults. Conclusion Prospective studies are needed to clarify patterns of cognitive decline and brain atrophy associated with cerebral hypoperfusion. PMID:24363966

  14. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  15. Impact of intraoperative MRI/TRUS fusion on dosimetric parameters in cT3a prostate cancer patients treated with high-dose-rate real-time brachytherapy

    PubMed Central

    Crook, Juanita; Casquero, Francisco; Carvajal, Claudia; Urresola, Arantxa; Canteli, Begoña; Ezquerro, Ana; Hortelano, Eduardo; Cacicedo, Jon; Espinosa, Jose Maria; Perez, Fernando; Minguez, Pablo; Bilbao, Pedro

    2014-01-01

    Purpose The purpose of this study was to evaluate the impact of intraoperative MRI/TRUS fusion procedure in cT3a prostate cancer patients treated with high-dose-rate (HDR) real-time brachytherapy. Material and methods Prostate gland, dominant intraprostatic lesions (DILs), and extracapsular extension (ECE) were delineated in the pre-brachytherapy magnetic resonance images (MRI) of 9 consecutive patients. The pre-implant P-CTVUS (prostate clinical target volume) was defined as the prostate seen in the transrectal ultrasound (TRUS) images. The CTVMR includedthe prostate with the ECE image (ECE-CTV) as defined on the MRI. Two virtual treatment plans were performed based on the MRI/TRUS fusion images, the first one prescribing 100% of the dose to the P-PTVUS, and the second prescribing to the PTVMR. The implant parameters and dose-volume histogram (DVH) related parameters of the prostate, OARs, and ECE were compared between both plans. Results Mean radial distance of ECE was 3.6 mm (SD: 1.1). No significant differences were found between prostate V100, V150, V200, and OARs DVH-related parameters between the plans. Mean values of ECE V100, V150, and V200 were 85.9% (SD: 15.1), 18.2% (SD: 17.3), and 5.85% (SD: 7) when the doses were prescribed to the PTVUS, whereas ECE V100, V150, and V200 were 99.3% (SD: 1.2), 45.8% (SD: 22.4), and 19.6% (SD: 12.6) when doses were prescribed to PTVMR (p = 0.028, p = 0.002 and p = 0.004, respectively). Conclusions TRUS/MRI fusion provides important information for prostate brachytherapy, allowing for better coverage and higher doses to extracapsular disease in patients with clinical stage T3a. PMID:25097555

  16. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging

    PubMed Central

    Martin, Alastair J.; Alexander, Matthew D.; McCoy, David B.; Cooke, Daniel L.; Lillaney, Prasheel; Moftakhar, Parham; Amans, Matthew R.; Settecase, Fabio; Nicholson, Andrew; Dowd, Christopher F.; Halbach, Van V.; Higashida, Randall T.; McDermott, Michael W.; Saloner, David; Hetts, Steven W.

    2016-01-01

    Background and Purpose To evaluate the ability of IA MR perfusion to characterize meningioma blood supply. Methods Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA) and intravenous (IV) T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA) dural, internal carotid artery (ICA) dural, or pial. MR perfusion data regions of interest (ROIs) were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM), relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and mean transit time (MTT). Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling. Results 18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11), ICA dural (n = 4), or pial (n = 3). FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion. PMID:27802268

  17. Low dose CT perfusion using k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2016-03-01

    We aim at improving low dose CT perfusion functional parameters maps and CT images quality, preserving quantitative information. In a dynamic CT perfusion dataset, each voxel is measured T times, where T is the number of acquired time points. In this sense, we can think about a voxel as a point in a T-dimensional space, where the coordinates of the voxels would be the values of its time attenuation curve (TAC). Starting from this idea, a k-means algorithm was designed to group voxels in K classes. A modified guided time-intensity profile similarity (gTIPS) filter was implemented and applied only for those voxels belonging to the same class. The approach was tested on a digital brain perfusion phantom as well as on clinical brain and body perfusion datasets, and compared to the original TIPS implementation. The TIPS filter showed the highest CNR improvement, but lowest spatial resolution. gTIPS proved to have the best combination of spatial resolution and CNR improvement for CT images, while k-gTIPS was superior to both gTIPS and TIPS in terms of perfusion maps image quality. We demonstrate k-means clustering analysis can be applied to denoise dynamic CT perfusion data and to improve functional maps. Beside the promising results, this approach has the major benefit of being independent from the perfusion model employed for functional parameters calculation. No similar approaches were found in literature.

  18. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques.

    PubMed

    MacDonald, Matthew Ethan; Frayne, Richard

    2015-07-01

    Cerebrovascular imaging is of great interest in the understanding of neurological disease. MRI is a non-invasive technology that can visualize and provide information on: (i) the structure of major blood vessels; (ii) the blood flow velocity in these vessels; and (iii) the microcirculation, including the assessment of brain perfusion. Although other medical imaging modalities can also interrogate the cerebrovascular system, MR provides a comprehensive assessment, as it can acquire many different structural and functional image contrasts whilst maintaining a high level of patient comfort and acceptance. The extent of examination is limited only by the practicalities of patient tolerance or clinical scheduling limitations. Currently, MRI methods can provide a range of metrics related to the cerebral vasculature, including: (i) major vessel anatomy via time-of-flight and contrast-enhanced imaging; (ii) blood flow velocity via phase contrast imaging; (iii) major vessel anatomy and tissue perfusion via arterial spin labeling and dynamic bolus passage approaches; and (iv) venography via susceptibility-based imaging. When designing an MRI protocol for patients with suspected cerebral vascular abnormalities, it is appropriate to have a complete understanding of when to use each of the available techniques in the 'MR angiography toolkit'. In this review article, we: (i) overview the relevant anatomy, common pathologies and alternative imaging modalities; (ii) describe the physical principles and implementations of the above listed methods; (iii) provide guidance on the selection of acquisition parameters; and (iv) describe the existing and potential applications of MRI to the cerebral vasculature and diseases. The focus of this review is on obtaining an understanding through the application of advanced MRI methodology of both normal and abnormal blood flow in the cerebrovascular arteries, capillaries and veins.

  19. Arterial Perfusion Imaging-Defined Subvolume of Intrahepatic Cancer

    PubMed Central

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-01-01

    Purpose To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression post RT. Methods and Materials Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective IRB-approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) were performed prior to RT (pre-RT), after delivering ~60% of the planned dose (mid-RT) and one month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results Of the 24 tumors, 6 tumors in 5 patients progressed 5–21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors comparing to the responsive ones (p=0.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median: −14%, range: −75% – 65%), while the progressing tumors had an increase of the subvolumes (median: 57%, range: −7% – 165%) (p=0.003). Receiver operating characteristic (ROC) analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve (AUC) of 0.90. Conclusion The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate

  20. Kinetic assessment of manganese using magnetic resonance imaging in the dually perfused human placenta in vitro

    SciTech Connect

    Miller, R.K.; Mattison, D.R.; Panigel, M.; Ceckler, T.; Bryant, R.; Thomford, P.

    1987-10-01

    The transfer and distribution of paramagnetic manganese was investigated in the dually perfused human placenta in vitro (using 10, 20, 100 ..mu..M Mn with and without /sup 54/Mn) using magnetic resonance imaging (MRI) and conventional radiochemical techniques. The human placenta concentrated /sup 54/Mn rapidly during the first 15 min of perfusion and by 4 hr was four times greater than the concentrations of Mn in the maternal perfusate, while the concentration of Mn in the fetal perfusate was 25% of the maternal perfusate levels. Within placentae, 45% of the /sup 54/Mn was free in the 100,000g supernatant, with 45% in the 1000g pellet. The magnetic field dependence of proton nuclear spin-lattice relaxation time (T/sub 1/) in placental tissue supports this Mn binding. Mn primarily affected the MRI partial saturation rather than spin-echo images of the human placenta, which provided for the separation of perfusate contributions from those produced by Mn. The washout of the Mn from the placenta was slow compared with its uptake, as determined by MRI. Thus, Mn was concentrated by the human placenta, but transfer of Mn across the placenta was limited in either direction. These studies also illustrate the opportunity for studies of human placental function using magnetic resonance imaging as a noninvasive biomarker.

  1. Arterial Spin Labeling (ASL) fMRI: Advantages, Theoretical Constrains and Experimental Challenges in Neurosciences

    PubMed Central

    Borogovac, Ajna; Asllani, Iris

    2012-01-01

    Cerebral blood flow (CBF) is a well-established correlate of brain function and therefore an essential parameter for studying the brain at both normal and diseased states. Arterial spin labeling (ASL) is a noninvasive fMRI technique that uses arterial water as an endogenous tracer to measure CBF. ASL provides reliable absolute quantification of CBF with higher spatial and temporal resolution than other techniques. And yet, the routine application of ASL has been somewhat limited. In this review, we start by highlighting theoretical complexities and technical challenges of ASL fMRI for basic and clinical research. While underscoring the main advantages of ASL versus other techniques such as BOLD, we also expound on inherent challenges and confounds in ASL perfusion imaging. In closing, we expound on several exciting developments in the field that we believe will make ASL reach its full potential in neuroscience research. PMID:22966219

  2. Ventilation and perfusion magnetic resonance imaging of the lung

    PubMed Central

    Bauman, Grzegorz; Eichinger, Monika

    2012-01-01

    Summary A close interaction between the respiratory pump, pulmonary parenchyma and blood circulation is essential for a normal lung function. Many pulmonary diseases present, especially in their initial phase, a variable regional impairment of ventilation and perfusion. In the last decades various techniques have been established to measure the lung function. Besides the global pulmonary function tests (PFTs) imaging techniques gained increasing importance to detect local variations in lung function, especially for ventilation and perfusion assessment. Imaging modalities allow for a deeper regional insight into pathophysiological processes and enable improved planning of invasive procedures. In contrast to computed tomography (CT) and the nuclear medicine techniques, magnetic resonance imaging (MRI), as a radiation free imaging modality gained increasing importance since the early 1990 for the assessment of pulmonary function. The major inherent problems of lung tissue, namely the low proton density and the pulmonary and cardiac motion, were overcome in the last years by a constant progress in MR technology. Some MR techniques are still under development, a process which is driven by scientific questions regarding the physiology and pathophysiology of pulmonary diseases, as well as by the need for fast and robust clinically applicable imaging techniques as safe therapy monitoring tools. MRI can be considered a promising ionizing-free alternative to techniques like CT or nuclear medicine techniques for the evaluation of lung function. The goal of this article is to provide an overview on selected MRI techniques for the assessment of pulmonary ventilation and perfusion. PMID:22802864

  3. Asynchronicity of facial blood perfusion in migraine.

    PubMed

    Zaproudina, Nina; Teplov, Victor; Nippolainen, Ervin; Lipponen, Jukka A; Kamshilin, Alexei A; Närhi, Matti; Karjalainen, Pasi A; Giniatullin, Rashid

    2013-01-01

    Asymmetrical changes in blood perfusion and asynchronous blood supply to head tissues likely contribute to migraine pathophysiology. Imaging was widely used in order to understand hemodynamic variations in migraine. However, mapping of blood pulsations in the face of migraineurs has not been performed so far. We used the Blood Pulsation Imaging (BPI) technique, which was recently developed in our group, to establish whether 2D-imaging of blood pulsations parameters can reveal new biomarkers of migraine. BPI characteristics were measured in migraineurs during the attack-free interval and compared to healthy subjects with and without a family history of migraine. We found a novel phenomenon of transverse waves of facial blood perfusion in migraineurs in contrast to healthy subjects who showed synchronous blood delivery to both sides of the face. Moreover, the amplitude of blood pulsations was symmetrically distributed over the face of healthy subjects, but asymmetrically in migraineurs and subjects with a family history of migraine. In the migraine patients we found a remarkable correlation between the side of unilateral headache and the direction of the blood perfusion wave. Our data suggest that migraine is associated with lateralization of blood perfusion and asynchronous blood pulsations in the facial area, which could be due to essential dysfunction of the autonomic vascular control in the face. These findings may further enhance our understanding of migraine pathophysiology and suggest new easily available biomarkers of this pathology.

  4. Asynchronicity of Facial Blood Perfusion in Migraine

    PubMed Central

    Zaproudina, Nina; Teplov, Victor; Nippolainen, Ervin; Lipponen, Jukka A.; Kamshilin, Alexei A.; Närhi, Matti; Karjalainen, Pasi A.; Giniatullin, Rashid

    2013-01-01

    Asymmetrical changes in blood perfusion and asynchronous blood supply to head tissues likely contribute to migraine pathophysiology. Imaging was widely used in order to understand hemodynamic variations in migraine. However, mapping of blood pulsations in the face of migraineurs has not been performed so far. We used the Blood Pulsation Imaging (BPI) technique, which was recently developed in our group, to establish whether 2D-imaging of blood pulsations parameters can reveal new biomarkers of migraine. BPI characteristics were measured in migraineurs during the attack-free interval and compared to healthy subjects with and without a family history of migraine. We found a novel phenomenon of transverse waves of facial blood perfusion in migraineurs in contrast to healthy subjects who showed synchronous blood delivery to both sides of the face. Moreover, the amplitude of blood pulsations was symmetrically distributed over the face of healthy subjects, but asymmetrically in migraineurs and subjects with a family history of migraine. In the migraine patients we found a remarkable correlation between the side of unilateral headache and the direction of the blood perfusion wave. Our data suggest that migraine is associated with lateralization of blood perfusion and asynchronous blood pulsations in the facial area, which could be due to essential dysfunction of the autonomic vascular control in the face. These findings may further enhance our understanding of migraine pathophysiology and suggest new easily available biomarkers of this pathology. PMID:24324592

  5. Perfusion characteristics of preserved canine kidneys subjected to warm ischaemia.

    PubMed

    Modgill, V K; Wiggins, P A; Giles, G R

    1978-02-01

    Canine kidneys were subjected to 0, 15 or 30 min of warm ischaemia followed by 24 hours preservation by perfusion. Changes in perfusate concentration of acid radicles, lactate, free fatty acid and lactice dehydrogenase were assessed at 1 hour and 24 hours. With the exception of LDH concentration at 1 hour, no single parameter was capable of detecting kidneys which were so damaged as to be non-life supporting.

  6. Assessment of lung tumor response by perfusion CT.

    PubMed

    Coche, E

    2013-01-01

    Perfusion CT permits evaluation of lung cancer angiogenesis and response to therapy by demonstrating alterations in lung tumor vascularity. It is advocated that perfusion CT performed shortly after initiating therapy may provide a better evaluation of physiological changes rather than the conventional size assessment obtained with RECIST. The radiation dose,the volume of contrast medium delivered to the patient and the reproducibility of blood flow parameters remain an issue for this type of investigation.

  7. Qualitative Perfusion Cardiac Magnetic Resonance Imaging Lacks Sensitivity in Detecting Cardiac Allograft Vasculopathy

    PubMed Central

    Colvin-Adams, Monica; Petros, Salam; Raveendran, Ganesh; Missov, Emil; Medina, Eduardo; Wilson, Robert

    2011-01-01

    Background Cardiac allograft vasculopathy (CAV) is a major complication after heart transplantation, requiring frequent surveillance angiography. Though cardiac angiography is the gold standard, it is insensitive in detecting transplant vasculopathy and invasive. Perfusion MRI provides a noninvasive alternative and possibly a useful modality for studying CAV. We sought to compare the accuracy of qualitative perfusion MRI to coronary angiography in detecting CAV. Methods A retrospective analysis was performed in 68 heart transplant recipients who had simultaneous surveillance cardiac MRI and coronary angiogram and who underwent transplantation between 2000 and 2007. We compared results of qualitative MRI to those of the cardiac angiogram. Sensitivity and specificity of MR were calculated. Results Sixty-eight patients underwent both cardiac MRI and coronary angiogram. 73.5% were male; mean age was 45.37 ± 14 years. Mean duration of heart transplantation was 7.9 ± 5.2 years. The mean ejection fraction was 55% in the patients without CAV and 57.4% in those with CAV. There were 48 normal and 24 abnormal MRI studies. The overall sensitivity was 41% and specificity was 74%. Conclusions Qualitative assessment of perfusion cardiac MR has low sensitivity and moderate specificity for detecting CAV. The sensitivity of MRI was slightly improved with severity of disease.

  8. Unsupervised nonlinear dimensionality reduction machine learning methods applied to multiparametric MRI in cerebral ischemia: preliminary results

    NASA Astrophysics Data System (ADS)

    Parekh, Vishwa S.; Jacobs, Jeremy R.; Jacobs, Michael A.

    2014-03-01

    The evaluation and treatment of acute cerebral ischemia requires a technique that can determine the total area of tissue at risk for infarction using diagnostic magnetic resonance imaging (MRI) sequences. Typical MRI data sets consist of T1- and T2-weighted imaging (T1WI, T2WI) along with advanced MRI parameters of diffusion-weighted imaging (DWI) and perfusion weighted imaging (PWI) methods. Each of these parameters has distinct radiological-pathological meaning. For example, DWI interrogates the movement of water in the tissue and PWI gives an estimate of the blood flow, both are critical measures during the evolution of stroke. In order to integrate these data and give an estimate of the tissue at risk or damaged; we have developed advanced machine learning methods based on unsupervised non-linear dimensionality reduction (NLDR) techniques. NLDR methods are a class of algorithms that uses mathematically defined manifolds for statistical sampling of multidimensional classes to generate a discrimination rule of guaranteed statistical accuracy and they can generate a two- or three-dimensional map, which represents the prominent structures of the data and provides an embedded image of meaningful low-dimensional structures hidden in their high-dimensional observations. In this manuscript, we develop NLDR methods on high dimensional MRI data sets of preclinical animals and clinical patients with stroke. On analyzing the performance of these methods, we observed that there was a high of similarity between multiparametric embedded images from NLDR methods and the ADC map and perfusion map. It was also observed that embedded scattergram of abnormal (infarcted or at risk) tissue can be visualized and provides a mechanism for automatic methods to delineate potential stroke volumes and early tissue at risk.

  9. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    PubMed

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy.

  10. Improved hepatic arterial fraction estimation using cardiac output correction of arterial input functions for liver DCE MRI

    NASA Astrophysics Data System (ADS)

    Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.

    2017-02-01

    Liver dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling could be useful in the assessment of diffuse liver disease and focal liver lesions, but is compromised by errors in arterial input function (AIF) sampling. In this study, we apply cardiac output correction to arterial input functions (AIFs) for liver DCE MRI and investigate the effect on dual-input single compartment hepatic perfusion parameter estimation and reproducibility. Thirteen healthy volunteers (28.7  ±  1.94 years, seven males) underwent liver DCE MRI and cardiac output measurement using aortic root phase contrast MRI (PCMRI), with reproducibility (n  =  9) measured at 7 d. Cardiac output AIF correction was undertaken by constraining the first pass AIF enhancement curve using the indicator-dilution principle. Hepatic perfusion parameters with and without cardiac output AIF correction were compared and 7 d reproducibility assessed. Differences between cardiac output corrected and uncorrected liver DCE MRI portal venous (PV) perfusion (p  =  0.066), total liver blood flow (TLBF) (p  =  0.101), hepatic arterial (HA) fraction (p  =  0.895), mean transit time (MTT) (p  =  0.646), distribution volume (DV) (p  =  0.890) were not significantly different. Seven day corrected HA fraction reproducibility was improved (mean difference 0.3%, Bland–Altman 95% limits-of-agreement (BA95%LoA)  ±27.9%, coefficient of variation (CoV) 61.4% versus 9.3%, ±35.5%, 81.7% respectively without correction). Seven day uncorrected PV perfusion was also improved (mean difference 9.3 ml min‑1/100 g, BA95%LoA  ±506.1 ml min‑1/100 g, CoV 64.1% versus 0.9 ml min‑1/100 g, ±562.8 ml min‑1/100 g, 65.1% respectively with correction) as was uncorrected TLBF (mean difference 43.8 ml min‑1/100 g, BA95%LoA  ±586.7 ml min‑1/ 100 g, CoV 58.3% versus 13.3 ml min‑1/100 g, ±661.5 ml min‑1/100 g, 60

  11. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47 mm at a clinical 1.5 T scanner.

    PubMed

    Ulmer, Stephan; Reeh, Matthias; Krause, Joerg; Herdegen, Thomas; Heldt-Feindt, Janka; Jansen, Olav; Rohr, Axel

    2008-07-30

    Magnetic resonance (MR) imaging in animal models is usually performed in expensive dedicated small bore animal scanners of limited availability. In the present study a standard clinical 1.5 T MR scanner was used for morphometric and dynamic contrast-enhanced susceptibility-weighted MR imaging (DSC-MRI) of a glioma model of the rat brain. Ten male Wistar rats were examined with coronal T2-weighted, and T1-weighted images (matrix 128 x 128, FOV 64 mm) after implantation of an intracerebral tumor xenografts (C6) using a conventional surface coil. For DSC-MRI a T2*-weighted sequence (TR/TE=30/14 ms, matrix 64 x 64, FOV 90 mm; slice thickness of 1.5mm) was performed. Regions of interest were defined within the tumor and the non-affected contralateral hemisphere and the mean transit time (MTT) was determined. Tumor dimensions in MR predicted well its real size as proven by histology. The MTT of contrast agent passing through the brain was significantly decelerated in the tumor compared to the unaffected hemisphere (p<0.001, paired t-test), which is most likely due to the leakage of contrast agent through the disrupted blood brain barrier. This setup offers advanced MR imaging of small animals without the need for dedicated animal scanners or dedicated custom-made coils.

  12. Modelling of temperature and perfusion during scalp cooling.

    PubMed

    Janssen, F E M; Van Leeuwen, G M J; Van Steenhoven, A A

    2005-09-07

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 degrees C to 18.3 degrees C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 degrees C to 21.8 degrees C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  13. Modelling of temperature and perfusion during scalp cooling

    NASA Astrophysics Data System (ADS)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  14. Evaluation of Perfusion Quantification Methods with Ultrasound Contrast Agents in a Machine-Perfused Pig Liver.

    PubMed

    Averkiou, M; Keravnou, C P; Izamis, M L; Leen, E

    2016-05-03

    Purpose: To evaluate dynamic contrast-enhanced ultrasound (DCEUS) as a tool for measuring blood flow in the macro- and microcirculation of an ex-vivo machine-perfused pig liver and to confirm the ability of DCEUS to accurately detect induced flow rate changes so that it could then be used clinically for monitoring flow changes in liver tumors. Materials and Methods: Bolus injections of contrast agents in the hepatic artery (HA) and portal vein (PV) were administered to 3 machine-perfused pig livers. Flow changes were induced by the pump of the machine perfusion system. The induced flow rates were of clinical relevance (150 - 400 ml/min for HA and 400 - 1400 ml/min for PV). Quantification parameters from time-intensity curves [rise time (RT), mean transit time (MTT), area under the curve (AUC) and peak intensity (PI)] were extracted in order to evaluate whether the induced flow changes were reflected in these parameters. Results: A linear relationship between the image intensity and the microbubble concentration was confirmed first, while time parameters (RT and MMT) were found to be independent of concentration. The induced flow changes which propagated from the larger vessels to the parenchyma were reflected in the quantification parameters. Specifically, RT, MTT and AUC correlated with flow rate changes. Conclusion Machine-perfused pig liver is an excellent test bed for DCEUS quantification approaches for the study of the hepatic vascular networks. DCEUS quantification parameters (RT, MTT, and AUC) can measure relative flow changes of about 20 % and above in the liver vasculature. DCEUS quantification is a promising tool for real-time monitoring of the vascular network of tumors.

  15. Functional lung imaging using hyperpolarized gas MRI.

    PubMed

    Fain, Sean B; Korosec, Frank R; Holmes, James H; O'Halloran, Rafael; Sorkness, Ronald L; Grist, Thomas M

    2007-05-01

    The noninvasive assessment of lung function using imaging is increasingly of interest for the study of lung diseases, including chronic obstructive pulmonary disease (COPD) and asthma. Hyperpolarized gas MRI (HP MRI) has demonstrated the ability to detect changes in ventilation, perfusion, and lung microstructure that appear to be associated with both normal lung development and disease progression. The physical characteristics of HP gases and their application to MRI are presented with an emphasis on current applications. Clinical investigations using HP MRI to study asthma, COPD, cystic fibrosis, pediatric chronic lung disease, and lung transplant are reviewed. Recent advances in polarization, pulse sequence development for imaging with Xe-129, and prototype low magnetic field systems dedicated to lung imaging are highlighted as areas of future development for this rapidly evolving technology.

  16. Shoulder MRI

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  17. Knee MRI

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  18. Shoulder MRI

    MedlinePlus

    ... of the shoulder uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  19. Knee MRI

    MedlinePlus

    ... of the knee uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  20. MRI renaissance.

    PubMed

    Hensley, S

    1997-12-01

    A few years ago, magnetic resonance imaging was healthcare's version of a foreign sports car-flashy, expensive and impractical. Now, after years in the doldrums, sales of MRI systems are roaring back. An aging fleet of MRI scanners due for replacement and a hearty increase in doctors' use of the versatile imaging tools are combining to fuel the surge in demand, vendors and customers say.

  1. USE OF A PROGRAMMABLE CALCULATOR IN CARDIOPULMONARY PERFUSION.

    PubMed

    Mills, J David; Tallent, Jerome H.

    1978-06-01

    This study describes a hand-held, battery-powered, programmable instrument (Calculator Model SR-52) that can be taken directly into the operating room by cardiopulmonary perfusionists. Three programs are described in detail: 1) Cardiopulmonary perfusion parameters and estimated blood volume; 2) blood gas parameters and saturations, with temperature corrections; and 3) cardiopulmonary oxygen transfer and oxygenator efficiency. This inexpensive calculator allows perfusion personnel to manipulate easily-derived data into values which heretofore have required elaborate nomograms or special slide rules-or were not available within a reasonable computational time.

  2. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  3. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    PubMed

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration.

  4. Intrahemispheric Perfusion in Chronic Stroke-Induced Aphasia

    PubMed Central

    Walenski, Matthew; Chen, YuFen; Caplan, David; Rapp, Brenda; Grunewald, Kristin; Nunez, Mia; Zinbarg, Richard; Parrish, Todd B.

    2017-01-01

    Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments and recovery in chronic aphasia. Using MRI, we examined perfusion in the right and left hemispheres of 35 aphasic and 16 healthy control participants. Across 76 regions (38 per hemisphere), no significant between-subjects differences were found in the left, whereas blood flow in the right was increased in the aphasic compared to the control participants. Region-of-interest (ROI) analyses showed a varied pattern of hypo- and hyperperfused regions across hemispheres in the aphasic participants; however, there were no significant correlations between perfusion values and language abilities in these regions. These patterns may reflect autoregulatory changes in blood flow following stroke and/or increases in general cognitive effort, rather than maladaptive language processing. We also examined blood flow in perilesional tissue, finding the greatest hypoperfusion close to the lesion (within 0–6 mm), with greater hypoperfusion in this region compared to more distal regions. In addition, hypoperfusion in this region was significantly correlated with language impairment. These findings underscore the need to consider cerebral perfusion as a factor contributing to language deficits in chronic aphasia as well as recovery of language function. PMID:28357141

  5. Multidimensional diffusion MRI

    NASA Astrophysics Data System (ADS)

    Topgaard, Daniel

    2017-02-01

    Principles from multidimensional NMR spectroscopy, and in particular solid-state NMR, have recently been transferred to the field of diffusion MRI, offering non-invasive characterization of heterogeneous anisotropic materials, such as the human brain, at an unprecedented level of detail. Here we revisit the basic physics of solid-state NMR and diffusion MRI to pinpoint the origin of the somewhat unexpected analogy between the two fields, and provide an overview of current diffusion MRI acquisition protocols and data analysis methods to quantify the composition of heterogeneous materials in terms of diffusion tensor distributions with size, shape, and orientation dimensions. While the most advanced methods allow estimation of the complete multidimensional distributions, simpler methods focus on various projections onto lower-dimensional spaces as well as determination of means and variances rather than actual distributions. Even the less advanced methods provide simple and intuitive scalar parameters that are directly related to microstructural features that can be observed in optical microscopy images, e.g. average cell eccentricity, variance of cell density, and orientational order - properties that are inextricably entangled in conventional diffusion MRI. Key to disentangling all these microstructural features is MRI signal acquisition combining isotropic and directional dimensions, just as in the field of multidimensional solid-state NMR from which most of the ideas for the new methods are derived.

  6. Performance of the MRI-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations.

    PubMed

    Lam, Shing Chun Benny; Wald, Michael J; Rajapakse, Chamith S; Liu, Yinxiao; Saha, Punam K; Wehrli, Felix W

    2011-10-01

    Serial reproducibility and reliability critically determine sensitivity to detect changes in response to intervention and provide a basis for sample size estimates. Here, we evaluated the performance of the MRI-based virtual bone biopsy in terms of 26 structural and mechanical parameters in the distal radius of 20 women in the age range of 50 to 75 years (mean=62.0 years, S.D.=8.1 years), representative of typical study populations in drug intervention trials and fracture studies. Subjects were examined three times at average intervals of 20.2 days (S.D.=14.5 days) by MRI at 1.5 T field strength at a voxel size of 137×137×410 μm(3). Methods involved prospective and retrospective 3D image registration and auto-focus motion correction. Analyses were performed from a central 5×5×5 mm(3) cuboid subvolume and trabecular volume consisting of a 13 mm axial slab encompassing the entire medullary cavity. Whole-volume axial stiffness and sub-regional Young's and shear moduli were computed by finite-element analysis. Whole-volume-derived aggregate mean coefficient of variation of all structural parameters was 4.4% (range 1.8% to 7.7%) and 4.0% for axial stiffness; corresponding data in the subvolume were 6.5% (range 1.6% to 13.0%) for structural, and 5.5% (range 4.6% to 6.5%) for mechanical parameters. Aggregate ICC was 0.976 (range 0.947 to 0.986) and 0.992 for whole-volume-derived structural parameters and axial stiffness, and 0.946 (range 0.752 to 0.991) and 0.974 (range 0.965 to 0.978) for subvolume-derived structural and mechanical parameters, respectively. The strongest predictors of whole-volume axial stiffness were BV/TV, junction density, skeleton density and Tb.N (R(2) 0.79-0.87). The same parameters were also highly predictive of sub-regional axial modulus (R(2) 0.88-0.91). The data suggest that the method is suited for longitudinal assessment of the response to therapy. The underlying technology is portable and should be compatible with all general

  7. Automatic Segmentation of Invasive Breast Carcinomas from DCE-MRI using Time Series Analysis

    PubMed Central

    Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A.; Gombos, Eva

    2013-01-01

    Purpose Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise and fitting algorithms. To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Methods We modeled the underlying dynamics of the tumor by a LDS and use the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist’s segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). Results The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared to the radiologist’s segmentation and 82.1% accuracy and 100% sensitivity when compared to the CADstream output. The overlap of the algorithm output with the radiologist’s segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72 respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC=0.95. Conclusion The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. PMID:24115175

  8. WE-B-BRD-00: MRI for Radiation Oncology

    SciTech Connect

    2015-06-15

    The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptive QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.

  9. Cerebral-Body Perfusion Model

    DTIC Science & Technology

    1990-07-01

    compared to the 0.5g curve) fall in flow. Fig. 9b, showing the 5g case, strongly suggests a possible, so-called, " luxury perfusion ", in which natural...as the luxury perfusion situation which bypasses the flow with the nutrients it carries (through newly opened collaterals) and result in a "blackout...89-0054 CEREBRAL-BODY PERFUSION MODEL S. Sorek’, J. Bear2, and M., Feinsod3 in Collaboration with K. Allen4, L. Bunt5 and S. Ben-IHaiM6 July 1990

  10. A New Coronary Model for MRI Perfusion Studies

    DTIC Science & Technology

    2007-11-02

    heart. The first results are obtained for low and high input flows in a normal heart. The last one is a simulation of an ischemic heart behavior. The...sectional area of the vessel. And, we assume that the resistance R to flow is given approximately by the Poiseuille law. The compliance C of a...description of the blood flow is used. The compartments taken into account are the arteries, capillaries, lymphatic and venous systems, extravascular

  11. Relative indexes of cutaneous blood perfusion measured by real-time laser Doppler imaging (LDI) in healthy volunteers.

    PubMed

    Seyed Jafari, S Morteza; Schawkat, Megir; Van De Ville, Dimitri; Shafighi, Maziar

    2014-07-01

    We used real-time LDI to study regional variations in microcirculatory perfusion in healthy candidates to establish a new methodology for global perfusion body mapping that is based on intra-individual perfusion index ratios. Our study included 74 (37 female) healthy volunteers aged between 22 and 30 years (mean 24.49). Imaging was performed using a recent microcirculation-imaging camera (EasyLDI) for different body regions of each volunteer. The perfusion values were reported in Arbitrary Perfusion Units (APU). The relative perfusion indexes for each candidate's body region were then obtained by normalization with the perfusion value of the forehead. Basic parameters such as weight, height, and blood pressure were also measured and analyzed. The highest mean perfusion value was reported in the forehead area (259.21APU). Mean perfusion in the measured parts of the body correlated positively with mean forehead value, while there was no significant correlation between forehead blood perfusion values and room temperature, BMI, systolic blood pressure and diastolic blood pressure (p=0.420, 0.623, 0.488, 0.099, respectively). Analysis of the data showed that perfusion indexes were not significantly different between male and female volunteers except for the ventral upper arm area (p=.001). LDI is a non-invasive, fast technique that opens several avenues for clinical applications. The mean perfusion indexes are useful in clinical practice for monitoring patients before and after surgical interventions. Perfusion values can be predicted for different body parts for patients only by taking the forehead perfusion value and using the perfusion index ratios to obtain expected normative perfusion values.

  12. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    PubMed

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent.

  13. Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza

    2013-01-01

    Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free

  14. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... JavaScript. A pulmonary ventilation/perfusion scan involves two nuclear scan tests to measure breathing (ventilation) and circulation ( ... In: Mettler FA, Guiberteau MJ, eds. Essentials of Nuclear Medicine Imaging . 6th ed. Philadelphia, PA: Elsevier Saunders; ...

  15. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  16. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  17. MRI Safety during Pregnancy

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z MRI Safety During Pregnancy Magnetic resonance imaging (MRI) Illness ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor ...

  18. CAD of myocardial perfusion

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2007-03-01

    Our purpose is in the automated evaluation of the physiological relevance of lesions in coronary angiograms. We aim to extract as much as possible quantitative information about the physiological condition of the heart from standard angiographic image sequences. Coronary angiography is still the gold standard for evaluating and diagnosing coronary abnormalities as it is able to locate precisely the coronary artery lesions. The dimensions of the stenosis can be assessed nowadays successfully with image processing based Quantitative Coronary Angiography (QCA) techniques. Our purpose is to assess the clinical relevance of the pertinent stenosis. We therefore analyze the myocardial perfusion as revealed in standard angiographic image sequences. In a Region-of-Interest (ROI) on the angiogram (without an overlaying major blood vessel) the contrast is measured as a function of time (the so-called time-density curve). The required hyperemic state of exercise is induced artificially by the injection of a vasodilator drug e.g. papaverine. In order to minimize motion artifacts we select based on the recorded ECG signal end-diastolic images in both a basal and a hyperemic run in the same projection to position the ROI. We present the development of the algorithms together with results of a small study of 20 patients which have been catheterized following the standard protocol.

  19. Application of intravoxel incoherent motion perfusion imaging to shoulder muscles after a lift-off test of varying duration.

    PubMed

    Nguyen, Audrey; Ledoux, Jean-Baptiste; Omoumi, Patrick; Becce, Fabio; Forget, Joachim; Federau, Christian

    2016-01-01

    Intravoxel incoherent motion (IVIM) MRI is a method to extract microvascular blood flow information out of diffusion-weighted images acquired at multiple b-values. We hypothesized that IVIM can identify the muscles selectively involved in a specific task, by measuring changes in activity-induced local muscular perfusion after exercise. We tested this hypothesis using a widely used clinical maneuver, the lift-off test, which is known to assess specifically the subscapularis muscle functional integrity. Twelve shoulders from six healthy male volunteers were imaged at 3 T, at rest, as well as after a lift-off test hold against resistance for 30 s, 1 and 2 min respectively, in three independent sessions. IVIM parameters, consisting of perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient D* and blood flow-related fD*, were estimated within outlined muscles of the rotator cuff and the deltoid bundles. The mean values at rest and after the lift-off tests were compared in each muscle using a one-way ANOVA. A statistically significant increase in fD* was measured in the subscapularis, after a lift-off test of any duration, as well as in D. A fD* increase was the most marked (30 s, +103%; 1 min, +130%; 2 min, +156%) and was gradual with the duration of the test (in 10(-3) mm(2) /s: rest, 1.41 ± 0.50; 30 s, 2.86 ± 1.17; 1 min, 3.23 ± 1.22; 2 min, 3.60 ± 1.21). A significant increase in fD* and D was also visible in the posterior bundle of the deltoid. No significant change was consistently visible in the other investigated muscles of the rotator cuff and the other bundles of the deltoid. In conclusion, IVIM fD* allows the demonstration of a task-related microvascular perfusion increase after a specific task and suggests a direct relationship between microvascular perfusion and the duration of the effort. It is a promising method to investigate non-invasively skeletal muscle physiology and clinical perfusion

  20. Evaluating acellular versus cellular perfusate composition during prolonged ex vivo lung perfusion after initial cold ischaemia for 24 hours.

    PubMed

    Becker, Simon; Steinmeyer, Jasmin; Avsar, Murat; Höffler, Klaus; Salman, Jawad; Haverich, Axel; Warnecke, Gregor; Ochs, Matthias; Schnapper, Anke

    2016-01-01

    Normothermic ex vivo lung perfusion (EVLP) has developed as a powerful technique to evaluate particularly marginal donor lungs prior to transplantation. In this study, acellular and cellular perfusate compositions were compared in an identical experimental setting as no consensus has been reached on a preferred technique yet. Porcine lungs underwent EVLP for 12 h on the basis of an acellular or a cellular perfusate composition after 24 h of cold ischaemia as defined organ stress. During perfusion, haemodynamic and respiratory parameters were monitored. After EVLP, the lung condition was assessed by light and transmission electron microscopy. Aerodynamic parameters did not show significant differences between groups and remained within the in vivo range during EVLP. Mean oxygenation indices were 491 ± 39 in the acellular group and 513 ± 53 in the cellular group. Groups only differed significantly in terms of higher pulmonary artery pressure and vascular resistance in the cellular group. Lung histology and ultrastructure were largely well preserved after prolonged EVLP and showed only minor structural alterations which were similarly present in both groups. Prolonged acellular and cellular EVLP for 12 h are both feasible with lungs prechallenged by ischaemic organ stress. Physiological and ultrastructural analysis showed no superiority of either acellular or cellular perfusate composition.

  1. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    PubMed Central

    Goliwas, Kayla F; Marshall, Lauren E; Ransaw, Evette L; Berry, Joel L; Frost, Andra R

    2016-01-01

    Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter. PMID:27516850

  2. Computed tomography perfusion imaging in spectacular shrinking deficit.

    PubMed

    Lee, Vivien H; John, Sayona; Mohammad, Yousef; Prabhakaran, Shyam

    2012-02-01

    Spectacular shrinking deficit (SSD) is characterized by abrupt onset of a major hemispheric stroke syndrome, followed by dramatic and rapid improvement. We retrospectively identified patients with SSD diagnosed at our institution between December 1, 2007, and June 30, 2009. We reviewed computed tomography perfusion (CTP) imaging to determine perfusion defect as a measure of initial ischemic penumbra, and magnetic resonance imaging diffusion-weighted imaging (DWI) to determine the final infarct core. Among the 472 consecutive ischemic stroke patients, 126 (27%) presented with major hemispheric ischemic stroke syndrome, defined as National Institutes of Health Stroke Scale score (NIHSS) ≥8 in the territory of the middle cerebral artery (MCA) or internal carotid artery (ICA). Out of these patients, we identified 8 SSD patients with available CTP data. In these 8 patients, the mean time to dramatic recovery was 3.4 hours (range, 0.75-7 hours), and the mean time from onset to CTP was 12.7 hours (range, 3-30 hours). All 8 patients had perfusion abnormalities in portions of the MCA territory (partial MCA territory in 5 patients and complete MCA territory in 3 patients). The mean time from onset to MRI DWI was 15.5 hours (range, 7.9-34 hours). Restricted diffusion was present in all patients in the corresponding MCA distribution. Vascular imaging revealed MCA occlusion in 2 patients. Cervical vascular imaging revealed carotid occlusion in 2 patients and high-grade carotid stenosis in 2 patients. The stroke mechanisms were cardioembolism in 2 patients, large artery in 4 patients, and unknown in 2 patients. Four patients had repeat CTP imaging available that demonstrated eventual resolution of the perfusion defect. SSD is associated with a "shrinking" clinical syndrome and a "shrinking" perfusion pattern on CTP that lags behind clinical recovery. CTP imaging corroborates that a larger territory is at risk in SSD and contributes to better understanding of SSD.

  3. Color Doppler dynamic tissue perfusion measurement: a novel tool in the assessment of renal parenchymal perfusion in children with vesicoureteral reflux

    PubMed Central

    Scholbach, Thomas M.; Scholbach, Jakob; Pawelec, Agata; Nachulewicz, Paweł; Wieczorek, Andrzej P.; Brodzisz, Agnieszka; Zajączkowska, Maria M.; Borzęcka, Halina

    2015-01-01

    Introduction Vesicoureteral reflux (VUR) occurs in 20–50% of children suffering from recurrent urinary tract infections (UTIs) and is associated with an increased risk of renal scarring and impaired renal function. Early detection of renal perfusion deterioration would allow for the implementation of more aggressive treatment and potentially prevent further damage to the renal parenchyma. The aim of the study was to assess renal parenchymal perfusions in children with recurrent UTIs with and without coexisting VUR, and compare the findings with the results of healthy patients. Material and methods Color Doppler sonographic dynamic renal parenchymal perfusion measurements were performed with PixelFlux (Chameleon-Software, Germany) software in 77 children with recurrent UTIs and coexisting VUR and in 30 children with UTIs without VUR. The findings were compared with the results of 53 healthy children. Results Cortical parenchymal perfusion of children suffering from UTIs and VUR was significantly reduced when compared to the control group. Statistically significant differences (p < 0.05) were found in all perfusion parameters (i.e. mean velocity (vmix), mean perfused area (Amix), mean perfusion intensity (Imix), tissue pulsatility index (TPI), and tissue resistance index (TRI)) between the control group and children suffering from UTIs and VUR, particularly VUR grades III and IV. There were no significant differences between the UTI group and the control group. No differences were found between the controls and VUR grade II. Conclusions Renal parenchymal perfusion decreases significantly with higher grades of VUR. PMID:27279857

  4. Construction and validation of a microprocessor controlled extracorporal circuit in rats for the optimization of isolated limb perfusion.

    PubMed

    Gürtler, Ulrich; Fuchs, Peter; Stangelmayer, Achim; Bernhardt, Günther; Buschauer, Armin; Spruss, Thilo

    2004-12-01

    Although a few experimental approaches to isolated limb perfusion (ILP) are described in the literature, none of these animal models mimics the clinical perfusion techniques adequately to improve the technique of ILP on the basis of valid preclinical data. Therefore, we developed an ILP setup in rats allowing online monitoring of essential perfusion parameters such as temperature (in perfusate, various tissues, and rectum), pH (perfusate), perfusion pressure, and O(2) concentration (in perfusate, tissue), by a tailor-made data acquisition system. This setup permits close supervision of vital parameters during ILP. Various interdependencies, concerning the flow rate and the pressure of perfusate as well as tissue oxygenation were registered. For the measurement of pO(2) values in the perfusate and in different regions of the perfused hind limb, a novel type of microoptode based on quenching of a fluorescent dye was devised. Stable normothermic (37 degrees C) perfusion conditions were maintained at a constant perfusion pressure in the range of 40-60 mm Hg by administration of the spasmo lytic moxaverine (0.5 mg/mL of perfusate as initial dose) at a perfusate flow rate of 0.5 mL/min for 60 min. At the end of an ILP, there were no signs of tissue damage, neither concerning laboratory data (K(+), myoglobin, creatine kinase, lactic dehydrogenase) nor histopathological criteria. The reported ILP model is not only well suited to investigate the effects of hyperthermia but also to assess the efficacy of new antineoplastic approaches, when nude rats, bearing human tumours in the hind limbs, are used.

  5. Parametric perfusion imaging based on low-cost ultrasound platform.

    PubMed

    Gu, Xiaolin; Zhong, Hui; Wan, Mingxi; Hu, Xiaowen; Lv, Dan; Shen, Liang; Zhang, Xiaomei

    2010-01-01

    In this study, we attempted to implement parametric perfusion imaging to quantify blood perfusion based on modified low-cost ultrasound platform. A novel ultrasound contrast-specific imaging method called pulse-inversion harmonic sum-squared-differences (PIHSSD) was proposed for improving the sensitivity for detecting contrast agents and the accuracy of parametric perfusion imaging, which combined pulse-inversion harmonic (PIH) with pulse-inversion sum-squared-differences (PISSD) threshold-based decision. PIHSSD method just involved simple operations including addition and multiplication and was easy to realize. The sequences of contrast images without logarithmic compression were used to acquire time intensity curves (TICs) from numerous equal-sized regions-of-interest (ROI) covering the entire image plane. Parametric perfusion images were obtained based on the parameters extracted from the TICs, including peak value (PV), area under curve (AUC), mean transit time (MTT), peak value time (PVT), peak width (PW) and climbing rate (CR). Flow phantom was used for validation and the results suggested that PIHSSD method provided 9.6 to 20.3 dB higher contrast-to-tissue ratio (CTR) than PIH method. The results of the experiments of rabbit kidney also showed that the CTR of PIHSSD images was higher than that of PIH images, and the parametric perfusion images based on PIHSSD method provided more accurate quantification of blood perfusion compared with those based on PIH and PISSD methods. It demonstrated that the parametric perfusion imaging achieved good performance though implemented on low-cost ultrasound platform. (E-mail: mxwan@mail.xjtu.edu.cn).

  6. [18F]-fluoro-l-thymidine PET and advanced MRI for preoperative grading of gliomas

    PubMed Central

    Collet, S.; Valable, S.; Constans, J.M.; Lechapt-Zalcman, E.; Roussel, S.; Delcroix, N.; Abbas, A.; Ibazizene, M.; Bernaudin, M.; Barré, L.; Derlon, J.M.; Guillamo, J.S.

    2015-01-01

    Purpose Conventional MRI based on contrast enhancement is often not sufficient in differentiating grade II from grade III and grade III from grade IV diffuse gliomas. We assessed advanced MRI, MR spectroscopy and [18F]-fluoro-l-thymidine ([18F]-FLT) PET as tools to overcome these limitations. Methods In this prospective study, thirty-nine patients with diffuse gliomas of grades II, III or IV underwent conventional MRI, perfusion, diffusion, proton MR spectroscopy (1H-MRS) and [18F]-FLT-PET imaging before surgery. Relative cerebral blood volume (rCBV), apparent diffusion coefficient (ADC), Cho/Cr, NAA/Cr, Cho/NAA and FLT-SUV were compared between grades. Results Cho/Cr showed significant differences between grade II and grade III gliomas (p = 0.03). To discriminate grade II from grade IV and grade III from grade IV gliomas, the most relevant parameter was the maximum value of [18F]-FLT uptake FLTmax (respectively, p < 0.001 and p < 0.0001). The parameter showing the best correlation with the grade was the mean value of [18F]-FLT uptake FLTmean (R2 = 0.36, p < 0.0001) and FLTmax (R2 = 0.5, p < 0.0001). Conclusion Whereas advanced MRI parameters give indications for the grading of gliomas, the addition of [18F]-FLT-PET could be of interest for the accurate preoperative classification of diffuse gliomas, particularly for identification of doubtful grade III and IV gliomas. PMID:26106569

  7. Interictal diffusion and perfusion magnetic resonance imaging features of cats with familial spontaneous epilepsy.

    PubMed

    Mizoguchi, Shunta; Hasegawa, Daisuke; Hamamoto, Yuji; Yu, Yoshihiko; Kuwabara, Takayuki; Fujiwara-Igarashi, Aki; Fujita, Michio

    2017-03-01

    OBJECTIVE To evaluate the usefulness of diffusion and perfusion MRI of the cerebrum in cats with familial spontaneous epilepsy (FSECs) and identify microstructural and functional deficit zones in affected cats. ANIMALS 19 FSECs and 12 healthy cats. PROCEDURES Diffusion-weighted, diffusion tensor, and perfusion-weighted MRI of the cerebrum were performed during interictal periods in FSECs. Imaging findings were compared between FSECs and control cats. Diffusion (apparent diffusion coefficient and fractional anisotropy) and perfusion (relative cerebral blood volume [rCBV], relative cerebral blood flow [rCBF], and mean transit time) variables were measured bilaterally in the hippocampus, amygdala, thalamus, parietal cortex gray matter, and subcortical white matter. Asymmetry of these variables in each region was also evaluated and compared between FSECs and control cats. RESULTS The apparent diffusion coefficient of the total amygdala of FSECs was significantly higher, compared with that of control cats. The fractional anisotropy of the right side and total hippocampus of FSECs was significantly lower, compared with that of control cats. The left and right sides and total hippocampal rCBV and rCBF were significantly lower in FSECs than in control cats. The rCBV and rCBF of the parietal cortex gray matter in FSECs were significantly lower than in control cats. CONCLUSIONS AND CLINICAL RELEVANCE In FSECs, diffusion and perfusion MRI detected microstructural changes and hypoperfusion (lowered function) in the cerebrum during interictal periods from that of healthy cats. These findings indicated that diffusion and perfusion MRI may be useful for noninvasive evaluation of epileptogenic foci in cats.

  8. Magnetic resonance cardiac perfusion imaging-a clinical perspective.

    PubMed

    Hunold, Peter; Schlosser, Thomas; Barkhausen, Jörg

    2006-08-01

    Coronary artery disease (CAD) with its clinical appearance of stable or unstable angina and acute myocardial infarction is the leading cause of death in developed countries. In view of increasing costs and the rising number of CAD patients, there has been a major interest in reliable non-invasive imaging techniques to identify CAD in an early (i.e. asymptomatic) stage. Since myocardial perfusion deficits appear very early in the "ischemic cascade", a major breakthrough would be the non-invasive quantification of myocardial perfusion before functional impairment might be detected. Therefore, there is growing interest in other, target-organ-specific parameters, such as relative and absolute myocardial perfusion imaging. Magnetic resonance (MR) imaging has been proven to offer attractive concepts in this respect. However, some important difficulties have not been resolved so far, which still causes uncertainty and prevents the broad application of MR perfusion imaging in a clinical setting. This review explores recent technical developments in MR hardware, software and contrast agents, as well as their impact on the current and future clinical status of MR imaging of first-pass myocardial perfusion imaging.

  9. Perfused multiwell plate for 3D liver tissue engineering.

    PubMed

    Domansky, Karel; Inman, Walker; Serdy, James; Dash, Ajit; Lim, Matthew H M; Griffith, Linda G

    2010-01-07

    In vitro models that capture the complexity of in vivo tissue and organ behaviors in a scalable and easy-to-use format are desirable for drug discovery. To address this, we have developed a bioreactor that fosters maintenance of 3D tissue cultures under constant perfusion and we have integrated multiple bioreactors into an array in a multiwell plate format. All bioreactors are fluidically isolated from each other. Each bioreactor in the array contains a scaffold that supports formation of hundreds of 3D microscale tissue units. The tissue units are perfused with cell culture medium circulated within the bioreactor by integrated pneumatic diaphragm micropumps. Electronic controls for the pumps are kept outside the incubator and connected to the perfused multiwell by pneumatic lines. The docking design and open-well bioreactor layout make handling perfused multiwell plates similar to using standard multiwell tissue culture plates. A model of oxygen consumption and transport in the circulating culture medium was used to predict appropriate operating parameters for primary liver cultures. Oxygen concentrations at key locations in the system were then measured as a function of flow rate and time after initiation of culture to determine oxygen consumption rates. After seven days of culture, tissue formed from cells seeded in the perfused multiwell reactor remained functionally viable as assessed by immunostaining for hepatocyte and liver sinusoidal endothelial cell (LSEC) phenotypic markers.

  10. Altered resting perfusion and functional connectivity of default mode network in youth with autism spectrum disorder

    PubMed Central

    Jann, Kay; Hernandez, Leanna M; Beck-Pancer, Devora; McCarron, Rosemary; Smith, Robert X; Dapretto, Mirella; Wang, Danny J J

    2015-01-01

    Background Neuroimaging studies can shed light on the neurobiological underpinnings of autism spectrum disorders (ASD). Studies of the resting brain have shown both altered baseline metabolism from PET/SPECT and altered functional connectivity (FC) of intrinsic brain networks based on resting-state fMRI. To date, however, no study has investigated these two physiological parameters of resting brain function jointly, or explored the relationship between these measures and ASD symptom severity. Methods Here, we used pseudo-continuous arterial spin labeling with 3D background-suppressed GRASE to assess resting cerebral blood flow (CBF) and FC in 17 youth with ASD and 22 matched typically developing (TD) children. Results A pattern of altered resting perfusion was found in ASD versus TD children including frontotemporal hyperperfusion and hypoperfusion in the dorsal anterior cingulate cortex. We found increased local FC in the anterior module of the default mode network (DMN) accompanied by decreased CBF in the same area. In our cohort, both alterations were associated with greater social impairments as assessed with the Social Responsiveness Scale (SRS-total T scores). While FC was correlated with CBF in TD children, this association between FC and baseline perfusion was disrupted in children with ASD. Furthermore, there was reduced long-range FC between anterior and posterior modules of the DMN in children with ASD. Conclusion Taken together, the findings of this study – the first to jointly assess resting CBF and FC in ASD – highlight new avenues for identifying novel imaging markers of ASD symptomatology. PMID:26445698

  11. Multiparametric Breast MRI of Breast Cancer

    PubMed Central

    Rahbar, Habib; Partridge, Savannah C.

    2015-01-01

    Synopsis Breast MRI has increased in popularity over the past two decades due to evidence for its high sensitivity for cancer detection. Current clinical MRI approaches rely on the use of a dynamic contrast enhanced (DCE-MRI) acquisition that facilitates morphologic and semi-quantitative kinetic assessments of breast lesions. The use of more functional and quantitative parameters, such as pharmacokinetic features from high temporal resolution DCE-MRI, apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) on diffusion weighted MRI, and choline concentrations on MR spectroscopy, hold promise to broaden the utility of MRI and improve its specificity. However, due to wide variations in approach among centers for measuring these parameters and the considerable technical challenges, robust multicenter data supporting their routine use is not yet available, limiting current applications of many of these tools to research purposes. PMID:26613883

  12. MRI of plants and foods.

    PubMed

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  13. Battlefield MRI

    DOE PAGES

    Espy, Michelle

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  14. Sodium MRI.

    PubMed

    Ouwerkerk, Ronald

    2011-01-01

    Sodium ((23)Na) imaging has a place somewhere between (1)H-MRI and MR spectroscopy (MRS). Like MRS it potentially provides information on metabolic processes, but only one single resonance of ionic (23)Na is observed. Therefore pulse sequences do not need to code for a chemical shift dimension, allowing (23)Na images to be obtained at high resolutions as compared to MRS. In this chapter the biological significance of sodium in the brain will be discussed, as well as methods for observing it with (23)Na-MRI. Many vital cellular processes and interactions in excitable tissues depend on the maintenance of a low intracellular and high extracellular sodium concentration. Healthy cells maintain this concentration gradient at the cost of energy. Leaky cell membranes or an impaired energy metabolism immediately leads to an increase in cytosolic total tissue sodium. This makes sodium a biomarker for ischemia, cancer, excessive tissue activation, or tissue damage as might be caused by ablation therapy. Special techniques allow quantification of tissue sodium for the monitoring of disease or therapy in longitudinal studies or preferential observation of the intracellular component of the tissue sodium. New methods and high-field magnet technology provide new opportunities for (23)Na-MRI in clinical and biomedical research.

  15. Viable neurons with luxury perfusion in hydrocephalus.

    PubMed

    Wong, C Y; Luciano, M G; MacIntyre, W J; Brunken, R C; Hahn, J F; Go, R T

    1997-09-01

    A woman with hydrocephalus due to aqueductal stenosis had functional imaging of cerebral perfusion and metabolism to demonstrate the effects of endoscopic third ventriculostomy--a new form of internal surgical shunting. Technetium-99m-ECD SPECT and 18F-FDG PET showed regional luxury perfusion at the left frontal region. Three months after a successful third ventriculostomy, a repeated imaging of cerebral perfusion and metabolism showed resolution of luxury perfusion and global improvement of both perfusion and metabolism. This concurred with postoperative clinical improvement. The paired imaging of cerebral perfusion and metabolism provides more information than just imaging perfusion or metabolism. Thus, the detection of perfusion and metabolism mismatch may open a new window of opportunity for surgical intervention.

  16. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion.

    PubMed

    Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L

    2015-12-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b-maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.

  17. Tracer kinetic analysis of dynamic contrast-enhanced MRI and CT bladder cancer data: A preliminary comparison to assess the magnitude of water exchange effects.

    PubMed

    Bains, Lauren J; McGrath, Deirdre M; Naish, Josephine H; Cheung, Susan; Watson, Yvonne; Taylor, M Ben; Logue, John P; Parker, Geoffrey J M; Waterton, John C; Buckley, David L

    2010-08-01

    The purpose of this study was to determine the impact of water exchange on tracer kinetic parameter estimates derived from T(1)-weighted dynamic contrast-enhanced (DCE)-MRI data using a direct quantitative comparison with DCE-CT. Data were acquired from 12 patients with bladder cancer who underwent DCE-CT followed by DCE-MRI within a week. A two-compartment tracer kinetic model was fitted to the CT data, and two versions of the same model with modifications to account for the fast exchange and no exchange limits of water exchange were fitted to the MR data. The two-compartment tracer kinetic model provided estimates of the fractional plasma volume (v(p)), the extravascular extracellular space fraction (v(e)), plasma perfusion (F(p)), and the microvascular permeability surface area product. Our findings suggest that DCE-CT is an appropriate reference for DCE-MRI in bladder cancers as the only significant difference found between CT and MR parameter estimates were the no exchange limit estimates of v(p) (P = 0.002). These results suggest that although water exchange between the intracellular and extravascular-extracellular space has a negligible effect on DCE-MRI, vascular-extravascular-extracellular space water exchange may be more important.

  18. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    PubMed

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  19. Perfusion decellularization of whole organs.

    PubMed

    Guyette, Jacques P; Gilpin, Sarah E; Charest, Jonathan M; Tapias, Luis F; Ren, Xi; Ott, Harald C

    2014-01-01

    The native extracellular matrix (ECM) outlines the architecture of organs and tissues. It provides a unique niche of composition and form, which serves as a foundational scaffold that supports organ-specific cell types and enables normal organ function. Here we describe a standard process for pressure-controlled perfusion decellularization of whole organs for generating acellular 3D scaffolds with preserved ECM protein content, architecture and perfusable vascular conduits. By applying antegrade perfusion of detergents and subsequent washes to arterial vasculature at low physiological pressures, successful decellularization of complex organs (i.e., hearts, lungs and kidneys) can be performed. By using appropriate modifications, pressure-controlled perfusion decellularization can be achieved in small-animal experimental models (rat organs, 4-5 d) and scaled to clinically relevant models (porcine and human organs, 12-14 d). Combining the unique structural and biochemical properties of native acellular scaffolds with subsequent recellularization techniques offers a novel platform for organ engineering and regeneration, for experimentation ex vivo and potential clinical application in vivo.

  20. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    NASA Astrophysics Data System (ADS)

    Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.

    2017-04-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N  =  29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b  =  800 s mm‑2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7–9 (equivalent to 21

  1. Positron emission tomography to assess hypoxia and perfusion in lung cancer

    PubMed Central

    Verwer, Eline E; Boellaard, Ronald; van der Veldt, Astrid AM

    2014-01-01

    In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed. PMID:25493221

  2. Evaluation of Feline Renal Perfusion with Contrast-Enhanced Ultrasonography and Scintigraphy

    PubMed Central

    Vanderperren, Katrien; Bosmans, Tim; Dobbeleir, André; Duchateau, Luc; Hesta, Myriam; Lybaert, Lien; Peremans, Kathelijne; Vandermeulen, Eva; Saunders, Jimmy

    2016-01-01

    Contrast-enhanced ultrasound (CEUS) is an emerging technique to evaluate tissue perfusion. Promising results have been obtained in the evaluation of renal perfusion in health and disease, both in human and veterinary medicine. Renal scintigraphy using 99mTc-Mercaptoacetyltriglycine (MAG3) is another non-invasive technique that can be used to evaluate renal perfusion. However, no data are available on the ability of CEUS or 99mTc- MAG3 scintigraphy to detect small changes in renal perfusion in cats. Therefore, both techniques were applied in a normal feline population to evaluate detection possibilities of perfusion changes by angiotensin II (AT II). Contrast-enhanced ultrasound using a bolus injection of commercially available contrast agent and renal scintigraphy using 99mTc-MAG3 were performed in 11 healthy cats after infusion of 0,9% NaCl (control) and AT II. Angiotensin II induced changes were noticed on several CEUS parameters. Mean peak enhancement, wash-in perfusion index and wash-out rate for the entire kidney decreased significantly after AT II infusion. Moreover, a tendency towards a lower wash-in area-under-the curve was present. Renal scintigraphy could not detect perfusion changes induced by AT II. This study shows that CEUS is able to detect changes in feline renal perfusion induced by AT II infusion. PMID:27736928

  3. Arterial spin labeling perfusion predicts longitudinal decline in semantic variant primary progressive aphasia.

    PubMed

    Olm, Christopher A; Kandel, Benjamin M; Avants, Brian B; Detre, John A; Gee, James C; Grossman, Murray; McMillan, Corey T

    2016-10-01

    The objective of the study was to evaluate the prognostic value of regional cerebral blood flow (CBF) measured by arterial spin labeled (ASL) perfusion MRI in patients with semantic variant primary progressive aphasia (svPPA). We acquired pseudo-continuous ASL (pCASL) MRI and whole-brain T1-weighted structural MRI in svPPA patients (N = 13) with cerebrospinal fluid biomarkers consistent with frontotemporal lobar degeneration pathology. Follow-up T1-weighted MRI was available in a subset of patients (N = 8). We performed whole-brain comparisons of partial volume-corrected CBF and cortical thickness between svPPA and controls, and compared baseline and follow-up cortical thickness in regions of significant hypoperfusion and hyperperfusion. Patients with svPPA showed partial volume-corrected hypoperfusion relative to controls in left temporal lobe and insula. svPPA patients also had typical cortical thinning in anterior temporal, insula, and inferior frontal regions at baseline. Volume-corrected hypoperfusion was seen in areas of significant cortical thinning such as the left temporal lobe and insula. Additional regions of hypoperfusion corresponded to areas without cortical thinning. We also observed regions of hyperperfusion, some associated with cortical thinning and others without cortical thinning, including right superior temporal, inferior parietal, and orbitofrontal cortices. Regions of hypoperfusion and hyperperfusion near cortical thinning at baseline had significant longitudinal thinning between baseline and follow-up scans, but perfusion changes in distant areas did not show progressive thinning. Our findings suggest ASL MRI may be sensitive to functional changes not readily apparent in structural MRI, and specific changes in perfusion may be prognostic markers of disease progression in a manner consistent with cell-to-cell spreading pathology.

  4. A novel extracorporeal kidney perfusion system: a concept model.

    PubMed

    Szajer, Michael; Shah, Gaurang; Kittur, Dilip; Searles, Bruce; Li, Lu; Bruch, David; Darling, Edward

    2004-01-01

    The number of patients awaiting kidney transplantation has more than doubled in the past decade while the number of available donor organs has seen only a modest increase, leading to a critical shortage of organs. In response to this extreme shortage, the criteria for accepting organs have been modified to include marginal donors such as non-heart beating donors (NHBD). In these kidneys, determining viability is important for success of transplantation. Therefore, a study was undertaken to develop a system that would allow the extracorporeal assessment of function and compatibility of the donor organ before the patient is exposed to the risks associated with surgery. Following bilateral nephrectomy, the kidneys of 10 pigs (approximately 30 kg) were connected to a commercially available hypothermic pulsatile kidney perfusion apparatus. This system was modified to allow for normothermic pulsatile renal perfusion using the potential recipient's blood, via vascular access. These kidneys were perfused with the animal's blood for a minimum of two hours while various parameters were monitored. Perfusion pressures were kept between 60 and 90 mmHg, which correlated to flows between 70 and 150 mL/min. A decrease in perfusion pressure with a concomitant rise in flow over the two-hour period served as a good predictor of a viable and compatible graft. The modified kidney preservation system allows the normothermic, pulsatile extracorporeal perfusion of donor kidneys with the ability to monitor resistance to flow and urine production. This model also allows observation of the kidney for signs of hyperacute rejection. Further research needs to be conducted in order to determine if the system represents a methodology to increase the pool of available donor organs.

  5. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma

    PubMed Central

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-01-01

    Abstract The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC). Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D∗, and f) and DCE-MRI parameters (Ktrans, Kep, and Ve) values and their percentage changes (Δ%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups. None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher Δ%D values than did the residual group (all P <0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P <0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively). IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and Δ%D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  6. Stability of radiomic features in CT perfusion maps.

    PubMed

    Bogowicz, M; Riesterer, O; Bundschuh, R A; Veit-Haibach, P; Hüllner, M; Studer, G; Stieb, S; Glatz, S; Pruschy, M; Guckenberger, M; Tanadini-Lang, S

    2016-12-21

    This study aimed to identify a set of stable radiomic parameters in CT perfusion (CTP) maps with respect to CTP calculation factors and image discretization, as an input for future prognostic models for local tumor response to chemo-radiotherapy. Pre-treatment CTP images of eleven patients with oropharyngeal carcinoma and eleven patients with non-small cell lung cancer (NSCLC) were analyzed. 315 radiomic parameters were studied per perfusion map (blood volume, blood flow and mean transit time). Radiomics robustness was investigated regarding the potentially standardizable (image discretization method, Hounsfield unit (HU) threshold, voxel size and temporal resolution) and non-standardizable (artery contouring and noise threshold) perfusion calculation factors using the intraclass correlation (ICC). To gain added value for our model radiomic parameters correlated with tumor volume, a well-known predictive factor for local tumor response to chemo-radiotherapy, were excluded from the analysis. The remaining stable radiomic parameters were grouped according to inter-parameter Spearman correlations and for each group the parameter with the highest ICC was included in the final set. The acceptance level was 0.9 and 0.7 for the ICC and correlation, respectively. The image discretization method using fixed number of bins or fixed intervals gave a similar number of stable radiomic parameters (around 40%). The potentially standardizable factors introduced more variability into radiomic parameters than the non-standardizable ones with 56-98% and 43-58% instability rates, respectively. The highest variability was observed for voxel size (instability rate  >97% for both patient cohorts). Without standardization of CTP calculation factors none of the studied radiomic parameters were stable. After standardization with respect to non-standardizable factors ten radiomic parameters were stable for both patient cohorts after correction for inter-parameter correlations. Voxel size

  7. Stability of radiomic features in CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Bogowicz, M.; Riesterer, O.; Bundschuh, R. A.; Veit-Haibach, P.; Hüllner, M.; Studer, G.; Stieb, S.; Glatz, S.; Pruschy, M.; Guckenberger, M.; Tanadini-Lang, S.

    2016-12-01

    This study aimed to identify a set of stable radiomic parameters in CT perfusion (CTP) maps with respect to CTP calculation factors and image discretization, as an input for future prognostic models for local tumor response to chemo-radiotherapy. Pre-treatment CTP images of eleven patients with oropharyngeal carcinoma and eleven patients with non-small cell lung cancer (NSCLC) were analyzed. 315 radiomic parameters were studied per perfusion map (blood volume, blood flow and mean transit time). Radiomics robustness was investigated regarding the potentially standardizable (image discretization method, Hounsfield unit (HU) threshold, voxel size and temporal resolution) and non-standardizable (artery contouring and noise threshold) perfusion calculation factors using the intraclass correlation (ICC). To gain added value for our model radiomic parameters correlated with tumor volume, a well-known predictive factor for local tumor response to chemo-radiotherapy, were excluded from the analysis. The remaining stable radiomic parameters were grouped according to inter-parameter Spearman correlations and for each group the parameter with the highest ICC was included in the final set. The acceptance level was 0.9 and 0.7 for the ICC and correlation, respectively. The image discretization method using fixed number of bins or fixed intervals gave a similar number of stable radiomic parameters (around 40%). The potentially standardizable factors introduced more variability into radiomic parameters than the non-standardizable ones with 56-98% and 43-58% instability rates, respectively. The highest variability was observed for voxel size (instability rate  >97% for both patient cohorts). Without standardization of CTP calculation factors none of the studied radiomic parameters were stable. After standardization with respect to non-standardizable factors ten radiomic parameters were stable for both patient cohorts after correction for inter-parameter correlations. Voxel size

  8. MRI of the lung: state of the art.

    PubMed

    Wielpütz, Mark; Kauczor, Hans-Ulrich

    2012-01-01

    Magnetic resonance imaging (MRI) of the lung is technically challenging due to the low proton density and fast signal decay of the lung parenchyma itself. Additional challenges consist of tissue loss, hyperinflation, and hypoxic hypoperfusion, e.g., in emphysema, a so-called "minus-pathology". However, pathological changes resulting in an increase of tissue ("plus-pathology"), such as atelectases, nodules, infiltrates, mucus, or pleural effusion, are easily depicted with high diagnostic accuracy. Although MRI is inferior or at best equal to multi-detector computed tomography (MDCT) for the detection of subtle morphological features, MRI now offers an increasing spectrum of functional imaging techniques such as perfusion assessment and measurement of ventilation and respiratory mechanics that are superior to what is possible with MDCT. Without putting patients at risk with ionizing radiation, repeated examinations allow for the evaluation of the course of lung disease and monitoring of the therapeutic response through quantitative imaging, providing a level of functional detail that cannot be obtained by any other single imaging modality. As such, MRI will likely be used for clinical applications beyond morphological imaging for many lung diseases. In this article, we review the technical aspects and protocol suggestions for chest MRI and discuss the role of MRI in the evaluation of nodules and masses, airway disease, respiratory mechanics, ventilation, perfusion and hemodynamics, and pulmonary vasculature.

  9. Thallium-201 myocardial perfusion imaging in myocarditis

    SciTech Connect

    Tamaki, N.; Yonekura, Y.; Kadota, K.; Kambara, H.; Torizuka, K.

    1985-08-01

    TI-201 myocardial perfusion imaging was performed in six patients with clinically documented myocarditis. Each case manifested electrocardiographic abnormalities with elevation of serum cardiac enzymes and no significant stenosis of the coronary arteries observed on angiogram. Resting TI-201 images were visually assessed by three observers. Focal perfusion defects were observed in three cases (50%), among which two showed multiple perfusion defects. Emission computed tomography using TI-201 clearly delineated multifocal lesions in the first case. On the other hand, no significant perfusion defects were noted in the remaining three cases. Thus, myocarditis should be considered as one of the disease entities that may produce perfusion defects on TI-201 myocardial imaging.

  10. [Recent advances in newborn MRI].

    PubMed

    Morel, B; Hornoy, P; Husson, B; Bloch, I; Adamsbaum, C

    2014-07-01

    The accurate morphological exploration of the brain is a major challenge in neonatology that advances in magnetic resonance imaging (MRI) can now provide. MRI is the gold standard if an hypoxic ischemic pathology is suspected in a full term neonate. In prematures, the specific role of MRI remains to be defined, secondary to US in any case. We present a state of the art of hardware and software technical developments in MRI. The increase in magnetic field strength (3 tesla) and the emergence of new MRI sequences provide access to new information. They both have positive and negative consequences on the daily clinical data acquisition use. The semiology of brain imaging in full term newborns and prematures is more extensive and complex and thereby more difficult to interpret. The segmentation of different brain structures in the newborn, even very premature, is now available. It is now possible to dissociate the cortex and basal ganglia from the cerebral white matter, to calculate the volume of anatomical structures, which improves the morphometric quantification and the understanding of the normal and abnormal brain development. MRI is a powerful tool to analyze the neonatal brain. The relevance of the diagnostic contribution requires an adaptation of the parameters of the sequences to acquire and of the image processing methods.

  11. MRI Biomarkers in Oncology Clinical Trials

    PubMed Central

    Abramson, Richard G.; Arlinghaus, Lori; Dula, Adrienne; Quarles, C. Chad; Stokes, Ashley; Weis, Jared; Whisenant, Jennifer; Chekmenev, Eduard Y.; Zhukov, Igor; Williams, Jason; Yankeelov, Thomas

    2015-01-01

    Quantitative magnetic resonance imaging (MRI) techniques have the ability to quantitatively report various pathophysiological processes associated with cancer. These measures have been shown to provide complementary information to that typically obtained from standard morphologically based criteria (e.g., size) and, furthermore, have been shown to outperform sized based measures in certain applications. In this review, we discuss eight areas of quantitative MRI that are either currently employed in clinical trials, or are emerging as promising techniques for both diagnosing cancer as well as assessing—or even predicting—the response of cancer to various therapies. The currently employed methods include the response evaluation criteria in solid tumors (RECIST), dynamic susceptibility MRI (DSC-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted imaging (DWI). The emerging techniques covered are chemical exchange saturation transfer MRI (CEST-MRI), elastography, hyperpolarized MRI, and multi-parameter MRI. After a brief introduction to each technique, we present a small number of illustrative applications before noting the existing limitations of each method and what must be done to move each to more routine clinical application. PMID:26613873

  12. Use of Cationized Ferritin Nanoparticles to Measure Renal Glomerular Microstructure with MRI.

    PubMed

    Bennett, Kevin M; Beeman, Scott C; Baldelomar, Edwin J; Zhang, Min; Wu, Teresa; Hann, Bradley D; Bertram, John F; Charlton, Jennifer R

    2016-01-01

    Magnetic resonance imaging (MRI) is becoming important for whole-kidney assessment of glomerular morphology, both in vivo and ex vivo. MRI-based renal morphological measurements can be made in intact organs and allow direct measurements of every perfused glomerulus. Cationic ferritin (CF) is used as a superparamagnetic contrast agent for MRI. CF binds to the glomerular basement membrane after intravenous injection, allowing direct, whole-kidney measurements of glomerular number, volume, and volume distribution. Here we describe the production, testing, and use of CF as an MRI contrast agent for quantitative glomerular morphology in intact mouse, rat, and human kidneys.

  13. A brief report on MRI investigation of experimental traumatic brain injury

    PubMed Central

    Duong, Timothy Q.; Watts, Lora T.

    2016-01-01

    Traumatic brain injury is a major cause of death and disability. This is a brief report based on a symposium presentation to the 2014 Chinese Neurotrauma Association Meeting in San Francisco, USA. It covers the work from our laboratory in applying multimodal MRI to study experimental traumatic brain injury in rats with comparisons made to behavioral tests and histology. MRI protocols include structural, perfusion, manganese-enhanced, diffusion-tensor MRI, and MRI of blood-brain barrier integrity and cerebrovascular reactivity. PMID:26981069

  14. Fragile X syndrome and cerebral perfusion abnormalities: single-photon emission computed tomographic study.

    PubMed

    Kabakus, Nimet; Aydin, Mustafa; Akin, Haluk; Balci, Tansel Ansal; Kurt, Abdullah; Kekilli, Ersoy

    2006-12-01

    Fragile X syndrome is an inherited disorder caused by a defective gene on the X chromosome. It is associated with developmental or behavioral symptoms and various degrees of mental retardation. Morphologic abnormalities and altered perfusion of various brain areas can underlie these functional disturbances. The aim of this study was to investigate the cerebral perfusion state in patients with fragile X syndrome using single-photon emission computed tomography (SPECT). Structural and functional assessment was also performed by magnetic resonance imaging (MRI) and electroencephalography (EEG). Eight boys with cytogenetically confirmed fragile X syndrome (mean age 8.8 +/- 4.4 years, range 5-18 years), were included. All patients had mental retardation, with a mean IQ of 58.9 +/- 8.8 (range 40-68), and additional neurobehavioral symptoms. SPECT revealed cerebral perfusion abnormalities in six patients (75%), most commonly in the frontoparietotemporal area and prominent in the right hemisphere. The SPECT and EEG findings were concordant: hypoperfused areas in SPECT corresponded to regions of persistent slow-wave paroxysms on EEG. On the other hand, cranial MRI was abnormal qualitatively only in two patients (25%) showing cerebellar and vermal hypoplasia and cerebral hemispheric asymmetry. Our results indicate that cerebral perfusion abnormalities, which are correlated with electrophysiologic findings but not necessarily with anatomic abnormalities, can underlie the pathogenesis of the clinical findings observed in fragile X syndrome.

  15. Measuring perfusion with light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M. A.; de Bruin, Daniel M.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-03-01

    There is no gold standard test for perfusion evaluation in surgery. Optical Imaging techniques are able to image tissue at high resolution and in real-time. Laser Speckle Contrast Imaging, Optical Coherence Tomography, Sidestream Darkfield and Incident Darkfield all use the interaction of light with tissue to create an image. To test their feasibility and explore validity in a controlled setting, we created a phantom with the optical properties of tissue and microvascular channels of 30-400 micrometer. With a Hamilton Syringe Pump we mimicked blood flow velocities of 0-20 mm/sec. Images of all different modalities at different blood flow velocities were compared in terms of imaging depth, resoluation and hemodynamic parameters.

  16. Impaired fMRI activation in patients with primary brain tumors.

    PubMed

    Jiang, Zhen; Krainik, Alexandre; David, Olivier; Salon, Caroline; Troprès, Irène; Hoffmann, Dominique; Pannetier, Nicolas; Barbier, Emmanuel L; Bombìn, Eduardo Ramos; Warnking, Jan; Pasteris, Caroline; Chabardes, Stefan; Berger, François; Grand, Sylvie; Segebarth, Christoph; Gay, Emmanuel; Le Bas, Jean-François

    2010-08-15

    To characterize peritumoral BOLD contrast disorders, 25 patients referred for resection of primary frontal or parietal neoplasms (low-grade glioma (LGG) (n=8); high-grade glioma (HGG) (n=7); meningioma (n=10)) without macroscopic tumoral infiltration of the primary sensorimotor cortex (SM1) were examined preoperatively using BOLD fMRI during simple motor tasks. Overall cerebral BOLD signal was estimated using vasoreactivity to carbogen inhalation. Using bolus of gadolinium, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) were estimated. In a 1cm(3) region-of-interest centered on maximal T-value in SM1 contralateral to movements, interhemispheric asymmetry was evaluated using interhemispheric ratios for BOLD and perfusion parameters. During motor tasks contralateral to the tumor, ipsitumoral sensorimotor activations were decreased in HGG and meningiomas, correlated to the distance between the tumor and SM1. Whereas CBV was decreased in ipsitumoral SM1 for HGG, it remained normal in meningiomas. Changes in basal perfusion could not explain motor activation impairment in SM1. Decreased interhemispheric ratio of the BOLD response to carbogen was the best predictor to model the asymmetry of motor activation (R=0.51). Moreover, 94.9+/-4.9% of all motor activations overlapped significant BOLD response to carbogen inhalation.

  17. Contrast-Enhanced Ultrasound with VEGFR2-Targeted Microbubbles for Monitoring Regorafenib Therapy Effects in Experimental Colorectal Adenocarcinomas in Rats with DCE-MRI and Immunohistochemical Validation

    PubMed Central

    Clevert, Dirk-Andre; Hirner-Eppeneder, Heidrun; Ingrisch, Michael; Moser, Matthias; Schuster, Jessica; Tadros, Dina; Schneider, Moritz; Kazmierczak, Philipp Maximilian; Reiser, Maximilian; Cyran, Clemens C.

    2017-01-01

    Objectives To investigate contrast-enhanced ultrasound (CEUS) with VEGFR2-targeted microbubbles for monitoring therapy effects of regorafenib on experimental colon carcinomas in rats with correlation to dynamic contrast-enhanced MRI (DCE-MRI) and immunohistochemistry. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 21 (n = 11 therapy group; n = 10 control group) female athymic nude rats (Hsd: RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment with regorafenib or a placebo (10 mg/kg bodyweight), using CEUS with VEGFR2-targeted microbubbles and DCE-MRI. In CEUS tumor perfusion was assessed during an early vascular phase (wash-in area under the curve = WiAUC) and VEGFR2-specific binding during a late molecular phase (signal intensity after 8 (SI8min) and 10 minutes (SI10min)), using a conventional 15L8 linear transducer (transmit frequency 7 MHz, dynamic range 80 dB, depth 25 mm). In DCE-MRI functional parameters plasma flow (PF) and plasma volume (PV) were quantified. For validation purposes, CEUS parameters were correlated with DCE-MRI parameters and immunohistochemical VEGFR2, CD31, Ki-67 and TUNEL stainings. Results CEUS perfusion parameter WiAUC decreased significantly (116,989 ± 77,048 a.u. to 30,076 ± 27,095a.u.; p = 0.005) under therapy with no significant changes (133,932 ± 65,960 a.u. to 84,316 ± 74,144 a.u.; p = 0.093) in the control group. In the therapy group, the amount of bound microbubbles in the late phase was significantly lower in the therapy than in the control group on day 7 (SI8min: 283 ± 191 vs. 802 ± 460 a.u.; p = 0.006); SI10min: 226 ± 149 vs. 645 ± 461 a.u.; p = 0.009). PF and PV decreased significantly (PF: 147 ± 58 mL/100 mL/min to 71 ± 15 mL/100 mL/min; p = 0.003; PV: 13 ± 3% to 9 ± 4%; p = 0.040) in the therapy group. Immunohistochemistry revealed significantly fewer VEGFR2 (7.2 ± 1.8 vs. 17.8 ± 4.6; p < 0.001), CD31 (8.1 ± 3.0 vs

  18. Early Support of Intracranial Perfusion

    DTIC Science & Technology

    2013-10-01

    automated real-time vital signs monitoring data” was funded by USAF (MSA); UM PI: Deborah Stein  The project, titled “Noninvasive intracranial pressure ...scoring of cerebral perfusion pressure and intracranial pressure provides a Brain Trauma Index that predicts outcome in patients with severe TBI... intracranial pressure dose index: Dynamic 3-D scoring in the assessment of Traumatic Brain Injury Proceedings of American Association for the Surgery of

  19. MRI-Guided 3D Optimization Significantly Improves DVH Parameters of Pulsed-Dose-Rate Brachytherapy in Locally Advanced Cervical Cancer

    SciTech Connect

    Lindegaard, Jacob C. Tanderup, Kari; Nielsen, Soren Kynde; Haack, Soren; Gelineck, John

    2008-07-01

    Purpose: To compare dose-volume histogram parameters of standard Point A and magnetic resonance imaging-based three-dimensional optimized dose plans in 21 consecutive patients who underwent pulsed-dose-rate brachytherapy (PDR-BT) for locally advanced cervical cancer. Methods and Materials: All patients received external beam radiotherapy (elective target dose, 45 Gy in 25-30 fractions; tumor target dose, 50-60 Gy in 25-30 fractions). PDR-BT was applied with a tandem-ring applicator. Additional ring-guided titanium needles were used in 4 patients and a multichannel vaginal cylinder in 2 patients. Dose planning was done using 1.5 Tesla T{sub 1}-weighted and T{sub 2}-weighted paratransversal magnetic resonance imaging scans. T{sub 1}-weighted visible oil-containing tubes were used for applicator reconstruction. The prescribed standard dose for PDR-BT was 10 Gy (1 Gy/pulse, 1 pulse/h) for two to three fractions to reach a physical dose of 80 Gy to Point A. The total dose (external beam radiotherapy plus brachytherapy) was normalized to an equivalent dose in 2-Gy fractions using {alpha}/{beta} = 10 Gy for tumor, {alpha}/{beta} = 3 Gy for normal tissue, and a repair half-time of 1.5 h. The goal of optimization was dose received by 90% of the target volume (D{sub 90}) of {>=}85 Gy{sub {alpha}}{sub /{beta}}{sub 10} in the high-risk clinical target volume (cervix and remaining tumor at brachytherapy), but keeping the minimal dose to 2 cm{sup 3} of the bladder and rectum/sigmoid at <90 and <75 Gy{sub {alpha}}{sub /{beta}}{sub 3}, respectively. Results: Using three-dimensional optimization, all dose-volume histogram constraints were met in 16 of 21 patients compared with 3 of 21 patients with two-dimensional library plans (p < 0.001). Optimization increased the minimal target dose (D{sub 100}) of the high-risk clinical target volume (p < 0.007) and decreased the minimal dose to 2 cm{sup 3} for the sigmoid significantly (p = 0.03). For the high-risk clinical target volume, D

  20. Intestinal perfusion monitoring using photoplethysmography

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-08-01

    In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed.

  1. Ultrasound perfusion signal processing for tumor detection

    NASA Astrophysics Data System (ADS)

    Kim, MinWoo; Abbey, Craig K.; Insana, Michael F.

    2016-04-01

    Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity and a sign of a potential malignancy. Ultrasonic pulsed-Doppler imaging is a preferred modality for noninvasive monitoring of blood flow. However, the weak blood echoes and disorganized slow flow make it difficult to detect perfusion using standard methods without the expense and risk of contrast enhancement. Our research measures the efficiency of conventional power-Doppler (PD) methods at discriminating flow states by comparing measurement performance to that of an ideal discriminator. ROC analysis applied to the experimental results shows that power Doppler methods are just 30-50 % efficient at perfusion flows less than 1ml/min, suggesting an opportunity to improve perfusion assessment through signal processing. A new perfusion estimator is proposed by extending the statistical discriminator approach. We show that 2-D perfusion color imaging may be enhanced using this approach.

  2. A New Apparatus and Surgical Technique for the Dual Perfusion of Human Tumor Xenografts in Situ in Nude Rats

    PubMed Central

    Dauchy, Robert T; Dauchy, Erin M; Mao, Lulu; Belancio, Victoria P; Hill, Steven M; Blask, David E

    2012-01-01

    We present a new perfusion system and surgical technique for simultaneous perfusion of 2 tissue-isolated human cancer xenografts in nude rats by using donor blood that preserves a continuous flow. Adult, athymic nude rats (Hsd:RH-Foxn1rnu) were implanted with HeLa human cervical or HT29 colon adenocarcinomas and grown as tissue-isolated xenografts. When tumors reached an estimated weight of 5 to 6 g, rats were prepared for perfusion with donor blood and arteriovenous measurements. The surgical procedure required approximately 20 min to complete for each tumor, and tumors were perfused for a period of 150 min. Results showed that tumor venous blood flow, glucose uptake, lactic acid release, O2 uptake and CO2 production, uptake of total fatty acid and linoleic acid and conversion to the mitogen 13-HODE, cAMP levels, and activation of several marker kinases were all well within the normal physiologic, metabolic, and signaling parameters characteristic of individually perfused xenografts. This new perfusion system and technique reduced procedure time by more than 50%. These findings demonstrate that 2 human tumors can be perfused simultaneously in situ or ex vivo by using either rodent or human blood and suggest that the system may also be adapted for use in the dual perfusion of other organs. Advantages of this dual perfusion technique include decreased anesthesia time, decreased surgical manipulation, and increased efficiency, thereby potentially reducing the numbers of laboratory animals required for scientific investigations. PMID:22546915

  3. New insights on COPD imaging via CT and MRI

    PubMed Central

    Sverzellati, N; Molinari, F; Pirronti, T; Bonomo, L; Spagnolo, P; Zompatori, M

    2007-01-01

    Multidetector-row computed tomography (MDCT) can be used to quantify morphological features and investigate structure/function relationship in COPD. This approach allows a phenotypical definition of COPD patients, and might improve our understanding of disease pathogenesis and suggest new therapeutical options. In recent years, magnetic resonance imaging (MRI) has also become potentially suitable for the assessment of ventilation, perfusion and respiratory mechanics. This review focuses on the established clinical applications of CT, and novel CT and MRI techniques, which may prove valuable in evaluating the structural and functional damage in COPD. PMID:18229568

  4. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults.

    PubMed

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G; Bendlin, Barbara B

    2016-01-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife.

  5. Can Dynamic Contrast-Enhanced MRI (DCE-MRI) and Diffusion-Weighted MRI (DW-MRI) Evaluate Inflammation Disease

    PubMed Central

    Zhu, Jianguo; Zhang, Faming; Luan, Yun; Cao, Peng; Liu, Fei; He, Wenwen; Wang, Dehang

    2016-01-01

    Abstract The aim of the study was to investigate diagnosis efficacy of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in Crohn's disease (CD). To find out the correlations between functional MRI parameters including Ktrans, Kep, Ve, Vp, and apparent diffusion coefficient (ADC) with a serologic biomarker. The relationships between pharmacokinetic parameters and ADC were also studied. Thirty-two patients with CD (22 men, 10 women; mean age: 30.5 years) and 18 healthy volunteers without any inflammatory disease (10 men, 8 women; mean age, 34.11 years) were enrolled into this approved prospective study. Pearson analysis was used to evaluate the correlation between Ktrans, Kep, Ve, Vp, and C-reactive protein (CRP), ADC, and CRP respectively. The diagnostic efficacy of the functional MRI parameters in terms of sensitivity and specificity were analyzed by receiver operating characteristic (ROC) curve analyses. Optimal cut-off values of each functional MRI parameters for differentiation of inflammatory from normal bowel were determined according to the Youden criterion. Mean value of Ktrans in the CD group was significantly higher than that of normal control group. Similar results were observed for Kep and Ve. On the contrary, the ADC value was lower in the CD group than that in the control group. Ktrans and Ve were shown to be correlated with CRP (r = 0.725, P < 0.001; r = 0.533, P = 0.002), meanwhile ADC showed negative correlation with CRP (r = −0.630, P < 0.001). There were negative correlations between the pharmacokinetic parameters and ADC, such as Ktrans to ADC (r = −0.856, P < 0.001), and Ve to ADC (r = −0.451, P = 0.01). The area under the curve (AUC) was 0.994 for Ktrans (P < 0.001), 0.905 for ADC (P < 0.001), 0.806 for Ve (P < 0.001), and 0.764 for Kep (P = 0.002). The cut-off point of the Ktrans was found to be 0.931 min–1. This value provided the best trade-off between

  6. Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods

    NASA Astrophysics Data System (ADS)

    Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.

    2012-03-01

    In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.

  7. MRI findings in aphasic status epilepticus.

    PubMed

    Toledo, Manuel; Munuera, Josep; Sueiras, Maria; Rovira, Rosa; Alvarez-Sabín, José; Rovira, Alex

    2008-08-01

    Ictal-MRI studies including diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and MR-angiography (MRA) in patients with aphasic status epilepticus (ASE) are lacking. In this report, we aim to describe the consequences of the ASE on DWIs and its impact on cerebral circulation. We retrospectively studied eight patients with ASE confirmed by ictal-EEG, who underwent ictal-MRI shortly after well-documented onset (mean time delay 3 h). ASE consisted in fluctuating aphasia, mostly associated with other subtle contralateral neurological signs such as hemiparesia, hemianopia, or slight clonic jerks. In MRI, six patients showed cortical temporoparietal hyperintensity in DWI and four of them had also ipsilateral pulvinar lesions. Five patients showed close spatial hyperperfusion areas matching the DWI lesions and an enhanced blow flow in the middle cerebral artery. Parenchymal lesions and hemodynamic abnormalities were not associated with seizure duration or severity in any case. The resolution of DWI lesions at follow-up MRI depended on the length of the MRIs interval. In patients with ASE, lesions on DWI in the temporo-parietal cortex and pulvinar nucleus combined with local hyperperfusion can be observed, even when they appear distant from the epileptic focus or the language areas.

  8. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    SciTech Connect

    Janssen, Marco H.M.; Aerts, Hugo J.W.L.; Buijsen, Jeroen; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) and transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG

  9. Perfusion-diffusion mismatch: does it identify who will benefit from reperfusion therapy?

    PubMed

    Powers, William J

    2012-06-01

    A method to determine which patients would benefit from reperfusion therapies after 4.5 h would greatly add to our ability to reduce the disability caused by stroke. The goal of magnetic resonance perfusion-diffusion imaging in hyperacute ischemic stroke is to identify regions of the brain that will die if untreated and will live and regain function if quickly reperfused. The clinical value of perfusion-diffusion imaging in hyperacute ischemic stroke can be proven only by demonstrating empirically in a randomized controlled trial (RCT) that there is an improvement in patient outcome that depends on the use of the neuroimaging modality to guide therapy. To date, there have been only a few RCTs that have evaluated whether perfusion-diffusion imaging can identify a subgroup of patients with ischemic stroke more than 4.5 h from onset in whom the overall benefit from reperfusion therapy outweighs the risk. None have met the rigorous design requirements of the three-group study necessary to adequately test this hypothesis, and none have even met their own criteria for demonstrating a clinical benefit. While studies are not sufficient to conclusively disprove the hypothesis there are no RCT data to support it, and thus, the clinical value of MRI perfusion-diffusion imaging in this setting remains unproven. It is worthy of further investigation in rigorously designed RCTs. However, the risks of symptomatic intracerebral hemorrhage with reperfusion therapies in acute ischemic stroke are proven. Unless RCT data are forthcoming to demonstrate that MRI perfusion-diffusion mismatch improves clinical outcome, it should not be used to guide delayed reperfusion therapy.

  10. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  11. Excorporeal Normothermic Machine Perfusion Resuscitates Pig DCD Livers with Extended Warm Ischemia

    PubMed Central

    Xu, Hongzhi; Berendsen, Tim; Kim, Karen; Soto-Gutiérrez, Alejandro; Bertheium, Francios; Yarmush, Martin L.; Hertl, Martin

    2013-01-01

    Background The shortage in donor livers has led to increased use of allografts derived from donation after cardiac death (DCD). The compromised viability in these livers leads to inferior post-transplantation allograft function and survival compared with donation after brain death (DBD) donor grafts. In this study, we reconditioned DCD livers using an optimized normothermic machine perfusion system. Methods Livers from 12 Yorkshire pigs (20–30 kg) were subjected to either 0 min (WI-0 group, n = 6) or 60 min (WI-60 group, n = 6) of warm ischemia and 2 h of cold storage in UW solution, followed by 4 h of oxygenated sanguineous normothermic machine perfusion. Liver viability and metabolic function were analyzed hourly. Results Warm ischemic livers showed elevated transaminase levels and reduced ATP concentration. After the start of machine perfusion, transaminase levels stabilized and there was recovery of tissue ATP, coinciding with an increase in bile production. These parameters reached comparable levels to the control group after 1 h of machine perfusion. Histology and gross morphology confirmed recovery of the ischemic allografts. Conclusion Our data demonstrate that metabolic and functional parameters of livers with extended warm ischemic time (60 min) can be significantly improved using normothermic machine perfusion. We hereby compound the existing body of evidence that machine perfusion is a viable solution for reconditioning marginal organs. PMID:22099594

  12. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  13. Advanced MRI for Pediatric Brain Tumors with Emphasis on Clinical Benefits

    PubMed Central

    Ra, Young-Shin

    2017-01-01

    Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors. PMID:28096729

  14. Usefulness of cardiac MRI in the prognosis and follow-up of ischemic heart disease.

    PubMed

    Hidalgo, A; Pons-Lladó, G

    2015-01-01

    Cardiac magnetic resonance imaging (MRI) is an important tool that makes it possible to evaluate patients with cardiovascular disease; in addition to infarction and alterations in myocardial perfusion, cardiac MRI is useful for evaluating other phenomena such as microvascular obstruction and ischemia. The main prognostic factors in cardiac MRI are ventricular dysfunction, necrosis in late enhancement sequences, and ischemia in stress sequences. In acute myocardial infarction, cardiac MRI can evaluate the peri-infarct zone and quantify the size of the infarct. Furthermore, cardiac MRI's ability to detect and evaluate microvascular obstruction makes it a fundamental tool for establishing the prognosis of ischemic heart disease. In patients with chronic ischemic heart disease, cardiac MRI can detect ischemia induced by pharmacological stress and can diagnose infarcts that can be missed on other techniques.

  15. Percutaneous malathion absorption in the harvested perfused anuran pelvic limb.

    PubMed

    Willens, Scott; Stoskopf, Michael K; Baynes, Ronald E; Lewbart, Gregory A; Taylor, Sharon K; Kennedy-Stoskopf, Suzanne

    2006-11-01

    The objective of this study was to establish an accurate in vitro model for cutaneous absorption in anurans. The harvested perfused anuran pelvic limb (HPAPL) model maintains the anatomic and physiologic integrity of the skin from the pelvic limb, including the intact capillary network. Radiolabeled malathion was applied to the skin of the dorsal thigh, and perfusate was collected over a 6h period. Residues from the skin surface, stratum externum, and dosed area beneath the stratum externum were analyzed. Kinetic parameters were calculated from these data. Absorption was significantly less for the HPAPL than previously reported for Teflon flow-through diffusion cells. However, partitioning effects were comparable. The HPAPL is an appropriate in vitro model for examining cutaneous absorption kinetics in the bullfrog.

  16. Perfusion Angiography in Acute Ischemic Stroke

    PubMed Central

    Liebeskind, David S.

    2016-01-01

    Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and Tmax, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely. PMID:27446232

  17. Myocardial perfusion assessment with contrast echocardiography

    NASA Astrophysics Data System (ADS)

    Desco, Manuel; Ledesma-Carbayo, Maria J.; Santos, Andres; Garcia-Fernandez, Miguel A.; Marcos-Alberca, Pedro; Malpica, Norberto; Antoranz, Jose C.; Garcia-Barreno, Pedro

    2001-05-01

    Assessment of intramyocardial perfusion by contrast echocardiography is a promising new technique that allows to obtain quantitative parameters for the assessment of ischemic disease. In this work, a new methodology and a software prototype developed for this task are presented. It has been validated with Coherent Contrast Imaging (CCI) images acquired with an Acuson Sequoia scanner. Contrast (Optison microbubbles) is injected continuously during the scan. 150 images are acquired using low mechanical index U/S pulses. A burst of high mechanical index pulses is used to destroy bubbles, thus allowing to detect the contrast wash-in. The stud is performed in two conditions: rest and pharmacologically induced stress. The software developed allows to visualized the study (cine) and to select several ROIs within the heart wall. The position of these ROIs along the cardiac cycle is automatically corrected on the basis of the gradient field, and they can also be manually corrected in case the automatic procedure fails. Time curves are analyzed according to a parametric model that incorporates both contrast inflow rate and cyclic variations. Preliminary clinical results on 80 patients have allowed us to identify normal and pathological patterns and to establish the correlation of quantitative parameters with the real diagnosis.

  18. Near-Infrared Spectroscopy versus Magnetic Resonance Imaging To Study Brain Perfusion in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia

    PubMed Central

    Wintermark, P.; Hansen, A.; Warfield, SK.; Dukhovny, D.; Soul, JS.

    2014-01-01

    Background The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. Objective The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. Design/Methods In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow values (CBF), measured from 1–2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Results Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r = 0.88; p value = 0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. Conclusions NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. PMID:23631990

  19. Effect of fatty acids on physical properties of microsomes from isolated perfused rat liver.

    PubMed

    Schroeder, F; Goh, E H

    1980-04-01

    A computer-centered spectrofluorimeter was used to examine the physicochemical properties of hepatic microsomes and microsomal lipids obtained from isolated rat livers perfused with medium containing palmitate or oleate. The fatty acid composition and degree of unsaturation of the liver microsomal lipids reflected that the fatty acid present in the perfusate. The absorption corrected fluorescence, relative fluorescence efficiency, polarization, and fluorescence anisotropy of several fluorescent probe molecules were measured to determine if their different microenvironments may be altered by the type of fatty acid infused. The probe molecules beta--parinaric acid and 1,6-diphenyl-1,3,5-hexatriene had higher values for each of these parameters when incorporated into microsomes obtained from livers perfused with a medium containing palmitate than with oleate. The same parameters measured for cholesta-5,7,9(11)-trien-3 beta-ol and N-phenyl-1-naphthylamine were not altered. These differences appeared to be primarily due to alterations in microviscosity of the probe microenvironments since the rotational correlation time of 1,6-diphenyl-1,3,5-hexatriene was 25% lower in the microsomes from livers perfused with oleate as compared to livers perfused with palmitate. Thermal discontinuities in Arrhenius plots were noted in the intact microsomes but not in the isolated microsomal lipids with the fluorescence probe molecule beta-parinaric acid. Break points occurred at 10 degrees C and 26 degrees C for microsomes from livers perfused with palmitate and at 12 degrees C and 17 degrees C for microsomes from livers perfused with oleate containing medium. These results suggest that the physicochemical properties of liver microsomes were determined in part by the fatty acid in the perfusate.

  20. Utility of CT perfusion scanning in patient selection for acute stroke intervention: experience at University at Buffalo Neurosurgery-Millard Fillmore Gates Circle Hospital.

    PubMed

    Kan, Peter T; Snyder, Kenneth V; Yashar, Parham; Siddiqui, Adnan H; Hopkins, L Nelson; Levy, Elad I

    2011-06-01

    Computed tomography perfusion scanning generates physiological flow parameters of the brain parenchyma, allowing differentiation of ischemic penumbra and core infarct. Perfusion maps, along with the National Institutes of Health Stroke Scale score, are used as the bases for endovascular stroke intervention at the authors' institute, regardless of the time interval from stroke onset. With case examples, the authors illustrate their perfusion-based imaging guidelines in patient selection for endovascular treatment in the setting of acute stroke.

  1. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment

    PubMed Central

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R.; Stockbower, Grace E.; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A.; Detre, John A.; Wolk, David A.

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or “stress test”, may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease. PMID:27222794

  2. Technetium myocardial perfusion agents: an introduction

    SciTech Connect

    English, R.J.; Kozlowski, J.; Tumeh, S.S.; Holman, B.L.

    1987-09-01

    This is the third in a series of four Continuing Education articles on developing radiopharmaceuticals. After reading this article, the reader should be able to: 1) understand the basic concepts of myocardial perfusion imaging; and 2) discuss the advantages of the technetium myocardial perfusion complexes over thallium-201.

  3. Luxury perfusion following anterior ischemic optic neuropathy.

    PubMed

    Friedland, S; Winterkorn, J M; Burde, R M

    1996-09-01

    We present five patients who developed luxury perfusion following anterior ischemic optic neuropathy in whom fluorescein angiography was misinterpreted as "capillary hemangioma" or neovascularization of the disc. In each case, the segment of disc hyperemia corresponded to a spared region of visual field. Luxury perfusion represents a reparative autoregulatory reaction to ischemia.

  4. Long term perfusion system supporting adipogenesis

    PubMed Central

    Abbott, Rosalyn D.; Raja, Waseem K.; Wang, Rebecca Y.; Stinson, Jordan A.; Glettig, Dean L.; Burke, Kelly A.; Kaplan, David L.

    2015-01-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogensis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  5. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  6. Myocardial perfusion with rubidium-82. III. Theory relating severity of coronary stenosis to perfusion deficit

    SciTech Connect

    Mullani, N.A.

    1984-11-01

    The relation between the quantitative perfusion deficit, as measured by emission computerized tomography, and the severity of coronary artery stenosis is important for the noninvasive clinical evaluation of coronary artery disease in man. Positron emission tomography allows direct noninvasive measurement of myocardial perfusion and quantification of the size of the perfusion defect. Given this important imformation, a mathematical model has been derived to gauge the severity of a coronary stenosis from quantitative perfusion measurements in the normal and poststenotic regions of the heart. The theoretical basis is presented for relating regional myocardial perfusion and regional perfusion resistance to total, coronary blood flow and resistance at normal resting flow and during maximal coronary vasodilation. The concept of perfusion reserve is presented as a clinical measure of the severity of a stenosis.

  7. Synthetic quantitative MRI through relaxometry modelling

    PubMed Central

    Mohammadi, Siawoosh; Weiskopf, Nikolaus

    2016-01-01

    Abstract Quantitative MRI (qMRI) provides standardized measures of specific physical parameters that are sensitive to the underlying tissue microstructure and are a first step towards achieving maps of biologically relevant metrics through in vivo histology using MRI. Recently proposed models have described the interdependence of qMRI parameters. Combining such models with the concept of image synthesis points towards a novel approach to synthetic qMRI, in which maps of fundamentally different physical properties are constructed through the use of biophysical models. In this study, the utility of synthetic qMRI is investigated within the context of a recently proposed linear relaxometry model. Two neuroimaging applications are considered. In the first, artefact‐free quantitative maps are synthesized from motion‐corrupted data by exploiting the over‐determined nature of the relaxometry model and the fact that the artefact is inconsistent across the data. In the second application, a map of magnetization transfer (MT) saturation is synthesized without the need to acquire an MT‐weighted volume, which directly leads to a reduction in the specific absorption rate of the acquisition. This feature would be particularly important for ultra‐high field applications. The synthetic MT map is shown to provide improved segmentation of deep grey matter structures, relative to segmentation using T 1‐weighted images or R 1 maps. The proposed approach of synthetic qMRI shows promise for maximizing the extraction of high quality information related to tissue microstructure from qMRI protocols and furthering our understanding of the interrelation of these qMRI parameters. PMID:27753154

  8. [Compromized myocardial perfusion in arrhythmias (author's transl)].

    PubMed

    Simon, H; Neumann, G; Felix, R; Hedde, H; Schaede, A; Thurn, P; Winkler, C

    1977-09-15

    In 7 patients with arrhythmias of various origin the myocardial scintigram displayed either a diffuse or circumscript defect of the perfusion. The coronary arteriogram was normal in all patients. The localized defect of the perfusion in 2 patients was in the region of the upper part of the interventricular septum. Both had a left bundle brunch block. A correlation between the perfusion defect and the electrophysiological abnormality seems probable. The perfusion defect in one of the patients is most probably caused by a previous myocarditis followed by fibrous changes. In the other 6 patients the cause for the perfusion defect is not obvious. A history of myocarditis is missing. The presence of "small vessel disease" in those patients has however to be considered. Our results point to the relation between an abnormality of the microcirculation and arrhythmias in younger patients.

  9. Sinus MRI scan

    MedlinePlus

    ... sinuses. The test is noninvasive. MRI uses powerful magnets and radio waves instead of radiation. Signals from ... in the eyes. Because the MRI contains a magnet, metal-containing objects such as pens, pocketknives, and ...

  10. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  11. MRI Safety during Pregnancy

    MedlinePlus

    ... 20 to 40 minutes. top of page Contrast material For some MRI exams, a contrast material called gadolinium will need to be injected into a vein in the arm. While contrast material sometimes improves the MRI images, during pregnancy the ...

  12. First in vivo magnetic particle imaging of lung perfusion in rats.

    PubMed

    Zhou, Xinyi Yedda; Jeffris, Kenneth; Yu, Elaine; Zheng, Bo; Goodwill, Patrick; Nahid, Payam; Conolly, Steven

    2017-02-20

    Pulmonary embolism (PE), along with the closely related condition of deep vein thrombosis, affect an estimated 600,000 patients in the US per year. Untreated, PE carries a mortality rate of 30%. Because many patients experience mild or non-specific symptoms, imaging studies are necessary for definitive diagnosis of PE. Iodinated CT pulmonary angiography (CTPA) is recommended for most patients, while nuclear medicine-based ventilation/perfusion (V/Q) scans are reserved for patients in whom the use of iodine is contraindicated. Magnetic particle imaging (MPI) is an emerging tracer imaging modality with high image contrast (no tissue background signal) and sensitivity (200 nM Fe) to superparamagnetic iron oxide (SPIO) tracer. Importantly, unlike CT or nuclear medicine, MPI uses no ionizing radiation. Further, MPI is not derived from magnetic resonance imaging (MRI); MPI directly images SPIO tracers via their strong electronic magnetization, enabling deep imaging of anatomy including within the lungs, which is very challenging with MRI. Here, the first high-contrast in vivo MPI lung perfusion images of rats are shown using a novel lung perfusion agent, MAA-SPIOs.

  13. Reduction in cerebral perfusion after heroin administration: a resting state arterial spin labeling study.

    PubMed

    Denier, Niklaus; Gerber, Hana; Vogel, Marc; Klarhöfer, Markus; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Lang, Undine E; Borgwardt, Stefan; Walter, Marc

    2013-01-01

    Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used pharmacological magnetic resonance imaging (phMRI) in 15 heroin-dependent patients from a stable heroin-assisted treatment program to observe the steady state effects of heroin (60 min after administration). Patients were scanned in a cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo) before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL) sequence based on a flow-sensitive alternating inversion recovery (FAIR) spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo) readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8), using a general linear model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin was associated with reduced perfusion in the left anterior cingulate cortex (ACC), the left medial prefrontal cortex (mPFC) and in the insula (both hemispheres). Analysis of extracted perfusion values indicate strong effect sizes and no gender related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in maintenance treatment.

  14. Mastication induces long-term increases in blood perfusion of the trigeminal principal nucleus.

    PubMed

    Viggiano, A; Manara, R; Conforti, R; Paccone, A; Secondulfo, C; Lorusso, L; Sbordone, L; Di Salle, F; Monda, M; Tedeschi, G; Esposito, F

    2015-12-17

    Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing.

  15. Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling.

    PubMed

    Ahlgren, André; Wirestam, Ronnie; Petersen, Esben Thade; Ståhlberg, Freddy; Knutsson, Linda

    2014-09-01

    Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion

  16. Comparative studies on the toxicity of mercury, cadmium, and copper toward the isolated perfused rat liver.

    PubMed

    Strubelt, O; Kremer, J; Tilse, A; Keogh, J; Pentz, R; Younes, M

    1996-02-23

    The toxic effects of cadmium, mercury, and copper were compared over the over range 0.01, 0.03, and 0.1 mM using the isolated perfused rat liver preparation. All metals caused similar changes in various parameters used to describe general toxicity. Thus reductions in oxygen consumption, perfusion flow, and biliary secretion were found, while lactate dehydrogenase release into the perfusate, as well as liver weight, increased also in a dose-dependent fashion. Each metal caused similar magnitudes of changes and exerted similar potency. Measurement of other parameters indicating more specific injury revealed a number of differences. Although all metals reduced hepatic ATP concentration, mercury and cadmium were more potent than copper in this respect. Cadmium was the most potent at decreasing reduced glutathione levels. Mercury was most effective at increasing tissue calcium content, while copper was less so, and cadmium ineffective. Only copper significantly increased tissue malondialdehyde (MDA) content, while all metals increased its release into perfusate. Furthermore, whereas cadmium seemed the most potent metal in increasing MDA release, it was least efficacious, while copper was the most. Antioxidants such as superoxide dismutase, catalase, and Trolox C only reduced cadmium's influence on MDA in perfusate; however, they did not affect cadmium's ability to alter most other parameters of vitality. Albumin reversed the toxic effects of copper and mercury, but not cadmium. While metal-induced reductions in perfusion flow accounted for some of the toxic effects of the metals investigated, the results as a whole supported the suggestion that all metals exerted toxicity at the mitochondria, since ATP levels were reduced in a manner that could not be reproduced by perfusion flow reduction alone. Lipid peroxidation appears to play little role in determining toxicity induced by any of these metals. Furthermore, albumin may play an important physiological role in

  17. Natural course of treated pulmonary embolism. Evaluation by perfusion lung scintigraphy, gas exchange, and chest roentgenogram.

    PubMed

    Prediletto, R; Paoletti, P; Fornai, E; Perissinotto, A; Petruzzelli, S; Formichi, B; Ruschi, S; Palla, A; Giannella-Neto, A; Giuntini, C

    1990-03-01

    Perfusion lung scintigrams, pulmonary gas exchange data, and chest roentgenograms were obtained in 33 patients during acute embolism and over the following six months in order to assess their clinical usefulness in monitoring the effect of therapy. To this purpose, the measurement of pulmonary gas exchange and the presence of chest x-ray findings were compared with perfusion lung scintigraphic abnormalities both at diagnosis and after 7, 30, and 180 days during treatment. More than 50 percent of the pulmonary arterial tree was obstructed at diagnosis, and a large part of perfusion recovery was complete within the first month. All of the gas exchange parameters were abnormal at diagnosis, and the rate of their improvement was related to that of perfusion recovery. Interestingly, PaO2st (ie, PaO2 corrected for hyperventilation) and VE tended to return to normal during the first month as a consequence of the progressive recovery of perfusion, whereas oxygen and carbon dioxide gradients and physiologic dead space showed the persistence of some abnormalities six months after diagnosis. Significant correlations were observed between the number of ULSs evaluated on the perfusion lung scintigram (and considered an index of the severity of pulmonary embolization) and all of the gas exchange parameters at diagnosis (correlation coefficients averaged from 0.41 to 0.73) and after 7 and 30 days. The enlargement of the right descending pulmonary artery and particularly the "sausage" sign and the Westermark sign were significantly associated with a higher degree of gas exchange impairment and with a more severe embolization. In conclusion, this study demonstrates that perfusion lung scintigraphy has a primary role in monitoring the recovery of patients with pulmonary embolism under treatment. Moreover, the chest roentgenogram may help in this purpose. A second major result is that the simple measurement of some gas exchange parameters may allow the assessment of functional

  18. Trastuzumab improves tumor perfusion and vascular delivery of cytotoxic therapy in a murine model of HER2+ breast cancer: preliminary results.

    PubMed

    Sorace, Anna G; Quarles, C Chad; Whisenant, Jennifer G; Hanker, Ariella B; McIntyre, J Oliver; Sanchez, Violeta M; Yankeelov, Thomas E

    2016-01-01

    To employ in vivo imaging and histological techniques to identify and quantify vascular changes early in the course of treatment with trastuzumab in a murine model of HER2+ breast cancer. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantitatively characterize vessel perfusion/permeability (via the parameter K (trans) ) and the extravascular extracellular volume fraction (v e ) in the BT474 mouse model of HER2+ breast cancer (N = 20) at baseline, day one, and day four following trastuzumab treatment (10 mg/kg). Additional cohorts of mice were used to quantify proliferation (Ki67), microvessel density (CD31), pericyte coverage (α-SMA) by immunohistochemistry (N = 44), and to quantify human VEGF-A expression (N = 29) throughout the course of therapy. Longitudinal assessment of combination doxorubicin ± trastuzumab (N = 42) tested the hypothesis that prior treatment with trastuzumab will increase the efficacy of subsequent doxorubicin therapy. Compared to control tumors, trastuzumab-treated tumors exhibited a significant increase in K (trans) (P = 0.035) on day four, indicating increased perfusion and/or vessel permeability and a simultaneous significant increase in v e (P = 0.01), indicating increased cell death. Immunohistochemical and ELISA analyses revealed that by day four the trastuzumab-treated tumors had a significant increase in vessel maturation index (i.e., the ratio of α-SMA to CD31 staining) compared to controls (P < 0.001) and a significant decrease in VEGF-A (P = 0.03). Additionally, trastuzumab dosing prior to doxorubicin improved the overall effectiveness of the therapies (P < 0.001). This study identifies and validates improved perfusion characteristics following trastuzumab therapy, resulting in an improvement in trastuzumab-doxorubicin combination therapy in a murine model of HER2+ breast cancer. This data suggests properties of vessel maturation. In particular, the use of DCE-MRI, a clinically available imaging

  19. Trastuzumab improves tumor perfusion and vascular delivery of cytotoxic therapy in a murine model of HER2+ breast cancer: preliminary results

    PubMed Central

    Quarles, C. Chad; Whisenant, Jennifer G.; Hanker, Ariella B.; McIntyre, J. Oliver; Sanchez, Violeta M.; Yankeelov, Thomas E.

    2016-01-01

    To employ in vivo imaging and histological techniques to identify and quantify vascular changes early in the course of treatment with trastuzumab in a murine model of HER2+ breast cancer. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantitatively characterize vessel perfusion/permeability (via the parameter Ktrans) and the extravascular extracellular volume fraction (ve) in the BT474 mouse model of HER2+ breast cancer (N = 20) at baseline, day one, and day four following trastuzumab treatment (10 mg/kg). Additional cohorts of mice were used to quantify proliferation (Ki67), microvessel density (CD31), pericyte coverage (α-SMA) by immunohistochemistry (N = 44), and to quantify human VEGF-A expression (N = 29) throughout the course of therapy. Longitudinal assessment of combination doxorubicin ± trastuzumab (N = 42) tested the hypothesis that prior treatment with trastuzumab will increase the efficacy of subsequent doxorubicin therapy. Compared to control tumors, trastuzumab-treated tumors exhibited a significant increase in Ktrans (P = 0.035) on day four, indicating increased perfusion and/or vessel permeability and a simultaneous significant increase in ve (P = 0.01), indicating increased cell death. Immunohistochemical and ELISA analyses revealed that by day four the trastuzumab-treated tumors had a significant increase in vessel maturation index (i.e., the ratio of α-SMA to CD31 staining) compared to controls (P < 0.001) and a significant decrease in VEGF-A (P = 0.03). Additionally, trastuzumab dosing prior to doxorubicin improved the overall effectiveness of the therapies (P < 0.001). This study identifies and validates improved perfusion characteristics following trastuzumab therapy, resulting in an improvement in trastuzumab-doxorubicin combination therapy in a murine model of HER2+ breast cancer. This data suggests properties of vessel maturation. In particular, the use of DCE-MRI, a clinically available imaging method

  20. Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI

    PubMed Central

    Xiu, Xianchao; Kong, Lingchen

    2015-01-01

    It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance. PMID:26247010

  1. A Leukocyte Filter Does Not Provide Further Benefit During Ex Vivo Lung Perfusion.

    PubMed

    Luc, Jessica G Y; Aboelnazar, Nader S; Himmat, Sayed; Hatami, Sanaz; Haromy, Alois; Matsumura, Nobutoshi; Vasanthan, Vishnu; White, Christopher W; Mengel, Michael; Freed, Darren H; Nagendran, Jayan

    2017-02-20

    Normothermic ex vivo lung perfusion (EVLP) allows for assessment and reconditioning of donor lungs. Though a leukocyte filter (LF) is routinely incorporated into the EVLP circuit, its efficacy remains to be determined. Twelve pig lungs were perfused and ventilated ex vivo in a normothermic state for 12 hours. Lungs (n=3) were allocated to 4 groups according to perfusate composition and the presence or absence of a LF in the circuit (acellular ± LF, cellular ± LF). Acceptable physiologic lung parameters were achieved during EVLP; however, increased amounts of pro-inflammatory cytokines (TNF-α, IL-6) and leukocytes in the perfusate were observed despite the presence or absence of a LF. Analysis of cells washed off the LF demonstrates that it trapped leukocytes though was ineffective throughout perfusion as it became saturated over 12 hours. We conclude that there is no objective evidence to support the routine incorporation of a LF during EVLP as it does not provide further benefit and its removal does not appear to cause harm. The lack of hypothesized benefit to a LF may be due to the saturation of the LF with donor leukocytes, leading to similar amounts of circulating leukocytes still present in the perfusate with and without a LF.

  2. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation.

    PubMed

    Bruinsma, B G; Yeh, H; Ozer, S; Martins, P N; Farmer, A; Wu, W; Saeidi, N; Op den Dries, S; Berendsen, T A; Smith, R N; Markmann, J F; Porte, R J; Yarmush, M L; Uygun, K; Izamis, M-L

    2014-06-01

    To reduce widespread shortages, attempts are made to use more marginal livers for transplantation. Many of these grafts are discarded for fear of inferior survival rates or biliary complications. Recent advances in organ preservation have shown that ex vivo subnormothermic machine perfusion has the potential to improve preservation and recover marginal livers pretransplantation. To determine the feasibility in human livers, we assessed the effect of 3 h of oxygenated subnormothermic machine perfusion (21°C) on seven livers discarded for transplantation. Biochemical and microscopic assessment revealed minimal injury sustained during perfusion. Improved oxygen uptake (1.30 [1.11-1.94] to 6.74 [4.15-8.16] mL O2 /min kg liver), lactate levels (4.04 [3.70-5.99] to 2.29 [1.20-3.43] mmol/L) and adenosine triphosphate content (45.0 [70.6-87.5] pmol/mg preperfusion to 167.5 [151.5-237.2] pmol/mg after perfusion) were observed. Liver function, reflected by urea, albumin and bile production, was seen during perfusion. Bile production increased and the composition of bile (bile salts/phospholipid ratio, pH and bicarbonate concentration) became more favorable. In conclusion, ex vivo subnormothermic machine perfusion effectively maintains liver function with minimal injury and sustains or improves various hepatobiliary parameters postischemia.

  3. ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the Brain

    PubMed Central

    Welker, K.; Boxerman, J.; Kalnin, A.; Kaufmann, T.; Shiroishi, M.; Wintermark, M.

    2016-01-01

    SUMMARY MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice. PMID:25907520

  4. MR mapping of temperature and perfusion for hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Waldemar; Vlad, Julia; Lange, Thomas; Wust, Peter; Felix, Roland

    2001-05-01

    The promising results, recently obtained in phantom experiments employing the MR-based proton resonance frequency (PRF) method as a non-invasive tool for the temperature monitoring of hyperthermia therapy, are not easily reproduced in vivo. One of the reasons is the impact of perfusion changes on the PRF-measured temperature. In our experiments in vivo, heat was supplied on one side of the volunteers knee or pelvis by a rubber hose with circulating warm water (50iC). The PRF method was calibrated by the constant temperature sensitivity of pure water of 0.011 ppm/iC. MR mapping of perfusion changes was based on T2*-weighted tracking of the first-pass kinetics of contrast agent. The hemodynamic parameters of regional blood volume (rBV) and mean transit time (MTT) were extracted by fitting pixel-by-pixel the first- pass kinetics to the gamma-variate model. Special attention was directed to improve a quality of the automatic non-linear fit at low signal-to-noise values. The distributions of PRF- based temperature changes show large areas of apparently high temperature elevations (exceeding 10iC) in regions close to the heat source, and others with just as large temperature decays in more distant regions. Areas of apparently high temperature elevations correlate with areas of blood flow increase and vice versa. In conclusion, the visible heat- induced PRF changes in vivo are primarily perfusion changes, which mask the much smaller true temperature changes.

  5. The Mouse Isolated Perfused Kidney Technique.

    PubMed

    Czogalla, Jan; Schweda, Frank; Loffing, Johannes

    2016-11-17

    The mouse isolated perfused kidney (MIPK) is a technique for keeping a mouse kidney under ex vivo conditions perfused and functional for 1 hr. This is a prerequisite for studying the physiology of the isolated organ and for many innovative applications that may be possible in the future, including perfusion decellularization for kidney bioengineering or the administration of anti-rejection or genome-editing drugs in high doses to prime the kidney for transplantation. During the time of the perfusion, the kidney can be manipulated, renal function can be assessed, and various pharmaceuticals administered. After the procedure, the kidney can be transplanted or processed for molecular biology, biochemical analysis, or microscopy. This paper describes the perfusate and the surgical technique needed for the ex vivo perfusion of mouse kidneys. Details of the perfusion apparatus are given and data are presented showing the viability of the kidney's preparation: renal blood flow, vascular resistance, and urine data as functional, transmission electron micrographs of different nephron segments as morphological readouts, and western blots of transport proteins of different nephron segments as molecular readout.

  6. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion.

    PubMed

    Sutton, Michael E; op den Dries, Sanna; Karimian, Negin; Weeder, Pepijn D; de Boer, Marieke T; Wiersema-Buist, Janneke; Gouw, Annette S H; Leuvenink, Henri G D; Lisman, Ton; Porte, Robert J

    2014-01-01

    Although normothermic machine perfusion of donor livers may allow assessment of graft viability prior to transplantation, there are currently no data on what would be a good parameter of graft viability. To determine whether bile production is a suitable biomarker that can be used to discriminate viable from non-viable livers we have studied functional performance as well as biochemical and histological evidence of hepatobiliary injury during ex vivo normothermic machine perfusion of human donor livers. After a median duration of cold storage of 6.5 h, twelve extended criteria human donor livers that were declined for transplantation were ex vivo perfused for 6 h at 37 °C with an oxygenated solution based on red blood cells and plasma, using pressure controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion. During perfusion, two patterns of bile flow were identified: (1) steadily increasing bile production, resulting in a cumulative output of ≥ 30 g after 6 h (high bile output group), and (2) a cumulative bile production <20 g in 6 h (low bile output group). Concentrations of transaminases and potassium in the perfusion fluid were significantly higher in the low bile output group, compared to the high bile output group. Biliary concentrations of bilirubin and bicarbonate were respectively 4 times and 2 times higher in the high bile output group. Livers in the low bile output group displayed more signs of hepatic necrosis and venous congestion, compared to the high bile output group. In conclusion, bile production could be an easily assessable biomarker of hepatic viability during ex vivo machine perfusion of human donor livers. It could potentially be used to identify extended criteria livers that are suitable for transplantation. These ex vivo findings need to be confirmed in a transplant experiment or a clinical trial.

  7. Cutaneous toxicity of 2-chloroethyl methyl sulfide in isolated perfused porcine skin.

    PubMed

    King, J R; Monteiro-Riviere, N A

    1990-06-01

    Previous research has shown the isolated perfused porcine skin flap (IPPSF) to be a novel in vitro experimental model for investigating xenobiotic percutaneous absorption. In this study, the IPPSF was used to biochemically and morphologically assess the dermatotoxicity of 2-chloroethyl methyl sulfide (CEMS), a monofunctional analog of the vesicant, sulfur mustard. IPPSFs were perfused in a recirculating perfusion system and were treated with 97% CEMS (n = 4) or served as controls (n = 4). Additional IPPSFs were perfused in a nonrecirculating perfusion system and were treated with CEMS (n = 4) or were controls (n = 4). After dosing, each IPPSF was perfused for 8 hr. Cumulative glucose utilization (GU) and lactate production/glucose utilization ratio (L/GU ratio) were used as viability parameters. The average rate of GU for CEMS was significantly lower than control (p less than 0.05) in the recirculating and nonrecirculating IPPSFs. The L/GU ratio for CEMS was not significantly different (p greater than 0.05) from control for either perfusion system. CEMS resulted in a marked increase in vascular resistance versus control in both perfusion systems. Gross vesicles and bullae formation occurred in six of the CEMS-treated IPPSFs. Light microscopy revealed subepidermal vesicle formation above the basement membrane and extensive basal cell pyknosis in all IPPSFs treated with CEMS. No macroscopic or microscopic lesions were noted in the control flaps. Transmission electron microscopy revealed separation between the lamina lucida and the lamina densa of the basal lamina, with intracellular vacuolization and mitochondrial swelling occurring in the stratum basale and stratum spinosum cells of IPPSFs treated with CEMS. These lesions are similar to those described after human exposure to sulfur mustard. Full characterization of the morphological and biochemical changes seen after topical exposure of the IPPSF to vesicants may shed light on the pathogenesis of cutaneous toxicity

  8. Lung perfusion and emphysema distribution affect the outcome of endobronchial valve therapy

    PubMed Central

    Thomsen, Christian; Theilig, Dorothea; Herzog, Dominik; Poellinger, Alexander; Doellinger, Felix; Schreiter, Nils; Schreiter, Vera; Schürmann, Dirk; Temmesfeld-Wollbrueck, Bettina; Hippenstiel, Stefan; Suttorp, Norbert; Hubner, Ralf-Harto

    2016-01-01

    The exclusion of collateral ventilation (CV) and other factors affect the clinical success of endoscopic lung volume reduction (ELVR). However, despite its benefits, the outcome of ELVR remains difficult to predict. We investigated whether clinical success could be predicted by emphysema distribution assessed by computed tomography scan and baseline perfusion assessed by perfusion scintigraphy. Data from 57 patients with no CV in the target lobe (TL) were retrospectively analyzed after ELVR with valves. Pulmonary function tests (PFT), St George’s Respiratory Questionnaire (SGRQ), and 6-minute walk tests (6MWT) were performed on patients at baseline. The sample was grouped into high and low levels at the median of TL perfusion, ipsilateral nontarget lobe (INL) perfusion, and heterogeneity index (HI). These groups were analyzed for association with changes in outcome parameters from baseline to 3 months follow-up. Compared to baseline, patients showed significant improvements in PFT, SGRQ, and 6MWT (all P≤0.001). TL perfusion was not associated with changes in the outcome. High INL perfusion was significantly associated with increases in 6MWT (P=0.014), and high HI was associated with increases in forced expiratory volume in 1 second (FEV1), (P=0.012). Likewise, there were significant correlations for INL perfusion and improvement of 6MWT (r=0.35, P=0.03) and for HI and improvement in FEV1 (r=0.45, P=0.001). This study reveals new attributes that associate with positive outcomes for patient selection prior to ELVR. Patients with high perfusions in INL demonstrated greater improvements in 6MWT, while patients with high HI were more likely to respond in FEV1. PMID:27354783

  9. Isolated total lung perfusion as a means to deliver organ-specific chemotherapy: long-term studies in animals

    SciTech Connect

    Johnston, M.R.; Christensen, C.W.; Minchin, R.F.; Rickaby, D.A.; Linehan, J.H.; Schuller, H.M.; Boyd, M.R.; Dawson, C.A.

    1985-07-01

    The objectives of this study were to develop a surgical procedure that would allow for bilateral isolated lung perfusion in vivo as a means of delivering organ-specific chemotherapy and to evaluate the influence of the procedure on certain pulmonary physiologic parameters. The sterile surgical procedure that was carried out in dogs involved the setting up of two separate perfusion circuits. Once standard systemic cardiopulmonary bypass was established, a second circuit was devised to perfuse the lungs by placing an inflow cannula into the main pulmonary artery and collecting venous effluent in the left atrium. Cross-contamination between perfusion circuits was determined in acute studies with labeled plasma protein or red blood cells and was found to be in an acceptable range if the aorta was cross-clamped and the heart arrested. Only about 0.4 ml/min of pulmonary perfusate leaked into the systemic circulation, indicating that systemic toxicity should not be a major concern when chemotherapy agents are added to the pulmonary perfusate. Chronic studies demonstrated that hemodynamic parameters, lung water, pulmonary endothelial serotonin extraction, and histologic findings all showed minimal changes after 50 minutes of isolated lung perfusion. Five days after perfusion, lung dynamic compliance and peak serotonin extraction showed significant decreases. However, all of the measured parameters had returned toward baseline levels by the end of the 8-week postoperative study period. The procedure offers significant advantages over the previously described single lung perfusion and may provide a method of delivering immediate high-concentration adjuvant chemotherapy to coincide with resection of primary or metastatic lung tumors.

  10. Quantification of brain perfusion with tracers retained by the brain

    SciTech Connect

    Pupi, A.; Bacciottini, L.; De Cristofaro, M.T.R.; Formiconi, A.R.; Castagnoli, A.

    1991-12-31

    Almost a decade ago, tracers, labelled with {sup 123}I and {sup 99m}Tc, that are retained by the brain, started to be used for studies of regional brain perfusion (regional cerebral blood flow, rCBF). To date, these tracers have been used for brain perfusion imaging with SPECT in brain disorders as well as for physiological activation protocols. Only seldom, however, have they been used in protocols that quantitatively measure rCBF. Nevertheless, comparative studies with perfusion reference tracers have repeatedly demonstrated that the brain uptake of these brain-retained tracers is correlated to perfusion, the major determinant of the distribution of these tracers in the brain. The brain kinetics of {sup 99m}Tc HMPAO, which is the tracer most commonly used, was described with a two-compartment tissue model. The theoretical approach, which is, in itself, sufficient for modeling quantitative measurements with {sup 99m}Tc HMPAO, initially suggested the possibility of empirically narrowing the distance between the brain`s regional uptake of the tracer and rCBF with a linearization algorithm which uses the cerebellum as the reference region. The value of this empirical method is hampered by the fact that the cerebellum can be involved in cerebrovascular disease (i.e. cerebellar diaschisis) as well as in several other brain disorders (e.g. anxiety, and dementia of the Alzheimer type). It also was proposed that different reference regions (occipital, whole slice, or whole brain) should be selected in relation to the brain disorder under study. However, this approach does not solve the main problem because it does not equip us with a reliable tool to evaluate rCBF with a high predictive value, and, at the same time, to reduce intersubject variability. The solution would be to measure a quantitative parameter which directly reflects rCBF, such as the unidirectional influx constant of the freely diffusible flow-limited tracers. 45 refs., 3 figs., 1 tab.

  11. Scaling of cerebral blood perfusion in primates and marsupials.

    PubMed

    Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip

    2015-08-01

    The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates.

  12. High-sensitivity cerebral perfusion mapping in mice by kbGRASE-FAIR at 9.4 T.

    PubMed

    Zheng, Bingwen; Lee, Philip Teck Hock; Golay, Xavier

    2010-11-01

    The combination of flow-sensitive alternating inversion recovery (FAIR) and single-shot k-space-banded gradient- and spin-echo (kbGRASE) is proposed here to measure perfusion in the mouse brain with high sensitivity and stability. Signal-to-noise ratio (SNR) analysis showed that kbGRASE-FAIR boosts image and temporal SNRs by 2.01 ± 0.08 and 2.50 ± 0.07 times, respectively, when compared with standard single-shot echo planar imaging (EPI)-FAIR implemented in our experimental systems, although the practically achievable spatial resolution was slightly reduced. The effects of varying physiological parameters on the precision and reproducibility of cerebral blood flow (CBF) measurements were studied following changes in anesthesia regime, capnia and body temperature. The functional MRI time courses with kbGRASE-FAIR showed a more stable response to 5% CO(2) than did those with EPI-FAIR. The results establish kbGRASE-FAIR as a practical and robust protocol for quantitative CBF measurements in mice at 9.4 T.

  13. Ventilation-perfusion imaging in pulmonary papillomatosis

    SciTech Connect

    Espinola, D.; Rupani, H.; Camargo, E.E.; Wagner, H.N. Jr.

    1981-11-01

    Three children with laryngeal papillomas involving the lungs had serial ventilation-perfusion scintigrams to assess results of therapy designed to reduce the bronchial involvement. Different imaging patterns were observed depending on size, number, and location of lesions. In early parenchymal involvement a ventilation-perfusion mismatch was seen. The initial and follow-up studies correlated well with clinical and radiographic findings. This noninvasive procedure is helpful in evaluating ventilatory and perfusion impairment in these patients as well as their response to treatment.

  14. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  15. Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability.

    PubMed

    Heye, Anna K; Thrippleton, Michael J; Armitage, Paul A; Valdés Hernández, Maria del C; Makin, Stephen D; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M

    2016-01-15

    There is evidence that subtle breakdown of the blood-brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n=201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a "sham" DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and K(Trans) estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low

  16. Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability

    PubMed Central

    Heye, Anna K.; Thrippleton, Michael J.; Armitage, Paul A.; Valdés Hernández, Maria del C.; Makin, Stephen D.; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M.

    2016-01-01

    There is evidence that subtle breakdown of the blood–brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n = 201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a “sham” DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and KTrans estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model

  17. Effect of improving spatial or temporal resolution on image quality and quantitative perfusion assessment with k-t SENSE acceleration in first-pass CMR myocardial perfusion imaging.

    PubMed

    Maredia, Neil; Radjenovic, Aleksandra; Kozerke, Sebastian; Larghat, Abdulghani; Greenwood, John P; Plein, Sven

    2010-12-01

    k-t Sensitivity-encoded (k-t SENSE) acceleration has been used to improve spatial resolution, temporal resolution, and slice coverage in first-pass cardiac magnetic resonance myocardial perfusion imaging. This study compares the effect of investing the speed-up afforded by k-t SENSE acceleration in spatial or temporal resolution. Ten healthy volunteers underwent adenosine stress myocardial perfusion imaging using four saturation-recovery gradient echo perfusion sequences: a reference sequence accelerated by sensitivity encoding (SENSE), and three k-t SENSE-accelerated sequences with higher spatial resolution ("k-t High"), shorter acquisition window ("k-t Fast"), or a shared increase in both parameters ("k-t Hybrid") relative to the reference. Dark-rim artifacts and image quality were analyzed. Semiquantitative myocardial perfusion reserve index (MPRI) and Fermi-derived quantitative MPR were also calculated. The k-t Hybrid sequence produced highest image quality scores at rest (P = 0.015). Rim artifact thickness and extent were lowest using k-t High and k-t Hybrid sequences (P < 0.001). There were no significant differences in MPRI and MPR values derived by each sequence. Maximizing spatial resolution by k-t SENSE acceleration produces the greatest reduction in dark rim artifact. There is good agreement between k-t SENSE and standard acquisition methods for semiquantitative and fully quantitative myocardial perfusion analysis.

  18. Accuracy of percentage of signal intensity recovery and relative cerebral blood volume derived from dynamic susceptibility-weighted, contrast-enhanced MRI in the preoperative diagnosis of cerebral tumours

    PubMed Central

    Steel, Timothy; Chaganti, Joga

    2015-01-01

    Conventional magnetic resonance imaging (MRI) is the technique of choice for diagnosis of cerebral tumours, and has become an increasingly powerful tool for their evaluation; however, the diagnosis of common contrast-enhancing lesions can be challenging, as it is sometimes impossible to differentiate them using conventional imaging. Histopathological analysis of biopsy specimens is the gold standard for diagnosis; however, there are significant risks associated with the invasive procedure and definitive diagnosis is not always achieved. Early accurate diagnosis is important, as management differs accordingly. Advanced MRI techniques have increasing utility for aiding diagnosis in a variety of clinical scenarios. Dynamic susceptibility-weighted contrast-enhanced (DSC) MRI is a perfusion imaging technique and a potentially important tool for the characterisation of cerebral tumours. The percentage of signal intensity recovery (PSR) and relative cerebral blood volume (rCBV) derived from DSC MRI provide information about tumour capillary permeability and neoangiogenesis, which can be used to characterise tumour type and grade, and distinguish tumour recurrence from treatment-related effects. Therefore, PSR and rCBV potentially represent a non-invasive means of diagnosis; however, the clinical utility of these parameters has yet to be established. We present a review of the literature to date. PMID:26475485

  19. Perfusion weighted imaging in the assessment of the pathology and outcomes of lateral medullary infarction

    PubMed Central

    Zhang, Dao P.; Zhang, Hong T.; Yin, Suo; Yan, Fu L.

    2016-01-01

    This series case report aimed to elucidate the underlying pathology and outcomes of lateral medullary infarction (LMI) using perfusion weighted imaging (PWI). Four patients were diagnosed with LMI based on high-field diffusion-weighted magnetic resonance imaging (MRI-DWI) and PWI. The national institutes of health stroke scale (NIHSS) scores were recorded on days 1, 7, and 30, and the Barthel index was assessed on days 7 and 30. Three patients exhibited relative regional hypoperfusion of medullary lesion in the perfusion maps. Two cases exhibited ipsilateral hypoperfusion in the inferior cerebellum, whereas one patient exhibited a relatively regional hyperperfusion in the medulla oblongata. The LMI patients with a high NIHSS score and low Barthel index on days 7 and 30 exhibited regional hypoperfusion. This report of 4 LMI cases provides preliminary evidence that regional hypoperfusion may contribute to worse outcomes in LMI. PMID:27744467

  20. Myocardial perfusion distribution and coronary arterial pressure and flow signals: clinical relevance in relation to multiscale modeling, a review.

    PubMed

    Nolte, Froukje; Hyde, Eoin R; Rolandi, Cristina; Lee, Jack; van Horssen, Pepijn; Asrress, Kal; van den Wijngaard, Jeroen P H M; Cookson, Andrew N; van de Hoef, Tim; Chabiniok, Radomir; Razavi, Reza; Michler, Christian; Hautvast, Gilion L T F; Piek, Jan J; Breeuwer, Marcel; Siebes, Maria; Nagel, Eike; Smith, Nic P; Spaan, Jos A E

    2013-11-01

    Coronary artery disease, CAD, is associated with both narrowing of the epicardial coronary arteries and microvascular disease, thereby limiting coronary flow and myocardial perfusion. CAD accounts for almost 2 million deaths within the European Union on an annual basis. In this paper, we review the physiological and pathophysiological processes underlying clinical decision making in coronary disease as well as the models for interpretation of the underlying physiological mechanisms. Presently, clinical decision making is based on non-invasive magnetic resonance imaging, MRI, of myocardial perfusion and invasive coronary hemodynamic measurements of coronary pressure and Doppler flow velocity signals obtained during catheterization. Within the euHeart project, several innovations have been developed and applied to improve diagnosis-based understanding of the underlying biophysical processes. Specifically, MRI perfusion data interpretation has been advanced by the gradientogram, a novel graphical representation of the spatiotemporal myocardial perfusion gradient. For hemodynamic data, functional indices of coronary stenosis severity that do not depend on maximal vasodilation are proposed and the Valsalva maneuver for indicating the extravascular resistance component of the coronary circulation has been introduced. Complementary to these advances, model innovation has been directed to the porous elastic model coupled to a one-dimensional model of the epicardial arteries. The importance of model development is related to the integration of information from different modalities, which in isolation often result in conflicting treatment recommendations.

  1. Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps.

    PubMed

    Ludolph, Ingo; Arkudas, Andreas; Schmitz, Marweh; Boos, Anja M; Taeger, Christian D; Rother, Ulrich; Horch, Raymund E; Beier, Justus P

    2016-10-01

    The aim of this prospective study was to assess the correlation of flap perfusion analysis based on laser-assisted Indocyanine Green (ICG) angiography with combined laser Doppler spectrophotometry in autologous breast reconstruction using free DIEP/ms-TRAM flaps. Between February 2014 and July 2015, 35 free DIEP/ms-TRAM flaps were included in this study. Besides the clinical evaluation of flaps, intraoperative perfusion dynamics were assessed by means of laser-assisted ICG angiography and post-capillary oxygen saturation and relative haemoglobin content (rHb) using combined laser Doppler spectrophotometry. Correlation of the aforementioned parameters was analysed, as well as the impact on flap design and postoperative complications. Flap survival rate was 100%. There were no partial flap losses. In three cases, flap design was based on the angiography, contrary to clinical evaluation and spectrophotometry. The final decision on the inclusion of flap areas was based on the angiographic perfusion pattern. Angiography and spectrophotometry showed a correlation in most of the cases regarding tissue perfusion, post-capillary oxygen saturation and relative haemoglobin content. Laser-assisted ICG angiography is a useful tool for intraoperative evaluation of flap perfusion in autologous breast reconstruction with DIEP/ms-TRAM flaps, especially in decision making in cases where flap perfusion is not clearly assessable by clinical signs and exact determination of well-perfused flap margins is difficult to obtain. It provides an objective real-time analysis of flap perfusion, with high sensitivity for the detection of poorly perfused flap areas. Concerning the topographical mapping of well-perfused flap areas, laser-assisted angiography is superior to combined laser Doppler spectrophotometry.

  2. Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Murase, Kenya

    2004-04-01

    It has become increasingly important to quantitatively estimate tissue physiological parameters such as perfusion, capillary permeability, and the volume of extravascular-extracellular space (EES) using T(1)-weighted dynamic contrast-enhanced MRI (DCE-MRI). A linear equation was derived by integrating the differential equation describing the kinetic behavior of contrast agent (CA) in tissue, from which K(1) (rate constant for the transfer of CA from plasma to EES), k(2) (rate constant for the transfer from EES to plasma), and V(p) (plasma volume) can be easily obtained by the linear least-squares (LLSQ) method. The usefulness of this method was investigated by means of computer simulations, in comparison with the nonlinear least-squares (NLSQ) method. The new method calculated the above parameters faster than the NLSQ method by a factor of approximately 6, and estimated them more accurately than the NLSQ method at a signal-to-noise ratio (SNR) of < approximately 10. This method will be useful for generating functional images of K(1), k(2), and V(p) from DCE-MRI data.

  3. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  4. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  5. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.

    PubMed

    Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S

    2016-01-01

    Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  6. Evolution of pulmonary perfusion defects demonstrated with contrast-enhanced dynamic MR perfusion imaging.

    PubMed

    Howarth, N R; Beziat, C; Berthezène, Y

    1999-01-01

    Pulmonary perfusion defects can be demonstrated with contrast-enhanced dynamic MR perfusion imaging. We present the case of a patient with a pulmonary artery sarcoma who presented with a post-operative pulmonary embolus and was followed in the post-operative period with dynamic contrast-enhanced MR perfusion imaging. This technique allows rapid imaging of the first passage of contrast material through the lung after bolus injection in a peripheral vein. To our knowledge, this case report is the first to describe the use of this MR technique in showing the evolution of peripheral pulmonary perfusion defects associated with pulmonary emboli.

  7. Enhanced task related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation.

    PubMed

    Bowtell, Joanna L; Aboo-Bakkar, Zainie; Conway, Myra; Adlam, Anna-Lynne R; Fulford, Jonathan

    2017-03-01

    Blueberries are rich in flavonoids, which possess antioxidant and anti-inflammatory properties. High flavonoid intakes attenuate age-related cognitive decline, but data from human intervention studies are sparse. We investigated whether 12 weeks of blueberry concentrate supplementation improved brain perfusion, task-related activation and cognitive function in healthy older adults. Participants were randomised to consume either 30 ml blueberry concentrate providing 387 mg anthocyanidins (5 female, 7 male; age 67.5±3.0 y; BMI, 25.9±3.3 kg.m-2) or isoenergetic placebo (8 female, 6 male; age 69.0 ±3.3 y; BMI, 27.1±.4.0 kg.m-2). Pre- and post-supplementation, participants undertook a battery of cognitive function tests and a numerical Stroop test within a 1.5T MRI scanner while functional magnetic resonance images (fMRI) were continuously acquired. Quantitative resting brain perfusion was determined using an arterial spin labelling (ASL) technique, and blood biomarkers of inflammation and oxidative stress were measured. Significant increases in brain activity were observed in response to blueberry supplementation relative to the placebo group within Brodmann areas 4/6/10/21/40/44/45, precuneus, anterior cingulate, and insula/thalamus (p<0.001), as well as significant improvements in grey matter perfusion in the parietal (5.0±1.8 vs -2.9±2.4 %, p=0.013) and occipital (8.0±2.6 vs -0.7±3.2 %, p=0.031) lobes. There was also evidence suggesting improvement in working memory (two back test) after blueberry versus placebo supplementation (p=0.05). Supplementation with an anthocyanin rich blueberry concentrate improved brain perfusion and activation in brain areas associated with cognitive function in healthy older adults.

  8. Is the cerebellum the optimal reference region for intensity normalization of perfusion MR studies in early Alzheimer's disease?

    PubMed

    Lacalle-Aurioles, María; Alemán-Gómez, Yasser; Guzmán-De-Villoria, Juan Adán; Cruz-Orduña, Isabel; Olazarán, Javier; Mateos-Pérez, José María; Martino, María Elena; Desco, Manuel

    2013-01-01

    The cerebellum is the region most commonly used as a reference when normalizing the intensity of perfusion images acquired using magnetic resonance imaging (MRI) in Alzheimer's disease (AD) studies. In addition, the cerebellum provides unbiased estimations with nuclear medicine techniques. However, no reports confirm the cerebellum as an optimal reference region in MRI studies or evaluate the consequences of using different normalization regions. In this study, we address the effect of using the cerebellum, whole-brain white matter, and whole-brain cortical gray matter in the normalization of cerebral blood flow (CBF) parametric maps by comparing patients with stable mild cognitive impairment (MCI), patients with AD and healthy controls. According to our results, normalization by whole-brain cortical gray matter enables more sensitive detection of perfusion abnormalities in AD patients and reveals a larger number of affected regions than data normalized by the cerebellum or whole-brain white matter. Therefore, the cerebellum is not the most valid reference region in MRI studies for early stages of AD. After normalization by whole-brain cortical gray matter, we found a significant decrease in CBF in both parietal lobes and an increase in CBF in the right medial temporal lobe. We found no differences in perfusion between patients with stable MCI and healthy controls either before or after normalization.

  9. Is the Cerebellum the Optimal Reference Region for Intensity Normalization of Perfusion MR Studies in Early Alzheimer’s Disease?

    PubMed Central

    Lacalle-Aurioles, María; Alemán-Gómez, Yasser; Guzmán-De-Villoria, Juan Adán; Cruz-Orduña, Isabel; Olazarán, Javier; Mateos-Pérez, José María; Martino, María Elena; Desco, Manuel

    2013-01-01

    The cerebellum is the region most commonly used as a reference when normalizing the intensity of perfusion images acquired using magnetic resonance imaging (MRI) in Alzheimer’s disease (AD) studies. In addition, the cerebellum provides unbiased estimations with nuclear medicine techniques. However, no reports confirm the cerebellum as an optimal reference region in MRI studies or evaluate the consequences of using different normalization regions. In this study, we address the effect of using the cerebellum, whole-brain white matter, and whole-brain cortical gray matter in the normalization of cerebral blood flow (CBF) parametric maps by comparing patients with stable mild cognitive impairment (MCI), patients with AD and healthy controls. According to our results, normalization by whole-brain cortical gray matter enables more sensitive detection of perfusion abnormalities in AD patients and reveals a larger number of affected regions than data normalized by the cerebellum or whole-brain white matter. Therefore, the cerebellum is not the most valid reference region in MRI studies for early stages of AD. After normalization by whole-brain cortical gray matter, we found a significant decrease in CBF in both parietal lobes and an increase in CBF in the right medial temporal lobe. We found no differences in perfusion between patients with stable MCI and healthy controls either before or after normalization. PMID:24386081

  10. Reproducibility and variability of very low dose hepatic perfusion CT in metastatic liver disease

    PubMed Central

    Topcuoğlu, Osman Melih; Karçaaltıncaba, Muşturay; Akata, Deniz; Özmen, Mustafa Nasuh

    2016-01-01

    PURPOSE We aimed to determine the intra- and interobserver agreement on the software analysis of very low dose hepatic perfusion CT (pCT). METHODS A total of 53 pCT examinations were obtained from 21 patients (16 men, 5 women; mean age, 60.4 years) with proven liver metastasis from various primary cancers. The pCT examinations were analyzed by two readers independently and perfusion parameters were noted for whole liver, whole metastasis, metastasis wall, and normal-looking liver (liver tissue without metastasis) in regions of interest (ROIs). Readers repeated the analysis after an interval of one month. Intra- and interobserver agreements were assessed with intraclass correlation coefficients (ICC) and Bland-Altman statistics. RESULTS The mean ICCs of all ROIs between readers were 0.91, 0.93, 0.86, 0.45, 0.53, and 0.66 for blood flow (BF), blood volume (BV), permeability, arterial liver perfusion (ALP), portal venous perfusion (PVP) and hepatic perfusion index (HPI), respectively. The mean ICCs of all ROIs between readings were 0.86, 0.91, 0.81, 0.53, 0.56, and 0.71 for BF, BV, permeability, ALP, PVP, and HPI, respectively. There was greater agreement on the parameters measured for the whole metastasis than on the parameters measured for the metastasis wall. The effective dose of all perfusion CT studies was 2.9 mSv. CONCLUSION There is greater intra- and interobserver agreement for BF and BV than for permeability, ALP, PVP, and HPI at very low dose hepatic pCT. Permeability, ALP, PVP, and HPI parameters cannot be used in clinical practice for hepatic pCT with an effective dose of 2.9 mSv. PMID:27759566

  11. Development and application of a high-throughput platform for perfusion-based cell culture processes.

    PubMed

    Villiger-Oberbek, Agata; Yang, Yang; Zhou, Weichang; Yang, Jianguo

    2015-10-20

    A high-throughput (HT) cell culture model has been established for the support of perfusion-based cell culture processes operating at high cell densities. To mimic perfusion, the developed platform takes advantage of shake tubes and operates them in a batch-refeed mode with daily medium exchange to supply the cultures with nutrients and remove toxic byproducts. By adjusting the shaking parameters, such as the speed and setting angle, we have adapted the shake tubes to a semi-continuous production of a recombinant enzyme in a perfusion-like mode. We have demonstrated that the developed model can be used to select clones and cell culture media ahead of process optimization studies in bioreactors and confirmed the applicability of shake tubes to a perfusion-like cell culture reaching ∼50E6 viable cells/mL. Furthermore, through regular cell mass removal and periodic medium exchange we have successfully maintained satellite cultures of bench-top perfusion bioreactors, achieving a sustainable cell culture performance at ≥30E6 viable cells/mL and viabilities >80% for over 58 days. The established HT model is a unique and powerful tool that can be used for the development and screening of media formulations, or for testing selected process parameters during both process optimization and manufacturing support campaigns.

  12. Improved exercise myocardial perfusion during lidoflazine therapy

    SciTech Connect

    Shapiro, W.; Narahara, K.A.; Park, J.

    1983-11-01

    Lidoflazine is a synthetic drug with calcium-channel blocking effects. In a study of 6 patients with severe classic angina pectoris, single-blind administration of lidoflazine was associated with improved myocardial perfusion during exercise as determined by thallium-201 stress scintigraphy. These studies demonstrate that lidoflazine therapy is associated with relief of angina, an increased physical work capacity, and improved regional myocardial perfusion during exercise.

  13. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.

    PubMed

    Klippel, Stefan; Döpfert, Jörg; Jayapaul, Jabadurai; Kunth, Martin; Rossella, Federica; Schnurr, Matthias; Witte, Christopher; Freund, Christian; Schröder, Leif

    2014-01-07

    Caged xenon has great potential in overcoming sensitivity limitations for solution-state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed-bed bioreactor working under perfusion with hyperpolarized-xenon-saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell-associated versus unbound cages. We present MR images with 10(3) -fold sensitivity enhancement for cell-internalized, dual-mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications.

  14. Efficacy of HGF carried by ultrasound microbubble-cationic nano-liposomes complex for treating hepatic fibrosis in a bile duct ligation rat model, and its relationship with the diffusion-weighted MRI parameters.

    PubMed

    Zhang, Shou-hong; Wen, Kun-ming; Wu, Wei; Li, Wen-yan; Zhao, Jian-nong

    2013-12-01

    Hepatic fibrosis is a major consequence of liver aggression. Finding novel ways for counteracting this damaging process, and for evaluating fibrosis with a non-invasive imaging approach, represent important therapeutic and diagnostic challenges. Hepatocyte growth factor (HGF) is an anti-fibrosis cell growth factor that induces apoptosis in activated hepatic stellate cells, reduces excessive collagen deposition, and stimulates hepatocyte regeneration. Thus, using HGF in gene therapy against liver fibrosis is an attractive approach. The aims of the present study were: (i) to explore the efficacy of treating liver fibrosis using HGF expression vector carried by a novel ultrasound microbubble delivery system; (ii) to explore the diagnostic interest of diffusion-weighted MRI (DWI-MRI) in evaluating liver fibrosis. We established a rat model of hepatic fibrosis. The rats were administered HGF linked to novel ultrasound micro-bubbles. Progression of hepatic fibrosis was evaluated by histopathology, hydroxyproline content, and DWI-MRI to determine the apparent diffusion coefficient (ADC). Our targeted gene therapy produced a significant anti-fibrosis effect, as shown by liver histology and significant reduction of hydroxyproline content. Moreover, using DWI-MRI, the b value (diffusion gradient factor) was equal to 300s/mm(2), and the ADC values significantly decreased as the severity of hepatic fibrosis increased. Using this methodology, F0-F2 could be distinguished from F3 and F4 (P<0.01). This is the first in vivo report of using an ultrasound microbubble-cationic nano-liposome complex for gene delivery. The data indicate that, this approach is efficient to counteract the fibrosis process. DWI-MRI appears a promising imaging technique for evaluating liver fibrosis.

  15. Assessment of donor heart viability during ex vivo heart perfusion.

    PubMed

    White, Christopher W; Ambrose, Emma; Müller, Alison; Li, Yun; Le, Hoa; Hiebert, Brett; Arora, Rakesh; Lee, Trevor W; Dixon, Ian; Tian, Ganghong; Nagendran, Jayan; Hryshko, Larry; Freed, Darren

    2015-10-01

    Ex vivo heart perfusion (EVHP) may facilitate resuscitation of discarded donor hearts and expand the donor pool; however, a reliable means of demonstrating organ viability prior to transplantation is required. Therefore, we sought to identify metabolic and functional parameters that predict myocardial performance during EVHP. To evaluate the parameters over a broad spectrum of organ function, we obtained hearts from 9 normal pigs and 37 donation after circulatory death pigs and perfused them ex vivo. Functional parameters obtained from a left ventricular conductance catheter, oxygen consumption, coronary vascular resistance, and lactate concentration were measured, and linear regression analyses were performed to identify which parameters best correlated with myocardial performance (cardiac index: mL·min(-1)·g(-1)). Functional parameters exhibited excellent correlation with myocardial performance and demonstrated high sensitivity and specificity for identifying hearts at risk of poor post-transplant function (ejection fraction: R(2) = 0.80, sensitivity = 1.00, specificity = 0.85; stroke work: R(2) = 0.76, sensitivity = 1.00, specificity = 0.77; minimum dP/dt: R(2) = 0.74, sensitivity = 1.00, specificity = 0.54; tau: R(2) = 0.51, sensitivity = 1.00, specificity = 0.92), whereas metabolic parameters were limited in their ability to predict myocardial performance (oxygen consumption: R(2) = 0.28; coronary vascular resistance: R(2) = 0.20; lactate concentration: R(2) = 0.02). We concluded that evaluation of functional parameters provides the best assessment of myocardial performance during EVHP, which highlights the need for an EVHP device capable of assessing the donor heart in a physiologic working mode.

  16. Perfusion visualization and analysis for pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Vaz, Michael S.; Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Given the nature of pulmonary embolism (PE), timely and accurate diagnosis is critical. Contrast enhanced high-resolution CT images allow physicians to accurately identify segmental and sub-segmental emboli. However, it is also important to assess the effect of such emboli on the blood flow in the lungs. Expanding upon previous research, we propose a method for 3D visualization of lung perfusion. The proposed method allows users to examine perfusion throughout the entire lung volume at a single glance, with areas of diminished perfusion highlighted so that they are visible independent of the viewing location. This may be particularly valuable for better accuracy in assessing the extent of hemodynamic alterations resulting from pulmonary emboli. The method also facilitates user interaction and may help identify small peripheral sub-segmental emboli otherwise overlooked. 19 patients referred for possible PE were evaluated by CT following the administration of IV contrast media. An experienced thoracic radiologist assessed the 19 datasets with 17 diagnosed as being positive for PE with multiple emboli. Since anomalies in lung perfusion due to PE can alter the distribution of parenchymal densities, we analyzed features collected from histograms of the computed perfusion maps and demonstrate their potential usefulness as a preliminary test to suggest the presence of PE. These histogram features also offer the possibility of distinguishing distinct patterns associated with chronic PE and may even be useful for further characterization of changes in perfusion or overall density resulting from associated conditions such as pneumonia or diffuse lung disease.

  17. Central nervous system MRI and cardiac implantable electronic devices.

    PubMed

    Cadieu, Romain; Peron, Marilyne; Le Ven, Florent; Kerdraon, Sébastien; Boutet, Claire; Mansourati, Jacques; Ben Salem, Douraied

    2017-02-01

    As the population ages and indications for MRI increase, it is estimated that 50 to 75% of patients with a cardiac implantable electronic device (CIED) - pacemaker (PM) or implanted cardiac defibrillator (ICD) - will need an MRI during their CIED's lifetime. Three categories of materials are defined: MRI compatible, MRI non-compatible, and MRI conditional. MRI compatible CIEDs without electrodes have been developed, but do not allow battery changes, so that they are exclusively indicated for patients whose life expectancy is less than that of the battery (6-7years). For MRI conditional CIEDs, all manufacturers publish restrictions. These restrictions can relate to the patient (size, position in the MRI, body temperature), the MRI parameters (magnetic field), or the examination in itself (gradients, specific absorption rate, duration, isocenter). The neuroradiologist can expect to be confronted with the issue of MRI in patients with a CIED. The purpose of this review is to provide them with updated information on MRI and CIEDs.

  18. Diagnosis of Paracardiac Castleman Disease by Dynamic Gadolinium-Enhanced First Pass Perfusion Magnetic Resonance Imaging

    PubMed Central

    Crean, Andrew; Paul, Narinder; Merchant, Naeem; Singer, Lianne; Provost, Yves

    2008-01-01

    Summary Castleman disease is an uncommon disorder affecting the lymphatic system and is characterised by atypical lymphocyte proliferation. The usual clinical presentation is of a solitary mass lesion, frequently within the thorax. A number of different imaging findings have been reported on CT and MRI. We present a case of paracardiac Castleman disease where the diagnosis was suggested by dramatic enhancement of the tumour mass during a dynamic MR perfusion sequence. To our knowledge this is the first report of the use of a first pass bolus tracking technique in the diagnosis of Castleman disease. PMID:24179362

  19. An Overdetermined System of Transform Equations in Support of Robust DCE-MRI Registration With Outlier Rejection

    PubMed Central

    Johansson, Adam; Balter, James; Feng, Mary; Cao, Yue

    2017-01-01

    Quantitative hepatic perfusion parameters derived by fitting dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of liver to a pharmacokinetic model are prone to errors if the dynamic images are not corrected for respiratory motion by image registration. The contrast-induced intensity variations in pre- and postcontrast phases pose challenges for the accuracy of image registration. We propose an overdetermined system of transformation equations between the image volumes in the DCE-MRI series to achieve robust alignment. In this method, we register each volume to every other volume. From the transforms produced by all pairwise registrations, we constructed an overdetermined system of transform equations that was solved robustly by minimizing the L1/2-norm of the residuals. This method was evaluated on a set of 100 liver DCE-MRI examinations from 35 patients by examining the area under spikes appearing in the voxel time–intensity curves. The robust alignment procedure significantly reduced the area under intensity spikes compared with unregistered volumes (P<.001) and volumes registered to a single reference phase (P<.001). Our registration procedure provides a larger number of reliable time–intensity curve samples. The additional reliable samples in the precontrast baseline are important for calculating the postcontrast signal enhancement and thereby for converting intensity to contrast concentration. On the intensity ramp, retained samples help to better describe the uptake dynamics, providing a better foundation for parameter estimation. The presented method also simplifies the analysis of data sets with many patients by eliminating the need for manual intervention during registration.

  20. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  1. Comparative studies on the toxicity of mercury, cadmium, and copper toward the isolated perfused rat liver

    SciTech Connect

    Strubelt, O.; Kremer, J.; Tilse, A.; Keogh, J.; Pentz, K.R.; Younes, M.

    1996-02-01

    The toxic effects of cadmium, mercury, and copper were compared over the range 0.01, 0.03, and 0.1 mM using the isolated perfused rat liver preparation. All metals caused similar changes in various parameters used to describe general toxicity. Reductions in oxygen consumption, perfusion flow, and biliary secretion were found, while lactate dehydrogenase release , as well as liver weight, increased in a dose-dependent fashion. Each metal caused similar magnitudes of changes and exerted similar potency. Measurement of other parameters revealed a number of differences. Although all metals reduced hepatic ATP concentration, mercury and cadmium were more potent than copper. Cadmium was the most potent at decreasing reduced glutathione levels. Mercury was most effective at increasing tissue calcium content, while copper was less so, and cadmium ineffective. Only copper significantly increased tissue malondialdehyde (MDA) content, while all metals increased its release into perfusate, cadmium seemed the most potent metal in increasing MDA release, but it was least efficacious, while copper was the most. Antioxidants such as superoxide dismutase, catalase, and Trolox C only reduced cadmium`s influence on MDA in perfusate; but did not affect cadmium`s ability to alter most other parameters of vitality. Albumin reversed the toxic effects of copper and mercury, but not cadmium. While metal-induced reductions in perfusion flow accounted for some of the toxic effects of the metals, the results as a whole supported the suggestion that all metals exerted toxicity at the mitochondria, since ATP levels were reduced in a manner that could not be reproduced by perfusion flow reduction alone. Lipid peroxidation appears to play little role in determining toxicity induced by any of these metals. Furthermore, albumin may play an important physiological role in preventing hepatic injury that might otherwise be induced through acute metal intoxication. 40 refs., 4 figs., 2 tabs.

  2. Basic concepts of advanced MRI techniques.

    PubMed

    Pagani, Elisabetta; Bizzi, Alberto; Di Salle, Francesco; De Stefano, Nicola; Filippi, Massimo

    2008-10-01

    An overview is given of magnetic resonance (MR) techniques sensitized to diffusion, flow, magnetization transfer effect, and local field inhomogeneities induced by physiological changes, that can be viewed, in the clinical practice, as advanced because of their challenging implementation and interpretation. These techniques are known as diffusion-weighted, perfusion, magnetization transfer, functional MRI and MR spectroscopy. An important issue is that they can provide quantitative estimates of structural and functional characteristics that are below the voxel resolution. This review does not deal with the basic concepts of the MR physics and the description of the available acquisition and postprocessing methods, but hopefully provides an adequate background to readers and hence facilitate the understanding of the following clinical contributions.

  3. Ultrasound Shear Wave Elasticity Imaging Quantifies Coronary Perfusion Pressure Effect on Cardiac Compliance

    PubMed Central

    Nagle, Matt; Trahey, Gregg E.; Wolf, Patrick D.

    2016-01-01

    Diastolic heart failure (DHF) is a major source of cardiac related morbidity and mortality in the world today. A major contributor to, or indicator of DHF is a change in cardiac compliance. Currently, there is no accepted clinical method to evaluate the compliance of cardiac tissue in diastolic dysfunction. Shear wave elasticity imaging (SWEI) is a novel ultrasound-based elastography technique that provides a measure of tissue stiffness. Coronary perfusion pressure affects cardiac stiffness during diastole; we sought to characterize the relationship between these two parameters using the SWEI technique. In this work, we demonstrate how changes in coronary perfusion pressure are reflected in a local SWEI measurement of stiffness during diastole. Eight Langendorff perfused isolated rabbit hearts were used in this study. Coronary perfusion pressure was changed in a randomized order (0–90 mmHg range) and SWEI measurements were recorded during diastole with each change. Coronary perfusion pressure and the SWEI measurement of stiffness had a positive linear correlation with the 95% confidence interval (CI) for the slope of 0.009–0.011 m/s/mmHg (R2 = 0.88). Furthermore, shear modulus was linearly correlated to the coronary perfusion pressure with the 95% CI of this slope of 0.035–0.042 kPa/mmHg (R2 = 0.83). In conclusion, diastolic SWEI measurements of stiffness can be used to characterize factors affecting cardiac compliance specifically the mechanical interaction (cross-talk) between perfusion pressure in the coronary vasculature and cardiac muscle. This relationship was found to be linear over the range of pressures tested. PMID:25291788

  4. PET/MRI: A luxury or a necessity?

    PubMed

    Carreras-Delgado, J L; Pérez-Dueñas, V; Riola-Parada, C; García-Cañamaque, L

    2016-01-01

    PET/MRI is a new multimodality technique with a promising future in diagnostic imaging. Technical limitations are being overcome. Interference between the two systems (PET and MRI) seems to have been resolved. MRI-based PET attenuation correction can be performed safely. Scan time is acceptable and the study is tolerable, with claustrophobia prevalence similar to that of MRI. Quantification with common parameters, such as Standardized Uptake Value (SUV), shows a fairly good correlation between both systems. However, PET/CT currently provides better results in scan time, scan costs, and patient comfort. Less patient radiation exposure is a big advantage of PET/MRI over PET/CT, which makes it particularly recommended in paediatric and adolescent patients requiring one or more studies. PET/MRI indications are the same as those of PET/CT, given that in cases where MRI is superior to CT, PET/MRI is superior to PET/CT. This superiority is clear in many soft tissue tumours. Moreover, it is common to perform both PET/CT and MRI in neurological diseases, as well as in some tumours, such as breast cancer. A single PET/MRI study replaces both with obvious benefit. MRI also allows other MRI-based PET corrections, such as motion or partial volume effect corrections. The better spatial resolution of MRI allows the transfer of well-defined MRI areas or small volumes of interest to PET image, in order to measure PET biomarkers in these areas. The richness of information of both techniques opens up immense possibilities of synergistic correlation between them.

  5. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    SciTech Connect

    Hoffman, J; Martin, T; Young, S; McNitt-Gray, M; Wang, D

    2015-06-15

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152 projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI

  6. Early development of arterial spin labeling to measure regional brain blood flow by MRI.

    PubMed

    Koretsky, Alan P

    2012-08-15

    Two major avenues of work converged in the late 1980's and early 1990's to give rise to brain perfusion MRI. The development of anatomical brain MRI quickly had as a major goal the generation of angiograms using tricks to label flowing blood in macroscopic vessels. These ideas were aimed at getting information about microcirculatory flow as well. Over the same time course the development of in vivo magnetic resonance spectroscopy had as its primary goal the assessment of tissue function and in particular, tissue energetics. For this the measurement of the delivery of water to tissue was critical for assessing tissue oxygenation and viability. The measurement of the washin/washout of "freely" diffusible tracers by spectroscopic based techniques pointed the way for quantitative approaches to measure regional blood flow by MRI. These two avenues came together in the development of arterial spin labeling (ASL) MRI techniques to measure regional cerebral blood flow. The early use of ASL to measure brain activation to help verify BOLD fMRI led to a rapid development of ASL based perfusion MRI. Today development and applications of regional brain blood flow measurements with ASL continues to be a major area of activity.

  7. Plasma MRI Experiments at UW-Madison

    NASA Astrophysics Data System (ADS)

    Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.

    2015-11-01

    Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.

  8. Modulation of ventricular fibrillation in isolated perfused heart by dofetilide.

    PubMed

    Amitzur, Giora; Shenkar, Nitza; Leor, Jonathan; Novikov, Ilia; Eldar, Michael

    2003-06-01

    The authors studied the involvement of IKr potassium current in ventricular fibrillation during perfusion. Electrophysiologic parameters were measured before and after dofetilide administration (2.5, 7.5, and 12.5 x 10-7 M, n = 8) in isolated perfused feline hearts. During pacing, these parameters included epicardial conduction time, refractoriness, and the fastest rate for 1:1 pacing/response capture. During 8 minutes of electrically induced tachyarrhythmias, they included heart rate and normalized entropy reflecting the degree of organization. In all groups, arrhythmia rate was slower in the right ventricle than in the left ventricle. Dofetilide decreased the arrhythmia rate more than it increased organization, reduced its maintenance, or increased difficulty in initiation. Refractoriness was prolonged in a reverse use-dependent way which was less than 1:1 pacing/response capture. Unexpectedly, a moderate prolongation of conduction time was observed. Inverse correlation was found between the arrhythmia rate and changes in refractoriness and conduction time and between the degree of organization and refractoriness (both ventricles) and conduction time (right ventricle). Dofetilide, which intensively blocks IKr current and unexpectedly suppressed conduction, has different quantitative effects on fibrillation features. These changes in fibrillation suggest that these effects are mainly associated with refractoriness prolongation and do not seem to be attenuated by conduction suppression.

  9. Combination of dynamic (11)C-PIB PET and structural MRI improves diagnosis of Alzheimer's disease.

    PubMed

    Liu, Linwen; Fu, Liping; Zhang, Xi; Zhang, Jinming; Zhang, Xiaojun; Xu, Baixuan; Tian, Jiahe; Fan, Yong

    2015-08-30

    Structural magnetic resonance imaging (sMRI) is an established technique for measuring brain atrophy, and dynamic positron emission tomography with (11)C-Pittsburgh compound B ((11)C-PIB PET) has the potential to provide both perfusion and amyloid deposition information. It remains unclear, however, how to better combine perfusion, amyloid deposition and morphological information extracted from dynamic (11)C-PIB PET and sMRI with the goal of improving the diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). We adopted a linear sparse support vector machine to build classifiers for distinguishing AD and MCI subjects from cognitively normal (CN) subjects based on different combinations of regional measures extracted from imaging data, including perfusion and amyloid deposition information extracted from early and late frames of (11)C-PIB separately, and gray matter volumetric information extracted from sMRI data. The experimental results demonstrated that the classifier built upon the combination of imaging measures extracted from early and late frames of (11)C-PIB as well as sMRI achieved the highest classification accuracy in both classification studies of AD (100%) and MCI (85%), indicating that multimodality information could aid in the diagnosis of AD and MCI.

  10. A simple physiologic pulsatile perfusion system for the study of intact vascular tissue.

    PubMed

    Conklin, B S; Surowiec, S M; Lin, P H; Chen, C

    2000-07-01

    Perfusion vascular culture models may provide a useful link between cell culture models and animal culture models by allowing a high level of control over important parameters while maintaining physiologic structure. The purpose of this study was to develop and test a new vascular culture system for pulsatile perfusion culture of intact vascular tissue. The system generates a pulsatile component of flow by means of a cam-driven syringe and a peristaltic pump and compliance chamber. Cams were designed, constructed and tested to simulate canine femoral and common carotid artery flows. The mean pressure was adjusted between 60 and 200 mmHg without significantly affecting flow rate, flow waveform, or the pressure waveform. Porcine common carotid artery segments were cultured in this pulsatile perfusion system. The viability of vascular segments was tested after various culture times with a functional assay that demonstrated both smooth muscle cell and endothelial cell response to vasomotor challenge.

  11. Effect of specific antibodies on the excitability of internally perfused squid axons.

    PubMed

    Huneeus, F C; Fernandez, H L

    1967-11-01

    Giant axons from the squid Dosidicus gigas were internally perfused with rabbit antiaxoplasm antibodies and their effect upon the action potential and the membrane potential was studied. Necessary requirements for the antibodies to affect these parameters in a consistent manner were: (a) removal of the bulk of axoplasm from the perfused zone, accomplished by initially perfusing with a cysteine-rich (400 mM) solution, and (b) addition of small amounts of cysteine (30 mM) to the antibody-containing solution. When these experimental conditions were met, conduction block ensued generally within 3 hr of the first contact of the axon inner surface with the antibody Antineurofilament antibodies and nonspecific antibodies had no effect. External application of antiaxoplasm antibodies had no effect.

  12. The isolated and perfused working heart of the frog, Rana esculenta: an improved preparation.

    PubMed

    Acierno, R; Gattuso, A; Cerra, M C; Pellegrino, D; Agnisola, C; Tota, B

    1994-05-01

    1. An in vitro preparation of the intact heart of the frog Rana esculenta was set up. 2. The isolated heart, perfused at constant pressure, was spontaneously beating and able to generate physiological values of output pressure, cardiac output, ventricle work and power. It showed the typical phenomenon of the "hypodynamic state" after a relatively constant time from the onset of the perfusion. 3. Perfusion with air-saturated saline and 99.5% oxygen-saturated saline did not show significant differences in the recorded parameters. 4. This experimental model represents a useful tool for physiological and pharmacological studies, especially when the direct analysis of the effects of hormones, mediators or drugs requires an intact heart preparation.

  13. Contrast-enhanced ultrasound: A promising method for renal microvascular perfusion evaluation.

    PubMed

    Wang, Ling; Mohan, Chandra

    2016-09-01

    This article reviews the application of contrast-enhanced ultrasound (CEUS) in gauging renal microvascular perfusion in diverse renal diseases. The unique nature of the contrast agents used in CEUS provides real-time and quantitative imaging of the vasculature. In addition to the traditional use of CEUS for evaluation of kidney masses, it also emerges as a safe and effective imaging approach to assess microvascular perfusion in diffuse renal lesions, non-invasively. Although the precise CEUS parameters that may best predict disease still warrant systematic evaluation, animal models and limited clinical trials in humans raise hopes that CEUS could outcompete competing modalities as a first-line tool for assessing renal perfusion non-invasively, even in ailments such as acute kidney injury and chronic kidney disease.

  14. Contrast-enhanced ultrasound: A promising method for renal microvascular perfusion evaluation

    PubMed Central

    2016-01-01

    Abstract This article reviews the application of contrast-enhanced ultrasound (CEUS) in gauging renal microvascular perfusion in diverse renal diseases. The unique nature of the contrast agents used in CEUS provides real-time and quantitative imaging of the vasculature. In addition to the traditional use of CEUS for evaluation of kidney masses, it also emerges as a safe and effective imaging approach to assess microvascular perfusion in diffuse renal lesions, non-invasively. Although the precise CEUS parameters that may best predict disease still warrant systematic evaluation, animal models and limited clinical trials in humans raise hopes that CEUS could outcompete competing modalities as a first-line tool for assessing renal perfusion non-invasively, even in ailments such as acute kidney injury and chronic kidney disease. PMID:28191530

  15. A new in vivo magnetic resonance imaging method to noninvasively monitor and quantify the perfusion capacity of three-dimensional biomaterials grown on the chorioallantoic membrane of chick embryos.

    PubMed

    Kivrak Pfiffner, Fatma; Waschkies, Conny; Tian, Yinghua; Woloszyk, Anna; Calcagni, Maurizio; Giovanoli, Pietro; Rudin, Markus; Buschmann, Johanna

    2015-04-01

    Adequate vascularization in biomaterials is essential for tissue regeneration and repair. Current models do not allow easy analysis of vascularization of implants in vivo, leaving it a highly desirable goal. A tool that allows monitoring of perfusion capacity of such biomaterials noninvasively in a cheap, efficient, and reliable in vivo model would hence add great benefit to research in this field. We established, for the first time, an in vivo magnetic resonance imaging (MRI) method to quantify the perfusion capacity of a model biomaterial, DegraPol(®) foam scaffold, placed on the embryonic avian chorioallantoic membrane (CAM) in ovo. Perfusion capacity was assessed through changes in the longitudinal relaxation rate before and after injection of a paramagnetic MRI contrast agent, Gd-DOTA (Dotarem(®); Guerbet S.A.). Relaxation rate changes were compared in three different regions of the scaffold, that is, at the interface to the CAM, in the middle and on the surface of the scaffold (p<0.05). The highest relaxation rate changes, and hence perfusion capacities, were measured in the interface region where the scaffold was attached to the CAM, whereas the surface of the scaffold showed the lowest relaxation rate changes. A strong positive correlation was obtained between relaxation rate changes and histologically determined vessel density (R(2) = 0.983), which corroborates our MRI findings. As a proof-of-principle, we measured the perfusion capacity in different scaffold materials, silk fibroin either with or without human dental pulp stem cells. For these, three to four times larger perfusion capacities were obtained compared to DegraPol; demonstrating that our method is sensitive to reveal such differences. In summary, we present a novel in vivo method for analyzing the perfusion capacity in three-dimensional-biomaterials grown on the CAM, enabling the determination of the perfusion capacity of a large variety of bioengineered materials.

  16. Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion

    NASA Astrophysics Data System (ADS)

    Ren, Wenqi; Gan, Qi; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2015-12-01

    Simultaneous and quantitative assessment of multiple tissue parameters may facilitate more effective diagnosis and therapy in many clinical applications, such as wound healing. However, existing wound assessment methods are typically subjective and qualitative, with the need for sequential data acquisition and coregistration between modalities, and lack of reliable standards for performance evaluation or calibration. To overcome these limitations, we developed a multimodal imaging system for quasi-simultaneous assessment of cutaneous tissue oxygenation and perfusion in a quantitative and noninvasive fashion. The system integrated multispectral and laser speckle imaging technologies into one experimental setup. Tissue oxygenation and perfusion were reconstructed by advanced algorithms. The accuracy and reliability of the imaging system were quantitatively validated in calibration experiments and a tissue-simulating phantom test. The experimental results were compared with a commercial oxygenation and perfusion monitor. Dynamic detection of cutaneous tissue oxygenation and perfusion was also demonstrated in vivo by a postocclusion reactive hyperemia procedure in a human subject and a wound healing process in a wounded mouse model. Our in vivo experiments not only validated the performance of the multimodal imaging system for cutaneous tissue oxygenation and perfusion imaging but also demonstrated its technical potential for wound healing assessment in clinical practice.

  17. Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion.

    PubMed

    Ren, Wenqi; Gan, Qi; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2015-12-01

    Simultaneous and quantitative assessment of multiple tissue parameters may facilitate more effective diagnosis and therapy in many clinical applications, such as wound healing. However, existing wound assessment methods are typically subjective and qualitative, with the need for sequential data acquisition and coregistration between modalities, and lack of reliable standards for performance evaluation or calibration. To overcome these limitations, we developed a multimodal imaging system for quasi-simultaneous assessment of cutaneous tissue oxygenation and perfusion in a quantitative and noninvasive fashion. The system integrated multispectral and laser speckle imaging technologies into one experimental setup. Tissue oxygenation and perfusion were reconstructed by advanced algorithms. The accuracy and reliability of the imaging system were quantitatively validated in calibration experiments and a tissue-simulating phantom test. The experimental results were compared with a commercial oxygenation and perfusion monitor. Dynamic detection of cutaneous tissue oxygenation and perfusion was also demonstrated in vivo by a postocclusion reactive hyperemia procedure in a human subject and a wound healing process in a wounded mouse model. Our in vivo experiments not only validated the performance of the multimodal imaging system for cutaneous tissue oxygenation and perfusion imaging but also demonstrated its technical potential for wound healing assessment in clinical practice.

  18. Characterization of renal parenchymal perfusion during experimental infrarenal aortic clamping and declamping with enhanced thermodiffusion electrodes.

    PubMed

    Kraus, T; Mehrabi, A; Angelescu, M; Golling, M; Allenberg, J R; Klar, E

    2001-07-01

    Despite multiple previous experimental and clinical investigations, it has not been fully clarified until now whether infrarenal aortic cross-clamping (IRAC) induces a significant disturbance of renal parenchymal perfusion. Most renal cortical flow data collected thus far have been heterogenous because of inherent limitations of available measurement technology. The enhanced thermal diffusion (TD) electrode is a newly developed and previously validated prototype device that allows continuous quantification of parenchymal kidney perfusion after local probe implantation. We monitored renal perfusion during experimental IRAC with TD for the first time, thereby also evaluating the potential applicability of the method in clinical aortic surgery. IRAC (20 min) followed by sudden declamping was performed in pigs under general anesthesia (n = 14). Renal cortical blood flow (RCBF) was continuously quantified by TD, total aortic flow (TABF) and renal artery flow (RABF) were measured by ultrasonic flow probes, and parameters of systemic circulation were determined by Swan-Ganz catheter. Our results showed that kidney perfusion can be continuously quantified using TD electrodes during experimental aortic surgery in a porcine model. IRAC does not lead to a significant impairment of RCBF in young pigs as measured by TD. Renal perfusion appears to be predominantly pressure driven. Consequently, abrubt aortic declamping can bring about prolonged renal ischemia. Transfer of the TD method to RCBF monitoring during clinical aortic surgery appears to be feasible and should be investigated in selected cases.

  19. A 4D CT digital phantom of an individual human brain for perfusion analysis

    PubMed Central

    Brune, Christoph; van Ginneken, Bram; Prokop, Mathias

    2016-01-01

    Brain perfusion is of key importance to assess brain function. Modern CT scanners can acquire perfusion maps of the cerebral parenchyma in vivo at submillimeter resolution. These perfusion maps give insights into the hemodynamics of the cerebral parenchyma and are critical for example for treatment decisions in acute stroke. However, the relations between acquisition parameters, tissue attenuation curves, and perfusion values are still poorly understood and cannot be unraveled by studies involving humans because of ethical concerns. We present a 4D CT digital phantom specific for an individual human brain to analyze these relations in a bottom-up fashion. Validation of the signal and noise components was based on 1,000 phantom simulations of 20 patient imaging data. This framework was applied to quantitatively assess the relation between radiation dose and perfusion values, and to quantify the signal-to-noise ratios of penumbra regions with decreasing sizes in white and gray matter. This is the first 4D CT digital phantom that enables to address clinical questions without having to expose the patient to additional radiation dose. PMID:27917312

  20. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  1. Diffusion MRI and its Role in Neuropsychology.

    PubMed

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-09-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition.

  2. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  3. Early Time Points Perfusion Imaging

    PubMed Central

    Kwong, Kenneth K.; Reese, Timothy G.; Nelissen, Koen; Wu, Ona; Chan, Suk-Tak; Benner, Thomas; Mandeville, Joseph B.; Foley, Mary; Vanduffel, Wim; Chesler, David A.

    2010-01-01

    The aim was to investigate the feasibility of making relative cerebral blood flow (rCBF) maps from MR images acquired with short TR by measuring the initial arrival amount of Gd-DTPA evaluated within a time window before any contrast agent has a chance to leave the tissue. We named this rCBF measurement technique utilizing the early data points of the Gd-DTPA bolus the “early time points” method (ET), based on the hypothesis that early time point signals were proportional to rCBF. Simulation data were used successfully to examine the ideal behavior of ET while monkey’s MRI results offered encouraging support to the utility of ET for rCBF calculation. A better brain coverage for ET could be obtained by applying the Simultaneous Echo Refocusing (SER) EPI technique. A recipe to run ET was presented, with attention paid to the noise problem around the time of arrival (TOA) of the contrast agent. PMID:20851196

  4. Myocardial perfusion scintigraphy: the evidence

    PubMed Central

    Anagnostopoulos, C.; Cerqueira, M.; Ell, P. J.; Flint, E. J.; Harbinson, M.; Kelion, A. D.; Al-Mohammad, A.; Prvulovich, E. M.; Shaw, L. J.; Tweddel, A. C.

    2003-01-01

    This review summarises the evidence for the role of myocardial perfusion scintigraphy (MPS) in patients with known or suspected coronary artery disease. It is the product of a consensus conference organised by the British Cardiac Society, the British Nuclear Cardiology Society and the British Nuclear Medicine Society and is endorsed by the Royal College of Physicians of London and the Royal College of Radiologists. It was used to inform the UK National Institute of Clinical Excellence in their appraisal of MPS in patients with chest pain and myocardial infarction. MPS is a well-established, non-invasive imaging technique with a large body of evidence to support its effectiveness in the diagnosis and management of angina and myocardial infarction. It is more accurate than the exercise ECG in detecting myocardial ischaemia and it is the single most powerful technique for predicting future coronary events. The high diagnostic accuracy of MPS allows reliable risk stratification and guides the selection of patients for further interventions, such as revascularisation. This in turn allows more appropriate utilisation of resources, with the potential for both improved clinical outcomes and greater cost-effectiveness. Evidence from modelling and observational studies supports the enhanced cost-effectiveness associated with MPS use. In patients presenting with stable or acute chest pain, strategies of investigation involving MPS are more cost-effective than those not using the technique. MPS also has particular advantages over alternative techniques in the management of a number of patient subgroups, including women, the elderly and those with diabetes, and its use will have a favourable impact on cost-effectiveness in these groups. MPS is already an integral part of many clinical guidelines for the investigation and management of angina and myocardial infarction. However, the technique is underutilised in the UK, as judged by the inappropriately long waiting times and by

  5. Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography

    PubMed Central

    Zhang, Jeff L.; Conlin, Chris C.; Carlston, Kristi; Xie, Luke; Kim, Daniel; Morrell, Glen; Morton, Kathryn; Lee, Vivian S.

    2016-01-01

    Dynamic contrast-enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast-enhanced T1-weighted protocols is the balance of the T1-shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation-recovery T1-weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre-contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. PMID:27200499

  6. Cardiac tissue engineering using perfusion bioreactor systems

    PubMed Central

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  7. Decreases in Molecular Diffusion, Perfusion Fraction and Perfusion-Related Diffusion in Fibrotic Livers: A Prospective Clinical Intravoxel Incoherent Motion MR Imaging Study

    PubMed Central

    Lu, Pu-Xuan; Huang, Hua; Yuan, Jing; Zhao, Feng; Chen, Zhi-Yi; Zhang, Qinwei; Ahuja, Anil T.; Zhou, Bo-Ping; Wáng, Yì-Xiáng J.

    2014-01-01

    Purpose This study was aimed to determine whether pure molecular-based diffusion coefficient (D) and perfusion-related diffusion parameters (perfusion fraction f, perfusion-related diffusion coefficient D*) differ in healthy livers and fibrotic livers through intra-voxel incoherent motion (IVIM) MR imaging. Material and Methods 17 healthy volunteers and 34 patients with histopathologically confirmed liver fibrosis patients (stage 1 = 14, stage 2 = 8, stage 3& 4 = 12, METAVIR grading) were included. Liver MR imaging was performed at 1.5-T. IVIM diffusion weighted imaging sequence was based on standard single-shot DW spin echo-planar imaging, with ten b values of 10, 20, 40, 60, 80, 100, 150, 200, 400, 800 sec/mm2 respectively. Pixel-wise realization and regions-of-interest based quantification of IVIM parameters were performed. Results D, f, and D* in healthy volunteer livers and patient livers were 1.096±0.155 vs 0.917±0.152 (10−3 mm2/s, p = 0.0015), 0.164±0.021 vs 0.123±0.029 (p<0.0001), and 13.085±2.943 vs 9.423±1.737 (10−3 mm2/s, p<0.0001) respectively, all significantly lower in fibrotic livers. As the fibrosis severity progressed, D, f, and D* values decreased, with a trend significant for f and D*. Conclusion Fibrotic liver is associated with lower pure molecular diffusion, lower perfusion volume fraction, and lower perfusion-related diffusion. The decrease of f and D* in the liver is significantly associated liver fibrosis severity. PMID:25436458

  8. Schizophrenia patients differentiation based on MR vascular perfusion and volumetric imaging

    NASA Astrophysics Data System (ADS)

    Spanier, A. B.; Joskowicz, L.; Moshel, S.; Israeli, D.

    2015-03-01

    Candecomp/Parafac Decomposition (CPD) has emerged as a framework for modeling N-way arrays (higher-order matrices). CPD is naturally well suited for the analysis of data sets comprised of observations of a function of multiple discrete indices. In this study we evaluate the prospects of using CPD for modeling MRI brain properties (i.e. brain volume and gray-level) for schizophrenia diagnosis. Taking into account that 3D imaging data consists of millions of pixels per patient, the diagnosis of a schizophrenia patient based on pixel analysis constitutes a methodological challenge (e.g. multiple comparison problem). We show that the CPD could potentially be used as a dimensionality redaction method and as a discriminator between schizophrenia patients and match control, using the gradient of pre- and post Gd-T1-weighted MRI data, which is strongly correlated with cerebral blood perfusion. Our approach was tested on 68 MRI scans: 40 first-episode schizophrenia patients and 28 matched controls. The CPD subject's scores exhibit statistically significant result (P < 0.001). In the context of diagnosing schizophrenia with MRI, the results suggest that the CPD could potentially be used to discriminate between schizophrenia patients and matched control. In addition, the CPD model suggests for brain regions that might exhibit abnormalities in schizophrenia patients for future research.

  9. Phantom-based investigation of nonrigid registration constraints in mapping fMRI to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Studholme, Colin; Constable, R. Todd; Duncan, James S.

    2000-06-01

    In previous work we have introduced an approach to improving the registration of EPI fMRI data with anatomical MRI by accounting for differences in magnetic field induced geometric distortion in the two types of MRI acquisition. In particular we began to explore the use of imaging physics based constraints in a non-rigid multi-modality registration algorithm. In this paper we present phantom based experimental work examining the behavior of different non-rigid registration constraints compared to a field map acquisition of the MRI distortion. This acquisition provides a pixel by pixel 'ground truth' estimate of the displacement field within the EPI data. In our registration based approach we employ a B-spline based estimate of the relative geometric distortion with a multi-grid optimization scheme. We maximize the normalized mutual information between the two types of MRI scans to estimate the B-Spline parameters. Using the field map estimates as a gold standard, registration estimates using no additional geometric constraints are compared to those using the spin echo based signal conservation. We also examine the use of logarithmic EPI values in the criteria to provide additional sensitivity in areas of low signal. Results indicate that registration of EPI to conventional MRI incorporating a spin echo distortion model can provide comparable estimates of geometric distortion to those from field mapping data without the need for significant additional acquisitions during each fMRI sequence.

  10. Alteration of ictal and interictal perfusion in patients with paroxysmal kinesigenic dyskinesia.

    PubMed

    Kim, Y-D; Kim, J-S; Chung, Y-A; Song, I-U; Oh, Y-S; Chung, S-W; Kim, H-T; Kim, Y-I; Lee, K-S

    2011-12-01

    Although previous cerebral blood flow studies have suggested that the basal ganglia or thalamus are involved in the pathogenesis of paroxysmal kinesigenic dyskinesia (PKD), the precise anatomic substrate or pathophysiological networks associated with PKD remain unclear. Here, ictal and interictal single photon emission computed tomography (SPECT) in 2 patients with idiopathic PKD compared to 6 age-matched normal controls and the perfusion findings of subtraction ictal SPECT co-registered to MRI (SISCOM) in 1 patient are reported. The interictal and ictal perfusion changes were different in each of the patients and there were no consistent anatomic substrates observed. 2 patients had significant perfusion changes in the left frontal/temporal cortices compared to controls, whereas the others showed an increased uptake of 99mTc-ethyl cysteinate dimer (ECD) in the left occipital area on subtraction SPECT imaging. The results of this study suggest that the pathophysiology of PKD cannot be simply explained by lesions of the basal ganglia or thalamus, and that other associated areas of the cortex are likely involved in these movement disorders.

  11. Osmotic properties of internally perfused barnacle muscle cells. I. Isosmotic conditions.

    PubMed

    Bitner, J B; Peña-Rasgado, C; Ruiz, J; Cardona, J; Rasgado-Flores, H

    2001-07-01

    Barnacle muscle cells regulate their volume when exposed to anisotonic conditions. Due to their large size, these cells can be internally perfused. Interestingly, perfused cells maintain their volume regulatory properties (17,21). Thus, the osmotic properties of barnacle muscle cells can be studied under conditions in which the intracellular and extracellular osmolalities, the membrane potential (V(M)), the cell volume and the intracellular pressure can all be measured simultaneously. In this manuscript we report the effect that various rates of isosmotic (1000 mOsm x kg H2O(-1)) intracellular perfusion have on cell volume, intracellular pressure, intracellular osmolality, V(M), and the apparent sarcolemmal hydraulic water permeability (L'p). Replacement of the cytosol with the perfusate at a perfusion rate of 0.83 microl x min(-1) took 120 min. During this transition period, the cell volume increased from 45.1+/-6.9 microl to 73.7+/-5.8 microl, the intracellular osmolality decreased from 1406+/-133 to 1188+/-64 mOsm x kg H2O(-1), and the intracellular pressure underwent a transient drop of 2.8 cm H2O. After 2.5 hr of continuous perfusion at 0.83 microl min(-1), the above mentioned parameters reached steady values: the L'p was 1.35 x 10(-5) cm x sec(-1) x Osm(-1) x kg H2O(-1); cell volume was 67.2+/-6 microl; the intracellular osmolality was 1052+/-10 mOsm x kg H2O(-1); the intracellular pressure was 5.6+/-0.4 cm H2O; V(M) depolarized slowly at a rate of 0.03 mV x min(-1). Stepwise increases in the rate of perfusion (from 0.83 to 3.18 microl min(-1)) produced reversible increases in the intracellular pressure, L'p and cell volume and decreases in intracellular osmolality. We conclude that intracellular perfusion: i/ produces a transient removal of intracellular osmotically active components; ii/ promotes sarcolemmal water filtration; iii/ induces a laminar flow of perfusate at the center of the cell, and iv/ enables calculations of sarcolemmal L'p values under

  12. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  13. Effects of laser acupuncture on blood perfusion rate

    NASA Astrophysics Data System (ADS)

    Wang, Xian-ju; Zeng, Chang-chun; Liu, Han-ping; Liu, Song-hao; Liu, Liang-gang

    2006-09-01

    Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.

  14. WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI

    SciTech Connect

    Gensheimer, M; Trister, A; Ermoian, R; Hawkins, D

    2014-06-15

    Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segments at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was

  15. The value of 64-slice spiral CT perfusion imaging in the treatment of liver cancer with argon-helium cryoablation

    PubMed Central

    Lv, Yinggang; Jin, Yurong; Yan, Qiaohuan; Yuan, Dingling; Wang, Yanling; Li, Xianping; Shen, Yanfeng

    2016-01-01

    We analyzed the effectiveness of using 64-slice spiral computed tomography (CT) and perfusion imaging to guide argon-helium cryoablation treatment of liver cancer. In total, 60 cases of advanced hepatocellular carcinoma before surgery treated with argon-helium cryoablation were inlcuded in the present study. Retrospective summary of the 60 cases of metaphase and advanced liver cancer were used as the control group. The control group were treated using cryoablation with argon-helium knife. We used enhanced scanning with 64-slice spiral CT to define the extent of their lesions and prepared a plan of percutaneous cryoablation for the treatment. Intraoperatively, we used the dynamics of CT perfusion imaging to observe the frozen ablation range and decreased the rate of complications. After surgery, the patients were followed-up regularly by 64-slice CT. We used conventional X-ray, CT and magnetic resonance imaging (MRI) for pre-operative lateralization. Intraoperative X-ray or ultrasound guidance and follow-up with CT or MTI were added to determine the clinical effectiveness and prognosis. The results showed that the total effective rate was improved significantly and incidence rate of overall complications decreased markedly in the observation group. Following treatment, AFP decreased significantly while the total freezing area and time were reduced significantly. The median survival time was increased significantly in the observation group. The numeric values of hepatic arterial perfusion, portal vein perfusion and hepatic arterial perfusion index were all markedly lowered after treatment. Differences were statistically significant (P<0.05). In conclusion, the use of 64-slice spiral CT perfusion imaging may considerably improve the effects of liver cancer treatment using the argon-helium cryoablation. It extended the survival time and reduced complications. PMID:28105165

  16. Role of hypothermic machine perfusion in liver transplantation.

    PubMed

    Schlegel, Andrea; Dutkowski, Philipp

    2015-06-01

    Machine liver perfusion has significantly evolved during the last ten years to optimize extended criteria liver grafts and to address the worldwide organ shortage. This review gives an overview on available ex vivo and in vivo data on hypothermic machine liver perfusion. We discuss also possible protective pathways and show most recent clinical applications of hypothermic machine liver perfusion in human.

  17. Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect.

    PubMed

    Lim, Julian; Wu, Wen-Chau; Wang, Jiongjiong; Detre, John A; Dinges, David F; Rao, Hengyi

    2010-02-15

    During sustained periods of a taxing cognitive workload, humans typically display time-on-task (TOT) effects, in which performance gets steadily worse over the period of task engagement. Arterial spin labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) was used in this study to investigate the neural correlates of TOT effects in a group of 15 subjects as they performed a 20-min continuous psychomotor vigilance test (PVT). Subjects displayed significant TOT effects, as seen in progressively slower reaction times and significantly increased mental fatigue ratings after the task. Perfusion data showed that the PVT activates a right lateralized fronto-parietal attentional network in addition to the basal ganglia and sensorimotor cortices. The fronto-parietal network was less active during post-task rest compared to pre-task rest, and regional CBF decrease in this network correlated with performance decline. These results demonstrate the persistent effects of cognitive fatigue in the fronto-parietal network after a period of heavy mental work and indicate the critical role of this attentional network in mediating TOT effects. Furthermore, resting regional CBF in the thalamus and right middle frontal gyrus prior to task onset was predictive of subjects' subsequent performance decline, suggesting that resting CBF quantified by ASL perfusion fMRI may be a useful indicator of performance potential and a marker of the level of fatigue in the neural attentional system.

  18. Quantification of tumor perfusion using dynamic contrast-enhanced ultrasound: impact of mathematical modeling

    NASA Astrophysics Data System (ADS)

    Doury, Maxime; Dizeux, Alexandre; de Cesare, Alain; Lucidarme, Olivier; Pellot-Barakat, Claire; Bridal, S. Lori; Frouin, Frédérique

    2017-02-01

    Dynamic contrast-enhanced ultrasound has been proposed to monitor tumor therapy, as a complement to volume measurements. To assess the variability of perfusion parameters in ideal conditions, four consecutive test-retest studies were acquired in a mouse tumor model, using controlled injections. The impact of mathematical modeling on parameter variability was then investigated. Coefficients of variation (CV) of tissue blood volume (BV) and tissue blood flow (BF) based-parameters were estimated inside 32 sub-regions of the tumors, comparing the log-normal (LN) model with a one-compartment model fed by an arterial input function (AIF) and improved by the introduction of a time delay parameter. Relative perfusion parameters were also estimated by normalization of the LN parameters and normalization of the one-compartment parameters estimated with the AIF, using a reference tissue (RT) region. A direct estimation (rRTd) of relative parameters, based on the one-compartment model without using the AIF, was also obtained by using the kinetics inside the RT region. Results of test-retest studies show that absolute regional parameters have high CV, whatever the approach, with median values of about 30% for BV, and 40% for BF. The positive impact of normalization was established, showing a coherent estimation of relative parameters, with reduced CV (about 20% for BV and 30% for BF using the rRTd approach). These values were significantly lower (p  <  0.05) than the CV of absolute parameters. The rRTd approach provided the smallest CV and should be preferred for estimating relative perfusion parameters.

  19. Computed tomography perfusion imaging denoising using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna

    2012-06-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study.

  20. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    PubMed Central

    Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-01-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability. PMID:26633914

  1. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-03-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.

  2. Lung Perfusion Scanning in Hepatic Cirrhosis

    PubMed Central

    Stanley, N. N.; Ackrill, P.; Wood, J.

    1972-01-01

    Abnormal lung perfusion scans using radioactive particles were found in five out of six cases of hepatic cirrhosis with arterial hypoxaemia. None had clinical evidence of cardiopulmonary disease or signs of pulmonary embolism on arteriography. The scan defects are probably caused by a disorder of the pulmonary microvasculature, which may show regional variation in severity. ImagesFIG. 1FIG. 2 PMID:4645896

  3. Nuclear cardiology: Myocardial perfusion and function

    SciTech Connect

    Seldin, D.W. )

    1991-08-01

    Myocardial perfusion studies continue to be a major focus of research, with new investigations of the relationship of exercise-redistribution thallium imaging to diagnosis, prognosis, and case management. The redistribution phenomenon, which seemed to be fairly well understood a few years ago, is now recognized to be much more complex than originally thought, and various strategies have been proposed to clarify the meaning of persistent defects. Pharmacologic intervention with dipyridamole and adenosine has become available as an alternative to exercise, and comparisons with exercise imaging and catheterization results have been described. Thallium itself is no longer the sole single-photon perfusion radiopharmaceutical; two new technetium agents are now widely available. In addition to perfusion studies, advances in the study of ventricular function have been made, including reports of studies performed in conjunction with technetium perfusion studies, new insights into cardiac physiology, and the prognostic and case-management information that function studies provide. Finally, work has continued with monoclonal antibodies for the identification of areas of myocyte necrosis. 41 references.

  4. A reappraisal of retrograde cerebral perfusion

    PubMed Central

    2013-01-01

    Brain protection during aortic arch surgery by perfusing cold oxygenated blood into the superior vena cava was first reported by Lemole et al. In 1990 Ueda and associates first described the routine use of continuous retrograde cerebral perfusion (RCP) in thoracic aortic surgery for the purpose of cerebral protection during the interval of obligatory interruption of anterograde cerebral flow. The beneficial effects of RCP may be its ability to sustain brain hypothermia during hypothermic circulatory arrest (HCA) and removal of embolic material from the arterial circulation of the brain. RCP can offer effective brain protection during HCA for about 40 to 60 minutes. Animal experiments revealed that RCP provided inadequate cerebral perfusion and that neurological recovery was improved with selective antegrade cerebral perfusion (ACP), however, both RCP and ACP provide comparable clinical outcomes regarding both the mortality and stroke rates by risk-adjusted and case-matched comparative study. RCP still remains a valuable adjunct for brain protection during aortic arch repair in particular pathologies and patients. PMID:23977600

  5. Lumbar MRI scan

    MedlinePlus

    ... may need a lumbar MRI if you have: Low back pain that does not get better after treatment Leg ... spine Injury or trauma to the lower spine Low back pain and a history or signs of cancer Multiple ...

  6. MRI of the Breast

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  7. MRI of the Prostate

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  8. MRI of the Chest

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  9. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... problems (in men)Path to improved healthIf your primary care doctor determines that you should have an MRI, ... may not apply to everyone. Talk to your family doctor to find out if this information applies to ...

  10. MRI of the Breast

    MedlinePlus

    ... of the breast uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  11. Cervical MRI scan

    MedlinePlus

    ... magnetic resonance imaging) scan uses energy from strong magnets to create pictures of the part of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  12. Leg MRI scan

    MedlinePlus

    ... resonance imaging) scan of the leg uses strong magnets to create pictures of the leg. This may ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  13. Shoulder MRI scan

    MedlinePlus

    ... an imaging test that uses energy from powerful magnets and to create pictures of the shoulder area. ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed in the room ...

  14. Tissue Necrosis Monitoring for HIFU Ablation with T1 Contrast MRI Imaging

    NASA Astrophysics Data System (ADS)

    Hwang, San-Chao; Yao, Ching; Kuo, Ih-Yuan; Tsai, Wei-Cheng; Chang, Hsu

    2011-09-01

    In MR-guided HIFU ablation, MTC (Magnetization Transfer Contrast) or perfusion imaging is usually used after ablation to evaluate the ablated area based on the thermally induced necrosis contrast. In our MR-guided HIFU ablation study, a T1 contrast MRI scan sequence has been used to distinguish between necrotic and non-necrotic tissue. The ablation of porcine meat in-vitro and in-vivo pig leg muscle show that the necrotic area of T1 contrast MRI image coincides with the photographs of sliced specimen. The sequence is considerably easier to apply than MTC or perfusion imaging, while giving good necrosis contrast. In addition, no injection of contrast agent is needed, allowing multiple scans to be applied throughout the entire ablation procedure.

  15. Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes.

    PubMed

    Hoffman, Eric A; Lynch, David A; Barr, R Graham; van Beek, Edwin J R; Parraga, Grace

    2016-03-01

    Pulmonary x-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research and development has been motivated, in part, by the quest to subphenotype common chronic lung diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the main COPD research tools, disease biomarkers are being validated that go beyond anatomy and structure to include pulmonary functional measurements such as regional ventilation, perfusion, and inflammation. In addition, there has also been a drive to improve spatial and contrast resolution while at the same time reducing or eliminating radiation exposure. Therefore, this review focuses on our evolving understanding of patient-relevant and clinically important COPD endpoints and how current and emerging MRI and CT tools and measurements may be exploited for their identification, quantification, and utilization. Since reviews of the imaging physics of pulmonary CT and MRI and reviews of other COPD imaging methods were previously published and well-summarized, we focus on the current clinical challenges in COPD and the potential of newly emerging MR and CT imaging measurements to address them. Here we summarize MRI and CT imaging methods and their clinical translation for generating reproducible and sensitive measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma morphology. The key clinical problems in COPD provide an important framework in which pulmonary imaging needs to rapidly move in order to address the staggering burden, costs, as well as the mortality and morbidity associated with COPD.

  16. Molecular fMRI

    PubMed Central

    Bartelle, Benjamin B.; Barandov, Ali

    2016-01-01

    Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this “molecular fMRI” approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques. PMID:27076413

  17. Retinal research using the perfused mammalian eye.

    PubMed

    Niemeyer, G

    2001-05-01

    applied transiently. This process is monitored histochemically using FITC-albumin and with electrophysiological parameters. Changes in vitreo-scleral resistance and in the amplitude of the EOG-light peak appear to reflect the open/closed status of the barrier. This overview of the uses of the isolated perfused mammalian eye in retinal research concludes with a discussion of potential implications for clinically relevant topics.

  18. Characterizing tumor changes during neoadjuvant treatment of locally advanced breast cancer patients (LABC) using dynamic-enhanced magnetic resonance imaging (DE-MRI)

    NASA Astrophysics Data System (ADS)

    Craciunescu, Oana I.; Jones, Ellen L.; Blackwell, Kimberly L.; Wong, Terence Z.; Rosen, Eric L.; Vujaskovic, Zeljko; MacFall, James R.; Liotcheva, Vlayka; Lora-Michiels, Michael; Prosnitz, Leonard R.; Samulski, Thaddeus V.; Dewhirst, Mark W.

    2005-04-01

    At Duke University Medical Center, selective LABC patients were treated on a protocol using neoadjuvant Myocet/Paclitaxel (ChT) and HT. With the purpose of generating perfusion/permeability parametric maps and to use gadolinium (Gd) enhancement curves to score and predict response to neoadjuvant treatment, a study was designed to acquire 3 sets of DE-MRI images along the 4 cycles of combined ChT and HT. A T1-weighted three-dimensional fast gradient echo technique was used over 30 minutes following bolus injection of Gd-based contrast agent. Perfusion/permeability maps were generated by fitting the signal intensity to a double exponential curve that generates washin (WiP) and washout (WoP), parameters that are associated with the tumors vascularity/permeability and cellularity. Based on the values of the WiP, the tumors were divided in lowWI (WiP < 100), mediumWI (100 200). During the HT treatments temperatures in the breast were measured invasively via a catheter inserted under CT guidance. Although minimum sampled temperatures give a crude indication of the temperature distribution, several thermal dose metrics were calculated for each of the HT fractions (e.g. T90, T50, T10). As expected, tumors that were more vascularized (i.e. higher WiP) heated less than tumors with low WiP, a degree on average. The adjuvant treatment also changed the shape and inhomogeneity of the perfusion/permeability maps, with dramatic changes after the first fraction in responders. The correlation between the thermal metrics and pathological response will be discussed, as well as possible correlation with other tumor physiology parameters. In conclusion, the Gd-enhancement analysis of DE-MRI images is able to generate information related to the tumor vascularity, permeability and cellularity that can correlate with the tumor's response to the neoadjuvant treatment in general, and to HT in particular. Work supported by a grant from the NCI CA42745.

  19. Thermal conduction tensor imaging and energy flow analysis of brain: a feasibility study using MRI.

    PubMed

    Khundrakpam, Budhachandra S; Shukla, Vinay K; Roy, Prasun K

    2010-10-01

    The imaging of the distribution of thermal conductivity tensor at various points in a tissue is an essential need when accurate knowledge of heat energy flow in tissue is required for diagnostic and therapeutic management in oncology, neurology, and interventional radiology. Conventionally, tissue thermal conductivity is assumed as scalar, which induces errors in obtaining proper heat flow distribution. Using statistical thermodynamics principles, we present a method for constructing thermal conductivity tensor image of a tissue or an organ, using an MRI scanner. We elucidate the necessary tensorial cross-property relationship between different transport processes and confirm the same by experimental data. Using the proposed method, we perform a preliminary study of the procedure of thermal conductivity tensor imaging of the human brain as a case study. The methodology is quantitatively elucidated by measurement of tissue anisotropy distribution, tensor eigenvalues, and path tracking, along with three illustrative examples showing that transport properties estimated by the proposed thermal conductivity approach closely corroborates, with over 90% accuracy, to the experimentally measured values of the transport parameters which have been independently experimentally measured directly. By combining diffusion and perfusion tensor imaging approaches using mobility-encoding and spin-labelling methodologies respectively, we delineate the possible applications of this novel imaging modality to clinical problems of energy flow mapping involving biological heat transfer equations, such as planning of hyperthermic treatment to brain tumors, and electrode localization for deep brain stimulation in Parkinson's disease.

  20. MRI-guided brachytherapy

    PubMed Central

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  1. Optogenetic Functional MRI

    PubMed Central

    Lin, Peter; Fang, Zhongnan; Liu, Jia; Lee, Jin Hyung

    2016-01-01

    The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. PMID:27167840

  2. Parametric estimation of ventilation-perfusion ratio distributions.

    PubMed

    Stewart, W E; Mastenbrook, S M

    1983-07-01

    We present a model and rigorous statistical approach for recovery of ventilation-perfusion ratio (V/Q) distribution parameters from multiple inert gas elimination data. We model the lung as a parallel combination of shunt, dead space, and one to three log-normal distributions of gas exchange units. This model provides a natural set of parameters for characterizing V/Q distributions. The log-normal terms are adjustable to represent smooth or sharp peaks in the distribution. Since the peak locations and widths are explicit in the model, very few parameters are needed. We select and estimate the significant parameters of the model by use of standard statistical tests and constrained least squares. This method provides two major advances in V/Q distribution estimation: 1) it allows flexible pooling and statistical comparisons of multiple experiments, and 2) it simultaneously gives both point estimates and 95% probability intervals for the V/Q distribution parameters. We present results of our procedure for data from humans in health, stress, and pulmonary disease. A program package, VQPAR, in FORTRAN is available for implementing the procedure.

  3. Adaptive image guided brachytherapy for cervical cancer: A combined MRI-/CT-planning technique with MRI only at first fraction

    PubMed Central

    Nesvacil, Nicole; Pötter, Richard; Sturdza, Alina; Hegazy, Neamat; Federico, Mario; Kirisits, Christian

    2013-01-01

    Purpose To investigate and test the feasibility of adaptive 3D image based BT planning for cervix cancer patients in settings with limited access to MRI, using a combination of MRI for the first BT fraction and planning of subsequent fractions on CT. Material and methods For 20 patients treated with EBRT and HDR BT with tandem/ring applicators two sets of treatment plans were compared. Scenario one is based on the “gold standard” with individual MRI-based treatment plans (applicator reconstruction, target contouring and dose optimization) for two BT applications with two fractions each. Scenario two is based on one initial MRI acquisition with an applicator in place for the planning of the two fractions of the first BT application and reuse of the target contour delineated on MRI for subsequent planning of the second application on CT. Transfer of the target from MRI of the first application to the CT of the second one was accomplished by use of an automatic applicator-based image registration procedure. Individual dose optimization of the second BT application was based on the transferred MRI target volume and OAR structures delineated on CT. DVH parameters were calculated for transferred target structures (virtual dose from MRI/CT plan) and CT-based OAR. The quality of the MRI/CT combination method was investigated by evaluating the CT-based dose distributions on MRI-based target and OAR contours of the same application (real dose from MRI/CT plan). Results The mean difference between the MRI based target volumes (HR CTVMRI2) and the structures transferred from MRI to CT (HR CTVCT2) was −1.7 ± 6.6 cm3 (−2.9 ± 20.4%) with a median of −0.7 cm3. The mean difference between the virtual and the real total D90, based on the MRI/CT combination technique was −1.5 ± 4.3 Gy EQD2. This indicates a small systematic underestimation of the real D90. Conclusions A combination of MRI for first fraction and subsequent CT based planning is feasible and easy