Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki
2017-12-01
The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.
Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.
Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis
2006-01-01
This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.
Okuda, Koichi; Nakajima, Kenichi; Matsuo, Shinro; Kondo, Chisato; Sarai, Masayoshi; Horiguchi, Yoriko; Konishi, Takahiro; Onoguchi, Masahisa; Shimizu, Takeshi; Kinuya, Seigo
2017-01-03
Image acquisition by short-time single-photon emission-computed tomography (SPECT) has been made feasible by IQ·SPECT. The aim of this study was to generate normal databases (NDBs) of thallium-201 ( 201 Tl) myocardial perfusion imaging for IQ·SPECT, and characterize myocardial perfusion distribution. We retrospectively enrolled 159 patients with a low likelihood of cardiac diseases from four hospitals in Japan. All patients underwent short-time 201 Tl myocardial perfusion IQ·SPECT with or without attenuation and scatter correction (ACSC) in either supine or prone position. The mean myocardial counts were calculated using 17-segment polar maps. Three NDBs were derived from supine and prone images as well as supine images with ACSC. Differences between the supine and prone positions were observed in the uncorrected sex-segregated NDBs in the mid-inferolateral counts (p ≤ 0.016 for males and p ≤ 0.002 for females). Differences between IQ·SPECT and conventional SPECT were also observed in the mid-anterior, inferolateral, and apical lateral counts (p ≤ 0.009 for males and p ≤ 0.003 for females). Apical low counts attributed to myocardial thinning were observed in the apical anterior and apex segments in the supine IQ·SPECT NDB with ACSC. There were significant differences between uncorrected supine and prone NDBs, between uncorrected supine NDB and supine NDB with ACSC, and between uncorrected supine NDB and conventional SPECT NDB. Understanding the pattern of normal distribution in IQ-SPECT short-time acquisitions with and without ACSC will be helpful for interpretation of imaging findings in patients with coronary artery disease (CAD) or low likelihood of CAD and the NDBs will aid in quantitative analysis.
Nakajima, Kenichi; Matsumoto, Naoya; Kasai, Tokuo; Matsuo, Shinro; Kiso, Keisuke; Okuda, Koichi
2016-04-01
As a 2-year project of the Japanese Society of Nuclear Medicine working group activity, normal myocardial imaging databases were accumulated and summarized. Stress-rest with gated and non-gated image sets were accumulated for myocardial perfusion imaging and could be used for perfusion defect scoring and normal left ventricular (LV) function analysis. For single-photon emission computed tomography (SPECT) with multi-focal collimator design, databases of supine and prone positions and computed tomography (CT)-based attenuation correction were created. The CT-based correction provided similar perfusion patterns between genders. In phase analysis of gated myocardial perfusion SPECT, a new approach for analyzing dyssynchrony, normal ranges of parameters for phase bandwidth, standard deviation and entropy were determined in four software programs. Although the results were not interchangeable, dependency on gender, ejection fraction and volumes were common characteristics of these parameters. Standardization of (123)I-MIBG sympathetic imaging was performed regarding heart-to-mediastinum ratio (HMR) using a calibration phantom method. The HMRs from any collimator types could be converted to the value with medium-energy comparable collimators. Appropriate quantification based on common normal databases and standard technology could play a pivotal role for clinical practice and researches.
Paschali, Anna; Messinis, Lambros; Lyros, Epameinondas; Constantoyannis, Costas; Kefalopoulou, Zinovia; Lakiotis, Velissarios; Papathanasopoulos, Panagiotis; Vassilakos, Paulos
2009-11-01
In the present study, we examined relationships between neuropsychological functions and brain single photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) observed at presurgical evaluation for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in advanced Parkinson's disease (PD) patients. Twenty advanced non-demented PD patients, candidates for DBS surgery, underwent perfusion brain SPECT study and neuropsychological assessment prior to surgery (range: 30-50 days). Patients were further assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (H&Y) scale. During all assessments patients were "on" standard medication. NeuroGam software, which permits voxel by voxel analysis, was used to compare the brain perfusion of PD patients with a normal database adjusted for sex and age. Neuropsychological scores were compared to age, education and sex-adjusted normative databases. Our results indicated that the distribution of rCBF showed significant differences when compared to an age- and sex-adjusted normative database. We found impaired blood flow in 17 (85%) of our patients in the left prefrontal lobe, in 14 (70%) in the right prefrontal lobe and in 11 (55%) in the left frontal and right parietal lobes. Neuropsychological testing revealed that 18 (90%) of our patients had significant impairments in measures of executive functions (set-shifting) and 15 (75%) in response inhibition. Furthermore, we found significant correlations between measures of visual attention, executive functions and the right frontal lobe region. The presence of widespread blood flow reduction was observed mainly in the frontal lobes of dementia-free patients with advanced PD. Furthermore, performance on specific cognitive measures was highly related to perfusion brain SPECT findings.
Hughes, Tyler; Shcherbinin, Sergey; Celler, Anna
2011-07-01
Normal patient databases (NPDs) are used to distinguish between normal and abnormal perfusion in SPECT myocardial perfusion imaging (MPI) and have gained wide acceptance in the clinical environment, yet there are limitations to this approach. This study introduces a template-based method for semi-quantitative MPI, which attempts to overcome some of the NPD limitations. Our approach involves the construction of a 3D digital healthy heart template from the delineation of the patient's left ventricle in the SPECT image. This patient-specific template of the heart, filled with uniform activity, is then analytically projected and reconstructed using the same algorithm as the original image. Subsequent to generating bulls-eye maps for the patient image (PB) and the template image (TB), a ratio (PB/TB) is calculated, which produces a reconstruction-artifact corrected image (CB). Finally, a threshold is used to define defects within CB enabling measurements of the perfusion defect extent (EXT). The SPECT-based template (Ts) measurements were compared to those of a CT-based "ideal" template (TI). Twenty digital phantoms were simulated: male and female, each with one healthy heart and nine hearts with various defects. Four physical phantom studies were performed modeling a healthy heart and three hearts with different defects. The phantom represented a thorax with spine, lung, and left ventricle inserts. Images were acquired on General Electric's (GE) Infinia Hawkeye SPECT/CT camera using standard clinical MPI protocol. Finally, our method was applied to 14 patient MPI rest/stress studies acquired on the GE Infinia Hawkeye SPECT/CT camera and compared to the results obtained from Cedars-Sinai's QPS software. In the simulation studies, the true EXT correlated well with the TI (slope= 1.08; offset = -0.40%; r = 0.99) and Ts (slope = 0.90; offset = 0.27%; r = 0.99) methods with no significant differences between them. Similarly, strong correlations were measured for EXT obtained from QPS and the template method for patient studies (slope =0.91; offset = 0.45%; r = 0.98). Mean errors in extent for the Ts method using simulation, physical phantom, and patient data were 2.7% +/- 2.4%, 0.9% +/- 0.5%, 2.0% +/- 2.7%, respectively. The authors introduced a method for semi-quantitative SPECT MPI, which offers a patient-specific approach to define the perfusion defect regions within the heart, as opposed to the patient-averaged NPD methodology.
Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing
2016-01-01
Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.
NASA Astrophysics Data System (ADS)
Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.
2003-12-01
Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within the range of asymmetry coefficients measured on corresponding real data. The features of the proposed approach are compared with those of other methods previously described to obtain datasets appropriate for the assessment of fusion methods.
Iskandar, Aline; Limone, Brendan; Parker, Matthew W; Perugini, Andrew; Kim, Hyejin; Jones, Charles; Calamari, Brian; Coleman, Craig I; Heller, Gary V
2013-02-01
It remains controversial whether the diagnostic accuracy of single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) is different in men as compared to women. We performed a meta-analysis to investigate gender differences of SPECT MPI for the diagnosis of CAD (≥50% stenosis). Two investigators independently performed a systematic review of the MEDLINE and EMBASE databases from inception through January 2012 for English-language studies determining the diagnostic accuracy of SPECT MPI. We included prospective studies that compared SPECT MPI with conventional coronary angiography which provided sufficient data to calculate gender-specific true and false positives and negatives. Data from studies evaluating <20 patients of one gender were excluded. Bivariate meta-analysis was used to create summary receiver operating curves. Twenty-six studies met inclusion criteria, representing 1,148 women and 1,142 men. Bivariate meta-analysis yielded a mean sensitivity and specificity of 84.2% (95% confidence interval [CI] 78.7%-88.6%) and 78.7% (CI 70.0%-85.3%) for SPECT MPI in women and 89.1% (CI 84.0%-92.7%) and 71.2% (CI 60.8%-79.8%) for SPECT MPI in men. There was no significant difference in the sensitivity (P = .15) or specificity (P = .23) between male and female subjects. In a bivariate meta-analysis of the available literature, the diagnostic accuracy of SPECT MPI is similar for both men and women.
Suga, K; Yasuhiko, K; Iwanaga, H; Tokuda, O; Matsunaga, N
2009-01-01
The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Although further validation is required, our results indicate that heterogeneous pulmonary arterial perfusion may be a dominant mechanism of MCA in PVD and OAD.
Toward a practical template-based approach to semiquantitative SPECT myocardial perfusion imaging.
Hughes, Tyler; Celler, Anna
2012-03-01
Our template-based quantitative perfusion single photon emission computed tomography (SPECT) method (T-QPS) performs semiquantitative analysis for myocardial perfusion imaging (MPI) without the use of normal databases. However, in its current form, T-QPS requires extensive calculations, which limits its clinical application. In the interest of clinical feasibility, the authors examine the trade-off between accuracy and processing time as the method is simplified. The T-QPS method uses the reconstructed SPECT image of the patient to create a 3D digital template of his∕her healthy heart. This template is then projected, reconstructed, and sampled into the bulls-eye map domain. A ratio of the patient and template images produces a final corrected image in which a threshold is applied to identify perfusion defects. In principle, the template should be constructed with the heart and all extracardiac activity, and the projection step should include primary and scatter components; however, this leads to lengthy calculations. In an attempt to shorten the processing time, the authors analyzed the performance of four template (T) generation methods: T(P-HRT), T(PS-HRT), T(P-HRTBKG), and T(PS-HRTBKG), where P and S represent primary and scattered photons included in the projection step, respectively; and HRT and HRTBKG represent template constructed with the heart only and the heart with background activity, respectively. Forty-eight thorax phantoms and 21 randomly selected patient studies were analyzed using each approach. All studies used GE's Infinia Hawkeye SPECT∕CT system and followed a standard cardiac acquisition protocol. Approximate processing times for the T(P-HRT), T(PS-HRT), T(P-HRTBKG), and T(PS-HRTBKG) methods were less than a minute, 2-3 h, less than a minute and 3-4 h, respectively. In both the simulation and patient studies, a significant reduction in the quality of perfusion defect definition was exhibited by the T(P-HRT) method relative to the other three methods. The optimal method with respect to perfusion defect definition and processing time was T(P-HRTBKG) with a sensitivity, specificity, and accuracy in spatially defining the perfusion defects (simulation study) of 80%, 84%, and 83%, respectively. The T-QPS method using T(P-HRTBKG) leads to accurate and fast semiquantitative analysis of SPECT MPI, without the use of normal databases.
Konishi, Takahiro; Nakajima, Kenichi; Okuda, Koichi; Yoneyama, Hiroto; Matsuo, Shinro; Shibutani, Takayuki; Onoguchi, Masahisa; Kinuya, Seigo
2017-07-01
Although IQ-single-photon emission computed tomography (SPECT) provides rapid acquisition and attenuation-corrected images, the unique technology may create characteristic distribution different from the conventional imaging. This study aimed to compare the diagnostic performance of IQ-SPECT using Japanese normal databases (NDBs) with that of the conventional SPECT for thallium-201 ( 201 Tl) myocardial perfusion imaging (MPI). A total of 36 patients underwent 1-day 201 Tl adenosine stress-rest MPI. Images were acquired with IQ-SPECT at approximately one-quarter of the standard time of conventional SPECT. Projection data acquired with the IQ-SPECT system were reconstructed via an ordered subset conjugate gradient minimizer method with or without scatter and attenuation correction (SCAC). Projection data obtained using the conventional SPECT were reconstructed via a filtered back projection method without SCAC. The summed stress score (SSS) was calculated using NDBs created by the Japanese Society of Nuclear Medicine working group, and scores were compared between IQ-SPECT and conventional SPECT using the acquisition condition-matched NDBs. The diagnostic performance of the methods for the detection of coronary artery disease was also compared. SSSs were 6.6 ± 8.2 for the conventional SPECT, 6.6 ± 9.4 for IQ-SPECT without SCAC, and 6.5 ± 9.7 for IQ-SPECT with SCAC (p = n.s. for each comparison). The SSS showed a strong positive correlation between conventional SPECT and IQ-SPECT (r = 0.921 and p < 0.0001), and the correlation between IQ-SPECT with and without SCAC was also good (r = 0.907 and p < 0.0001). Regarding diagnostic performance, the sensitivity, specificity, and accuracy were 80.8, 78.9, and 79.4%, respectively, for the conventional SPECT; 80.8, 80.3, and 82.0%, respectively, for IQ-SPECT without SCAC; and 88.5, 86.8, and 87.3%, respectively, for IQ-SPECT with SCAC, respectively. The area under the curve obtained via receiver operating characteristic analysis were 0.77, 0.80, and 0.86 for conventional SPECT, IQ-SPECT without SCAC, and IQ-SPECT with SCAC, respectively (p = n.s. for each comparison). When appropriate NDBs were used, the diagnostic performance of 201 Tl IQ-SPECT was comparable with that of the conventional system regardless of different characteristics of myocardial accumulation in the conventional system.
Scabbio, Camilla; Zoccarato, Orazio; Malaspina, Simona; Lucignani, Giovanni; Del Sole, Angelo; Lecchi, Michela
2017-10-17
To evaluate the impact of non-specific normal databases on the percent summed rest score (SR%) and stress score (SS%) from simulated low-dose SPECT studies by shortening the acquisition time/projection. Forty normal-weight and 40 overweight/obese patients underwent myocardial studies with a conventional gamma-camera (BrightView, Philips) using three different acquisition times/projection: 30, 15, and 8 s (100%-counts, 50%-counts, and 25%-counts scan, respectively) and reconstructed using the iterative algorithm with resolution recovery (IRR) Astonish TM (Philips). Three sets of normal databases were used: (1) full-counts IRR; (2) half-counts IRR; and (3) full-counts traditional reconstruction algorithm database (TRAD). The impact of these databases and the acquired count statistics on the SR% and SS% was assessed by ANOVA analysis and Tukey test (P < 0.05). Significantly higher SR% and SS% values (> 40%) were found for the full-counts TRAD databases respect to the IRR databases. For overweight/obese patients, significantly higher SS% values for 25%-counts scans (+19%) are confirmed compared to those of 50%-counts scan, independently of using the half-counts or the full-counts IRR databases. Astonish TM requires the adoption of the own specific normal databases in order to prevent very high overestimation of both stress and rest perfusion scores. Conversely, the count statistics of the normal databases seems not to influence the quantification scores.
[Myokard-Perfusions-SPECT. Myocardial perfusion SPECT - Update S1 guideline].
Lindner, Oliver; Bengel, Frank; Burchert, Wolfgang; Dörr, Rolf; Hacker, Marcus; Schäfer, Wolfgang; Schäfers, Michael A; Schmidt, Matthias; Schwaiger, Markus; Vom Dahl, Jürgen; Zimmermann, Rainer
2017-08-14
The S1 guideline for myocardial perfusion SPECT has been published by the Association of the Scientific Medical Societies in Germany (AWMF) and is valid until 2/2022. This paper is a short summary with comments on all chapters and subchapters wich were modified and amended.
Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT
Okada, David R.; Ghoshhajra, Brian B.; Blankstein, Ron; Rocha-Filho, Jose A.; Shturman, Leonid D.; Rogers, Ian S.; Bezerra, Hiram G.; Sarwar, Ammar; Gewirtz, Henry; Hoffmann, Udo; Mamuya, Wilfred S.; Brady, Thomas J.; Cury, Ricardo C.
2010-01-01
Introduction We have recently described a technique for assessing myocardial perfusion using adenosine-mediated stress imaging (CTP) with dual source computed tomography. SPECT myocardial perfusion imaging (SPECT-MPI) is a widely utilized and extensively validated method for assessing myocardial perfusion. The aim of this study was to determine the level of agreement between CTP and SPECT-MPI at rest and under stress on a per-segment, per-vessel, and per-patient basis. Methods Forty-seven consecutive patients underwent CTP and SPECT-MPI. Perfusion images were interpreted using the 17 segment AHA model and were scored on a 0 (normal) to 3 (abnormal) scale. Summed rest and stress scores were calculated for each vascular territory and patient by adding corresponding segmental scores. Results On a per-segment basis (n = 799), CTP and SPECT-MPI demonstrated excellent correlation: Goodman-Kruskall γ = .59 (P < .0001) for stress and .75 (P < .0001) for rest. On a per-vessel basis (n = 141), CTP and SPECT-MPI summed scores demonstrated good correlation: Pearson r = .56 (P < .0001) for stress and .66 (P < .0001) for rest. On a per-patient basis (n = 47), CTP and SPECT-MPI demonstrated good correlation: Pearson r = .60 (P < .0001) for stress and .76 (P < .0001) for rest. Conclusions CTP compares favorably with SPECT-MPI for detection, extent, and severity of myocardial perfusion defects at rest and stress. PMID:19936863
Sakai, Toshiyuki; Kuzuhara, Shigeki
2003-04-01
We investigated the regional cerebral blood flow (rCBF) in 8 patients with Parkinson disease (PD) with cognitive impairment (age; 64-82 years, Mini-Mental State Examination score = MMSE score; 22-6 points, Yahr stage; III-V), with the standard transaxial images and the Z-score images using the three-dimensional stereotactic surface projections (3D-SSP) of 123I-IMP SPECT. A contrast database was created by averaging extracted database sets of the contrast group (numbers; 14 cases, age; 64-82 years, MMSE score; > or = 29 points). The regions of the perfusion reduction shown on the standard transaxial images were similarly demonstrated on the Z-score images in 6 of the 8 patients, and only the Z-score images demonstrated definite regions of perfusion reduction in remaining 2 patients. Both the standard transaxial and Z-score images demonstrated the perfusion reduction in the temporo-parietal regions in all of the patients, and the Z-score images but not the standard transaxial ones detected the reduction in the posterior cingulate gyrus and precuneus in 3 patients. 3D-SSP images of 123I-IMP SPECT are thus more sensitive in detecting rCBF of the medial aspect of the parietal cortex than the standard transaxial images, and can be used as a diagnostic tool to objectively evaluate the cognitive function of PD patients.
Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Tokuda, Osamu; Matsunaga, Naofumi
2008-09-01
The relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism (PTE) was comprehensively assessed on deep-inspiratory breath-hold (DIBrH) perfusion SPECT-computed tomographic pulmonary angiography (CTPA) fusion images. Subjects were 34 acute PTE patients, who had successfully performed DIBrH perfusion SPECT using a dual-headed SPECT and a respiratory tracking system. Automated DIBrH SPECT-CTPA fusion images were used to assess the relation between lung perfusion defects and intravascular clots detected by CTPA. DIBrH SPECT visualized 175 lobar/segmental or subsegmental defects in 34 patients, and CTPA visualized 61 intravascular clots at variable locations in 30 (88%) patients, but no clots in four (12%) patients. In 30 patients with clots, the fusion images confirmed that 69 (41%) perfusion defects (20 segmental, 45 subsegmental and 4 lobar defects) of total 166 defects were located in lung territories without clots, although the remaining 97 (58%) defects were located in lung territories with clots. Perfusion defect was absent in lung territories with clots (one lobar branch and three segmental branches) in four (12%) of these patients. In four patients without clots, nine perfusion defects including four segmental ones were present. Because of unexpected dissociation between intravascular clots and lung perfusion defects, the present fusion images will be a useful adjunct to CTPA in the diagnosis of acute PTE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liss, Adam L., E-mail: adamliss68@gmail.com; Marsh, Robin B.; Kapadia, Nirav S.
Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanningmore » before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of breast cancer patients for whom attenuation-corrected SPECT/CT scans could be registered directly to RT treatment fields for precise dose estimates.« less
Provost, Karine; Leblond, Antoine; Gauthier-Lemire, Annie; Filion, Édith; Bahig, Houda; Lord, Martin
2017-09-01
Planar perfusion scintigraphy with 99m Tc-labeled macroaggregated albumin is often used for pretherapy quantification of regional lung perfusion in lung cancer patients, particularly those with poor respiratory function. However, subdividing lung parenchyma into rectangular regions of interest, as done on planar images, is a poor reflection of true lobar anatomy. New tridimensional methods using SPECT and SPECT/CT have been introduced, including semiautomatic lung segmentation software. The present study evaluated inter- and intraobserver agreement on quantification using SPECT/CT software and compared the results for regional lung contribution obtained with SPECT/CT and planar scintigraphy. Methods: Thirty lung cancer patients underwent ventilation-perfusion scintigraphy with 99m Tc-macroaggregated albumin and 99m Tc-Technegas. The regional lung contribution to perfusion and ventilation was measured on both planar scintigraphy and SPECT/CT using semiautomatic lung segmentation software by 2 observers. Interobserver and intraobserver agreement for the SPECT/CT software was assessed using the intraclass correlation coefficient, Bland-Altman plots, and absolute differences in measurements. Measurements from planar and tridimensional methods were compared using the paired-sample t test and mean absolute differences. Results: Intraclass correlation coefficients were in the excellent range (above 0.9) for both interobserver and intraobserver agreement using the SPECT/CT software. Bland-Altman analyses showed very narrow limits of agreement. Absolute differences were below 2.0% in 96% of both interobserver and intraobserver measurements. There was a statistically significant difference between planar and SPECT/CT methods ( P < 0.001) for quantification of perfusion and ventilation for all right lung lobes, with a maximal mean absolute difference of 20.7% for the right middle lobe. There was no statistically significant difference in quantification of perfusion and ventilation for the left lung lobes using either method; however, absolute differences reached 12.0%. The total right and left lung contributions were similar for the two methods, with a mean difference of 1.2% for perfusion and 2.0% for ventilation. Conclusion: Quantification of regional lung perfusion and ventilation using SPECT/CT-based lung segmentation software is highly reproducible. This tridimensional method yields statistically significant differences in measurements for right lung lobes when compared with planar scintigraphy. We recommend that SPECT/CT-based quantification be used for all lung cancer patients undergoing pretherapy evaluation of regional lung function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Alvelo, Jessica L.; Papademetris, Xenophon; Mena-Hurtado, Carlos; Jeon, Sangchoon; Sumpio, Bauer E.; Sinusas, Albert J.
2018-01-01
Background: Single photon emission computed tomography (SPECT)/computed tomography (CT) imaging allows for assessment of skeletal muscle microvascular perfusion but has not been quantitatively assessed in angiosomes, or 3-dimensional vascular territories, of the foot. This study assessed and compared resting angiosome foot perfusion between healthy subjects and diabetic patients with critical limb ischemia (CLI). Additionally, the relationship between SPECT/CT imaging and the ankle–brachial index—a standard tool for evaluating peripheral artery disease—was assessed. Methods and Results: Healthy subjects (n=9) and diabetic patients with CLI and nonhealing ulcers (n=42) underwent SPECT/CT perfusion imaging of the feet. CT images were segmented into angiosomes for quantification of relative radiotracer uptake, expressed as standardized uptake values. Standardized uptake values were assessed in ulcerated angiosomes of patients with CLI and compared with whole-foot standardized uptake values in healthy subjects. Serial SPECT/CT imaging was performed to assess uptake kinetics of technetium-99m-tetrofosmin. The relationship between angiosome perfusion and ankle–brachial index was assessed via correlational analysis. Resting perfusion was significantly lower in CLI versus healthy subjects (P=0.0007). Intraclass correlation coefficients of 0.95 (healthy) and 0.93 (CLI) demonstrated excellent agreement between serial perfusion measurements. Correlational analysis, including healthy and CLI subjects, demonstrated a significant relationship between ankle–brachial index and SPECT/CT (P=0.01); however, this relationship was not significant for diabetic CLI patients only (P=0.2). Conclusions: SPECT/CT imaging assesses regional foot perfusion and detects abnormalities in microvascular perfusion that may be undetectable by conventional ankle–brachial index in patients with diabetes mellitus. SPECT/CT may provide a novel approach for evaluating responses to targeted therapies. PMID:29748311
Dadpour, Bita; Dabbagh Kakhki, Vahid R; Afshari, Reza; Dorri-Giv, Masoumeh; Mohajeri, Seyed A R; Ghahremani, Somayeh
2016-12-01
Methamphetamine (MA) is associated with alterations of cardiac structure and function, although it is less known. In this study, we assessed possible abnormality in myocardial perfusion and left ventricular function using gated myocardial perfusion SPECT. Fifteen patients with MA abuse, on the basis of Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) MA dependency determined by Structured Clinical Interview for DSM-IV, underwent 2-day dipyridamole stress/rest Tc-sestamibi gated myocardial perfusion SPECT. An average daily dose of MA use was 0.91±1.1 (0.2-4) g. The duration of MA use was 3.4±2.1 (1-7) years. In visual and semiquantitative analyses, all patients had normal gated myocardial perfusion SPECT, with no perfusion defects. In all gated SPECT images, there was no abnormality in left ventricular wall motion and thickening. All summed stress scores and summed rest scores were below 3. Calculated left ventricular functional indices including the end-diastolic volume, end-systolic volume, and left ventricular ejection fraction were normal. Many cardiac findings because of MA mentioned in previous reports are less likely because of significant epicardial coronary artery stenosis.
Normal Databases for the Relative Quantification of Myocardial Perfusion
Rubeaux, Mathieu; Xu, Yuan; Germano, Guido; Berman, Daniel S.; Slomka, Piotr J.
2016-01-01
Purpose of review Myocardial perfusion imaging (MPI) with SPECT is performed clinically worldwide to detect and monitor coronary artery disease (CAD). MPI allows an objective quantification of myocardial perfusion at stress and rest. This established technique relies on normal databases to compare patient scans against reference normal limits. In this review, we aim to introduce the process of MPI quantification with normal databases and describe the associated perfusion quantitative measures that are used. Recent findings New equipment and new software reconstruction algorithms have been introduced which require the development of new normal limits. The appearance and regional count variations of normal MPI scan may differ between these new scanners and standard Anger cameras. Therefore, these new systems may require the determination of new normal limits to achieve optimal accuracy in relative myocardial perfusion quantification. Accurate diagnostic and prognostic results rivaling those obtained by expert readers can be obtained by this widely used technique. Summary Throughout this review, we emphasize the importance of the different normal databases and the need for specific databases relative to distinct imaging procedures. use of appropriate normal limits allows optimal quantification of MPI by taking into account subtle image differences due to the hardware and software used, and the population studied. PMID:28138354
Pirich, Christian; Keinrath, Peter; Barth, Gabriele; Rendl, Gundula; Rettenbacher, Lukas; Rodrigues, Margarida
2017-03-01
IQ SPECT consists of a new pinhole-like collimator, cardio-centric acquisition, and advanced 3D iterative SPECT reconstruction. The aim of this paper was to compare diagnostic accuracy and functional parameters obtained with IQ SPECT versus conventional SPECT in patients undergoing myocardial perfusion scintigraphy with adenosine stress and at rest. Eight patients with known or suspected coronary artery disease underwent [99mTc] tetrofosmin gated SPECT. Acquisition was performed on a Symbia T6 equipped with IQ SPECT and on a conventional gamma camera system. Gated SPECT data were used to calculate functional parameters. Scores analysis was performed on a 17-segment model. Coronary angiography and clinical follow-up were considered as diagnostic reference standard. Mean acquisition time was 4 minutes with IQ SPECT and 21 minutes with conventional SPECT. Agreement degree on the diagnostic accuracy between both systems was 0.97 for stress studies, 0.91 for rest studies and 0.96 for both studies. Perfusion abnormalities scores obtained by using IQ SPECT and conventional SPECT were not significant different: SSS, 9.7±8.8 and 10.1±6.4; SRS, 7.1±6.1 and 7.5±7.3; SDS, 4.0±6.1 and 3.9±4.3, respectively. However, a significant difference was found in functional parameters derived from IQ SPECT and conventional SPECT both after stress and at rest. Mean LVEF was 8% lower using IQ SPECT. Differences in LVEF were found in patients with normal LVEF and patients with reduced LVEF. Functional parameters using accelerated cardiac acquisition with IQ SPECT are significantly different to those obtained with conventional SPECT, while agreement for clinical interpretation of myocardial perfusion scintigraphy with both techniques is high.
Reiner, Caecilia S; Goetti, Robert; Burger, Irene A; Fischer, Michael A; Frauenfelder, Thomas; Knuth, Alexander; Pfammatter, Thomas; Schaefer, Niklaus; Alkadhi, Hatem
2012-05-01
To prospectively analyze the correlation between parameters of liver perfusion from technetium99m-macroaggregates of albumin (99mTc-MAA) single photon emission computed tomography (SPECT) with those obtained from dynamic CT perfusion in patients with primary or metastatic liver malignancy. Twenty-five consecutive patients (11 women, 14 men; mean age 60.9 ± 10.8; range: 32-78 years) with primary (n = 5) or metastatic (n = 20) liver malignancy planned to undergo selective internal radiotherapy underwent dynamic contrast-enhanced CT liver perfusion imaging (four-dimensional spiral mode, scan range 14.8 cm, 15 scans, cycle time 3 seconds) and 99m)Tc-MAA SPECT after intraarterial injection of 180 MBq 99mTc-MAA on the same day. Data were evaluated by two blinded and independent readers for the parameters arterial liver perfusion (ALP), portal venous perfusion (PVP), and total liver perfusion (TLP) from CT, and the 99mTc-MAA uptake-ratio of tumors in relation to normal liver parenchyma from SPECT. Interreader agreements for quantitative perfusion parameters were high for dynamic CT (r = 0.90-0.98, each P < .01) and 99mTc -MAA SPECT (r = 0.91, P < .01). Significant correlation was found between 99mTc-MAA uptake ratio and ALP (r = 0.7, P < .01) in liver tumors. No significant correlation was found between 99mTc-MAA uptake ratio, PVP (r = -0.381, P = .081), and TLP (r = 0.039, P = .862). This study indicates that in patients with primary and metastatic liver malignancy, ALP obtained by dynamic CT liver perfusion significantly correlates with the 99mTc-MAA uptake ratio obtained by SPECT. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo
2015-06-01
A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p < 0.05). The left ventricular ejection fraction from IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a short time are equivalent to that of conventional LEHR. The results indicated that the IQ-SPECT system with AC is capable of correcting inferior artifacts with high image quality.
Einstein, Andrew J.; Blankstein, Ron; Andrews, Howard; Fish, Mathews; Padgett, Richard; Hayes, Sean W.; Friedman, John D.; Qureshi, Mehreen; Rakotoarivelo, Harivony; Slomka, Piotr; Nakazato, Ryo; Bokhari, Sabahat; Di Carli, Marcello; Berman, Daniel S.
2015-01-01
SPECT myocardial perfusion imaging (MPI) plays a central role in coronary artery disease diagnosis; but concerns exist regarding its radiation burden. Compared to standard Anger-SPECT (A-SPECT) cameras, new high-efficiency (HE) cameras with specialized collimators and solid-state cadmium-zinc-telluride detectors offer potential to maintain image quality (IQ), while reducing administered activity and thus radiation dose to patients. No previous study has compared IQ, interpretation, total perfusion deficit (TPD), or ejection fraction (EF) in patients receiving both ultra-low-dose (ULD) imaging on a HE-SPECT camera and standard low-dose (SLD) A-SPECT imaging. Methods We compared ULD-HE-SPECT to SLD-A-SPECT imaging by dividing the rest dose in 101 patients at 3 sites scheduled to undergo clinical A-SPECT MPI using a same day rest/stress Tc-99m protocol. Patients received HE-SPECT imaging following an initial ~130 MBq (3.5mCi) dose, and SLD-A-SPECT imaging following the remainder of the planned dose. Images were scored visually by 2 blinded readers for IQ and summed rest score (SRS). TPD and EF were assessed quantitatively. Results Mean activity was 134 MBq (3.62 mCi) for ULD-HE-SPECT (effective dose 1.15 mSv) and 278 MBq (7.50 mCi, 2.39 mSv) for SLD-A-SPECT. Overall IQ was superior for ULD-HE-SPECT (p<0.0001), with twice as many studies graded excellent quality. Extracardiac activity and overall perfusion assessment were similar. Between-method correlations were high for SRS (r=0.87), TPD (r=0.91), and EF (r=0.88). Conclusion ULD-HE-SPECT rest imaging correlates highly with SLD-A-SPECT. It has improved image quality, comparable extracardiac activity, and achieves radiation dose reduction to 1 mSv for a single injection. PMID:24982439
Takenaka, Daisuke; Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Onishi, Yumiko; Matsumoto, Keiko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro
2010-06-01
To directly compare the capabilities of perfusion scan, SPECT, co-registered SPECT/CT, and quantitatively and qualitatively assessed MDCT (i.e. quantitative CT and qualitative CT) for predicting postoperative clinical outcome for lung volume reduction surgery (LVRS) candidates. Twenty-five consecutive candidates (19 men and six women, age range: 42-72 years) for LVRS underwent preoperative CT and perfusion scan with SPECT. Clinical outcome of LVRS for all subjects was also assessed by determining the difference between pre- and postoperative forced expiratory volume in 1s (FEV(1)) and 6-min walking distance (6MWD). All SPECT examinations were performed on a SPECT scanner, and co-registered to thin-section CT by using commercially available software. On planar imaging, SPECT and SPECT/CT, upper versus lower zone or lobe ratios (U/Ls) were calculated from regional uptakes between upper and lower lung fields in the operated lung. On quantitatively assessed CT, U/L for all subjects was assessed from regional functional lung volumes. On qualitatively assessed CT, planar imaging, SPECT and co-registered SPECT/CT, U/Ls were assessed with a 4-point visual scoring system. To compare capabilities of predicting clinical outcome, each U/L was statistically correlated with the corresponding clinical outcome. Significantly fair or moderate correlations were observed between quantitatively and qualitatively assessed U/Ls obtained with all four methods and clinical outcomes (-0.60
Pulmonary Arterial Hypertension With Abnormal V/Q Single-Photon Emission Computed Tomography.
Chan, Kenneth; Ioannidis, Stefanos; Coghlan, John G; Hall, Margaret; Schreiber, Benjamin E
2017-10-16
This study aimed to evaluate the incidence and clinical outcomes of abnormal ventilation/perfusion (V/Q) single-photon emission computed tomography (SPECT) without thromboembolism, especially in patients with group I pulmonary arterial hypertension (PAH). American Heart Association/American College of Cardiology and European Society of Cardiology guidelines recommend V/Q scan for screening for chronic thromboembolic pulmonary hypertension. The significance of patients with abnormal V/Q SPECT findings but no thromboembolism demonstrated in further investigations remained unclear. A distinct pattern of global patchy changes not typical of thromboembolism is recognized, but guidelines for reporting these in the context of PAH are lacking. A total of 136 patients who underwent V/Q SPECT and right-sided heart catheterization showing mean pulmonary arterial pressure ≥25 mm Hg were included. V/Q SPECT findings were reported using European Association of Nuclear Medicine criteria for pulmonary embolism followed by computed tomography pulmonary angiography screening for positive thromboembolism and further invasive pulmonary angiography for distal thromboembolism. The abnormal V/Q SPECT images were further analyzed according to perfusion pattern into focal or global perfusion defects. V/Q SPECT showed thromboembolic disease in 44 patients, but 19 of these patients had no thromboembolism demonstrated by pulmonary angiography. Among these patients, 15 of 19 (78.9%) had group I PAH, and the majority had diffuse, patchy perfusion defects. After redefining V/Q SPECT images according to the perfusion pattern, those patients with global perfusion defects had higher mean pulmonary arterial pressure compared with patients with focal perfusion defects and normal scans (mean difference +13.9 and +6.2 mm Hg, respectively; p = 0.0002), as well as higher pulmonary vascular resistance (mean difference +316.6 and +226.3 absolute resistance units, respectively; p = 0.004). Among patients with PAH, global perfusion defects were associated with higher all-cause mortality with a hazard ratio of 5.63 (95% confidence interval: 1.11 to 28.5) compared with patients with focal or no perfusion abnormalities. There is a high incidence of abnormal V/Q SPECT scans in nonthromboembolic PAH. Further studies are needed to investigate the poor outcome associated with abnormal V/Q SPECT findings in the context of PAH. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Hayashi, Norio; Yamashita, Tomio; Matsunaga, Naofumi
2005-09-01
Deep-inspiratory breath-hold (DIBrH) Tc-99m-macroaggregated albumin (MAA) SPECT images were developed to accurately evaluate perfusion impairment in smokers' lungs. DIBrH SPECT was performed in 28 smokers with or without low attenuation areas (LAA) on CT images, using a triple-headed SPECT system and a laser light respiratory tracking device. DIBrH SPECT images were reconstructed from every 4 degrees projection of five adequate 360 degrees projection data sets with almost the same respiratory dimension at 20 sec DIBrH. Perfusion defect clarity was assessed by the lesion (defect)-to-contralateral normal lung count ratios (L/N ratios). Perfusion inhomogeneity was assessed by the coefficient of variation (CV) values of pixel counts and correlated with the diffusing capacity of the lungs for carbon monoxide/alveolar volume (DLCO/VA) ratios. The results were compared with those on conventional images. Five DIBrH projection data sets with minimal dimension differences of 2.9+/-0.6 mm were obtained in all subjects. DIBrH images enhanced perfusion defects compared with conventional images, with significantly higher L/N ratios (P<0.0001), and detected a total of 109 (26.9%) additional detects (513 vs. 404), with excellent inter-observer agreement (kappa value of 0.816). CV values in the smokers' lungs on DIBrH images were also significantly higher compared with those on conventional images (0.31+/-0.10 vs. 0.19+/-0.06, P<0.0001). CV values in smokers on DIBrH images showed a significantly closer correlation with DLCO/VA ratios compared with conventional images (R = 0.872, P<0.0001 vs. R=0.499, P<0.01). By reducing adverse effect of respiratory motion, DIBrH SPECT images enhance perfusion defect clarity and inhomogeneity, and provide more accurate assessment of impaired perfusion in smokers' lungs compared with conventional images.
Knollmann, Daniela; Knebel, Ingrid; Koch, Karl-Christian; Gebhard, Michael; Krohn, Thomas; Buell, Ulrich; Schaefer, Wolfgang M
2008-02-01
There is proven evidence for the importance of myocardial perfusion-single-photon emission computed tomography (SPECT) with computerised determination of summed stress and rest scores (SSS/SRS) for the diagnosis of coronary artery disease (CAD). SSS and SRS can thereby be calculated semi-quantitatively using a 20-segment model by comparing tracer-uptake with values from normal databases (NDB). Four severity-degrees for SSS and SRS are normally used: <4, 4-8, 9-13, and > or =14. Manufacturers' NDBs (M-NDBs) often do not fit the institutional (I) settings. Therefore, this study compared SSS and SRS obtained with the algorithms Quantitative Perfusion SPECT (QPS) and 4D-MSPECT using M-NDB and I-NDB. I-NDBs were obtained using QPS and 4D-MSPECT from exercise stress data (450 MBq (99m)Tc-tetrofosmin, triple-head-camera, 30 s/view, 20 views/head) from 36 men with a low post-stress test CAD probability and visually normal SPECT findings. Patient group was 60 men showing the entire CAD-spectrum referred for routine perfusion-SPECT. Stress/rest results of automatic quantification of the 60 patients were compared to M-NDB and I-NDB. After reclassifying SSS/SRS into the four severity degrees, kappa values were calculated to objectify agreement. Mean values (vs M-NDB) were 9.4 +/- 10.3 (SSS) and 5.8 +/- 9.7 (SRS) for QPS and 8.2 +/- 8.7 (SSS) and 6.2 +/- 7.8 (SRS) for 4D-MSPECT. Thirty seven of sixty SSS classifications (kappa = 0.462) and 40/60 SRS classifications (kappa = 0.457) agreed. Compared to I-NDB, mean values were 10.2 +/- 11.6 (SSS) and 6.5 +/- 10.4 (SRS) for QPS and 9.2 +/- 9.3 (SSS) and 7.2 +/- 8.6 (SRS) for 4D-MSPECT. Forty four of sixty patients agreed in SSS and SRS (kappa = 0.621 resp. 0.58). Considerable differences between SSS/SRS obtained with QPS and 4D-MSPECT were found when using M-NDB. Even using identical patients and identical I-NDB, the algorithms still gave substantial different results.
NASA Astrophysics Data System (ADS)
Faber, Tracy L.; Garcia, Ernest V.; Lalush, David S.; Segars, W. Paul; Tsui, Benjamin M.
2001-05-01
The spline-based Mathematical Cardiac Torso (MCAT) phantom is a realistic software simulation designed to simulate single photon emission computed tomographic (SPECT) data. It incorporates a heart model of known size and shape; thus, it is invaluable for measuring accuracy of acquisition, reconstruction, and post-processing routines. New functionality has been added by replacing the standard heart model with left ventricular (LV) epicaridal and endocardial surface points detected from actual patient SPECT perfusion studies. LV surfaces detected from standard post-processing quantitation programs are converted through interpolation in space and time into new B-spline models. Perfusion abnormalities are added to the model based on results of standard perfusion quantification. The new LV is translated and rotated to fit within existing atria and right ventricular models, which are scaled based on the size of the LV. Simulations were created for five different patients with myocardial infractions who had undergone SPECT perfusion imaging. Shape, size, and motion of the resulting activity map were compared visually to the original SPECT images. In all cases, size, shape and motion of simulated LVs matched well with the original images. Thus, realistic simulations with known physiologic and functional parameters can be created for evaluating efficacy of processing algorithms.
Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease.
Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; De Carli, Fabrizio; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Morbelli, Silvia; Abruzzese, Giovanni; Sambuceti, Gianmario; Rodriguez, Guido
2011-12-01
Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naïve, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD.
Korosoglou, Grigorios; Dubart, Alain-Eric; DaSilva, K Gaspar C; Labadze, Nino; Hardt, Stefan; Hansen, Alexander; Bekeredjian, Raffi; Zugck, Christian; Zehelein, Joerg; Katus, Hugo A; Kuecherer, Helmut
2006-01-01
Little is known about the incremental value of real-time myocardial contrast echocardiography (MCE) as an adjunct to pharmacologic stress testing. This study was performed to evaluate the diagnostic value of MCE to detect abnormal myocardial perfusion by technetium Tc 99m sestamibi-single photon emission computed tomography (SPECT) and anatomically significant coronary artery disease (CAD) by angiography. Myocardial contrast echocardiography was performed at rest and during vasodilator stress in consecutive patients (N = 120) undergoing SPECT imaging for known or suspected CAD. Myocardial opacification, wall motion, and tracer uptake were visually analyzed in 12 myocardial segments by 2 pairs of blinded observers. Concordance between the 2 methods was assessed using the kappa statistic. Of 1356 segments, 1025 (76%) were interpretable by MCE, wall motion, and SPECT. Sensitivity of wall motion was 75%, specificity 83%, and accuracy 81% for detecting abnormal myocardial perfusion by SPECT (kappa = 0.53). Myocardial contrast echocardiography and wall motion together yielded significantly higher sensitivity (85% vs 74%, P < .05), specificity of 83%, and accuracy of 85% (kappa = 0.64) for the detection of abnormal myocardial perfusion. In 89 patients who underwent coronary angiography, MCE and wall motion together yielded higher sensitivity (83% vs 64%, P < .05) and accuracy (77% vs 68%, P < .05) but similar specificity (72%) compared with SPECT for the detection of high-grade, stenotic (> or = 75%) coronary lesions. Assessment of myocardial perfusion adds value to conventional stress echocardiography by increasing its sensitivity for the detection of functionally abnormal myocardial perfusion. Myocardial contrast echocardiography and wall motion together provide higher sensitivity and accuracy for detection of CAD compared with SPECT.
Hertel, F; Walter, C; Schmitt, M; Mörsdorf, M; Jammers, W; Busch, H P; Bettag, M
2003-04-01
The aim of this study was to evaluate the combination of spinal tap test (STT) with cerebral perfusion measurement assessed either by Tc-bicisate-SPECT (Tc-SPECT) or perfusion weighted MRI (pwMRI), or both, for a better preoperative selection of promising candidates for shunt operations in suspected idiopathic normal pressure hydrocephalus. 27 consecutive patients were examined with a standard clinical protocol (assessed by the Homburg Hydrocephalus Scale (HHS)) as well as with 99m Tc-bicisate-SPECT (n=27) or additionally by pwMRI (n=12) before and after STT. The results of these examinations were compared preoperatively for each patient and correlated with postoperative clinical outcome after shunt surgery. Nine patients showed both, a clinical improvement, and increased cerebral perfusion after STT. They underwent shunt surgery with good to excellent results. In another nine patients increasing cerebral perfusion was detected although they did not show a clear clinical improvement after STT. Six of them also received a shunt operation with good to excellent outcome. Three patients of the last group could have an operation. Nine patients did not show any clinical improvement or any kind of increasing cerebral perfusion after STT. Therefore, they did not undergo surgery. The results of SPECT and pwMRI correlated in 92 % of the patients (11 of 12). It is concluded that a combination of clinical assessment with SPECT or pwMRI is helpful in the preoperative selection of patients for shunting procedures with suspected NPH syndrome. This combination is a minimal invasive and objective test modality that is superior to STT alone. Further studies are necessary for a comparison of the described imaging techniques with different diagnostic tests in this difficult field of cerebral disease.
SPECT neuroimaging and neuropsychological functions in different stages of Parkinson's disease.
Paschali, Anna; Messinis, Lambros; Kargiotis, Odysseas; Lakiotis, Velissarios; Kefalopoulou, Zinovia; Constantoyannis, Costantinos; Papathanasopoulos, Panagiotis; Vassilakos, Pavlos
2010-06-01
The present study investigated differences and associations between cortical perfusion, nigrostriatal dopamine pathway and neuropsychological functions in different stages of Parkinson's disease (PD). We recruited 53 non-demented PD patients divided into four groups according to the Hoehn and Yahr (HY) staging system and 20 healthy controls who were used in the comparison of the neuropsychological findings. Each patient underwent two separate brain single photon emission computed tomography (SPECT) studies (perfusion and dopamine transporter binding) as well as neuropsychological evaluation. Perfusion images of each patient were quantified and compared with a normative database provided by the NeuroGam software manufacturers. Mean values obtained from the cortical areas and neuropsychological measures in the different groups were also compared by analysis of covariance (ANCOVA) controlling for disease duration and educational level. We found cognitive deficits especially in the late PD stages (HY 3, 4 and 5) compared to the early stages (HY 1 and 2) and associations between cognitive decrements and cortical perfusion deterioration mainly in the frontal and posterior cortical areas. Compared with controls, PD patients showed impairments of cognition and cerebral perfusion that increased with clinical severity. Furthermore, we found a significant correlation between the performance on the phonemic fluency task and regional cerebral blood flow (rCBF) in the left frontal lobe. Dopamine transporter binding in the left caudate nucleus significantly correlated with blood flow in the left dorsolateral prefrontal cortex (DLPFC), but not with measures of executive functions. There are significant cognitive and perfusion deficits associated with PD progression, implying a multifactorial neurodegeneration process apart from dopamine depletion in the substantia nigra pars compacta (SNc).
Role of 99mTc-ECD SPECT in the Management of Children with Craniosynostosis
Barik, Mayadhar; Bajpai, Minu; Das, Rashmi Ranajn; Malhotra, Arun; Panda, Shasanka Shekhar; Sahoo, Manas Kumar; Dwivedi, Sadanand
2014-01-01
Purpose of the Report. There is a paucity of data on correlation of various imaging modalities with clinical findings in craniosynostosis. Moreover, no study has specifically reported the role of 99mTc-ECD SPECT in a large number of subjects with craniosynostosis. Materials and Methods. We prospectively analyzed a cohort of 85 patients with craniosynostosis from year 2007 to 2012. All patients underwent evaluation with 99mTc-ECD SPECT and the results were correlated with radiological and surgical findings. Results. 99mTc-ECD SPECT revealed regional perfusion abnormalities in the cerebral hemisphere corresponding to the fused sutures preoperatively that disappeared postoperatively in all the cases. Corresponding to this, the mean mental performance quotient (MPQ) increased significantly (P < 0.05) postoperatively only in those children with absent perfusion defect postoperatively. Conclusions. Our study suggests that early surgery and release of craniosynostosis in patients with preoperative perfusion defects (absent on 99mTc-ECD SPECT study) are beneficial, as theylead to improved MPQ after surgery. PMID:24987670
Validation of Left Ventricular Ejection Fraction with the IQ•SPECT System in Small-Heart Patients.
Yoneyama, Hiroto; Shibutani, Takayuki; Konishi, Takahiro; Mizutani, Asuka; Hashimoto, Ryosuke; Onoguchi, Masahisa; Okuda, Koichi; Matsuo, Shinro; Nakajima, Kenichi; Kinuya, Seigo
2017-09-01
The IQ•SPECT system, which is equipped with multifocal collimators ( SMART ZOOM) and uses ordered-subset conjugate gradient minimization as the reconstruction algorithm, reduces the acquisition time of myocardial perfusion imaging compared with conventional SPECT systems equipped with low-energy high-resolution collimators. We compared the IQ•SPECT system with a conventional SPECT system for estimating left ventricular ejection fraction (LVEF) in patients with a small heart (end-systolic volume < 20 mL). Methods: The study consisted of 98 consecutive patients who underwent a 1-d stress-rest myocardial perfusion imaging study with a 99m Tc-labeled agent for preoperative risk assessment. Data were reconstructed using filtered backprojection for conventional SPECT and ordered-subset conjugate gradient minimization for IQ•SPECT. End-systolic volume, end-diastolic volume, and LVEF were calculated using quantitative gated SPECT (QGS) and cardioREPO software. We compared the LVEF from gated myocardial perfusion SPECT to that from echocardiographic measurements. Results: End-diastolic volume, end-systolic volume, and LVEF as obtained from conventional SPECT, IQ•SPECT, and echocardiography showed a good to excellent correlation regardless of whether they were calculated using QGS or using cardioREPO. Although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (65.4% ± 13.8% vs. 68.4% ± 15.2%) ( P = 0.0002), LVEF calculated using cardioREPO did not (69.5% ± 10.6% vs. 69.5% ± 11.0%). Likewise, although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (75.0 ± 9.6 vs. 79.5 ± 8.3) ( P = 0.0005), LVEF calculated using cardioREPO did not (72.3% ± 9.0% vs. 74.3% ± 8.3%). Conclusion: In small-heart patients, the difference in LVEF between IQ•SPECT and conventional SPECT was less when calculated using cardioREPO than when calculated using QGS. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Nam, Yoonho; Jang, Jinhee; Park, Sonya Youngju; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo
2018-05-22
To explore the feasibility of using correlation-based time-delay (CTD) maps produced from time-resolved MR angiography (TRMRA) to diagnose perfusion abnormalities in patients suspected to have steno-occlusive lesions in the craniocervical arteries. Twenty-seven patients who were suspected to have steno-occlusive lesions in the craniocervical arteries underwent both TRMRA and brain single-photon emission computed tomography (SPECT). TRMRA was performed on the supra-aortic area after intravenous injection of a 0.03 mmol/kg gadolinium-based contrast agent. Time-to-peak (TTP) maps and CTD maps of the brain were automatically generated from TRMRA data, and their quality was assessed. Detection of perfusion abnormalities was compared between CTD maps and the time-series maximal intensity projection (MIP) images from TRMRA and TTP maps. Correlation coefficients between quantitative changes in SPECT and parametric maps for the abnormal perfusion areas were calculated. The CTD maps were of significantly superior quality than TTP maps (p < 0.01). For perfusion abnormality detection, CTD maps (kappa 0.84, 95% confidence interval [CI] 0.67-1.00) showed better agreement with SPECT than TTP maps (0.66, 0.46-0.85). For perfusion deficit detection, CTD maps showed higher accuracy (85.2%, 95% CI 66.3-95.8) than MIP images (66.7%, 46-83.5), with marginal significance (p = 0.07). In abnormal perfusion areas, correlation coefficients between SPECT and CTD (r = 0.74, 95% CI 0.34-0.91) were higher than those between SPECT and TTP (r = 0.66, 0.20-0.88). CTD maps generated from TRMRA were of high quality and offered good diagnostic performance for detecting perfusion abnormalities associated with steno-occlusive arterial lesions in the craniocervical area. • Generation of perfusion parametric maps from time-resolved MR angiography is clinically useful. • Correlation-based delay maps can be used to detect perfusion abnormalities associated with steno-occlusive craniocervical arteries. • Estimation of correlation-based delay is robust for low signal-to-noise 4D MR data.
Automated three-dimensional quantification of myocardial perfusion and brain SPECT.
Slomka, P J; Radau, P; Hurwitz, G A; Dey, D
2001-01-01
To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.
Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel
2016-04-01
Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellars, Richard, E-mail: zellari@jhmi.edu; Bravo, Paco E.; Tryggestad, Erik
2014-03-15
Purpose: Cardiac muscle perfusion, as determined by single-photon emission computed tomography (SPECT), decreases after breast and/or chest wall (BCW) irradiation. The active breathing coordinator (ABC) enables radiation delivery when the BCW is farther from the heart, thereby decreasing cardiac exposure. We hypothesized that ABC would prevent radiation-induced cardiac toxicity and conducted a randomized controlled trial evaluating myocardial perfusion changes after radiation for left-sided breast cancer with or without ABC. Methods and Materials: Stages I to III left breast cancer patients requiring adjuvant radiation therapy (XRT) were randomized to ABC or No-ABC. Myocardial perfusion was evaluated by SPECT scans (before andmore » 6 months after BCW radiation) using 2 methods: (1) fully automated quantitative polar mapping; and (2) semiquantitative visual assessment. The left ventricle was divided into 20 segments for the polar map and 17 segments for the visual method. Segments were grouped by anatomical rings (apical, mid, basal) or by coronary artery distribution. For the visual method, 2 nuclear medicine physicians, blinded to treatment groups, scored each segment's perfusion. Scores were analyzed with nonparametric tests and linear regression. Results: Between 2006 and 2010, 57 patients were enrolled and 43 were available for analysis. The cohorts were well matched. The apical and left anterior descending coronary artery segments had significant decreases in perfusion on SPECT scans in both ABC and No-ABC cohorts. In unadjusted and adjusted analyses, controlling for pretreatment perfusion score, age, and chemotherapy, ABC was not significantly associated with prevention of perfusion deficits. Conclusions: In this randomized controlled trial, ABC does not appear to prevent radiation-induced cardiac perfusion deficits.« less
Hendrikx, Geert; Vries, Mark H; Bauwens, Matthias; De Saint-Hubert, Marijke; Wagenaar, Allard; Guillaume, Joël; Boonen, Levinia; Post, Mark J; Mottaghy, Felix M
2016-12-01
We aimed to determine the accuracy of laser Doppler perfusion imaging (LDPI) in an animal model for hind limb ischemia. We used a murine (C57Bl/6 mice) ischemic hind limb model in which we compared LDPI with the clinically used (99m)Tc-sestamibi SPECT perfusion imaging (n = 7). In addition, we used the SPECT tracer (99m)Tc-pyrophosphate ((99m)Tc-PyP) to image muscular damage (n = 6). LDPI indicated a quick and prominent decrease in perfusion immediately after ligation, subsequently recovering to 21.9 and 25.2 % 14 days later in the (99m)Tc-sestamibi and (99m)Tc-PyP group, respectively. (99m)Tc-sestamibi SPECT scans also showed a quick decrease in perfusion. However, nearly full recovery was reached 7 days post ligation. Muscular damage, indicated by the uptake of (99m)Tc-PyP, was highest at day 3 and recovered to baseline levels at day 14 post ligation. Postmortem histology supported these findings, as a significantly increased collateral diameter was found 7 and 14 days after ligation and peak macrophage infiltration and TUNEL positivity was found on day 3 after ligation. Here, we indicate that LDPI strongly underestimates perfusion recovery in a hind limb model for profound ischemia.
Zhang, Peng; Hu, Xudong; Yue, Jinbo; Meng, Xue; Han, Dali; Sun, Xindong; Yang, Guoren; Wang, Shijiang; Wang, Xiaohui; Yu, Jinming
2015-05-01
The primary aim of this prospective study was to investigate the value of (99m)Tc-methoxyisobutylisonitrile (MIBI) single photon emission computed tomography (SPECT) gated myocardial perfusion imaging (GMPI) in the detection of radiation-induced heart disease (RIHD) as early as during radiotherapy (RT) for oesophageal cancer (EC). The second aim was to analyse the correlation between cardiac toxicity and the dose-volume factors. The (99m)Tc-MIBI SPECT GMPI was performed both pre-RT and during RT (40Gray). The results of the SPECT were quantitatively analysed with QGS/QPS software and read by two experienced nuclear medicine physicians. The correlation between the changes in the SPECT parameters and the RT dosimetric data was analysed. Eighteen patients with locally advanced EC were enrolled in the study. Compared with the baseline, the imaging during RT showed not only significant decreases in the wall motion (WM) (1/20 segments), wall thickening (WT) (2/20 segments), end-diastolic perfusion (EDP) (5/20 segments) and end-systolic perfusion (ESP) (8/20 segments) (p<0.05) but also a significant increase in the heart rate (74.63±7.79 vs 81.49±9.90, p=0.036). New myocardial perfusion defects were observed in 8 of the 18 patients. The V37-V40 was significantly higher (p<0.05) in the patients with the new perfusion defects during RT than in the patients who did not exhibit these defects. Radiotherapy for EC induces cardiac damage from an early stage. (99m)Tc-MIBI SPECT GMPI can detect the occurrence of cardiac impairment during RT. The WM, WT, EDP and ESP may be valuable as early indicators of RIHD. The percentage of the heart volume that receives a high dose is an important factor that is correlated with RIHD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Takenaka, Daisuke; Onishi, Yumiko; Matsumoto, Keiko; Matsumoto, Sumiaki; Maniwa, Yoshimasa; Yoshimura, Masahiro; Nishimura, Yoshihiro; Sugimura, Kazuro
2011-01-01
The purpose of this study was to compare predictive capabilities for postoperative lung function in non-small cell lung cancer (NSCLC) patients of the state-of-the-art radiological methods including perfusion MRI, quantitative CT and SPECT/CT with that of anatomical method (i.e. qualitative CT) and traditional nuclear medicine methods such as planar imaging and SPECT. Perfusion MRI, CT, nuclear medicine study and measurements of %FEV(1) before and after lung resection were performed for 229 NSCLC patients (125 men and 104 women). For perfusion MRI, postoperative %FEV(1) (po%FEV(1)) was predicted from semi-quantitatively assessed blood volumes within total and resected lungs, for quantitative CT, it was predicted from the functional lung volumes within total and resected lungs, for qualitative CT, from the number of segments of total and resected lungs, and for nuclear medicine studies, from uptakes within total and resected lungs. All SPECTs were automatically co-registered with CTs for preparation of SPECT/CTs. Predicted po%FEV(1)s were then correlated with actual po%FEV(1)s, which were measured %FEV(1)s after operation. The limits of agreement were also evaluated. All predicted po%FEV(1)s showed good correlation with actual po%FEV(1)s (0.83≤r≤0.88, p<0.0001). Perfusion MRI, quantitative CT and SPECT/CT demonstrated better correlation than other methods. The limits of agreement of perfusion MRI (4.4±14.2%), quantitative CT (4.7±14.2%) and SPECT/CT (5.1±14.7%) were less than those of qualitative CT (6.0±17.4%), planar imaging (5.8±18.2%), and SPECT (5.5±16.8%). State-of-the-art radiological methods can predict postoperative lung function in NSCLC patients more accurately than traditional methods. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
An overview of contemporary nuclear cardiology.
Lewin, Howard C; Sciammarella, Maria G; Watters, Thomas A; Alexander, Herbert G
2004-01-01
Myocardial perfusion single photon emission computed tomography (SPECT) is a widely utilized noninvasive imaging modality for the diagnosis, prognosis, and risk stratification of coronary artery disease. It is clearly superior to the traditional planar technique in terms of imaging contrast and consequent diagnostic and prognostic yield. The strength of SPECT images is largely derived from the three-dimensional, volumetric nature of its image. Thus, this modality permits three-dimensional assessment and quantitation of the perfused myocardium and functional assessment through electrocardiographic gating of the perfusion images.
Begic, Amela; Opanković, Emina; Čukić, Vesna; Rustempašić, Medzida; Bašić, Amila; Miniati, Massimo; Jögi, Jonas
2015-01-01
Purpose The aim of the study was to establish whether the duration of anticoagulant (AC) therapy can be tailored, on an objective basis, by using ventilation/perfusion single-photon emission computed tomography (V/P SPECT) and to assess the extent of residual perfusion defects over time. In particular, we addressed the following: (a) is the extent of perfusion recovery at 3 months of initial pulmonary embolism (PE) diagnosis a satisfactory criterion for deciding the duration of oral AC? (b) Is it safe to withdraw AC at 3 months if perfusion recovery is complete? Patients and methods Of 269 consecutive patients with suspected PE, 100 patients were diagnosed with PE using V/P SPECT. Sixty-seven patients with acute PE were followed up clinically and with V/P SPECT at 3 months. Sixty-four patients were subject to review and examination using V/P SPECT for a period of 6 months and 33 were followed up only clinically. Therapy was terminated after 3 months if perfusion was normalized, and patients were free of symptoms and the risk of hypercoagulability. Initial extension of PE did not have an impact on decision making. Results PE extension varied from 10 to 70% in the acute stage. After 3 months, complete resolution of PE was found in 48 patients. The treating pulmonologist decided to terminate therapy in 35 (73%) patients and to continue AC in 13 patients because of persistent risk factors. Six months later, at the second control stage, 53 patients had complete recovery of pulmonary perfusion. Eleven patients still had perfusion defects at 6 months. No recurrence was identified at 6 months in the 35 patients whose therapy was terminated after 3 months. No bleeding effects were observed in any of the patients during the 6-month follow-up. Conclusion This study shows that AC therapy can be tailored, on an objective basis, by using V/P SPECT. Normalization of perfusion at 3 months of initial PE diagnosis was a reliable indicator that AC could be safely withdrawn in patients who were without hypercoagulability risk. PMID:25321156
Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T
2014-05-01
Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.
Ahlman, Mark A; Nietert, Paul J; Wahlquist, Amy E; Serguson, Jill M; Berry, Max W; Suranyi, Pal; Liu, Songtao; Spicer, Kenneth M
2014-01-01
Purpose: In the effort to reduce radiation exposure to patients undergoing myocardial perfusion imaging (MPI) with SPECT/CT, we evaluate the feasibility of a single CT for attenuation correction (AC) of single-day rest (R)/stress (S) perfusion. Methods: Processing of 20 single isotope and 20 dual isotope MPI with perfusion defects were retrospectively repeated in three steps: (1) the standard method using a concurrent R-CT for AC of R-SPECT and S-CT for S-SPECT; (2) the standard method repeated; and (3) with the R-CT used for AC of S-SPECT, and the S-CT used for AC of R-SPECT. Intra-Class Correlation Coefficients (ICC) and Choen’s kappa were used to measure intra-operator variability in sum scoring. Results: The highest level of intra-operator reliability was seen with the reproduction of the sum rest score (SRS) and sum stress score (SSS) (ICC > 95%). ICCs were > 85% for SRS and SSS when alternate CTs were used for AC, but when sum difference scores were calculated, ICC values were much lower (~22% to 27%), which may imply that neither CT substitution resulted in a reproducible difference score. Similar results were seen when evaluating dichotomous outcomes (sum scores difference of ≥ 4) when comparing different processing techniques (kappas ~0.32 to 0.43). Conclusions: When a single CT is used for AC of both rest and stress SPECT, there is disproportionately high variability in sum scoring that is independent of user error. This information can be used to direct further investigation in radiation reduction for common imaging exams in nuclear medicine. PMID:24482701
NASA Astrophysics Data System (ADS)
Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas
2012-04-01
To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between clinically acquired SPECT perfusion and specific ventilation from 4D CT. Results suggest high correlation between methods within the sub-population of lung cancer patients with malignant airway stenosis.
van Dijk, Joris D; van Dalen, Jorn A; Mouden, Mohamed; Ottervanger, Jan Paul; Knollema, Siert; Slump, Cornelis H; Jager, Pieter L
2018-04-01
Correction of motion has become feasible on cadmium-zinc-telluride (CZT)-based SPECT cameras during myocardial perfusion imaging (MPI). Our aim was to quantify the motion and to determine the value of automatic correction using commercially available software. We retrospectively included 83 consecutive patients who underwent stress-rest MPI CZT-SPECT and invasive fractional flow reserve (FFR) measurement. Eight-minute stress acquisitions were reformatted into 1.0- and 20-second bins to detect respiratory motion (RM) and patient motion (PM), respectively. RM and PM were quantified and scans were automatically corrected. Total perfusion deficit (TPD) and SPECT interpretation-normal, equivocal, or abnormal-were compared between the noncorrected and corrected scans. Scans with a changed SPECT interpretation were compared with FFR, the reference standard. Average RM was 2.5 ± 0.4 mm and maximal PM was 4.5 ± 1.3 mm. RM correction influenced the diagnostic outcomes in two patients based on TPD changes ≥7% and in nine patients based on changed visual interpretation. In only four of these patients, the changed SPECT interpretation corresponded with FFR measurements. Correction for PM did not influence the diagnostic outcomes. Respiratory motion and patient motion were small. Motion correction did not appear to improve the diagnostic outcome and, hence, the added value seems limited in MPI using CZT-based SPECT cameras.
Rief, Matthias; Chen, Marcus Y; Vavere, Andrea L; Kendziora, Benjamin; Miller, Julie M; Bandettini, W Patricia; Cox, Christopher; George, Richard T; Lima, João; Di Carli, Marcelo; Plotkin, Michail; Zimmermann, Elke; Laule, Michael; Schlattmann, Peter; Arai, Andrew E; Dewey, Marc
2018-02-01
Purpose To compare the diagnostic performance of stress myocardial computed tomography (CT) perfusion with that of stress myocardial magnetic resonance (MR) perfusion imaging in the detection of coronary artery disease (CAD). Materials and Methods All patients gave written informed consent prior to inclusion in this institutional review board-approved study. This two-center substudy of the prospective Combined Noninvasive Coronary Angiography and Myocardial Perfusion Imaging Using 320-Detector Row Computed Tomography (CORE320) multicenter trial included 92 patients (mean age, 63.1 years ± 8.1 [standard deviation]; 73% male). All patients underwent perfusion CT and perfusion MR imaging with either adenosine or regadenoson stress. The predefined reference standards were combined quantitative coronary angiography (QCA) and single-photon emission CT (SPECT) or QCA alone. Results from coronary CT angiography were not included, and diagnostic performance was evaluated with the Mantel-Haenszel test stratified by disease status. Results The prevalence of CAD was 39% (36 of 92) according to QCA and SPECT and 64% (59 of 92) according to QCA alone. When compared with QCA and SPECT, per-patient diagnostic accuracy of perfusion CT and perfusion MR imaging was 63% (58 of 92) and 75% (69 of 92), respectively (P = .11); sensitivity was 92% (33 of 36) and 83% (30 of 36), respectively (P = .45); and specificity was 45% (25 of 56) and 70% (39 of 56), respectively (P < .01). When compared with QCA alone, diagnostic accuracy of CT perfusion and MR perfusion imaging was 82% (75 of 92) and 74% (68 of 92), respectively (P = .27); sensitivity was 90% (53 of 59) and 69% (41 of 59), respectively (P < .01); and specificity was 67% (22 of 33) and 82% (27 of 33), respectively (P = .27). Conclusion This multicenter study shows that the diagnostic performance of perfusion CT is similar to that of perfusion MR imaging in the detection of CAD. © RSNA, 2017 Online supplemental material is available for this article.
Ben-Haim, Simona; Kacperski, Krzysztof; Hain, Sharon; Van Gramberg, Dean; Hutton, Brian F; Erlandsson, Kjell; Sharir, Tali; Roth, Nathaniel; Waddington, Wendy A; Berman, Daniel S; Ell, Peter J
2010-08-01
We compared simultaneous dual-radionuclide (DR) stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Of 27 consecutive patients recruited, 24 (64.5+/-11.8 years of age, 16 men) were injected with 74 MBq of (201)Tl (rest) and 250 MBq (99m)Tc-MIBI (stress). Conventional MPI acquisition times for stress and rest are 21 min and 16 min, respectively. Rest (201)Tl for 6 min and simultaneous DR 15-min list mode gated scans were performed on a D-SPECT cardiac scanner. In 11 patients DR D-SPECT was performed first and in 13 patients conventional stress (99m)Tc-MIBI SPECT imaging was performed followed by DR D-SPECT. The DR D-SPECT data were processed using a spill-over and scatter correction method. DR D-SPECT images were compared with rest (201)Tl D-SPECT and with conventional SPECT images by visual analysis employing the 17-segment model and a five-point scale (0 normal, 4 absent) to calculate the summed stress and rest scores. Image quality was assessed on a four-point scale (1 poor, 4 very good) and gut activity was assessed on a four-point scale (0 none, 3 high). Conventional MPI studies were abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI showed 113 abnormal segments and conventional MPI showed 93 abnormal segments. In the nine abnormal rest studies DR D-SPECT showed 45 abnormal segments and conventional MPI showed 48 abnormal segments. The summed stress and rest scores on conventional SPECT and DR D-SPECT were highly correlated (r=0.9790 and 0.9694, respectively). The summed scores of rest (201)Tl D-SPECT and DR-DSPECT were also highly correlated (r=0.9968, p<0.0001 for all). In six patients stress perfusion defects were significantly larger on stress DR D-SPECT images, and five of these patients were imaged earlier by D-SPECT than by conventional SPECT. Fast and high-quality simultaneous DR MPI is feasible with D-SPECT in a single imaging session with comparable diagnostic performance and image quality to conventional SPECT and to a separate rest (201)Tl D-SPECT acquisition.
Kim, Woojun; Kim, Joong-Seok; Lee, Kwang-Soo; Kim, Yeong-In; Park, Chong-Won; Chung, Yong-An
2008-10-01
Polycythaemia vera is a well-known cause of symptomatic chorea, however, the pathophysiology of this correlation remains unclear. We report on a patient with generalized chorea-ballism associated with polycythaemia vera, and we present the findings of 99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT done in both the choreic state and the non-choreic state. The SPECT during both the choreic and the non-choreic states did not reveal any definite perfusion changes in specific regions of the brain, as compared with 6 age-matched controls. In addition, the subtraction SPECT co-registered to MRI (SISCOM) analysis did not show any difference in cerebral blood flow during the choreic and non-choreic states. This result suggests that the basic mechanism of chorea associated with polycythaemia vera does not appear to be associated with a reduction in cerebral perfusion to a specific cerebral area, such as the basal ganglia or its thalamocortical connections.
NASA Astrophysics Data System (ADS)
Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.
2012-01-01
Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum-likelihood expectation-maximization (4D ML-EM) reconstructions gave more accurate reconstructions than did standard frame-by-frame static 3D ML-EM reconstructions. The SPECT/P results showed that 4D ML-EM reconstruction gave higher and more accurate estimates of K1 than did 3D ML-EM, yielding anywhere from a 44% underestimation to 24% overestimation for the three patients. The SPECT/D results showed that 4D ML-EM reconstruction gave an overestimation of 28% and 3D ML-EM gave an underestimation of 1% for K1. For the patient study the 4D ML-EM reconstruction provided continuous images as a function of time of the concentration in both ventricular cavities and myocardium during the 2 min infusion. It is demonstrated that a 2 min infusion with a two-headed SPECT system rotating 180° every 54 s can produce measurements of blood pool and myocardial TACs, though the SPECT simulation studies showed that one must sample at least every 30 s to capture a 1 min infusion input function.
Exercise thallium-201 perfusion scintigraphy in the assessment of coronary artery disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmarian, J.J.; Verani, M.S.
1991-05-21
Exercise thallium-201 perfusion scintigraphy has been used extensively over the last decade for the detection and localization of coronary artery disease. Single-photon emission computed tomography (SPECT) is a refinement of presently available techniques, offering improved identification over planar imaging of individual vessel stenosis and quantification of the extent of abnormally perfused myocardium. In this review, the planar and SPECT techniques are discussed in light of the most recently published large patient series, and with regard to the many factors that affect the sensitivity and specificity of perfusion imaging in identifying coronary artery disease. The clinical implications of exercise perfusion scintigraphymore » and its future applications in cardiology practice are discussed.67 references.« less
Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia
NASA Astrophysics Data System (ADS)
Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier
2007-02-01
We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic strategy and provide objective follow-up of pain-processing recovery under treatment.
Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J W M; Verzijlbergen, J Fred
2013-03-01
Coronary calcium scoring (CCS) adds to the diagnostic performance of myocardial perfusion single-photon emission computed tomography (SPECT) to assess the presence of significant coronary artery disease (CAD). Patients with a high pre-test likelihood are expected to have a high CCS which potentially could enhance the diagnostic performance of myocardial perfusion SPECT in this specific patient group. We evaluated the added value of CCS to SPECT in the diagnosis of significant CAD in patients with an intermediate to high pre-test likelihood. In total, 129 patients (mean age 62.7 ± 9.7 years, 65 % male) with stable anginal complaints and intermediate to high pre-test likelihood of CAD (median 87 %, range 22-95) were prospectively included in this study. All patients received SPECT and CCS imaging preceding invasive coronary angiography (CA). Fractional flow reserve (FFR) measurements were acquired from patients with angiographically estimated 50-95 % obstructive CAD. For SPECT a SSS > 3 was defined significant CAD. For CCS the optimal cut-off value for significant CAD was determined by ROC curve analysis. The reference standard for significant CAD was a FFR of <0.80 acquired by CA. Significant CAD was demonstrated in 64 patients (49.6 %). Optimal CCS cut-off value for significant CAD was >182.5. ROC curve analysis for prediction of the presence of significant CAD for SPECT, CCS and the combination of CCS and SPECT resulted in an area under the curve (AUC) of 0.88 (95 % CI 81-94), 0.75 (95 % CI 66-83 %) and 0.92 (95 % CI 87-97 %) respectively. The difference of the AUC between SPECT and the combination of CCS and SPECT was 0.05 (P = 0.12). The addition of CCS did not significantly improve the diagnostic performance of SPECT in the evaluation of patients with a predominantly high pre-test likelihood of CAD.
Trimble, Mark A.; Borges-Neto, Salvador; Honeycutt, Emily F.; Shaw, Linda K.; Pagnanelli, Robert; Chen, Ji; Iskandrian, Ami E.; Garcia, Ernest V.; Velazquez, Eric J.
2010-01-01
Background Using phase analysis of gated single photon emission computed tomography (SPECT) imaging, we examined the relation between myocardial perfusion, degree of electrical dyssynchrony, and degree of SPECT-derived mechanical dyssynchrony in patients with left ventricular (LV) dysfunction. Methods and Results We retrospectively examined 125 patients with LV dysfunction and ejection fraction of 35% or lower. Fourier analysis converts regional myocardial counts into a continuous thickening function, allowing resolution of phase of onset of myocardial thickening. The SD of LV phase distribution (phase SD) and histogram bandwidth describe LV phase dispersion as a measure of dyssynchrony. Heart failure (HF) patients with perfusion abnormalities ities have higher degrees of dyssynchrony measured by median phase SD (45.5° vs 27.7°, P < .0001) and bandwidth (117.0° vs 73.0°, P = .0006). HF patients with prolonged QRS durations have higher degrees of dyssynchrony measured by median phase SD (54.1° vs 34.7°, P < .0001) and bandwidth (136.5° vs 99.0°, P = .0005). Mild to moderate correlations exist between QRS duration and phase analysis indices of phase SD (r = 0.50) and bandwidth (r = 0.40). Mechanical dyssynchrony (phase SD >43°) was 43.2%. Conclusions HF patients with perfusion abnormalities or prolonged QRS durations QRS durations have higher degrees of mechanical dyssynchrony. Gated SPECT myocardial perfusion imaging can quantify myocardial function, perfusion, and dyssynchrony and may help in evaluating patients for cardiac resynchronization therapy. PMID:18761269
Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F
2015-07-01
To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.
NASA Astrophysics Data System (ADS)
Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.
2005-11-01
Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.
Asl, Mina Taghizadeh; Yousefi, Farzaneh; Nemati, Reza; Assadi, Majid
2015-01-01
The present study was carried out to evaluate cerebral perfusion in different types of cerebral palsy (CP) patients. For those patients who underwent hyperbaric oxygen therapy, brain perfusion before and after the therapy was compared. A total of 11 CP patients were enrolled in this study, of which 4 patients underwent oxygen therapy. Before oxygen therapy and at the end of 40 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed , and the results were compared. A total of 11 CP patients, 7 females and 4 males with an age range of 5-27 years participated in the study. In brain SPECT studies, all the patients showed perfusion impairments. The region most significantly involved was the frontal lobe (54.54%), followed by the temporal lobe (27.27%), the occipital lobe (18.18%), the visual cortex (18.18%), the basal ganglia (9.09%), the parietal lobe (9.09%), and the cerebellum (9.09%). Frontal-lobe hypoperfusion was seen in all types of cerebral palsy. Two out of 4 patients (2 males and 2 females) who underwent oxygen therapy revealed certain degree of brain perfusion improvement. This study demonstrated decreased cerebral perfusion in different types of CP patients. The study also showed that hyperbaric oxygen therapy improved cerebral perfusion in a few CP patients. However, it could keep the physiological discussion open and strenghten a link with other areas of neurology in which this approach may have some value.
Kaneta, T; Katsuse, O; Hirano, T; Ogawa, M; Yoshida, K; Odawara, T; Hirayasu, Y; Inoue, T
2017-08-01
Arterial spin-labeling MR imaging has been recently developed as a noninvasive technique with magnetically labeled arterial blood water as an endogenous contrast medium for the evaluation of CBF. Our aim was to compare arterial spin-labeling MR imaging and SPECT in the visual assessment of CBF in patients with Alzheimer disease. In 33 patients with Alzheimer disease or mild cognitive impairment due to Alzheimer disease, CBF images were obtained by using both arterial spin-labeling-MR imaging with a postlabeling delay of 1.5 seconds and 2.5 seconds (PLD 1.5 and PLD 2.5 , respectively) and brain perfusion SPECT. Twenty-two brain regions were visually assessed, and the diagnostic confidence of Alzheimer disease was recorded. Among all arterial spin-labeling images, 84.9% of PLD 1.5 and 9% of PLD 2.5 images showed the typical pattern of advanced Alzheimer disease (ie, decreased CBF in the bilateral parietal, temporal, and frontal lobes). PLD 1.5 , PLD 2.5 , and SPECT imaging resulted in obviously different visual assessments. PLD 1.5 showed a broad decrease in CBF, which could have been due to an early perfusion. In contrast, PLD 2.5 did not appear to be influenced by an early perfusion but showed fewer pathologic findings than SPECT. The distinctions observed by us should be carefully considered in the visual assessments of Alzheimer disease. Further studies are required to define the patterns of change in arterial spin-labeling-MR imaging associated with Alzheimer disease. © 2017 by American Journal of Neuroradiology.
Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An
2014-09-01
There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET. Copyright © 2014 Elsevier Ltd. All rights reserved.
Song, In-Uk; Chung, Yong-An; Chung, Sung-Woo; Jeong, Jaeseung
2014-01-01
Since patterns of cognitive dysfunction in mild Parkinson's disease associated with dementia (PDD) are similar to those in mild Alzheimer's disease (AD), it is difficult to accurately differentiate between these two types of dementia in their early phases using neuropsychological tests. The purpose of the current study was to investigate differences in cerebral perfusion patterns of patients with AD and PDD at the earliest stages using single photon emission computed tomography (SPECT). We consecutively recruited 31 patients with mild PDD, 32 patients with mild probable AD and 33 age-matched healthy subjects. All subjects underwent (99m)Tc-hexamethylpropyleneamine oxime perfusion SPECT and completed general neuropsychological tests. We found that both mild PDD and AD patients showed distinct hypoperfusion in frontal, parietal and temporal regions, compared with healthy subjects. More importantly, hypoperfusion in occipital and cerebellar regions was observed only in mild PDD. The observation of a significant decrease in cerebral perfusion in occipital and cerebellar regions in patients with mild PDD is likely useful to differentiate between PDD and AD at the earliest stages. © 2013 S. Karger AG, Basel.
Effect of attenuation correction on image quality in emission tomography
NASA Astrophysics Data System (ADS)
Denisova, N. V.; Ondar, M. M.
2017-10-01
In this paper, mathematical modeling and computer simulations of myocardial perfusion SPECT imaging are performed. The main factors affecting the quality of reconstructed images in SPECT are anatomical structures, the diastolic volume of a myocardium and attenuation of gamma rays. The purpose of the present work is to study the effect of attenuation correction on image quality in emission tomography. The basic 2D model describing a Tc-99m distribution in a transaxial slice of the thoracic part of a patient body was designed. This model was used to construct four phantoms simulated various anatomical shapes: 2 male and 2 female patients with normal, obese and subtle physique were included in the study. Data acquisition model which includes the effect of non-uniform attenuation, collimator-detector response and Poisson statistics was developed. The projection data were calculated for 60 views in accordance with the standard myocardial perfusion SPECT imaging protocol. Reconstructions of images were performed using the OSEM algorithm which is widely used in modern SPECT systems. Two types of patient's examination procedures were simulated: SPECT without attenuation correction and SPECT/CT with attenuation correction. The obtained results indicate a significant effect of the attenuation correction on the SPECT images quality.
Kurisu, Satoshi; Nitta, Kazuhiro; Sumimoto, Yoji; Ikenaga, Hiroki; Ishibashi, Ken; Fukuda, Yukihiro; Kihara, Yasuki
2018-04-20
Myocardial perfusion single-photon emission computed tomography (SPECT) with thallium (Tl)-201 is an established modality for evaluating myocardial ischemia. We assessed the effects of atrial fibrillation (AF) on the myocardial washout rate (WR) of Tl-201 on myocardial perfusion SPECT. A total of 231 patients with no evidence of myocardial ischemia were enrolled retrospectively in this study. Patients were divided into two groups on the basis of the ECG at the time of myocardial perfusion SPECT. The mean myocardial WR of Tl-201 was calculated from the stress and the redistribution Bull's eye maps. There were 34 patients with AF and 197 patients with sinus rhythm. There were no significant differences in clinical variables, except for older age and higher heart rate in patients with AF. Myocardial WR of Tl-201 was significantly lower in patients with AF than those with sinus rhythm (46±12 vs. 51±8%, P=0.03). Multivariate analysis including these factors showed that female sex (β=0.18, P=0.02), AF (β=-0.14 P=0.03), hemoglobin (β=-0.18, P<0.01), and serum creatinine (β=0.24, P<0.01) were determinants of myocardial WR of Tl-201. Our data suggest that AF is associated with reduced myocardial WR of Tl-201 on myocardial perfuison SPECT.
SPECT brain perfusion findings in mild or moderate traumatic brain injury.
Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M
2000-01-01
The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion abnormalities can occur in the absence of LOC.
Beleslin, Branko; Dobric, Milan; Sobic-Saranovic, Dragana; Giga, Vojislav; Stepanovic, Jelena; Djordjevic-Dikic, Ana; Nedeljkovic, Milan; Stojkovic, Sinisa; Vukcevic, Vladan; Stankovic, Goran; Orlic, Dejan; Petrasinovic, Zorica; Pavlovic, Smiljana; Obradovic, Vladimir; Ostojic, Miodrag
2010-10-01
In patients with previous myocardial infarction (MI), assessment of myocardial viability and physiological significance of coronary artery stenoses are essential for appropriate guidance of revascularization. The aim of the study was to evaluate the relation between fractional flow reserve (FFR) and myocardial viability as assessed by gated SPECT MIBI perfusion scintigraphy in patients with previous MI undergoing elective PCI. The study population consisted of 26 patients (mean age 55 ± 7 years; 21 male) with a previous MI and a significant coronary stenosis in a single infarct-related coronary vessel for which PCI was being performed. In all patients, FFR was evaluated before and immediately after PCI. SPECT imaging was done before and 3 ± 1 months after PCI. A region representing the MI was considered viable if MIBI uptake was ≥55% of the normal region. Improvement in perfusion after revascularization was considered achieved if perfusion abnormalities decreased by 5% or more and there was a decrease in segmental score of ≥1 in three segments in PCI-related vascular territory. Extent of perfusion abnormalities decreased from 32 ± 16% to 27 ± 19% after PCI (P < .001). In patients with myocardial viability in comparison to patients with no viability, there was significant difference in FFR before PCI (.57 ± .14 vs .76 ± .12, P = .002), despite almost the same values of diameter stenosis of infarct-related artery (63 ± 8% vs 64 ± 3%, respectively, P = .572). In addition, FFR prior to PCI was related to improvement in perfusion abnormalities after revascularization (P = .047), as well as with peak activity of creatine-kinase measured during previous MI (r = .56, P = .005). Lower values of FFR before angioplasty are associated with myocardial viability and functional improvement as assessed by SPECT perfusion scintigraphy.
Nomura, Jun-ichi; Ogasawara, Kuniaki; Saito, Hideo; Terasaki, Kazunori; Matsumoto, Yoshiyasu; Takahashi, Yoshihiro; Ogasawara, Yasushi; Saura, Hiroaki; Yoshida, Koji; Sato, Yuiko; Kubo, Yoshitaka; Ogawa, Akira
2014-03-01
Misery perfusion increases the risk of stroke recurrence in patients with symptomatic major cerebral artery occlusion. The ratio of brain perfusion contralateral-to-affected asymmetry in the cerebellar hemisphere to brain perfusion affected-to-contralateral asymmetry in the cerebral hemisphere (CblPR/CbrPR) indicates affected-to-contralateral asymmetry of oxygen extraction fraction (OEF) in the cerebral hemisphere. The purpose of the present study was to determine whether the CblPR/CbrPR on brain perfusion single-photon emission computed tomography (SPECT) predicts 5-year outcomes in patients with symptomatic unilateral occlusion of the middle cerebral artery (MCA) or internal carotid artery (ICA). Brain perfusion was assessed using N-isopropyl-p-[123I]-iodoamphetamine (123I-IMP) SPECT in 70 patients. A region of interest (ROI) was manually placed in the bilateral MCA territories and in the bilateral cerebellar hemispheres, and the CblPR/CbrPR was calculated. All patients were prospectively followed for 5 years. The primary end points were stroke recurrence or death. A total of 17 patients exhibited the primary end points, 11 of whom experienced subsequent ipsilateral strokes. Multivariate analysis revealed that only high CblPR/CbrPR was significantly associated with the development of the primary end point or subsequent ipsilateral strokes (95% confidential limits [CIs], 1.130-3.145; P = 0.0114 or 95% CIs, 2.558-5.140; P = 0.0045, respectively). The CblPR/CbrPR provided 65% (11/17) or 91% (10/11) sensitivity and 88% (47/53) or 88% (52/59) specificity in predicting the primary end point or subsequent ipsilateral strokes, respectively. The CblPR/CbrPR on brain perfusion SPECT predicts 5-year outcomes in patients with symptomatic unilateral occlusion of the MCA or ICA.
Hippocampal perfusion predicts impending neurodegeneration in REM sleep behavior disorder.
Dang-Vu, Thien Thanh; Gagnon, Jean-François; Vendette, Mélanie; Soucy, Jean-Paul; Postuma, Ronald B; Montplaisir, Jacques
2012-12-11
Patients with idiopathic REM sleep behavior disorder (IRBD) are at risk for developing Parkinson disease (PD) and dementia with Lewy bodies (DLB). We aimed to identify functional brain imaging patterns predicting the emergence of PD and DLB in patients with IRBD, using SPECT with (99m)Tc-ethylene cysteinate dimer (ECD). Twenty patients with IRBD were scanned at baseline during wakefulness using (99m)Tc-ECD SPECT. After a follow-up of 3 years on average, patients were divided into 2 groups according to whether or not they developed defined neurodegenerative disease (PD, DLB). SPECT data analysis comparing regional cerebral blood flow (rCBF) between groups assessed whether specific brain perfusion patterns were associated with subsequent clinical evolution. Regression analysis between rCBF and clinical markers of neurodegeneration (motor, color vision, olfaction) looked for neural structures involved in this process. Of the 20 patients with IRBD recruited for this study, 10 converted to PD or DLB during the follow-up. rCBF at baseline was increased in the hippocampus of patients who would later convert compared with those who would not (p < 0.05 corrected). Hippocampal perfusion was correlated with motor and color vision scores across all IRBD patients. (99m)Tc-ECD SPECT identifies patients with IRBD at risk for conversion to other neurodegenerative disorders such as PD or DLB; disease progression in IRBD is predicted by abnormal perfusion in the hippocampus at baseline. Perfusion within this structure is correlated with clinical markers of neurodegeneration, further suggesting its involvement in the development of presumed synucleinopathies.
Cuberas-Borrós, Gemma; Pineda, Victor; Aguadé-Bruix, Santiago; Romero-Farina, Guillermo; Pizzi, M Nazarena; de León, Gustavo; Castell-Conesa, Joan; García-Dorado, David; Candell-Riera, Jaume
2013-09-01
The aim of this study was to compare magnetic resonance and gated-SPECT myocardial perfusion imaging in patients with chronic myocardial infarction. Magnetic resonance imaging and gated-SPECT were performed in 104 patients (mean age, 61 [12] years; 87.5% male) with a previous infarction. Left ventricular volumes and ejection fraction and classic late gadolinium enhancement viability criteria (<75% transmurality) were correlated with those of gated-SPECT (uptake >50%) in the 17 segments of the left ventricle. Motion, thickening, and ischemia on SPECT were analyzed in segments showing nonviable tissue or equivocal enhancement features (50%-75% transmurality). A good correlation was observed between the 2 techniques for volumes, ejection fraction (P<.05), and estimated necrotic mass (P<.01). In total, 82 of 264 segments (31%) with >75% enhancement had >50% single SPECT uptake. Of the 106 equivocal segments on magnetic resonance imaging, 68 (64%) had >50% uptake, 41 (38.7%) had normal motion, 46 (43.4%) had normal thickening, and 17 (16%) had ischemic criteria on SPECT. A third of nonviable segments on magnetic resonance imaging showed >50% uptake on SPECT. Gated-SPECT can be useful in the analysis of motion, thickening, and ischemic criteria in segments with questionable viability on magnetic resonance imaging. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Imamura, Yosihiro; Fukuyama, Takaya; Nishimura, Sigeyuki; Nishimura, Tsunehiko
2009-08-01
We assessed the usefulness of gated stress/rest 99mTc-tetrofosmin myocardial perfusion single photon emission computed tomography (SPECT) to predict ischemic cardiac events in Japanese patients with various estimated pretest probabilities of coronary artery disease (CAD). Of the 4031 consecutively registered patients for a J-ACCESS (Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT) study, 1904 patients without prior cardiac events were selected. Gated stress/rest myocardial perfusion SPECT was performed and segmental perfusion scores and quantitative gated SPECT results were derived. The pretest probability for having CAD was estimated using the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine guideline data for the management of patients with chronic stable angina, which includes age, gender, and type of chest discomfort. The patients were followed up for three years. During the three-year follow-up period, 96 developed ischemic cardiac events: 17 cardiac deaths, 8 nonfatal myocardial infarction, and 71 clinically driven revascularization. The summed stress score (SSS) was the most powerful independent predictor of all ischemic cardiac events (hazard ratio 1.077, CI 1.045-1.110). Abnormal SSS (> 3) was associated with a significantly higher cardiac event rate in patients with an intermediate to high pretest probability of CAD. Normal SSS (< or = 3) was associated with a low event rate in patients with any pretest probability of CAD. Myocardial perfusion SPECT is useful for further risk-stratification of patients with suspected CAD. The abnormal scan result (SSS > 3) is discriminative for subsequent cardiac events only in the groups with an intermediate to high pretest probability of CAD. The salient result is that normal scan results portend a benign prognosis independent from the pretest probability of CAD.
Pavlovic, Smiljana; Sobic-Saranovic, Dragana; Djordjevic-Dikic, Ana; Beleslin, Branko; Stepanovic, Jelena; Artiko, Vera; Giga, Vojislav; Petrasinovic, Zorica; Ostojic, Miodrag; Vujisic-Tesic, Bosiljka; Obradovic, Vladimir
2010-04-01
To compare the diagnostic utility of gated single-photon emission computed tomography (SPECT) methoxy isobutyl isonitrile (MIBI) myocardial perfusion imaging and transthoracic Doppler echocardiography (TTDE) coronary flow reserve (CFR) to coronary angiography for detecting coronary artery disease (CAD) in patients with left bundle branch block (LBBB). Forty-three patients with complete LBBB and an intermediate pretest probability for CAD underwent dipyridamole stress TTDE and gated SPECT MIBI during the same session and coronary angiography within a month. The parameters of myocardial perfusion (summed stress score, summed difference scores) regional wall function (wall motion score, wall thickening score) and ejection fraction were derived using the 17-segment model and 4D-MSPECT software. TTDE variables included peak flow velocity at rest and during hyperemia in left anterior descending artery (LAD), based on which CFR was calculated (normal>2). Perfusion ischemic scores were significantly higher in group 1 with angiographic evidence of greater than 50% LAD stenosis compared with group 2 with less than 50% LAD stenosis (summed stress score 12.4+/-5.5 vs. 8.3+/-3.5, P<0.05, summed difference score 3.7+/-1.2 vs. 1.1+/-0.3, P<0.01, respectively). Left ventricular regional wall function and ejection fraction were not different between the two groups. CFR was significantly lower in group 1 than in group 2 (1.65+/-0.21 vs. 2.31+/-0.28, P<0.001). Gated SPECT MIBI and CFR had similar sensitivity (88 vs. 88%), specificity (80 vs. 84%), and accuracy (84 vs. 86%) for detecting CAD in patients with LBBB. The agreement between the two methods was 85%. Our results show comparable diagnostic utility and high agreement between gated SPECT MIBI perfusion imaging and TTDE CFR assessment for detecting CAD in patients with LBBB. The advantage of gated SPECT MIBI over TTDE CFR measurements is the ability to assess the perfusion abnormalities in multiple vascular territories during the same procedure, which is convenient for detecting multi-vessel disease in patients with LBBB.
Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna
2017-12-01
Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.
Pavlovic, Smiljana V; Sobic-Saranovic, Dragana P; Beleslin, Branko D; Ostojic, Miodrag C; Nedeljkovic, Milan A; Giga, Vojislav L; Petrasinovic, Zorica R; Artiko, Vera M; Todorovic-Tirnanic, Mila V; Obradovic, Vladimir B
2009-01-01
Optimal treatment for chronic total occlusion (CTO) in the infarct-related coronary artery is not clear. Our aim was to assess myocardial perfusion, left ventricular ejection fraction (EF), and left ventricular size using gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging with 99mTc-methoxy-isobutyl-isonitrile in patients with CTO before and 1 year after recanalization. Thirty patients with earlier myocardial infarction and at least one CTO underwent percutaneous coronary intervention (PCI) as well as nitrate-enhanced gated SPECT myocardial perfusion and dobutamine stress echocardiography before and 11 +/- 1 months after recanalization. They were divided into three groups based on the outcome of the follow-up angiography: (i) successful recanalization with no evidence of in-stent restenosis (n=13); (ii) successful recanalization with in-stent restenosis (n=7) and (iii) unsuccessful recanalization (n=10). Overall success of recanalization for CTO was 74%. In group 1, myocardial viability was preserved in 11 of 13 (85%) patients at baseline. Gated SPECT at 1 year showed a significant decrease in perfusion abnormalities (29 +/- 12 to 23 +/- 14%, P < 0.05) and left ventricular end-diastolic volume (EDV) (168 +/- 47 to 151 +/- 47 ml, P < 0.05). Improvement in EF (51 +/- 11 to 54 +/- 13%, P > 0.05) and reduction in left ventricular end-systolic volume (ESV) (84 +/- 37 to 77 +/- 40 ml, P > 0.05) did not reach the level of significance. Myocardial viability was preserved in only two of seven patients (28%) in group 2. Neither mean perfusion abnormalities (37 +/- 24 to 35 +/- 22%, P > 0.05) nor global left ventricular parameters (EF 41 +/- 15 vs. 42 +/- 19%, EDV 298 +/- 33 vs. 299 +/- 57 mL, ESV 197 +/- 12 vs. 195 +/- 32 ml; P > 0.05) changed at the follow-up. In group 3, myocardial viability was preserved in seven of 10 patients (70%) at baseline, but no significant changes in perfusion (40 +/- 18 vs. 41 +/- 19%, P > 0.05) and left ventricular function (EF 42 +/- 17 vs. 44 +/- 14%, EDV 228 +/- 101 vs. 227 +/- 81 ml, ESV 143 +/- 87 vs. 146 +/- 8 ml; P > 0.05) were seen at the follow-up. Myocardial perfusion and EDV may significantly improve 1 year after PCI provided recanalization of CTO was successful. Our preliminary findings suggest that successful recanalization of CTO may have favorable outcome on left ventricular perfusion and function, particularly in patients with viable myocardium before PCI. The gated SPECT myocardial perfusion imaging with 99mTc-methoxy-isobutyl-isonitrile may be useful for monitoring long-term functional outcome of PCI in patients with CTO.
Nanjyo, S
1994-09-01
In order to evaluate left ventricular regional wall motion and regional myocardial perfusion, 99mTc-HSAD multigated cardiac blood pool emission computed tomography (cardiac pool SPECT) and 201Tl myocardial SPECT (Tl) were performed on 12 patients with acute myocardial infarction (AMI), 6 patients had treated with only thrombolysis in group I and 6 patients had treated with thrombolysis and selective PTCA in group II, 17 patients with old myocardial infarction (OMI) in group III and 5 normal volunteers (controls). The relationship between left ventricular regional wall motion and regional myocardial perfusion was estimated. The relationship between % length shortening (%LS) by cardiac pool SPECT and %Tl uptake (%TU) was good (r = 0.820) in group III. The value for %TU in the segments of akinesia was low (35%) and in the those of severe hypokinesia was higher (48%). In all phases, two groups showed significant relationships between %LS and %TU in group I and II. The %TU was unchanged in the akinetic segment, the %LS changed 30% in group I and the %LS changed to 49% in group II. If the %TU is more than 50% (AMI) or 40% (OMI), we would observe viable muscle. The combination of Tl and cardiac pool SPECT are useful for evaluating myocardial viability in the patients with AMI.
Tsai, Chung-Fen; Yip, Ping-Keung; Chen, Shao-Yuan; Lin, Jen-Cheng; Yeh, Zai-Ting; Kung, Lan-Yu; Wang, Cheng-Yi; Fan, Yu-Ming
2014-04-01
Acute carbon monoxide (CO) poisoning poses a significant threat to the central nervous system. It can cause brain injury and diverse neurological deficits including persistent neurological sequelae (PNS) and delayed neurological sequelae (DNS). The study aimed to investigate the long-term impacts of acute CO poisoning on brain perfusion and neurological function, and to explore potential differences between PNS and DNS patients. We evaluated brain perfusion using (99m)Tc ethyl cysteinate (ECD) brain single photon emission computed tomography (SPECT) and assessed clinical neurological symptoms and signs one month following acute poisoning. For DNS patients, ECD SPECT and clinical evaluation were performed when their delayed symptoms appeared. All patients had follow-up SPECT imaging, along with clinical assessments six months following poisoning. 12 PNS and 12 DNS patients were recruited between 2007 and 2010. Clinically, the main characteristic presentations were cognitive decline, emotional instability, and gait disturbance. SPECT imaging demonstrated consistent frontal hypoperfusion of varying severities in all patients, which decreased in severity at follow-up imaging. DNS patients usually had more severe symptoms and perfusion defects, along with worse clinical outcomes than the PNS group. These results suggest that acute CO poisoning might lead to long term brain injuries and neurological sequelae, particularly in DNS patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Kliner, Dustin; Wang, Li; Winger, Daniel; Follansbee, William P; Soman, Prem
2015-12-01
Gated single-photon emission computed tomography (SPECT) is widely used for myocardial perfusion imaging and provides an automated assessment of left ventricular ejection fraction (LVEF). We prospectively tested the repeatability of serial SPECT-derived LVEF. This information is essential in order to inform the interpretation of a change in LV function on serial testing. Consenting patients (n = 50) from among those referred for clinically indicated gated myocardial perfusion SPECT (MPs) were recruited. Following the clinical rest-stress study, patients were repositioned on the camera table for a second acquisition using identical parameters. Patient positioning, image acquisition and processing for the second scan were independently performed by a technologist blinded to the clinical scan. Quantitative LVEF was generated by Quantitative Gated SPECT and recorded as EF1 and EF2, respectively. Repeatability of serial results was assessed using the Bland-Altman method. The limits of repeatability and repeatability coefficients were generated to determine the maximum variation in LVEF that can be expected to result from test variability. Repeatability was tested across a broad range of LV systolic function and myocardial perfusion. The mean difference between EF1 and EF2 was 1.6% (EF units), with 95% limits of repeatability of +9.1% to -6.0% (repeatability coefficient 7.5%). Correlation between serial EF measurements was excellent (r = 0.9809). Similar results were obtained in subgroups based on normal or abnormal EF and myocardial perfusion. The largest repeatability coefficient of 8.1% was seen in patients with abnormal LV systolic function. When test protocol and acquisition parameters are kept constant, a difference of >8% EF units on serial MPs is indicative of a true change 95% of the time.
Berman, Daniel S; Abidov, Aiden; Kang, Xingping; Hayes, Sean W; Friedman, John D; Sciammarella, Maria G; Cohen, Ishac; Gerlach, James; Waechter, Parker B; Germano, Guido; Hachamovitch, Rory
2004-01-01
Recently, a 17-segment model of the left ventricle has been recommended as an optimally weighted approach for interpreting myocardial perfusion single photon emission computed tomography (SPECT). Methods to convert databases from previous 20- to new 17-segment data and criteria for abnormality for the 17-segment scores are needed. Initially, for derivation of the conversion algorithm, 65 patients were studied (algorithm population) (pilot group, n = 28; validation group, n = 37). Three conversion algorithms were derived: algorithm 1, which used mid, distal, and apical scores; algorithm 2, which used distal and apical scores alone; and algorithm 3, which used maximal scores of the distal septal, lateral, and apical segments in the 20-segment model for 3 corresponding segments of the 17-segment model. The prognosis population comprised 16,020 consecutive patients (mean age, 65 +/- 12 years; 41% women) who had exercise or vasodilator stress technetium 99m sestamibi myocardial perfusion SPECT and were followed up for 2.1 +/- 0.8 years. In this population, 17-segment scores were derived from 20-segment scores by use of algorithm 2, which demonstrated the best agreement with expert 17-segment reading in the algorithm population. The prognostic value of the 20- and 17-segment scores was compared by converting the respective summed scores into percent myocardium abnormal. Conversion algorithm 2 was found to be highly concordant with expert visual analysis by the 17-segment model (r = 0.982; kappa = 0.866) in the algorithm population. In the prognosis population, 456 cardiac deaths occurred during follow-up. When the conversion algorithm was applied, extent and severity of perfusion defects were nearly identical by 20- and derived 17-segment scores. The receiver operating characteristic curve areas by 20- and 17-segment perfusion scores were identical for predicting cardiac death (both 0.77 +/- 0.02, P = not significant). The optimal prognostic cutoff value for either 20- or derived 17-segment models was confirmed to be 5% myocardium abnormal, corresponding to a summed stress score greater than 3. Of note, the 17-segment model demonstrated a trend toward fewer mildly abnormal scans and more normal and severely abnormal scans. An algorithm for conversion of 20-segment perfusion scores to 17-segment scores has been developed that is highly concordant with expert visual analysis by the 17-segment model and provides nearly identical prognostic information. This conversion model may provide a mechanism for comparison of studies analyzed by the 17-segment system with previous studies analyzed by the 20-segment approach.
Nazarena Pizzi, M; Aguadé Bruix, S; Cuéllar Calabria, H; Aliaga, V; Candell Riera, J
2010-01-01
A 77-year old patient was admitted for acute coronary syndrome without ST elevation. His risk was stratified using the myocardial perfusion gated SPECT, mild inferior ischemia being observed. Thus, medical therapy was optimized and the patient was discharged. He continued with exertional dyspnea so a coronary CT angiography was performed. It revealed severe lesions in the proximal RCA. SPECT-CT fusion images correlated the myocardial perfusion defect with a posterior descending artery from the RCA, in a co-dominant coronary area. Subsequently, cardiac catheterism was indicated for his treatment. The current use of image fusion studies is limited to patients in whom it is difficult to attribute a perfusion defect to a specific coronary artery. In our patient, the fusion images helped to distinguish between the RCA and the circumflex artery as the culprit artery of ischemia. Copyright © 2010 Elsevier España, S.L. y SEMNIM. All rights reserved.
Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger
2015-11-01
Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf .
Alegret, Montserrat; Vinyes-Junqué, Georgina; Boada, Mercè; Martínez-Lage, Pablo; Cuberas, Gemma; Espinosa, Ana; Roca, Isabel; Hernández, Isabel; Valero, Sergi; Rosende-Roca, Maitée; Mauleón, Ana; Becker, James T.; Tárraga, Lluís
2012-01-01
Background Visuoperceptual processing is impaired early in the clinical course of Alzheimer’s disease (AD). The 15-Objects Test (15-OT) detects such subtle performance deficits in Mild Cognitive Impairment (MCI) and mild AD. Reduced brain perfusion in the temporal, parietal and prefrontal regions have been found in early AD and MCI patients. Objectives To confirm the role of the 15-OT in the diagnosis of MCI and AD, and to investigate the brain perfusion correlates of visuoperceptual dysfunction (15-OT) in subjects with MCI, AD and normal aging. Methods Forty-two AD, 42 MCI and 42 healthy elderly control (EC) subjects underwent a brain Single Photon Emission Tomography (SPECT) and separately completed the 15-OT. An analysis of variance compared 15-OT scores between groups. SPM5 was used to analyse the SPECT data. Results 15-OT performace was impaired in the MCI and AD patients. In terms of the SPECT scans, AD patients showed reduced perfusion in temporal-parietal regions, while the MCI subjects had decreased perfusion in the middle and posterior cingulate. When MCI and AD groups were compared, a significant brain perfusion reduction was found in temporo-parietal regions. In the whole sample, 15-OT performance was significantly correlated with the clinical dementia rating scores, and with the perfusion in the bilateral posterior cingulate and the right temporal pole, with no significant correlation in each separate group. Conclusion Our findings suggest that the 15-OT performance provides a useful gradation of impairment from normal aging to AD, and it seems to be related to perfusion in the bilateral posterior cingulate and the right temporal pole. PMID:20555146
Giubbini, Raffaele; Rossini, Pierluigi; Bertagna, Francesco; Bosio, Giovanni; Paghera, Barbara; Pizzocaro, Claudio; Canclini, Silvana; Terzi, Arturo; Germano, Guido
2004-10-01
The aim of this study was the evaluation of septal wall motion, perfusion and wall thickening after CABG in two groups of consecutive patients, one with grafted left anterior coronary artery and no history of myocardial infarction, and the other with previous anteroseptal myocardial infarction and impaired septal motion before surgery. The issue addressed was the ability of gated SPECT to differentiate between true paradoxical septal motion, characterised by paradoxical wall motion, depressed ejection fraction (EF), poor viability and compromised wall thickening, and pseudo-paradoxical motion, characterised by abnormal wall motion and regional EF but preserved perfusion and wall thickening. One hundred and thirty-two patients with previous anterior myocardial infarction, 82 patients with left anterior descending coronary disease and no history of myocardial infarction and 27 normal subjects underwent rest gated SPECT after 99mTc-sestamibi injection, according to the standard QGS protocol. Quantitative regional EF, regional perfusion, regional wall motion and regional wall thickening were determined using a 20-segment model. Despite the presence of similar regional wall motion impairment in patients with and patients without septal infarction, in terms of regional EF (2.5%+/-3% vs 1.9%+/-4.9% p=NS) and inward septal motion (3+/-4.9 mm vs 2.3+/-6.1 mm p=NS), significant differences were observed in both perfusion (74.7%+/-6.2% vs 63.3%+/-13%, p>0.0001) and regional wall thickening (17.2%+/-7.4% vs 12.6%+/-7.2%, p>0.0001). Gated SPECT with perfusion tracers can reliably differentiate pseudo-paradoxical from true paradoxical septal motion in patients with previous CABG, and it may be the method of choice for evaluating left ventricular performance in this patient population.
Schreiter, V; Steffen, I; Huebner, H; Bredow, J; Heimann, U; Kroencke, T J; Poellinger, A; Doellinger, F; Buchert, R; Hamm, B; Brenner, W; Schreiter, N F
2015-01-01
The purpose of this study was to evaluate the reproducibility of a new software based analysing system for ventilation/perfusion single-photon emission computed tomography/computed tomography (V/P SPECT/CT) in patients with pulmonary emphysema and to compare it to the visual interpretation. 19 patients (mean age: 68.1 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. Data were analysed by two independent observers in visual interpretation (VI) and by software based analysis system (SBAS). SBAS PMOD version 3.4 (Technologies Ltd, Zurich, Switzerland) was used to assess counts and volume per lung lobe/per lung and to calculate the count density per lung, lobe ratio of counts and ratio of count density. VI was performed using a visual scale to assess the mean counts per lung lobe. Interobserver variability and association for SBAS and VI were analysed using Spearman's rho correlation coefficient. Interobserver agreement correlated highly in perfusion (rho: 0.982, 0.957, 0.90, 0.979) and ventilation (rho: 0.972, 0.924, 0.941, 0.936) for count/count density per lobe and ratio of counts/count density in SBAS. Interobserver agreement correlated clearly for perfusion (rho: 0.655) and weakly for ventilation (rho: 0.458) in VI. SBAS provides more reproducible measures than VI for the relative tracer uptake in V/P SPECT/CTs in patients with pulmonary emphysema. However, SBAS has to be improved for routine clinical use.
Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H
2017-08-03
SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image analysis also produced a similar accuracy, sensitivity, and specificity. CFR was normal in 6, each with CAD on SCA with an overall accuracy of 91%, sensitivity of 80%, and specificity of 100%. The mean CFR was significantly lower for SCA detected abnormal than for normal patients (3.86±1.06 vs 1.94±0. 0.67, P < 0.001). The visually assessed image findings in static and dynamic SPECT are subjective, and may not reflect direct physiologic measures of coronary lesion based on SCA. The CFR measured with dynamic SPECT is fully objective, with better sensitivity and specificity, available only with the data generated from the dynamic SPECT method.
Arrighi, James A; Burg, Matthew; Cohen, Ira S; Soufer, Robert
2003-01-01
Mental stress (MS) is an important provocateur of myocardial ischemia in many patients with chronic coronary artery disease. The majority of laboratory assessments of ischemia in response to MS have included measurements of either myocardial perfusion or function alone. We performed this study to determine the relationship between alterations in perfusion and ventricular function during MS. Methods and results Twenty-eight patients with reversible perfusion defects on exercise or pharmacologic stress myocardial perfusion imaging (MPI) underwent simultaneous technetium 99m sestamibi single photon emission computed tomography (SPECT) MPI and transthoracic echocardiography at rest and during MS according to a mental arithmetic protocol. In all cases the MS study was performed within 4 weeks of the initial exercise or pharmacologic MPI that demonstrated ischemia. SPECT studies were analyzed visually with the use of a 13-segment model and quantitatively by semiautomated circumferential profile analysis. Echocardiograms were graded on a segmental model for regional wall motion on a 4-point scale. Of 28 patients, 18 (64%) had perfusion defects and/or left ventricular dysfunction develop during MS: 9 (32%) had myocardial perfusion defects develop, 6 (21%) had regional or global left ventricular dysfunction develop, and 3 (11%) had both perfusion defects and left ventricular dysfunction develop. The overall concordance between perfusion and function criteria for ischemia during MS was only 46%. Among 9 patients with MS-induced left ventricular dysfunction, 5 had new regional wall motion abnormalities and 4 had a global decrement in function. In patients with MS-induced ischemia by SPECT, the number of reversible perfusion defects was similar during both MS and exercise/pharmacologic stress (2.8 +/- 2.0 vs 3.5 +/- 1.8, P =.41). Hemodynamic changes during MS were similar whether patients were divided on the basis of perfusion defects or left ventricular dysfunction during MS. These data indicate the feasibility of simultaneous assessment of perfusion and function responses during MS. Flow and function responses to MS are frequently not concordant. These data suggest that MS-induced changes in perfusion may represent a different phenomenon than MS-induced changes in left ventricular function (either globally or regionally).
Uchihashi, Y; Hosoda, K; Zimine, I; Fujita, A; Fujii, M; Sugimura, K; Kohmura, E
2011-09-01
Arterial spin-labeling is an emerging technique for noninvasive measurement of cerebral perfusion, but concerns remain regarding the reliability of CBF quantification and clinical applications. Recently, an ASL implementation called QUASAR was proposed, and it was shown to have good reproducibility of CBF assessment in healthy volunteers. This study aimed to determine the utility of QUASAR for CBF assessment in patients with cerebrovascular diseases. Twenty patients with carotid stenosis underwent CBF quantification by ASL (QUASAR) within 3 days of performance of (123)I-iodoamphetamine-SPECT. CVR to acetazolamide also was assessed by ASL and SPECT. In surgically treated patients, the respective scans before and after the procedures were compared. Regional CBF and CVR values measured by ASL were significantly correlated and agreed with those measured by SPECT (r(s) = 0.92 and 0.88, respectively). A Bland-Altman plot demonstrated good agreement between 2 methods in terms of CBF quantification. Furthermore, ASL could detect pathologic states such as hypoperfusion, impaired vasoreactivity, and postoperative hyperperfusion, equivalent to SPECT. However, ASL tended to overestimate CBF values especially in high-perfusion regions. ASL perfusion MR imaging is clinically applicable and can be an alternative method for CBF assessment in patients with cerebrovascular diseases.
Verger, Antoine; Djaballah, Wassila; Fourquet, Nicolas; Rouzet, François; Koehl, Grégoire; Imbert, Laetitia; Poussier, Sylvain; Fay, Renaud; Roch, Véronique; Le Guludec, Dominique; Karcher, Gilles; Marie, Pierre-Yves
2013-02-01
The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving (201)Tl (n = 120) or (99m)Tc-sestamibi injected at low dose at stress ((99m)Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ((99m)Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, (201)Tl 92 %, (99m)Tc-Low 86 %, (99m)Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the (201)Tl or (99m)Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 ± 101 kcounts) and dramatically enhanced with CZT SPECT (+279 ± 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT.
Morishima, Itsuro; Okumura, Kenji; Tsuboi, Hideyuki; Morita, Yasuhiro; Takagi, Kensuke; Yoshida, Ruka; Nagai, Hiroaki; Tomomatsu, Toshiro; Ikai, Yoshihiro; Terada, Kazushi; Sone, Takahito; Murohara, Toyoaki
2017-04-01
Left-ventricular (LV) scarring may be associated with a poor response to cardiac resynchronization therapy (CRT). The automatic analysis of myocardial perfusion single-photon emission computed tomography (MP-SPECT) may provide objective quantification of LV scarring. We investigated the impact of LV scarring determined by an automatic analysis of MP-SPECT on short-term LV volume response as well as long-term outcome. We studied consecutive 51 patients who were eligible to undergo 99mTc-MIBI MP-SPECT both at baseline and 6 months after CRT (ischaemic cardiomyopathies 31%). Quantitative perfusion SPECT was used to evaluate the defect extent (an index of global scarring) and the LV 17-segment regional uptake ratio (an inverse index of regional scar burden). The primary outcome was the composite of overall mortality or first hospitalization for worsening heart failure. A high global scar burden and a low mid/basal inferolateral regional uptake ratio were associated with volume non-responders to CRT at 6 months. The basal inferolateral regional uptake ratio remained as a predictor of volume non-response after adjusting for the type of cardiomyopathy. During a median follow-up of 36.1 months, the outcome occurred in 28 patients. The patients with a low basal inferolateral regional uptake ratio with a cutoff value of 57% showed poor prognosis (log-rank P= 0.006). The scarring determined by automatic analysis of MP-SPECT images may predict a poor response to CRT regardless of the pathogenesis of cardiomyopathy. The basal inferolateral scar burden in particular may have an adverse impact on long-term prognosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Arenillas, Juan F; Candell-Riera, Jaume; Romero-Farina, Guillermo; Molina, Carlos A; Chacón, Pilar; Aguadé-Bruix, Santiago; Montaner, Joan; de León, Gustavo; Castell-Conesa, Joan; Alvarez-Sabín, José
2005-06-01
Optimization of coronary risk evaluation in stroke patients has been encouraged. The relationship between symptomatic intracranial atherosclerosis and occult coronary artery disease (CAD) has not been evaluated sufficiently. We aimed to investigate the prevalence of silent myocardial ischemia in patients with symptomatic intracranial atherosclerosis and to identify factors associated with its presence. From 186 first-ever transient ischemic attack or ischemic stroke patients with intracranial stenoses, 65 fulfilled selection criteria, including angiographic confirmation of a symptomatic atherosclerotic stenosis and absence of known CAD. All patients underwent a maximal-stress myocardial perfusion single-photon emission computed tomography (SPECT). Lipoprotein(a) [Lp(a)], C-reactive protein, and homocysteine (Hcy) levels were determined before SPECT. Stress-rest SPECT detected reversible myocardial perfusion defects in 34 (52%) patients. Vascular risk factors associated with a pathologic SPECT were hypercholesterolemia (P=0.045), presence of >2 risk factors (P=0.004) and high Lp(a) (P=0.023) and Hcy levels (P=0.018). Ninety percent of patients with high Lp(a) and Hcy levels had a positive SPECT. Existence of a stenosed intracranial internal carotid artery (ICA; odds ratio [OR], 7.22, 2.07 to 25.23; P=0.002) and location of the symptomatic stenosis in vertebrobasilar arteries (OR, 4.89, 1.19 to 20.12; P=0.027) were independently associated with silent myocardial ischemia after adjustment by age, sex, and risk factors. More than 50% of the patients with symptomatic intracranial atherosclerosis and not overt CAD show myocardial perfusion defects on stress-rest SPECT. Stenosed intracranial ICA, symptomatic vertebrobasilar stenosis and presence of high Lp(a) and Hcy levels may characterize the patients at a higher risk for occult CAD.
NASA Astrophysics Data System (ADS)
Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.
2016-03-01
In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were computed for both tasks and analyzed using ROC and LROC analysis methodologies. The results of this study suggest that collimators with somewhat poorer resolution and higher sensitivity than those of a typical low-energy high-resolution (LEHR) collimator were optimal for both defect detection and joint detection and localization tasks in myocardial perfusion SPECT for the range of defect sizes investigated. This study also indicates that optimizing instrumentation for a detection task may provide near-optimal performance on the more challenging detection-localization task.
Novel SPECT Technologies and Approaches in Cardiac Imaging
Slomka, Piotr; Hung, Guang-Uei; Germano, Guido; Berman, Daniel S.
2017-01-01
Recent novel approaches in myocardial perfusion single photon emission CT (SPECT) have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv) stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans. PMID:29034066
Grgic, Aleksandar; Miodek, Florian; Schäfers, Hans-Joachim; Held, Matthias; Kaiser, Ralf; Khreish, Fadi; Buecker, Arno; Bals, Robert; Kirsch, Carl-Martin; Wilkens, Heinrike
2016-01-01
Chronic thromboembolic pulmonary hypertension (CTEPH) can potentially be cured by pulmonary thrombendarterectomy (PEA), the criteria for differentiation between operable and non-operable patients are not standardized. To retrospectively evaluate the value of rigidly registered computed tomography pulmonary angiography (CTPA) and single photon emission CT (SPECT) in differentiating for PEA. Forty-nine patients with CTEPH (21 men; age, 58 ± 13 years) were evaluated by an interdisciplinary expert board using all available diagnostic information and their consensus statement as gold standard. For SPECT a lobe based perfusion score was visually assessed using the score of 0 (lack of perfusion) to 1 (normal perfusion) calculating percentage of vascular obstruction (PVO). By CTPA, vascular obstruction index (OI) of central, peripheral, and global PA-bed were determined. The accuracy of the alignment between CTPA and SPECT was determined by fusion score (FS) ranging from 1 (no alignment) to 5 (exact alignment). Angiography provided PA pressure (PAP), pulmonary vascular resistance (PVR), and PA wedge pressure (PAWP). Receiver operating characteristics (ROC) analysis was performed. Twenty-nine patients were considered surgically amenable, and 20 patients were inoperable. Mean PAP, PVR, and PAWP were 48 ± 11 mmHg, 868 ± 461 dynes*sec*cm(-5), and 11 ± 5 mmHg, without differences between surgical and non-surgical patients (P > 0.5). In all patients accurate registration was reached (FS = 4.1 ± 0.7; range, 2-5). PVO and central OI separated PEA-amenable patients (P ≤ 0.001) resulting in the area under the curve of 0.828 (cutoff for PVO: 37.8% with a sensitivity of 82% and specificity of 79%) and 0.755 (cutoff for central OI: 29% with a sensitivity and specificity of 86.2% and 79%) for operability. An accurate interpretation of rigidly registered CTPA and perfusion SPECT may contribute to stratification of operability in patients with CTEPH. © The Foundation Acta Radiologica 2015.
Brain SPECT scans in students with specific learning disability: Preliminary results.
Karande, S; Deshmukh, N; Rangarajan, V; Agrawal, A; Sholapurwala, R
2018-06-08
Brain single-photon emission computed tomography (SPECT) assesses brain function through measurement of regional cerebral blood flow. This study was conducted to assess whether students with newly diagnosed specific learning disability (SpLD) show any abnormalities in cerebral cortex perfusion. Cross-sectional single-arm pilot study in two tertiary care hospitals. Nine students with SpLD were enrolled. Brain SPECT scan was done twice in each student. For the first or "baseline" scan, the student was first made to sit with eyes open in a quiet, dimly lit room for a period of 30-40 min and then injected intravenously with 20 mCi of 99mTc-ECD. An hour later, "baseline scan" was conducted. After a minimum gap of 4 days, a second or "test scan" was conducted, wherein the student performed an age-appropriate curriculum-based test for a period of 30-40 min to activate the areas in central nervous system related to learning before being injected with 20 mCi of 99mTc-ECD. Cerebral cortex perfusion at rest and after activation in each student was compared qualitatively by visual analysis and quantitatively using NeuroGam TM software. Visual analysis showed reduction in regional blood flow in temporoparietal areas in both "baseline" and "test" scans. However, when normalization was attempted and comparison done by Talairach analysis using NeuroGam software, no statistically significant change in regional perfusion in temporoparietal areas was appreciated. Brain SPECT scan may serve as a robust tool to identify changes in regional brain perfusion in students with SpLD.
Mouden, Mohamed; Rijkee, Karlijn S; Schreuder, Nanno; Timmer, Jorik R; Jager, Pieter L
2015-02-01
Proton-pump inhibitors (PPIs) induce potentially interfering stomach wall activity in single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) with technetium-99m ((99m)Tc)-sestamibi. However, no data are available for (99m)Tc-tetrofosmin. We assessed the influence of prolonged (>2 weeks) PPI use on the stomach wall uptake of (99m)Tc-tetrofosmin in patients referred for stress MPI with a cadmium-zinc-telluride-based SPECT camera and its relation with dyspepsia symptoms. Consecutive patients (n=127) underwent a 1-day adenosine stress-first SPECT-MPI with (99m)Tc-tetrofosmin, of whom 54 (43%) patients had been on PPIs for more than 2 weeks. Stomach wall activity was identified on stress SPECT using computed tomographic attenuation maps and was scored using a four-point grading scale into clinically relevant (scores 2 or 3) or nonrelevant (scores 0 or 1).Patients on PPIs had stomach wall uptake more frequently as compared with patients not using PPIs (22 vs. 7%, P=0.017). Dyspepsia was similar in both groups. Prolonged use of PPIs is associated with stomach wall uptake of (99m)Tc-tetrofosmin in stress cadmium-zinc-telluride-SPECT images. Gastric symptoms were not associated with stomach wall uptake.
Shojaeifard, Maryam; Ghaedian, Tahereh; Yaghoobi, Nahid; Malek, Hadi; Firoozabadi, Hasan; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amin, Ahmad; Azizian, Nasrin; Rastgou, Feridoon
2015-01-01
Background: Gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is known as a feasible tool for the measurement of left ventricular ejection fraction (EF) and volumes, which are of great importance in the management and follow-up of patients with coronary artery diseases. However, considering the technical shortcomings of SPECT in the presence of perfusion defect, the accuracy of this method in heart failure patients is still controversial. Objectives: The aim of the present study was to compare the results from gated SPECT MPI with those from echocardiography in heart failure patients to compare echocardiographically-derived left ventricular dimension and function data to those from gated SPECT MPI in heart failure patients. Patients and Methods: Forty-one patients with severely reduced left ventricular systolic function (EF ≤ 35%) who were referred for gated SPECT MPI were prospectively enrolled. Quantification of EF, end-diastolic volume (EDV), and end-systolic volume (ESV) was performed by using quantitative gated spect (QGS) (QGS, version 0.4, May 2009) and emory cardiac toolbox (ECTb) (ECTb, revision 1.0, copyright 2007) software packages. EF, EDV, and ESV were also measured with two-dimensional echocardiography within 3 days after MPI. Results: A good correlation was found between echocardiographically-derived EF, EDV, and ESV and the values derived using QGS (r = 0.67, r = 0.78, and r = 0.80 for EF, EDV, and ESV, respectively; P < 0.001) and ECTb (r = 0.68, 0.79, and r = 0.80 for EF, EDV, and ESV, respectively; P < 0.001). However, Bland-Altman plots indicated significantly different mean values for EF, 11.4 and 20.9 using QGS and ECTb, respectively, as compared with echocardiography. ECTb-derived EDV was also significantly higher than the EDV measured with echocardiography and QGS. The highest correlation between echocardiography and gated SPECT MPI was found for mean values of ESV different. Conclusions: Gated SPECT MPI has a good correlation with echocardiography for the measurement of left ventricular EF, EDV, and ESV in patients with severe heart failure. However, the absolute values of these functional parameters from echocardiography and gated SPECT MPI measured with different software packages should not be used interchangeably. PMID:26889455
Resting functional imaging tools (MRS, SPECT, PET and PCT).
Van Der Naalt, J
2015-01-01
Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined. © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jang, Sunyoung; Jaszczak, R. J.; Tsui, B. M. W.; Metz, C. E.; Gilland, D. R.; Turkington, T. G.; Coleman, R. E.
1998-08-01
The purpose of this work was to evaluate lesion detectability with and without nonuniform attenuation compensation (AC) in myocardial perfusion SPECT imaging in women using an anthropomorphic phantom and receiver operating characteristics (ROC) methodology. Breast attenuation causes artifacts in reconstructed images and may increase the difficulty of diagnosis of myocardial perfusion imaging in women. The null hypothesis tested using the ROC study was that nonuniform AC does not change the lesion detectability in myocardial perfusion SPECT imaging in women. The authors used a filtered backprojection (FBP) reconstruction algorithm and Chang's (1978) single iteration method for AC. In conclusion, with the authors' proposed myocardial defect model nuclear medicine physicians demonstrated no significant difference for the detection of the anterior wall defect; however, a greater accuracy for the detection of the inferior wall defect was observed without nonuniform AC than with it (P-value=0.0034). Medical physicists did not demonstrate any statistically significant difference in defect detection accuracy with or without nonuniform AC in the female phantom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGurk, R; Green, R; Lawrence, M
2015-06-15
Purpose: The dose-dependent nature of radiation therapy (RT)-induced lung injury following hypo-fractionated stereotactic RT is unclear. We herein report preliminary results of a prospective study assessing the magnitude of RT-induced reductions in regional lung perfusion following hypo-fractionated stereotactic RT. Methods: Four patients undergoing hypo-fractionated stereotactic lung RT (SBRT: 12 Gy x 4 fractions or 10 Gy x 5 fractions) had a pre-treatment SPECT (single-photon emission computed tomography) perfusion scan providing a 3D map of regional lung perfusion. Scans were repeated 3–6 months post-treatment. Pre- and post SPECT scans were registered to the planning CT scan (and hence the 3D dosemore » data). Changes in regional perfusion (counts per cc on the pre-post scans) were computed in regions of the lung exposed to different doses of radiation (in 5 Gy intervals), thus defining a dose-response function. SPECT scans were internally normalized to the regions receiving <5 Gy. Results: At 3 months post-RT, the changes in perfusion are highly variable. At 6 months, there is a consistent dose-dependent reduction in regional perfusion. The average percent decline in regional perfusion was 10% at 15–20 Gy, 20% at 20–25 Gy, and 30% at 25–30 Gy representing a relatively linear dose response with an approximate 2% reduction per Gray for doses in excess of 10 Gy. There was a subtle increase in perfusion in the lung receiving <10 Gy. Conclusion: Hypo-fractionated stereotactic RT appears to cause a dose-dependent reduction in regional lung perfusion. There appears to be a threshold effect with no apparent perfusion loss at doses <10 Gy, though this might be in part due to the normalization technique used. Additional data is needed from a larger number of patients to better assess this issue. This sort of data can be used to assist optimizing RT treatment plans that minimize the risk of lung injury. Partly supported by the NIH (CA69579) and the Lance Armstrong Foundation.« less
[Topodiagnosis of Creutzfeldt-Jakob disease using HMPAO-SPECT].
Heye, N; Farahati, J; Heinz, A; Büttner, T; Przuntek, H; Reiners, C
1993-02-01
An 80-year old female presented with early stage Creutzfeldt-Jakob disease with clinical, neurophysiological and neuropathological findings suggesting a focal involvement of the brain. HMPAO SPECT disclosed asymmetries of regional cerebral perfusion, thus suggesting that it may be a further diagnostic instrument in this disease.
Brain perfusion SPECT in the mouse: normal pattern according to gender and age.
Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph
2012-12-01
Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1.7%, p=0.000) and at young adult age (AI=2.4 ± 1.7%, p=0.000). Gender had no effect on asymmetry. Voxel-wise testing confirmed the ROI-based findings. In conclusion, high-resolution HMPAO SPECT is a promising technique for measuring rCBF in preclinical research. It indicates lateral asymmetry of rCBF in the mouse brain as well as age-related changes during late maturation. ECD is not suitable as tracer for brain SPECT in the mouse because of its fast clearance from tissue indicating an interspecies difference in esterase activity between mice and humans. Copyright © 2012 Elsevier Inc. All rights reserved.
Machine-learning model observer for detection and localization tasks in clinical SPECT-MPI
NASA Astrophysics Data System (ADS)
Parages, Felipe M.; O'Connor, J. Michael; Pretorius, P. Hendrik; Brankov, Jovan G.
2016-03-01
In this work we propose a machine-learning MO based on Naive-Bayes classification (NB-MO) for the diagnostic tasks of detection, localization and assessment of perfusion defects in clinical SPECT Myocardial Perfusion Imaging (MPI), with the goal of evaluating several image reconstruction methods used in clinical practice. NB-MO uses image features extracted from polar-maps in order to predict lesion detection, localization and severity scores given by human readers in a series of 3D SPECT-MPI. The population used to tune (i.e. train) the NB-MO consisted of simulated SPECT-MPI cases - divided into normals or with lesions in variable sizes and locations - reconstructed using filtered backprojection (FBP) method. An ensemble of five human specialists (physicians) read a subset of simulated reconstructed images, and assigned a perfusion score for each region of the left-ventricle (LV). Polar-maps generated from the simulated volumes along with their corresponding human scores were used to train five NB-MOs (one per human reader), which are subsequently applied (i.e. tested) on three sets of clinical SPECT-MPI polar maps, in order to predict human detection and localization scores. The clinical "testing" population comprises healthy individuals and patients suffering from coronary artery disease (CAD) in three possible regions, namely: LAD, LcX and RCA. Each clinical case was reconstructed using three reconstruction strategies, namely: FBP with no SC (i.e. scatter compensation), OSEM with Triple Energy Window (TEW) SC method, and OSEM with Effective Source Scatter Estimation (ESSE) SC. Alternative Free-Response (AFROC) analysis of perfusion scores shows that NB-MO predicts a higher human performance for scatter-compensated reconstructions, in agreement with what has been reported in published literature. These results suggest that NB-MO has good potential to generalize well to reconstruction methods not used during training, even for reasonably dissimilar datasets (i.e. simulated vs. clinical).
Pretorius, P. Hendrik; Johnson, Karen L.; King, Michael A.
2016-01-01
We have recently been successful in the development and testing of rigid-body motion tracking, estimation and compensation for cardiac perfusion SPECT based on a visual tracking system (VTS). The goal of this study was to evaluate in patients the effectiveness of our rigid-body motion compensation strategy. Sixty-four patient volunteers were asked to remain motionless or execute some predefined body motion during an additional second stress perfusion acquisition. Acquisitions were performed using the standard clinical protocol with 64 projections acquired through 180 degrees. All data were reconstructed with an ordered-subsets expectation-maximization (OSEM) algorithm using 4 projections per subset and 5 iterations. All physical degradation factors were addressed (attenuation, scatter, and distance dependent resolution), while a 3-dimensional Gaussian rotator was used during reconstruction to correct for six-degree-of-freedom (6-DOF) rigid-body motion estimated by the VTS. Polar map quantification was employed to evaluate compensation techniques. In 54.7% of the uncorrected second stress studies there was a statistically significant difference in the polar maps, and in 45.3% this made a difference in the interpretation of segmental perfusion. Motion correction reduced the impact of motion such that with it 32.8 % of the polar maps were statistically significantly different, and in 14.1% this difference changed the interpretation of segmental perfusion. The improvement shown in polar map quantitation translated to visually improved uniformity of the SPECT slices. PMID:28042170
Romero, Kristoffer; Black, Sandra E; Feinstein, Anthony
2014-01-01
Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI. Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major depressive disorder (MDD), but no TBI were given 99m T-ECD single-photon emission computed tomography (SPECT) scans within 2 weeks of injury. All subjects completed tests of information processing speed, complex attention, and executive functioning, and a self-report questionnaire measuring symptoms of psychological distress. Between-group comparisons of quantified SPECT perfusion were undertaken using univariate and multivariate (partial least squares) analyses. mTBI-D and mTBI-noD groups did not differ in terms of cerebral perfusion. However, patients with MDD showed hypoperfusion compared to both TBI groups in several frontal (orbitofrontal, middle frontal, and superior frontal cortex), superior temporal, and posterior cingulate regions. The mTBI-D group showed poorer performance on a measure of complex attention and working memory compared to both the mTBI-noD and MDD groups. These results suggest that depressive symptoms do not affect SPECT perfusion in the sub-acute phase following a mild TBI. Conversely, MDD is associated with hypoperfusion primarily in frontal regions.
Doyle, Mark; Pohost, Gerald M; Bairey Merz, C Noel; Shaw, Leslee J; Sopko, George; Rogers, William J; Sharaf, Barry L; Pepine, Carl J; Thompson, Diane V; Rayarao, Geetha; Tauxe, Lindsey; Kelsey, Sheryl F; Biederman, Robert W W
2016-10-01
We introduce an algorithmic approach to optimize diagnostic and prognostic value of gated cardiac single photon emission computed tomography (SPECT) and magnetic resonance (MR) myocardial perfusion imaging (MPI) modalities in women with suspected myocardial ischemia. The novel approach: bio-informatics assessment schema (BIAS) forms a mathematical model utilizing MPI data and cardiac metrics generated by one modality to predict the MPI status of another modality. The model identifies cardiac features that either enhance or mask the image-based evidence of ischemia. For each patient, the BIAS model value is used to set an appropriate threshold for the detection of ischemia. Women (n=130), with symptoms and signs of suspected myocardial ischemia, underwent MPI assessment for regional perfusion defects using two different modalities: gated SPECT and MR. To determine perfusion status, MR data were evaluated qualitatively (MRI QL ) and semi-quantitatively (MRI SQ ) while SPECT data were evaluated using conventional clinical criteria. Evaluators were masked to results of the alternate modality. These MPI status readings were designated "original". Two regression models designated "BIAS" models were generated to model MPI status obtained with one modality (e.g., MRI) compared with a second modality (e.g., SPECT), but importantly, the BIAS models did not include the primary Original MPI reading of the predicting modality. Instead, the BIAS models included auxiliary measurements like left ventricular chamber volumes and myocardial wall thickness. For each modality, the BIAS model was used to set a progressive threshold for interpretation of MPI status. Women were then followed for 38±14 months for the development of a first major adverse cardiovascular event [MACE: CV death, nonfatal myocardial infarction (MI) or hospitalization for heart failure]. Original and BIAS-augmented perfusion status were compared in their ability to detect coronary artery disease (CAD) and for prediction of MACE. Adverse events occurred in 14 (11%) women and CAD was present in 13 (10%). There was a positive correlation of maximum coronary artery stenosis and BIAS score for MRI and SPECT (P<0.001). Receiver operator characteristic (ROC) analysis was conducted and showed an increase in the area under the curve of the BIAS-augmented MPI interpretation of MACE vs . the original for MRI SQ (0.78 vs . 0.54), MRI QL (0.78 vs . 0.64), SPECT (0.82 vs . 0.63) and the average of the three readings (0.80±0.02 vs . 0.60±0.05, P<0.05). Increasing values of the BIAS score generated by both MRI and SPECT corresponded to the increasing prevalence of CAD and MACE. The BIAS-augmented detection of ischemia better predicted MACE compared with the Original reading for the MPI data for both MRI and SPECT.
Pohost, Gerald M.; Bairey Merz, C. Noel; Shaw, Leslee J.; Sopko, George; Rogers, William J.; Sharaf, Barry L.; Pepine, Carl J.; Thompson, Diane V.; Rayarao, Geetha; Tauxe, Lindsey; Kelsey, Sheryl F.; Biederman, Robert W. W.
2016-01-01
Background We introduce an algorithmic approach to optimize diagnostic and prognostic value of gated cardiac single photon emission computed tomography (SPECT) and magnetic resonance (MR) myocardial perfusion imaging (MPI) modalities in women with suspected myocardial ischemia. The novel approach: bio-informatics assessment schema (BIAS) forms a mathematical model utilizing MPI data and cardiac metrics generated by one modality to predict the MPI status of another modality. The model identifies cardiac features that either enhance or mask the image-based evidence of ischemia. For each patient, the BIAS model value is used to set an appropriate threshold for the detection of ischemia. Methods Women (n=130), with symptoms and signs of suspected myocardial ischemia, underwent MPI assessment for regional perfusion defects using two different modalities: gated SPECT and MR. To determine perfusion status, MR data were evaluated qualitatively (MRIQL) and semi-quantitatively (MRISQ) while SPECT data were evaluated using conventional clinical criteria. Evaluators were masked to results of the alternate modality. These MPI status readings were designated “original”. Two regression models designated “BIAS” models were generated to model MPI status obtained with one modality (e.g., MRI) compared with a second modality (e.g., SPECT), but importantly, the BIAS models did not include the primary Original MPI reading of the predicting modality. Instead, the BIAS models included auxiliary measurements like left ventricular chamber volumes and myocardial wall thickness. For each modality, the BIAS model was used to set a progressive threshold for interpretation of MPI status. Women were then followed for 38±14 months for the development of a first major adverse cardiovascular event [MACE: CV death, nonfatal myocardial infarction (MI) or hospitalization for heart failure]. Original and BIAS-augmented perfusion status were compared in their ability to detect coronary artery disease (CAD) and for prediction of MACE. Results Adverse events occurred in 14 (11%) women and CAD was present in 13 (10%). There was a positive correlation of maximum coronary artery stenosis and BIAS score for MRI and SPECT (P<0.001). Receiver operator characteristic (ROC) analysis was conducted and showed an increase in the area under the curve of the BIAS-augmented MPI interpretation of MACE vs. the original for MRISQ (0.78 vs. 0.54), MRIQL (0.78 vs. 0.64), SPECT (0.82 vs. 0.63) and the average of the three readings (0.80±0.02 vs. 0.60±0.05, P<0.05). Conclusions Increasing values of the BIAS score generated by both MRI and SPECT corresponded to the increasing prevalence of CAD and MACE. The BIAS-augmented detection of ischemia better predicted MACE compared with the Original reading for the MPI data for both MRI and SPECT. PMID:27747165
A SPECT study of language and brain reorganization three years after pediatric brain injury.
Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D
2006-01-01
Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.
NASA Astrophysics Data System (ADS)
Niwa, Arisa; Abe, Shinji; Fujita, Naotoshi; Kono, Hidetaka; Odagawa, Tetsuro; Fujita, Yusuke; Tsuchiya, Saki; Kato, Katsuhiko
2015-03-01
Recently myocardial perfusion SPECT imaging acquired using the cardiac focusing-collimator (CF) has been developed in the field of nuclear cardiology. Previously we have investigated the basic characteristics of CF using physical phantoms. This study was aimed at determining the acquisition time for CF that enables to acquire the SPECT images equivalent to those acquired by the conventional method in 201TlCl myocardial perfusion SPECT. In this study, Siemens Symbia T6 was used by setting the torso phantom equipped with the cardiac, pulmonary, and hepatic components. 201TlCl solution were filled in the left ventricular (LV) myocardium and liver. Each of CF, the low energy high resolution collimator (LEHR), and the low medium energy general purpose collimator (LMEGP) was set on the SPECT equipment. Data acquisitions were made by regarding the center of the phantom as the center of the heart in CF at various acquisition times. Acquired data were reconstructed, and the polar maps were created from the reconstructed images. Coefficient of variation (CV) was calculated as the mean counts determined on the polar maps with their standard deviations. When CF was used, CV was lower at longer acquisition times. CV calculated from the polar maps acquired using CF at 2.83 min of acquisition time was equivalent to CV calculated from those acquired using LEHR in a 180°acquisition range at 20 min of acquisition time.
Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric
2012-12-03
Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (p<0.005, uncorrected), and separately in the subgroup of patients with left- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (p<0.001), without significant perfusion differences between these two subgroups. These data show that distinct successful rTMS protocols induce equivalent brain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.
2009-05-01
Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.
González, Javiera; Prat, Hernán; Swett, Eduardo; Berrocal, Isabel; Fernández, René; Zhindon, Juan Pablo; Castro, Ariel; Massardo, Teresa
2015-11-01
The evaluation of coronary artery disease (CAD) can be performed with stress test and myocardial SPECT tomography. To assess the predictive value of myocardial SPECT using stress test for cardiovascular events in patients with good exercise capacity. We included 102 males aged 56 ± 10 years and 19 females aged 52 ± 10 years, all able to achieve 10 METs and ≥ 85% of the theoretical maximum heart rate and at least 8 min in their stress test with gated 99mTc-sestamibi SPECT. Eighty two percent of patients were followed clinically for 33 ± 17 months. Sixty seven percent of patients were studied for CAD screening and the rest for known disease assessment. Treadmill stress test was negative in 75.4%; 37% of patients with moderate to severe Duke Score presented ischemia. Normal myocardial perfusion SPECT was observed in 70.2%. Reversible defects appeared in 24.8% of cases, which were of moderate or severe degree (> 10% left ventricular extension) in 56.6%. Only seven cases had coronary events after the SPECT. Two major (myocardial infarction and emergency coronary revascularization) and 5 minor events (elective revascularization) ere observed in the follow-up. In a multivariate analysis, SPECT ischemia was the only statistically significant parameter that increased the probability of having a major or minor event. Nearly a quarter of our patients with good exercise capacity demonstrated reversible defects in their myocardial perfusion SPECT. In the intermediate-term follow-up, a low rate of cardiac events was observed, being the isotopic ischemia the only significant predictive parameter.
Chen, Chun; Li, Dianfu; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S; Chen, Ji
2012-07-01
The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4%) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydhorst, Jared H., E-mail: jared.strydhorst@gmail.com; Ruddy, Terrence D.; Wells, R. Glenn
2015-04-15
Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolutemore » uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.« less
Sakatani, Tomohiko; Shimoo, Satoshi; Takamatsu, Kazuaki; Kyodo, Atsushi; Tsuji, Yumika; Mera, Kayoko; Koide, Masahiro; Isodono, Koji; Tsubakimoto, Yoshinori; Matsuo, Akiko; Inoue, Keiji; Fujita, Hiroshi
2016-12-01
Myocardial perfusion single-photon emission-computed tomography (SPECT) can predict cardiac events in patients with coronary artery disease with high accuracy; however, pseudo-negative cases sometimes occur. Heart Risk View, which is based on the prospective cohort study (J-ACCESS), is a software for evaluating cardiac event probability. We examined whether Heart Risk View was useful to evaluate the cardiac risk in patients with normal myocardial perfusion SPECT (MPS). We studied 3461 consecutive patients who underwent MPS to detect myocardial ischemia and those who had normal MPS were enrolled in this study (n = 698). We calculated cardiac event probability by Heart Risk View and followed-up for 3.8 ± 2.4 years. The cardiac events were defined as cardiac death, non-fatal myocardial infarction, and heart failure requiring hospitalization. During the follow-up period, 21 patients (3.0 %) had cardiac events. The event probability calculated by Heart Risk View was higher in the event group (5.5 ± 2.6 vs. 2.9 ± 2.6 %, p < 0.001). According to the receiver-operating characteristics curve, the cut-off point of the event probability for predicting cardiac events was 3.4 % (sensitivity 0.76, specificity 0.72, and AUC 0.85). Kaplan-Meier curves revealed that a higher event rate was observed in the high-event probability group by the log-rank test (p < 0.001). Although myocardial perfusion SPECT is useful for the prediction of cardiac events, risk estimation by Heart Risk View adds more prognostic information, especially in patients with normal MPS.
Richieri, Raphaëlle; Verger, Antoine; Boyer, Laurent; Boucekine, Mohamed; David, Anthony; Lançon, Christophe; Cermolacce, Michel; Guedj, Eric
2018-05-18
Previous clinical trials have suggested that repetitive transcranial magnetic stimulation (rTMS) has a significant antidepressant effect in patients with treatment resistant depression (TRD). However, results remain heterogeneous with many patients without effective response. The aim of this SPECT study was to determine before treatment the predictive value of the connectivity of the stimulated area on further rTMS response in patients with TRD. Fifty-eight TRD patients performed a brain perfusion SPECT before high frequency rTMS of the left dorsolateral prefrontal cortex (DLPFC). A voxel based-analysis was achieved to compare connectivity of the left DLPFC in responders and non-responders using inter-regional correlations (p < 0.005, corrected for cluster volume). A multiple logistic regression model was thereafter used with the goal of establishing a predictive score. Before rTMS, responders exhibited increased SPECT connectivity between the left DLPFC and the right cerebellum in comparison to non-responders, independently of age, gender, severity of depression, and severity of treatment resistance. The area under the curve for the combination of these two SPECT clusters to predict rTMS response was 0.756 (p < 0.005). SPECT connectivity of the left DLPFC predicts rTMS response before treatment. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro
2016-01-01
Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813
Gimelli, Alessia; Liga, Riccardo; Clemente, Alberto; Marras, Gavino; Kusch, Annette; Marzullo, Paolo
2017-01-12
Single-photon emission computed-tomography (SPECT) allows the quantification of LV eccentricity index (EI), a measure of cardiac remodeling. We sought to evaluate the feasibility of EI measurement with SPECT myocardial perfusion imaging and its interactions with relevant LV functional and structural parameters. Four-hundred and fifty-six patients underwent myocardial perfusion imaging on a Cadmium-Zinc-Telluride (CZT) camera. The summed rest, stress, and difference scores were calculated. From rest images, the LV end-diastolic (EDV) and end-systolic volumes, ejection fraction (EF), and peak filling rate (PFR) were calculated. In every patient, the EI, ranging from 0 (sphere) to 1 (line), was computed using a dedicated software (QGS/QPS; Cedars-Sinai Medical Center). Three-hundred and thirty-eight/456 (74%) patients showed a normal EF (>50%), while 26% had LV systolic dysfunction. The EI was computed from CZT images with excellent reproducibility (interclass correlation coefficient: 0.99, 95% CI 0.98-0.99). More impaired EI values correlated with the presence of a more abnormal LV perfusion (P < .001), function (EF and PFR, P < .001), and structure (EDV, P < .001). On multivariate analysis, higher EDV (P < .001) and depressed EF (P = .014) values were independent predictors of abnormal EI. The evaluation of LV eccentricity is feasible on gated CZT images. Abnormal EI associates with significant cardiac structural and functional abnormalities.
Schümichen, Carl; Schmidt, Matthias; Krause, Thomas
2018-06-01
The S1 guideline for lung scintigraphy has been updated and extended in order to emphasize the advantages oft the method in detecting acute pulmonary embolism (PE) in the periphery oft the lung (subsegmental PE), in underlying subacute and chronic pulmonary disorders, as well as in detecting chronic LE (CTEPH). Method of choice is ventilation / perfusion (V/P) SPECT or V/P SPECT/CT with even higher specificity. Because of its high sensitivity, a threshold (V/P mismatch in at least one segment or two subsegments) is introduced to avoid overtreatment. In case of a change in the therapeutic approach (observation only instead of anticoaculation) the threshold can be omitted. New data concerning the clinical and therapeutical impact of subsegmental PE are included, the chapters open questions have been extented. Other indications for V/P SPECT (secondary diagnoses, abnormalities in pulmonary perfusion, prediction of postoperative lung function) are presented with new data. Schattauer GmbH.
Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde
2017-02-01
Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a 99m technetium-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Romero, Kristoffer; Black, Sandra E.; Feinstein, Anthony
2014-01-01
Background: Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI. Methods: Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major depressive disorder (MDD), but no TBI were given 99m T-ECD single-photon emission computed tomography (SPECT) scans within 2 weeks of injury. All subjects completed tests of information processing speed, complex attention, and executive functioning, and a self-report questionnaire measuring symptoms of psychological distress. Between-group comparisons of quantified SPECT perfusion were undertaken using univariate and multivariate (partial least squares) analyses. Results: mTBI-D and mTBI-noD groups did not differ in terms of cerebral perfusion. However, patients with MDD showed hypoperfusion compared to both TBI groups in several frontal (orbitofrontal, middle frontal, and superior frontal cortex), superior temporal, and posterior cingulate regions. The mTBI-D group showed poorer performance on a measure of complex attention and working memory compared to both the mTBI-noD and MDD groups. Conclusion: These results suggest that depressive symptoms do not affect SPECT perfusion in the sub-acute phase following a mild TBI. Conversely, MDD is associated with hypoperfusion primarily in frontal regions. PMID:25191305
Shen, Dinggang; Liu, Dengfeng; Cao, Zixiong; Acton, Paul D.; Zhou, Rong
2008-01-01
This paper demonstrates the application of mutual information based coregistration of radionuclide and magnetic resonance imaging (MRI) in an effort to use multimodality imaging for noninvasive localization of stem cells grafted in the infarcted myocardium in rats. Radionuclide imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) inherently has high sensitivity and is suitable for tracking of labeled stem cells, while high-resolution MRI is able to provide detailed anatomical and functional information of myocardium. Thus, coregistration of PET or SPECT images with MRI will map the location and distribution of stem cells on detailed myocardium structures. To validate this coregistration method, SPECT data were simulated by using a Monte Carlo-based projector that modeled the pinhole-imaging physics assuming nonzero diameter and photon penetration at the edge. Translational and rotational errors of the coregistration were examined with respect to various SPECT activities, and they are on average about 0.50 mm and 0.82°, respectively. Only the rotational error is dependent on activity of SPECT data. Stem cells were labeled with 111 Indium oxyquinoline and grafted in the ischemic myocardium of a rat model. Dual-tracer small-animal SPECT images were acquired, which allowed simultaneous detection of 111In-labeled stem cells and of [99mTc]sestamibi to assess myocardial perfusion deficit. The same animals were subjected to cardiac MRI. A mutual-information-based coregistration method was then applied to the SPECT and MRIs. By coregistration, the 111 In signal from labeled cells was mapped into the akinetic region identified on cine MRIs; the regional perfusion deficit on the SPECT images also coincided with the akinetic region on the MR image. PMID:17053860
Bajc, M; Chen, Y; Wang, J; Li, X Y; Shen, W M; Wang, C Z; Huang, H; Lindqvist, A; He, X Y
2017-01-01
Airway obstruction and possible concomitant pulmonary diseases in COPD cannot be identified conventionally with any single diagnostic tool. We aimed to diagnose and grade COPD severity and identify pulmonary comorbidities associated with COPD with ventilation/perfusion single-photon emission computed tomography (V/P SPECT) using Technegas as the functional ventilation imaging agent. 94 COPD patients (aged 43-86 years, Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages I-IV) were examined with V/P SPECT and spirometry. Ventilation and perfusion defects were analyzed blindly according to the European guidelines. Penetration grade of Technegas in V SPECT measured the degree of obstructive small airways disease. Total preserved lung function and penetration grade of Technegas in V SPECT were assessed by V/P SPECT and compared to GOLD stages and spirometry. Signs of small airway obstruction in the ventilation SPECT images were found in 92 patients. Emphysema was identified in 81 patients. Two patients had no signs of COPD, but both of them had a pulmonary embolism, and in one of them we also suspected a lung tumor. The penetration grade of Technegas in V SPECT and total preserved lung function correlated significantly to GOLD stages ( r =0.63 and -0.60, respectively, P <0.0001). V/P SPECT identified pulmonary embolism in 30 patients (32%). A pattern typical for heart failure was present in 26 patients (28%). Parenchymal changes typical for pneumonia or lung tumor were present in several cases. V/P SPECT, using Technegas as the functional ventilation imaging agent, is a new tool to diagnose COPD and to grade its severity. Additionally, it revealed heterogeneity of COPD caused by pulmonary comorbidities. The characteristics of these comorbidities suggest their significant impact in clarifying symptoms, and also their influence on the prognosis.
Chen, Chun; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S.; Chen, Ji
2013-01-01
Purpose The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Methods Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2–3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Results Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p<0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p<0.01). Conclusion Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. PMID:22532253
Kaneta, Tomohiro; Kurihara, Hideyuki; Hakamatsuka, Takashi; Ito, Hiroshi; Maruoka, Shin; Fukuda, Hiroshi; Takahashi, Shoki; Yamada, Shogo
2004-12-01
123I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) and 99mTc-tetrofosmin (TET) are widely used for evaluation of myocardial fatty acid metabolism and perfusion, respectively. ECG-gated TET SPECT is also used for evaluation of myocardial wall motion. These tests are often performed on the same day to minimize both the time required and inconvenience to patients and medical staff. However, as 123I and 99mTc have similar emission energies (159 keV and 140 keV, respectively), it is necessary to consider not only scattered photons, but also primary photons of each radionuclide detected in the wrong window (cross-talk). In this study, we developed and evaluated the effectiveness of a new scatter and cross-talk correction imaging protocol. Fourteen patients with ischemic heart disease or heart failure (8 men and 6 women with a mean age of 69.4 yr, ranging from 45 to 94 yr) were enrolled in this study. In the routine one-day acquisition protocol, BMIPP SPECT was performed in the morning, with TET SPECT performed 4 h later. An additional SPECT was performed just before injection of TET with the energy window for 99mTc. These data correspond to the scatter and cross-talk factor of the next TET SPECT. The correction was performed by subtraction of the scatter and cross-talk factor from TET SPECT. Data are presented as means +/- S.E. Statistical analyses were performed using Wilcoxon's matched-pairs signed-ranks test, and p < 0.05 was considered significant. The percentage of scatter and cross-talk relative to the corrected total count was 26.0 +/- 5.3%. EDV and ESV after correction were significantly greater than those before correction (p = 0.019 and 0.016, respectively). After correction, EF was smaller than that before correction, but the difference was not significant. Perfusion scores (17 segments per heart) were significantly lower after as compared with those before correction (p < 0.001). Scatter and cross-talk correction revealed significant differences in EDV, ESV, and perfusion scores. These observations indicate that scatter and cross-talk correction is required for one-day acquisition of 123I-BMIPP and 99mTc-tetrofosmin SPECT.
Jefferson, Angela L; Holland, Christopher M; Tate, David F; Csapo, Istvan; Poppas, Athena; Cohen, Ronald A; Guttmann, Charles R G
2011-01-01
Reduced cardiac output is associated with increased white matter hyperintensities (WMH) and executive dysfunction in older adults, which may be secondary to relations between systemic and cerebral perfusion. This study preliminarily describes the regional distribution of cerebral WMH in the context of a normal cerebral perfusion atlas and aims to determine if these variables are associated with reduced cardiac output. Thirty-two participants (72 ± 8 years old, 38% female) with cardiovascular risk factors or disease underwent structural MRI acquisition at 1.5T using a standard imaging protocol that included FLAIR sequences. WMH distribution was examined in common anatomical space using voxel-based morphometry and as a function of normal cerebral perfusion patterns by overlaying a single photon emission computed tomography (SPECT) atlas. Doppler echocardiogram data was used to dichotomize the participants on the basis of low (n=9) and normal (n=23) cardiac output. Global WMH count and volume did not differ between the low and normal cardiac output groups; however, atlas-derived SPECT perfusion values in regions of hyperintensities were reduced in the low versus normal cardiac output group (p<0.001). Our preliminary data suggest that participants with low cardiac output have WMH in regions of relatively reduced perfusion, while normal cardiac output participants have WMH in regions with relatively higher regional perfusion. This spatial perfusion distribution difference for areas of WMH may occur in the context of reduced systemic perfusion, which subsequently impacts cerebral perfusion and contributes to subclinical or clinical microvascular damage. Copyright © 2009 Elsevier Inc. All rights reserved.
Afzelius, P; Bergmann, A; Henriksen, J H
2015-09-15
It is generally assumed that the lungs possess arterial autoregulation associated with bronchial obstruction. A patient with pneumonia and congestive heart failure unexpectedly developed frequent haemoptysis. High-resolution CT and diagnostic CT were performed as well as ventilation/perfusion (V/Q) scintigraphy with single-photon emission CT (SPECT)/CT. V/Q SPECT/CT demonstrated abolished ventilation due to obstruction of the left main bronchus and markedly reduced perfusion of the entire left lung, a condition that was completely reversed after removal of a blood clot. We present the first pictorially documented case of hypoxia-induced pulmonary vasoconstriction and flow shift in a main pulmonary artery due to a complete intrinsic obstruction of the ipsilateral main bronchus. The condition is reversible, contingent on being relieved within a few days. 2015 BMJ Publishing Group Ltd.
Huang, P J; Chieng, P U; Lee, Y T; Chiang, F T; Tseng, Y Z; Liau, C S; Tseng, C D; Su, C T; Lien, W P
1992-11-01
Exercise thallium-201 imaging using single-photon emission computed tomography (SPECT) was evaluated in 154 patients with angiographically documented coronary artery disease (CAD) and in 25 normal subjects. Of the 154 patients with CAD, 134 (87%) had abnormal thallium images. By contrast, only 77 (50%) patients had ischemic ST-segment depression (p < 0.001). Among 25 normal subjects, 20 had normal exercise SPECT images. The specificity of exercise SPECT imaging (80% or 20/25) in excluding patients with CAD was not significantly higher than that of exercise electrocardiography (76% or 19/25). For the detection of individual vessel involvement by analysis of territories of perfusion abnormalities, the sensitivity and specificity of exercise SPECT were 72% and 96% for the left anterior descending, 78% and 85% for the right coronary, and 47% and 98% for the left circumflex artery. Ninety (group 1) of the 154 patients with CAD achieved adequate exercise end points (ischemic ST-segment depression or > 85% of maximal predicted heart rate) and 64 (group 2) did not. Exercise SPECT showed significantly more perfusion abnormalities in group 1 than in group 2 (96% vs 75%, p < 0.001). We conclude that: (1) exercise SPECT thallium imaging is more sensitive than exercise electrocardiography for detecting patients with CAD; (2) the sensitivity of the test is affected by the level of exercise; and (3) it is valuable in the identification of individual vessel involvement.
Ansari, Mojtaba; Hashemi, Hoda; Soltanshahi, Mehdi; Qutbi, Mohsen; Azizmohammadi, Zahra; Tabeie, Faraj; Javadi, Hamid; Jafari, Esmail; Barekat, Maryam; Assadi, Majid
2018-06-07
Evaluating the effects of heart cavity volume, presence and absence of perfusion defect, gender and type of study (stress and rest) on the difference of systolic parameters of myocardial perfusion scan in 16 and 8 framing gated SPECT imaging. Cardiac gated SPECT in both 16 and 8 framing simultaneously and both stress and rest phases at one-day protocol was performed for 50 patients. Data have been reconstructed by filter back projection (FBP) method and left ventricular (LV) systolic parameters were calculated by using QGS software. The effect of some factors such as LV cavity volume, presence and absence of perfusion defect, gender and type of study on data difference between 8 and 16 frames were evaluated. The differences in ejection fraction (EF), end-diastolic volume (EDV) and end-systolic volume (ESV) in both stress and rest were statistically significant. Difference in both framing was more in stress for EF and ESV, and was more in rest for EDV. Study type had a significant effect on differences in systolic parameters while gender had a significant effect on differences in EF and ESV in rest between both framings. In conclusion, results of this study revealed that difference of both 16 and 8 frames data in systolic phase were statistically significant and it seems that because of better efficiency of 16 frames, it cannot be replaced by 8 frames. Further well-designed studies are required to verify these findings.
Khawaja, Tuba; Greer, Christine; Thadani, Samir R.; Kato, Tomoko S.; Bhatia, Ketan; Shimbo, Daichi; Konkak, Andrew; Bokhari, Sabahat; Einstein, Andrew J.; Schulze, P. Christian
2015-01-01
Epicardial adipose tissue is a source of pro-inflammatory cytokines and has been linked to the development of coronary artery disease. No study has systematically assessed the relationship between local epicardial fat volume (EFV) and myocardial perfusion defects. We analyzed EFV in patients undergoing SPECT myocardial perfusion imaging combined with computed tomography (CT) for attenuation correction. Low-dose CT without contrast was performed in 396 consecutive patients undergoing SPECT imaging for evaluation of coronary artery disease. Regional thickness, cross-sectional areas, and total EFV were assessed. 295 patients had normal myocardial perfusion scans and 101 had abnormal perfusion scans. Mean EFVs in normal, ischemic, and infarcted hearts were 99.8 ± 82.3 cm3, 156.4 ± 121.9 cm3, and 96.3 ± 102.1 cm3, respectively (P < 0.001). Reversible perfusion defects were associated with increased local EFV compared to normal perfusion in the distribution of the right (69.2 ± 51.5 vs 46.6 ± 32.0 cm3; P = 0.03) and left anterior descending coronary artery (87.1 ± 76.4 vs 46.7 ± 40.6 cm3; P = 0.005). Our results demonstrate increased regional epicardial fat in patients with active myocardial ischemia compared to patients with myocardial scar or normal perfusion on nuclear perfusion scans. Our results suggest a potential role for cardiac CT to improve risk stratification in patients with suspected coronary artery disease. PMID:25339129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagar, Timothy M., E-mail: zagar@med.unc.edu; Kaidar-Person, Orit; Tang, Xiaoli
Purpose: To evaluate early cardiac single photon computed tomography (SPECT) findings after left breast/chest wall postoperative radiation therapy (RT) in the setting of deep inspiration breath hold (DIBH). Methods and Materials: We performed a prospective single-institution single-arm study of patients who were planned for tangential RT with DIBH to the left breast/chest wall (± internal mammary nodes). The DIBH was done by use of a controlled surface monitoring technique (AlignRT, Vision RT Ltd, London, UK). The RT was given with tangential fields and a heart block. Radiation-induced cardiac perfusion and wall motion changes were assessed by pre-RT and 6-month post-RTmore » SPECT scans. A cumulative SPECT summed-rest score was used to quantify perfusion in predefined left ventricle segments. The incidence of wall motion abnormalities was assessed in each of these same segments. Results: A total of 20 patients with normal pre-RT scans were studied; their median age was 56 years (range, 39-72 years). Seven (35%) patients also received irradiation to the left internal mammary chain, and 5 (25%) received an additional RT field to supraclavicular nodes. The median heart dose was 94 cGy (range, 56-200 cGy), and the median V25{sub Gy} was zero (range, 0-0.1). None of the patients had post-RT perfusion or wall motion abnormalities. Conclusions: Our results suggest that DIBH and conformal cardiac blocking for patients receiving tangential RT for left-sided breast cancer is an effective means to avoid early RT-associated cardiac perfusion defects.« less
Huber, Bruno C; Fischer, Rebekka; Brunner, Stefan; Groebner, Michael; Rischpler, Christoph; Segeth, Alexander; Zaruba, Marc M; Wollenweber, Tim; Hacker, Marcus; Franz, Wolfgang-Michael
2010-05-01
Mobilization of stem cells by granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI); however, clinical trials failed to be effective. In search for alternative cytokines, parathyroid hormone (PTH) was recently shown to promote cardiac repair by enhanced neovascularization and cell survival. To compare the impact of the two cytokines G-CSF and PTH on myocardial perfusion, mice were noninvasively and repetitively investigated by pinhole single-photon emission computed tomography (SPECT) after MI. Mobilization and homing of bone marrow-derived stem cells (BMCs) was analyzed by fluorescence-activated cell sorter (FACS) analysis. Mice (C57BL/6J) were infarcted by left anterior descending artery ligation. PTH (80 mug/kg) and G-CSF (100 mug/kg) were injected for 5 days. Perfusion defects were determined by (99m)Tc-sestamibi SPECT at days 6 and 30 after MI. The number of BMCs characterized by Lin(-)/Sca-1(+)/c-kit(+) cells in peripheral blood and heart was analyzed by FACS. Both G-CSF and PTH treatment resulted in an augmented mobilization of BMCs in the peripheral blood. Contrary to G-CSF and controls, PTH and the combination showed significant migration of BMCs in ischemic myocardium associated with a significant reduction of perfusion defects from day 6 to day 30. A combination of both cytokines had no additional effects on migration and perfusion. In our preclinical model, SPECT analyses revealed the functional potential of PTH reducing size of infarction together with an enhanced homing of BMCs to the myocardium in contrast to G-CSF. A combination of both cytokines did not improve the functional outcome, suggesting clinical applications of PTH in ischemic heart diseases.
Fleming, J S; Kemp, P M; Bolt, L; Goatman, K A
2002-11-01
Methods for quantifying the changes in brain function observed in single photon emission computed tomography (SPECT) using hexamethylenepropylene amine oxime (HMPAO) for patients with Alzheimer's disease have the potential of improving the diagnostic accuracy of the procedure and its ability to monitor response to treatment. The absolute percentage uptake of HMPAO and the cerebral perfusion volume (CPV) of the brain were assessed using SPECT in 26 patients with mild to moderate Alzheimer's disease (AD) and 24 control subjects. A subset of 15 control subjects, which was age-matched to the AD patients, was selected to allow fair statistical comparison of parameters between groups. The percentage of brain volume with reduced perfusion (R) and a volume loss index (VLI), given by /CPV, were also calculated. Eight of the control subjects were studied on a second occasion after a mean period of 6 months. There was no significant difference in percentage uptake between controls and AD patients, the mean value being 5.8%. Cerebral perfusion volume in controls was found to depend on sex (mean value in males and females being 1327 ml and 1222 ml, respectively) and on age. The volume loss index corrected for age and sex provided good discrimination between controls and AD subjects giving a sensitivity and specificity of 81% and 96%, respectively. The repeatability coefficient, the 95% confidence limit for the difference between repeat measurements, on controls was 67 ml (5%). The measurement of cerebral perfusion volume and related indices may be of value in identifying patients with early Alzheimer's disease and in following their response to treatment.
SPECT and PET in ischemic heart failure.
Angelidis, George; Giamouzis, Gregory; Karagiannis, Georgios; Butler, Javed; Tsougos, Ioannis; Valotassiou, Varvara; Giannakoulas, George; Dimakopoulos, Nikolaos; Xanthopoulos, Andrew; Skoularigis, John; Triposkiadis, Filippos; Georgoulias, Panagiotis
2017-03-01
Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.
Kapitan, Miguel; Beltran, Alvaro; Beretta, Mario; Mut, Fernando
2018-04-01
There is paucity of data on left ventricular (LV) functional parameters using gated SPECT myocardial perfusion imaging (MPI) from the Latin American region. This study provides detailed information in low-risk patients both at rest and during exercise. We studied 90 patients (50 men) with a very low likelihood of coronary artery disease. Gated-SPECT MPI was performed with Tc-99m MIBI using a 2-day protocol, with 16 frames/R-R cycle. The LV ejection fraction and volumes were not different between the rest and post-stress images. LVEF was 68 ± 7% post-stress and 70 ± 7% at rest in women, and 62 ± 7% and 63 ± 7%, respectively, in men (P = .19, .26). LV volumes were larger in men than women (P < .01). There were no differences in most variables obtained at rest or post-stress. Transient ischemic dilatation was similar, with upper limits of 1.20 and 1.19 in women and men, respectively (P = NS). These data could prove helpful for the interpretation of gated SPECT MPI data in Latin America using identical protocol as used in this study.
New Trends in Radionuclide Myocardial Perfusion Imaging
Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang
2016-01-01
Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946
McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W
2008-01-01
Background Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). Results A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques. PMID:18312639
McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W
2008-02-29
Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.
De Lorenzo, Andrea; Peclat, Thais; Amaral, Ana Carolina; Lima, Ronaldo S L
2016-02-01
The purpose of this study is to evaluate the prognostic value of myocardial perfusion SPECT obtained in CZT cameras (CZT-SPECT) with multipinhole collimation in obese patients. CZT-SPECT may be technically challenging in the obese, and its prognostic value remains largely unknown. Patients underwent single-day, rest/stress (supine and prone) imaging. Images were visually inspected and graded as poor, fair or good/excellent. Summed stress and difference scores (SSS and SDS, respectively) were converted into percentages of total perfusion defect and of ischemic defect by division by the maximum possible score. Obesity was defined as a body mass index (BMI) ≥ 30 kg/m(2) and classified as class I (BMI 30-34.9 kg/m(2)), II (BMI 35-39.9 kg/m(2)), or III (BMI ≥ 40 kg/m(2)). Patients were followed-up by telephone interview for the occurrence of all-cause death, myocardial infarction or revascularization. A Cox proportional hazards analysis was used to assess the independent predictors of death. Among 1396 patients, 365 (26.1 %) were obese (mean BMI 33.9 ± 3.6; 17.5 % class I, 3.4 % class II, and 3.4 % class III). Image quality was good/excellent in 94.5 % of the obese patients. The annualized mortality rates were not significantly different among obese and non-obese patients, being <1 % with normal CZT-SPECT, and increased with the degree of scan abnormality in both obese and non-obese patients. Age, the use of pharmacologic stress and an abnormal CZT-SPECT, but not obesity, were independent predictors of death. In obese patients, single-day rest/stress CZT-SPECT with a multipinhole camera provides prognostic discrimination with high image quality.
Suga, Kazuyoshi; Kawakami, Yasuhiko; Koike, Hiroaki; Iwanaga, Hideyuki; Tokuda, Osamu; Okada, Munemasa; Matsunaga, Naofumi
2010-05-01
Tc-99m-Technegas-MAA single photon emission computed tomography (SPECT)-derived ventilation (V)/perfusion (Q) quotient SPECT was used to assess lung V-Q imbalance in patients with pulmonary emphysema. V/Q quotient SPECT and V/Q profile were automatically built in 38 patients with pulmonary emphysema and 12 controls, and V/Q distribution and V/Q profile parameters were compared. V/Q distribution on V/Q quotient SPECT was correlated with low attenuation areas (LAA) on density-mask computed tomography (CT). Parameters of V/Q profile such as the median, standard deviation (SD), kurtosis and skewness were proposed to objectively evaluate the severity of lung V-Q imbalance. In contrast to uniform V/Q distribution on V/Q quotient SPECT and a sharp peak with symmetrical V/Q distribution on V/Q profile in controls, lung areas showing heterogeneously high or low V/Q and flattened peaks with broadened V/Q distribution were frequently seen in patients with emphysema, including lung areas with only slight LAA. V/Q distribution was also often asymmetric regardless of symmetric LAA. All the proposed parameters of V/Q profile in entire lungs of patients with emphysema showed large variations compared with controls; SD and kurtosis were significantly different from controls (P < 0.0001 and P < 0.001, respectively), and a significant correlation was found between SD and A-aDO2 (P < 0.0001). V/Q quotient SPECT appears to be more sensitive to detect emphysematous lungs compared with morphologic CT in patients with emphysema. SD and kurtosis of V/Q profile can be adequate parameters to assess the severity of lung V-Q imbalance causing gas-exchange impairment in patients with emphysema.
Iofetamine hydrochloride I 123: a new radiopharmaceutical for cerebral perfusion imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druckenbrod, R.W.; Williams, C.C.; Gelfand, M.J.
1989-01-01
Iofetamine hydrochloride I-123 permits cerebral blood perfusion imaging with single photon emission computed tomography (SPECT). SPECT is more widely available than positron emission tomography, and complements anatomic visualization with X-ray computed tomography (CT) or magnetic resonance imaging. Iofetamine is an amphetamine analog that is rapidly taken up by the lungs, then redistributed principally to the liver and brain. The precise mechanism of localization has not been determined, but is believed to result from nonspecific receptor binding. Brain uptake peaks at 30 minutes postinjection and remains relatively constant through 60 minutes. The drug is metabolized and excreted in the urine, withmore » negligible activity remaining at 48 hours. When compared with CT in stroke patients, visualization may be performed sooner after symptom onset and a larger zone of involvement may be evident with iofetamine. Localization of seizure foci and diagnosis of Alzheimer's disease may also be possible. As CT has revolutionized noninvasive imaging of brain anatomy, SPECT with iofetamine permits routine cerebral blood flow imaging. 36 references.« less
Stubbs, Matthew; Chan, Kenneth; McMeekin, Helena; Navalkissoor, Shaunak; Wagner, Thomas
2017-02-01
This study aims to compare the incidence of ventilation/perfusion (V/Q) scans interpreted as indeterminate for the diagnosis of pulmonary embolism (PE) using single-photon emission computed tomography (SPECT) versus planar scintigraphy and to consider the effect of variable interpretation of single subsegmental V/Q mismatch (SSM). A total of 1300 consecutive V/Q scans were retrospectively reviewed. After exclusion and matching for age and sex, 542 SPECT and 589 planar scans were included in the analysis. European Association of Nuclear Medicine guidelines were used to interpret the V/Q scans, initially interpreting SSM as negative scans. Patients with SSM were followed up for 3 months and further imaging for PE was collected. Indeterminate scans were significantly fewer in the SPECT than the planar group on the basis of the initial report (7.7 vs. 12.2%, P<0.05). This is irrespective of classification of SSM as a negative scan (4.6 vs. 12.1%, P<0.0001) or an indeterminate scan (8.3 vs. 12.2%, P<0.05). Of the 21 patients who had SSM, 19 underwent computer tomography pulmonary angiogram and embolism was found in one patient. None of these patients died at the 3-month follow-up. V/Q SPECT has greater diagnostic certainty of PE, with a 41% reduction in an indeterminate scan compared with planar scintigraphy. This is irrespective of the clinician's interpretation of SSM as negative or intermediate probability. Patients with SSM would not require further computer tomography pulmonary angiogram imaging.
Differential diagnosis of regional cerebral hyperfixation of TC-99m HMPAO on SPECT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirazi, P.; Konopka, L.; Crayton, J.W.
1994-05-01
Accurate diagnostic evaluation of patients with neurologic and neuropsychiatric disease is important because early treatment may halt disease progression and prevent impairment or disability. Cerebral hyperfixation of HMPAO has been ascribed to luxury perfusion following ischemic infarction. The present study sought to identify other conditions that also display radiotracer hyperfixation in order to develop a differential diagnosis of this finding on SPECT imaging. Two hundred fifty (n=250) successive cerebral SPECT images were reviewed for evidence of HMPAO hyperfixation. Hyperfixation was defined as enhanced focal perfusion surrounded by a zone of diminished or normal cerebral perfusion. All patients were scanned aftermore » intravenous injection of 25 mCi Tc-99m HMPAO. Volume-rendered and oblique images were obtained with a Trionix triple-head SPECT system using ultra high resolution fan beam collimators. Thirteen (13/250; 5%) of the patients exhibited regions of HMPAO hyperfixation. CT or MRI abnormalities were detected in 6/13 cases. Clinical diagnoses in these patients included intractable psychosis, post-traumatic stress disorder, alcohol and narcotic dependence, major depression, acute closed-head trauma, hypothyroidism, as well as subacute ischemic infarction. A wide variety of conditions may be associated with cerebral hyperfixation of HMPAO. These conditions include neurologic and psychiatric diagnoses, and extend the consideration of hyperfixation beyond ischemic infarction. Consequently, a differential diagnosis of HMPAO hyperfixation may be broader than originally considered, and this may suggest a fundamental role for local cerebral hyperperfusion. Elucidation of the fundamental mechanism(s) for cerebral hyperperfusion requires further investigation.« less
Shin, Yong Beom; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Kim, Dong-Soo; Park, Jae Heung; Yeom, Seok-Ran
2006-06-01
Statistical parametric mapping (SPM) was applied to brain perfusion single photon emission computed tomography (SPECT) images in patients with traumatic brain injury (TBI) to investigate regional cerebral abnormalities compared to age-matched normal controls. Thirteen patients with TBI underwent brain perfusion SPECT were included in this study (10 males, three females, mean age 39.8 +/- 18.2, range 21 - 74). SPM2 software implemented in MATLAB 5.3 was used for spatial pre-processing and analysis and to determine the quantitative differences between TBI patients and age-matched normal controls. Three large voxel clusters of significantly decreased cerebral blood perfusion were found in patients with TBI. The largest clusters were area including medial frontal gyrus (voxel number 3642, peak Z-value = 4.31, 4.27, p = 0.000) in both hemispheres. The second largest clusters were areas including cingulated gyrus and anterior cingulate gyrus of left hemisphere (voxel number 381, peak Z-value = 3.67, 3.62, p = 0.000). Other clusters were parahippocampal gyrus (voxel number 173, peak Z-value = 3.40, p = 0.000) and hippocampus (voxel number 173, peak Z-value = 3.23, p = 0.001) in the left hemisphere. The false discovery rate (FDR) was less than 0.04. From this study, group and individual analyses of SPM2 could clearly identify the perfusion abnormalities of brain SPECT in patients with TBI. Group analysis of SPM2 showed hypoperfusion pattern in the areas including medial frontal gyrus of both hemispheres, cingulate gyrus, anterior cingulate gyrus, parahippocampal gyrus and hippocampus in the left hemisphere compared to age-matched normal controls. Also, left parahippocampal gyrus and left hippocampus were additional hypoperfusion areas. However, these findings deserve further investigation on a larger number of patients to be performed to allow a better validation of objective SPM analysis in patients with TBI.
Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software.
Ebersberger, Ullrich; Marcus, Roy P; Schoepf, U Joseph; Lo, Gladys G; Wang, Yining; Blanke, Philipp; Geyer, Lucas L; Gray, J Cranston; McQuiston, Andrew D; Cho, Young Jun; Scheuering, Michael; Canstein, Christian; Nikolaou, Konstantin; Hoffmann, Ellen; Bamberg, Fabian
2014-01-01
To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. • Myocardial perfusion CT is attractive for comprehensive coronary heart disease assessment. • Traditional image analysis methods are cumbersome and time-consuming. • Automated 3D perfusion software shortens analysis times. • Automated 3D perfusion software increases standardisation of myocardial perfusion CT. • Automated, standardised analysis fosters myocardial perfusion CT integration into clinical practice.
Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji
2013-01-01
Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996
Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi
2009-01-01
Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.
Mauro, Liberatore; Manuela, Morreale; Valentina, Megna; Sara, Collorone; Chondrogiannis, Sotirios; Maria, Drudi Francesco; Christos, Anagnostou; Liana, Civitelli; Ada, Francia; Maffione, Anna Margherita; Marzola, Maria Cristina; Rubello, Domenico
2015-01-01
Background: The diagnosis of vasculitis in the brain remains a quite difficult achievement. To the best of our knowledge, there is no imaging method reported in literature which is capable of reaching to a diagnosis of vasculitis with very high sensitivity. Aim: The aim of this study was to determine whether perfusion brain single photon emission computed tomography (SPECT) can be usefully employed in monitoring the treatment of vasculitis, allowing treating only potentially responder patients and avoiding the side effects on patients who do not respond. Materials and Methods: Twenty patients (two males and 18 females) suffering from systemic lupus erythematosus (SLE; n = 5), Behcet's disease (BD; n = 5), undifferentiated vasculitis (UV; n = 5), and Sjogren's syndrome (SS; n = 5) were included in the study. All patients underwent a wide neurological anamnestic investigation, a complete objective neurological examination and SPECT of the brain with 99mTc-hexamethyl-propylene-aminoxime (HMPAO). The brain SPECT was then repeated after appropriate medical treatment. The neurological and neuropsychiatric follow-up was performed at 6 months after the start of the treatment. Results: Overall, the differences between the scintigraphic results obtained after and before the medical treatment indicated a statistically significant increase of the cerebral perfusion (CP). In 19 out of 200 regions of interest (ROI) studied, the difference between pre- and post treatment percentages had negative sign, indicating a worsening of CP. This latter event has occurred six times (five in the same patients) in the UV, 10 times (eight in the same patients) in the SLE, never in BD, and three times (two in the same patient) in the SS. Conclusion: The reported results seem to indicate the possibility of identifying, by the means of a brain SPECT, responder and nonresponder (unchanged or worsened CP) patients, affected by autoimmune vasculitis, to the therapy. PMID:25973400
Comparison of 18F SPECT with PET in myocardial imaging: a realistic thorax-cardiac phantom study.
Knešaurek, Karin; Machac, Josef
2006-10-31
Positron emission tomography (PET) imaging with fluorine-18 (18F) Fluorodeoxyglucose (FDG) and flow tracer such as Rubidium-82 (82Rb) is an established method for evaluating an ischemic but viable myocardium. However, the high cost of PET imaging restricts its wider clinical use. Therefore, less expensive 18F FDG single photon emission computed tomography (SPECT) imaging has been considered as an alternative to 18F FDG PET imaging. The purpose of the work is to compare SPECT with PET in myocardial perfusion/viability imaging. A nonuniform RH-2 thorax-heart phantom was used in the SPECT and PET acquisitions. Three inserts, 3 cm, 2 cm and 1 cm in diameter, were placed in the left ventricular (LV) wall to simulate infarcts. The phantom acquisition was performed sequentially with 7.4 MBq of 18F and 22.2 MBq of Technetium-99m (99mTc) in the SPECT study and with 7.4 MBq of 18F and 370 MBq of 82Rb in the PET study. SPECT and PET data were processed using standard reconstruction software provided by vendors. Circumferential profiles of the short-axis slices, the contrast and viability of the inserts were used to evaluate the SPECT and PET images. The contrast for 3 cm, 2 cm and 1 cm inserts were for 18F PET data, 1.0 +/- 0.01, 0.67 +/- 0.02 and 0.25 +/- 0.01, respectively. For 82Rb PET data, the corresponding contrast values were 0.61 +/- 0.02, 0.37 +/- 0.02 and 0.19 +/- 0.01, respectively. For 18F SPECT the contrast values were, 0.31 +/- 0.03 and 0.20 +/- 0.05 for 3 cm and 2 cm inserts, respectively. For 99mTc SPECT the contrast values were, 0.63 +/- 0.04 and 0.24 +/- 0.05 for 3 cm and 2 cm inserts respectively. In SPECT, the 1 cm insert was not detectable. In the SPECT study, all three inserts were falsely diagnosed as "viable", while in the PET study, only the 1 cm insert was diagnosed falsely "viable". For smaller defects the 99mTc/18F SPECT imaging cannot entirely replace the more expensive 82Rb/18F PET for myocardial perfusion/viability imaging, due to poorer image spatial resolution and poorer defect contrast.
Jiang, Zhixin; Liu, Yangqing; Xin, Chaofan; Zhou, Yanli; Wang, Cheng; Zhao, Zhongqiang; Li, Chunxiang; Li, Dianfu
2016-09-01
Normal stress myocardial single photon emission computed tomography (SPECT) usually indicates good physiologic function of all coronary lesions, and also indicates a good outcome. We hypothesize that it can still predict good outcome in patients with coronary stenoses between 40 and 70%. A group of patients who underwent stress myocardial SPECT after coronary angiography were consecutively recruited in our center. Patients were eligible if they had one or more coronary stenoses between 40 and 70%. Patients with coronary stenoses greater than 50% diameter of left main or greater than 70% diameter of nonleft main epicardial vessels, and left ventricular ejection fraction less than 50% were excluded. The outcome was defined as major adverse events, including cardiac death, nonfatal myocardial infarction, and revascularization. Patients' survival curves were constructed accorded to the method of Kaplan and Meier and compared using the log-rank test. A study cohort of 77 patients was enrolled. According to the summed stress score, 43 patients were assigned to the perfusion defect group and 34 patients were assigned to the perfusion normal group. The follow-up duration was 6.4±0.3 years. In the perfusion normal group, only one of 34 (2.9%) patients developed major adverse events. In the perfusion defect group, six of 43 (14%) developed major adverse events, P-value of 0.041. It is safe to defer a percutaneous coronary intervention in patients with coronary stenoses between 40 and 70% and normal stress myocardial SPECT.
Javadi, Hamid; Jallalat, Sara; Semnani, Shahriar; Mogharrabi, Mehdi; Nabipour, Iraj; Abbaszadeh, Moloud; Assadi, Majid
2013-01-01
False-positive findings with myocardial perfusion imaging (MPI) have frequently been identified in the presence of left bundle branch block (LBBB) and tend to lower the accuracy of MPI in individuals with normal coronary angiographs. Pharmacologic stress is recognized as the preferred method for MPI in patients with LBBB. In contrast, very few studies have evaluated the effect of right bundle branch block (RBBB) on MPI, and there is no consensus regarding the selection of pharmacologic versus exercise stress during MPI for the RBBB patient. In this study, we present a 45-year-old man with RBBB, who has a normal coronary artery angiography, but who showed abnormal myocardial perfusion with exercise MPI, and normal perfusion on dipyridamole MPI. The aim of the study is to stimulate awareness that the stress method selected for patients with RBBB can potentially interfere with the accuracy of the data.
NASA Astrophysics Data System (ADS)
Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.
2015-09-01
This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.
Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging
Ghotbi, Adam A; Kjær, Andreas; Hasbak, Philip
2014-01-01
Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. PMID:24028171
Ventilation/perfusion single-photon emission computed tomography: a service evaluation.
Parekh, Amit; Graham, Richard; Redman, Stewart
2017-08-01
To identify the positive rate and negative predictive value (NPV) of our ventilation/perfusion (V/Q) single-photon emission computed tomography (SPECT) service as respective markers of overcalling (false positives) and undercalling (false negatives). We also identified the indeterminate rate as an indicator of the technical quality of the scans and reporter confidence. V/Q SPECT studies carried out over 5 years were classified into positive, negative and indeterminate results. Patients who had died or had pulmonary emboli on imaging within 3 months of a negative V/Q SPECT were identified as false negatives, from which the NPV was calculated. The total number of positive and indeterminate studies as a proportion of all studies was calculated as the positive and indeterminate rates. The positive rate, NPV and indeterminate rates in nonpregnant patients were 24, 98.7-100 and 3.6%, respectively. The positive rate, NPV and indeterminate rates in pregnant patients were 6.8, 100 and 2.3%, respectively. The positive rate and NPV for nonpregnant patients were similar to the published literature. This suggests that we provide a safe service. The indeterminate rate was slightly higher than the stated guidelines. The study shows that the positive rate and NPV are achievable indicators of potential overcalling and undercalling in a V/Q SPECT service.This is also one of the first studies to report a positive rate in pregnant patients undergoing V/Q SPECT that other institutions can use as a standard when evaluating their services.
Lee, Jung Keun; Yoon, Byul Hee; Chung, Seung Young; Park, Moon Sun; Kim, Seong Min; Lee, Do Sung
2013-10-01
MR perfusion and single photon emission computerized tomography (SPECT) are well known imaging studies to evaluate hemodynamic change between prior to and following superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis in moyamoya disease. But their side effects and invasiveness make discomfort to patients. We evaluated the ivy sign on MR fluid attenuated inversion recovery (FLAIR) images in adult patients with moyamoya disease and compared it with result of SPECT and MR perfusion images. We enrolled twelve patients (thirteen cases) who were diagnosed with moyamoya disease and underwent STA-MCA anastomosis at our medical institution during a period ranging from September of 2010 to December of 2012. The presence of the ivy sign on MR FLAIR images was classified as Negative (0), Minimal (1), and Positive (2). Regions were classified into four territories: the anterior cerebral artery (ACA), the anterior MCA, the posterior MCA and the posterior cerebral artery. Ivy signs on preoperative and postoperative MR FLAIR were improved (8 and 4 in the ACA regions, 13 and 4 in the anterior MCA regions and 19 and 9 in the posterior MCA regions). Like this result, the cerebrovascular reserve (CVR) on SPECT was significantly increased in the sum of CVR in same regions after STA-MCA anastomosis. After STA-MCA anastomosis, ivy signs were decreased in the cerebral hemisphere. As compared with conventional diagnostic modalities such as SPECT and MR perfusion images, the ivy sign on MR FLAIR is considered as a useful indicator in detecting brain hemodynamic changes between preoperatively and postoperatively in adult moyamoya patients.
Lee, Jung Keun; Yoon, Byul Hee; Park, Moon Sun; Kim, Seong Min; Lee, Do Sung
2013-01-01
Objective MR perfusion and single photon emission computerized tomography (SPECT) are well known imaging studies to evaluate hemodynamic change between prior to and following superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis in moyamoya disease. But their side effects and invasiveness make discomfort to patients. We evaluated the ivy sign on MR fluid attenuated inversion recovery (FLAIR) images in adult patients with moyamoya disease and compared it with result of SPECT and MR perfusion images. Methods We enrolled twelve patients (thirteen cases) who were diagnosed with moyamoya disease and underwent STA-MCA anastomosis at our medical institution during a period ranging from September of 2010 to December of 2012. The presence of the ivy sign on MR FLAIR images was classified as Negative (0), Minimal (1), and Positive (2). Regions were classified into four territories: the anterior cerebral artery (ACA), the anterior MCA, the posterior MCA and the posterior cerebral artery. Results Ivy signs on preoperative and postoperative MR FLAIR were improved (8 and 4 in the ACA regions, 13 and 4 in the anterior MCA regions and 19 and 9 in the posterior MCA regions). Like this result, the cerebrovascular reserve (CVR) on SPECT was significantly increased in the sum of CVR in same regions after STA-MCA anastomosis. Conclusion After STA-MCA anastomosis, ivy signs were decreased in the cerebral hemisphere. As compared with conventional diagnostic modalities such as SPECT and MR perfusion images, the ivy sign on MR FLAIR is considered as a useful indicator in detecting brain hemodynamic changes between preoperatively and postoperatively in adult moyamoya patients. PMID:24294453
Optimisation of reconstruction--reprojection-based motion correction for cardiac SPECT.
Kangasmaa, Tuija S; Sohlberg, Antti O
2014-07-01
Cardiac motion is a challenging cause of image artefacts in myocardial perfusion SPECT. A wide range of motion correction methods have been developed over the years, and so far automatic algorithms based on the reconstruction--reprojection principle have proved to be the most effective. However, these methods have not been fully optimised in terms of their free parameters and implementational details. Two slightly different implementations of reconstruction--reprojection-based motion correction techniques were optimised for effective, good-quality motion correction and then compared with each other. The first of these methods (Method 1) was the traditional reconstruction-reprojection motion correction algorithm, where the motion correction is done in projection space, whereas the second algorithm (Method 2) performed motion correction in reconstruction space. The parameters that were optimised include the type of cost function (squared difference, normalised cross-correlation and mutual information) that was used to compare measured and reprojected projections, and the number of iterations needed. The methods were tested with motion-corrupt projection datasets, which were generated by adding three different types of motion (lateral shift, vertical shift and vertical creep) to motion-free cardiac perfusion SPECT studies. Method 2 performed slightly better overall than Method 1, but the difference between the two implementations was small. The execution time for Method 2 was much longer than for Method 1, which limits its clinical usefulness. The mutual information cost function gave clearly the best results for all three motion sets for both correction methods. Three iterations were sufficient for a good quality correction using Method 1. The traditional reconstruction--reprojection-based method with three update iterations and mutual information cost function is a good option for motion correction in clinical myocardial perfusion SPECT.
Design of a digital phantom population for myocardial perfusion SPECT imaging research.
Ghaly, Michael; Du, Yong; Fung, George S K; Tsui, Benjamin M W; Links, Jonathan M; Frey, Eric
2014-06-21
Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the context of single and dual isotope MPS.
Design of a digital phantom population for myocardial perfusion SPECT imaging research
NASA Astrophysics Data System (ADS)
Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric
2014-06-01
Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the context of single and dual isotope MPS.
NASA Astrophysics Data System (ADS)
O'Connor, J. Michael; Pretorius, P. Hendrik; Gifford, Howard C.; Licho, Robert; Joffe, Samuel; McGuiness, Matthew; Mehurg, Shannon; Zacharias, Michael; Brankov, Jovan G.
2012-02-01
Our previous Single Photon Emission Computed Tomography (SPECT) myocardial perfusion imaging (MPI) research explored the utility of numerical observers. We recently created two hundred and eighty simulated SPECT cardiac cases using Dynamic MCAT (DMCAT) and SIMIND Monte Carlo tools. All simulated cases were then processed with two reconstruction methods: iterative ordered subset expectation maximization (OSEM) and filtered back-projection (FBP). Observer study sets were assembled for both OSEM and FBP methods. Five physicians performed an observer study on one hundred and seventy-nine images from the simulated cases. The observer task was to indicate detection of any myocardial perfusion defect using the American Society of Nuclear Cardiology (ASNC) 17-segment cardiac model and the ASNC five-scale rating guidelines. Human observer Receiver Operating Characteristic (ROC) studies established the guidelines for the subsequent evaluation of numerical model observer (NO) performance. Several NOs were formulated and their performance was compared with the human observer performance. One type of NO was based on evaluation of a cardiac polar map that had been pre-processed using a gradient-magnitude watershed segmentation algorithm. The second type of NO was also based on analysis of a cardiac polar map but with use of a priori calculated average image derived from an ensemble of normal cases.
NASA Astrophysics Data System (ADS)
Song, X.; Frey, E. C.; Wang, W. T.; Du, Y.; Tsui, B. M. W.
2004-02-01
Simultaneous acquisition of /sup 99m/Tc stress and /sup 201/Tl rest myocardial perfusion SPECT has several potential advantages, but the image quality is degraded by crosstalk between the Tc and Tl data. We have previously developed a crosstalk model that includes estimates of the downscatter and Pb X-ray for use in crosstalk compensation. In this work, we validated the model by comparing the crosstalk from /sup 99m/Tc to the Tl window calculated using a combination of the SimSET-MCNP Monte Carlo simulation codes. We also evaluated the model-based crosstalk compensation method using both simulated data from the 3-D MCAT phantom and experimental data from a physical phantom with a myocardial defect. In these studies, the Tl distributions were reconstructed from crosstalk contaminated data without crosstalk compensation, with compensation using the model-based crosstalk estimate, and with compensation using the known true crosstalk, and were compared with the Tl distribution reconstructed from uncontaminated Tl data. Results show that the model gave good estimates of both the downscatter photons and Pb X-rays in the simultaneous dual-isotopes myocardial perfusion SPECT. The model-based compensation method provided image quality that was significantly improved as compared to no compensation and was very close to that from the separate acquisition.
Tanaka, Haruki; Takahashi, Teruyuki; Ohashi, Norihiko; Tanaka, Koichi; Okada, Takenori; Kihara, Yasuki
2017-01-01
Abstract The aim of this study was to clarify the predictive value of fractional flow reserve (FFR) determined by myocardial perfusion imaging (MPI) using thallium (Tl)-201 IQ-SPECT without and with computed tomography-based attenuation correction (CT-AC) for patients with stable coronary artery disease (CAD). We assessed 212 angiographically identified diseased vessels using adenosine-stress Tl-201 MPI-IQ-SPECT/CT in 84 consecutive, prospectively identified patients with stable CAD. We compared the FFR in 136 of the 212 diseased vessels using visual semiquantitative interpretations of corresponding territories on MPI-IQ-SPECT images without and with CT-AC. FFR inversely correlated most accurately with regional summed difference scores (rSDS) in images without and with CT-AC (r = −0.584 and r = −0.568, respectively, both P < .001). Receiver-operating characteristics analyses using rSDS revealed an optimal FFR cut-off of <0.80 without and with CT-AC. Although the diagnostic accuracy of FFR <0.80 did not significantly differ, FFR ≥0.82 was significantly more accurate with, than without CT-AC. Regions with rSDS ≥2 without or with CT-AC predicted FFR <0.80, and those with rSDS ≤1 without and with CT-AC predicted FFR ≥0.81, with 73% and 83% sensitivity, 84% and 67% specificity, and 79% and 75% accuracy, respectively. Although limited by the sample size and the single-center design, these findings showed that the IQ-SPECT system can predict FFR at an optimal cut-off of <0.80, and we propose a novel application of CT-AC to MPI-IQ-SPECT for predicting clinically significant and insignificant FFR even in nonobese patients. PMID:29390486
Rastgou, Fereydoon; Shojaeifard, Maryam; Amin, Ahmad; Ghaedian, Tahereh; Firoozabadi, Hasan; Malek, Hadi; Yaghoobi, Nahid; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amouzadeh, Hedieh; Barati, Hossein
2014-12-01
Recently, the phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has become feasible via several software packages for the evaluation of left ventricular mechanical dyssynchrony. We compared two quantitative software packages, quantitative gated SPECT (QGS) and Emory cardiac toolbox (ECTb), with tissue Doppler imaging (TDI) as the conventional method for the evaluation of left ventricular mechanical dyssynchrony. Thirty-one patients with severe heart failure (ejection fraction ≤35%) and regular heart rhythm, who referred for gated-SPECT MPI, were enrolled. TDI was performed within 3 days after MPI. Dyssynchrony parameters derived from gated-SPECT MPI were analyzed by QGS and ECTb and were compared with the Yu index and septal-lateral wall delay measured by TDI. QGS and ECTb showed a good correlation for assessment of phase histogram bandwidth (PHB) and phase standard deviation (PSD) (r = 0.664 and r = 0.731, P < .001, respectively). However, the mean value of PHB and PSD by ECTb was significantly higher than that of QGS. No significant correlation was found between ECTb and QGS and the Yu index. Nevertheless, PHB, PSD, and entropy derived from QGS revealed a significant (r = 0.424, r = 0.478, r = 0.543, respectively; P < .02) correlation with septal-lateral wall delay. Despite a good correlation between QGS and ECTb software packages, different normal cut-off values of PSD and PHB should be defined for each software package. There was only a modest correlation between phase analysis of gated-SPECT MPI and TDI data, especially in the population of heart failure patients with both narrow and wide QRS complex.
Mariën, Peter; Abutalebi, Jubin; Engelborghs, Sebastiaan; De Deyn, Peter P
2005-12-01
Acquired aphasia after circumscribed vascular subcortical lesions has not been reported in bilingual children. We report clinical and neuroimaging findings in an early bilingual boy who incurred equally severe transcortical sensory aphasia in his first language (L1) and second language (L2) after a posterior left thalamic hemorrhage. Following recurrent bleeding of the lesion the aphasic symptoms substantially aggravated. Spontaneous pathological language switching and mixing were found in both languages. Remission of these phenomena was reflected on brain perfusion SPECT revealing improved perfusion in the left frontal lobe and left caudate nucleus. The parallelism between the evolution of language symptoms and the SPECT findings may demonstrate that a subcortical left frontal lobe circuity is crucially involved in language switching and mixing.
Myocardial infarction with Moyamoya disease and pituitary gigantism in a young female patient.
Ahn, Y K; Jeong, M H; Bom, H S; Park, J C; Kim, J K; Chung, D J; Chung, M Y; Cho, J G; Kang, J C
1999-08-01
Myocardial infarction is very rare in young female patients with systemic vascular disorders. Moyamoya disease is a cerebrovascular disease associated with an abnormal vascular network. This report presents a 19-year-old female patient who suffered from chest pain and exertional dyspnea for 2 months prior to admission. She had a history of Moyamoya disease and pituitary gigantism since childhood. Her ejection fraction on echocardiogram was 20% and a perfusion defect with partial reversibility in the anterior wall was demonstrated on stress single photon emission computed tomography (SPECT). Diagnostic coronary angiogram revealed critical stenosis in the middle left anterior descending artery, which was treated by coronary stenting. Her subjective symptoms were relieved and the perfusion defect seen on SPECT decreased after coronary intervention.
Henderson, Theodore A; Morries, Larry D
2015-01-01
Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI.
Banaś, Anna
2003-01-01
A case of severe organic affective disorder after head trauma with loss of consciousness is presented. While CT in this case was normal, SPECT brain perfusion imaging showed hipoperfusion in the right frontal lobe and the left temporal-parietal region. The psychologic tests: Benton, Bender, MMPI confirmed changes in CNS as well. These findings help to explain the severity and chronicity of disorders and medical certification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, D.C.; Ell, P.J.; Burns, A.
1988-12-01
We present preliminary data on the utility of functional brain imaging with (99mTc)-d,l-HM-PAO and single photon emission computed tomography (SPECT) in the study of patients with dementia of the Alzheimer type (DAT), HIV-related dementia syndrome, and the on-off syndrome of Parkinson's disease. In comparison with a group of age-matched controls, the DAT patients revealed distinctive bilateral temporal and posterior parietal deficits, which correlate with detailed psychometric evaluation. Patients with amnesia as the main symptom (group A) showed bilateral mesial temporal lobe perfusion deficits (p less than 0.02). More severely affected patients (group B) with significant apraxia, aphasia, or agnosia exhibitedmore » patterns compatible with bilateral reduced perfusion in the posterior parietal cortex, as well as reduced perfusion to both temporal lobes, different from the patients of the control group (p less than 0.05). SPECT studies of HIV patients with no evidence of intracraneal space occupying pathology showed marked perfusion deficits. Patients with Parkinson's disease and the on-off syndrome studied during an on phase (under levodopa therapy) and on another occasion after withdrawal of levodopa (off) demonstrated a significant change in the uptake of (99mTc)-d,l-HM-PAO in the caudate nucleus (lower on off) and thalamus (higher on off). These findings justify the present interest in the functional evaluation of the brain of patients with dementia. (99mTc)-d,l-HM-PAO and regional cerebral blood flow (rCBF)/SPECT appear useful and highlight individual disorders of flow in a variety of neuropsychiatric conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xue; Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan; Frey, Kirk
2014-05-01
Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL)more » was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.« less
Karls, Shawn; Hassoun, Hani; Derbekyan, Vilma
2016-09-01
A 67-year-old male presented with dyspnea for which lung scintigraphy was ordered to rule out pulmonary embolus. Planar images demonstrated abnormal midline uptake of Tc-99m macroaggregated albumin, which SPECT/CT localized to several thoracic vertebrae. Thoracic vertebral uptake on perfusion lung scintigraphy was previously described on planar imaging. Radionuclide venography and contrast-enhanced CT subsequently demonstrated superior vena cava (SVC) obstruction with collateralization through the azygous/hemiazygous system and vertebral venous plexus. SPECT/CT differentiated residual esophageal/tracheal ventilation activity, a clinically insignificant finding, from vertebral uptake indicative of SVC obstruction, a potentially life-threatening condition.
Sahiner, Ilgin; Akdemir, Umit O; Kocaman, Sinan A; Sahinarslan, Asife; Timurkaynak, Timur; Unlu, Mustafa
2013-02-01
Myocardial perfusion SPECT (MPS) is a noninvasive method commonly used for assessment of the hemodynamic significance of intermediate coronary stenoses. Fractional flow reserve (FFR) measurement is a well-validated invasive method used for the evaluation of intermediate stenoses. We aimed to determine the association between MPS and FFR findings in intermediate degree stenoses and evaluate the added value of quantification in MPS. Fifty-eight patients who underwent intracoronary pressure measurement in the catheterization laboratory to assess the physiological significance of intermediate (40-70%) left anterior descending (LAD) artery lesions, and who also underwent stress myocardial perfusion SPECT either for the assessment of an intermediate stenosis or for suspected coronary artery disease were analyzed retrospectively in the study. Quantitative analysis was performed using the 4DMSPECT program, with visual assessment performed by two experienced nuclear medicine physicians blinded to the angiographic findings. Summed stress scores (SSS) and summed difference scores (SDS) in the LAD artery territory according to the 20 segment model were calculated. A summed stress score of ≥ 3 and an SDS of ≥ 2 were assumed as pathologic, indicating significance of the lesion; a cutoff value of 0.75 was used to define abnormal FFR. Both visual and quantitative assessment results were compared with FFR using Chi-square (χ²) test. The mean time interval between two studies was 13 ± 11 days. FFR was normal in 45 and abnormal in 13 patients. Considering the FFR results as the gold standard method for assessing the significance of the lesion, the sensitivity and specificity of quantitative analysis determining the abnormal flow reserve were 85 and 84%, respectively, while visual analysis had a sensitivity of 77% and a specificity of 51%. There was a good agreement between the observers (κ = 0.856). Summed stress and difference scores demonstrated moderate inverse correlations with FFR values (r = -0.542, p < 0.001 and r = -0.506, p < 0.001, respectively). Quantitative analysis of the myocardial perfusion SPECT increases the specificity in evaluating the significance of intermediate degree coronary lesions.
Wong, Raymond C; Sinha, Arvind Kumar; Mahadevan, Malcolm; Yeo, Tiong Cheng
2010-09-01
Conventional emergency department (EMD) approach to triaging acute chest pain syndromes may lead to unnecessary admissions, resulting to in-hospital bed occupancy and increased healthcare costs. We explore the diagnostic utility of early (less than a week) outpatient scheduled single photon emission computed tomography (SPECT) in intermediate-risk chest pain subjects who presented to EMD with non-diagnostic electrocardiogram and negative serum troponin level. Additionally, we intend to study the safety and cost-effectiveness of such a strategy. We conduct a prospective, non-randomized study of 108 subjects who fit the inclusion criteria. After SPECT studies, all subjects were evaluated in the cardiac clinic within 2 weeks of EMD visits. Final diagnosis of coronary artery disease and subsequent disposition to standard medical therapy or follow-on angiography were decided by incorporating pre-test clinical data and SPECT results. Adverse events defined as myocardial infarction and cardiac death was tracked between EMD visit and eventual therapy (either medical therapy or coronary revascularization). Finally, cost-effectiveness was determined based on estimated cost and days of hospitalization saved between standard strategies of ward admission for further evaluation versus the present early outpatient SPECT-based workflow. Among 108 subjects (mean age 58 years, 59% male) included for analysis, 82 (76%) had normal perfusion status. There was no statistical difference in baseline characteristics and prior ischemic heart disease history between groups. In the 26 abnormal perfusion subjects, seven had follow-on coronary angiography in which three were found to have significant stenotic coronary lesions, but only one had intervention performed. There was an unscheduled coronary angiography in the normal perfusion group that yielded normal coronary anatomy. There was no adverse clinical event in both groups. Compared with standard strategy, early outpatient SPECT initiated by EMD physicians followed by cardiac clinic evaluation resulted in 2.9 days of hospitalization or $781.23 saved per patient per EMD visit. EMD-initiated early SPECT studies followed by cardiac clinic evaluation in intermediate-risk acute chest pain syndromes with non-diagnostic ECG and negative serum troponin levels carries excellent diagnostic and therapeutic utility, in addition to being safe and cost-effective.
Perfusion status of the stroke-like lesion at the hyperacute stage in MELAS.
Yeh, Hsu-Ling; Chen, Yen-Kung; Chen, Wei-Hung; Wang, Han-Cheng; Chiu, Hou-Chang; Lien, Li-Ming; Wei, Yau-Huei
2013-02-01
Hypoperfusion on single-photon emission computed tomography (SPECT) of the stroke-like lesion (SLL) at the hyperacute stage of mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) is considered to be a supportive evidence of the mitochondrial angiopathy theory. Our objectives were to examine whether other neuroimages, especially transcranial color-coded sonography (TCCS), done at the hyperacute stage of stroke-like episode (SLE) is consistent with hypoperfusion of the SLL. We reviewed the magnetic resonance imaging (MRI), SPECT, cerebral angiography, and TCCS of a patient with MELAS syndrome, all of which were performed at the hyperacute stage of one SLE. MRI on the 1st day post SLE showed right temporoparietal lesion with vasogenic edema. SPECT on the 2nd day showed focal decreased uptake of technetium-99m hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) in the same region, but cerebral angiography and TCCS on the 3rd day showed increased regional cerebral blood flow (rCBF) and distal arteriole dilation in the same region. TCCS can delineate increased rCBF of the SLL at the hyperacute stage of SLE. We propose that the discrepancy between the decreased (99m)Tc-HMPAO uptake and increased rCBF might be caused by mitochondrial dysfunction. The phenomenon of "hypoperfusion" on SPECT might be caused by cell dysfunction but not decreased rCBF. We suggest that SPECT can be complemented by angiography and TCCS in future studies to delineate the perfusion status of SLLs. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Wielpütz, Mark O.; Kauczor, Hans-Ulrich
2012-01-01
From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues (J Clin Invest 40: 1–12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique. PMID:22604884
Trott, C M; Ouyang, J; El Fakhri, G
2010-11-21
Simultaneous rest perfusion/fatty-acid metabolism studies have the potential to replace sequential rest/stress perfusion studies for the assessment of cardiac function. Simultaneous acquisition has the benefits of increased signal and lack of need for patient stress, but is complicated by cross-talk between the two radionuclide signals. We consider a simultaneous rest (99m)Tc-sestamibi/(123)I-BMIPP imaging protocol in place of the commonly used sequential rest/stress (99m)Tc-sestamibi protocol. The theoretical precision with which the severity of a cardiac defect and the transmural extent of infarct can be measured is computed for simultaneous and sequential SPECT imaging, and their performance is compared for discriminating (1) degrees of defect severity and (2) sub-endocardial from transmural defects. We consider cardiac infarcts for which reduced perfusion and metabolism are observed. From an information perspective, simultaneous imaging is found to yield comparable or improved performance compared with sequential imaging for discriminating both severity of defect and transmural extent of infarct, for three defects of differing location and size.
Radionuclide Ventriculography or Radionuclide Angiography (MUGA Scan)
... Attack Heart Failure Myocardial Perfusion Imaging (MPI) Single Photon Emission Computed Tomography (SPECT) Positron Emission Tomography (PET) ... stroke. Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms in ...
Kelsey, Chris R; Jackson, Lauren; Langdon, Scott; Owzar, Kouros; Hubbs, Jessica; Vujaskovic, Zeljko; Das, Shiva; Marks, Lawrence B
2012-02-01
To evaluate whether single nucleotide polymorphisms (SNPs) in the transforming growth factor-β1 (TGFβ1) gene are associated with radiation sensitivity using an objective radiologic endpoint. Preradiation therapy and serial postradiation therapy single photon emission computed tomography (SPECT) lung perfusion scans were obtained in patients undergoing treatment for lung cancer. Serial blood samples were obtained to measure circulating levels of TGFβ1. Changes in regional perfusion were related to regional radiation dose yielding a patient-specific dose-response curve, reflecting the patient's inherent sensitivity to radiation therapy. Six TGFβ1 SNPs (-988, -800, -509, 869, 941, and 1655) were assessed using high-resolution melting assays and DNA sequencing. The association between genotype and slope of the dose-response curve, and genotype and TGFβ1 ratio (4-week/preradiation therapy), was analyzed using the Kruskal-Wallis test. 39 white patients with preradiation therapy and ≥ 6-month postradiation therapy SPECT scans and blood samples were identified. Increasing slope of the dose-response curve was associated with the C(-509)T SNP (p = 0.035), but not the other analyzed SNPs. This SNP was also associated with higher TGFβ1 ratios. This study suggests that a polymorphism within the promoter of the TGFβ1 gene is associated with increased radiation sensitivity (defined objectively by dose-dependent changes in SPECT lung perfusion). Copyright © 2012 Elsevier Inc. All rights reserved.
Cabeda, Estêvan Vieira; Falcão, Andréa Maria Gomes; Soares, José; Rochitte, Carlos Eduardo; Nomura, César Higa; Ávila, Luiz Francisco Rodrigues; Parga, José Rodrigues
2015-12-01
Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution's ethics committee. The patients' mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelsey, Chris R., E-mail: kelse003@mc.duke.edu; Jackson, Lauren; Langdon, Scott
2012-02-01
Purpose: To evaluate whether single nucleotide polymorphisms (SNPs) in the transforming growth factor-{beta}1 (TGF{beta}1) gene are associated with radiation sensitivity using an objective radiologic endpoint. Methods and Materials: Preradiation therapy and serial postradiation therapy single photon emission computed tomography (SPECT) lung perfusion scans were obtained in patients undergoing treatment for lung cancer. Serial blood samples were obtained to measure circulating levels of TGF{beta}1. Changes in regional perfusion were related to regional radiation dose yielding a patient-specific dose-response curve, reflecting the patient's inherent sensitivity to radiation therapy. Six TGF{beta}1 SNPs (-988, -800, -509, 869, 941, and 1655) were assessed using high-resolutionmore » melting assays and DNA sequencing. The association between genotype and slope of the dose-response curve, and genotype and TGF{beta}1 ratio (4-week/preradiation therapy), was analyzed using the Kruskal-Wallis test. Results: 39 white patients with preradiation therapy and {>=}6-month postradiation therapy SPECT scans and blood samples were identified. Increasing slope of the dose-response curve was associated with the C(-509)T SNP (p = 0.035), but not the other analyzed SNPs. This SNP was also associated with higher TGF{beta}1 ratios. Conclusions: This study suggests that a polymorphism within the promoter of the TGF{beta}1 gene is associated with increased radiation sensitivity (defined objectively by dose-dependent changes in SPECT lung perfusion).« less
Imaging Lung Function in Mice Using SPECT/CT and Per-Voxel Analysis
Jobse, Brian N.; Rhem, Rod G.; McCurry, Cory A. J. R.; Wang, Iris Q.; Labiris, N. Renée
2012-01-01
Chronic lung disease is a major worldwide health concern but better tools are required to understand the underlying pathologies. Ventilation/perfusion (V/Q) single photon emission computed tomography (SPECT) with per-voxel analysis allows for non-invasive measurement of regional lung function. A clinically adapted V/Q methodology was used in healthy mice to investigate V/Q relationships. Twelve week-old mice were imaged to describe normal lung function while 36 week-old mice were imaged to determine how age affects V/Q. Mice were ventilated with Technegas™ and injected with 99mTc-macroaggregated albumin to trace ventilation and perfusion, respectively. For both processes, SPECT and CT images were acquired, co-registered, and quantitatively analyzed. On a per-voxel basis, ventilation and perfusion were moderately correlated (R = 0.58±0.03) in 12 week old animals and a mean log(V/Q) ratio of −0.07±0.01 and standard deviation of 0.36±0.02 were found, defining the extent of V/Q matching. In contrast, 36 week old animals had significantly increased levels of V/Q mismatching throughout the periphery of the lung. Measures of V/Q were consistent across healthy animals and differences were observed with age demonstrating the capability of this technique in quantifying lung function. Per-voxel analysis and the ability to non-invasively assess lung function will aid in the investigation of chronic lung disease models and drug efficacy studies. PMID:22870297
SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.
Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q
1998-05-01
The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.
Amen, Daniel G; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A
2016-04-25
National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players.
Amen, Daniel G.; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A.
2016-01-01
Background: National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. Objective: To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. Method: A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. Results: NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Conclusion: Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players. PMID:27128374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyck, C.H. van; Lin, C.H.; Smith, E.O.
1996-11-01
SPECT has shown increasing promise as a diagnostic tool in Alzheimer`s disease (AD). Recently, a new SPECT brain perfusion agent, {sup 99m}Tc-ethyl cysteinate dimer ({sup 99m}Tc-ECD) has emerged with purported advantages in image quality over the established tracer, {sup 99m}Tc-hexamethylpropyleneamine oxime ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for {sup 99}mTc-HMPAO and {sup 99m}Tc-ECD in discriminating patients with AD form control subjects. 51 refs., 5 figs., 3 tabs.
Miyagawa, Masao; Nishiyama, Yoshiko; Uetani, Teruyoshi; Ogimoto, Akiyoshi; Ikeda, Shuntaro; Ishimura, Hayato; Watanabe, Emiri; Tashiro, Rami; Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Mochizuki, Teruhito
2017-10-01
Quantitative assessment of myocardial flow reserve (MFR) by single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is challenging but may facilitate evaluation of multi-vessel coronary artery disease (CAD). We enrolled 153 patients with suspected or known CAD, referred for pharmacological stress MPI. They underwent a 99m Tc-perfusion stress/rest SPECT with an ultrafast cadmium-zinc-telluride (CZT) camera. Dynamic data were acquired and time-activity curves fitted to a 1-tissue compartment analysis with input function. K1 was assigned for stress and rest data. The MFR index (MFRi) was calculated as K1 stress/K1 at-rest. The findings were validated by invasive coronary angiography in 69 consecutive patients. The global MFRi was 1.46 (1.16-1.76), 1.33 (1.12-1.54), and 1.18 (1.01-1.35), for 1-vessel disease (VD), 2-VD, and 3-VD, respectively. In the 3-VD, global MFRi was lower than that in 0-VD (1.63 [1.22-2.04], P<0.0001) and 1-VD (P=0.003). Multivariate logistic regression analysis for 3-VD showed significant associations with smoking history (odds ratio [OR]: 4.4 [0.4-8.4]), left ventricular ejection fraction (OR: 61.6 [57.5-66.0]), and global MFRi (OR: 119.6 [111.5-127.7], P=0.002). A cut-off value of 1.3 yielded 93.3% sensitivity and 75.9% specificity for diagnosing 3-VD. Fractional flow reserve positively correlated with regional MFRi (r=0.62, P=0.008), and the SYNTAX score correlated negatively with global MFRi (r=0.567, P=0.0003). We developed and validated a clinically available method for MFR quantification by dynamic 99m Tc-perfusion SPECT utilizing a CZT camera, which improves the detectability of multi-vessel CAD. Copyright © 2017 Elsevier B.V. All rights reserved.
Yokoyama, Shunichi; Kajiya, Yoriko; Yoshinaga, Takuma; Tani, Atsushi; Hirano, Hirofumi
2014-06-01
In the diagnosis of Alzheimer's disease (AD), discrepancies are often observed between magnetic resonance imaging (MRI) and brain perfusion single-photon emission computed tomography (SPECT) findings. MRI, brain perfusion SPECT, and amyloid positron emission tomography (PET) findings were compared in patients with mild cognitive impairment or early AD to clarify the discrepancies between imaging modalities. Several imaging markers were investigated, including the cortical average standardized uptake value ratio on amyloid PET, the Z-score of a voxel-based specific regional analysis system for AD on MRI, periventricular hyperintensity grade, deep white matter hyperintense signal grade, number of microbleeds, and three indicators of the easy Z-score imaging system for a specific SPECT volume-of-interest analysis. Based on the results of the regional analysis and the three indicators, we classified patients into four groups and then compared the results of amyloid PET, periventricular hyperintensity grade, deep white matter hyperintense signal grade, and the numbers of microbleeds among the groups. The amyloid deposition was the highest in the group that presented typical AD findings on both the regional analysis and the three indicators. The two groups that showed an imaging discrepancy between the regional analysis and the three indicators demonstrated intermediate amyloid deposition findings compared with the typical and atypical groups. The patients who showed hippocampal atrophy on the regional analysis and atypical AD findings using the three indicators were approximately 60% amyloid-negative. The mean periventricular hyperintensity grade was highest in the typical group. Patients showing discrepancies between MRI and SPECT demonstrated intermediate amyloid deposition findings compared with patients who showed typical or atypical findings. Strong white matter signal abnormalities on MRI in patients who presented typical AD findings provided further evidence for the involvement of vascular factors in AD. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.
Nakazato, Ryo; Slomka, Piotr J; Fish, Mathews; Schwartz, Ronald G; Hayes, Sean W; Thomson, Louise E J; Friedman, John D; Lemley, Mark; Mackin, Maria L; Peterson, Benjamin; Schwartz, Arielle M; Doran, Jesse A; Germano, Guido; Berman, Daniel S
2015-04-01
Obesity is a common source of artifact on conventional SPECT myocardial perfusion imaging (MPI). We evaluated image quality and diagnostic performance of high-efficiency (HE) cadmium-zinc-telluride parallel-hole SPECT MPI for coronary artery disease (CAD) in obese patients. 118 consecutive obese patients at three centers (BMI 43.6 ± 8.9 kg·m(-2), range 35-79.7 kg·m(-2)) had upright/supine HE-SPECT and invasive coronary angiography > 6 months (n = 67) or low likelihood of CAD (n = 51). Stress quantitative total perfusion deficit (TPD) for upright (U-TPD), supine (S-TPD), and combined acquisitions (C-TPD) was assessed. Image quality (IQ; 5 = excellent; < 3 nondiagnostic) was compared among BMI 35-39.9 (n = 58), 40-44.9 (n = 24) and ≥45 (n = 36) groups. ROC curve area for CAD detection (≥50% stenosis) for U-TPD, S-TPD, and C-TPD were 0.80, 0.80, and 0.87, respectively. Sensitivity/specificity was 82%/57% for U-TPD, 74%/71% for S-TPD, and 80%/82% for C-TPD. C-TPD had highest specificity (P = .02). C-TPD normalcy rate was higher than U-TPD (88% vs 75%, P = .02). Mean IQ was similar among BMI 35-39.9, 40-44.9 and ≥45 groups [4.6 vs 4.4 vs 4.5, respectively (P = .6)]. No patient had a nondiagnostic stress scan. In obese patients, HE-SPECT MPI with dedicated parallel-hole collimation demonstrated high image quality, normalcy rate, and diagnostic accuracy for CAD by quantitative analysis of combined upright/supine acquisitions.
Nakazato, Ryo; Slomka, Piotr J.; Fish, Mathews; Schwartz, Ronald G.; Hayes, Sean W.; Thomson, Louise E.J.; Friedman, John D.; Lemley, Mark; Mackin, Maria L.; Peterson, Benjamin; Schwartz, Arielle M.; Doran, Jesse A.; Germano, Guido; Berman, Daniel S.
2014-01-01
Background Obesity is a common source of artifact on conventional SPECT myocardial perfusion imaging (MPI). We evaluated image quality and diagnostic performance of high-efficiency (HE) cadmium-zinc-telluride (CZT) parallel-hole SPECT-MPI for coronary artery disease (CAD) in obese patients. Methods and Results 118 consecutive obese patients at 3 centers (BMI 43.6±8.9 kg/m2, range 35–79.7 kg/m2) had upright/supine HE-SPECT and ICA >6 months (n=67) or low-likelihood of CAD (n=51). Stress quantitative total perfusion deficit (TPD) for upright (U-TPD), supine (S-TPD) and combined acquisitions (C-TPD) was assessed. Image quality (IQ; 5=excellent; <3 nondiagnostic) was compared among BMI 35–39.9 (n=58), 40–44.9 (n=24) and ≥45 (n=36) groups. ROC-curve area for CAD detection (≥50% stenosis) for U-TPD, S-TPD, and C-TPD were 0.80, 0.80, and 0.87, respectively. Sensitivity/specificity was 82%/57% for U-TPD, 74%/71% for S-TPD, and 80%/82% for C-TPD. C-TPD had highest specificity (P=.02). C-TPD normalcy rate was higher than U-TPD (88% vs. 75%, P=.02). Mean IQ was similar among BMI 35–39.9, 40–44.9 and ≥45 groups [4.6 vs. 4.4 vs. 4.5, respectively (P=.6)]. No patient had a non-diagnostic stress scan. Conclusions In obese patients, HE-SPECT MPI with dedicated parallel-hole collimation demonstrated high image quality, normalcy rate, and diagnostic accuracy for CAD by quantitative analysis of combined upright/supine acquisitions. PMID:25388380
The Effect of the Presence of EEG Leads on Image Quality in Cerebral Perfusion SPECT and FDG PET/CT.
Zhang, Lulu; Yen, Stephanie P; Seltzer, Marc A; Thomas, George P; Willis, Kristen; Siegel, Alan
2018-06-08
Rationale: Cerebral perfusion SPECT and 18 F-FDG PET/CT are commonly performed diagnostic procedures for patients suffering from epilepsy. Individuals receiving these tests are often in-patients undergoing examinations with EEG leads. We have routinely removed these leads before these tests due to concerns that they would lead to imaging artifacts. The leads would then be replaced at the conclusion of the scan. The goal of our study was to determine if the EEG leads actually do cause artifacts that could lead to erroneous scan interpretation or make the scan uninterpretable. Methods: PET/CT with 18 F-FDG and SPECT with technetium-99m ECD were performed on a two dimensional brain phantom. The phantom was scanned with standard leads, CT/MR compatible leads and with no leads. The scans were interpreted by three experienced nuclear medicine physicians who were asked to rank the images by quality and then to determine if they could differentiate each of the scans from a scan in which it was indicated that no leads were present. Results: No differences could be detected between SPECT or PET scans performed without leads or with either set of leads. The standard EEG leads did create an artifact in the CT portion of the PET/CT while the CT/MR compatible leads did not. Conclusion: This phantom study suggest that EEG leads, standard or CT/MR compatible do not need to be removed for SPECT or for PET. Further study evaluating the effect on patients scan would be of value to support this conclusion. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Cardiovascular outcomes after pharmacologic stress myocardial perfusion imaging.
Lee, Douglas S; Husain, Mansoor; Wang, Xuesong; Austin, Peter C; Iwanochko, Robert M
2016-04-01
While pharmacologic stress single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) is used for noninvasive evaluation of patients who are unable to perform treadmill exercise, its impact on net reclassification improvement (NRI) of prognosis is unknown. We evaluated the prognostic value of pharmacologic stress MPI for prediction of cardiovascular death or non-fatal myocardial infarction (MI) within 1 year at a single-center, university-based laboratory. We examined continuous and categorical NRI of pharmacologic SPECT-MPI for prediction of outcomes beyond clinical factors alone. Six thousand two hundred forty patients (median age 66 years [IQR 56-74], 3466 men) were studied and followed for 5963 person-years. SPECT-MPI variables associated with increased risk of cardiovascular death or non-fatal MI included summed stress score, stress ST-shift, and post-stress resting left ventricular ejection fraction ≤50%. Compared to a clinical model which included age, sex, cardiovascular disease, risk factors, and medications, model χ(2) (210.5 vs. 281.9, P < .001) and c-statistic (0.74 vs. 0.78, P < .001) were significantly increased by addition of SPECT-MPI predictors (summed stress score, stress ST-shift and stress resting left ventricular ejection fraction). SPECT-MPI predictors increased continuous NRI by 49.4% (P < .001), reclassifying 66.5% of patients as lower risk and 32.8% as higher risk of cardiovascular death or non-fatal MI. Addition of MPI predictors to clinical factors using risk categories, defined as <1%, 1% to 3%, and >3% annualized risk of cardiovascular death or non-fatal MI, yielded a 15.0% improvement in NRI (95% CI 7.6%-27.6%, P < .001). Pharmacologic stress MPI substantially improved net reclassification of cardiovascular death or MI risk beyond that afforded by clinical factors. Copyright © 2016 Elsevier Inc. All rights reserved.
Lee, Si Un; Chung, Young Seob; Oh, Chang Wan; Kwon, O-Ki; Bang, Jae Seung; Hwang, Gyojun; Kim, Tackeun; Ahn, Seong Yeol
2016-06-01
The purposes of this study were to review the cerebrovascular events (CVE) during pregnancy and puerperium in adults with moyamoya disease (MMD) and to evaluate its risk factors. We reviewed electronic medical records on 141 pregnancies in 71 women diagnosed with MMD and this study included only 27 pregnancies (23 patients) diagnosed with MMD before pregnancy. Basal and acetazolamide-stress brain perfusion single-photon emission computed tomography (SPECT) was conducted for 40 hemispheres in 21 pregnancies within 1 year of the gestational period, ranging from 22 months before delivery to 12 months after delivery for evaluation of the hemodynamic status of the patients to devise the MMD treatment strategy. Twelve pregnancies (44.4%) showed CVE during pregnancy or puerperium in the group diagnosed with MMD before pregnancy. All the 12 CVE were ischemic, without any hemorrhagic events. A decreased cerebral vascular reserve capacity (CVRC) on stress SPECT was observed in 25 (62.5%) of the 40 hemispheres, and 18 of these 25 hemispheres showed TIA. In contrast, only 2 of 15 hemispheres which revealed normal CVRC on stress SPECT showed TIA. Overall, a decreased CVRC on stress SPECT imaging was statistically associated with development of CVE (P < 0.001). Furthermore, the clinical type of MMD was also regarded as predictive factor for CVE in this study. Especially, ischemic type MMD revealed a statistical association with the development of CVE (P = 0.014, odds ratio = 16.50). Assessment of cerebral hemodynamic status with stress SPECT may predict CVE during pregnancy and puerperium. Copyright © 2016 Elsevier Inc. All rights reserved.
Manganelli, Fiore; Spadafora, Marco; Varrella, Paola; Peluso, Giuseppina; Sauro, Rosario; Di Lorenzo, Emilio; Rosato, Giuseppe; Daniele, Stefania; Cuocolo, Alberto
2011-02-01
To evaluate the effects of the addition of atropine to exercise testing in patients who failed to achieve their target heart rate (HR) during stress myocardial perfusion imaging with single-photon emission computed tomography (SPECT). The study was a prospective, randomized, placebo-controlled design. Patients with suspected or known coronary artery disease who failed to achieve a target HR (≥85% of maximal predicted HR) during exercise SPECT imaging were randomized to receive intravenous atropine (n=100) or placebo (n=101). The two groups of patients did not differ with respect to demographic or clinical characteristics. A higher proportion of patients in the atropine group achieved the target HR compared to the placebo group (60% versus 3%, p<0.0001). SPECT imaging was abnormal in a higher proportion of patients in the atropine group as compared to the placebo group (57% versus 42%, p<0.05). Stress-induced myocardial ischaemia was present in more patients in the atropine group as compared to placebo (47% versus 29%, p<0.01). In both groups of patients, no major side effects occurred. The addition of atropine at the end of exercise testing is more effective than placebo in raising HR to adequate levels, without additional risks of complications. The use of atropine in patients who initially failed to achieve their maximal predicted HR is associated with a higher probability of achieving a diagnostic myocardial perfusion study.
SPECT study of low intensity He-Ne laser intravascular irradiation therapy for brain infarction
NASA Astrophysics Data System (ADS)
Xiao, Xue-Chang; Dong, Jia-Zheng; Chu, Xiao-Fan; Jia, Shao-Wei; Liu, Timon C.; Jiao, Jian-Ling; Zheng, Xi-Yuan; Zhou, Ci-Xiong
2003-12-01
We used single photon emission computed tomography (SPECT) in brain perfusion imaging to study the changes of regional cerebral blood flow (rCBF) and cerebral function in brain infarction patients treated with intravascular laser irradiation of blood (ILIB). 17 of 35 patients with brain infarction were admitted to be treated by ILIB on the base of standard drug therapy, and SPECT brain perfusion imaging was performed before and after ILIB therapy with self-comparison. The results were analyzed in quantity with brain blood flow function change rate (BFCR%) model. Effect of ILIB during the therapy process in the other 18 patients were also observed. In the 18 patients, SPECT indicated an improvement of rCBF (both in focus and in total brain) and cerebral function after a 30 min-ILIB therapy. And the 17 patients showed an enhancement of total brain rCBF and cerebral function after ILIB therapy in comparison with that before, especially for the focus side of the brain. The enhancement for focus itself was extremely obvious with a higher significant difference (P<0.0001). The mirror regions had no significant change (P>0.05). BFCR% of foci was prominently higher than that of mirror regions (P<0.0001). In conclusion, the ILIB therapy can improve rCBF and cerebral function and activate brain cells of patients with brain infarction. The results denote new evidence of ILIB therapy for those patients with cerebral ischemia.
Ko, Toshiyuki; Utanohara, Yuko; Suzuki, Yasuhiro; Kurihara, Makiko; Iguchi, Nobuo; Umemura, Jun; Sumiyoshi, Tetsuya; Tomoike, Hitonobu
2016-01-01
Simultaneous dual-isotope SPECT imaging with 201Tl and (123)I-β-methyl-p-iodophenylpentadecanoic acid (BMIPP) is used to study the perfusion-metabolism mismatch. It predicts post-ischemic functional recovery by detecting stunned myocardium. On the other hand, (99m)Tc-MIBI is another radioisotope widely used in myocardial perfusion imaging because of its better image quality and lower radiation exposure than 201Tl. However, since the photopeak energies of (99m)Tc and (123)I are very similar, crosstalk hampers the simultaneous use of these two radioisotopes. To overcome this problem, we conducted simultaneous dual-isotope imaging study using the D-SPECT scanner (Spectrum-Dynamics, Israel) which has a novel detector design and excellent energy resolution. We first conducted a basic experiment using cardiac phantom to simulate the condition of normal perfusion and impaired fatty acid metabolism. Subsequently, we prospectively recruited 30 consecutive patients who underwent successful percutaneous coronary intervention for acute myocardial infarction, and performed (99m)Tc-MIBI/(123)I-BMIPP dual-isotope imaging within 5 days after reperfusion. Images were interpreted by two experienced cardiovascular radiologists to identify the infarcted and stunned areas based on the coronary artery territories. As a result, cardiac phantom experiment revealed no significant crosstalk between (99m)Tc and (123)I. In the subsequent clinical study, (99m)Tc-MIBI/(123)I-BMIPP dual-isotope imaging in all participant yielded excellent image quality and detected infarcted and stunned areas correctly when compared with coronary angiographic findings. Furthermore, we were able to reduce radiation exposure to significantly approximately one-eighth. In conclusion, we successfully demonstrated the practical application of simultaneous assessment of myocardial perfusion and fatty acid metabolism by (99m)Tc-MIBI and (123)I-BMIPP using a D-SPECT cardiac scanner. Compared with conventional (201)TlCl/(123)I-BMIPP dual-isotope imaging, the use of (99m)Tc-MIBI instead of (201)TlCl improves image quality as well as lowers radiation exposure.
Wawrzyniak, Andrew J; Dilsizian, Vasken; Krantz, David S; Harris, Kristie M; Smith, Mark F; Shankovich, Anthony; Whittaker, Kerry S; Rodriguez, Gabriel A; Gottdiener, John; Li, Shuying; Kop, Willem; Gottlieb, Stephen S
2015-10-01
Mental stress can trigger myocardial ischemia, but the prevalence of mental stress-induced ischemia in congestive heart failure (CHF) patients is unknown. We characterized mental stress-induced and adenosine-induced changes in myocardial perfusion and neurohormonal activation in CHF patients with reduced left-ventricular function using SPECT to precisely quantify segment-level myocardial perfusion. Thirty-four coronary artery disease patients (mean age±SD, 62±10 y) with CHF longer than 3 mo and ejection fraction less than 40% underwent both adenosine and mental stress myocardial perfusion SPECT on consecutive days. Mental stress consisted of anger recall (anger-provoking speech) followed by subtraction of serial sevens. The presence and extent of myocardial ischemia was quantified using the conventional 17-segment model. Sixty-eight percent of patients had 1 ischemic segment or more during mental stress and 81% during adenosine. On segment-by-segment analysis, perfusion with mental stress and adenosine were highly correlated. No significant differences were found between any 2 time points for B-type natriuretic peptide, tumor necrosis factor-α, IL-1b, troponin, vascular endothelin growth factor, IL-17a, matrix metallopeptidase-9, or C-reactive protein. However, endothelin-1 and IL-6 increased, and IL-10 decreased, between the stressor and 30 min after stress. Left-ventricular end diastolic dimension was 179±65 mL at rest and increased to 217±71 after mental stress and 229±86 after adenosine (P<0.01 for both). Resting end systolic volume was 129±60 mL at rest and increased to 158±66 after mental stress (P<0.05) and 171±87 after adenosine (P<0.07), with no significant differences between adenosine and mental stress. Ejection fraction was 30±12 at baseline, 29±11 with mental stress, and 28±10 with adenosine (P=not significant). There was high concordance between ischemic perfusion defects induced by adenosine and mental stress, suggesting that mental stress is equivalent to pharmacologic stress in eliciting clinically significant myocardial perfusion defects in CHF patients. Cardiac dilatation suggests clinically important changes with both conditions. Psychosocial stressors during daily life may contribute to the ischemic burden of CHF patients with coronary artery disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT.
Pelgrim, Gert Jan; Dorrius, Monique; Xie, Xueqian; den Dekker, Martijn A M; Schoepf, U Joseph; Henzler, Thomas; Oudkerk, Matthijs; Vliegenthart, Rozemarijn
2015-12-01
To determine the diagnostic performance of computed tomography (CT) perfusion techniques for the detection of functionally relevant coronary artery disease (CAD) in comparison to reference standards, including invasive coronary angiography (ICA), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). PubMed, Web of Knowledge and Embase were searched from January 1, 1998 until July 1, 2014. The search yielded 9475 articles. After duplicate removal, 6041 were screened on title and abstract. The resulting 276 articles were independently analyzed in full-text by two reviewers, and included if the inclusion criteria were met. The articles reporting diagnostic parameters including true positive, true negative, false positive and false negative were subsequently evaluated for the meta-analysis. Results were pooled according to CT perfusion technique, namely snapshot techniques: single-phase rest, single-phase stress, single-phase dual-energy stress and combined coronary CT angiography [rest] and single-phase stress, as well the dynamic technique: dynamic stress CT perfusion. Twenty-two articles were included in the meta-analysis (1507 subjects). Pooled per-patient sensitivity and specificity of single-phase rest CT compared to rest SPECT were 89% (95% confidence interval [CI], 82-94%) and 88% (95% CI, 78-94%), respectively. Vessel-based sensitivity and specificity of single-phase stress CT compared to ICA-based >70% stenosis were 82% (95% CI, 64-92%) and 78% (95% CI, 61-89%). Segment-based sensitivity and specificity of single-phase dual-energy stress CT in comparison to stress MRI were 75% (95% CI, 60-85%) and 95% (95% CI, 80-99%). Segment-based sensitivity and specificity of dynamic stress CT perfusion compared to stress SPECT were 77% (95% CI, 67-85) and 89% (95% CI, 78-95%). For combined coronary CT angiography and single-phase stress CT, vessel-based sensitivity and specificity in comparison to ICA-based >50% stenosis were 84% (95% CI, 67-93%) and 93% (95% CI, 89-96%). This meta-analysis shows considerable variation in techniques and reference standards for CT of myocardial blood supply. While CT seems sensitive and specific for evaluation of hemodynamically relevant CAD, studies so far are limited in size. Standardization of myocardial perfusion CT technique is essential. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Viewing the functional consequences of traumatic brain injury by using brain SPECT.
Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y
2006-03-01
High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.
Comparison of Dynamic Contrast Enhanced MRI and Quantitative SPECT in a Rat Glioma Model
Skinner, Jack T.; Yankeelov, Thomas E.; Peterson, Todd E.; Does, Mark D.
2012-01-01
Pharmacokinetic modeling of dynamic contrast enhanced (DCE)-MRI data provides measures of the extracellular volume fraction (ve) and the volume transfer constant (Ktrans) in a given tissue. These parameter estimates may be biased, however, by confounding issues such as contrast agent and tissue water dynamics, or assumptions of vascularization and perfusion made by the commonly used model. In contrast to MRI, radiotracer imaging with SPECT is insensitive to water dynamics. A quantitative dual-isotope SPECT technique was developed to obtain an estimate of ve in a rat glioma model for comparison to the corresponding estimates obtained using DCE-MRI with a vascular input function (VIF) and reference region model (RR). Both DCE-MRI methods produced consistently larger estimates of ve in comparison to the SPECT estimates, and several experimental sources were postulated to contribute to these differences. PMID:22991315
Chiba, J.; Takeishi, Y.; Abe, S.; Tomoike, H.
1997-01-01
OBJECTIVE: Exercise thallium-201 (201T1) single photon emission computed tomography (SPECT) has been used to detect potential ischaemia in the left ventricular myocardium but not in the right ventricle. The purpose of this study was to establish the clinical usefulness of a right ventricular polar map of 201T1 SPECT for visualisation of exercise-induced right ventricular ischaemia. METHODS: Myocardial 201T1 SPECT was obtained immediately after treadmill exercise in 97 patients with suspected coronary artery disease. A region of interest was placed over the right ventricle (RV) on post-stress transaxial images. Short axis images of this region were generated and reconstructed as a bull's eye polar map. Normal ranges of RV 201T1 uptake were determined in 12 patients with normal coronary arteries. Scintigraphic criteria for identifying RV perfusion abnormality were derived from 25 patients with right coronary artery (RCA) stenosis greater than 75%. These criteria were applied to 60 consecutive patients with suspected coronary artery disease. RESULTS: Perfusion defects in the RV were larger in patients with proximal RCA stenosis than in those with distal RCA stenosis (mean (SD) 28 (16)% v 6 (5)%, P < 0.001). The sensitivity and specificity of the RV polar map for the detection of proximal RCA stenosis were 67% (8/12) and 98% (47/48), respectively. RV perfusion defects became undetectable in 9 patients who had successful percutaneous transluminal coronary angioplasty to a proximal RCA lesion. CONCLUSIONS: A right ventricular polar map display was useful for visualising exercise-induced right ventricular ischaemia. Images PMID:9038692
Groen, Harald C.; Niessen, Wiro J.; Bernsen, Monique R.; de Jong, Marion; Veenland, Jifke F.
2013-01-01
Although efficient delivery and distribution of treatment agents over the whole tumor is essential for successful tumor treatment, the distribution of most of these agents cannot be visualized. However, with single-photon emission computed tomography (SPECT), both delivery and uptake of radiolabeled peptides can be visualized in a neuroendocrine tumor model overexpressing somatostatin receptors. A heterogeneous peptide uptake is often observed in these tumors. We hypothesized that peptide distribution in the tumor is spatially related to tumor perfusion, vessel density and permeability, as imaged and quantified by DCE-MRI in a neuroendocrine tumor model. Four subcutaneous CA20948 tumor-bearing Lewis rats were injected with the somatostatin-analog 111In-DTPA-Octreotide (50 MBq). SPECT-CT and MRI scans were acquired and MRI was spatially registered to SPECT-CT. DCE-MRI was analyzed using semi-quantitative and quantitative methods. Correlation between SPECT and DCE-MRI was investigated with 1) Spearman’s rank correlation coefficient; 2) SPECT uptake values grouped into deciles with corresponding median DCE-MRI parametric values and vice versa; and 3) linear regression analysis for median parameter values in combined datasets. In all tumors, areas with low peptide uptake correlated with low perfusion/density/ /permeability for all DCE-MRI-derived parameters. Combining all datasets, highest linear regression was found between peptide uptake and semi-quantitative parameters (R2>0.7). The average correlation coefficient between SPECT and DCE-MRI-derived parameters ranged from 0.52-0.56 (p<0.05) for parameters primarily associated with exchange between blood and extracellular extravascular space. For these parameters a linear relation with peptide uptake was observed. In conclusion, the ‘exchange-related’ DCE-MRI-derived parameters seemed to predict peptide uptake better than the ‘contrast amount- related’ parameters. Consequently, fast and efficient diffusion through the vessel wall into tissue is an important factor for peptide delivery. DCE-MRI helps to elucidate the relation between vascular characteristics, peptide delivery and treatment efficacy, and may form a basis to predict targeting efficiency. PMID:24116203
Myocardial perfusion imaging with PET
Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr
2013-01-01
PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459
Ahmadzadehfar, Hojjat; Sabet, Amir; Biermann, Kim; Muckle, Marianne; Brockmann, Holger; Kuhl, Christiane; Wilhelm, Kai; Biersack, Hans-Jürgen; Ezziddin, Samer
2010-08-01
Selective internal radiation therapy (SIRT), a catheter-based liver-directed modality for treating primary and metastatic liver cancer, requires appropriate planning to maximize its therapeutic response and minimize its side effects. (99m)Tc-macroaggregated albumin (MAA) scanning should precede the therapy to detect any extrahepatic shunting to the lung or gastrointestinal tract. Our aim was to compare the ability of SPECT/CT with that of planar imaging and SPECT in the detection and localization of extrahepatic (99m)Tc-MAA accumulation and to evaluate the impact of SPECT/CT on SIRT treatment planning and its added value to angiography in this setting. Ninety diagnostic hepatic angiograms with (99m)Tc-MAA were obtained for 76 patients with different types of cancer. All images were reviewed retrospectively for extrahepatic MAA deposition in the following order: planar, non-attenuation-corrected SPECT, and SPECT/CT. Review of angiograms and follow-up of patients with abdominal shunting served as reference standards. Extrahepatic accumulation was detected by planar imaging, SPECT, and SPECT/CT in 12%, 17%, and 42% of examinations, respectively. The sensitivity for detecting extrahepatic shunting with planar imaging, SPECT, and SPECT/CT was 32%, 41%, and 100%, respectively; specificity was 98%, 98%, and 93%, respectively. The respective positive predictive values were 92%, 93%, and 89%, and the respective negative predictive values were 71%, 73%, and 100%. The therapy plan was changed according to the results of planar imaging, SPECT, and SPECT/CT in 7.8%, 8.9%, and 29% of patients, respectively. In pre-SIRT planning, (99m)Tc-MAA SPECT/CT is valuable for identifying extrahepatic visceral sites at risk for postradioembolization complications.
Pathological Laughing: Brain SPECT Findings.
Morland, David; Wolff, Valérie; Blondet, Cyrille; Marescaux, Christian; Namer, Izzie Jacques
2015-09-01
We present the case of a 40-year-old man consulting for uncontrollable episodes of laughing related to emotional lability and not systematically linked to feelings of happiness. Seven months earlier he had presented a pontine ischemic stroke related to an occlusion of the basilar and left vertebral arteries. No epileptic activity or new MRI brain lesions were found. Brain perfusion SPECT performed showed marked hypoperfusion in the right frontal inferior and temporoinsular regions, suggesting a diaschisis phenomenon caused by pontine lesions and highlighted laughing regulation pathways. The patient was successfully treated with a serotonergic reuptake inhibitor, fluoxetine.
Glomus Tumor of the Neck Detected With 99mTc EDDA HYNIC-TOC.
Girotto, Neva; Bogović-Crnčić, Tatjana; Grbac-Ivanković, Svjetlana; Valković-Zujić, Petra
2017-10-01
A 54-year-old woman was referred to thyroid evaluation because of a lump on the left side of the neck. Ultrasound exam did not show any thyroid abnormality, but highly perfused nodule at the left common carotid artery bifurcation was found. Because of the specific location, somatostatin receptor scintigraphy with Tc EDDA HYNIC-TOC was performed, starting with perfusion images and followed with SPECT/CT imaging at 2 and 4 hours. Well-perfused nodule with intensive accumulation and no other visible pathology in the body raised suspicion of a glomus tumor, consistent with MR exam performed later. Subsequent surgical removal confirmed carotid paraganglioma.
Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology
NASA Astrophysics Data System (ADS)
Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.
2009-05-01
D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.
Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo
2005-10-01
An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.
Automated Quantitative Nuclear Cardiology Methods
Motwani, Manish; Berman, Daniel S.; Germano, Guido; Slomka, Piotr J.
2016-01-01
Quantitative analysis of SPECT and PET has become a major part of nuclear cardiology practice. Current software tools can automatically segment the left ventricle, quantify function, establish myocardial perfusion maps and estimate global and local measures of stress/rest perfusion – all with minimal user input. State-of-the-art automated techniques have been shown to offer high diagnostic accuracy for detecting coronary artery disease, as well as predict prognostic outcomes. This chapter briefly reviews these techniques, highlights several challenges and discusses the latest developments. PMID:26590779
Cavallin, L; Axelsson, R; Wahlund, L O; Oksengard, A R; Svensson, L; Juhlin, P; Wiberg, M Kristoffersen; Frank, A
2008-12-01
Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using (99m)Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm, Sweden) on both SPECT and DSC-MRI. Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease.
Effects of Piecewise Spatial Smoothing in 4-D SPECT Reconstruction
NASA Astrophysics Data System (ADS)
Qi, Wenyuan; Yang, Yongyi; King, Michael A.
2014-02-01
In nuclear medicine, cardiac gated SPECT images are known to suffer from significantly increased noise owing to limited data counts. Consequently, spatial (and temporal) smoothing has been indispensable for suppressing the noise artifacts in SPECT reconstruction. However, recently we demonstrated that the benefit of spatial processing in motion-compensated reconstruction of gated SPECT (aka 4-D) could be outweighed by its adverse effects on the myocardium, which included degraded wall motion and perfusion defect detectability. In this work, we investigate whether we can alleviate these adverse effects by exploiting an alternative spatial smoothing prior in 4-D based on image total variation (TV). TV based prior is known to induce piecewise smoothing which can preserve edge features (such as boundaries of the heart wall) in reconstruction. However, it is not clear whether such a property would necessarily be beneficial for improving the accuracy of the myocardium in 4-D reconstruction. In particular, it is unknown whether it would adversely affect the detectability of perfusion defects that are small in size or low in contrast. In our evaluation study, we first use Monte Carlo simulated imaging with 4-D NURBS-based cardiac-torso (NCAT) phantom wherein the ground truth is known for quantitative comparison. We evaluated the accuracy of the reconstructed myocardium using a number of metrics, including regional and overall accuracy of the myocardium, accuracy of the phase activity curve (PAC) of the LV wall for wall motion, uniformity and spatial resolution of the LV wall, and detectability of perfusion defects using a channelized Hotelling observer (CHO). For lesion detection, we simulated perfusion defects with different sizes and contrast levels with the focus being on perfusion defects that are subtle. As a preliminary demonstration, we also tested on three sets of clinical acquisitions. From the quantitative results, it was demonstrated that TV smoothing could further reduce the error level in the myocardium in 4-D reconstruction along with motion-compensated temporal smoothing. In contrast to quadratic spatial smoothing, TV smoothing could reduce the noise level in the LV at a faster pace than the increase in the bias level, thereby achieving a net decrease in the error level. In particular, at the same noise level, TV smoothing could reduce the bias by about 30% compared to quadratic smoothing. Moreover, the CHO results indicate that TV could also improve the lesion detectability even when the lesion is small. The PAC results show that, at the same noise level, TV smoothing achieved lower temporal bias, which is also consistent with the improved spatial resolution of the LV in reconstruction. The improvement in blurring effects by TV was also observed in the clinical images.
Fuchs, A R C N; Meneghelo, R S; Stefanini, E; De Paola, A V; Smanio, P E P; Mastrocolla, L E; Ferraz, A S; Buglia, S; Piegas, L S; Carvalho, A A C
2009-03-01
Myocardial ischemia may occur during an exercise session in cardiac rehabilitation programs. However, it has not been established whether it is elicited when exercise prescription is based on heart rate corresponding to the anaerobic threshold as measured by cardiopulmonary exercise testing. Our objective was to determine the incidence of myocardial ischemia in cardiac rehabilitation programs according to myocardial perfusion SPECT in exercise programs based on the anaerobic threshold. Thirty-nine patients (35 men and 4 women) diagnosed with coronary artery disease by coronary angiography and stress technetium-99m-sestamibi gated SPECT associated with a baseline cardiopulmonary exercise test were assessed. Ages ranged from 45 to 75 years. A second cardiopulmonary exercise test determined training intensity at the anaerobic threshold. Repeat gated-SPECT was obtained after a third cardiopulmonary exercise test at the prescribed workload and heart rate. Myocardial perfusion images were analyzed using a score system of 6.4 at rest, 13.9 at peak stress, and 10.7 during the prescribed exercise (P < 0.05). The presence of myocardial ischemia during exercise was defined as a difference > or = 2 between the summed stress score and summed rest score. Accordingly, 25 (64%) patients were classified as ischemic and 14 (36%) as nonischemic. MIBI-SPECT showed myocardial ischemia during exercise within the anaerobic threshold. The 64% prevalence of ischemia observed in the study should not be looked on as representative of the whole population of patients undergoing exercise programs. Changes in patient care and exercise programs were implemented as a result of our finding of ischemia during the prescribed exercise.
Weinberg, Nicole; Pohost, Gerald M.; Bairey Merz, C. Noel; Shaw, Leslee J.; Sopko, George; Fuisz, Anthon; Rogers, William J.; Walsh, Edward G.; Johnson, B. Delia; Sharaf, Barry L.; Pepine, Carl J.; Mankad, Sunil; Reis, Steven E.; Rayarao, Geetha; Vido, Diane A.; Bittner, Vera; Tauxe, Lindsey; Olson, Marian B.; Kelsey, Sheryl F.; Biederman, Robert WW
2013-01-01
Objectives To assess the prognostic value of a left ventricular energy-model in women with suspected myocardial ischemia. Background The prognostic value of internal energy utilization (IEU) of the left ventricle in women with suspected myocardial ischemia is unknown. Methods Women [n=227, mean age 59±12 years (range, 31-86 years)], with symptoms of myocardial ischemia, underwent myocardial perfusion imaging (MPI) assessment for regional perfusion defects along with measurement of ventricular volumes separately by gated Single Photon Emission Computed Tomography (SPECT) (n=207) and magnetic resonance imaging (MRI) (n=203). During follow-up (40±17 months), time to first major adverse cardiovascular event (MACE, death, myocardial infarction or hospitalization for congestive heart failure) was analyzed using MRI and gated SPECT variables. Results Adverse events occurred in 31 (14%). Multivariable Cox models were formed for each modality: IEU and wall thickness by MRI (Chi-squared 34, P<0.005) and IEU and systolic blood pressure by gated SEPCT (Chi-squared 34, P<0.005). The models remained predictive after adjustment for age, disease history and Framingham risk score. For each Cox model, patients were categorized as high-risk if the model hazard was positive and not high-risk otherwise. Kaplan-Meier analysis of time to MACE was performed for high-risk vs. not high-risk for MR (log rank 25.3, P<0.001) and gated SEPCT (log rank 18.2, P<0.001) models. Conclusions Among women with suspected myocardial ischemia a high internal energy utilization has higher prognostic value than either a low EF or the presence of a myocardial perfusion defect assessed using two independent modalities of MR or gated SPECT. PMID:24015377
[Assessment of myocardial perfusion and left ventricular function with 99mTc-PPN 1011].
Kumita, S; Mizumura, S; Oishi, T; Kumazaki, T; Sano, J; Yamazaki, Y; Munakata, K
1993-04-01
First-pass radionuclide angiography (FPRNA) was performed with the new myocardial perfusion agent 99mTc-1,2,bis[bis(2-ethoxyethyl)phosphino] ethane (99mTc-PPN 1011) on stress and at rest. One hour after that, myocardial perfusion was counted by 99mTc-PPN 1011 SPECT. Left ventricular ejection fraction (LVEF) obtained by FPRNA correlated with that by multigated image with 99mTc-HSAD (r = 0.94, n = 11). The reduction of left ventricular function under the exercise (delta LVEF) and the increase of severity score (delta Severity score) have a good relation (r = 0.88) in 7 patients with prior myocardial infarction. Thus 99mTc-PPN 1011 appears to be an ideal radiopharmaceutical for evaluation of ventricular function and myocardial perfusion.
Measurement of cerebral perfusion after zolpidem administration in the baboon model.
Clauss, R P; Dormehl, I C; Oliver, D W; Nel, W H; Kilian, E; Louw, W K
2001-01-01
A recent report showed that zolpidem (CAS 82626-48-0) can lead to the arousal of a semi-comatosed patient. Zolpidem is clinically used for the treatment of insomnia. It belongs to the imidazopyridine chemical class and is a non benzodiazepine drug. It illicits its pharmacological action via the GABA receptor system through stimulation of particularly the omega 1 receptors. In this study, the effect of zolpidem on brain perfusion was examined by 99mTc hexamethyl-propylene amine oxime (HMPAO) split dose brain SPECT on four normal baboons and in one baboon with abnormal neurological behaviour. The global and regional brain perfusion was not significantly affected in the normal brains. In some regions of the abnormal baboon brain, however, there was a disproportionate increase in perfusion after zolpidem.
Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Nieman, Koen; Meijboom, W Bob; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J; Verzijlbergen, J Fred
2013-07-01
Hybrid myocardial perfusion imaging with single photon emission computed tomography (SPECT) and CT coronary angiography (CCTA) has the potential to play a major role in patients with non-conclusive SPECT or CCTA results. We evaluated the performance of hybrid SPECT/CCTA vs. standalone SPECT and CCTA for the diagnosis of significant coronary artery disease (CAD) in patients with an intermediate to high pre-test likelihood of CAD. In total, 98 patients (mean age 62.5 ± 10.1 years, 68.4% male) with stable anginal complaints and a median pre-test likelihood of 87% (range 22-95%) were prospectively included in this study. Hybrid SPECT/CCTA was performed prior to conventional coronary angiography (CA) including fractional flow reserve (FFR) measurements. Hybrid analysis was performed by combined interpretation of SPECT and CCTA images. The sensitivity, specificity, positive (PPV), and negative (NPV) predictive values were calculated for standalone SPECT, CCTA, and hybrid SPECT/CCTA on per patient level, using an FFR <0.80 as a reference for significant CAD. Significant CAD was demonstrated in 56 patients (57.9%). Non-conclusive SPECT or CCTA results were found in 32 (32.7%) patients. SPECT had a sensitivity of 93%, specificity 79%, PPV 85%, and NPV 89%. CCTA had a sensitivity of 98%, specificity 62%, PPV 77%, and NPV 96%. Hybrid analysis of SPECT and CCTA improved the overall performance: sensitivity, specificity, PPV, and NPV for the presence of significant CAD to 96, 95, 96, and 95%, respectively. In > 40% of the patients with a high pre-test likelihood no significant CAD was demonstrated, emphasizing the value of accurate pre-treatment cardiovascular imaging. Hybrid SPECT/CCTA was able to accurately diagnose and exclude significant CAD surpassing standalone myocardial SPECT and CCTA, vs. a reference standard of FFR measurements.
Automated quantification of myocardial perfusion SPECT using simplified normal limits.
Slomka, Piotr J; Nishina, Hidetaka; Berman, Daniel S; Akincioglu, Cigdem; Abidov, Aiden; Friedman, John D; Hayes, Sean W; Germano, Guido
2005-01-01
To simplify development of normal limits for myocardial perfusion SPECT (MPS), we implemented a quantification scheme in which normal limits are derived without visual scoring of abnormal scans or optimization of regional thresholds. Normal limits were derived from same-day TI-201 rest/Tc-99m-sestamibi stress scans of male (n = 40) and female (n = 40) low-likelihood patients. Defect extent, total perfusion deficit (TPD), and regional perfusion extents were derived by comparison to normal limits in polar-map coordinates. MPS scans from 256 consecutive patients without known coronary artery disease, who underwent coronary angiography, were analyzed. The new method of quantification (TPD) was compared with our previously developed quantification system and visual scoring. The receiver operator characteristic area under the curve for detection of 50% or greater stenoses by TPD (0.88 +/- 0.02) was higher than by visual scoring (0.83 +/- 0.03) ( P = .039) or standard quantification (0.82 +/- 0.03) ( P = .004). For detection of 70% or greater stenoses, it was higher for TPD (0.89 +/- 0.02) than for standard quantification (0.85 +/- 0.02) ( P = .014). Sensitivity and specificity were 93% and 79%, respectively, for TPD; 81% and 85%, respectively, for visual scoring; and 80% and 73%, respectively, for standard quantification. The use of stress mode-specific normal limits did not improve performance. Simplified quantification achieves performance better than or equivalent to visual scoring or quantification based on per-segment visual optimization of abnormality thresholds.
Dockx, R; Baeken, C; Duprat, R; De Vos, F; Saunders, J H; Polis, I; Audenaert, K; Peremans, K
2018-04-01
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a treatment for several neuropsychiatric disorders in human beings, but the neurobiological effects of rTMS in dogs have not been investigated to date. A proof of concept study was designed to evaluate the effect of rTMS on cerebral perfusion, measured with single photon emission computed tomography (SPECT), in dogs. An accelerated high frequency (aHF)-rTMS (20Hz) protocol was applied to the canine left frontal cortex. To accurately target this area, eight dogs underwent a 3 Tesla magnetic resonance imaging (MRI) scan before stimulation. The left frontal cortex was subjected to five consecutive aHF-rTMS sessions with a figure-of-eight coil designed for human beings at an intensity of 110% of the motor threshold. The dogs underwent 99m Tc-d,1 hexamethylpropylene amine oxime (HMPAO) SPECT scans 1 week prior to and 1day after the stimulations. Perfusion indices (PIs) were determined semi-quantitatively; aHF-rTMS resulted in significantly increased PIs in the left frontal cortex and the subcortical region, whereas no significant differences were noted for the other regions. Behaviour was not influenced by the stimulation sessions. As has been observed in human beings, aHF-rTMS applied to the left frontal cortex alters regional cerebral perfusion in dogs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kurisu, Satoshi; Nitta, Kazuhiro; Sumimoto, Yoji; Ikenaga, Hiroki; Ishibashi, Ken; Fukuda, Yukihiro; Kihara, Yasuki
2018-06-01
Aortic tortuosity is often found on chest radiograph, especially in aged patients. We tested the hypothesis that aortic tortuosity was associated with LV diastolic parameters derived from gated SPECT in patients with normal myocardial perfusion. One-hundred and twenty-two patients with preserved LV ejection fraction and normal myocardial perfusion were enrolled. Descending aortic deviation was defined as the horizontal distance from the left line of the aortic knob to the most prominent left line of the descending aorta. This parameter was measured for the quantitative assessment of aortic tortuosity. Peak filling rate (PFR) and one-third mean filling rate (1/3 MFR) were obtained from redistribution images as LV diastolic parameters. Descending aortic deviation ranged from 0 to 22 mm with a mean distance of 4.5 ± 6.3 mm. Descending aortic deviation was significantly correlated with age (r = 0.38, p < 0.001) and estimated glomerular filtration rate (eGFR) (r = - 0.21, p = 0.02). Multivariate linear regression analysis revealed that eGFR (β = 0.23, p = 0.02) and descending aortic deviation (β = - 0.23, p = 0.01) were significantly associated with PFR, and that only descending aortic deviation (β = - 0.21, p = 0.03) was significantly associated with 1/3 MFR. Our data suggest that aortic tortuosity is associated with LV diastolic parameters derived from gated SPECT in patients with normal myocardial perfusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The purpose of the computer program is to generate system matrices that model data acquisition process in dynamic single photon emission computed tomography (SPECT). The application is for the reconstruction of dynamic data from projection measurements that provide the time evolution of activity uptake and wash out in an organ of interest. The measurement of the time activity in the blood and organ tissue provide time-activity curves (TACs) that are used to estimate kinetic parameters. The program provides a correct model of the in vivo spatial and temporal distribution of radioactive in organs. The model accounts for the attenuation ofmore » the internal emitting radioactivity, it accounts for the vary point response of the collimators, and correctly models the time variation of the activity in the organs. One important application where the software is being used in a measuring the arterial input function (AIF) in a dynamic SPECT study where the data are acquired from a slow camera rotation. Measurement of the arterial input function (AIF) is essential to deriving quantitative estimates of regional myocardial blood flow using kinetic models. A study was performed to evaluate whether a slowly rotating SPECT system could provide accurate AIF's for myocardial perfusion imaging (MPI). Methods: Dynamic cardiac SPECT was first performed in human subjects at rest using a Phillips Precedence SPECT/CT scanner. Dynamic measurements of Tc-99m-tetrofosmin in the myocardium were obtained using an infusion time of 2 minutes. Blood input, myocardium tissue and liver TACs were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. Results: The spatiotemporal 4D ML-EM reconstructions gave more accurate reconstructions that did standard frame-by-frame 3D ML-EM reconstructions. From additional computer simulations and phantom studies, it was determined that a 1 minute infusion with a SPECT system rotation speed providing 180 degrees of projection data every 54s can produce measurements of blood pool and myocardial TACs. This has important application in the circulation of coronary flow reserve using rest/stress dynamic cardiac SPECT. They system matrices are used in maximum likelihood and maximum a posterior formulations in estimation theory where through iterative algorithms (conjugate gradient, expectation maximization, or maximum a posteriori probability algorithms) the solution is determined that maximizes a likelihood or a posteriori probability function.« less
Yıldırım Poyraz, Nilüfer; Özdemir, Elif; Poyraz, Barış Mustafa; Kandemir, Zuhal; Keskin, Mutlay; Türkölmez, Şeyda
2014-01-01
Objective: The aim of this study was to investigate the relationship between patient characteristics and adenosine-related side-effects during stress myocard perfusion imaging (MPI). The effect of presence of adenosine-related side-effects on the diagnostic value of MPI with integrated SPECT/CT system for coronary artery disease (CAD), was also assessed in this study. Methods: Total of 281 patients (109 M, 172 F; mean age:62.6±10) who underwent standard adenosine stress protocol for MPI, were included in this study. All symptoms during adenosine infusion were scored according to the severity and duration. For the estimation of diagnostic value of adenosine MPI with integrated SPECT/CT system, coronary angiography (CAG) or clinical follow-up were used as gold standard. Results: Total of 173 patients (61.6%) experienced adenosine-related side-effects (group 1); flushing, dyspnea, and chest pain were the most common. Other 108 patients completed pharmacologic stress (PS) test without any side-effects (group 2). Test tolerability were similar in the patients with cardiovascular or airway disease to others, however dyspnea were observed significantly more common in patients with mild airway disease. Body mass index (BMI) ≥30 kg/m2 and age ≤45 years were independent predictors of side-effects. The diagnostic value of MPI was similar in both groups. Sensitivity of adenosine MPI SPECT/CT was calculated to be 86%, specificity was 94% and diagnostic accuracy was 92% for diagnosis of CAD. Conclusion: Adenosine MPI is a feasible and well tolerated method in patients who are not suitable for exercise stress test as well as patients with cardiopulmonary disease. However age ≤45 years and BMI ≥30 kg/m2 are the positive predictors of adenosine-related side-effects, the diagnostic value of adenosine MPI SPECT/CT is not affected by the presence of adenosine related side-effects. PMID:25541932
Romero, Kristoffer; Lobaugh, Nancy J; Black, Sandra E; Ehrlich, Lisa; Feinstein, Anthony
2015-01-30
The neural underpinnings of cognitive dysfunction in mild traumatic brain injury (TBI) are not fully understood. Consequently, patient prognosis using existing clinical imaging is somewhat imprecise. Single photon emission computed tomography (SPECT) is a frequently employed investigation in this population, notwithstanding uncertainty over the clinical utility of the data obtained. In this study, subjects with mild TBI underwent (99m)Tc-ECD SPECT scanning, and were administered a brief battery of cognitive tests and self-report symptom scales of concussion and emotional distress. Testing took place 2 weeks (n=84) and 1 year (n=49) post-injury. Multivariate analysis (i.e., partial least squares analysis) revealed that frontal perfusion in right superior frontal and middle frontal gyri predicted poorer performance on the Stroop test, an index of executive function, both at initial and follow-up testing. Conversely, SPECT scans categorized as normal or abnormal by radiologists did not differentiate cognitively impaired from intact subjects. These results demonstrate the clinical utility of SPECT in mild TBI, but only when data are subjected to blood flow quantification analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Mieres, Jennifer H; Shaw, Leslee J; Hendel, Robert C; Heller, Gary V
2009-01-01
Coronary artery disease remains the leading cause of morbidity and mortality in women. The optimal non-invasive test for evaluation of ischemic heart disease in women is unknown. Although current guidelines support the choice of the exercise tolerance test (ETT) as a first line test for women with a normal baseline ECG and adequate exercise capabilities, supportive data for this recommendation are controversial. The what is the optimal method for ischemia evaluation in women? (WOMEN) study was designed to determine the optimal non-invasive strategy for CAD risk detection of intermediate and high risk women presenting with chest pain or equivalent symptoms suggestive of ischemic heart disease. The study will prospectively compare the 2-year event rates in women capable of performing exercise treadmill testing or Tc-99 m tetrofosmin SPECT myocardial perfusion imaging (MPI). The study will enroll women presenting for the evaluation of chest pain or anginal equivalent symptoms who are capable of performing >5 METs of exercise while at intermediate-high pretest risk for ischemic heart disease who will be randomized to either ETT testing alone or with Tc-99 m tetrofosmin SPECT MPI. The null hypothesis for this project is that the exercise ECG has the same negative predictive value for risk detection as gated myocardial perfusion SPECT in women. The primary aim is to compare 2-year cardiac event rates in women randomized to SPECT MPI to those randomized to ETT. The WOMEN study seeks to provide objective information for guidelines for the evaluation of symptomatic women with an intermediate-high likelihood for CAD.
Effective Dose in Nuclear Medicine Studies and SPECT/CT: Dosimetry Survey Across Quebec Province.
Charest, Mathieu; Asselin, Chantal
2018-06-01
The aims of the current study were to draw a portrait of the delivered dose in selected nuclear medicine studies in Québec province and to assess the degree of change between an earlier survey performed in 2010 and a later survey performed in 2014. Methods: Each surveyed nuclear medicine department had to complete 2 forms: the first, about the administered activity in selected nuclear medicine studies, and the second, about the CT parameters used in SPECT/CT imaging, if available. The administered activities were converted into effective doses using the most recent conversion factors. Diagnostic reference levels were computed for each imaging procedure to obtain a benchmark for comparison. Results: The distributions of administered activity in various nuclear medicine studies, along with the corresponding distribution of the effective doses, were determined. Excluding 131 I for thyroid studies, 67 Ga-citrate for infectious workups, and combined stress and rest myocardial perfusion studies, the remainder of the 99m Tc-based studies delivered average effective doses clustered below 10 mSv. Between the 2010 survey and the 2014 survey, there was a statistically significant decrease in delivered dose from 18.3 to 14.5 mSv. 67 Ga-citrate studies for infectious workups also showed a significant decrease in delivered dose from 31.0 to 26.2 mSv. The standardized CT portion of SPECT/CT studies yielded a mean effective dose 14 times lower than the radiopharmaceutical portion of the study. Conclusion: Between 2010 and 2014, there was a significant decrease in the delivered effective dose in myocardial perfusion and 67 Ga-citrate studies. The CT portions of the surveyed SPECT/CT studies contributed a relatively small fraction of the total delivered effective dose. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Myocardial Perfusion SPECT 2015 in Germany
Burchert, Wolfgang; Schäfer, Wolfgang; Hacker, Marcus
2016-01-01
Summary Aim The working group Cardiovascular Nuclear Medicine of the German Society of Nuclear Medicine presents the results of the 7th survey of myocardial perfusion SPECT (MPS) of the reporting year 2015. Method 268 questionnaires (173 practices [PR], 67 hospitals [HO], 28 university hospitals [UH]) were evaluated. Results of the last survey from 2012 are set in squared brackets. Results MPS of 121 939 [105 941] patients were reported. 98 % [95 %] of all MPS were performed with Tc-99m radiopharmaceuticals and 2 % [5 %] with Tl-201. 78 % [79 %] of all patients were studied in PR, 14 % [15 %] in HO, and 8 % [6 %] in UH. A pharmacological stress test was performed in 43 % [39 %] (22 % [24 %] adenosine, 20 % [9 %] regadenoson, 1% [6 %] dipyridamole or dobutamine). Attenuation correction was applied in 25 % [2009: 10 %] of MPS. Gated SPECT was performed in 78 % [70 %] of all rest MPS, in 80 % [73 %] of all stress and in 76 % [67 %] of all stress and rest MPS. 53 % [33 %] of all nuclear medicine departments performed MPS scoring by default, whereas 24 % [41 %] did not apply any quantification. 31 % [26 %] of all departments noticed an increase in their counted MPS and 29 % [29 %] no changes. Data from 89 departments which participated in all surveys showed an increase in MPS count of 11.1 % (PR: 12.2 %, HO: 4.8 %, UH: 18.4 %). 70 % [60 %] of the MPS were requested by ambulatory care cardiologists. Conclusion The 2015 MPS survey reveals a high-grade adherence of routine MPS practice to current guidelines. The positive trend in MPS performance and number of MPS already observed in 2012 continues. Educational training remains necessary in the field of SPECT scoring. PMID:27909712
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chang-Lung; Min, Hooney; Befera, Nicholas
Purpose: To develop a mouse model of cardiac injury after partial heart irradiation (PHI) and to test whether dual energy (DE)-microCT and 4-dimensional (4D)-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using micro-single photon emission computed tomography (SPECT). Methods and Materials: To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53{sup FL/+} and Tie2Cre; p53{sup FL/−} mice, where 1 or both alleles of p53 are deleted in endothelialmore » cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. Results: After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53{sup FL/−} mice. In Tie2Cre; p53{sup FL/−} mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53{sup FL/+} mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R{sup 2} = 0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, to develop in Tie2Cre; p53{sup FL/−} mice, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. Conclusions: Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches complementary to microSPECT for noninvasive assessment of the change in myocardial vascular permeability and cardiac function of mice in whom myocardial injury develops after PHI.« less
Kaneta, Tomohiro; Nakatsuka, Masahiro; Nakamura, Kei; Seki, Takashi; Yamaguchi, Satoshi; Tsuboi, Masahiro; Meguro, Kenichi
2016-01-01
SPECT is an important diagnostic tool for dementia. Recently, statistical analysis of SPECT has been commonly used for dementia research. In this study, we evaluated the accuracy of visual SPECT evaluation and/or statistical analysis for the diagnosis (Dx) of Alzheimer disease (AD) and other forms of dementia in our community-based study "The Osaki-Tajiri Project." Eighty-nine consecutive outpatients with dementia were enrolled and underwent brain perfusion SPECT with 99mTc-ECD. Diagnostic accuracy of SPECT was tested using 3 methods: visual inspection (SPECT Dx), automated diagnostic tool using statistical analysis with easy Z-score imaging system (eZIS Dx), and visual inspection plus eZIS (integrated Dx). Integrated Dx showed the highest sensitivity, specificity, and accuracy, whereas eZIS was the second most accurate method. We also observed that a higher than expected rate of SPECT images indicated false-negative cases of AD. Among these, 50% showed hypofrontality and were diagnosed as frontotemporal lobar degeneration. These cases typically showed regional "hot spots" in the primary sensorimotor cortex (ie, a sensorimotor hot spot sign), which we determined were associated with AD rather than frontotemporal lobar degeneration. We concluded that the diagnostic abilities were improved by the integrated use of visual assessment and statistical analysis. In addition, the detection of a sensorimotor hot spot sign was useful to detect AD when hypofrontality is present and improved the ability to properly diagnose AD.
Brain perfusion alterations in depressed patients with Parkinson's disease.
Kim, Young-Do; Jeong, Hyeonseok S; Song, In-Uk; Chung, Yong-An; Namgung, Eun; Kim, Yong-Duk
2016-12-01
Although Parkinson's disease (PD) is frequently accompanied by depression, brain perfusion deficits in PD with depression remain unclear. This study aimed to assess alterations in regional cerebral blood flow (rCBF) in depressed PD patients using 99m Tc hexamethyl-propylene-amine-oxime single-photon emission computed tomography (SPECT). Among 78 patients with PD, 35 patients were classified into the depressed PD group, while the rest (43 patients) was assigned to the nondepressed PD group based on the scores of the Geriatric Depressive Scale (GDS). All participants underwent brain SPECT imaging. The voxel-wise whole-brain analysis and region-of-interest (ROI) analysis of the limbic areas were conducted to compare rCBF between the depressed and nondepressed PD groups. The depressed PD patients demonstrated higher GDS scores than nondepressed patients, whereas between-group differences in the PD severity and cognitive function were not significant. Perfusion in the left cuneus was increased, while that in the right superior temporal gyrus and right medial orbitofrontal cortex was reduced in the depressed PD patients as compared with nondepressed PD patients. In addition, the ROI analysis demonstrated rCBF decreases in the amygdala, anterior cingulate cortex, hippocampus, and parahippocampal gyrus in the depressed PD group. A positive correlation was found between the GDS scores and rCBF in the left cuneus cluster in the depressed PD patients. This study identified the regional pattern of brain perfusion that distinguished depressed from nondepressed PD patients. Hyperperfusion in the occipital areas and hypoperfusion in the fronto-temporo-limbic regions may be potential imaging biomarkers for depression in PD.
Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela
2013-08-01
Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.
Arsanjani, Reza; Dey, Damini; Khachatryan, Tigran; Shalev, Aryeh; Hayes, Sean W; Fish, Mathews; Nakanishi, Rine; Germano, Guido; Berman, Daniel S; Slomka, Piotr
2015-10-01
We aimed to investigate if early revascularization in patients with suspected coronary artery disease can be effectively predicted by integrating clinical data and quantitative image features derived from perfusion SPECT (MPS) by machine learning (ML) approach. 713 rest (201)Thallium/stress (99m)Technetium MPS studies with correlating invasive angiography with 372 revascularization events (275 PCI/97 CABG) within 90 days after MPS (91% within 30 days) were considered. Transient ischemic dilation, stress combined supine/prone total perfusion deficit (TPD), supine rest and stress TPD, exercise ejection fraction, and end-systolic volume, along with clinical parameters including patient gender, history of hypertension and diabetes mellitus, ST-depression on baseline ECG, ECG and clinical response during stress, and post-ECG probability by boosted ensemble ML algorithm (LogitBoost) to predict revascularization events. These features were selected using an automated feature selection algorithm from all available clinical and quantitative data (33 parameters). Tenfold cross-validation was utilized to train and test the prediction model. The prediction of revascularization by ML algorithm was compared to standalone measures of perfusion and visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. The sensitivity of machine learning (ML) (73.6% ± 4.3%) for prediction of revascularization was similar to one reader (73.9% ± 4.6%) and standalone measures of perfusion (75.5% ± 4.5%). The specificity of ML (74.7% ± 4.2%) was also better than both expert readers (67.2% ± 4.9% and 66.0% ± 5.0%, P < .05), but was similar to ischemic TPD (68.3% ± 4.9%, P < .05). The receiver operator characteristics areas under curve for ML (0.81 ± 0.02) was similar to reader 1 (0.81 ± 0.02) but superior to reader 2 (0.72 ± 0.02, P < .01) and standalone measure of perfusion (0.77 ± 0.02, P < .01). ML approach is comparable or better than experienced readers in prediction of the early revascularization after MPS, and is significantly better than standalone measures of perfusion derived from MPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, D; Anderson, C; Mayo, C
Purpose: To extend the functionality of a commercial treatment planning system (TPS) to support (i) direct use of quantitative image-based metrics within treatment plan optimization and (ii) evaluation of dose-functional volume relationships to assist in functional image adaptive radiotherapy. Methods: A script was written that interfaces with a commercial TPS via an Application Programming Interface (API). The script executes a program that performs dose-functional volume analyses. Written in C#, the script reads the dose grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can access registration transforms. A user interface was designed through WinFormsmore » to input parameters and display results. To test the performance of this program, image- and dose-based metrics computed from perfusion SPECT images aligned to the treatment planning CT were generated, validated, and compared. Results: The integration of image analysis information was successfully implemented as a plug-in to a commercial TPS. Perfusion SPECT images were used to validate the calculation and display of image-based metrics as well as dose-intensity metrics and histograms for defined structures on the treatment planning CT. Various biological dose correction models, custom image-based metrics, dose-intensity computations, and dose-intensity histograms were applied to analyze the image-dose profile. Conclusion: It is possible to add image analysis features to commercial TPSs through custom scripting applications. A tool was developed to enable the evaluation of image-intensity-based metrics in the context of functional targeting and avoidance. In addition to providing dose-intensity metrics and histograms that can be easily extracted from a plan database and correlated with outcomes, the system can also be extended to a plug-in optimization system, which can directly use the computed metrics for optimization of post-treatment tumor or normal tissue response models. Supported by NIH - P01 - CA059827.« less
[Application of SPECT/CT in neurosurgical practice].
Golanov, A V; Kotel'nikova, T M; Melikian, A G; Dolgushin, M B; Sorokin, V S; Soboleva, O I; Khokhlova, E V; Gorlachev, G E; Krasnianskiĭ, S A
2012-01-01
The paper presents the experience of application of single-photon emission computed tomography (SPECT) and CT in neurosurgery. Combination of these two techniques in the single system provides higher precision of both methods. The novel technique allows assessment of tumor spread in the brain, differential diagnosis of tumor regrowth and radiation-induced necrosis, evaluation of cerebral perfusion in epilepsy, traumatic brain injury (TBI), and diagnostics of secondary CNS lesions. Examples of primary diagnosis, dynamic follow-up and differential diagnosis of cerebral neoplasms, localization of epileptogenic foci in planning of surgery, prediction of outcome after TBI and evaluation of spread of metastatic skeletal involvement and further application of acquire data are presented.
Miranda, B; Pizzi, M N; Aguadé-Bruix, S; Domingo, E; Candell-Riera, J
2015-01-01
A 63-year-old male patient with a history of stent implantation in the left anterior descending three months before. Due to the presentation of vegetative symptoms, he was referred for gated-SPECT myocardial perfusion. During acquisition of the resting images he presented chest pain and ST segment elevation, so that urgent cardiac catheterization was performed, showing stent thrombosis. Rest perfusion imaging showed a defect in anterior and apical perfusion, more severe and extensive than in the stress images, with striking left ventricular dilatation and a fall in the ejection fraction related to the acute ischemia phenomenon. Intense exercise is associated with a transient activation of the coagulation system and hemodynamic changes that might induce thrombosis, especially in recently implanted coronary stents that probably still have not become completely endothelialized. Copyright © 2014 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
NOTE: Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT
NASA Astrophysics Data System (ADS)
Sohlberg, A.; Watabe, H.; Iida, H.
2008-07-01
Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling 99mTc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.
Vallejo, Enrique
2009-01-01
Coronary artery disease (CAD) remains the leading cause of death in the Western world, and early detection of CAD allows optimal therapeutic management. The gold standard has always been invasive coronary angiography, but over the years various non-invasive techniques have been developed to detect CAD, including cardiac SPECT and cardiac computed tomography (Cardiac CT). Cardiac SPECT permitted visualization of myocardial perfusion and have focused on the assessment of the hemodynamic consequences of obstructive coronary lesions as a marker of CAD. Cardiac CT focuses on the detection of atherosclerosis rather than ischemia, and permit detection of CAD at an earlier stage. Objectives of this manuscript are to discuss the clinical experience with both modalities and to provide a critical review of the strengths and limitations of Cardiac SPECT and Cardiac CT for the diagnostic and management of patients with suspected CAD or cardiac ischemic disease.
Slomka, P J; Elliott, E; Driedger, A A
2000-01-01
In nuclear medicine practice, images often need to be reviewed and reports prepared from locations outside the department, usually in the form of hard copy. Although hard-copy images are simple and portable, they do not offer electronic data search and image manipulation capabilities. On the other hand, picture archiving and communication systems or dedicated workstations cannot be easily deployed at numerous locations. To solve this problem, we propose a Java-based remote viewing station (JaRViS) for the reading and reporting of nuclear medicine images using Internet browser technology. JaRViS interfaces to the clinical patient database of a nuclear medicine workstation. All JaRViS software resides on a nuclear medicine department server. The contents of the clinical database can be searched by a browser interface after providing a password. Compressed images with the Java applet and color lookup tables are downloaded on the client side. This paradigm does not require nuclear medicine software to reside on remote computers, which simplifies support and deployment of such a system. To enable versatile reporting of the images, color tables and thresholds can be interactively manipulated and images can be displayed in a variety of layouts. Image filtering, frame grouping (adding frames), and movie display are available. Tomographic mode displays are supported, including gated SPECT. The time to display 14 lung perfusion images in 128 x 128 matrix together with the Java applet and color lookup tables over a V.90 modem is <1 min. SPECT and PET slice reorientation is interactive (<1 s). JaRViS could run on a Windows 95/98/NT or a Macintosh platform with Netscape Communicator or Microsoft Intemet Explorer. The performance of Java code for bilinear interpolation, cine display, and filtering approaches that of a standard imaging workstation. It is feasible to set up a remote nuclear medicine viewing station using Java and an Internet or intranet browser. Images can be made easily and cost-effectively available to referring physicians and ambulatory clinics within and outside of the hospital, providing a convenient alternative to film media. We also find this system useful in home reporting of emergency procedures such as lung ventilation-perfusion scans or dynamic studies.
The effect of heart motion on parameter bias in dynamic cardiac SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, S.G.; Gullberg, G.T.; Huesman, R.H.
1996-12-31
Dynamic cardiac SPECT can be used to estimate kinetic rate parameters which describe the wash-in and wash-out of tracer activity between the blood and the myocardial tissue. These kinetic parameters can in turn be correlated to myocardial perfusion. There are, however, many physical aspects associated with dynamic SPECT which can introduce errors into the estimates. This paper describes a study which investigates the effect of heart motion on kinetic parameter estimates. Dynamic SPECT simulations are performed using a beating version of the MCAT phantom. The results demonstrate that cardiac motion has a significant effect on the blood, tissue, and backgroundmore » content of regions of interest. This in turn affects estimates of wash-in, while it has very little effect on estimates of wash-out. The effect of cardiac motion on parameter estimates appears not to be as great as effects introduced by photon noise and geometric collimator response. It is also shown that cardiac motion results in little extravascular contamination of the left ventricle blood region of interest.« less
Hasebe, Naoyuki; Moroi, Masao; Nishimura, Masato; Hara, Kazuhiro; Hase, Hiroki; Hashimoto, Akiyoshi; Kumita, Shinichiro; Haze, Kazuo; Momose, Mitsuru; Nagai, Yoji; Sugimoto, Tokuichiro; Kusano, Eiji; Akiba, Takashi; Nakata, Tomoaki; Nishimura, Tsunehiko; Tamaki, Nagara; Kikuchi, Kenjiro
2008-12-01
Cardiovascular disease is the leading cause of morbidity and mortality in patients undergoing hemodialysis. Such patients frequently develop complications such as asymptomatic coronary artery disease (CAD). Accordingly, CAD must ideally be diagnosed at an early stage to improve prognosis. Although myocardial perfusion single photon emission computed tomography (SPECT) is valuable for diagnosing CAD, the stress test is not always applicable to patients on hemodialysis. Thus, we proposed a multicenter, prospective cohort study called "B-SAFE" to investigate the applicability of resting (123)I-labeled beta-methyl-iodophenylpentadecanoic acid ((123)I-BMIPP)-SPECT will be used to diagnose cardiac disease and evaluate the prognosis of hemodialysis patients by imaging myocardial fatty acid metabolism. B-SAFE began enrolling patients from June 2006 at 48 facilities. We performed (123)I-BMIPP-SPECT on 702 hemodialysis patients with risk factors for CAD until 30 November 2007 and plan to follow up for three years. The primary endpoints will be cardiac death and sudden death. This study should end in 2010.
Advances in PET myocardial perfusion imaging: F-18 labeled tracers.
Rischpler, Christoph; Park, Min-Jae; Fung, George S K; Javadi, Mehrbod; Tsui, Benjamin M W; Higuchi, Takahiro
2012-01-01
Coronary artery disease and its related cardiac disorders represent the most common cause of death in the USA and Western world. Despite advancements in treatment and accompanying improvements in outcome with current diagnostic and therapeutic modalities, it is the correct assignment of these diagnostic techniques and treatment options which are crucial. From a diagnostic standpoint, SPECT myocardial perfusion imaging (MPI) using traditional radiotracers like thallium-201 chloride, Tc-99m sestamibi or Tc-99m tetrofosmin is the most utilized imaging technique. However, PET MPI using N-13 ammonia, rubidium-82 chloride or O-15 water is increasing in availability and usage as a result of the growing number of medical centers with new-generation PET/CT systems taking advantage of the superior imaging properties of PET over SPECT. The routine clinical use of PET MPI is still limited, in part because of the short half-life of conventional PET MPI tracers. The disadvantages of these conventional PET tracers include expensive onsite production and inconvenient on-scanner tracer administration making them unsuitable for physical exercise stress imaging. Recently, two F-18 labeled radiotracers with longer radioactive half-lives than conventional PET imaging agents have been introduced. These are flurpiridaz F 18 (formerly known as F-18 BMS747158-02) and F-18 fluorobenzyltriphenylphosphonium. These longer half-life F-18 labeled perfusion tracers can overcome the production and protocol limitations of currently used radiotracers for PET MPI.
Efficient mining of association rules for the early diagnosis of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Chaves, R.; Górriz, J. M.; Ramírez, J.; Illán, I. A.; Salas-Gonzalez, D.; Gómez-Río, M.
2011-09-01
In this paper, a novel technique based on association rules (ARs) is presented in order to find relations among activated brain areas in single photon emission computed tomography (SPECT) imaging. In this sense, the aim of this work is to discover associations among attributes which characterize the perfusion patterns of normal subjects and to make use of them for the early diagnosis of Alzheimer's disease (AD). Firstly, voxel-as-feature-based activation estimation methods are used to find the tridimensional activated brain regions of interest (ROIs) for each patient. These ROIs serve as input to secondly mine ARs with a minimum support and confidence among activation blocks by using a set of controls. In this context, support and confidence measures are related to the proportion of functional areas which are singularly and mutually activated across the brain. Finally, we perform image classification by comparing the number of ARs verified by each subject under test to a given threshold that depends on the number of previously mined rules. Several classification experiments were carried out in order to evaluate the proposed methods using a SPECT database that consists of 41 controls (NOR) and 56 AD patients labeled by trained physicians. The proposed methods were validated by means of the leave-one-out cross validation strategy, yielding up to 94.87% classification accuracy, thus outperforming recent developed methods for computer aided diagnosis of AD.
Hentze, Benjamin; Muders, Thomas; Luepschen, Henning; Maripuu, Enn; Hedenstierna, Göran; Putensen, Christian; Walter, Marian; Leonhardt, Steffen
2018-06-20
Electrical impedance tomography (EIT) is a noninvasive imaging modality that allows real-time monitoring of regional lung ventilation ([Formula: see text]) in intensive care patients at bedside. However, for improved guidance of ventilation therapy it would be beneficial to obtain regional ventilation-to-perfusion ratio ([Formula: see text]) by EIT. In order to further explore the feasibility, we first evaluate a model-based approach, based on semi-negative matrix factorization and a gamma-variate model, to extract regional lung perfusion ([Formula: see text]) from EIT measurements. Subsequently, a combined validation of both [Formula: see text] and [Formula: see text] measured by EIT against single-photon emission computed tomography (SPECT) is performed on data acquired as part of a porcine animal trial. Four pigs were ventilated at two different levels of positive end-expiratory pressure (PEEP 0 and 15 cm H 2 O, respectively) in randomized order. Repeated injections of an EIT contrast agent (NaCl 10%) and simultaneous SPECT measurements of [Formula: see text] (81 m Kr gas) and [Formula: see text] (99 m Tc-labeled albumin) were performed. Both [Formula: see text] and [Formula: see text] from EIT and SPECT were compared by correlation analysis. Very strong (r 2 = 0.94 to 0.95) correlations were found for [Formula: see text] and [Formula: see text] in the dorsal-ventral direction at both PEEP levels. Moderate (r 2 = 0.36 to 0.46) and moderate to strong (r 2 = 0.61 to 0.82) correlations resulted for [Formula: see text] and [Formula: see text] in the right-left direction, respectively. The results of combined validation indicate that monitoring of [Formula: see text] and [Formula: see text] by EIT is possible. However, care should be taken when trying to quantify [Formula: see text] by EIT, as imaging artefacts and model bias may void necessary spatial matching.
Kumar, Avs Anil; Kumar, P G; Swami, Ajay; Dinker, Yateendra
2018-01-01
After a primary transluminal coronary angioplasty (PTCA) following AMI (acute myocardial infarction), the perfusion defect and LV (left ventricular) function recover/change over a period of time. The analysis immediately after the procedure may not be true depiction of the exact success of the procedure. There is varying and scanty information available on the natural course of changes in these parameters after a successful PTCA. We hypothesized that majority of change occurs at 3-4 month period. Hence, we undertook this study on the natural course of recovery/changes occurring in perfusion defect size and LV function in first 3 months after primary angioplasty MATERIAL AND METHODS: 30 consecutive cases of first AMI who were taken up for Primary angioplasty were enrolled into the study. Resting MPI(Myocardial perfusion imaging) was done within 24-72 hrs of admission using Tc-99m-Tetrofosmin and after 10-14 weeks. Analysis of LVEF (left ventricular ejection fraction), summed segmental score and extent of perfusion defect was done. Images were processed using autocardiac software of emory tool box and quantification was done using QPS (quantitative perfusion SPECT) and QGS (qualitative perfusion SPECT) softwares. 20 segment scoring method was used for quantification on bull's eye images. Student t test (two tailed, dependent) was used to find the significance of study parameters on continuous scale within each group. Effect size was computed to find the effect. Pearson correlation between perfusion defect and LVEF was performed at acute stage and after 10-14 weeks. The average acute perfusion defect extent was 19.76 ± 12.89% which after 3months became 16.79 ± 12.61%. The summed segmental score changed from 14.31 ± 10.58 to 11.38 ± 10.03 and LVEF improved from 48.40 ± 13.15% to 53.37 ± 12.8%. There was significant improvement in LVEF from acute setting to 10-14 weeks (p = 0.001). There was significant lowering of summed score (p = 0.007). Perfusion defect size showed significant reduction (p = 0.030). Three patients showed deterioration in perfusion defect size and in summed score with reduction in LVEF. Four patients had no change in any of the parameters. Correlation between perfusion defect and LVEF was strong both at baseline (r = -0.705, p < 0.001) and after 10-18 weeks (r = -0.766, p < 0.001). The changes we found in 3 months are similar to earlier studies and also to studies using follow up at 6 months to 1 year. We feel that 3 months is a good enough time to accurately assess the success of primary angioplasty.
Adriaens, Antita; Polis, Ingeborgh; Waelbers, Tim; Vandermeulen, Eva; Dobbeleir, André; De Spiegeleer, Bart; Peremans, Kathelijne
2013-01-01
Functional imaging provides important insights into canine brain pathologies such as behavioral problems. Two (99m) Tc-labeled single photon emission computed tomography (SPECT) cerebral blood flow tracers-ethylcysteinate dimer (ECD) and hexamethylpropylene amine oxime (HMPAO)-are commonly used in human medicine and have been used previously in dogs but intrasubject comparison of both tracers in dogs is lacking. Therefore, this study investigated whether regional distribution differences between both tracers occur in dogs as is reported in humans. Eight beagles underwent two SPECT examinations first with (99m) Tc-ECD and followed by (99m) Tc-HMPAO. SPECT scanning was performed with a triple head gamma camera equipped with ultrahigh resolution parallel hole collimators. Images were reconstructed using filtered backprojection with a Butterworth filter. Emission data were fitted to a template permitting semiquantification using predefined regions or volumes of interest (VOIs). For each VOI, perfusion indices were calculated by normalizing the regional counts per voxel to total brain counts per voxel. The obtained perfusion indices for each region for both tracers were compared with a paired Student's T-test. Significant (P < 0.05) regional differences were seen in the subcortical region and the cerebellum. Both tracers can be used to visualize regional cerebral blood flow in dogs, however, due to the observed regional differences, they are not entirely interchangeable. © 2013 Veterinary Radiology & Ultrasound.
Warwick, J M; Carey, P; Van der Linden, G; Prinsloo, C; Niehaus, D; Seedat, S; Dupont, P; Stein, D J
2006-09-01
The serotonin specific reuptake inhibitor (SSRI) citalopram and the reversible mono-amine oxidase-A inhibitor (RIMA) moclobemide have both been used successfully for the treatment of social anxiety disorder (SAD). In this study we investigate the effects of these compounds on resting brain function using single photon emission computed tomography (SPECT). Subjects meeting DSM-IV criteria for SAD underwent regional cerebral blood flow (rCBF) SPECT using Tc-HMPAO at baseline and after 8 weeks of treatment with either citalopram or moclobemide. Using statistical parametric mapping brain SPECT studies were analysed to determine the effects of treatment on rCBF, to compare the effects of citalopram and moclobemide, and to detect correlations between changes in rCBF and clinical response. Subjects received citalopram (n=17) or moclobemide (n=14) as therapy. Subjects in both treatment groups demonstrated a significant improvement of SAD symptoms as measured by the Liebowitz Social Anxiety Scale total score. All subjects demonstrated a decrease in rCBF in the insulae post therapy. Subjects receiving citalopram had decreased superior cingulate rCBF after therapy compared to those receiving moclobemide. Both SSRI's and RIMA's decreased rCBF in the insulae during treatment of SAD; an effect that may be consistent with the role of these regions in processing internal somatic cues evoked by emotional stimuli. Citalopram had a greater effect on superior cingulate perfusion, an effect that is consistent with evidence of high levels of 5-HT transporters in this region.
NASA Astrophysics Data System (ADS)
Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.
2015-04-01
This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the performance of human observers in detecting regional motion defects in 4D gated MP SPECT images. The result supports the use of the observer model in the optimization and evaluation of 4D image reconstruction and compensation methods for improving the detection of motion abnormalities in 4D gated MP SPECT images.
Bravo, Paco E; Chien, David; Javadi, Mehrbod; Merrill, Jennifer; Bengel, Frank M
2010-06-01
Electrocardiographic gating is increasingly used for (82)Rb cardiac PET/CT, but reference ranges for global functional parameters are not well defined. We sought to establish reference values for left ventricular ejection fraction (LVEF), end systolic volume (ESV), and end diastolic volume (EDV) using 4 different commercial software packages. Additionally, we compared 2 different approaches for the definition of a healthy individual. Sixty-two subjects (mean age +/- SD, 49 +/- 9 y; 85% women; mean body mass index +/- SD, 34 +/- 10 kg/m(2)) who underwent (82)Rb-gated myocardial perfusion PET/CT were evaluated. All subjects had normal myocardial perfusion and no history of coronary artery disease (CAD) or cardiomyopathy. Subgroup 1 consisted of 34 individuals with low pretest probability of CAD (<10%), and subgroup 2 comprised 28 subjects who had no atherosclerosis on a coronary CT angiogram obtained concurrently during the PET/CT session. LVEF, ESV, and EDV were calculated at rest and during dipyridamole-induced stress, using CardIQ Physio (a dedicated PET software) and the 3 major SPECT software packages (Emory Cardiac Toolbox, Quantitative Gated SPECT, and 4DM-SPECT). Mean LVEF was significantly different among all 4 software packages. LVEF was most comparable between CardIQ Physio (62% +/- 6% and 54% +/- 7% at stress and rest, respectively) and 4DM-SPECT (64% +/- 7% and 56% +/- 8%, respectively), whereas Emory Cardiac Toolbox yielded higher values (71% +/- 6% and 65% +/- 6%, respectively, P < 0.001) and Quantitated Gated SPECT lower values (56% +/- 8% and 50% +/- 8%, respectively, P < 0.001). Subgroup 1 (low likelihood) demonstrated higher LVEF values than did subgroup 2 (normal CT angiography findings), using all software packages (P < 0.05). However, mean ESV and EDV at stress and rest were comparable between both subgroups (p = NS). Intra- and interobserver agreement were excellent for all methods. The reference range of LVEF and LV volumes from gated (82)Rb PET/CT varies significantly among available software programs and therefore cannot be used interchangeably. LVEF results were higher when healthy subjects were defined by a low pretest probability of CAD than by normal CT angiography results.
Biomarkers for radiation pneumonitis using non-invasive molecular imaging
Medhora, Meetha; Haworth, Steven; Liu, Yu; Narayanan, Jayashree; Gao, Feng; Zhao, Ming; Audi, Said; Jacobs, Elizabeth R.; Fish, Brian L.; Clough, Anne V.
2016-01-01
Rationale Our goal is to develop minimally-invasive biomarkers for predicting radiation-induced lung injury before symptoms develop. Currently there are no biomarkers that can predict radiation pneumonitis. Radiation damage to the whole lung is a serious risk in nuclear accidents or in case of radiological terrorism. Our previous studies have shown a single dose of 15 Gy X-rays to the thorax causes severe pneumonitis in rats by 6–8 weeks. We have also developed a mitigator for radiation pneumonitis and fibrosis that can be started as late as 5 weeks after radiation. Methods We used two functional single photon emission computed tomography (SPECT) probes in vivo in irradiated rat lungs. Regional pulmonary perfusion was measured by injection of technetium labeled macroaggregated albumin (99mTc-MAA). Perfused volume was determined by comparing the volume of distribution of 99mTc-MAA to the anatomical lung volume obtained by micro-CT. A second probe, technetium labeled duramycin that binds to apoptotic cells, was used to measure pulmonary cell death in the same rat model. Results Perfused volume of lung was decreased by ~25% at 1, 2 and 3 weeks after 15 Gy and 99mTc-duramycin uptake was more than doubled at 2 and 3 weeks. There was no change in body weight, breathing rate or lung histology between irradiated and non-irradiated rats at these times. Pulmonary vascular resistance and vascular permeability measured in isolated perfused lungs ex vivo increased at 2 weeks after 15 Gy. Principal conclusions Our results suggest the potential for SPECT biomarkers for predicting radiation injury to the lungs before substantial functional or histological damage is observed. Early prediction of radiation pneumonitis will benefit those receiving radiation in the context of therapy, accidents or terrorism in time to initiate mitigation. PMID:27033892
Relations of Blood Pressure and Head Injury to Regional Cerebral Blood Flow
Allen, Allyssa J.; Katzel, Leslie I.; Wendell, Carrington R.; Siegel, Eliot L.; Lefkowitz, David; Waldstein, Shari R.
2016-01-01
Hypertension confers increased risk for cognitive decline, dementia, and cerebrovascular disease. These associations have been attributed, in part, to cerebral hypoperfusion. Here we posit that relations of higher blood pressure to lower levels of cerebral perfusion may be potentiated by a prior head injury. Participants were 87 community-dwelling older adults -69% men, 90% white, mean age= 66.9 years, 27.6% with a history of mild traumatic brain injury (mTBI) defined as a loss of consciousness = 30 minutes resulting from an injury to the head, and free of major medical (other than hypertension), neurological or psychiatric comorbidities. All engaged in clinical assessment of systolic and diastolic blood pressure (SBP, DBP) and single photon emission computed tomography (SPECT). Computerized coding of the SPECT images yielded relative ratios of blood flow in left and right cortical and select subcortical regions. Cerebellum served as the denominator. Sex-stratified multiple regression analyses, adjusted for age, education, race, alcohol consumption, smoking status, and depressive symptomatology, revealed significant interactions of blood pressure and head injury to cerebral blood flow in men only. Specifically, among men with a history of head injury, higher systolic blood pressure was associated with lower levels of perfusion in the left orbital (β=-3.21, p=.024) and left dorsolateral (β=-2.61, p=.042) prefrontal cortex, and left temporal cortex (β=-3.36, p=.014); higher diastolic blood pressure was marginally associated with lower levels of perfusion in the left dorsolateral prefrontal cortex (β=-2.79, p=.051). Results indicate that men with a history of head injury may be particularly vulnerable to the impact of higher blood pressure on cerebral perfusion in left anterior cortical regions, thus potentially enhancing risk for adverse brain and neurocognitive outcomes. PMID:27206865
Effect of Ranolazine on Left Ventricular Dyssynchrony in Patients with Coronary Artery Disease
Venkataraman, Rajesh; Chen, Ji; Garcia, Ernest V.; Belardinelli, Luiz; Hage, Fadi G.; Heo, Jaekyeong; Iskandrian, Ami E.
2012-01-01
We previously reported that ranolazine improved exercise myocardial perfusion. Ranolazine ameliorates myocardial ischemia by augmenting myocardial blood flow; likely due to a reduction in extra-vascular compression of small vessels. We hypothesized that ranolazine could improve left ventricular (LV) dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging (MPI). Patients (n=32) with known or suspected coronary artery disease and reversible perfusion defects on a clinically indicated stress MPI were re-studied 4 weeks after ranolazine (500–1000 mg orally twice daily) was added to their conventional treatment in an open-label trial (data previously reported). The LV systolic and diastolic dyssynchrony indices were obtained using automated phase analysis before and after ranolazine. There were no significant changes in heart rate and blood pressure (at rest or during stress) after treatment. The perfusion pattern improved in 13 of 18 patients who had exercise testing but in only 3 of 14 patients who had vasodilator stress testing. There were no significant changes in LV ejection fraction or volumes after treatment. The systolic and diastolic LV dyssynchrony improved after ranolazine therapy; there was a significant decrease in systolic phase standard deviation (SD) (21±17 vs. 18±13, P=0.04), systolic bandwidth (BW) (69±60 vs. 53±38, P=0.03), diastolic SD (29±18 vs. 24±15, P=0.047) and diastolic BW (91±61 vs. 72±45, P=0.02). In conclusion, this is the first study to show improvement in diastolic and systolic LV synchrony with ranolazine as measured by automated phase analysis of gated SPECT MPI. PMID:22884560
Exercise induced left bundle branch block in isotopic exercise test. Findings and prognostic value.
Gomez, M V; Lorente Castro, B C; Jané, P; García-Zoghby, L; Martínez-Lorca, A; Pérez, J A
2018-04-18
Exercise-induced left bundle branch block (EI-LBBB) is a rare circumstance of unknown significance. The purpose of this paper is to describe the scintigraphic features and the prognostic value of this finding. We reviewed the features of 1,885 patients who had visited our department to undergo GATED-SPECT ergometry to diagnose ischaemic heart disease. Seven patients showed EI-LBBB throughout the exercise testing. Coronary angiography was performed in 4 of them. Patients were followed-up over an average period of time of 30±8 months. The onset of major cardiovascular events was recorded during the follow-up period. The prevalence of EI-LBBB was 0.37%. Six out of 7 patients were women. Myocardial function and perfusion were normal in 3 patients. Three patients had fixed perfusion defects and one patient had a reversible defect. Two out of the 4 patients showing perfusion defects presented a moderate-severe decrease of the left ventricular ejection fraction. None of the 4 patients with perfusion defects were found to have coronary disease on coronary angiography. The prevalence of EI-LBBB among the patients that came to undergo GATED-SPECT ergometry was very low. The finding was more frequent in women. In our series, 2 patients presented non-ischaemic structural heart disease, but no patient was diagnosed with coronary artery disease. In our patients the presence of EI-LBBB did not relate to a greater risk of experiencing a major cardiovascular event. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.
Rodríguez-Palomares, José F; Alonso, Albert; Martí, Gerard; Aguadé-Bruix, Santiago; González-Alujas, M T; Romero-Farina, Guillermo; Candell-Riera, Jaume; García del Blanco, Bruno; Evangelista, Artur; García-Dorado, David
2013-02-01
Our study aimed to compare the area at risk (AAR) determined by single-photon emission computed tomography (SPECT) with the Bypass Angioplasty Revascularization Investigation (BARI) and modified Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) angiographic scores in the setting of patients undergoing coronary angioplasty for either unstable angina or an STEMI. Radionuclide myocardial perfusion imaging prior to reperfusion has classically been the most widely practised technique for assessing the AAR and has been successfully used to compare the efficacy of various reperfusion strategies in patients with an ST-segment elevation myocardial infarction (STEMI). The BARI and modified APPROACH scores are angiographic methods widely used to provide a rapid estimation of the AAR; however, they have not been directly validated with myocardial perfusion single-photon emission computed tomography (SPECT). Fifty-five patients with no previous myocardial infarction who underwent coronary angioplasty for single-vessel disease (unstable angina: n = 25 or an STEMI: n = 30) with no evidence of collaterals (Rentrop Collateral Score <2) were included in a prospective study. In STEMI patients, the (99m)Tc-tetrofosmin was injected prior to opening of the occluded vessel and, in patients with unstable angina after 10-15 seconds of balloon inflation. Acquisition was performed with a dual-head gammacamera with a low-energy and high-resolution collimator. A total of 60 projections were acquired using a non-circular orbit. No attenuation or scatter correction was used. Maximal contours of hypoperfusion regions corresponding to each coronary artery occlusion were delineated over a polar map of 17 segments and compared with the estimated AAR determined by two experienced interventional cardiologists using both angiographic scores. Mean AAR percentage in SPECT was 35.0 (10.0%-56.0%). A high correlation was found between BARI and APPROACH scores (r = 0.9, P < .001). Furthermore, a high correlation was also observed between BARI versus SPECT and APPROACH versus SPECT to estimate the AAR (r = 0.9, P < .001 and r = 0.8, P < .001, respectively). Better correlations were observed when the left anterior descending artery (LAD) was revascularized (r = 0.8, P < 0.001 with BARI; r = 0.8, P = .001 with APPROACH) compared to other territories (r = 0.8, P = .001 with BARI; r = 0.7, P = .001 with APPROACH). Also, better correlations were observed in patients who underwent an elective rather than a primary percutaneous revascularization procedure. In the absence of collateral flow, BARI and APPROACH scores constitute valid methods for AAR estimation in current clinical practice, with more accurate results when used for the LAD territory; both are useful not only in STEMI patients but also in patients with unstable angina.
Spillover Compensation in the Presence of Respiratory Motion Embedded in SPECT Perfusion Data
NASA Astrophysics Data System (ADS)
Pretorius, P. Hendrik; King, Michael A.
2008-02-01
Spillover from adjacent significant accumulations of extra-cardiac activity decreases diagnostic accuracy of SPECT perfusion imaging in especially the inferior/septal cardiac region. One method of compensating for the spillover at some location outside of a structure is to estimate it as the counts blurred into this location when a template (3D model) of the structure undergoes simulated imaging followed by reconstruction. The objective of this study was to determine what impact uncorrected respiratory motion has on such spillover compensation of extra-cardiac activity in the right coronary artery (RCA) territory, and if it is possible to use manual segmentation to define the extra-cardiac activity template(s) used in spillover correction. Two separate MCAT phantoms (1283 matrices) were simulated to represent the source and attenuation distributions of patients with and without respiratory motion. For each phantom the heart was modeled: 1) with a normal perfusion pattern and 2) with an RCA defect equal to 50% of the normal myocardium count level. After Monte Carlo simulation of 64times64times120 projections with appropriate noise, data were reconstructed using the rescaled block iterative (RBI) algorithm with 30 subsets and 5 iterations with compensation for attenuation, scatter and resolution. A 3D Gaussian post-filter with a sigma of 0.476 cm was used to suppress noise. Manual segmentation of the liver in filtered emission slices was used to create 3D binary templates. The true liver distribution (with and without respiratory motion included) was also used as binary templates. These templates were projected using a ray-driven projector simulating the imaging system with the exclusion of Compton scatter and reconstructed using the same protocol as for the emission data, excluding scatter compensation. Reconstructed templates were scaled using reconstructed emission count levels from the liver, and spillover subtracted outside the template. It was evident from the polar maps that the manually segmented template reconstructions were unable to remove all the spillover originating in the liver from the inferior wall. This was especially noticeable when a perfusion defect is present. Templates based on the true liver distribution appreciably improved spillover correction. Thus the emerging combined SPECT/CT technology may play a vital role in identifying and segmenting extra-cardiac structures more reliably thereby facilitating spillover correction. This study also indicates that compensation for respiratory motion might play an important role in spillover compensation.
2014-01-01
Background Insulin resistance (IR) assessed by the Homeostatic Model Assessment (HOMA) index in the acute phase of myocardial infarction in non-diabetic patients was recently established as an independent predictor of intrahospital mortality. In this study we postulated that acute IR is a dynamic phenomenon associated with the development of myocardial and microvascular injury and larger final infarct size in patients with ST-segment elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention (pPCI). Methods In 104 consecutive patients with the first anterior STEMI without diabetes, the HOMA index was determined on the 2nd and 7th day after pPCI. Worst-lead residual ST-segment elevation (ST-E) on postprocedural ECG, coronary flow reserve (CFR) determined by transthoracic Doppler echocardiography on the 2nd day after pPCI and fixed perfusion defect on single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) determined six weeks after pPCI were analyzed according to HOMA indices. Results IR was present in 55 % and 58 % of patients on day 2 and day 7, respectively. Incomplete post-procedural ST-E resolution was more frequent in patients with IR compared to patients without IR, both on day 2 (p = 0.001) and day 7 (p < 0.001). The HOMA index on day 7 correlated with SPECT-MPI perfusion defect (r = 0.331), whereas both HOMA indices correlated well with CFR (r = -0.331 to -0.386) (p < 0.01 for all). In multivariable backward logistic regression analysis adjusted for significant univariate predictors and potential confounding variables, IR on day 2 was an independent predictor of residual ST-E ≥ 2 mm (OR 11.70, 95% CI 2.46-55.51, p = 0.002) and CFR < 2 (OR = 5.98, 95% CI 1.88-19.03, p = 0.002), whereas IR on day 7 was an independent predictor of SPECT-MPI perfusion defect > 20% (OR 11.37, 95% CI 1.34-96.21, p = 0.026). Conclusion IR assessed by the HOMA index during the acute phase of the first anterior STEMI in patients without diabetes treated by pPCI is independently associated with poorer myocardial reperfusion, impaired coronary microcirculatory function and potentially with larger final infarct size. PMID:24708817
Gebhard, Catherine; Messerli, Michael; Lohmann, Christine; Treyer, Valerie; Bengs, Susan; Benz, Dominik C; Giannopoulos, Andreas A; Kudura, Ken; von Felten, Elia; Schwyzer, Moritz; Gaemperli, Oliver; Gräni, Christoph; Pazhenkottil, Aju P; Buechel, Ronny R; Kaufmann, Philipp A
2018-04-23
In light of growing cardiovascular mortality rates observed in young women, sexual dimorphism in cardiac autonomic nervous control is gaining increasing attention. Heart rate responses to adenosine mirror autonomic activity and may carry important prognostic information. Hemodynamic changes during adenosine stress were retrospectively analysed in a propensity-matched cohort of 1932 consecutive patients undergoing myocardial perfusion single-photon-emission computed tomography (MPI-SPECT). Heart rate (HR) and systolic blood pressure (SBP) increased during adenosine infusion (P < 0.001). The increase in SBP and HR (heart rate reserve, HRR), was significantly more pronounced in women compared with men (P < 0.05). Patients ≤ 55 years had a higher HRR compared with patients > 55 years (46.8% vs 37.5%, P = 0.015). Women ≤ 55 years with a reversible perfusion defect on MPI-SPECT exhibited the highest HRR (89.2%), while age-matched men showed a blunted HR response to adenosine (26.4%, P = 0.01). Accordingly, age and an interaction term of female sex and increased HRR were identified as significant predictors of myocardial ischemia in a multiple regression analysis (OR 1.4, 95% CI 1.02-1.9, P = 0.038). HRR during adenosine infusion is influenced by age and sex. Our data suggest a stronger, sympathetic-driven, hemodynamic response to adenosine in younger women with myocardial ischemia.
Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.
Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru
2011-01-01
In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.
Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, François; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagrà, Roberto; Bucerius, Jan; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Übleis, Christopher; Hacker, Marcus
2016-12-01
The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims 1) to identify the main acquisitions protocols; 2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally 3) to determine the impact of CZT on radiation exposure.
Maruoka, Yasuhiro; Nagao, Michinobu; Baba, Shingo; Isoda, Takuro; Kitamura, Yoshiyuki; Yamazaki, Yuzo; Abe, Koichiro; Sasaki, Masayuki; Abe, Kohtaro; Honda, Hiroshi
2017-06-01
Balloon pulmonary angioplasty (BPA) is used for inoperable chronic thromboembolic pulmonary hypertension (CTEPH), but its effect cannot be evaluated noninvasively. We devised a noninvasive quantitative index of response to BPA using three-dimensional fractal analysis (3D-FA) of technetium-99m-macroaggregated albumin (Tc-MAA) single-photon emission computed tomography (SPECT). Forty CTEPH patients who underwent pulmonary perfusion scintigraphy and mean pulmonary arterial pressure (mPAP) measurement by right heart catheterization before and after BPA were studied. The total uptake volume (TUV) in bilateral lungs was determined from maximum intensity projection Tc-MAA SPECT images. Fractal dimension was assessed by 3D-FA. Parameters were compared before and after BPA, and between patients with post-BPA mPAP more than 30 mmHg and less than or equal to 30 mmHg. Receiver operating characteristic analysis was carried out. BPA significantly improved TUV (595±204-885±214 ml, P<0.001) and reduced the laterality of uptake (238±147-135±131 ml, P<0.001). Patients with poor therapeutic response (post-BPA mPAP≥30 mmHg, n=16) showed a significantly smaller TUV increase (P=0.044) and a significantly greater post-BPA fractal dimension (P<0.001) than the low-mPAP group. Fractal dimension correlated with mPAP values before and after BPA (P=0.013 and 0.001, respectively). A post-BPA fractal dimension threshold of 2.4 distinguished between BPA success and failure with 75% sensitivity, 79% specificity, 78% accuracy, and area under the curve of 0.85. 3D-FA using Tc-MAA SPECT pulmonary perfusion scintigraphy enables a noninvasive evaluation of the response of CTEPH patients to BPA.
Hudgens, Stacie; Breeze, Janis; Spalding, James
2013-01-01
The objective of this study was to compare clinician and patient measures of satisfaction with two pharmacological stress agents (PSA), regadenoson and dipyridamole, used in Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging (MPI). This observational study included patients who had undergone SPECT MPI with regadenoson or dipyridamole, as well as the clinician/clinical technologist who performed the test. Mean scores for individual item and domain scores of the main outcome measures were computed as well as the effect sizes (ES) of the mean difference in scores between treatment groups. Statistical significance of the mean item and domain score differences were assessed via Mann-Whitney tests. Two self-report questionnaires which had beeb previously developed and validated: Patient Satisfaction/Preference Questionnaire (PSPQ) and Clinician Satisfaction/Preference Questionnaire (CSPQ). A total of 87 patients (68 received regadenoson, 19 received dipyridamole) and nine clinicians/clinical technologists took part in the study. Patients had a mean age of 66.8 ± 12.2 years, and 56.3% were male. Compared to dipyridamole, use of regadenoson was associated with greater clinician satisfaction on all items and domains of the CSPQ (p < 0.001 for all comparisons). Among patients, regadenoson was associated with less bother and greater satisfaction than dipyridamole for all items on the PSPQ. These patients reported less stinging at the injection site (ES = -0.66) and less nervousness during injection (ES = -0.60). The PSPQ found that regadenoson patients were more satisfied with their PSA than dipyridamole patients in all areas. This study utilized a relatively small sample size of dipyridamole patients and lacked an adenosine group. A broader sampling of professionals would also help demonstrate generalizability. Both patients and clinicians reported higher satisfaction with regadenoson compared to dipyridamole for SPECT-MPI. Clinicians were particularly satisfied with the preparation and administration aspects of the drug, while patients rated it highly on convenience and reduced incidence of side-effects.
Bowler, J; Wade, J; Jones, B; Nijran, K; Steiner, T
1998-01-01
OBJECTIVE—Little is known about the effect of spontaneous reperfusion of human cerebral infarcts. Single photon emission computerised tomography (SPECT) data were analysed from a study using 99Tcm HMPAO (99Tcm hexamethylpropyleneamine oxime) in human cerebral infarction for the frequency of reperfusion and to see if it affected infarct size, oedema, haemorrhagic transformation, or functional outcome. METHODS—Fifty sequential cases of ischaemic stroke were studied with 124 99Tcm HMPAO SPECT at around one day, one week, and three months after stroke along with detailed clinical and functional assessments. RESULTS—Visually apparent reperfusion occurred in 14 of 50 patients (28%) with a mean delay of 5.8 days and reperfusion was seen in seven others in whom it was identified on the basis of changes in perfusion deficit volume. It occurred in 13 of 23 embolic events but only in three of 23 other events. In only two cases did spontaneous reperfusion occur early enough to preserve tissue or function. Reperfusion did not otherwise reduce infarct size, or improve clinical or functional outcome, and was not associated with oedema but an association with haemorrhagic transformation was suggested. Reperfusion significantly decreased the apparent perfusion defect as measured by SPECT one week from the ictus, but was mostly non-nutritional and transient. The mean volume of tissue preserved by nutritional reperfusion was 10 cm3, but this was unequally distributed between cases. Late washout of 99Tcm HMPAO from areas of hyperaemic reperfusion may be a good prognostic marker but is a rare phenomenon and too insensitive to be of general applicability. CONCLUSIONS—Spontaneous reperfusion after cerebral infarction occurs in 42% of cases within the first week but is associated with clinical improvement in only 2%. It has few adverse consequences although it may be associated with haemorrhagic transformation. PMID:9436735
Sharma, Vijay K; Tsivgoulis, Georgios; Ning, Chou; Teoh, Hock L; Bairaktaris, Chrisostomos; Chong, Vincent FH; Ong, Benjamin KC; Chan, Bernard PL; Sinha, Arvind K
2008-01-01
Background: The circle of Willis provides collateral pathways to perfuse the affected vascular territories in patients with severe stenoocclusive disease of major arteries. The collateral perfusion may become insufficient in certain physiological circumstances due to failed vasodilatory reserve and intracranial steal phenomenon, so-called ‘Reversed-Robinhood syndrome’. We evaluated cerebral hemodynamics and vasodilatory reserve in patients with symptomatic distal internal carotid (ICA) or middle cerebral artery (MCA) severe steno-occlusive disease. Methods: Diagnostic transcranial Doppler (TCD) and TCD-monitoring with voluntary breath-holding according to a standard scanning protocol were performed in patients with severe ICA or MCA steno-occlusive disease. The steal phenomenon was detected as transient, spontaneous, or vasodilatory stimuli-induced velocity reductions in affected arteries at the time of velocity increase in normal vessels. Patients with exhausted vasomotor reactivity and intracranial steal phenomenon during breath-holding were further evaluated by 99technetiumm-hexamethyl propylene amine oxime single photon emission computed tomography (HMPAO-SPECT) with acetazolamide challenge. Results: Sixteen patients (age 27–74 years, 11 men) fulfilled our TCD criteria for exhausted vasomotor reactivity and intracranial steal phenomenon during the standard vasomotor testing by breath holding. Acetazolamide-challenged HMPAO-SPECT demonstrated significant hypoperfusion in 12 patients in affected arterial territories, suggestive of failed vasodilatory reserve. A breath-holding index of ≤0.3 on TCD was associated with an abnormal HMPAO-SPECT with acetazolamide challenge. TCD findings of a breath holding index of ≤0.3 and intracranial steal during the procedure were determinants of a significant abnormality on HMPAO-SPECT with acetazolamide challenge. Conclusion: Multimodal evaluation of cerebral hemodynamics in symptomatic patients with severe steno-occlusive disease of the ICA or MCA is helpful in the identification and quantification of failed vasodilatory reserve. This approach may be useful in selecting patients for possible revascularization procedures. PMID:22518232
Myocardial perfusion SPECT 2015 in Germany. Results of the 7th survey.
Lindner, Oliver; Burchert, Wolfgang; Schäfer, Wolfgang; Hacker, Marcus
2017-02-14
The working group Cardiovascular Nuclear Medicine of the German Society of Nuclear Medicine presents the results of the 7th survey of myocardial perfusion SPECT (MPS) of the reporting year 2015. 268 questionnaires (173 practices [PR], 67 hospitals [HO], 28 university hospitals [UH]) were evaluated. Results of the last survey from 2012 are set in squared brackets. MPS of 121 939 [105 941] patients were reported. 98 % [95 %] of all MPS were performed with Tc-99m radiopharmaceuticals and 2 % [5 %] with Tl-201. 78 % [79 %] of all patients were studied in PR, 14 % [15 %] in HO, and 8 % [6 %] in UH. A pharmacological stress test was performed in 43 % [39 %] (22 % [24 %] adenosine, 20 % [9 %] regadenoson, 1 % [6 %] dipyridamole or dobutamine). Attenuation correction was applied in 25 % [2009: 10 %] of MPS. Gated SPECT was performed in 78 % [70 %] of all rest MPS, in 80 % [73 %] of all stress and in 76 % [67 %] of all stress and rest MPS. 53 % [33 %] of all nuclear medicine departments performed MPS scoring by default, whereas 24 % [41 %] did not apply any quantification. 31 % [26 %] of all departments noticed an increase in their counted MPS and 29 % [29 %] no changes. Data from 89 departments which participated in all surveys showed an increase in MPS count of 11.1 % (PR: 12.2 %, HO: 4.8 %, UH: 18.4 %). 70 % [60 %] of the MPS were requested by ambulatory care cardiologists. The 2015 MPS survey reveals a high-grade adherence of routine MPS practice to current guidelines. The positive trend in MPS performance and number of MPS already observed in 2012 continues. Educational training remains necessary in the field of SPECT scoring.
Harata, Shingo; Isobe, Satoshi; Morishima, Itsuro; Suzuki, Susumu; Tsuboi, Hideyuki; Sone, Takahito; Ishii, Hideki; Murohara, Toyoaki
2015-10-01
The currently available Japanese normal database (NDB) in stress myocardial perfusion scintigraphy recommended by the Japanese Society of Nuclear Medicine (JSNM-NDB) is created based on the data from exercise tests. The newly developed adenosine normal database (ADS-NDB) remains to be validated for patients undergoing adenosine stress test. We tested whether the diagnostic accuracy of adenosine stress test is improved by the use of ADS-NDB (Kanazawa University). Of 233 consecutive patients undergoing (99m)Tc-MIBI adenosine stress test, 112 patients were tested. The stress/rest myocardial (99m)Tc-MIBI single-photon emission computed tomography (SPECT) images were analyzed by AutoQUANT 7.2 with both ADS-NDB and JSNM-NDB. The summed stress score (SSS) and summed difference score (SDS) were calculated. The agreements of the post-stress defect severity between ADS-NDB and JSNM-NDB were assessed using a weighted kappa statistic. In all patients, mean SSSs of all, right coronary artery (RCA), left anterior descending (LAD), and left circumflex (LCx) territories were significantly lower with ADS-NDB than those with JSNM-NDB. Mean SDSs in all, RCA, and LAD territories were significantly lower with ADS-NDB than those with JSNM-NDB. In 28 patients with significant coronary stenosis, the mean SSS in the RCA territory was significantly lower with ADS-NDB than that with JSNM-NDB. In 84 patients without ischemia, both mean SSSs and SDSs in all, RCA, LAD, and LCx territories were significantly lower with ADS-NDB than those with JSNM-NDB. Weighted kappa values of all patients, patients with significant stenosis, and patients without ischemia were 0.89, 0.83, and 0.92, respectively. Differences were observed between results from ADS-NDB and JSNM-NDB. The diagnostic accuracy of adenosine stress myocardial perfusion scintigraphy may be improved by reducing false-positive results.
Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.
Yamakami, I; Yamaura, A; Isobe, K
1993-01-01
To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.
NASA Astrophysics Data System (ADS)
Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.
2016-03-01
Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.
Yokosawa, Michiko; Hayashi, Toshiaki; Shirane, Reizo; Tominaga, Teiji
2014-01-01
Moyamoya disease can be associated with a rapidly progressive course in young patients. This report describes a patient with moyamoya disease who experienced rapid disease progression, resulting in cerebral infarction and a wide area of diminished cerebral perfusion. Double superficial temporal artery (STA)-middle cerebral artery (MCA) anastomoses were utilized to immediately increase cerebral perfusion in the affected area. This case involved a 5-year-old girl who had been diagnosed with moyamoya disease and had undergone STA-MCA anastomosis with indirect bypass in the right hemisphere at the age of 3. At the time of presentation, magnetic resonance (MR) imaging showed cerebral infarction at the left frontal lobe, and MR angiography showed rapidly progressive narrowing of the left MCA that had not been present 3 months prior. N-isopropyl-p-[I123] iodoamphetamine single-photon emission computed tomography (IMP-SPECT) showed markedly decreased uptake in the left hemisphere. She underwent emergent STA-MCA double anastomoses with indirect bypass on the left side. IMP-SPECT showed marked increase in uptake in the left hemisphere. The anterior cerebral artery (ACA) territory adjacent to the cerebral infarction also showed increased uptake on the SPECT. Postoperatively, there were no clinical or radiographic indications of ischemic or hemorrhagic complications. Double anastomoses are effective in quickly and significantly increasing blood flow. The postoperative course in this case was uneventful. Double anastomoses are a surgical option for patients with moyamoya disease who show rapid disease progression, even in those in the acute phase of cerebral infarction.
YOKOSAWA, Michiko; HAYASHI, Toshiaki; SHIRANE, Reizo; TOMINAGA, Teiji
2014-01-01
Moyamoya disease can be associated with a rapidly progressive course in young patients. This report describes a patient with moyamoya disease who experienced rapid disease progression, resulting in cerebral infarction and a wide area of diminished cerebral perfusion. Double superficial temporal artery (STA)-middle cerebral artery (MCA) anastomoses were utilized to immediately increase cerebral perfusion in the affected area. This case involved a 5-year-old girl who had been diagnosed with moyamoya disease and had undergone STA-MCA anastomosis with indirect bypass in the right hemisphere at the age of 3. At the time of presentation, magnetic resonance (MR) imaging showed cerebral infarction at the left frontal lobe, and MR angiography showed rapidly progressive narrowing of the left MCA that had not been present 3 months prior. N-isopropyl-p-[I123] iodoamphetamine single-photon emission computed tomography (IMP-SPECT) showed markedly decreased uptake in the left hemisphere. She underwent emergent STA-MCA double anastomoses with indirect bypass on the left side. IMP-SPECT showed marked increase in uptake in the left hemisphere. The anterior cerebral artery (ACA) territory adjacent to the cerebral infarction also showed increased uptake on the SPECT. Postoperatively, there were no clinical or radiographic indications of ischemic or hemorrhagic complications. Double anastomoses are effective in quickly and significantly increasing blood flow. The postoperative course in this case was uneventful. Double anastomoses are a surgical option for patients with moyamoya disease who show rapid disease progression, even in those in the acute phase of cerebral infarction. PMID:24584280
Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J
2017-10-01
A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.
Tanaka, R; Nakamura, T
2001-09-01
Myocardial perfusion imaging with 99mTc-labeled agents immediately after reperfusion therapy can underestimate myocardial salvage. It is also conceivable that delayed imaging is useful for assessing the risk area. However, to our knowledge, very few studies have sequentially evaluated these image changes. We conducted 99mTc-tetrofosmin (TF) and 123I-beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) SPECT before and after reperfusion to treat acute myocardial infarction and quantified changes in TF myocardial accumulation and reverse redistribution. Seventeen patients with a first myocardial infarction underwent successful reperfusion. We examined SPECT images obtained at the onset (preimage), those acquired 30 min (early image) and 6 h (delayed image) after TF injection, and images acquired 1, 4, 7, and 20 d after reperfusion (post-1-d, post-4-d, post-7-d, and post-20-d image, respectively). We also examined BMIPP SPECT images after 7 +/- 1.8 d (BMIPP image). Polar maps were divided into 48 segments to calculate percentage uptake, and time course changes in segment numbers below 60% were observed as abnormal area. Moreover, cardiac function was analyzed by gated TF SPECT on 1 and 20 d after reperfusion. In reference to the abnormal area on the early images, the post-1-d image was significantly improved compared with the preimage (P < 0.01) as was the post-7-d image compared with the post-1-d and post-4-d images (P < 0.05, respectively). However, post-20-d and post-7-d images did not significantly differ. Therefore, the improvement in myocardial accumulation reached a plateau 7 d after reperfusion. On the other hand, the abnormal area on the delayed images was significantly greater (P < 0.01) compared with that on the early images from 4 to 20 d after reperfusion, as the value was essentially constant. The correlations of the abnormal area between the preimage and the post-7-d delayed image, the preimage and the BMIPP image, and the post-7-d delayed image and the BMIPP image were very close (r = 0.963, r = 0.981, and r = 0.975, respectively). Gated TF SPECT revealed that the left ventricular ejection fraction was not significantly different (P = not significant) between 1 and 20 d after reperfusion, but regional wall motion was significantly different after reperfusion (P < 0.05). These results suggest that the interval between reperfusion therapy and TF SPECT should be 7 d to evaluate the salvage effect and that TF delayed and BMIPP images are both useful in estimation of risk area.
Evans, J; Wilson, B; Wraight, E P; Hodges, J R
1993-11-01
A patient had neuropsychological testing during, and at two days and seven weeks after a transient global amnesia (TGA) attack. During the attack she exhibited a characteristically profound anterograde amnesia but a limited remote memory loss; the most striking impairment was a deficit in personal episodic memory revealed by her performance on the Autobiographical Memory Interview. Personal and general semantic information was less impaired although there were indications of a temporal gradient in the impairment. When tested after the attack, she demonstrated normal anterograde and retrograde memory. A SPECT scan performed during TGA showed a focal reduction in cerebral perfusion in the postero-medial temporal lobes bilaterally which had resolved after seven weeks.
Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A.
2015-01-01
Background Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. Methods Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large group of neuropsychiatric patients. Two groups were analyzed: Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI (n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs and visual readings (VRs) were analyzed using a binary logistic regression model with predicted probabilities inputted into a Receiver Operating Characteristic analysis to identify sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically significant regions of increased perfusion in PTSD compared to TBI. Analysis included a 10-fold cross validation of the protocol in the larger community sample (Group 2). Results For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differentiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingulum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes. Conclusions This study demonstrates the ability to separate PTSD and TBI from healthy controls, from each other, and detect their co-occurrence, even in highly comorbid samples, using SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of these conditions. PMID:26132293
Amen, Daniel G; Raji, Cyrus A; Willeumier, Kristen; Taylor, Derek; Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A
2015-01-01
Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large group of neuropsychiatric patients. Two groups were analyzed: Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI (n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs and visual readings (VRs) were analyzed using a binary logistic regression model with predicted probabilities inputted into a Receiver Operating Characteristic analysis to identify sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically significant regions of increased perfusion in PTSD compared to TBI. Analysis included a 10-fold cross validation of the protocol in the larger community sample (Group 2). For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differentiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingulum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes. This study demonstrates the ability to separate PTSD and TBI from healthy controls, from each other, and detect their co-occurrence, even in highly comorbid samples, using SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of these conditions.
Ito, Kimiteru; Shimano, Yasumasa; Imabayashi, Etsuko; Nakata, Yasuhiro; Omachi, Yoshie; Sato, Noriko; Arima, Kunimasa; Matsuda, Hiroshi
2014-10-01
The purpose of this study was to clarify the concordance of diagnostic abilities and interobserver agreement between 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and brain perfusion single photon-emission computed tomography (SPECT) in patients with Alzheimer's disease (AD) who were diagnosed according to the research criteria of the National Institute of Aging-Alzheimer's Association Workshop. Fifty-five patients with "AD and mild cognitive impairment (MCI)" (n = 40) and "non-AD" (n = 15) were evaluated with 18F-FDG PET and (99m)Tc-ethyl cysteinate dimer (ECD) SPECT during an 8-week period. Three radiologists independently graded the regional uptake in the frontal, temporal, parietal, and occipital lobes as well as the precuneus/posterior cingulate cortex in both images. Kappa values were used to determine the interobserver reliability regarding regional uptake. The regions with better interobserver reliability between 18F-FDG PET and (99m)Tc-ECD SPECT were the frontal, parietal, and temporal lobes. The (99m)Tc-ECD SPECT agreement in the occipital lobes was not significant. The frontal, temporal, and parietal lobes showed good correlations between 18F-FDG PET and (99m)Tc-ECD SPECT in the degree of uptake, but the occipital lobe and precuneus/posterior cingulate cortex did not show good correlations. The diagnostic accuracy rates of "AD and MCI" ranged from 60% to 70% in both of the techniques. The degree of uptake on 18F-FDG PET and (99m)Tc-ECD SPECT showed significant correlations in the frontal, temporal, and parietal lobes. The diagnostic abilities of 18F-FDG PET and (99m)Tc-ECD SPECT for "AD and MCI," when diagnosed according to the National Institute of Aging-Alzheimer's Association Workshop criteria, were nearly identical. Copyright © 2014 John Wiley & Sons, Ltd.
Lorberboym, M; Mena, I; Wainstein, J; Boaz, M; Lampl, Y
2010-06-01
Sildenafil citrate is widely used for erectile dysfunction. The present study examined the short-term effects of sildenafil administration in individuals with cerebrovascular risk factors, including patients with a history of stroke. Twenty-five consecutive male patients with erectile dysfunction and vascular risk factors were included in the study. A perfusion brain SPECT study was performed at baseline and 1 h after the oral administration of sildenafil. Associations between any of the risk factors and the perfusion scores were not detected, with the exception of stroke. Stroke patients showed significantly more areas with diminished perfusion after sildenafil administration compared to baseline. In patients with diabetes or hypertension, a dose of 50 mg sildenafil does not appear to produce detrimental effects on cerebral blood flow. However, patients with a history of stroke may be at increased risk of hemodynamic impairment after the use of sildenafil.
Cypess, Aaron M; Doyle, Ashley N; Sass, Christina A; Huang, Tian Lian; Mowschenson, Peter M; Rosen, Harold N; Tseng, Yu-Hua; Palmer, Edwin L; Kolodny, Gerald M
2013-11-01
For brown adipose tissue (BAT) to be effective at consuming calories, its blood flow must increase enough to provide sufficient fuel to sustain energy expenditure and also transfer the heat created to avoid thermal injury. Here we used a combination of human and rodent models to assess changes in BAT blood flow and glucose utilization. (99m)Tc-methoxyisobutylisonitrile (MIBI) SPECT (n = 7) and SPECT/CT (n = 74) scans done in adult humans for parathyroid imaging were reviewed for uptake in regions consistent with human BAT. Site-directed biopsies of subcutaneous and deep neck fat were obtained for electron microscopy and gene expression profiling. In mice, tissue perfusion was measured with (99m)Tc-MIBI (n = 16) and glucose uptake with (18)F-FDG (n = 16). Animals were kept fasting overnight, anesthetized with pentobarbital, and given intraperitoneally either the β3-adrenergic receptor agonist CL-316,243, 1 mg/kg (n = 8), or saline (n = 8) followed by radiotracer injection 5 min later. After 120 min, the mice were imaged using SPECT/CT or PET/CT. Vital signs were recorded over 30 min during the imaging. BAT, white adipose tissue (WAT), muscle, liver, and heart were resected, and tissue uptake of both (99m)Tc-MIBI and (18)F-FDG was quantified by percentage injected dose per gram of tissue and normalized to total body weight. In 5.4% of patients (4/74), (99m)Tc-MIBI SPECT/CT showed increased retention in cervical and supraclavicular fat that displayed multilocular lipid droplets, dense capillary investment, and a high concentration of ovoid mitochondria. Expression levels of the tissue-specific uncoupling protein-1 were 180 times higher in BAT than in subcutaneous WAT (P < 0.001). In mice, BAT tissue perfusion increased by 61% (P < 0.01), with no significant changes in blood flow to WAT, muscle, heart, or liver. CL-316,243 increased glucose uptake in BAT even more, by 440% (P < 0.01). Pharmacologic activation of BAT requires increased blood flow to deliver glucose and oxygen for thermogenesis. However, the glucose consumption far exceeds the vascular response. These findings demonstrate that activated BAT increases glucose uptake beyond what might occur by increased blood flow alone and suggest that activated BAT likely uses glucose for nonthermogenic purposes.
Aboul-Enein, Fatma; Kar, Saibal; Hayes, Sean W; Sciammarella, Maria; Abidov, Aiden; Makkar, Raj; Friedman, John D; Eigler, Neal; Berman, Daniel S
2004-06-01
The functional role of various angiographic grades for coronary collaterals remains controversial. The aim of this study was to assess the influence of the Rentrop angiographic grading of coronary collaterals on myocardial perfusion in patients with single-vessel chronic total occlusion (CTO) and no prior myocardial infarction (MI). The study included 56 patients with single-vessel CTO and no prior MI who underwent rest-stress myocardial perfusion SPECT and coronary angiography within 6 mo. All patients had angiographic evidence of coronary collaterals. Patients were divided according to the Rentrop classification: Group I had grade 1 or 2 (n = 25) and group II had grade 3 collaterals (n = 31). Group I had a higher frequency of resting regional wall motion abnormalities on left ventriculography (52.6% vs. 19.2% [P = 0.019]). The mean perfusion scores of the overall population showed severe and extensive stress perfusion defects (summed stress score of 14.1 +/- 7.1 and summed difference score of 12.9 +/- 6.9) but minimal resting perfusion defects (summed rest score of 1.0 +/- 2.7). No perfusion scores differed between the 2 groups. The perfusion findings suggested that chronic stunning rather than hibernation is the principal cause of regional wall motion abnormalities in these patients. In the setting of single-vessel CTO and no prior MI, coronary collaterals appear to protect against resting perfusion defects. Excellent angiographic collaterals may prevent resting regional wall motion abnormalities but do not appear to protect against stress-induced perfusion defects.
Uebleis, C; Groebner, M; von Ziegler, F; Becker, A; Rischpler, C; Tegtmeyer, R; Becker, C; Lehner, S; Haug, A R; Cumming, P; Bartenstein, P; Franz, W M; Hacker, M
2012-10-01
There has been a lack of standardized workup guidelines for patients with congenital abnormal origin of a coronary artery from the opposite sinus (ACAOS). We aimed to evaluate the use of cardiac hybrid imaging using multi-detector row CT (MDCT) for coronary CT angiography (Coronary CTA) and stress-rest myocardial perfusion SPECT (MPS) for comprehensive diagnosis of symptomatic adult patients with ACAOS. Seventeen symptomatic patients (12 men; 54 ± 13 years) presenting with ACAOS underwent coronary CTA and MPS. Imaging data were analyzed by conventional means, and with additional use of 3D image fusion to allocate stress induced perfusion defects (PD) to their supplying coronary arteries. An anomalous RCA arose from the left anterior sinus in eight patients, an abnormal origin from the right sinus was detected in nine patients (5 left coronary arteries, LCA and 4 LCx). Five of the 17 patients (29%) demonstrated a reversible PD in MPS. There was no correlation between the anatomical variants of ACAOS and the presence of myocardial ischemia. Image fusion enabled the allocation of reversible PD to the anomalous vessel in three patients (two cases in the RCA and the other in the LCA territory); PD in two patients were allocated to the territory of artery giving rise to the anomalies, rather than the anomalies themselves. In a small cohort of adult symptomatic patients with ACAOS anomaly there was no relation found between the specific anatomical variant and the appearance of stress induced myocardial ischemia using cardiac hybrid imaging.
Biswas, S K; Sarai, M; Hishida, H; Ozaki, Y
2009-10-01
Fatty acid oxidation is the most efficient mode of myocardial energy production which requires a large amount of oxygen. Thus, alteration of fatty acid oxidation is considered to be a sensitive marker of ischaemia and myocardial damage. (123)I-BMIPP ([123]I-beta-methyl-p-iodophenylpentadecanoic acid) is a newly-investigated single-photon branching free fatty acid radiopharmaceutical with slow metabolism; thus, it is well-suited for single-photon emission computed tomography (SPECT). Assessment of fatty acid metabolism by radionuclide techniques has a potential role for the early detection of myocardial ischaemia and the assessment of the severity of ischaemic heart disease. Although stable patients with a healed myocardial infarction may have a relatively good prognosis, risk stratification in the predischarge period should be valuable for deciding upon appropriate management. In this respect, the presence of discordant BMIPP uptake relative to (201)Tl perfusion appears to be the best predictor of future cardiac events among all other cardiovascular imaging modalities. Since discordant BMIPP uptake correlates well with redistribution on stress (201)Tl imaging and perfusion-metabolism mismatch on positron emission tomography, it is considered that such BMIPP and (201)Tl discordance may identify a high-risk subgroup among patients with acute myocardial infarction. A BMIPP scan may reflect prior severe ischaemia after recovery of perfusion, the so-called "ischaemic memory". Gated BMIPP SPECT has been recently introduced for simultaneous assessment of myocardial metabolism and ventricular function. Such a new technique seems to be valuable for a better understanding of the pathophysiological state of heart failure and cardiomyopathy.
Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection
NASA Astrophysics Data System (ADS)
Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.
2016-03-01
To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.
Cardiac SPECT/CCTA hybrid imaging : One answer to two questions?
Kaufmann, P A; Buechel, R R
2016-08-01
Noninvasive cardiac imaging has witnessed tremendous advances in the recent past, particularly with regard to coronary computed tomography angiography (CCTA) where substantial improvements in image quality have been achieved while at the same time patients' radiation dose exposure has been reduced to the sub-millisievert range. Similarly, for single-photon emission computed tomography (SPECT) the introduction of novel cadmium-zinc-telluride-based semiconductor detectors has significantly improved system sensitivity and image quality, enabling fast image acquisition within less than 2-3 min or reduction of radiation dose exposure to less than 5 mSv. However, neither imaging modality alone is able to fully cover the two aspects of coronary artery disease (CAD), that is, morphology and function. Both modalities have distinct advantages and shortcomings: While CCTA may prove a superb modality for excluding CAD through its excellent negative predictive value, it does not allow for assessment of hemodynamic relevance if obstructive coronary lesions are detected. Conversely, SPECT myocardial perfusion imaging cannot provide any information on the presence or absence of subclinical coronary atherosclerosis. This article aims to highlight the great potential of cardiac hybrid imaging that allows for a comprehensive evaluation of CAD through combination of both morphological and functional information by fusing SPECT with CCTA.
Eftekhari, Mohammad; Anbiaei, Robabeh; Zamani, Hanie; Fallahi, Babak; Beiki, Davood; Ameri, Ahmad; Emami-Ardekani, Alireza; Fard-Esfahani, Armaghan; Gholamrezanezhad, Ali; Seid Ratki, Kazem Razavi; Roknabadi, Alireza Momen
2015-01-01
Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right-sided cancer. To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring) were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT) to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions) over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol) was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed) and 36 patients with right-sided cancer (controls)] were enrolled. Dose-volume histogram (DVH) [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46). In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03) and anterolateral (17.1% versus 2.8%, P=0.049) walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS) of>3 was observed in twelve cases (34.3%), while in five of the controls (13.9%),(Odds ratio=1.3). There was no significant difference between the groups regarding left ventricular ejection fraction. The risk of radiation induced myocardial perfusion abnormality in patients treated with CRT on the left hemi thorax is not low. It is reasonable to minimize the volume of the heart being in the field of radiation employing didactic radiation planning techniques. Also it is advisable to screen these patients with MPI-SPECT, even if they are clinically asymptomatic, as early diagnosis and treatment of silent ischemia may change the outcome.
Dussault, C; Gontier, E; Verret, C; Soret, M; Boussuges, A; Hedenstierna, G; Montmerle-Borgdorff, S
2016-07-01
Aeroatelectasis has developed in aircrew flying routine peacetime flights on the latest generation high-performance aircraft, when undergoing excessive oxygen supply. To single out the effects of hyperoxia and hypergravity on lung tissue compression, and on ventilation and perfusion, eight subjects were studied before and after 1 h 15 min exposure to +1 to +3.5 Gz in a human centrifuge. They performed the protocol three times, breathing air, 44.5% O2, or 100% O2 and underwent functional and topographical imaging of the whole lung by ultrasound and single-photon emission computed tomography combined with computed tomography (SPECT/CT). Ultrasound lung comets (ULC) and atelectasis both increased after exposure. The number of ULC was <1 pre protocol (i.e., normal lung) and larger post 100% O2 (22 ± 3, mean ± SD) than in all other conditions (P < 0.001). Post 44.5% O2 differed from air (P < 0.05). Seven subjects showed low- to medium-grade atelectasis post 100% O2 There was an effect on grade of gas mixture and hypergravity, with interaction (P < 0.001, respectively); 100% O2, 44.5% O2, and air differed from each other (P < 0.05). SPECT ventilation and perfusion were always normal. Ultrasound concurred with CT in showing normal lung in the upper third and ULC/atelectasis in posterior and inferior areas, not for other localizations. In conclusion, hyperoxia and hypergravity are independent risk factors of reversible atelectasis formation. Ultrasound is a useful screening tool. Together with electrical impedance tomography measurements (reported separately), these findings show that zones with decreased ventilation prone to transient airway closure are present above atelectatic areas. Copyright © 2016 the American Physiological Society.
Murray, Gary L
2014-09-01
Normal myocardial perfusion imaging (MPI) reduces intermediate- or high-risk pretest probability patients to low- or intermediate-risk posttest probability, respectively, for coronary disease (CD). Since ranolazine (RAN) relieves only angina, anginal patients with normal MPI whose angina is relieved by RAN present a significant dilemma. The purpose of this retrospective chart review was to confirm the impression that coronary angiography (CA) is indicated in patients whose class 3 to 4 angina is relieved by RAN, but have normal myocardial single-photon emission computed tomography (SPECT) MPIs. Charts of patients with stable class 3 to 4 angina (typical and atypical) and normal MPIs (left ventricular ejection fraction [LVEF] ≥50% and segmental score = 0) were reviewed. CA was done on all the patients with complete angina relief taking RAN, as well as nonresponders whose anginal etiology could not be explained. Stenoses were considered flow-restrictive when more than 70% diameter stenosis is observed by quantitative CA, or, when 50 to 70%, fractional flow reserve (FFR) measured ≤0.80. RAN relieved angina in 36 of 54 (67%) patients. Of the known cases, 25 of these 36 (69%) had 43 stenoses ≥50% (mean = 66%): 15 (60%) had 1 vessel disease; 9 (36%) had multivessel disease; 18 (72%) had left anterior descending (LAD) disease; 1 (4%) had left main disease. Twenty one of 43 (49%) stenosis were > 70%; 22 (51%) stenoses were 50 to 70% and required FFR measurement. Twenty nine of 43 stenoses (67%) were considered flow-restrictive in 18 of these 25 (72%) patients. Eight RAN nonresponders with no explanation for angina had no CD at CA. RAN angina relief is invaluable in identifying falsely negative SPECT MPI, and 50% of these patients have flow-restrictive stenoses.
Biomarkers for Radiation Pneumonitis Using Noninvasive Molecular Imaging.
Medhora, Meetha; Haworth, Steven; Liu, Yu; Narayanan, Jayashree; Gao, Feng; Zhao, Ming; Audi, Said; Jacobs, Elizabeth R; Fish, Brian L; Clough, Anne V
2016-08-01
Our goal is to develop minimally invasive biomarkers for predicting radiation-induced lung injury before symptoms develop. Currently, there are no biomarkers that can predict radiation pneumonitis. Radiation damage to the whole lung is a serious risk in nuclear accidents or in radiologic terrorism. Our previous studies have shown that a single dose of 15 Gy of x-rays to the thorax causes severe pneumonitis in rats by 6-8 wk. We have also developed a mitigator for radiation pneumonitis and fibrosis that can be started as late as 5 wk after radiation. We used 2 functional SPECT probes in vivo in irradiated rat lungs. Regional pulmonary perfusion was measured by injection of (99m)Tc-macroaggregated albumin. Perfused volume was determined by comparing the volume of distribution of (99m)Tc-macroaggregated albumin to the anatomic lung volume obtained by small-animal CT. A second probe, (99m)Tc-labeled Duramycin, which binds to apoptotic cells, was used to measure pulmonary cell death in the same rat model. The perfused volume of lung was decreased by about 25% at 1, 2, and 3 wk after receipt of 15 Gy, and (99m)Tc-Duramycin uptake was more than doubled at 2 and 3 wk. There was no change in body weight, breathing rate, or lung histology between irradiated and nonirradiated rats at these times. Pulmonary vascular resistance and vascular permeability measured in isolated perfused lungs ex vivo increased at 2 wk after 15 Gy of irradiation. Our results suggest that SPECT biomarkers have the potential to predict radiation injury to the lungs before substantial functional or histologic damage is observed. Early prediction of radiation pneumonitis in time to initiate mitigation will benefit those exposed to radiation in the context of therapy, accidents, or terrorism. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Min, James K; Shaw, Leslee J; Berman, Daniel S; Gilmore, Amanda; Kang, Ning
2008-09-15
Multidetector coronary computed tomographic angiography (CCTA) demonstrates high accuracy for the detection and exclusion of coronary artery disease (CAD) and predicts adverse prognosis. To date, opportunity costs relating the clinical and economic outcomes of CCTA compared with other methods of diagnosing CAD, such as myocardial perfusion single-photon emission computed tomography (SPECT), remain unknown. An observational, multicenter, patient-level analysis of patients without known CAD who underwent CCTA or SPECT was performed. Patients who underwent CCTA (n = 1,938) were matched to those who underwent SPECT (n = 7,752) on 8 demographic and clinical characteristics and 2 summary measures of cardiac medications and co-morbidities and were evaluated for 9-month expenditures and clinical outcomes. Adjusted total health care and CAD expenditures were 27% (p <0.001) and 33% (p <0.001) lower, respectively, for patients who underwent CCTA compared with those who underwent SPECT, by an average of $467 (95% confidence interval $99 to $984) for CAD expenditures per patient. Despite lower total health care expenditures for CCTA, no differences were observed for rates of adverse cardiovascular events, including CAD hospitalizations (4.2% vs 4.1%, p = NS), CAD outpatient visits (17.4% vs 13.3%, p = NS), myocardial infarction (0.4% vs 0.6%, p = NS), and new-onset angina (3.0% vs 3.5%, p = NS). Patients without known CAD who underwent CCTA, compared with matched patients who underwent SPECT, incurred lower overall health care and CAD expenditures while experiencing similarly low rates of CAD hospitalization, outpatient visits, myocardial infarction, and angina. In conclusion, these data suggest that CCTA may be a cost-efficient alternative to SPECT for the initial coronary evaluation of patients without known CAD.
Kojima, Daigo; Komoribayashi, Nobukazu; Omama, Shinichi; Oikawa, Kohki; Fujiwara, Shunrou; Kobayashi, Masakazu; Kubo, Yoshitaka; Terasaki, Kazunori; Ogasawara, Kuniaki
2018-06-01
Whereas SPECT images obtained 180 minutes after administration of I-iomazenil (IMZ) (late images) are proportional to the distribution of central benzodiazepine receptor-binding potential, SPECT images obtained within 30 minutes after I-IMZ administration (early images) correlate with regional brain perfusion. The aim of the present study was to determine whether crossed cerebellar tracer uptake on acute-stage I-IMZ SPECT imaging predicts 3-month functional outcome in patients with nonfatal hypertensive putaminal or thalamic hemorrhage. Forty-six patients underwent early and late SPECT imaging with I-IMZ within 7 days after the onset of hemorrhage. A region of interest was automatically placed in the bilateral cerebellar hemispheres using a 3-dimensional stereotaxic region-of-interest template, and the ratio of the value in the cerebellar hemisphere contralateral to the affected side to that in the ipsilateral cerebellar hemisphere (ARcbl) was calculated in each patient. Each patient's physical function was measured using the modified Rankin scale (mRS) score 3 months after onset. The ARcbl on early (ρ = -0.511, P = 0.0003) and late (ρ = -0.714, P < 0.0001) images correlated with the mRS 3 months after the onset of hemorrhage. Multivariate analysis showed that only a low ARcbl in late images was significantly associated with a poor functional outcome (mRS score ≥3 at 3 months after onset) (95% confidence interval, 0.001-0.003; P = 0.0212). Crossed cerebellar tracer uptake on acute-stage I-IMZ SPECT imaging predicts 3-month functional outcome in patients with nonfatal hypertensive putaminal or thalamic hemorrhage.
Transmyocardial revascularization on canine with Ho:YAG laser - an experimental study
NASA Astrophysics Data System (ADS)
Bao, Xiaoqing; Zhu, Jing; Zhang, Hui-Guo
2005-07-01
Background and Objective: To evaluate the efficiency of transmyocardial revascularization with Ho:YAG laser and find out adequate physical parameters of the laser. Materials and Methods: 10 dogs were studied. All the samples were divided into two groups: the laser group (5 dogs) and the control group (5 dogs). Acute myocardial ischemia was induced in all the samples, and transmyocardial laser revascularization (TMLR) was only done in the laser group. We compared the difference of improvement in myocardial perfusion between the two groups with single photon emission computed tomograph (SPECT) and observed the patency of the laser channels and heat injures in the tissue adjacent to the channels with light- and electro-scope. Results: After 4 weeks, the recovery of myocardial perfusion was significantly faster in the laser group than in the control group through SPECT (P<0.05). Most of the laser channels drilled with Ho:YAG laser were filled with fibrin. There were amount of microvessels and erythrocytes inside and around the channels. Only slight heat injures were seen in the tissue adjacent to the channels. Only 20-30 watts were needed in TMLR. Conclusions: Transmyocardial revascularization with Ho:YAG laser limits infarct expansion and reduces myocardial ischemia efficiently. TMLR with Ho:YAG laser can become a new technique to treat ischemic heart disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.
1994-05-01
In patients with internal carotid and major cerebral arterial obstructions, it is clinically important to know the presence of collateral circulation. However, this information is not available from Tc-99m HMPAO perfusion SPECT alone. To investigate the usefulness of Tc-99m HMPAO radionuclide angiography (RNA) in the diagnosis of collaterals, we retrospectively studied 39 patients (pts) cerebrovascular diseases (CVD) with HMPAO RNA and SPECT. Contrast angiography was done on all pts. Of these, 11 internal carotid artery (ICA), 1 anterior cerebral artery (ACA), and 3 middle cerebral artery (MCA) obstructions were found angiographically. Non- or decreased visualization of ICA was found inmore » 11 of 11 pts of ICA obstruction. In 1 pt of ICA obstruction, the collaterals were directly visualized with RNA. Early perfusion deficient area with delayed filling-in with Tc-HMPAO was found in 7 of 11 pts of ICA, 1 of 1 pt of ACA, and 2 of 3 pts of MCA obstructions. In all pts with the delayed filling-in sign on RNA, collateral circulations were confirmed angiographically. We conclude that the delayed filling-in of Tc-HMPAO is a useful sign of collateral circulation in the CVD pts.« less
Catherine, Faget-Agius; Aurélie, Vincenti; Eric, Guedj; Pierre, Michel; Raphaëlle, Richieri; Marine, Alessandrini; Pascal, Auquier; Christophe, Lançon; Laurent, Boyer
2017-12-30
This study aims to define functioning levels of patients with schizophrenia by using a method of interpretable clustering based on a specific functioning scale, the Functional Remission Of General Schizophrenia (FROGS) scale, and to test their validity regarding clinical and neuroimaging characterization. In this observational study, patients with schizophrenia have been classified using a hierarchical top-down method called clustering using unsupervised binary trees (CUBT). Socio-demographic, clinical, and neuroimaging SPECT perfusion data were compared between the different clusters to ensure their clinical relevance. A total of 242 patients were analyzed. A four-group functioning level structure has been identified: 54 are classified as "minimal", 81 as "low", 64 as "moderate", and 43 as "high". The clustering shows satisfactory statistical properties, including reproducibility and discriminancy. The 4 clusters consistently differentiate patients. "High" functioning level patients reported significantly the lowest scores on the PANSS and the CDSS, and the highest scores on the GAF, the MARS and S-QoL 18. Functioning levels were significantly associated with cerebral perfusion of two relevant areas: the left inferior parietal cortex and the anterior cingulate. Our study provides relevant functioning levels in schizophrenia, and may enhance the use of functioning scale. Copyright © 2017 Elsevier B.V. All rights reserved.
Properties of an ideal PET perfusion tracer: new PET tracer cases and data.
Maddahi, Jamshid
2012-02-01
An ideal positron emission tomography (PET) tracer should be highly extractable by the myocardium and able to provide high-resolution images, should enable quantification of absolute myocardial blood flow (MBF), should be compatible with both pharmacologically induced and exercise-induced stress imaging, and should not require an on-site cyclotron. The PET radionuclides nitrogen-13 ammonia and oxygen-15 water require an on-site cyclotron. Rubidium-82 may be available locally due to the generator source, but greater utilization is limited because of its relatively low myocardial extraction fraction, long positron range, and generator cost. Flurpiridaz F 18, a novel PET tracer in development, has a high-extraction fraction, short positron range, and relatively long half-life (as compared to currently available tracers), and may be produced at regional cyclotrons. Results of early clinical trials suggest that both pharmacologically and exercise-induced stress PET imaging protocols can be completed more rapidly and with lower patient radiation exposure than with single-photon emission computerized tomography (SPECT) tracers. As compared to SPECT images in the same patients, flurpiridaz F 18 PET images showed better defect contrast. Flurpiridaz F 18 is a potentially promising tracer for assessment of myocardial perfusion, measurement of absolute MBF, calculation of coronary flow reserves, and assessment of cardiac function at the peak of the stress response.
[Asperger syndrome with highly exceptional calendar memory: a case report].
Sevik, Ali Emre; Cengel Kültür, Ebru; Demirel, Hilal; Karlı Oğuz, Kader; Akça, Onur; Lay Ergün, Eser; Demir, Başaran
2010-01-01
Some patients with pervasive developmental disorders develop unusual talents, which are characterized as savant syndrome. Herein we present neuropsychological examination and brain imaging (fMRI and brain SPECT) findings of an 18-year-old male with Asperger syndrome and highly unusual calendar memory. Neuropsychological evaluation of the case indicated mild attention, memory, and problem solving deficits, and severe executive function deficits that included conceptualization, category formation, and abstraction. Functional MRI findings showed activation above the baseline level (P<0.05) in the bilateral inferior parietal lobule, precuneus, superior and middle frontal gyri, and medial frontal cortex. Brain SPECT findings, in comparison to rest-SPECT findings, showed that there was hypoperfusion in some brain regions, including the right frontal cortex and right parietal cortex. Baseline blood perfusion in the left frontal cortex was also observed, as well as hypoperfusion in the right parietal-occipital cortex and in the right basal ganglion (compared to the left side). The results of the present study and further research will contribute to our understanding of calendar memory and savant syndrome.
Varrone, Andrea; Dickson, John C; Tossici-Bolt, Livia; Sera, Terez; Asenbaum, Susanne; Booij, Jan; Kapucu, Ozlem L; Kluge, Andreas; Knudsen, Gitte M; Koulibaly, Pierre Malick; Nobili, Flavio; Pagani, Marco; Sabri, Osama; Vander Borght, Thierry; Van Laere, Koen; Tatsch, Klaus
2013-01-01
Dopamine transporter (DAT) imaging with [(123)I]FP-CIT (DaTSCAN) is an established diagnostic tool in parkinsonism and dementia. Although qualitative assessment criteria are available, DAT quantification is important for research and for completion of a diagnostic evaluation. One critical aspect of quantification is the availability of normative data, considering possible age and gender effects on DAT availability. The aim of the European Normal Control Database of DaTSCAN (ENC-DAT) study was to generate a large database of [(123)I]FP-CIT SPECT scans in healthy controls. SPECT data from 139 healthy controls (74 men, 65 women; age range 20-83 years, mean 53 years) acquired in 13 different centres were included. Images were reconstructed using the ordered-subset expectation-maximization algorithm without correction (NOACSC), with attenuation correction (AC), and with both attenuation and scatter correction using the triple-energy window method (ACSC). Region-of-interest analysis was performed using the BRASS software (caudate and putamen), and the Southampton method (striatum). The outcome measure was the specific binding ratio (SBR). A significant effect of age on SBR was found for all data. Gender had a significant effect on SBR in the caudate and putamen for the NOACSC and AC data, and only in the left caudate for the ACSC data (BRASS method). Significant effects of age and gender on striatal SBR were observed for all data analysed with the Southampton method. Overall, there was a significant age-related decline in SBR of between 4 % and 6.7 % per decade. This study provides a large database of [(123)I]FP-CIT SPECT scans in healthy controls across a wide age range and with balanced gender representation. Higher DAT availability was found in women than in men. An average age-related decline in DAT availability of 5.5 % per decade was found for both genders, in agreement with previous reports. The data collected in this study may serve as a reference database for nuclear medicine centres and for clinical trials using [(123)I]FP-CIT SPECT as the imaging marker.
Ghotbi, Adam Ali; Kjaer, Andreas; Nepper-Christensen, Lars; Ahtarovski, Kiril Aleksov; Lønborg, Jacob Thomsen; Vejlstrup, Niels; Kyhl, Kasper; Christensen, Thomas Emil; Engstrøm, Thomas; Kelbæk, Henning; Holmvang, Lene; Bang, Lia E; Ripa, Rasmus Sejersten; Hasbak, Philip
2018-06-01
Determining infarct size and myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI) is important when assessing the efficacy of new reperfusion strategies. We investigated whether rest 82 Rb-PET myocardial perfusion imaging can estimate area at risk, final infarct size, and myocardial salvage index when compared to cardiac SPECT and magnetic resonance (CMR). Twelve STEMI patients were injected with 99m Tc-Sestamibi intravenously immediate prior to reperfusion. SPECT, 82 Rb-PET, and CMR imaging were performed post-reperfusion and at a 3-month follow-up. An automated algorithm determined area at risk, final infarct size, and hence myocardial salvage index. SPECT, CMR, and PET were performed 2.2 ± 0.5, 34 ± 8.5, and 32 ± 24.4 h after reperfusion, respectively. Mean (± SD) area at risk were 35.2 ± 16.6%, 34.7 ± 11.3%, and 28.1 ± 16.1% of the left ventricle (LV) in SPECT, CMR, and PET, respectively, P = 0.04 for difference. Mean final infarct size estimates were 12.3 ± 15.4%, 13.7 ± 10.4%, and 11.9 ± 14.6% of the LV in SPECT, CMR, and PET imaging, respectively, P = .72. Myocardial salvage indices were 0.64 ± 0.33 (SPECT), 0.65 ± 0.20 (CMR), and 0.63 ± 0.28 (PET), (P = .78). 82 Rb-PET underestimates area at risk in patients with STEMI when compared to SPECT and CMR. However, our findings suggest that PET imaging seems feasible when assessing the clinical important parameters of final infarct size and myocardial salvage index, although with great variability, in a selected STEMI population with large infarcts. These findings should be confirmed in a larger population.
Goyal, Parag; Kim, Jiwon; Feher, Attila; Ma, Claudia L.; Gurevich, Sergey; Veal, David R.; Szulc, Massimiliano; Wong, Franklin J.; Ratcliffe, Mark B.; Levine, Robert A.; Devereux, Richard B.; Weinsaft, Jonathan W.
2015-01-01
Objective Ischemic mitral regurgitation (MR) is common, but its response to percutaneous coronary intervention (PCI) is poorly understood. This study tested utility of myocardial perfusion imaging (MPI) for stratification of MR response to PCI. Methods MPI and echo were performed among patients undergoing PCI. MPI was used to assess stress/rest myocardial perfusion. MR was assessed via echo (performed pre- and post-PCI). Results 317 patients with abnormal myocardial perfusion on MPI underwent echo 25±39 days prior to PCI. MR was present in 52%, among whom 24% had advanced (≥moderate) MR. MR was associated with LV chamber dilation on MPI and echo (both p<0.001). Magnitude of global LV perfusion deficits increased in relation to MR severity (p<0.01). Perfusion differences were greatest for global summed rest scores, which were 1.6-fold higher among patients with advanced MR vs. those with mild MR (p=0.004), and 2.4-fold higher vs. those without MR (p<0.001). In multivariate analysis, advanced MR was associated with fixed perfusion defect size on MPI (OR 1.16 per segment [CI 1.002–1.34], p=0.046) independent of LV volume (OR 1.10 per 10ml [CI 1.04–1.17], p=0.002). Follow-up via echo (1.0±0.6 years) demonstrated MR to decrease (≥1 grade) in 31% of patients, and increase in 12%. Patients with increased MR after PCI had more severe inferior perfusion defects on baseline MPI (p=0.028), whereas defects in other distributions and LV volumes were similar (p=NS). Conclusions Extent and distribution of SPECT-evidenced myocardial perfusion defects impacts MR response to revascularization. Increased magnitude of inferior fixed perfusion defects predicts post-PCI progression of MR. PMID:26049923
Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT.
Gardner, Ann; Åstrand, Disa; Öberg, Johanna; Jacobsson, Hans; Jonsson, Cathrine; Larsson, Stig; Pagani, Marco
2014-08-30
Several studies have demonstrated altered brain functional connectivity in the resting state in depression. However, no study has investigated interregional networking in patients with persistent depressive disorder (PDD). The aim of this study was to assess differences in brain perfusion distribution and connectivity between large groups of patients and healthy controls. Participants comprised 91 patients with PDD and 65 age- and sex-matched healthy controls. Resting state perfusion was investigated by single photon emission computed tomography, and group differences were assessed by Statistical Parametric Mapping. Brain connectivity was explored through a voxel-wise interregional correlation analysis using as covariate of interest the normalized values of clusters of voxels in which perfusion differences were found in group analysis. Significantly increased regional brain perfusion distribution covering a large part of the cerebellum was observed in patients as compared with controls. Patients showed a significant negative functional connectivity between the cerebellar cluster and caudate, bilaterally. This study demonstrated inverse relative perfusion between the cerebellum and the caudate in PDD. Functional uncoupling may be associated with a dysregulation between the role of the cerebellum in action control and of the caudate in action selection, initiation and decision making in the patients. The potential impact of the resting state condition and the possibility of mitochondrial impairment are discussed. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Tomographic digital subtraction angiography for lung perfusion estimation in rodents.
Badea, Cristian T; Hedlund, Laurence W; De Lin, Ming; Mackel, Julie S Boslego; Samei, Ehsan; Johnson, G Allan
2007-05-01
In vivo measurements of perfusion present a challenge to existing small animal imaging techniques such as magnetic resonance microscopy, micro computed tomography, micro positron emission tomography, and microSPECT, due to combined requirements for high spatial and temporal resolution. We demonstrate the use of tomographic digital subtraction angiography (TDSA) for estimation of perfusion in small animals. TDSA augments conventional digital subtraction angiography (DSA) by providing three-dimensional spatial information using tomosynthesis algorithms. TDSA is based on the novel paradigm that the same time density curves can be reproduced in a number of consecutive injections of microL volumes of contrast at a series of different angles of rotation. The capabilities of TDSA are established in studies on lung perfusion in rats. Using an imaging system developed in-house, we acquired data for four-dimensional (4D) imaging with temporal resolution of 140 ms, in-plane spatial resolution of 100 microm, and slice thickness on the order of millimeters. Based on a structured experimental approach, we optimized TDSA imaging providing a good trade-off between slice thickness, the number of injections, contrast to noise, and immunity to artifacts. Both DSA and TDSA images were used to create parametric maps of perfusion. TDSA imaging has potential application in a number of areas where functional perfusion measurements in 4D can provide valuable insight into animal models of disease and response to therapeutics.
Cardiac contraction motion compensation in gated myocardial perfusion SPECT: A comparative study.
Salehi, Narges; Rahmim, Arman; Fatemizadeh, Emad; Akbarzadeh, Afshin; Farahani, Mohammad Hossein; Farzanefar, Saeed; Ay, Mohammad Reza
2018-05-01
Cardiac contraction significantly degrades quality and quantitative accuracy of gated myocardial perfusion SPECT (MPS) images. In this study, we aimed to explore different techniques in motion-compensated temporal processing of MPS images and their impact on image quality and quantitative accuracy. 50 patients without known heart condition underwent gated MPS. 3D motion compensation methods using Motion Freezing by Cedars Sinai (MF), Log-domain Diffeomorphic Demons (LDD) and Free-Form Deformation (FFD) were applied to warp all image phases to fit the end-diastolic (ED) phase. Afterwards, myocardial wall thickness, myocardial to blood pool contrast, and image contrast-to noise ratio (CNR) were measured in summed images with no motion compensation (NoMC) and compensated images (MF, LDD and FFD). Total Perfusion Defect (TPD) was derived from Cedars-Sinai software, on the basis of sex-specific normal limits. Left ventricle (LV) lateral wall thickness was reduced after applying motion compensation (p < 0.05). Myocardial to blood pool contrast and CNR in compensated images were greater than NoMC (p < 0.05). TPD_LDD was in good agreement with the corresponding TPD_MF (p = 0.13). All methods have improved image quality and quantitative performance relative to NoMC. LDD and FFD are fully automatic and do not require any manual intervention, while MF is dependent on contour definition. In terms of diagnostic parameters LDD is in good agreement with MF which is a clinically accepted method. Further investigation along with diagnostic reference standards, in order to specify diagnostic value of each technique is recommended. Copyright © 2018 Associazione Italiana di Fisica Medica. All rights reserved.
Liu, Yi-Chien; Yip, Ping-Keung; Fan, Yu-Ming; Meguro, Kenichi
2012-03-01
Several reports have suggested that multilingualism has a protective effect against semantic dementia. Here, we provide further evidence for this effect. The patient was a 75-year-old right-handed Taiwanese woman who had retired after working as a tailor. She was able to speak Taiwanese, Japanese and Mandarin Chinese fluently until 5 years ago. She gradually developed symptoms of profound anomia and difficulty with word-finding. Her mother tongue was Taiwanese and she had learned Japanese as her first symbolized language. She had used Mandarin Chinese for most of her life, but depended on Japanese to read and write (such as reading a newspaper and keeping accounts). However, she could now speak only very simple Taiwanese and Japanese, and could recognize only simple Japanese characters. SECOND: The patient was a 62-year-old right-handed man who had worked as an ironworker. He could speak Taiwanese and Mandarin Chinese fluently until 5 years ago. His mother tongue was Taiwanese. After 5 years of language deterioration, he was unable to communicate with his family members or recognize any characters, including numbers. SPECT RESULTS: Brain perfusion ECD SPECT (Tc-99m-ethyl cysteinate dimer single-photon emission computed tomography) showed less perfusion in the multilingual patient (Case #1) than in the bilingual patient (Case #2). Neuropsychological tests also demonstrated a slower rate of degeneration in the multilingual patient. We speculate that reading and writing in Japanese had a greater impact on the semantic system in Case #1. Thus, this patient showed relatively less degeneration or functional inactivity, as shown by perfusion in the frontal lobe, and this might be due to the persistent activation involved in multilingualism.
[Extracorporeal cardiac shock wave therapy for treatment of coronary artery disease].
Wang, Yu; Guo, Tao; Cai, Hong-Yan; Ma, Tie-Kun; Tao, Si-Ming; Chen, Ming-Qing; Gu, Yun; Pan, Jia-Hua; Xiao, Jian-Ming; Zhao, Ling; Yang, Xi-Yun; Yang, Chao
2010-08-01
To evaluate the feasibility and efficiency of extracorporeal cardiac shock wave therapy (CSWT) for treatment of coronary artery disease. Twenty-five patients with 1 - 16 years history of chronic angina pectoris underwent the CSWT. Before and after the treatment, low-dose Dobutamine stress echocardiography and (99)Tc(m)-MIBI myocardial perfusion SPECT were applied to locate the ischemic segments, detect the viable myocardium and evaluate the effect of CSWT. Under the guidance of echocardiography, CSWT was applied in R-wave-triggered manner with low energy (0.09 mJ/mm(2)) at 200 shoots/spot for 9 spots (-1-0-+1 combination). Patients were divided group A and group B. Sixteen patients in group A were applied 9 sessions on 29 segments within 3 month and nine patients in group B were applied 9 sessions on 13 segments within 1 month. Ten chronic angina pectoris patients receiving standard medication served as controls. All patients completed the 9 sessions without procedural complications or adverse effects. CSWT significantly improved symptoms as evaluated by NYHA, Canadian Cardiovascular Society (CCS) class sores, Seattle angina questionnaire (SAQ), 6-min walk and the use of nitroglycerin (P < 0.05). CSWT also improved myocardial perfusion and regional myocardium function as evaluated by rest SPECT and stress peak systolic strain rate (PSSR) (P < 0.01). Myocardial perfusion improvement was more significant in group A compared with group B (1.21 ± 0.86 vs. 0.83 ± 0.80, P < 0.01). All parameters remained unchanged in control group during follow up. These preliminary results indicate that CSWT is safe and effective on ameliorating anginal symptoms for chronic angina pectoris patients.
Giannopoulos, Sotirios; Markoula, Sofia; Sioka, Chrissa; Zouroudi, Sofia; Spiliotopoulou, Maria; Naka, Katerina K; Michalis, Lampros K; Fotopoulos, Andreas; Kyritsis, Athanassios P
2017-10-01
To assess the myocardial status in patients with stroke, employing myocardial perfusion imaging (MPI) with 99m Technetium-tetrofosmin ( 99m Tc-TF)-single-photon emission computed tomography (SPECT). Fifty-two patients with ischemic stroke were subjected to 99m Tc-TF-SPECT MPI within 1 month after stroke occurrence. None of the patients had any history or symptoms of coronary artery disease or other heart disease. Myocardial perfusion imaging was evaluated visually using a 17-segment polar map. Myocardial ischemia (MIS) was defined as present when the summed stress score (SSS) was >4; MIS was defined as mild when SSS was 4 to 8, and moderate/severe with SSS ≥9. Patients with SSS >4 were compared to patients with SSS <4. Parameters such as age, body mass index, waist perimeter, smoking habits, and medical history (diabetes mellitus, dyslipidemia, etc) were evaluated according to MPI results. Myocardial ischemia was present in 32 (62%) of 52 patients with stroke. Among them, 20 (62%) of 32 patients had mild abnormalities and 12 (38%) of 32 had moderate/severe. The age and waist perimeter showed a tendency to relate to severe MIS when patients with SSS >9 were compared to patients with SSS <4. In MPI-positive patients, an age was to be association with SSS, with the oldest age exhibiting the highest SSS ( P = .01). The association of age with SSS remained statistically significant in the multivariate analysis ( P = .04). The study suggested that more than half of patients with stroke without a history of cardiac disease have MIS. Although most of them have mild MIS, we suggest a thorough cardiological evaluation in this group of patients for future prevention of severe myocardial outcome.
Ramos Filho, José; Nascimento, Marcos Welber; Silva, Rafael Mariano Gislon da; Camargo, Thiago Negrini de; Almeida, Roberto Simões de; Lima, Eloá Jacinto
2008-09-01
The selection of patients with chronic coronary disease for recanalization is based on the detection of the affected myocardium that is potentially viable. To evaluate the potentially viable ischemic myocardium through single photon emission computed tomography (SPECT) with MIBI after a maximum tolerated dose of I.V. nitroglycerin. We prospectively investigated by SPECT with Tc-99m (MIBI), from April 2004 to November 2005, 40 patients (mean age: 62 +/- 8.9 yrs, 30 men) with coronary obstruction demonstrated angiographically; the myocardium scintigraphy was carried out at rest and after intravenous (I.V.) nitroglycerin, which was started at a dose of 1 microg/kg/min and increased every minute until the systolic blood pressure decreased by 20 mmHg. The decrease in the perfusion of the segments was classified as moderate or severe and compared after the nitroglycerin. The angiographic, hemodynamic and myocardial perfusion variables were analyzed. We analyzed 680 myocardial segments at rest: 538 with a homogenous distribution and 142 with hypoperfusion (54 with moderate and 88 with severe decrease). After the nitroglycerin, there was an increase in the perfusion in 19 (47.5%) of 40 patients and 55 of 142 segments became viable: 33 (61.1%) with moderate and 22 (25%) with severe decrease; both presented a significant increase in the radiotracer distribution (p < 0.001, Chi-square). One of the components with Tc-99m is Tc-99m 2-methoxy-isobutyl-isonitrile (MIBI), which, when used with an optimized dose of I.V. nitroglycerin, can increase the radiotracer uptake in areas with moderate and severe hypoperfusion. The results of the present study suggest the increase in the Tc-99m (MIBI) sensitivity by nitroglycerin for the detection of viable myocardium.
Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT
NASA Astrophysics Data System (ADS)
Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.
2014-03-01
To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.
Ohmichi, Takuma; Kondo, Masaki; Itsukage, Masahiro; Koizumi, Hidetaka; Matsushima, Shigenori; Kuriyama, Nagato; Ishii, Kazunari; Mori, Etsuro; Yamada, Kei; Mizuno, Toshiki; Tokuda, Takahiko
2018-03-16
OBJECTIVE The gold standard for the diagnosis of idiopathic normal pressure hydrocephalus (iNPH) is the CSF removal test. For elderly patients, however, a less invasive diagnostic method is required. On MRI, high-convexity tightness was reported to be an important finding for the diagnosis of iNPH. On SPECT, patients with iNPH often show hyperperfusion of the high-convexity area. The authors tested 2 hypotheses regarding the SPECT finding: 1) it is relative hyperperfusion reflecting the increased gray matter density of the convexity, and 2) it is useful for the diagnosis of iNPH. The authors termed the SPECT finding the convexity apparent hyperperfusion (CAPPAH) sign. METHODS Two clinical studies were conducted. In study 1, SPECT was performed for 20 patients suspected of having iNPH, and regional cerebral blood flow (rCBF) of the high-convexity area was examined using quantitative analysis. Clinical differences between patients with the CAPPAH sign (CAP) and those without it (NCAP) were also compared. In study 2, the CAPPAH sign was retrospectively assessed in 30 patients with iNPH and 19 healthy controls using SPECT images and 3D stereotactic surface projection. RESULTS In study 1, rCBF of the high-convexity area of the CAP group was calculated as 35.2-43.7 ml/min/100 g, which is not higher than normal values of rCBF determined by SPECT. The NCAP group showed lower cognitive function and weaker responses to the removal of CSF than the CAP group. In study 2, the CAPPAH sign was positive only in patients with iNPH (24/30) and not in controls (sensitivity 80%, specificity 100%). The coincidence rate between tight high convexity on MRI and the CAPPAH sign was very high (28/30). CONCLUSIONS Patients with iNPH showed hyperperfusion of the high-convexity area on SPECT; however, the presence of the CAPPAH sign did not indicate real hyperperfusion of rCBF in the high-convexity area. The authors speculated that patients with iNPH without the CAPPAH sign, despite showing tight high convexity on MRI, might have comorbidities such as Alzheimer's disease.
Brodov, Yafim; Fish, Mathews; Rubeaux, Mathieu; Otaki, Yuka; Gransar, Heidi; Lemley, Mark; Gerlach, Jim; Berman, Daniel; Germano, Guido; Slomka, Piotr
2016-01-01
Background Ejection fraction (EF) reserve has been found to be a useful adjunct for identifying high risk coronary artery disease in cardiac positron emission tomography (PET). We aimed to evaluate EF reserve obtained from technetium-99m sestamibi (Tc-99m) high-efficiency (HE) SPECT. Methods Fifty patients (mean age 69 y) undergoing regadenoson same-day rest (8–11 mCi)/stress (32–42mCi) Tc-99m gated HE SPECT were enrolled. Stress imaging was started one min after sequential intravenous regadenoson 0.4mg and Tc-99m injection, and was composed of five 2 min supine gated acquisitions followed by two 4 min supine and upright images. Ischemic total perfusion deficit (ITPD) ≥ 5 % was considered as significant ischemia. Results Significantly lower mean EF reserve was obtained in the 5th and 9th min after regadenoson bolus in patients with significant ischemia versus patients without (5th min: −4.2 ± 4.6% vs. 1.3 ± 6.6%, p = 0.006; 9th min: −2.7 ± 4.8% vs. 2.0 ± 6.6%, p = 0.03). Conclusions Negative EF reserve obtained between 5th and 9th min of regadenoson stress demonstrated best concordance with significant ischemia and may be a promising tool for detection of myocardial stunning with Tc-99m HE-SPECT. PMID:27387521
Brodov, Yafim; Fish, Mathews; Rubeaux, Mathieu; Otaki, Yuka; Gransar, Heidi; Lemley, Mark; Gerlach, Jim; Berman, Daniel; Germano, Guido; Slomka, Piotr
2016-12-01
Ejection fraction (EF) reserve has been found to be a useful adjunct for identifying high risk coronary artery disease in cardiac positron emission tomography (PET). We aimed to evaluate EF reserve obtained from technetium-99m sestamibi (Tc-99m) high-efficiency (HE) SPECT. Fifty patients (mean age 69 years) undergoing regadenoson same-day rest (8-11 mCi)/stress (32-42 mCi) Tc-99m gated HE SPECT were enrolled. Stress imaging was started 1 minute after sequential intravenous regadenoson .4 mg and Tc-99m injections, and was composed of five 2 minutes supine gated acquisitions followed by two 4 minutes supine and upright images. Ischemic total perfusion deficit (ITPD) ≥5 % was considered as significant ischemia. Significantly lower mean EF reserve was obtained in the 5th and 9th minute after regadenoson bolus in patients with significant ischemia vs patients without (5th minute: -4.2 ± 4.6% vs 1.3 ± 6.6%, P = .006; 9th minute: -2.7 ± 4.8% vs 2.0 ± 6.6%, P = .03). Negative EF reserve obtained between 5th and 9th minutes of regadenoson stress demonstrated best concordance with significant ischemia and may be a promising tool for detection of transient ischemic functional changes with Tc-99m HE-SPECT.
Regional cardiac wall motion from gated myocardial perfusion SPECT studies
NASA Astrophysics Data System (ADS)
Smith, M. F.; Brigger, P.; Ferrand, S. K.; Dilsizian, V.; Bacharach, S. L.
1999-06-01
A method for estimating regional epicardial and endocardial wall motion from gated myocardial perfusion SPECT studies has been developed. The method uses epicardial and endocardial boundaries determined from four long-axis slices at each gate of the cardiac cycle. The epicardial and endocardial wall position at each time gate is computed with respect to stationary reference ellipsoids, and wall motion is measured along lines normal to these ellipsoids. An initial quantitative evaluation of the method was made using the beating heart from the dynamic mathematical cardiac torso (MCAT) phantom, with and without a 1.5-cm FWHM Gaussian blurring filter. Epicardial wall motion was generally well-estimated within a fraction of a 3.56-mm voxel, although apical motion was overestimated with the Gaussian filter. Endocardial wall motion was underestimated by about two voxels with and without the Gaussian filter. The MCAT heart phantom was modified to model hypokinetic and dyskinetic wall motion. The wall motion analysis method enabled this abnormal motion to be differentiated from normal motion. Regional cardiac wall motion also was analyzed for /sup 201/Tl patient studies. Estimated wall motion was consistent with a nuclear medicine physician's visual assessment of motion from gated long-axis slices for male and female study examples. Additional research is required for a comprehensive evaluation of the applicability of the method to patient studies with normal and abnormal wall motion.
Goldberg, J A; Bradnam, M S; Kerr, D J; McKillop, J H; Bessent, R G; McArdle, C S; Willmott, N; George, W D
1987-12-01
As intra-arterial chemotherapy for liver metastases of colorectal origin becomes accepted, methods of further improving drug delivery to the tumour have been devised. Degradable microspheres have been shown to reduce regional blood flow by transient arteriolar capillary block, thereby improving uptake of a co-administered drug, when injected into the hepatic artery. In our study of five patients, we combined hepatic arterial perfusion scintigraphy (HAPS) and SPECT to assess the localization of approximately 1 X 10(5) labelled microspheres of human serum albumin (99Tcm MSA) in tumour. In addition, in three patients, we assessed the effect of an intra-arterial infusion of the vasoactive agent angiotension II during HAPS. Results were interpreted by comparing transaxial slices with corresponding slices of a tin colloid liver-spleen scan. Two of five patients showed good localization of 99Tcm MSA in tumour without an angiotensin II infusion. Of the three patients receiving angiotensin II, all showed good tumour targetting with the vasoconstrictor compared with only one of these three before its use. Thus, hepatic arterial infusion of angiotensin II greatly improves microsphere localization in tumour in some patients with colorectal liver metastases. This technique may be useful in the assessment of tumour targetting before and during locoregional therapy.
Tejani, Furqan H; Thompson, Randall C; Iskandrian, Ami E; McNutt, Bruce E; Franks, Billy
2011-02-01
Caffeine attenuates the coronary hyperemic response to adenosine by competitive A₂(A) receptor blockade. This study aims to determine whether oral caffeine administration compromises diagnostic accuracy in patients undergoing vasodilator stress myocardial perfusion imaging (MPI) with regadenoson, a selective adenosine A(2A) agonist. This multicenter, randomized, double-blind, placebo-controlled, parallel-group study includes patients with suspected coronary artery disease who regularly consume caffeine. Each participant undergoes three SPECT MPI studies: a rest study on day 1 (MPI-1); a regadenoson stress study on day 3 (MPI-2), and a regadenoson stress study on day 5 with double-blind administration of oral caffeine 200 or 400 mg or placebo capsules (MPI-3; n = 90 per arm). Only participants with ≥ 1 reversible defect on the second MPI study undergo the subsequent stress MPI test. The primary endpoint is the difference in the number of reversible defects on the two stress tests using a 17-segment model. Pharmacokinetic/pharmacodynamic analyses will evaluate the effect of caffeine on the regadenoson exposure-response relationship. Safety will also be assessed. The results of this study will show whether the consumption of caffeine equivalent to 2-4 cups of coffee prior to an MPI study with regadenoson affects the diagnostic validity of stress testing (ClinicalTrials.gov number, NCT00826280).
Persistent déjà vu associated with hyperperfusion in the entorhinal cortex.
Takeda, Youji; Kurita, Tsugiko; Sakurai, Kotaro; Shiga, Tohru; Tamaki, Nagara; Koyama, Tsukasa
2011-06-01
Déjà vu is a common experience among the normal population. However, in individuals with temporal lobe epilepsy, it often occurs as a seizure manifestation. The specific cause of such déjà vu is not yet known. Here, we report a case of epilepsy with persistent déjà vu. The patient described the state as if he were living the same life he had lived before. Blood perfusion single-photon-emission computed tomography (SPECT) performed during the persistent déjà vu showed hyperperfusion in the left medial temporal area; discontinuation of déjà vu was accompanied by disappearance of the hyperperfused area on SPECT. Analysis with three-dimensional co-registration of SPECT and MRI revealed that the hyperperfused area during the persistent déjà vu was in the entorhinal cortex of the left temporal lobe. According to recent theories of recognition memory, malfunction of the parahippocampal area may cause déjà vu. It is also suggested that epileptic activity in the parahippocampal area, especially the entorhinal cortex, may elicit déjà vu. Copyright © 2011 Elsevier Inc. All rights reserved.
Cardio-oncology: the Nuclear Option.
Alvarez, Jorge A; Russell, Raymond R
2017-04-01
Cardio-oncology focuses increased effort to decrease cancer treatment-related cardiotoxicity while continuing to improve outcomes. We sought to synthesize the latest in nuclear cardiology as it pertains to the assessment of left ventricular function in preventative guidelines and comparison to other modalities, novel molecular markers of pre-clinical cardiotoxicity, and its role in cardiac amyloid diagnosis. Planar ERNA (equilibrium radionuclide angiocardiography) provides a reliable and proven means of monitoring and preventing anthracycline cardiotoxicity, and SPECT ERNA using solid-state gamma cameras may provide reproducible assessments of left ventricular function with reduced radiation exposure. While certain chemotherapeutics have vascular side effects, the use of stress perfusion imaging has still not been adequately studied for routine use. Similarly, markers of apoptosis, inflammation, and sympathetic nerve dysfunction are promising, but are still not ready for uniform usage. SPECT tracers can assist in nonbiopsy diagnosis of cardiac amyloid. Nuclear cardiology is a significant contributor to the multimodality approach to cardio-oncology.
2011-01-01
Background This study aims to evaluate relationship between three different clinical conditions: Major Depressive Disorders (MDD), Hashimoto Thyroiditis (HT) and reduction in regional Cerebral Blood Flow (rCBF) in order to explore the possibility that patients with HT and MDD have specific pattern(s) of cerebral perfusion. Methods Design: Analysis of data derived from two separate data banks. Sample: 54 subjects, 32 with HT (29 women, mean age 38.8 ± 13.9); 22 without HT (19 women, mean age 36.5 ± 12.25). Assessment: Psychiatric diagnosis was carried out by Simplified Composite International Diagnostic Interview (CIDIS) using DSM-IV categories; cerebral perfusion was measured by 99 mTc-ECD SPECT. Statistical analysis was done through logistic regression. Results MDD appears to be associated with left frontal hypoperfusion, left temporal hypoperfusion, diffuse hypoperfusion and parietal perfusion asymmetry. A statistically significant association between parietal perfusion asymmetry and MDD was found only in the HT group. Conclusion In HT, MDD is characterized by a parietal flow asymmetry. However, the specificity of rCBF in MDD with HT should be confirmed in a control sample with consideration for other health conditions. Moreover, this should be investigated with a longitudinally designed study in order to determine a possible pathogenic cause. Future studies with a much larger sample size should clarify whether a particular perfusion pattern is associated with a specific course or symptom cluster of MDD. PMID:21910915
Haegelen, Claire; García-Lorenzo, Daniel; Le Jeune, Florence; Péron, Julie; Gibaud, Bernard; Riffaud, Laurent; Brassier, Gilles; Barillot, Christian; Vérin, Marc; Morandi, Xavier
2010-03-01
The subthalamic nucleus (STN) has become an effective target of deep-brain stimulation (DBS) in severely disabled patients with advanced Parkinson's disease (PD). Clinical studies have reported DBS-induced adverse effects on cognitive functions, mood, emotion and behavior. STN DBS seems to interfere with the limbic functions of the basal ganglia, but the limbic effects of STN DBS are controversial. We measured prospectively resting regional cerebral metabolism (rCMb) with 18-fluorodeoxyglucose and PET, and resting regional cerebral blood flow (rCBF) with HMPAO and SPECT in six patients with Parkinson's disease. We compared PET and SPECT 1 month before and 3 months after STN DBS. On cerebral MRI, 13 regions of interest (ROI) were manually delineated slice by slice in frontal and limbic lobes. We obtained mean rCBF and rCMb values for each ROI and the whole brain. We normalized rCBF and rCMB values to ones for the whole brain volume, which we compared before and following STN DBS. No significant difference emerged in the SPECT analysis. PET analysis revealed a significant decrease in rCMb following STN DBS in the superior frontal gyri and left and right dorsolateral prefrontal cortex (p < 0.05). A non-significant decrease in rCMb in the left anterior cingulate gyrus appeared following STN DBS (p = 0.075). Our prospective SPECT and PET study revealed significantly decreased glucose metabolism of the two superior frontal gyri without any attendant perfusion changes following STN DBS. These results suggest that STN DBS may change medial prefrontal function and therefore the integration of limbic information, either by disrupting emotional processes within the STN, or by hampering the normal function of a limbic circuit.
Nelson, Charles; McCrohon, Jane; Khafagi, Frederick; Rose, Stephen; Leano, Rodel; Marwick, Thomas H
2004-04-07
We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, <25%, 26% to 50%, 51% to 75%, and >75% of the wall thickness replaced by scar. As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (<25% TES), >50% were viable by SPECT. Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar.
Broisat, Alexis; Ruiz, Mirta; Goodman, Norman C.; Hanrahan, Stephen M.; Reutter, Bryan W.; Brennan, Kathleen M.; Janabi, Mustafa; Schaefer, Saul; Watson, Denny D.; Beller, George A.; VanBrocklin, Henry F.; Glover, David K.
2013-01-01
Background There is a well-recognized need for a new generation of single photon emission computed tomography (SPECT) perfusion tracers with improved myocardial extraction over a wide flow range. Radiotracers that target complex I of the mitochondrial electron transport chain have been proposed as a new class of myocardial perfusion imaging agents. 7-(Z)-[125I]iodorotenone (125I-ZIROT) has demonstrated superior myocardial extraction and retention characteristics in rats and in isolated perfused rabbit hearts. We sought to fully characterize the biodistribution and myocardial extraction versus flow relationship of 123I-ZIROT in an intact large-animal model. Methods and Results The 123I-ZIROT was administered during adenosine A2A agonist-induced hyperemia in 5 anesthetized dogs with critical left anterior descending (LAD) stenoses. When left circumflex (LCx) flow was maximal, 123I-ZIROT and microspheres were coinjected and the dogs were euthanized 5 minutes later. 123I-ZIROT biodistribution was evaluated in 2 additional dogs by in vivo planar imaging. At 123I-ZIROT injection, transmural LAD flow was unchanged from baseline (mean±SEM, 0.90±0.22 versus 0.87±0.11 mL/[min · g]; P=0.92), whereas LCx zone flow increased significantly (mean±SEM, 3.25±0.51 versus 1.00±0.17 mL/[min · g]; P<0.05). Myocardial 123I-ZIROT extraction tracked regional myocardial flow better than either thallium-201 or 99mTc-sestamibi from previous studies using a similar model. Furthermore, the 123I-ZIROT LAD/LCx activity ratios by ex vivo imaging or well counting (mean±SEM, 0.42±0.08 and 0.45±0.1, respectively) only slightly underestimated the LAD/LCx microsphere flow ratio (0.32±0.09). Conclusions The ability of 123I-ZIROT to more linearly track blood flow over a wide range makes it a promising new SPECT myocardial perfusion imaging agent with potential for improved coronary artery disease detection and better quantitative estimation of the severity of flow impairment. PMID:21917783
Gibbons, Raymond J; Askew, J Wells; Hodge, David; Miller, Todd D
2010-03-01
The purpose of this study was to apply published appropriateness criteria for single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) in a single academic medical center to determine if the percentage of inappropriate studies was changing over time. In a previous study, we applied the American College of Cardiology Foundation/American Society of Nuclear Cardiology (ASNC) appropriateness criteria for stress SPECT MPI and reported that 14% of stress SPECT studies were performed for inappropriate reasons. Using similar methodology, we retrospectively examined 284 patients who underwent stress SPECT MPI in October 2006 and compared the findings to the previous cohort of 284 patients who underwent stress SPECT MPI in May 2005. The indications for testing in the 2 cohorts were very similar. The overall level of agreement in characterizing categories of appropriateness between 2 experienced cardiovascular nurse abstractors was good (kappa = 0.68), which represented an improvement from our previous study (kappa = 0.56). There was a significant change between May 2005 and October 2006 in the overall classification of categories for appropriateness (P = .024 by chi(2) statistic). There were modest, but insignificant, increases in the number of patients who were unclassified (15% in the current study vs 11% previously), appropriate (66% vs 64%), and uncertain (12% vs 11%). Only 7% of the studies in the current study were inappropriate, which represented a significant (P = .004) decrease from the 14% reported in the 2005 cohort. In the absence of any specific intervention, there was a significant change in the overall classification of SPECT appropriateness in an academic medical center over 17 months. The only significant difference in individual categories was a decrease in inappropriate studies. Additional measurements over time will be required to determine if this trend is sustainable or generalizable.
Implementation of a cardiac PET stress program: comparison of outcomes to the preceding SPECT era.
Knight, Stacey; Min, David B; Le, Viet T; Meredith, Kent G; Dhar, Ritesh; Biswas, Santanu; Jensen, Kurt R; Mason, Steven M; Ethington, Jon-David; Lappe, Donald L; Muhlestein, Joseph B; Anderson, Jeffrey L; Knowlton, Kirk U
2018-05-03
Cardiac positron emission testing (PET) is more accurate than single photon emission computed tomography (SPECT) at identifying coronary artery disease (CAD); however, the 2 modalities have not been thoroughly compared in a real-world setting. We conducted a retrospective analysis of 60-day catheterization outcomes and 1-year major adverse cardiovascular events (MACE) after the transition from a SPECT- to a PET-based myocardial perfusion imaging (MPI) program. MPI patients at Intermountain Medical Center from January 2011-December 2012 (the SPECT era, n = 6,777) and January 2014-December 2015 (the PET era, n = 7,817) were studied. Outcomes studied were 60-day coronary angiography, high-grade obstructive CAD, left main/severe 3-vessel disease, revascularization, and 1-year MACE-revascularization (MACE-revasc; death, myocardial infarction [MI], or revascularization >60 days). Patients were 64 ± 13 years old; 54% were male and 90% were of European descent; and 57% represented a screening population (no prior MI, revascularization, or CAD). During the PET era, compared with the SPECT era, a higher percentage of patients underwent coronary angiography (13.2% vs. 9.7%, P < 0.0001), had high-grade obstructive CAD (10.5% vs. 6.9%, P < 0.0001), had left main or severe 3-vessel disease (3.0% vs. 2.3%, P = 0.012), and had coronary revascularization (56.7% vs. 47.1%, P = 0.0001). Similar catheterization outcomes were seen when restricted to the screening population. There was no difference in 1-year MACE-revasc (PET [5.8%] vs. SPECT [5.3%], P = 0.31). The PET-based MPI program resulted in improved identification of patients with high-grade obstructive CAD, as well as a larger percentage of revascularization, thus resulting in fewer patients undergoing coronary angiography without revascularization. This observational study was funded using internal departmental funds.
Relative hyperperfusion by SPECT in a family with a presenilin 1 (T245P) mutation.
Edwards-Lee, Terri; Wen, Johnny; Chung, Julia A; Vasinrapee, Panukorn; Mishkin, Frederick S
2008-01-01
Clinical characteristics of autosomal dominant Alzheimer's disease often differ clinically from sporadic disease with the onset of seizures, spasticity and myoclonus early in the disease course. Similarly imaging characteristics may also differ. We report the findings of relative hyperperfusion by Tc-99m HMPAO SPECT in the medial orbitofrontal cortex and anterior temporal lobe in four affected family members carrying a presenilin 1 mutation. SPECT of the four individuals was compared to an age-matched normal database. We speculate that the findings of relative medial orbitofrontal and anterior temporal lobe hyperperfusion may be a marker of early onset Alzheimer's disease in this family.
Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT
NASA Astrophysics Data System (ADS)
Liu, Hui; Chan, Chung; Grobshtein, Yariv; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Stacy, Mitchel R.; Sinusas, Albert J.; Liu, Chi
2015-09-01
Due to the limited spatial resolution, partial volume effect has been a major degrading factor on quantitative accuracy in emission tomography systems. This study aims to investigate the performance of several anatomical-based partial volume correction (PVC) methods for a dedicated cardiac SPECT/CT system (GE Discovery NM/CT 570c) with focused field-of-view over a clinically relevant range of high and low count levels for two different radiotracer distributions. These PVC methods include perturbation geometry transfer matrix (pGTM), pGTM followed by multi-target correction (MTC), pGTM with known concentration in blood pool, the former followed by MTC and our newly proposed methods, which perform the MTC method iteratively, where the mean values in all regions are estimated and updated by the MTC-corrected images each time in the iterative process. The NCAT phantom was simulated for cardiovascular imaging with 99mTc-tetrofosmin, a myocardial perfusion agent, and 99mTc-red blood cell (RBC), a pure intravascular imaging agent. Images were acquired at six different count levels to investigate the performance of PVC methods in both high and low count levels for low-dose applications. We performed two large animal in vivo cardiac imaging experiments following injection of 99mTc-RBC for evaluation of intramyocardial blood volume (IMBV). The simulation results showed our proposed iterative methods provide superior performance than other existing PVC methods in terms of image quality, quantitative accuracy, and reproducibility (standard deviation), particularly for low-count data. The iterative approaches are robust for both 99mTc-tetrofosmin perfusion imaging and 99mTc-RBC imaging of IMBV and blood pool activity even at low count levels. The animal study results indicated the effectiveness of PVC to correct the overestimation of IMBV due to blood pool contamination. In conclusion, the iterative PVC methods can achieve more accurate quantification, particularly for low count cardiac SPECT studies, typically obtained from low-dose protocols, gated studies, and dynamic applications.
Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara
2013-11-07
For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, '4-PMC' indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, (99m)Tc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.
Vitali, Paolo; Nobili, Flavio; Raiteri, Umberto; Canfora, Michela; Rosa, Marco; Calvini, Piero; Girtler, Nicola; Regesta, Giovanni; Rodriguez, Guido
2004-01-15
This article describes the unusual case of a 60-year-old woman suffering from pure progressive aphemia. The fusion of multimodal neuroimaging (MRI, perfusion SPECT) implicated the right frontal lobe, especially the inferior frontal gyrus. This area also showed the greatest functional MRI activation during the performance of a covert phonemic fluency task. Results are discussed in terms of bihemispheric language representation. The fusion of three sets of neuroimages has aided in the interpretation of the patient's cognitive brain dysfunction.
Bowen, Jason D; Huang, Qiu; Ellin, Justin R; Lee, Tzu-Cheng; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho
2013-10-21
Single photon emission computed tomography (SPECT) myocardial perfusion imaging remains a critical tool in the diagnosis of coronary artery disease. However, after more than three decades of use, photon detection efficiency remains poor and unchanged. This is due to the continued reliance on parallel-hole collimators first introduced in 1964. These collimators possess poor geometric efficiency. Here we present the performance evaluation results of a newly designed multipinhole collimator with 20 pinhole apertures (PH20) for commercial SPECT systems. Computer simulations and numerical observer studies were used to assess the noise, bias and diagnostic imaging performance of a PH20 collimator in comparison with those of a low energy high resolution (LEHR) parallel-hole collimator. Ray-driven projector/backprojector pairs were used to model SPECT imaging acquisitions, including simulation of noiseless projection data and performing MLEM/OSEM image reconstructions. Poisson noise was added to noiseless projections for realistic projection data. Noise and bias performance were investigated for five mathematical cardiac and torso (MCAT) phantom anatomies imaged at two gantry orbit positions (19.5 and 25.0 cm). PH20 and LEHR images were reconstructed with 300 MLEM iterations and 30 OSEM iterations (ten subsets), respectively. Diagnostic imaging performance was assessed by a receiver operating characteristic (ROC) analysis performed on a single MCAT phantom; however, in this case PH20 images were reconstructed with 75 pixel-based OSEM iterations (four subsets). Four PH20 projection views from two positions of a dual-head camera acquisition and 60 LEHR projections were simulated for all studies. At uniformly-imposed resolution of 12.5 mm, significant improvements in SNR and diagnostic sensitivity (represented by the area under the ROC curve, or AUC) were realized when PH20 collimators are substituted for LEHR parallel-hole collimators. SNR improves by factors of 1.94-2.34 for the five patient anatomies and two orbital positions studied. For the ROC analysis the PH20 AUC is larger than the LEHR AUC with a p-value of 0.0067. Bias performance, however, decreases with the use of PH20 collimators. Systematic analyses showed PH20 collimators present improved diagnostic imaging performance over LEHR collimators, requiring only collimator exchange on existing SPECT cameras for their use.
NASA Astrophysics Data System (ADS)
Bowen, Jason D.; Huang, Qiu; Ellin, Justin R.; Lee, Tzu-Cheng; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho
2013-10-01
Single photon emission computed tomography (SPECT) myocardial perfusion imaging remains a critical tool in the diagnosis of coronary artery disease. However, after more than three decades of use, photon detection efficiency remains poor and unchanged. This is due to the continued reliance on parallel-hole collimators first introduced in 1964. These collimators possess poor geometric efficiency. Here we present the performance evaluation results of a newly designed multipinhole collimator with 20 pinhole apertures (PH20) for commercial SPECT systems. Computer simulations and numerical observer studies were used to assess the noise, bias and diagnostic imaging performance of a PH20 collimator in comparison with those of a low energy high resolution (LEHR) parallel-hole collimator. Ray-driven projector/backprojector pairs were used to model SPECT imaging acquisitions, including simulation of noiseless projection data and performing MLEM/OSEM image reconstructions. Poisson noise was added to noiseless projections for realistic projection data. Noise and bias performance were investigated for five mathematical cardiac and torso (MCAT) phantom anatomies imaged at two gantry orbit positions (19.5 and 25.0 cm). PH20 and LEHR images were reconstructed with 300 MLEM iterations and 30 OSEM iterations (ten subsets), respectively. Diagnostic imaging performance was assessed by a receiver operating characteristic (ROC) analysis performed on a single MCAT phantom; however, in this case PH20 images were reconstructed with 75 pixel-based OSEM iterations (four subsets). Four PH20 projection views from two positions of a dual-head camera acquisition and 60 LEHR projections were simulated for all studies. At uniformly-imposed resolution of 12.5 mm, significant improvements in SNR and diagnostic sensitivity (represented by the area under the ROC curve, or AUC) were realized when PH20 collimators are substituted for LEHR parallel-hole collimators. SNR improves by factors of 1.94-2.34 for the five patient anatomies and two orbital positions studied. For the ROC analysis the PH20 AUC is larger than the LEHR AUC with a p-value of 0.0067. Bias performance, however, decreases with the use of PH20 collimators. Systematic analyses showed PH20 collimators present improved diagnostic imaging performance over LEHR collimators, requiring only collimator exchange on existing SPECT cameras for their use.
Generalized five-dimensional dynamic and spectral factor analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Fakhri, Georges; Sitek, Arkadiusz; Zimmerman, Robert E.
2006-04-15
We have generalized the spectral factor analysis and the factor analysis of dynamic sequences (FADS) in SPECT imaging to a five-dimensional general factor analysis model (5D-GFA), where the five dimensions are the three spatial dimensions, photon energy, and time. The generalized model yields a significant advantage in terms of the ratio of the number of equations to that of unknowns in the factor analysis problem in dynamic SPECT studies. We solved the 5D model using a least-squares approach. In addition to the traditional non-negativity constraints, we constrained the solution using a priori knowledge of both time and energy, assuming thatmore » primary factors (spectra) are Gaussian-shaped with full-width at half-maximum equal to gamma camera energy resolution. 5D-GFA was validated in a simultaneous pre-/post-synaptic dual isotope dynamic phantom study where {sup 99m}Tc and {sup 123}I activities were used to model early Parkinson disease studies. 5D-GFA was also applied to simultaneous perfusion/dopamine transporter (DAT) dynamic SPECT in rhesus monkeys. In the striatal phantom, 5D-GFA yielded significantly more accurate and precise estimates of both primary {sup 99m}Tc (bias=6.4%{+-}4.3%) and {sup 123}I (-1.7%{+-}6.9%) time activity curves (TAC) compared to conventional FADS (biases=15.5%{+-}10.6% in {sup 99m}Tc and 8.3%{+-}12.7% in {sup 123}I, p<0.05). Our technique was also validated in two primate dynamic dual isotope perfusion/DAT transporter studies. Biases of {sup 99m}Tc-HMPAO and {sup 123}I-DAT activity estimates with respect to estimates obtained in the presence of only one radionuclide (sequential imaging) were significantly lower with 5D-GFA (9.4%{+-}4.3% for {sup 99m}Tc-HMPAO and 8.7%{+-}4.1% for {sup 123}I-DAT) compared to biases greater than 15% for volumes of interest (VOI) over the reconstructed volumes (p<0.05). 5D-GFA is a novel and promising approach in dynamic SPECT imaging that can also be used in other modalities. It allows accurate and precise dynamic analysis while compensating for Compton scatter and cross-talk.« less
Raja, Senthil; Mittal, Bhagwant R; Santhosh, Sampath; Bhattacharya, Anish; Rohit, Manoj K
2014-11-01
Left ventricular ejection fraction (LVEF) is the single most important predictor of prognosis in patients with coronary artery disease (CAD) and left ventricular (LV) dysfunction. Equilibrium radionuclide ventriculography (ERNV) is considered the most reliable technique for assessing LVEF. Most of these patients undergo two dimensional (2D) echocardiography and myocardial viability study using gated myocardial perfusion imaging (MPI) or gated F-fluorodeoxyglucose (F-FDG) PET. However, the accuracy of LVEF assessed by these methods is not clear. This study has been designed to assess the correlation and agreement between the LVEF measured by 2D echocardiography, gated blood pool single photon emission computed tomography (SPECT), Tc tetrofosmin gated SPECT, and F-FDG gated PET with ERNV in CAD patients with severe LV dysfunction. Patients with CAD and severe LV dysfunction [ejection fraction (EF) <35 assessed by 2D echocardiography] were prospectively included in the study. These patients underwent ERNV along with gated blood pool SPECT, Tc tetrofosmin gated SPECT, and F-FDG gated PET as per the standard protocol for myocardial viability assessment and LVEF calculation. Spearman's coefficient of correlation (r) was calculated for the different sets of values with significance level kept at a P-value less than 0.05. Bland-Altman plots were inspected to visually assess the between-agreement measurements from different methods. Forty-one patients were prospectively included. LVEF calculated by various radionuclide methods showed good correlation with ERNV as follows: gated blood pool SPECT, r=0.92; MPI gated SPECT, r=0.85; and F-FDG gated PET, r=0.76. However, the correlation between 2D echocardiography and ERNV was poor (r=0.520). The Bland-Altman plot for LVEF measured by all radionuclide methods showed good agreement with ERNV. However, agreement between 2D echocardiography and ERNV is poor, as most of the values in this plot gave a negative difference for low EF and a positive difference for high EF. The mean difference between various techniques [2D echocardiography (a), gated blood pool SPECT (b), MPI gated SPECT (c), F-FDG gated PET (d)] and ERNV (e) was as follows: (a)-(e), 3.3; (b)-(e), 5; (c)-(e), 1.1; and (d)-(e), 2.9. The best possible correlation and agreement was found between MPI gated SPECT and ERNV. This study showed good correlation and agreement between MPI gated SPECT and F-FDG gated PET with ERNV for LVEF calculation in CAD patients with severe LV dysfunction. Thus, subjecting patients who undergo viability assessment by MPI gated SPECT or F-FDG gated PET to a separate procedure like ERNV for LVEF assessment may not be warranted. As the gated blood pool SPECT also showed good correlation and agreement with ERNV for LVEF assessment in CAD patients with severe LV dysfunction, with better characteristics than ERNV, it can be routinely used whenever accurate LVEF assessment is needed.
Ramos, Susie Medeiros Oliveira; Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar; de Sá, Lidia Vasconcellos
2014-01-01
To develop a study aiming at optimizing myocardial perfusion imaging. Imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The (99m)Tc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. The results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. The described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol.
Shaikh, Ayaz Hussain; Hanif, Bashir; Siddiqui, Adeel M; Shahab, Hunaina; Qazi, Hammad Ali; Mujtaba, Iqbal
2010-04-01
To determine the association of prolonged ST segment depression after an exercise test with severity of coronary artery disease. A cross sectional study of 100 consecutive patients referred to the cardiology laboratory for stress myocardial perfusion imaging (MPI) conducted between April-August 2008. All selected patients were monitored until their ST segment depression was recovered to baseline. ST segment recovery time was categorized into less and more than 5 minutes. Subsequent gated SPECT-MPI was performed and stratified according to severity of perfusion defect. Association was determined between post exercise ST segment depression recovery time (<5 minutes and >5 minutes) and severity of perfusion defect on MPI. The mean age of the patients was 57.12 +/- 9.0 years. The results showed statistically insignificant association (p > 0.05) between ST segment recovery time of <5 minutes and >5 minutes with low, intermediate or high risk MPI. Our findings suggest that the commonly used cut-off levels used in literature for prolonged, post exercise ST segment depression (>5 minutes into recovery phase) does not correlate with severity of ischaemia based on MPI results.
Ramos, Susie Medeiros Oliveira; Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar; de Sá, Lidia Vasconcellos
2014-01-01
Objective To develop a study aiming at optimizing myocardial perfusion imaging. Materials and Methods Imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The 99mTc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. Results The results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. Conclusion The described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol. PMID:25741088
Quantification of osteoblastic activity in epiphyseal growth plates by quantitative bone SPECT/CT.
Yamane, Tomohiko; Kuji, Ichiei; Seto, Akira; Matsunari, Ichiro
2018-06-01
Quantifying the function of the epiphyseal plate is worthwhile for the management of children with growth disorders. The aim of this retrospective study was to quantify the osteoblastic activity at the epiphyseal plate using the quantitative bone SPECT/CT. We enrolled patients under the age of 20 years who received Tc-99m hydroxymethylene diphosphonate bone scintigraphy acquired by a quantitative SPECT/CT scanner. The images were reconstructed by ordered subset conjugate-gradient minimizer, and the uptake on the distal margin of the femur was quantified by peak standardized uptake value (SUVpeak). A public database of standard body height was used to calculate growth velocities (cm/year). Fifteen patients (6.9-19.7 years, 9 female, 6 male) were enrolled and a total of 25 legs were analyzed. SUVpeak in the epiphyseal plate was 18.9 ± 2.4 (average ± standard deviation) in the subjects under 15 years and decreased gradually by aging. The SUVpeak correlated significantly with the age- and sex-matched growth velocity obtained from the database (R 2 = 0.83, p < 0.0001). The SUV measured by quantitative bone SPECT/CT was increased at the epiphyseal plates of children under the age of 15 years in comparison with the older group, corresponding to higher osteoblastic activity. Moreover, this study suggested a correlation between growth velocity and the SUV. Although this is a small retrospective pilot study, the objective and quantitative values measured by the quantitative bone SPECT/CT has the potential to improve the management of children with growth disorder.
Positron Emission Tomography for the Assessment of Myocardial Viability
2005-01-01
Executive Summary Objective The objective was to update the 2001 systematic review conducted by the Institute For Clinical Evaluative Sciences (ICES) on the use of positron emission tomography (PET) in assessing myocardial viability. The update consisted of a review and analysis of the research evidence published since the 2001 ICES review to determine the effectiveness and cost-effectiveness of PET in detecting left ventricular (LV) viability and predicting patient outcomes after revascularization in comparison with other noninvasive techniques. Background Left Ventricular Viability Heart failure is a complex syndrome that impairs the contractile ability of the heart to maintain adequate blood circulation, resulting in poor functional capacity and increased risk of morbidity and mortality. It is the leading cause of hospitalization in elderly Canadians. In more than two-thirds of cases, heart failure is secondary to coronary heart disease. It has been shown that dysfunctional myocardium resulting from coronary heart disease (CAD) may recover contractile function (i.e. considered viable). Dysfunctional but viable myocardium may have been stunned by a brief episode of ischemia, followed by restoration of perfusion, and may regain function spontaneously. It is believed that repetitive stunning results in hibernating myocardium that will only regain contractile function upon revascularization. For people with CAD and severe LV dysfunction (left ventricular ejection fraction [LVEF] <35%) refractory to medical therapy, coronary artery bypass and heart transplantation are the only treatment options. The opportunity for a heart transplant is limited by scarcityof donor hearts. Coronary artery bypass in these patients is associated with high perioperative complications; however, there is evidence that revascularization in the presence of dysfunctional but viable myocardium is associated with survival benefits and lower rates of cardiac events. The assessment of left ventricular (LV) viability is, therefore, critical in deciding whether a patient with coronary artery disease and severe LV dysfunction should undergo revascularization, receive a heart transplant, or remain on medical therapy. Assessment of Left Ventricular Viability Techniques for assessing myocardial viability depend on the measurement of a specific characteristic of viable myocytes such as cell membrane integrity, preserved metabolism, mitochondria integrity, and preserved contractile reserve. In Ontario, single photon emission computed tomography (SPECT) using radioactive 201thallium is the most commonly used technique followed by dobutamine echocardiography. Newer techniques include SPECT using technetium tracers, cardiac magnetic resonance imaging, and PET, the subject of this review. Positron Emission Tomography PET is a nuclear imaging technique based on the metabolism of radioactive analogs of normal substrates such as glucose and water. The radiopharmaceutical used most frequently in myocardial viability assessment is F18 fluorodeoxyglucose (FDG), a glucose analog. The procedure involves the intravenous administration of FDG under controlled glycemic conditions, and imaging with a PET scanner. The images are reconstructed using computer software and analyzed visually or semi-quantitatively, often in conjunction with perfusion images. Dysfunctional but stunned myocardium is characterized by normal perfusion and normal FDG uptake; hibernating myocardium exhibits reduced perfusion and normal/enhanced FDG uptake (perfusion/metabolism mismatch), whereas scar tissue is characterized by reduction in both perfusion and FDG uptake (perfusion/metabolism match). Review Strategy The Medical Advisory Secretariat used a search strategy similar to that used in the 2001 ICES review to identify English language reports of health technology assessments and primary studies in selected databases, published from January 1, 2001 to April 20, 2005. Patients of interest were those with CAD and severe ventricular dysfunction being considered for revascularization that had undergone viability assessment using either PET and/or other noninvasive techniques. The outcomes of interest were diagnostic and predictive accuracy with respect to recovery of regional or global LV function, long-term survival and cardiac events, and quality of life. Other outcomes of interest were impact on treatment decision, adverse events, and cost-effectiveness ratios. Of 456 citations, 8 systematic reviews/meta-analyses and 37 reports on primary studies met the selection criteria. The reports were categorized using the Medical Advisory Secretariat levels of evidence system, and the quality of the reports was assessed using the criteria of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) developed by the Centre for Dissemination of Research (National Health Service, United Kingdom). Analysis of sensitivity, specificity, predictive values and likelihood ratios were conducted for all data as well as stratified by mean left ventricular ejection fraction (LVEF). There were no randomized controlled trials. The included studies compared PET with one or more other noninvasive viability tests on the same group of patients or examined the long-term outcomes of PET viability assessments. The quality assessment showed that about 50% or more of the studies had selection bias, interpreted tests without blinding, excluded uninterpretable segments in the analysis, or did not have clearly stated selection criteria. Data from the above studies were integrated with data from the 2001 ICES review for analysis and interpretation. Summary of Findings The evidence was derived from populations with moderate to severe ischemic LV dysfunction with an overall quality that ranges from moderate to low. PET appears to be a safe technique for assessing myocardial viability. CAD patients with moderate to severe ischemic LV dysfunction and residual viable myocardium had significantly lower 2-year mortality rate (3.2%) and higher event-free survival rates (92% at 3 years) when treated with revascularization than those who were not revascularized but were treated medically (16% mortality at 2-years and 48% 3-year event-free survival). A large meta-analysis and moderate quality studies of diagnostic accuracy consistently showed that compared to other noninvasive diagnostic tests such as thallium SPECT and echocardiography, FDG PET has: Higher sensitivity (median 90%, range 71%–100%) and better negative likelihood ratio (median 0.16, range 0–0.38; ideal <0.1) for predicting regional myocardial function recovery after revascularization. Specificity (median 73%, range 33%–91%) that is similar to other radionuclide imaging but lower than that of dobutamine echocardiography Less useful positive likelihood ratio (median 3.1, range 1.4 –9.2; ideal>10) for predicting segmental function recovery. Taking positive and negative likelihood ratios together suggests that FDG PET and dobutamine echocardiography may produce small but sometimes important changes in the probability of recovering regional wall motion after revascularization. Given its higher sensitivity, PET is less likely to produce false positive results in myocardial viability. PET, therefore, has the potential to identify some patients who might benefit from revascularization, but who would not have been identified as suitable candidates for revascularization using thallium SPECT or dobutamine echocardiography. PET appears to be superior to other nuclear imaging techniques including SPECT with 201thallium or technetium labelled tracers, although recent studies suggest that FDG SPECT may have comparable diagnostic accuracy as FDG PET for predicting regional and global LV function recovery. No firm conclusion can be reached about the incremental value of PET over other noninvasive techniques for predicting global function improvement or long-term outcomes in the most important target population (patients with severe ischemic LV dysfunction) due to lack of direct comparison. An Ontario-based economic analysis showed that in people with CAD and severe LV dysfunction and who were found to have no viable myocardium or indeterminate results by thallium SPECT, the use of PET as a follow-up assessment would likely result in lower cost and better 5-year survival compared to the use of thallium SPECT alone. The projected annual budget impact of adding PET under the above scenario was estimated to range from $1.5 million to $2.3 million. Conclusion In patients with severe LV dysfunction, that are deemed to have no viable myocardium or indeterminate results in assessments using other noninvasive tests, PET may have a role in further identifying patients who may benefit from revascularization. No firm conclusion can be drawn on the impact of PET viability assessment on long-term clinical outcomes in the most important target population (i.e. patients with severe LV dysfunction). PMID:23074467
Xiao, Lin-Lin; Yang, Guoren; Chen, Jinhu; Wang, Xiaohui; Wu, Qingwei; Huo, Zongwei; Yu, Qingxi; Yu, Jinming; Yuan, Shuanghu
2017-03-15
This study aimed to find a better dosimetric parameter in predicting of radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) individually: ventilation(V), perfusion (Q) or computerized tomography (CT) based. V/Q single-photon emission computerized tomography (SPECT) was performed within 1 week prior to radiotherapy (RT). All V/Q imaging data was integrated into RT planning system, generating functional parameters based on V/Q SPECT. Fifty-seven NSCLC patients were enrolled in this prospective study. Fifteen (26.3%) patients underwent grade ≥2 RILT, the remaining forty-two (73.7%) patients didn't. Q-MLD, Q-V20, V-MLD, V-V20 of functional parameters correlated more significantly with the occurrence of RILT compared to V20, MLD of anatomical parameters (r = 0.630; r = 0.644; r = 0.617; r = 0.651 vs. r = 0.424; r = 0.520 p < 0.05, respectively). In patients with chronic obstructive pulmonary diseases (COPD), V functional parameters reflected significant advantage in predicting RILT; while in patients without COPD, Q functional parameters reflected significant advantage. Analogous results were existed in fractimal analysis of global pulmonary function test (PFT). In patients with central-type NSCLC, V parameters were better than Q parameters; while in patients with peripheral-type NSCLC, the results were inverse. Therefore, this study demonstrated that choosing a suitable dosimetric parameter individually can help us predict RILT accurately.
Estimation of dynamic time activity curves from dynamic cardiac SPECT imaging
NASA Astrophysics Data System (ADS)
Hossain, J.; Du, Y.; Links, J.; Rahmim, A.; Karakatsanis, N.; Akhbardeh, A.; Lyons, J.; Frey, E. C.
2015-04-01
Whole-heart coronary flow reserve (CFR) may be useful as an early predictor of cardiovascular disease or heart failure. Here we propose a simple method to extract the time-activity curve, an essential component needed for estimating the CFR, for a small number of compartments in the body, such as normal myocardium, blood pool, and ischemic myocardial regions, from SPECT data acquired with conventional cameras using slow rotation. We evaluated the method using a realistic simulation of 99mTc-teboroxime imaging. Uptake of 99mTc-teboroxime based on data from the literature were modeled. Data were simulated using the anatomically-realistic 3D NCAT phantom and an analytic projection code that realistically models attenuation, scatter, and the collimator-detector response. The proposed method was then applied to estimate time activity curves (TACs) for a set of 3D volumes of interest (VOIs) directly from the projections. We evaluated the accuracy and precision of estimated TACs and studied the effects of the presence of perfusion defects that were and were not modeled in the estimation procedure. The method produced good estimates of the myocardial and blood-pool TACS organ VOIs, with average weighted absolute biases of less than 5% for the myocardium and 10% for the blood pool when the true organ boundaries were known and the activity distributions in the organs were uniform. In the presence of unknown perfusion defects, the myocardial TAC was still estimated well (average weighted absolute bias <10%) when the total reduction in myocardial uptake (product of defect extent and severity) was ≤5%. This indicates that the method was robust to modest model mismatch such as the presence of moderate perfusion defects and uptake nonuniformities. With larger defects where the defect VOI was included in the estimation procedure, the estimated normal myocardial and defect TACs were accurate (average weighted absolute bias ≈5% for a defect with 25% extent and 100% severity).
Ostovaneh, Mohammad R; Vavere, Andrea L; Mehra, Vishal C; Kofoed, Klaus F; Matheson, Matthew B; Arbab-Zadeh, Armin; Fujisawa, Yasuko; Schuijf, Joanne D; Rochitte, Carlos E; Scholte, Arthur J; Kitagawa, Kakuya; Dewey, Marc; Cox, Christopher; DiCarli, Marcelo F; George, Richard T; Lima, Joao A C
To determine the diagnostic accuracy of semi-automatic quantitative metrics compared to expert reading for interpretation of computed tomography perfusion (CTP) imaging. The CORE320 multicenter diagnostic accuracy clinical study enrolled patients between 45 and 85 years of age who were clinically referred for invasive coronary angiography (ICA). Computed tomography angiography (CTA), CTP, single photon emission computed tomography (SPECT), and ICA images were interpreted manually in blinded core laboratories by two experienced readers. Additionally, eight quantitative CTP metrics as continuous values were computed semi-automatically from myocardial and blood attenuation and were combined using logistic regression to derive a final quantitative CTP metric score. For the reference standard, hemodynamically significant coronary artery disease (CAD) was defined as a quantitative ICA stenosis of 50% or greater and a corresponding perfusion defect by SPECT. Diagnostic accuracy was determined by area under the receiver operating characteristic curve (AUC). Of the total 377 included patients, 66% were male, median age was 62 (IQR: 56, 68) years, and 27% had prior myocardial infarction. In patient based analysis, the AUC (95% CI) for combined CTA-CTP expert reading and combined CTA-CTP semi-automatic quantitative metrics was 0.87(0.84-0.91) and 0.86 (0.83-0.9), respectively. In vessel based analyses the AUC's were 0.85 (0.82-0.88) and 0.84 (0.81-0.87), respectively. No significant difference in AUC was found between combined CTA-CTP expert reading and CTA-CTP semi-automatic quantitative metrics in patient based or vessel based analyses(p > 0.05 for all). Combined CTA-CTP semi-automatic quantitative metrics is as accurate as CTA-CTP expert reading to detect hemodynamically significant CAD. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Schreiber, Shaul; Dannon, Pinhas N; Goshen, Elinor; Amiaz, Revital; Zwas, Tzila S; Grunhaus, Leon
2002-11-30
Auditory command hallucinations probably arise from the patient's failure to monitor his/her own 'inner speech', which is connected to activation of speech perception areas of the left cerebral cortex and to various degrees of dysfunction of cortical circuits involved in schizophrenia as supported by functional brain imaging. We hypothesized that rapid transcranial magnetic stimulation (rTMS), by increasing cortical activation of the right prefrontal brain region, would bring about a reduction of the hallucinations. We report our first schizophrenic patient affected with refractory command hallucinations treated with 10 Hz rTMS. Treatment was performed over the right dorsolateral prefrontal cortex, with 1200 magnetic stimulations administered daily for 20 days at 90% motor threshold. Regional cerebral blood flow changes were monitored with neuroSPECT. Clinical evaluation and scores on the Positive and Negative Symptoms Scale and the Brief Psychiatric Rating Scale demonstrated a global improvement in the patient's condition, with no change in the intensity and frequency of the hallucinations. NeuroSPECT performed at intervals during and after treatment indicated a general improvement in cerebral perfusion. We conclude that right prefrontal rTMS may induce a general clinical improvement of schizophrenic brain function, without directly influencing the mechanism involved in auditory command hallucinations.
New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease
Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.
2014-01-01
Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, S; Lee, E; Miyaoka, R
Purpose: NSCLC patient RT is planned without consideration of spatial heterogeneity in lung function or tumor response, which may have contributed to failed uniform dose escalation in a randomized trial. The feasibility of functional lung avoidance and response-adaptive escalation (FLARE) RT to reduce dose to [{sup 99m}Tc]MAA-SPECT/CT perfused lung while redistributing 74Gy within [{sup 18}F]FDG-PET/CT biological target volumes was assessed. Methods: Eight Stage IIB–IIIB NSCLC patients underwent FDG-PET/CT and MAA-SPECT/CT treatment planning scans. Perfused lung objectives were derived from scatter/collimator/attenuation-corrected MAA-SPECT uptake relative to ITV-subtracted lung to maintain <20Gy mean lung dose (MLD). Prescriptions included 60Gy to PTV and concomitantmore » boost of 74Gy mean to biological target volumes (BTV=GTV+PET margin) scaled to each BTV voxel by relative FDG-PET SUV. Dose-painting-by-numbers prescriptions were integrated into commercial TPS via previously reported ROI discretization. Dose constraints for lung, heart, cord, and esophagus were defined. FLARE RT plans were optimized with VMAT, proton pencil beam scanning (PBS) with 3%-3mm robust optimization, and combination PBS (avoidance) plus VMAT (escalation). Dosimetric differences were evaluated by Friedman non-parametric paired test with multiple sampling correction. Results: PTV and normal tissue objectives were not violated in 24 FLARE RT plans. Population median of mean BTV dose was 73.7Gy (68.5–75.5Gy), mean FDG-PET peak dose was 89.7Gy (73.5–103Gy), MLD was 12.3Gy (7.5–19.6Gy), and perfused MLD was 4.8Gy (0.9–12.1Gy). VMAT achieved higher dose to the FDG-PET peak subvolume (p=0.01), while PBS delivered lower dose to lung (p<0.001). Voxelwise linear correlation between BTV dose and FDG-PET uptake was higher for VMAT (R=0.93) and PBS+VMAT (R=0.94) compared to PBS alone (R=0.89). Conclusion: FLARE RT is feasible with VMAT and PBS. A combination of PBS for functional lung avoidance and VMAT for FDG-PET dose escalation balances target/normal tissue objective tradeoffs. These results support future testing of FLARE RT safety and efficacy within a precision radiation oncology trial. This work was supported by a Research Scholar grant from the Radiological Society of North American Research & Education Foundation.« less
Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi
2018-06-01
Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p < 0.05). The count ratio error with TEW and CTAC was approximately 5% regardless of bone density. After adjustment of the spatial resolution in the SPECT images, the variability of the NDB decreased and was comparable to that of the NDB without correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.
NASA Astrophysics Data System (ADS)
He, Xin; Links, Jonathan M.; Frey, Eric C.
2010-09-01
Quantum noise as well as anatomic and uptake variability in patient populations limits observer performance on a defect detection task in myocardial perfusion SPECT (MPS). The goal of this study was to investigate the relative importance of these two effects by varying acquisition time, which determines the count level, and assessing the change in performance on a myocardial perfusion (MP) defect detection task using both mathematical and human observers. We generated ten sets of projections of a simulated patient population with count levels ranging from 1/128 to around 15 times a typical clinical count level to simulate different levels of quantum noise. For the simulated population we modeled variations in patient, heart and defect size, heart orientation and shape, defect location, organ uptake ratio, etc. The projection data were reconstructed using the OS-EM algorithm with no compensation or with attenuation, detector response and scatter compensation (ADS). The images were then post-filtered and reoriented to generate short-axis slices. A channelized Hotelling observer (CHO) was applied to the short-axis images, and the area under the receiver operating characteristics (ROC) curve (AUC) was computed. For each noise level and reconstruction method, we optimized the number of iterations and cutoff frequencies of the Butterworth filter to maximize the AUC. Using the images obtained with the optimal iteration and cutoff frequency and ADS compensation, we performed human observer studies for four count levels to validate the CHO results. Both CHO and human observer studies demonstrated that observer performance was dependent on the relative magnitude of the quantum noise and the patient variation. When the count level was high, the patient variation dominated, and the AUC increased very slowly with changes in the count level for the same level of anatomic variability. When the count level was low, however, quantum noise dominated, and changes in the count level resulted in large changes in the AUC. This behavior agreed with a theoretical expression for the AUC as a function of quantum and anatomical noise levels. The results of this study demonstrate the importance of the tradeoff between anatomical and quantum noise in determining observer performance. For myocardial perfusion imaging, it indicates that, at current clinical count levels, there is some room to reduce acquisition time or injected activity without substantially degrading performance on myocardial perfusion defect detection.
de Carvalho, Eduardo Elias Vieira; Santi, Giovani Luiz; Crescêncio, Júlio César; de Oliveira, Luciano Fonseca Lemos; dos Reis, Daniela Caetano Costa; Figueiredo, Alexandre Baldini; Pintya, Antonio Osvaldo; Lima-Filho, Moyses Oliveira; Gallo-Júnior, Lourenço; Marin-Neto, José Antonio; Simões, Marcus Vinícius
2015-02-01
Primary microvascular angina (PMA) is a common clinical condition associated to negative impact on quality of life (QOL) and reduced physical capacity. This study aimed at evaluating the effects of aerobic physical training (APT) on myocardial perfusion, physical capacity, and QOL in patients with PMA. We investigated 12 patients (53.8 ± 9.7 years old; 7 women) with PMA, characterized by angina, angiographycally normal coronary arteries, and reversible perfusion defects (RPDs) detected on (99m)Tc-sestamibi-SPECT myocardial perfusion scintigraphy (MPS). At baseline and after 4 month of APT, the patients underwent MPS, cardiopulmonary test, and QOL questionnaire. Stress-rest MPS images were visually analyzed by attributing semi-quantitative scores (0 = normal; 4 = absent uptake), using a 17-segment left ventricular model. Summed stress, rest, and difference scores (SDS) were calculated. In comparison to the baseline, in the post-training we observed a significant increase in peak-VO2 (19.4 ± 4.8 and 22.1 ± 6.2 mL·kg(-1)·minute(-1), respectively, P = .01), reduction of SDS (10.1 ± 8.8 and 2.8 ± 4.9, P = .008), and improvement in QOL scores. Physical training in patients with PMA is associated with reduction of myocardial perfusion abnormalities, increasing of physical capacity, and improvement in QOL. The findings of this hypothesis-generating study suggest that APT can be a valid therapeutic option for patients with PMA.
Sánchez-Chávez, J J; Barroso, E; Cubero, L; González-González, J; Farach, M
1998-08-01
SPECT, EEG AND CT scan offer information with several pathophysiologic meanings. Their results vary with time and according to the vascular affected territory. We wanted to study how the sensibility varies and the relationship with the clinic of SPECT, qEEG and CT scan in the acute, subacute and chronic stages and according to the vascular affected territory. We also wanted to analyze the several pathophysiologic aspects of the cerebral ischemia. Thirty-six patients with symptoms of hemispheric stroke were evaluated with CT scan, qEEG, SPECT99mTc-HMPAO during the acute (0-5 days), subacute (0-15 days) and chronic (16 days to 1 year) stages. The decrease of ipsilateral CBF depend on the time (p = 0.0061), being not very frequent during the two first weeks. The qEEG was the most sensitive study in the first phase, its sensibility did not depend on the vascular affected territory and was dependent on the time (p = 0.0011), diminishing in the chronic phase. The slow activity was habitually ipsilateral. The CT scan was the less sensitive study. After 24 hours and until the second week, there is habitually an increase of the ipsilateral rCBF. The luxury perfusion could explain the fogging effect in the CT scan. The slow activity of the qEEG represents the alteration of the oxygen metabolism. The interpretation of the variation of the CBF and the qEEG allow us to define oligemia of the ischemia and between reactive hyperemia and the increase of CBF due to the necrotic tissue.
Thomsen, Gerda; Knudsen, Gitte Moos; Jensen, Peter S; Ziebell, Morten; Holst, Klaus K; Asenbaum, Susanne; Booij, Jan; Darcourt, Jacques; Dickson, John C; Kapucu, Ozlem L; Nobili, Flavio; Sabri, Osama; Sera, Terez; Tatsch, Klaus; Tossici-Bolt, Livia; Laere, Koen Van; Borght, Thierry Vander; Varrone, Andrea; Pagani, Marco; Pinborg, Lars Hageman
2013-05-20
Mesolimbic and nigrostriatal dopaminergic pathways play important roles in both the rewarding and conditioning effects of drugs. The dopamine transporter (DAT) is of central importance in regulating dopaminergic neurotransmission and in particular in activating the striatal D2-like receptors. Molecular imaging studies of the relationship between DAT availability/dopamine synthesis capacity and active cigarette smoking have shown conflicting results. Through the collaboration between 13 SPECT centres located in 10 different European countries, a database of FP-CIT-binding in healthy controls was established. We used the database to test the hypothesis that striatal DAT availability is changed in active smokers compared to non-smokers and ex-smokers. A total of 129 healthy volunteers were included. Subjects were divided into three categories according to past and present tobacco smoking: (1) non-smokers (n = 64), (2) ex-smokers (n = 39) and (3) active smokers (n = 26). For imaging of the DAT availability, we used [123I]FP-CIT (DaTSCAN) and single photon emission computed tomography (SPECT). Data were collected in collaboration between 13 SPECT centres located in 10 different European countries. The striatal measure of DAT availability was analyzed in a multiple regression model with age, SPECT centre and smoking as predictor. There was no statistically significant difference in DAT availability between the groups of active smokers, ex-smokers and non-smokers (p = 0.34). Further, we could not demonstrate a significant association between striatal DAT and the number of cigarettes per day or total lifetime cigarette packages in smokers and ex-smokers. Our results do not support the hypothesis that large differences in striatal DAT availability are present in smokers compared to ex-smokers and healthy volunteers with no history of smoking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-31
The following collection of papers was presented at the Department of Energy sponsored symposium ``Frontiers in Nuclear Medicine - PET/SPECT 1987`` held in Washington, D.C. September 27-- 28, 1987. The meeting and these manuscripts concentrate on the techniques of tomography, useful radiopharmaceuticals, and clinical neurologic and cardiac evaluation. The authors of these papers are for the most part those who either developed the techniques or who have extensively applied them to clinical practice. Individual reports are processed separately for the databases.
Lalonde, Michel; Wells, R Glenn; Birnie, David; Ruddy, Terrence D; Wassenaar, Richard
2014-07-01
Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster analysis results were similar to SPECT RNA phase analysis (ROC AUC = 0.78, p = 0.73 vs cluster AUC; sensitivity/specificity = 59%/89%) and PET scar size analysis (ROC AUC = 0.73, p = 1.0 vs cluster AUC; sensitivity/specificity = 76%/67%). A SPECT RNA cluster analysis algorithm was developed for the prediction of CRT outcome. Cluster analysis results produced results equivalent to those obtained from Fourier and scar analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalonde, Michel, E-mail: mlalonde15@rogers.com; Wassenaar, Richard; Wells, R. Glenn
2014-07-15
Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: Aboutmore » 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster analysis results were similar to SPECT RNA phase analysis (ROC AUC = 0.78, p = 0.73 vs cluster AUC; sensitivity/specificity = 59%/89%) and PET scar size analysis (ROC AUC = 0.73, p = 1.0 vs cluster AUC; sensitivity/specificity = 76%/67%). Conclusions: A SPECT RNA cluster analysis algorithm was developed for the prediction of CRT outcome. Cluster analysis results produced results equivalent to those obtained from Fourier and scar analysis.« less
Design and evaluation of a mobile bedside PET/SPECT imaging system
NASA Astrophysics Data System (ADS)
Studenski, Matthew Thomas
Patients confined to an intensive care unit, the emergency room, or a surgical suite are managed without nuclear medicine procedures such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). These studies have diagnostic value which can greatly benefit the physician's treatment of the patient but require that the patient is moved to a scanner. This dissertation examines the feasibility of an economical PET/SPECT system that can be brought to the bedside of an immobile patient for imaging. We chose to focus on cardiac SPECT imaging including perfusion imaging using 99mTc tracers and viability imaging using 18F tracers first because of problems arising from positioning a detector beneath a patient's bed, a requirement for the opposed detector orientation in PET imaging. Second, SPECT imaging acquiring over the anterior 180 degrees of the patient results in reduced attenuation effects due to the heart's location in the anterior portion of the body. Four studies were done to assess the clinical feasibility of the mobile system; 1) the performance of the system was evaluated in SPECT mode at both 140 keV (99mTc tracers) and 511 keV (positron emitting tracers), 2) a dynamic cardiac phantom was used to develop and test image acquisition and processing methods for the system at both energies, 3) a high energy pinhole collimator was designed to reduce the effects of high energy photon penetration through the parallel hole collimator, and 4) we estimated the radiation dose to persons that would be in the vicinity of a patient to ensure that the effective dose is below the regulatory limit. With these studies, we show that the mobile system provides an economical means of bringing nuclear medicine to an immobile patient while staying below the regulatory dose limit to other persons. The system performed well at both 140 keV and 511 keV and provided viable images of a phantom myocardium at both energies. The system does not achieve the same sensitivity and spatial resolution as a dedicated system but performs well in detecting severe myocardial defects that would otherwise go undetected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmins, Rachel; Klein, Ran; Petryk, Julia
Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress.more » Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.« less
Daly, Patrick; Kayse, Regina; Rudick, Steven; Robbins, Nathan; Scheler, Jennifer; Harris, David; O'Donnell, Robert; Dwivedi, Alok K; Gerson, Myron C
2017-08-31
Exercise is the AHA/ACC guideline-recommended stress modality for myocardial perfusion imaging, but many patients are unable to exercise to target heart rate on a conventional treadmill. We examined the feasibility and safety of stress imaging using an anti-gravity treadmill in patients with perceived poor exercise capacity. 49 patients were recruited for stress testing by anti-gravity treadmill (n = 29) or to a regadenoson control group (n = 20). Seventeen anti-gravity test patients (59%) reached target heart rate obviating the need for a pharmacologic stress agent. Adverse effects of the anti-gravity treadmill were limited to minor muscle aches in 5 subjects. Stress myocardial perfusion image quality judged by 3 blinded readers on a 5-point scale was comparable for the anti-gravity treadmill (4.30 ± SD 0.87) vs pharmacologic stress (4.28 ± SD 0.66). Stress testing using an anti-gravity treadmill is feasible and may help some patients safely achieve target heart rate.
Paffett, Michael L.; Hesterman, Jacob; Candelaria, Gabriel; Lucas, Selita; Anderson, Tamara; Irwin, Daniel; Hoppin, Jack; Norenberg, Jeffrey; Campen, Matthew J.
2012-01-01
Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing 201Thallium (201Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with 99mTc-Annexin V (99mTc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28–42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dtmax. Serial 99mTc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by 201TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the efficacy of resveratrol in reversing established monocrotaline-induced PAH presumably by attenuation of cardiopulmonary apoptosis. PMID:22815866
Bailey, J J; Dewaraja, Y; Hubers, D; Srinivasa, R N; Frey, K A
2017-10-01
To evaluate the frequency of 99mTc-MAA uptake in extrahepatic organs during 90Y radioembolization therapy planning. This retrospective case series of 70 subjects who underwent 99mTc-MAA hepatic artery perfusion studies between January 2014 and July 2016 for 90Y radioembolization therapy planning at our institution involved direct image review for all subjects, with endpoints recorded: lung shunt fraction, extrahepatic radiotracer uptake, time from MAA injection to imaging. Combined planar and SPECT/CT imaging findings in the 70 subjects demonstrated lung shunt fraction measurements of less than 10% in 53 (76%) subjects and greater than 10% in 17 (24%) subjects. All patients demonstrated renal cortical uptake, 23 (33%) demonstrated salivary gland uptake, 23 (33%) demonstrated thyroid uptake, and 32 (46%) demonstrated gastric mucosal uptake, with significant overlap between these groups. The range of elapsed times between MAA injection and initial imaging was 41-138 min, with a mean of 92 min. There was no correlation between time to imaging and the presence of extrahepatic radiotracer uptake at any site. During hepatic artery perfusion scanning for 90Y radioembolization therapy planning, extrahepatic uptake is common, particularly in the kidney, salivary gland, thyroid and gastric mucosa, and is hypothesized to result from breakdown of 99mTc-MAA over time. Given the breakdown to smaller aggregates and ultimately pertechnetate, this should not be a contraindication to actual Y-90 microsphere therapy. Although we found no correlation between time to imaging and extrahepatic uptake, most of our injection to imaging times were relatively short.
Effects of antidepressant treatment with rTMS and fluoxetine on brain perfusion in PD.
Fregni, F; Ono, C R; Santos, C M; Bermpohl, F; Buchpiguel, C; Barbosa, E R; Marcolin, M A; Pascual-Leone, A; Valente, K D
2006-06-13
Although depression is highly prevalent in Parkinson disease (PD), little is known about the neural correlates associated with depression and antidepressant treatment in PD. To examine the effects of fluoxetine and repetitive transcranial magnetic stimulation (rTMS) on regional cerebral blood flow (rCBF) using SPECT in patients with PD and depression. Twenty-six patients were enrolled into two groups: One received active rTMS and placebo medication and the other sham rTMS and fluoxetine 20 mg/day. Brain SPECT was performed at baseline and after 2 and 8 weeks. Changes in rCBF were compared across timepoints and correlated with clinical scores. In addition, baseline rCBF of these patients was compared with that of 29 healthy, age-matched subjects. At baseline, patients with PD and depression showed significantly lower rCBF in the left prefrontal cortex, posterior cingulate gyrus, left insula, and right parietal cortex when compared with healthy controls. Both treatments induced significant clinical improvement and increases in rCBF in the posterior cingulate gyrus and decreases in rCBF in the right medial frontal gyrus. These changes were significantly correlated to the clinical outcome. Furthermore, the comparison between these two treatments revealed that whereas rTMS treatment was associated with an increased perfusion in the right and left prefrontal cortex, fluoxetine treatment was associated with a relative rCBF increase in the occipital lobe. Depression in patients with Parkinson disease is correlated with a dysfunction of the frontal-limbic network that can be modulated by two different antidepressant therapies.
Extent and neural basis of semantic memory impairment in mild cognitive impairment.
Barbeau, Emmanuel J; Didic, Mira; Joubert, Sven; Guedj, Eric; Koric, Lejla; Felician, Olivier; Ranjeva, Jean-Philippe; Cozzone, Patrick; Ceccaldi, Mathieu
2012-01-01
An increasing number of studies indicate that semantic memory is impaired in mild cognitive impairment (MCI). However, the extent and the neural basis of this impairment remain unknown. The aim of the present study was: 1) to evaluate whether all or only a subset of semantic domains are impaired in MCI patients; and 2) to assess the neural substrate of the semantic impairment in MCI patients using voxel-based analysis of MR grey matter density and SPECT perfusion. 29 predominantly amnestic MCI patients and 29 matched control subjects participated in this study. All subjects underwent a full neuropsychological assessment, along with a battery of five tests evaluating different domains of semantic memory. A semantic memory composite Z-score was established on the basis of this battery and was correlated with MRI grey matter density and SPECT perfusion measures. MCI patients were found to have significantly impaired performance across all semantic tasks, in addition to their anterograde memory deficit. Moreover, no temporal gradient was found for famous faces or famous public events and knowledge for the most remote decades was also impaired. Neuroimaging analyses revealed correlations between semantic knowledge and perirhinal/entorhinal areas as well as the anterior hippocampus. Therefore, the deficits in the realm of semantic memory in patients with MCI is more widespread than previously thought and related to dysfunction of brain areas beyond the limbic-diencephalic system involved in episodic memory. The severity of the semantic impairment may indicate a decline of semantic memory that began many years before the patients first consulted.
Iskandrian, A S; Powers, J; Cave, V; Wasserleben, V; Cassell, D; Heo, J
1995-01-01
This study examined the ability of dynamic 123I-labeled iodophenylpentadecanoic acid (IPPA) imaging to detect myocardial viability in patients with left ventricular (LV) dysfunction caused by coronary artery disease. Serial 180-degree single-photon emission computed tomographic (SPECT) images (five sets, 8 minutes each) were obtained starting 4 minutes after injection of 2 to 6 mCi 123I at rest in 21 patients with LV dysfunction (ejection fraction [EF] 34% +/- 11%). The segmental uptake was compared with that of rest-redistribution 201Tl images (20 segments/study). The number of perfusion defects (reversible and fixed) was similar by IPPA and thallium (11 +/- 5 vs 10 +/- 5 segments/patient; difference not significant). There was agreement between IPPA and thallium for presence or absence (kappa = 0.78 +/- 0.03) and nature (reversible, mild fixed, or severe fixed) of perfusion defects (kappa = 0.54 +/- 0.04). However, there were more reversible IPPA defects than reversible thallium defects (7 +/- 4 vs 3 +/- 4 segments/patient; p = 0.001). In 14 patients the EF (by gated pool imaging) improved after coronary revascularization from 33% +/- 11% to 39% +/- 12% (p = 0.002). The number of reversible IPPA defects was greater in the seven patients who had improvement in EF than in the patients without such improvement (10 +/- 4 vs 5 +/- 4 segments/patient; p = 0.075). 123I-labeled IPPA SPECT imaging is a promising new technique for assessment of viability. Reversible defects predict recovery of LV dysfunction after coronary revascularization.
Gao, Xiangyu; Yang, Jigang; Zhang, Xiaojie; Wang, Ping; Li, Hongwei
2018-05-01
Hypertrophic cardiomyopathy (HCM) is a disease that is characterized by inappropriate left ventricular and/or right ventricular hypertrophy and hypercontractility that is often asymmetrical and associated with microscopic evidence of myocardial fiber disarray. The aim of this study was to present a previously under-recognized subset of HCM patients with left ventricular (LV) apical aneurysms. A 33-year-old man who presented with chest discomfort for 10 days. He had an emerging apical aneurysm in the LV without midventricular obstruction. He had been diagnosed with apical HCM via abnormal electrocardiograms (ECG) and single-photon emission computed tomography (SPECT) for 10 years. This time, a new significant change in ECG and SPECT was identified. Late gadolinium enhancement (LGE) was observed by cardiac magnetic resonance imaging (MRI), and SPECT showed myocardial fibrosis or necrosis involving the apical aneurysm and proximal portion of the heart, which was confirmed by left ventriculography. We present a relatively rare case of HCM patients with apical aneurysms, accompaning by myocardial necrosis markers increased due to ventricular muscle stress increases, rather than obstructive coronary artery disease. The patient was prescribed aspirin, metoprolol tartrate, perindopril, and atorvastatin and was strongly advised to quit cigarettes and reduce weight. Follow-up at half a year turned out well. LGE with a notable progression by ECG and SPECT along with an increase in myocardial necrosis markers in HCM patients with apical aneurysms, as was noted in the present case, is a relatively rare occurrence. Our present case may provide unique insights into the adverse remodelling process and the formation of apical aneurysms in HCM patients.
DI NARDO, W.; GIANNANTONIO, S.; DI GIUDA, D.; DE CORSO, E.; SCHINAIA, L.; PALUDETTI, G.
2013-01-01
SUMMARY Pre-surgery evaluation, indications for cochlear implantation and expectations in terms of post-operative functional results remain challenging topics in pre-lingually deaf adults. Our study has the purpose of determining the benefits of Single Photon Emission Tomography (SPECT) assessment in pre-surgical evaluation of pre-lingually deaf adults who are candidates for cochlear implantation. In 7 pre-lingually profoundly deaf patients, brain SPECT was performed at baseline conditions and in bilateral simultaneous multi-frequency acoustic stimulation. Six sagittal tomograms of both temporal cortices were used for semi-quantitative analysis in each patient. Percentage increases in cortical perfusion resulting from auditory stimulation were calculated. The results showed an inter-hemispherical asymmetry of the activation extension and intensity in the stimulated temporal areas. Consistent with the obtained brain activation data, patients were implanted preferring the side that showed higher activation after acoustic stimulus. Considering the increment in auditory perception performances, it was possible to point out a relationship between cortical brain activity shown by SPECT and hearing performances, and, even more significant, a correlation between post-operative functional performances and the activation of the most medial part of the sagittal temporal tomograms, corresponding to medium-high frequencies. In light of these findings, we believe that brain SPECT could be considered in the evaluation of deaf patients candidate for cochlear implantation, and that it plays a major role in functional assessment of the auditory cortex of pre-lingually deaf subjects, even if further studies are necessary to conclusively establish its utility. Further developments of this technique are possible by using trans-tympanic electrical stimulation of the cochlear promontory, which could give the opportunity to study completely deaf patients, whose evaluation is objectively difficult with current audiological methods. PMID:23620636
Present assessment of myocardial viability by nuclear imaging.
Saha, G B; MacIntyre, W J; Brunken, R C; Go, R T; Raja, S; Wong, C O; Chen, E Q
1996-10-01
Prospective delineation of viable from nonviable myocardium in patients with coronary artery disease in an important factor in deciding whether a patient should be revascularized or treated medically. Two common techniques--single-photon emission computed tomography (SPECT) and positron-emission computed tomography (PET)--are used in nuclear medicine using various radiopharmaceuticals for the detection of myocardial viability in patients. Thallium-201 (201Tl) and technetium-99m (99mTc)-sestamibi are the common radiopharmaceuticals used in different protocols using SPECT, whereas fluoride-18 (18F)-fluorodeoxyglucose (FDG) and rubidium-82 (82Rb) are most widely used in PET. The SPECT protocols involve stress/redistribution, stress/redistribution/reinjection, and rest/redistribution imaging techniques. Many studies have compared the results of 201Tl and (99mTc)-sestamibi SPECT with those of FDG PET; in some studies, concordant results have been found between delayed thallium and FDG results, indicating that 201Tl, although considered a perfusion agent, shows myocardial viability. Discordant results in a number of studies have been found between sestamibi and FDG, suggesting that the efficacy of sestamibi as a viability marker has yet to be established. Radiolabeled fatty acids such as iodine-123 (123I)-para-iodophenylpentadecanoic acid and carbon-11 (11C)-palmitic acid have been used for the assessment of myocardial viability with limited success. 11C-labeled acetate is a good marker of oxidative metabolism in the heart and has been used to predict the reversibility of wall motion abnormalities. (18F)-FDG is considered the marker of choice for myocardial viability, although variable results are obtained under different physiological conditions. Detection of myocardial viability can be greatly improved by developing new equipment and radiopharmaceuticals of better quality.
Noninvasive Imaging in Coronary Artery Disease
Heo, Ran; Nakazato, Ryo; Kalra, Dan; Min, James K.
2014-01-01
Noninvasive cardiac imaging is widely used to evaluate the presence of coronary artery disease. Recently, with improvements in imaging technology, noninvasive imaging has also been used for evaluation of the presence, severity, and prognosis of coronary artery disease. Coronary CT angiography and MRI of coronary arteries provide an anatomical assessment of coronary stenosis, whereas the hemodynamic significance of a coronary artery stenosis can be assessed by stress myocardial perfusion imaging, such as SPECT/PET and stress MRI. For appropriate use of multiple imaging modalities, the strengths and limitations of each modality are discussed in this review. PMID:25234083
Wolak, Arik; Slomka, Piotr J; Fish, Mathews B; Lorenzo, Santiago; Berman, Daniel S; Germano, Guido
2008-06-01
Attenuation correction (AC) for myocardial perfusion SPECT (MPS) had not been evaluated separately in women despite specific considerations in this group because of breast photon attenuation. We aimed to evaluate the performance of AC in women by using automated quantitative analysis of MPS to avoid any bias. Consecutive female patients--134 with a low likelihood (LLk) of coronary artery disease (CAD) and 114 with coronary angiography performed within less than 3 mo of MPS--who were referred for rest-stress electrocardiography-gated 99mTc-sestamibi MPS with AC were considered. Imaging data were evaluated for contour quality control. An additional 50 LLk studies in women were used to create equivalent normal limits for studies with AC and with no correction (NC). An experienced technologist unaware of the angiography and other results performed the contour quality control. All other processing was performed in a fully automated manner. Quantitative analysis was performed with the Cedars-Sinai myocardial perfusion analysis package. All automated segmental analyses were performed with the 17-segment, 5-point American Heart Association model. Summed stress scores (SSS) of > or =3 were considered abnormal. CAD (> or =70% stenosis) was present in 69 of 114 patients (60%). The normalcy rates were 93% for both NC and AC studies. The SSS for patients with CAD and without CAD for NC versus AC were 10.0 +/- 9.0 (mean +/- SD) versus 10.2 +/- 8.5 and 1.6 +/- 2.3 versus 1.8 +/- 2.5, respectively; P was not significant (NS) for all comparisons of NC versus AC. The SSS for LLk patients for NC versus AC were 0.51 +/- 1.0 versus 0.6 +/- 1.1, respectively; P was NS. The specificity for both NC and AC was 73%. The sensitivities for NC and AC were 80% and 81%, respectively, and the accuracies for NC and AC were 77% and 78%, respectively; P was NS for both comparisons. There are no significant diagnostic differences between automated quantitative MPS analyses performed in studies processed with and without AC in women.
Is There a Dose-Response Relationship for Heart Disease With Low-Dose Radiation Therapy?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Eugene; Corbett, James R.; Moran, Jean M.
Purpose: To quantify cardiac radiation therapy (RT) exposure using sensitive measures of cardiac dysfunction; and to correlate dysfunction with heart doses, in the setting of adjuvant RT for left-sided breast cancer. Methods and Materials: On a randomized trial, 32 women with node-positive left-sided breast cancer underwent pre-RT stress single photon emission computed tomography (SPECT-CT) myocardial perfusion scans. Patients received RT to the breast/chest wall and regional lymph nodes to doses of 50 to 52.2 Gy. Repeat SPECT-CT scans were performed 1 year after RT. Perfusion defects (PD), summed stress defects scores (SSS), and ejection fractions (EF) were evaluated. Doses tomore » the heart and coronary arteries were quantified. Results: The mean difference in pre- and post-RT PD was −0.38% ± 3.20% (P=.68), with no clinically significant defects. To assess for subclinical effects, PD were also examined using a 1.5-SD below the normal mean threshold, with a mean difference of 2.53% ± 12.57% (P=.38). The mean differences in SSS and EF before and after RT were 0.78% ± 2.50% (P=.08) and 1.75% ± 7.29% (P=.39), respectively. The average heart Dmean and D95 were 2.82 Gy (range, 1.11-6.06 Gy) and 0.90 Gy (range, 0.13-2.17 Gy), respectively. The average Dmean and D95 to the left anterior descending artery were 7.22 Gy (range, 2.58-18.05 Gy) and 3.22 Gy (range, 1.23-6.86 Gy), respectively. No correlations were found between cardiac doses and changes in PD, SSS, and EF. Conclusions: Using sensitive measures of cardiac function, no clinically significant defects were found after RT, with the average heart Dmean <5 Gy. Although a dose response may exist for measures of cardiac dysfunction at higher doses, no correlation was found in the present study for low doses delivered to cardiac structures and perfusion, SSS, or EF.« less
Chahine, George; Short, Baron; Spicer, Ken; Schmidt, Matthew; Burns, Carol; Atoui, Mia; George, Mark S; Sackeim, Harold A; Nahas, Ziad
2014-01-01
Use of electroconvulsive therapy (ECT) is limited by cognitive disturbance. Focal electrically-administered seizure therapy (FEAST) is designed to initiate focal seizures in the prefrontal cortex. To date, no studies have documented the effects of FEAST on regional cerebral blood flow (rCBF). A 72 year old depressed man underwent three single photon emission computed tomography (SPECT) scans to capture the onset and resolution of seizures triggered with right unilateral FEAST. We used Bioimage Suite for within-subject statistical analyses of perfusion differences ictally and post-ictally compared with the baseline scan. Early ictal increases in regional cerebral blood flow (rCBF) were limited to the right prefrontal cortex. Post-ictally, perfusion was reduced in bilateral frontal and occipital cortices and increased in left motor and precuneus cortex. FEAST appears to triggers focal onsets of seizure activity in the right prefrontal cortex with subsequent generalization. Future studies are needed on a larger sample. Copyright © 2014 Elsevier Inc. All rights reserved.
The mechanism of ipsilateral ataxia in lacunar hemiparesis: SPECT perfusion imaging.
Yamamoto, Ryoo; Johkura, Ken; Nakae, Yoshiharu; Tanaka, Fumiaki
2015-01-01
Although ataxic hemiparesis is a common lacunar syndrome, the precise mechanism underlying hemiataxia is not clear. We attempted to identify ataxia-related, cerebral blood flow changes in patients presenting with ataxic hemiparesis after acute capsular infarct. We used 99mTc-ECD brain perfusion single-photon emission computed tomography to evaluate regional cerebral blood flow in 12 patients with ataxic hemiparesis caused by capsular infarct, and we compared the regional blood flow of these patients with that of 11 patients with pure motor hemiparesis caused by similar lesions. The ipsilateral red nucleus blood flow was significantly decreased in the ataxic hemiparesis patients, whereas the ipsilateral red nucleus blood flow was increased in the pure motor hemiparesis patients. Crossed cerebellar diaschisis (decreased contralateral cerebellar blood flow) was seen in ataxic hemiparesis patients; similarly, it was seen in pure motor hemiparesis patients. Our findings suggest that ataxia in hemiparetic patients with capsular infarct can be caused by ipsilateral red nucleus dysfunction secondary to cortico-rubral pathway disruption at the internal capsule.
Impact of cardiac hybrid imaging-guided patient management on clinical long-term outcome.
Benz, Dominik C; Gaemperli, Lara; Gräni, Christoph; von Felten, Elia; Giannopoulos, Andreas A; Messerli, Michael; Buechel, Ronny R; Gaemperli, Oliver; Pazhenkottil, Aju P; Kaufmann, Philipp A
2018-06-15
Although randomized trials have provided evidence for invasive fractional flow reserve to guide revascularization, evidence for non-invasive imaging is less well established. The present study investigated whether hybrid coronary computed tomography (CCTA)/single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) can identify patients who benefit from early revascularization compared to medical therapy. This retrospective study consists of 414 patients referred for evaluation of known or suspected coronary artery disease (CAD) with CCTA/SPECT hybrid imaging. CCTA categorized patients into no CAD, non-high-risk CAD and high-risk CAD. In patients with CAD (n = 329), a matched finding (n = 75) was defined as a reversible perfusion defect in a territory subtended by a coronary artery with CAD. All other combinations of pathologic findings were classified as unmatched (n = 254). Death, myocardial infarction, unstable angina requiring hospitalization, and late coronary revascularization were defined as major adverse cardiac events (MACE). Cox hazards models included covariates age, male gender, more than two risk factors, previous CABG, high-risk CAD and early revascularization. During median follow-up of 6.0 years, 112 patients experienced a MACE (27%). Early revascularization (n = 50) was independently associated with improved outcome among patients with a matched finding (p < 0.001). There was no benefit among patients with an unmatched finding (p = 0.787), irrespective of presence (p = 0.505) or absence of high-risk CAD (p = 0.631). Early revascularization is associated with an outcome benefit in CAD patients with a matched finding documented by cardiac hybrid imaging while no benefit of revascularization was observed in patients with an unmatched finding. Copyright © 2018 Elsevier B.V. All rights reserved.
Brindis, Ralph G; Douglas, Pamela S; Hendel, Robert C; Peterson, Eric D; Wolk, Michael J; Allen, Joseph M; Patel, Manesh R; Raskin, Ira E; Hendel, Robert C; Bateman, Timothy M; Cerqueira, Manuel D; Gibbons, Raymond J; Gillam, Linda D; Gillespie, John A; Hendel, Robert C; Iskandrian, Ami E; Jerome, Scott D; Krumholz, Harlan M; Messer, Joseph V; Spertus, John A; Stowers, Stephen A
2005-10-18
Under the auspices of the American College of Cardiology Foundation (ACCF) and the American Society of Nuclear Cardiology (ASNC), an appropriateness review was conducted for radionuclide cardiovascular imaging (RNI), specifically gated single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). The review assessed the risks and benefits of the imaging test for several indications or clinical scenarios and scored them based on a scale of 1 to 9, where the upper range (7 to 9) implies that the test is generally acceptable and is a reasonable approach, and the lower range (1 to 3) implies that the test is generally not acceptable and is not a reasonable approach. The mid range (4 to 6) implies that the test may be generally acceptable and may be a reasonable approach for the indication. The indications for this review were primarily drawn from existing clinical practice guidelines and modified based on discussion by the ACCF Appropriateness Criteria Working Group and the Technical Panel members who rated the indications. The method for this review was based on the RAND/UCLA approach for evaluating appropriateness, which blends scientific evidence and practice experience. A modified Delphi technique was used to obtain first- and second-round ratings of 52 clinical indications. The ratings were done by a Technical Panel with diverse membership, including nuclear cardiologists, referring physicians (including an echocardiographer), health services researchers, and a payer (chief medical officer). These results are expected to have a significant impact on physician decision making and performance, reimbursement policy, and future research directions. Periodic assessment and updating of criteria will be undertaken as needed.
Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael
2008-06-01
Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.
The effect of patient anxiety and depression on motion during myocardial perfusion SPECT imaging.
Lyra, Vassiliki; Kallergi, Maria; Rizos, Emmanouil; Lamprakopoulos, Georgios; Chatziioannou, Sofia N
2016-08-22
Patient motion during myocardial perfusion SPECT imaging (MPI) may be triggered by a patient's physical and/or psychological discomfort. The aim of this study was to investigate the impact of state anxiety (patient's reaction to exam-related stress), trait anxiety (patient's personality characteristic) and depression on patient motion during MPI. All patients that underwent MPI in our department in a six-month period were prospectively enrolled. One hundred eighty-three patients (45 females; 138 males) filled in the State-Trait Anxiety Inventory (STAI) and the Beck Depression Inventory (BDI), along with a short questionnaire regarding their age, height and weight, level of education in years, occupation, and marital status. Cardiovascular and other co-morbidity factors were also evaluated. Through inspection of raw data on cinematic display, the presence or absence of patient motion was registered and classified into mild, moderate and severe, for both phases involved in image acquisition. The correlation of patient motion in the stress and delay phases of MPI and each of the other variables was investigated and the corresponding Pearson's coefficients of association were calculated. The anxiety-motion (r = 0.43, P < 0.0001) and depression-motion (r = 0.32, P < 0.0001) correlation results were moderately strong and statistically significant for the female but not the male patients. All the other variables did not demonstrate any association with motion in MPI, except a weak correlation between age and motion in females (r = 0.23, P < 0.001). The relationship between anxiety-motion and depression-motion identified in female patients represents the first supporting evidence of psychological discomfort as predisposing factor for patient motion during MPI.
Technetium-99m HMPAO brain SPECT in autistic children and their families.
Degirmenci, Berna; Miral, Süha; Kaya, Gamze Capa; Iyilikçi, Leyla; Arslan, Gulhan; Baykara, Ayşen; Evren, Ismail; Durak, Hatice
2008-04-15
The purpose of the study was to investigate perfusion patterns in autistic children (AC) and their families. Ten AC (9 boys, 1 girl; mean age: 6.9+/-1.7 years) with autistic disorder defined by DSM-III-R criteria, five age-matched children (3 boys, 2 girls) as a control group, and the immediate family members of eight AC (8 mothers, 8 fathers, 7 siblings; mean ages: 39+/-4 years, 36+/-5 years and 13+/-5 years, respectively) were included in the study. Age- and sex-matched control groups for both the parents and the siblings were also included in the study. Brain perfusion images were obtained 1 h after the intravenous injection of an adjusted dose of Tc-99m HMPAO to children and the adults. Visual and semiquantitative evaluations were performed. Hypoperfusion was seen in the right posterior parietal cortex in three AC, in bilateral parietal cortex in one AC, bilateral frontal cortex in two AC, left parietal and temporal cortex in one AC, and right parietal and temporal cortex in one AC. Asymmetric perfusion was observed in the caudate nucleus in four AC. In semiquantitative analyses, statistically significant hypoperfusion was found in the right inferior and superior frontal, left superior frontal, right parietal, right mesial temporal and right caudate nucleus. In parents of AC, significant hypoperfusion was noted in the right parietal and bilateral inferior frontal cortex. In siblings of AC, perfusion in the right frontal cortex, right nucleus caudate and left parietal cortex was significantly decreased. This preliminary study suggests the existence of regional brain perfusion alterations in frontal, temporal, and parietal cortex and in caudate nucleus in AC and in their first-degree family members.
SPECT assessment of brain activation induced by caffeine: no effect on areas involved in dependence
Nehlig, Astrid; Armspach, Jean-Paul; Namer, Izzie J.
2010-01-01
Caffeine is not considered addictive, and in animals it does not trigger metabolic increases or dopamine release in brain areas involved in reinforcement and reward. Our objective was to measure caffeine effects on cerebral perfusion in humans using single photon emission computed tomography, with a specific focus on areas of reinforcement and reward. Two groups of nonsmoking subjects were studied, one with a low (8 subjects) and one with a high (6 subjects) daily coffee consumption. The subjects ingested 3 mg/kg caffeine or placebo in a raspberry-tasting drink, and scans were performed 45 min after ingestion. A control group of 12 healthy volunteers receiving no drink was also studied. Caffeine consumption led to a generalized, statistically nonsignificant perfusion decrease of 6% to 8%, comparable in low and high consumers. Compared with controls, low consumers displayed neuronal activation bilaterally in inferior frontal gyrusanterior insular cortex and uncus, left internal parietal cortex, right lingual gyrus, and cerebellum. In high consumers, brain activation occurred bilaterally only in hypothalamus. Thus, on a background of widespread low-amplitude perfusion decrease, caffeine activates a few regions mainly involved in the control of vigilance, anxiety, and cardiovascular regulation, but does not affect areas involved in reinforcing and reward. PMID:20623930
SPECT assessment of brain activation induced by caffeine: no effect on areas involved in dependence.
Nehlig, Astrid; Armspach, Jean-Paul; Namer, Izzie J
2010-01-01
Caffeine is not considered addictive, and in animals it does not trigger metabolic increases or dopamine release in brain areas involved in reinforcement and reward. Our objective was to measure caffeine effects on cerebral perfusion in humans using single photon emission computed tomography with a specific focus on areas of reinforcement and reward. Two groups of nonsmoking subjects were studied, one with a low (8 subjects) and one with a high (6 subjects) daily coffee consumption. The subjects ingested 3 mg/kg caffeine or placebo in a raspberry-tasting drink, and scans were performed 45 min after ingestion. A control group of 12 healthy volunteers receiving no drink was also studied. Caffeine consumption led to a generalized, statistically nonsignificant perfusion decrease of 6% to 8%, comparable in low and high consumers. Compared with controls, low consumers displayed neuronal activation bilaterally in inferior frontal gyrus-anterior insular cortex and uncus, left internal parietal cortex, right lingual gyrus, and cerebellum. In high consumers, brain activation occurred bilaterally only in hypothalamus. Thus, on a background of widespread low-amplitude perfusion decrease, caffeine activates a few regions mainly involved in the control of vigilance, anxiety, and cardiovascular regulation, but does not affect areas involved in reinforcing and reward.
Frostbite: Spectrum of Imaging Findings and Guidelines for Management
Brown, Richard K. J.; Levi, Benjamin; Kraft, Casey T.; Jacobson, Jon A.; Gross, Milton D.; Wong, Ka Kit
2016-01-01
Frostbite is a localized cold thermal injury that results from tissue freezing. Frostbite injuries can have a substantial effect on long-term limb function and mobility if not promptly evaluated and treated. Imaging plays a critical role in initial evaluation of frostbite injuries and in monitoring response to treatment. A multimodality approach involving radiography, digital subtraction angiography (DSA), and/or multiphase bone scintigraphy with hybrid single photon emission computed tomography (SPECT)/computed tomography (CT) is often necessary for optimal guidance of frostbite care. Radiographs serve as an initial survey of the affected limb and may demonstrate characteristic findings, depending on the time course and severity of injury. DSA is used to evaluate perfusion of affected soft tissues and identify potential targets for therapeutic intervention. Angiography-directed thrombolysis plays an essential role in tissue preservation and salvage in deep frostbite injuries. Multiphase bone scintigraphy with technetium 99m–labeled diphosphonate provides valuable information regarding the status of tissue viability after initial treatment. The addition of SPECT/CT to multiphase bone scintigraphy enables precise anatomic localization of the level and depth of tissue necrosis before its appearance at physical examination and can help uncover subtle findings that may remain occult at scintigraphy alone. Multiphase bone scintigraphy with SPECT/CT is the modality of choice for prognostication and planning of definitive surgical care of affected limbs. Appropriate use of imaging to direct frostbite care can help limit the effects that these injuries have on limb function and mobility. ©RSNA, 2016 PMID:27494386
Reproducibility Between Brain Uptake Ratio Using Anatomic Standardization and Patlak-Plot Methods.
Shibutani, Takayuki; Onoguchi, Masahisa; Noguchi, Atsushi; Yamada, Tomoki; Tsuchihashi, Hiroko; Nakajima, Tadashi; Kinuya, Seigo
2015-12-01
The Patlak-plot and conventional methods of determining brain uptake ratio (BUR) have some problems with reproducibility. We formulated a method of determining BUR using anatomic standardization (BUR-AS) in a statistical parametric mapping algorithm to improve reproducibility. The objective of this study was to demonstrate the inter- and intraoperator reproducibility of mean cerebral blood flow as determined using BUR-AS in comparison to the conventional-BUR (BUR-C) and Patlak-plot methods. The images of 30 patients who underwent brain perfusion SPECT were retrospectively used in this study. The images were reconstructed using ordered-subset expectation maximization and processed using an automatic quantitative analysis for cerebral blood flow of ECD tool. The mean SPECT count was calculated from axial basal ganglia slices of the normal side (slices 31-40) drawn using a 3-dimensional stereotactic region-of-interest template after anatomic standardization. The mean cerebral blood flow was calculated from the mean SPECT count. Reproducibility was evaluated using coefficient of variation and Bland-Altman plotting. For both inter- and intraoperator reproducibility, the BUR-AS method had the lowest coefficient of variation and smallest error range about the Bland-Altman plot. Mean CBF obtained using the BUR-AS method had the highest reproducibility. Compared with the Patlak-plot and BUR-C methods, the BUR-AS method provides greater inter- and intraoperator reproducibility of cerebral blood flow measurement. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
A new era for Nuclear Medicine neuroimaging in Spain: Where do we start from in Spain?
Balsa, M A; Camacho, V; Garrastachu, P; García-Solís, D; Gómez-Río, M; Rubí, S; Setoain, X; Arbizu, J
To determine the status of neuroimaging studies of Nuclear Medicine in Spain during 2013 and first quarter of 2014, in order to define the activities of the neuroimaging group of the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM). A questionnaire of 14 questions was designed, divided into 3 parts: characteristics of the departments (equipment and professionals involved); type of scans and clinical indications; and evaluation methods. The questionnaire was sent to 166 Nuclear Medicine departments. A total of 54 departments distributed among all regions completed the questionnaire. Most departments performed between 300 and 800 neuroimaging examinations per year, representing more than 25 scans per month. The average pieces of equipment were three; half of the departments had a PET/CT scanner and SPECT/CT equipment. Scans performed more frequently were brain SPECT with 123 I-FP-CIT, followed by brain perfusion SPECT and PET with 18 F-FDG. The most frequent clinical indications were cognitive impairment followed by movement disorders. For evaluation of the images most sites used only visual assessment, and for the quantitative assessment the most used was quantification by region of interest. These results reflect the clinical activity of 2013 and first quarter of 2014. The main indications of the studies were cognitive impairment and movement disorders. Variability in the evaluation of the studies is among the challenges that will be faced in the coming years. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Nishimura, T; Uehara, T; Shimonagata, T; Nagata, S; Haze, K
1994-01-01
This study was undertaken to evaluate the relationships, between myocardial perfusion and metabolism. Simultaneous beta-methyl-p(123I)iodophenylpentadecanoic acid (123I-BMIPP) and thallium 201 myocardial single-photon emission computed tomography (SPECT) were performed in 25 patients with myocardial infarction (group A) and 16 patients with hypertrophic cardiomyopathy (group B). The severity scores of 123I-BMIPP and 201Tl myocardial SPECT images were evaluated semiquantitatively by segmental analysis. In Group A, dissociations between thallium- and 123I-BMIPP-imaged defects were frequently observed in patients with successful reperfusion compared with those with no reperfusion and those with reinfarction. In four patients with successful reperfusion, repeated 123I-BMIPP and 201Tl myocardial SPECT showed gradual improvement of the 123I-BMIPP severity score compared with the thallium severity score. In group B, dissociations between thallium- and 123I-BMIPP-imaged defects were also demonstrated in hypertrophic myocardium. In addition, nonhypertrophic myocardium also had decreased 123I-BMIPP uptake. In groups A and B, 123I-BMIPP severity scores correlated well with left ventricular function compared with thallium severity scores. These findings indicate that 123I-BMIPP is a suitable agent for the assessment of functional integrity, because left ventricular wall motion is energy dependent and 123I-BMIPP may reflect an aspect of myocardial energy production. This agent may be useful for the early detection and patient management of various heart diseases as an alternative to positron emission tomographic study.
Increased Pericardial Fat Volume Measured From Noncontrast CT Predicts Myocardial Ischemia by SPECT
Tamarappoo, Balaji; Dey, Damini; Shmilovich, Haim; Nakazato, Ryo; Gransar, Heidi; Cheng, Victor Y.; Friedman, John D.; Hayes, Sean W.; Thomson, Louise EJ; Slomka, Piotr J.; Rozanski, Alan; Berman, Daniel S.
2010-01-01
OBJECTIVES We evaluated the association between pericardial fat and myocardial ischemia for risk stratification. BACK GROUND Pericardial fat volume (PFV) and thoracic fat volume (TFV) measured from noncontrast computed tomography (CT) performed for calculating coronary calcium score (CCS) are associated with increased CCS and risk for major adverse cardiovascular events. METHODS From a cohort of 1,777 consecutive patients without previously known coronary artery disease (CAD) with noncontrast CT performed within 6 months of single photon emission computed tomography (SPECT), we compared 73 patients with ischemia by SPECT (cases) with 146 patients with normal SPECT (controls) matched by age, gender, CCS category, and symptoms and risk factors for CAD. TFV was automatically measured. Pericardial contours were manually defined within which fat voxels were automatically identified to compute PFV. Computer-assisted visual interpretation of SPECT was performed using standard 17-segment and 5-point score model; perfusion defect was quantified as summed stress score (SSS) and summed rest score (SRS). Ischemia was defined by: SSS – SRS ≥4. Independent relationships of PFV and TFV to ischemia were examined. RESULTS Cases had higher mean PFV (99.1 ± 42.9 cm3 vs. 80.1 ± 31.8 cm3, p = 0.0003) and TFV (196.1 ± 82.7 cm3 vs. 160.8 ± 72.1 cm3, p = 0.001) and higher frequencies of PFV >125 cm3 (22% vs. 8%, p = 0.004) and TFV >200 cm3 (40% vs. 19%, p = 0.001) than controls. After adjustment for CCS, PFV and TFV remained the strongest predictors of ischemia (odds ratio [OR]: 2.91, 95% confidence interval [CI]: 1.53 to 5.52, p = 0.001 for each doubling of PFV; OR: 2.64, 95% CI: 1.48 to 4.72, p = 0.001 for TFV. Receiver operating characteristic analysis showed that prediction of ischemia, as indicated by receiver-operator characteristic area under the curve, improved significantly when PFV or TFV was added to CCS (0.75 vs. 0.68, p = 0.04 for both). CONCLUSIONS Pericardial fat was significantly associated with myocardial ischemia in patients without known CAD and may help improve risk assessment. PMID:21070997
Real-Time Microfluidic Blood-Counting System for PET and SPECT Preclinical Pharmacokinetic Studies.
Convert, Laurence; Lebel, Réjean; Gascon, Suzanne; Fontaine, Réjean; Pratte, Jean-François; Charette, Paul; Aimez, Vincent; Lecomte, Roger
2016-09-01
Small-animal nuclear imaging modalities have become essential tools in the development process of new drugs, diagnostic procedures, and therapies. Quantification of metabolic or physiologic parameters is based on pharmacokinetic modeling of radiotracer biodistribution, which requires the blood input function in addition to tissue images. Such measurements are challenging in small animals because of their small blood volume. In this work, we propose a microfluidic counting system to monitor rodent blood radioactivity in real time, with high efficiency and small detection volume (∼1 μL). A microfluidic channel is built directly above unpackaged p-i-n photodiodes to detect β-particles with maximum efficiency. The device is embedded in a compact system comprising dedicated electronics, shielding, and pumping unit controlled by custom firmware to enable measurements next to small-animal scanners. Data corrections required to use the input function in pharmacokinetic models were established using calibrated solutions of the most common PET and SPECT radiotracers. Sensitivity, dead time, propagation delay, dispersion, background sensitivity, and the effect of sample temperature were characterized. The system was tested for pharmacokinetic studies in mice by quantifying myocardial perfusion and oxygen consumption with (11)C-acetate (PET) and by measuring the arterial input function using (99m)TcO4 (-) (SPECT). Sensitivity for PET isotopes reached 20%-47%, a 2- to 10-fold improvement relative to conventional catheter-based geometries. Furthermore, the system detected (99m)Tc-based SPECT tracers with an efficiency of 4%, an outcome not possible through a catheter. Correction for dead time was found to be unnecessary for small-animal experiments, whereas propagation delay and dispersion within the microfluidic channel were accurately corrected. Background activity and sample temperature were shown to have no influence on measurements. Finally, the system was successfully used in animal studies. A fully operational microfluidic blood-counting system for preclinical pharmacokinetic studies was developed. Microfluidics enabled reliable and high-efficiency measurement of the blood concentration of most common PET and SPECT radiotracers with high temporal resolution in small blood volume. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Impact of playing American professional football on long-term brain function.
Amen, Daniel G; Newberg, Andrew; Thatcher, Robert; Jin, Yi; Wu, Joseph; Keator, David; Willeumier, Kristen
2011-01-01
The authors recruited 100 active and former National Football League players, representing 27 teams and all positions. Players underwent a clinical history, brain SPECT imaging, qEEG, and multiple neuropsychological measures, including MicroCog. Relative to a healthy-comparison group, players showed global decreased perfusion, especially in the prefrontal, temporal, parietal, and occipital lobes, and cerebellar regions. Quantitative EEG findings were consistent, showing elevated slow waves in the frontal and temporal regions. Significant decreases from normal values were found in most neuropsychological tests. This is the first large-scale brain-imaging study to demonstrate significant differences consistent with a chronic brain trauma pattern in professional football players.
Garikipati, Venkata Naga Srikanth; Jadhav, Sachin; Pal, Lily; Prakash, Prem; Dikshit, Madhu; Nityanand, Soniya
2014-01-01
Mesenchymal stem cells (MSC) have emerged as a potential stem cell type for cardiac regeneration after myocardial infarction (MI). Recently, we isolated and characterized mesenchymal stem cells derived from rat fetal heart (fC-MSC), which exhibited potential to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. In the present study, we investigated the therapeutic efficacy of intravenously injected fC-MSC in a rat model of MI using multi-pinhole gated SPECT-CT system. fC-MSC were isolated from the hearts of Sprague Dawley (SD) rat fetuses at gestation day 16 and expanded ex vivo. One week after induction of MI, 2×106 fC-MSC labeled with PKH26 dye (n = 6) or saline alone (n = 6) were injected through the tail vein of the rats. Initial in vivo tracking of 99mTc-labeled fC-MSC revealed a focal uptake of cells in the anterior mid-ventricular region of the heart. At 4 weeks of fC-MSC administration, the cells labeled with PKH26 were located in abundance in infarct/peri-infarct region and the fC-MSC treated hearts showed a significant increase in left ventricular ejection fraction and a significant decrease in the end diastolic volume, end systolic volume and left ventricular myo-mass in comparison to the saline treated group. In addition, fC-MSC treated hearts had a significantly better myocardial perfusion and attenuation in the infarct size, in comparison to the saline treated hearts. The engrafted PKH26-fC-MSC expressed cardiac troponin T, endothelial CD31 and smooth muscle sm-MHC, suggesting their differentiation into all major cells of cardiovascular lineage. The fC-MSC treated hearts demonstrated an up-regulation of cardio-protective growth factors, anti-fibrotic and anti-apoptotic molecules, highlighting that the observed left ventricular functional recovery may be due to secretion of paracrine factors by fC-MSC. Taken together, our results suggest that fC-MSC therapy may be a new therapeutic strategy for MI and multi-pinhole gated SPECT-CT system may be a useful tool to evaluate cardiac perfusion, function and cell tracking after stem cell therapy in acute myocardial injury setting. PMID:24971627
Meyer, David B; Jacobs, Jeffrey P; Hill, Kevin; Wallace, Amelia S; Bateson, Brian; Jacobs, Marshall L
2016-09-01
Regional cerebral perfusion (RCP) is used as an adjunct or alternative to deep hypothermic circulatory arrest (DHCA) for neonates and infants undergoing aortic arch repair. Clinical studies have not demonstrated clear superiority of either strategy, and multicenter data regarding current use of these strategies are lacking. We sought to describe the variability in contemporary practice patterns for use of these techniques. The Society of Thoracic Surgeons Congenital Heart Surgery Database (2010-2013) was queried to identify neonates and infants whose index operation involved aortic arch repair with cardiopulmonary bypass. Perfusion strategy was classified as isolated DHCA, RCP (with less than or equal to ten minutes of DHCA), or mixed (RCP with more than ten minutes of DHCA). Data were analyzed for the entire cohort and stratified by operation subgroups. Overall, 4,523 patients (105 centers) were identified; median age seven days (interquartile range: 5.0-13.0). The most prevalent perfusion strategy was RCP (43%). Deep hypothermic circulatory arrest and mixed perfusion accounted for 32% and 16% of cases, respectively. In all, 59% of operations involved some period of RCP. Regional cerebral perfusion was the most prevalent perfusion strategy for each operation subgroup. Neither age nor weight was associated with perfusion strategy, but reoperations were less likely to use RCP (31% vs 45%, P < .001). The combined duration of RCP and DHCA in the RCP group was longer than the DHCA time in the DHCA group (45 vs 36 minutes, P < .001). There is considerable variability in practice regarding perfusion strategies for arch repair in neonates and infants. In contemporary practice, RCP is the most prevalent perfusion strategy for these procedures. Use of DHCA is also common. Further investigation is warranted to ascertain possible relative merits of the various perfusion techniques. © The Author(s) 2016.
Smelley, Matthew P; Virnich, Daniel E; Williams, Kim A; Ward, R Parker
2007-07-01
A hypertensive response to exercise (HRE) is associated with false-positive stress echocardiograms and myocardial perfusion single photon emission computed tomography (myocardial perfusion imaging [MPI]) defects even in the absence of coronary artery disease (CAD). Transient ischemic dilation (TID) of the left ventricle on stress MPI is a marker of severe CAD and future cardiac events. This study evaluated the association between an HRE and TID. Blinded quantitative TID assessment was performed in 125 patients who had an HRE and a summed stress score (SSS) of less than 4, as well as 125 control patients with an SSS of less than 4 and without an HRE matched for age, gender, and resting systolic blood pressure. Cardiac comorbidities, pretest Framingham risk, and exercise results were recorded. TID was defined as a stress-to-rest volume ratio of 1.22 or greater. An HRE was associated with a high prevalence of TID and significantly more TID than no HRE (25.6% vs 11.2%; odds ratio, 3.00 [95% confidence interval, 1.41-6.38]). TID was more prevalent even in subgroups with a low pretest probability CAD, including those without diabetes mellitus or angina. On conditional logistic regression analysis, an HRE was found to be independently associated with TID after consideration of other clinical and exercise MPI variables (odds ratio, 2.72 [95% confidence interval, 1.01-7.31]). An HRE is associated with a high prevalence of TID in patients without other significant perfusion defects, possibly as a result of global subendocardial ischemia induced by the HRE.
New cardiac cameras: single-photon emission CT and PET.
Slomka, Piotr J; Berman, Daniel S; Germano, Guido
2014-07-01
Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow measurements for this tracer. The availability of high-end CT component in most PET/CT configurations enables hybrid multimodality cardiac imaging protocols with calcium scoring or CT angiography or both. Copyright © 2014. Published by Elsevier Inc.
Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism.
Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques
2015-01-01
Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness.
Amen, Daniel G; Wu, Joseph C; Taylor, Derek; Willeumier, Kristen
2011-01-01
Brain injuries are common in professional American football players. Finding effective rehabilitation strategies can have widespread implications not only for retired players but also for patients with traumatic brain injury and substance abuse problems. An open label pragmatic clinical intervention was conducted in an outpatient neuropsychiatric clinic with 30 retired NFL players who demonstrated brain damage and cognitive impairment. The study included weight loss (if appropriate); fish oil (5.6 grams a day); a high-potency multiple vitamin; and a formulated brain enhancement supplement that included nutrients to enhance blood flow (ginkgo and vinpocetine), acetylcholine (acetyl-l-carnitine and huperzine A), and antioxidant activity (alpha-lipoic acid and n-acetyl-cysteine). The trial average was six months. Outcome measures were Microcog Assessment of Cognitive Functioning and brain SPECT imaging. In the retest situation, corrected for practice effect, there were statistically significant increases in scores of attention, memory, reasoning, information processing speed and accuracy on the Microcog. The brain SPECT scans, as a group, showed increased brain perfusion, especially in the prefrontal cortex, parietal lobes, occipital lobes, anterior cingulate gyrus and cerebellum. This study demonstrates that cognitive and cerebral blood flow improvements are possible in this group with multiple interventions.
Central nervous system vasculitis after starting methimazole in a woman with Graves' disease.
Tripodi, Pier Francesco; Ruggeri, Rosaria M; Campennì, Alfredo; Cucinotta, Mariapaola; Mirto, Angela; Lo Gullo, Renato; Baldari, Sergio; Trimarchi, Francesco; Cucinotta, Domenico; Russo, Giuseppina T
2008-09-01
Graves' disease (GD), a prototypical autoimmune disorder, is associated with other autoimmune diseases, including vasculitis. Antithyroid drugs, despite their postulated immunosuppressive effects, may cause several autoimmune disorders. Here we describe the first patient with central nervous system (CNS) vasculitis that developed shortly after the start of methimazole (MMI) treatment for GD. CNS vasculitis was suspected on the basis of the clinical features and neurologic examination, showing a reinforcement of deep reflexes, especially of the left knee and Achilles reflexes. The diagnosis was confirmed by a brain magnetic resonance imaging (MRI), which showed some hyperintensive spots in the subcortical substantia alba and in the parietal area bilaterally, and by a single-photon emission computed tomography (SPECT) imaging, which showed a nonhomogenous distribution of the blood flow in the brain, with a reduced perfusion on the left side of the frontotemporal and parietal regions, and on the right side of the frontotemporal area. MMI was stopped before total thyroidectomy, and symptoms resolved in the next 5 weeks. Six months after MMI was stopped, the brain MRI and SPECT had become normal. To our knowledge, this is the first report of CNS vasculitis related to MMI therapy.
[Changes in visual event-related potentials and SPECT in dissociative amnesia].
Kurita, Akira; Yonezawa, Jin; Suzuki, Masahiko; Kawaguchi, Sachiko; Ito, Yasuhiko; Inoue, Kiyoharu
2004-01-01
A 29-year-old man was admitted because of sudden onset of retrograde amnesia. The patient was unable to recall events having occurred during the past 2 years. The impairment was especially serious with regard to personal memories during the 5 months prior to admission, while he had first been working as a full-time employee under stressful circumstance. A diagnosis of dissociative amnesia was made on the basis of absence of any systemic or neurological diseases that could cause amnesia, the inadaptable character of the patient, the nature of amnesia, and presence of stressful condition possibly related to the amnesia. Visual event-related potential (ERP) studies recorded with human face discrimination tasks demonstrated a P3a wave in response to a face of his superior in the office, whom he said that he had never seen before. The similar P3a wave was observed in response to a face quite familiar to the patient, his mother, but not to a face "truly" unknown to him. These findings suggest that the visual memory of his superior's face exists in the brain, but the patient is unable to retrieve it by some psychogenic mechanism. 131I-IMP SPECT revealed decreased perfusion in the left medial temporal lobe and the basal forebrain, suggesting the association between dissociative amnesia and focal brain dysfunction. While dissociative amnesia has been understood as psychogenic nature, both ERPs and SPECT are quite important tools to understand the association between the psychological phenomenon and biological changes of the brain in this disorder.
Song, Jin-Ning; Chen, Hu; Zhang, Ming; Zhao, Yong-Lin; Ma, Xu-Dong
2013-03-01
Regional cerebral blood flow (rCBF) in the cerebral metabolism and energy metabolism measurements can be used to assess blood flow of brain cells and to detect cell activity. Changes of rCBF in the cerebral microcirculation and energy metabolism were determined in an experimental model of subarachnoid hemorrhage (SAH) model in 56 large-eared Japanese rabbits about 12 to 16-month old. Laser Doppler flowmetry was used to detect the blood supply to brain cells. Internal carotid artery and vein blood samples were used for duplicate blood gas analysis to assess the energy metabolism of brain cells. Cerebral blood flow (CBF) was detected by single photon emission computed tomography (SPECT) perfusion imaging using Tc-99m ethyl cysteinate dimer (Tc-99m ECD) as an imaging reagent. The percentage of injected dose per gram of brain tissue was calculated and analyzed. There were positive correlations between the percentage of radionuclide injected per gram of brain tissue and rCBF supply and cerebral metabolic rate for oxygen (P < 0.05). However, there was a negative correlation between radioactivity counts per unit volume detected on the SPECT rheoencephalogram and lactic acid concentration in the homolateral internal carotid artery and vein. In summary, this study found abnormal CBF in metabolism and utilization of brain cells after SAH, and also found that deterioration of energy metabolism of brain cells played a significant role in the development of SAH. There are matched reductions in CBF and metabolism. Thus, SPECT imaging could be used as a noninvasive method to detect CBF.
Silverman, Daniel H S
2004-04-01
The clinical identification and differential diagnosis of dementias is especially challenging in the early stages, but the need for early, accurate diagnosis has become more important, now that several medications for the treatment of mild to moderate Alzheimer's disease (AD) are available. Many neurodegenerative diseases produce significant brain-function alterations detectable with PET or SPECT even when structural images with CT or MRI reveal no specific abnormalities. (18)F-FDG PET images of AD demonstrate focally decreased cerebral metabolism involving especially the posterior cingulate and neocortical association cortices, while largely sparing the basal ganglia, thalamus, cerebellum, and cortex mediating primary sensory and motor functions. Assessment of the precise diagnostic accuracy of PET had until recently been hindered by the paucity of data on diagnoses made using PET and confirmed by definitive histopathologic examination. In the past few years, however, studies comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET-accuracies substantially exceeding those of comparable studies of the diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. Similar data are emerging concerning the prognostic value of (18)F-FDG PET. Improvements in the ability of PET to identify very early changes associated with AD and other neurodegenerative dementias are currently outpacing improvements in therapeutic options, but with advances in potential preventive and disease-modifying treatments appearing imminent, early detection and diagnosis will play an increasing role in the management of dementing illness.
NASA Astrophysics Data System (ADS)
Iyatomi, Hitoshi; Hashimoto, Jun; Yoshii, Fumuhito; Kazama, Toshiki; Kawada, Shuichi; Imai, Yutaka
2014-03-01
Discrimination between Alzheimer's disease and other dementia is clinically significant, however it is often difficult. In this study, we developed classification models among Alzheimer's disease (AD), other dementia (OD) and/or normal subjects (NC) using patient factors and indices obtained by brain perfusion SPECT. SPECT is commonly used to assess cerebral blood flow (CBF) and allows the evaluation of the severity of hypoperfusion by introducing statistical parametric mapping (SPM). We investigated a total of 150 cases (50 cases each for AD, OD, and NC) from Tokai University Hospital, Japan. In each case, we obtained a total of 127 candidate parameters from: (A) 2 patient factors (age and sex), (B) 12 CBF parameters and 113 SPM parameters including (C) 3 from specific volume analysis (SVA), and (D) 110 from voxel-based analysis stereotactic extraction estimation (vbSEE). We built linear classifiers with a statistical stepwise feature selection and evaluated the performance with the leave-one-out cross validation strategy. Our classifiers achieved very high classification performances with reasonable number of selected parameters. In the most significant discrimination in clinical, namely those of AD from OD, our classifier achieved both sensitivity (SE) and specificity (SP) of 96%. In a similar way, our classifiers achieved a SE of 90% and a SP of 98% in AD from NC, as well as a SE of 88% and a SP of 86% in AD from OD and NC cases. Introducing SPM indices such as SVA and vbSEE, classification performances improved around 7-15%. We confirmed that these SPM factors are quite important for diagnosing Alzheimer's disease.
QRS-fragmentation: Case report and review of the literature.
Illescas-González, Edgar; Araiza-Garaygordobil, Diego; Sierra Lara, Jorge Daniel; Ramirez-Salazar, Aristoteles; Sierra-Fernández, Carlos; Alexanderson-Rosas, Erick
Fragmentation of QRS complex (QRSf) is an easily evaluable, non-invasive electrocardiographic parameter that represents depolarisation anomalies and has been associated with several adverse outcomes, such as sudden death, fibrosis, arrhythmic burden, and a worse prognosis in different conditions, including coronary artery disease (CAD). The case is presented of a 69-year old male referred due to symptoms of chronic stable angina. His electrocardiogram showed sinus rhythm, absence of Q waves, but the presence of QRSf in the inferior leads and V4-V6. A Tc-99 myocardial perfusion SPECT scan revealed a fixed perfusion defect in the inferolateral region, corresponding to the finding of QRSf. QRSf is an easily valuable electrocardiographic marker with relative sensitivity, but poor specificity. Its routine clinical application could contribute to an increase in the suspicion of coronary artery disease. The presence of fragmented QRS represents distortion of signal conduction and depolarisation, which is related to myocardial scar or myocardial fibrosis. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.
NASA Astrophysics Data System (ADS)
Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.
2010-05-01
Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.
[MRI methods for pulmonary ventilation and perfusion imaging].
Sommer, G; Bauman, G
2016-02-01
Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.
Truong, Quynh A; Knaapen, Paul; Pontone, Gianluca; Andreini, Daniele; Leipsic, Jonathon; Carrascosa, Patricia; Lu, Bin; Branch, Kelley; Raman, Subha; Bloom, Stephen; Min, James K
2015-10-01
Dual-energy CT (DECT) has potential to improve myocardial perfusion for physiologic assessment of coronary artery disease (CAD). Diagnostic performance of rest-stress DECT perfusion (DECTP) is unknown. DECIDE-Gold is a prospective multicenter study to evaluate the accuracy of DECT to detect hemodynamic (HD) significant CAD, as compared to fractional flow reserve (FFR) as a reference standard. Eligible participants are subjects with symptoms of CAD referred for invasive coronary angiography (ICA). Participants will undergo DECTP, which will be performed by pharmacological stress, and participants will subsequently proceed to ICA and FFR. HD-significant CAD will be defined as FFR ≤ 0.80. In those undergoing myocardial stress imaging (MPI) by positron emission tomography (PET), single photon emission computed tomography (SPECT) or cardiac magnetic resonance (CMR) imaging, ischemia will be graded by % ischemic myocardium. Blinded core laboratory interpretation will be performed for CCTA, DECTP, MPI, ICA, and FFR. Primary endpoint is accuracy of DECTP to detect ≥1 HD-significant stenosis at the subject level when compared to FFR. Secondary and tertiary endpoints are accuracies of combinations of DECTP at the subject and vessel levels compared to FFR and MPI. DECIDE-Gold will determine the performance of DECTP for diagnosing ischemia.
Cerebral blood perfusion after treatment with zolpidem and flumazenil in the baboon.
Clauss, Ralf P; Dormehl, Irene C; Kilian, Elmaré; Louw, Werner K A; Nel, Wally H; Oliver, Douglas W
2002-01-01
Previous studies have shown that zolpidem (CAS 82626-48-0) can lead to improved perfusion in damaged brain tissue. Zolpidem belongs to the imidazopyridine chemical class and it illicits its pharmacological action via the gamma-aminobutyric acid (GABA) receptor system through stimulation of particularly the omega 1 receptors and to a lesser extent omega 2 receptors. Previously it was reported that no cerebral blood flow effects were observed in normal baboons after treatment with zolpidem, whereas an asymmetric regional increase in cerebral blood flow was observed in a neurologically abnormal baboon. In this study, the effect of a combination of the benzodiazepine receptor antagonist flumazenil (CAS 78755-81-4) and zolpidem on brain perfusion was examined by the 99mTc-hexamethyl-propylene amine oxime (99mTc-HMPAO) split dose brain single photon emission computed tomography (SPECT). Four normal baboons and the neurologically abnormal baboon from the previous zolpidem study were examined. In the current study the asymmetric changes observed after zolpidem--only treatment in the abnormal baboon was attenuated by flumazenil intervention. A decreased brain blood flow was observed after combination treatment of zolpidem and flumazenil in the normal baboons. The involvement of the omega receptors is suggested by these results. Up- or down-regulation of omega receptors may also contribute to the observed responses in the abnormal baboon and a brain injured patient.
Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C
2015-04-13
Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos
Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tablesmore » of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.« less
Ghaly, Michael; Links, Jonathan M; Frey, Eric C
2015-07-07
Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose.
Developing a Benchmarking Process in Perfusion: A Report of the Perfusion Downunder Collaboration
Baker, Robert A.; Newland, Richard F.; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W.; Merry, Alan F.
2012-01-01
Abstract: Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCO2 management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose ≥4 mmol/L and ≤10 mmol/L; arterial outlet temperature ≤37°C; and arterial blood gas pCO2 ≥ 35 and ≤45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC™) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37–96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16–98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21–91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice. PMID:22730861
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.A.; Mueller, S.T.; Walshe, T.M.
1987-02-01
We used single photon emission computed tomography (SPECT) to study 15 patients with Alzheimer's disease and nine controls. Iofetamine hydrochloride I 123 uptake data were recorded from the entire brain using a rotating gamma camera. Activity ratios were measured for the frontal, posterior parietal, posterior, medial, and lateral cortical temporal regions and striate cortex and were normalized by the activity in the cerebellum. Abnormalities in iofetamine hydrochloride I 123 activity were similar to the abnormalities in glucose metabolism observed with positron emission tomography. Cortical tracer activity was globally depressed in patients with Alzheimer's disease, with the greatest reduction in themore » posterior parietal cortex.« less
NASA Astrophysics Data System (ADS)
Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.
2016-03-01
The collimator is the primary factor that determines the spatial resolution and noise tradeoff in myocardial perfusion SPECT images. In this paper, the goal was to find the collimator that optimizes the image quality in terms of a perfusion defect detection task. Since the optimal collimator could depend on the level of approximation of the collimator-detector response (CDR) compensation modeled in reconstruction, we performed this optimization for the cases of modeling the full CDR (including geometric, septal penetration and septal scatter responses), the geometric CDR, or no model of the CDR. We evaluated the performance on the detection task using three model observers. Two observers operated on data in the projection domain: the Ideal Observer (IO) and IO with Model-Mismatch (IO-MM). The third observer was an anthropomorphic Channelized Hotelling Observer (CHO), which operated on reconstructed images. The projection-domain observers have the advantage that they are computationally less intensive. The IO has perfect knowledge of the image formation process, i.e. it has a perfect model of the CDR. The IO-MM takes into account the mismatch between the true (complete and accurate) model and an approximate model, e.g. one that might be used in reconstruction. We evaluated the utility of these projection domain observers in optimizing instrumentation parameters. We investigated a family of 8 parallel-hole collimators, spanning a wide range of resolution and sensitivity tradeoffs, using a population of simulated projection (for the IO and IO-MM) and reconstructed (for the CHO) images that included background variability. We simulated anterolateral and inferior perfusion defects with variable extents and severities. The area under the ROC curve was estimated from the IO, IO-MM, and CHO test statistics and served as the figure-of-merit. The optimal collimator for the IO had a resolution of 9-11 mm FWHM at 10 cm, which is poorer resolution than typical collimators used for MPS. When the IO-MM and CHO used a geometric or no model of the CDR, the optimal collimator shifted toward higher resolution than that obtained using the IO and the CHO with full CDR modeling. With the optimal collimator, the IO-MM and CHO using geometric modeling gave similar performance to full CDR modeling. Collimators with poorer resolution were optimal when CDR modeling was used. The agreement of rankings between the IO-MM and CHO confirmed that the IO-MM is useful for optimization tasks when model mismatch is present due to its substantially reduced computational burden compared to the CHO.
Dasari, Paul K. R.; Könik, Arda; Pretorius, P. Hendrik; Johnson, Karen L.; Segars, William P.; Shazeeb, Mohammed. S.; King, Michael A.
2017-01-01
Purpose Amplitude based respiratory gating is known to capture the extent of respiratory motion (RM) accurately but results in residual motion in the presence of respiratory hysteresis. In our previous study, we proposed and developed a novel approach to account for respiratory hysteresis by applying the Bouc-Wen (BW) model of hysteresis to external surrogate signals of anterior / posterior motion of the abdomen and chest with respiration. In this work using simulated and clinical SPECT myocardial perfusion imaging (MPI) studies, we investigate the effects of respiratory hysteresis and evaluate the benefit of correcting it using the proposed BW model in comparison with the abdomen signal typically employed clinically. Methods The MRI navigator data acquired in free breathing human volunteers were used in the specially modified 4-D NCAT phantoms to allow simulating three types of respiratory patterns: monotonic, mild-hysteresis, and strong-hysteresis with normal myocardial uptake, and perfusion defects in the anterior, lateral, inferior, and septal locations of the mid-ventricular wall. Clinical scans were performed using a 99mTc-Sestamibi MPI protocol while recording respiratory signals from thoracic and abdomen regions using a Visual Tracking System (VTS). The performance of the correction using the respiratory signals was assessed through polar map analysis in phantom and ten clinical studies selected on the basis of having substantial RM. Results In phantom studies, simulations illustrating normal myocardial uptake showed significant differences (p<0.001) in the uniformity of the polar maps between the RM uncorrected and corrected. No significant differences were seen in the polar map uniformity across the RM corrections. Studies simulating perfusion defects showed significantly decreased errors (p<0.001) in defect severity and extent for the RM corrected compared to the uncorrected. Only for the strong-hysteretic pattern was there a significant difference (p<0.001) among the RM corrections. The errors in defect severity and extent for the RM correction using abdomen signal were significantly higher compared to that of the BW (severity=-4.0%, p<0.001; extent=-65.4%, p<0.01) and chest (severity=-4.1%, p<0.001; extent=-52.5%, p<0.01) signals. In clinical studies, the quantitative analysis of the polar maps demonstrated qualitative and quantitative but not statistically significant differences (p=0.73) between the correction methods that used the BW signal and the abdominal signal. Conclusions This study shows that hysteresis in respiration affects the extent of residual motion left in the RM binned data, which can impact wall uniformity and the visualization of defects. Thus there appears to be the potential for improved accuracy in reconstruction in the presence of hysteretic RM with the BW model method providing a possible step in the direction of improvement. PMID:28032913
Noise suppressed partial volume correction for cardiac SPECT/CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chung; Liu, Chi, E-mail: chi.liu@yale.edu
Purpose: Partial volume correction (PVC) methods typically improve quantification at the expense of increased image noise and reduced reproducibility. In this study, the authors developed a novel voxel-based PVC method that incorporates anatomical knowledge to improve quantification while suppressing noise for cardiac SPECT/CT imaging. Methods: In the proposed method, the SPECT images were first reconstructed using anatomical-based maximum a posteriori (AMAP) with Bowsher’s prior to penalize noise while preserving boundaries. A sequential voxel-by-voxel PVC approach (Yang’s method) was then applied on the AMAP reconstruction using a template response. This template response was obtained by forward projecting a template derived frommore » a contrast-enhanced CT image, and then reconstructed using AMAP to model the partial volume effects (PVEs) introduced by both the system resolution and the smoothing applied during reconstruction. To evaluate the proposed noise suppressed PVC (NS-PVC), the authors first simulated two types of cardiac SPECT studies: a {sup 99m}Tc-tetrofosmin myocardial perfusion scan and a {sup 99m}Tc-labeled red blood cell (RBC) scan on a dedicated cardiac multiple pinhole SPECT/CT at both high and low count levels. The authors then applied the proposed method on a canine equilibrium blood pool study following injection with {sup 99m}Tc-RBCs at different count levels by rebinning the list-mode data into shorter acquisitions. The proposed method was compared to MLEM reconstruction without PVC, two conventional PVC methods, including Yang’s method and multitarget correction (MTC) applied on the MLEM reconstruction, and AMAP reconstruction without PVC. Results: The results showed that the Yang’s method improved quantification, however, yielded increased noise and reduced reproducibility in the regions with higher activity. MTC corrected for PVE on high count data with amplified noise, although yielded the worst performance among all the methods tested on low-count data. AMAP effectively suppressed noise and reduced the spill-in effect in the low activity regions. However it was unable to reduce the spill-out effect in high activity regions. NS-PVC yielded superior performance in terms of both quantitative assessment and visual image quality while improving reproducibility. Conclusions: The results suggest that NS-PVC may be a promising PVC algorithm for application in low-dose protocols, and in gated and dynamic cardiac studies with low counts.« less
2012-01-01
Background Coronary artery calcifications (CAC) are markers of coronary atherosclerosis, but do not correlate well with stenosis severity. This study intended to evaluate clinical situations where a combined approach of coronary calcium scoring (CS) and nuclear stress test (SPECT-MPI) is useful for the detection of relevant CAD. Methods Patients with clinical indication for invasive coronary angiography (ICA) were included into our study during 08/2005-09/2008. At first all patients underwent CS procedure as part of the study protocol performed by either using a multidetector computed tomography (CT) scanner or a dual-source CT imager. CAC were automatically defined by dedicated software and the Agatston score was semi-automatically calculated. A stress-rest SPECT-MPI study was performed afterwards and scintigraphic images were evaluated quantitatively. Then all patients underwent ICA. Thereby significant CAD was defined as luminal stenosis ≥75% in quantitative coronary analysis (QCA) in ≥1 epicardial vessel. To compare data lacking Gaussian distribution an unpaired Wilcoxon-Test (Mann–Whitney) was used. Otherwise a Students t-test for unpaired samples was applied. Calculations were considered to be significant at a p-value of <0.05. Results We consecutively included 351 symptomatic patients (mean age: 61.2±12.3 years; range: 18–94 years; male: n=240) with a mean Agatston score of 258.5±512.2 (range: 0–4214). ICA verified exclusion of significant CAD in 66/67 (98.5%) patients without CAC. CAC was detected in remaining 284 patients. In 132/284 patients (46.5%) with CS>0 significant CAD was confirmed by ICA, and excluded in 152/284 (53.5%) patients. Sensitivity for CAD detection by CS alone was calculated as 99.2%, specificity was 30.3%, and negative predictive value was 98.5%. An additional SPECT in patients with CS>0 increased specificity to 80.9% while reducing sensitivity to 87.9%. Diagnostic accuracy was 84.2%. Conclusions In patients without CS=0 significant CAD can be excluded with a high negative predictive value by CS alone. An additional SPECT-MPI in those patients with CS>0 leads to a high diagnostic accuracy for the detection of CAD while reducing the number of patients needing invasive diagnostic procedure. PMID:23206557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Prince, Jip F.; Keizer, Bart de
PurposeTo optimize a C-arm computed tomography (CT) protocol for radioembolization (RE), specifically for extrahepatic shunting and parenchymal enhancement.Materials and MethodsA prospective development study was performed per IDEAL recommendations. A literature-based protocol was applied in patients with unresectable and chemorefractory liver malignancies undergoing an angiography before radioembolization. Contrast and scan settings were adjusted stepwise and repeatedly reviewed in a consensus meeting. Afterwards, two independent raters analyzed all scans. A third rater evaluated the SPECT/CT scans as a reference standard for extrahepatic shunting and lack of target segment perfusion.ResultsFifty scans were obtained in 29 procedures. The first protocol, using a 6 s delaymore » and 10 s scan, showed insufficient parenchymal enhancement. In the second protocol, the delay was determined by timing parenchymal enhancement on DSA power injection (median 8 s, range 4–10 s): enhancement improved, but breathing artifacts increased (from 0 to 27 %). Since the third protocol with a 5 s scan decremented subjective image quality, the second protocol was deemed optimal. Median CNR (range) was 1.7 (0.6–3.2), 2.2 (−1.4–4.0), and 2.1 (−0.3–3.0) for protocol 1, 2, and 3 (p = 0.80). Delineation of perfused segments was possible in 57, 73, and 44 % of scans (p = 0.13). In all C-arm CTs combined, the negative predictive value was 95 % for extrahepatic shunting and 83 % for lack of target segment perfusion.ConclusionAn optimized C-arm CT protocol was developed that can be used to detect extrahepatic shunts and non-perfusion of target segments during RE.« less
NASA Astrophysics Data System (ADS)
Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.
2013-05-01
Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.
Perfusion network shift during seizures in medial temporal lobe epilepsy.
Sequeira, Karen M; Tabesh, Ali; Sainju, Rup K; DeSantis, Stacia M; Naselaris, Thomas; Joseph, Jane E; Ahlman, Mark A; Spicer, Kenneth M; Glazier, Steve S; Edwards, Jonathan C; Bonilha, Leonardo
2013-01-01
Medial temporal lobe epilepsy (MTLE) is associated with limbic atrophy involving the hippocampus, peri-hippocampal and extra-temporal structures. While MTLE is related to static structural limbic compromise, it is unknown whether the limbic system undergoes dynamic regional perfusion network alterations during seizures. In this study, we aimed to investigate state specific (i.e. ictal versus interictal) perfusional limbic networks in patients with MTLE. We studied clinical information and single photon emission computed tomography (SPECT) images obtained with intravenous infusion of the radioactive tracer Technetium- Tc 99 m Hexamethylpropyleneamine Oxime (Tc-99 m HMPAO) during ictal and interictal state confirmed by video-electroencephalography (VEEG) in 20 patients with unilateral MTLE (12 left and 8 right MTLE). Pair-wise voxel-based analyses were used to define global changes in tracer between states. Regional tracer uptake was calculated and state specific adjacency matrices were constructed based on regional correlation of uptake across subjects. Graph theoretical measures were applied to investigate global and regional state specific network reconfigurations. A significant increase in tracer uptake was observed during the ictal state in the medial temporal region, cerebellum, thalamus, insula and putamen. From network analyses, we observed a relative decreased correlation between the epileptogenic temporal region and remaining cortex during the interictal state, followed by a surge of cross-correlated perfusion in epileptogenic temporal-limbic structures during a seizure, corresponding to local network integration. These results suggest that MTLE is associated with a state specific perfusion and possibly functional organization consisting of a surge of limbic cross-correlated tracer uptake during a seizure, with a relative disconnection of the epileptogenic temporal lobe in the interictal period. This pattern of state specific shift in metabolic networks in MTLE may improve the understanding of epileptogenesis and neuropsychological impairments associated with MTLE.
Positron-emitting myocardial blood flow tracers and clinical potential.
Schindler, Thomas H
2015-01-01
Positron-emitting myocardial flow radiotracers such as (15)O-water, (13)N-ammonia and (82)Rubidium in conjunction with positron-emission-tomography (PET) are increasingly applied in clinical routine for coronary artery disease (CAD) detection, yielding high diagnostic accuracy, while providing valuable information on cardiovascular (CV) outcome. Owing to a cyclotron dependency of (15)O-water and (13)N-ammonia, their clinical use for PET myocardial perfusion imaging is limited to a few centers. This limitation could be overcome by the increasing use of (82)Rubidium as it can be eluted from a commercially available (82)Strontium generator and, thus, is independent of a nearby cyclotron. Another novel F-18-labeled myocardial flow radiotracer is flurpiridaz which has attracted increasing interest due to its excellent radiotracer characteristics for perfusion and flow imaging with PET. In particular, the relatively long half-life of 109 minutes of flurpiridaz may afford a general application of this radiotracer for PET perfusion imaging comparable to technetium-99m-labeled single-photon emission computed tomography (SPECT). The ability of PET in conjunction with several radiotracers to assess myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress has contributed to unravel pathophysiological mechanisms underlying coronary artery disease (CAD), to improve the detection and characterization of CAD burden in multivessel disease, and to provide incremental prognostic information in individuals with subclinical and clinically-manifest CAD. The concurrent evaluation of myocardial perfusion and MBF may lead to a new era of a personalized, image-guided therapy approach that may offer potential to further improve clinical outcome in CV disease patients but needing validation in large-scale clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.
Archer, Hilary A; Smailagic, Nadja; John, Christeena; Holmes, Robin B; Takwoingi, Yemisi; Coulthard, Elizabeth J; Cullum, Sarah
2015-06-23
In the UK, dementia affects 5% of the population aged over 65 years and 25% of those over 85 years. Frontotemporal dementia (FTD) represents one subtype and is thought to account for up to 16% of all degenerative dementias. Although the core of the diagnostic process in dementia rests firmly on clinical and cognitive assessments, a wide range of investigations are available to aid diagnosis.Regional cerebral blood flow (rCBF) single-photon emission computed tomography (SPECT) is an established clinical tool that uses an intravenously injected radiolabelled tracer to map blood flow in the brain. In FTD the characteristic pattern seen is hypoperfusion of the frontal and anterior temporal lobes. This pattern of blood flow is different to patterns seen in other subtypes of dementia and so can be used to differentiate FTD.It has been proposed that a diagnosis of FTD, (particularly early stage), should be made not only on the basis of clinical criteria but using a combination of other diagnostic findings, including rCBF SPECT. However, more extensive testing comes at a financial cost, and with a potential risk to patient safety and comfort. To determine the diagnostic accuracy of rCBF SPECT for diagnosing FTD in populations with suspected dementia in secondary/tertiary healthcare settings and in the differential diagnosis of FTD from other dementia subtypes. Our search strategy used two concepts: (a) the index test and (b) the condition of interest. We searched citation databases, including MEDLINE (Ovid SP), EMBASE (Ovid SP), BIOSIS (Ovid SP), Web of Science Core Collection (ISI Web of Science), PsycINFO (Ovid SP), CINAHL (EBSCOhost) and LILACS (Bireme), using structured search strategies appropriate for each database. In addition we searched specialised sources of diagnostic test accuracy studies and reviews including: MEDION (Universities of Maastricht and Leuven), DARE (Database of Abstracts of Reviews of Effects) and HTA (Health Technology Assessment) database.We requested a search of the Cochrane Register of Diagnostic Test Accuracy Studies and used the related articles feature in PubMed to search for additional studies. We tracked key studies in citation databases such as Science Citation Index and Scopus to ascertain any further relevant studies. We identified 'grey' literature, mainly in the form of conference abstracts, through the Web of Science Core Collection, including Conference Proceedings Citation Index and Embase. The most recent search for this review was run on the 1 June 2013.Following title and abstract screening of the search results, full-text papers were obtained for each potentially eligible study. These papers were then independently evaluated for inclusion or exclusion. We included both case-control and cohort (delayed verification of diagnosis) studies. Where studies used a case-control design we included all participants who had a clinical diagnosis of FTD or other dementia subtype using standard clinical diagnostic criteria. For cohort studies, we included studies where all participants with suspected dementia were administered rCBF SPECT at baseline. We excluded studies of participants from selected populations (e.g. post-stroke) and studies of participants with a secondary cause of cognitive impairment. Two review authors extracted information on study characteristics and data for the assessment of methodological quality and the investigation of heterogeneity. We assessed the methodological quality of each study using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool. We produced a narrative summary describing numbers of studies that were found to have high/low/unclear risk of bias as well as concerns regarding applicability. To produce 2 x 2 tables, we dichotomised the rCBF SPECT results (scan positive or negative for FTD) and cross-tabulated them against the results for the reference standard. These tables were then used to calculate the sensitivity and specificity of the index test. Meta-analysis was not performed due to the considerable between-study variation in clinical and methodological characteristics. Eleven studies (1117 participants) met our inclusion criteria. These consisted of six case-control studies, two retrospective cohort studies and three prospective cohort studies. Three studies used single-headed camera SPECT while the remaining eight used multiple-headed camera SPECT. Study design and methods varied widely. Overall, participant selection was not well described and the studies were judged as having either high or unclear risk of bias. Often the threshold used to define a positive SPECT result was not predefined and the results were reported with knowledge of the reference standard. Concerns regarding applicability of the studies to the review question were generally low across all three domains (participant selection, index test and reference standard).Sensitivities and specificities for differentiating FTD from non-FTD ranged from 0.73 to 1.00 and from 0.80 to 1.00, respectively, for the three multiple-headed camera studies. Sensitivities were lower for the two single-headed camera studies; one reported a sensitivity and specificity of 0.40 (95% confidence interval (CI) 0.05 to 0.85) and 0.95 (95% CI 0.90 to 0.98), respectively, and the other a sensitivity and specificity of 0.36 (95% CI 0.24 to 0.50) and 0.92 (95% CI 0.88 to 0.95), respectively.Eight of the 11 studies which used SPECT to differentiate FTD from Alzheimer's disease used multiple-headed camera SPECT. Of these studies, five used a case-control design and reported sensitivities of between 0.52 and 1.00, and specificities of between 0.41 and 0.86. The remaining three studies used a cohort design and reported sensitivities of between 0.73 and 1.00, and specificities of between 0.94 and 1.00. The three studies that used single-headed camera SPECT reported sensitivities of between 0.40 and 0.80, and specificities of between 0.61 and 0.97. At present, we would not recommend the routine use of rCBF SPECT in clinical practice because there is insufficient evidence from the available literature to support this.Further research into the use of rCBF SPECT for differentiating FTD from other dementias is required. In particular, protocols should be standardised, study populations should be well described, the threshold for 'abnormal' scans predefined and clear details given on how scans are analysed. More prospective cohort studies that verify the presence or absence of FTD during a period of follow up should be undertaken.
Influence of reconstruction algorithms on image quality in SPECT myocardial perfusion imaging.
Davidsson, Anette; Olsson, Eva; Engvall, Jan; Gustafsson, Agnetha
2017-11-01
We investigated if image- and diagnostic quality in SPECT MPI could be maintained despite a reduced acquisition time adding Depth Dependent Resolution Recovery (DDRR) for image reconstruction. Images were compared with filtered back projection (FBP) and iterative reconstruction using Ordered Subsets Expectation Maximization with (IRAC) and without (IRNC) attenuation correction (AC). Stress- and rest imaging for 15 min was performed on 21 subjects with a dual head gamma camera (Infinia Hawkeye; GE Healthcare), ECG-gating with 8 frames/cardiac cycle and a low-dose CT-scan. A 9 min acquisition was generated using five instead of eight gated frames and was reconstructed with DDRR, with (IRACRR) and without AC (IRNCRR) as well as with FBP. Three experienced nuclear medicine specialists visually assessed anonymized images according to eight criteria on a four point scale, three related to image quality and five to diagnostic confidence. Statistical analysis was performed using Visual Grading Regression (VGR). Observer confidence in statements on image quality was highest for the images that were reconstructed using DDRR (P<0·01 compared to FBP). Iterative reconstruction without DDRR was not superior to FBP. Interobserver variability was significant for statements on image quality (P<0·05) but lower in the diagnostic statements on ischemia and scar. The confidence in assessing ischemia and scar was not different between the reconstruction techniques (P = n.s.). SPECT MPI collected in 9 min, reconstructed with DDRR and AC, produced better image quality than the standard procedure. The observers expressed the highest diagnostic confidence in the DDRR reconstruction. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuddy-Walsh, SG; University of Ottawa Heart Institute; Wells, RG
2014-08-15
Myocardial perfusion imaging (MPI) with Single Photon Emission Computed Tomography (SPECT) is invaluable in the diagnosis and management of heart disease. It provides essential information on myocardial blood flow and ischemia. Multi-pinhole dedicated cardiac-SPECT cameras offer improved count sensitivity, and spatial and energy resolutions over parallel-hole camera designs however variable sensitivity across the field-of-view (FOV) can lead to position-dependent noise variations. Since MPI evaluates differences in the signal-to-noise ratio, noise variations in the camera could significantly impact the sensitivity of the test for ischemia. We evaluated the noise characteristics of GE Healthcare's Discovery NM530c camera with a goal of optimizingmore » the accuracy of our patient assessment and thereby improving outcomes. Theoretical sensitivity maps of the camera FOV, including attenuation effects, were estimated analytically based on the distance and angle between the spatial position of a given voxel and each pinhole. The standard deviation in counts, σ was inferred for each voxel position from the square root of the sensitivity mapped at that position. Noise was measured experimentally from repeated (N=16) acquisitions of a uniform spherical Tc-99m-water phantom. The mean (μ) and standard deviation (σ) were calculated for each voxel position in the reconstructed FOV. Noise increased ∼2.1× across a 12 cm sphere. A correlation of 0.53 is seen when experimental noise is compared with theory suggesting that ∼53% of the noise is attributed to the combined effects of attenuation and the multi-pinhole geometry. Further investigations are warranted to determine the clinical impact of the position-dependent noise variation.« less
Newberg, Andrew B; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S; Wintering, Nancy
2014-01-01
This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to measure cerebral blood flow (CBF) and (123)I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.
Giga, Vojislav; Dobric, Milan; Beleslin, Branko; Sobic-Saranovic, Dragana; Tesic, Milorad; Djordjevic-Dikic, Ana; Stepanovic, Jelena; Nedeljkovic, Ivana; Artiko, Vera; Obradovic, Vladimir; Seferovic, Petar M; Ostojic, Miodrag
2013-09-20
Patients in chronic phase of myocardial infarction (MI) have decreased coronary flow reserve (CFR) in infarct related artery (IRA) that is proportional to the extent of microvascular/myocardial damage. We proposed a novel model for the assessment of microvascular damage and infarct size using Doppler echocardiography evaluation of CFRs of the IRA (LAD) and reference artery (RCA). Our study included 34 consecutive patients (28 men, mean age 50 ± 11 years) with first anterior STEMI and single vessel disease successfully treated with primary PCI. All patients underwent SPECT MPI for the assessment of infarct size (expressed as a percentage of myocardium with fixed perfusion abnormalities) and CFR evaluation of LAD and RCA. CFR derived percentage of microvascular damage (CFR PMD) was calculated as: CFR PMD=(CFR RCA-CFR LAD)/(CFR RCA-1)×100 (%). CFR PMD correlated significantly with all parameters evaluating the severity of myocardial damage including: peak CK activity (r=0.632, p<0.001), WMSI (r=0.857, p<0.001), ejection fraction (r=-0.820, p<0.001), left ventricular end diastolic (r=0.757, p<0.001) and end systolic volume (r=0.794, p<0.001). Most importantly, CFR PMD (22 ± 17%) correlated significantly with infarct size by SPECT MPI (21 ± 17%) (r=0.874, p<0.001). CFR PMD derived from the proposed model was significantly related to echocardiographic and enzymatic parameters of infarct size, as well as to myocardial damage assessed by SPECT MPI in patients with successfully reperfused first anterior STEMI. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Multimodality medical image database for temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost
2003-05-01
This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.
NASA Astrophysics Data System (ADS)
Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost
2003-01-01
This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.
Gnesin, Silvano; Canetti, Laurent; Adib, Salim; Cherbuin, Nicolas; Silva Monteiro, Marina; Bize, Pierre; Denys, Alban; Prior, John O; Baechler, Sebastien; Boubaker, Ariane
2016-11-01
90 Y-microsphere selective internal radiation therapy (SIRT) is a valuable treatment in unresectable hepatocellular carcinoma (HCC). Partition-model predictive dosimetry relies on differential tumor-to-nontumor perfusion evaluated on pretreatment 99m Tc-macroaggregated albumin (MAA) SPECT/CT. The aim of this study was to evaluate agreement between the predictive dosimetry of 99m Tc-MAA SPECT/CT and posttreatment dosimetry based on 90 Y time-of-flight (TOF) PET/CT. We compared the 99m Tc-MAA SPECT/CT results for 27 treatment sessions (25 HCC patients, 41 tumors) with 90 Y SIRT (7 glass spheres, 20 resin spheres) and the posttreatment 90 Y TOF PET/CT results. Three-dimensional voxelized dose maps were computed from the 99m Tc-MAA SPECT/CT and 90 Y TOF PET/CT data. Mean absorbed dose ([Formula: see text]) was evaluated to compute the predicted-to-actual dose ratio ([Formula: see text]) in tumor volumes (TVs) and nontumor volumes (NTVs) for glass and resin spheres. The Lin concordance ([Formula: see text]) was used to measure accuracy ([Formula: see text]) and precision (ρ). Administered activity ranged from 0.8 to 1.9 GBq for glass spheres and from 0.6 to 3.4 GBq for resin spheres, and the respective TVs ranged from 2 to 125 mL and from 6 to 1,828 mL. The mean dose [Formula: see text] was 240 Gy for glass and 122 Gy for resin in TVs and 72 Gy for glass and 47 Gy for resin in NTVs. [Formula: see text] was 1.46 ± 0.58 (0.65-2.53) for glass and 1.16 ± 0.41 (0.54-2.54) for resin, and the respective values for [Formula: see text] were 0.88 ± 0.15 (0.56-1.00) and 0.86 ± 0.2 (0.58-1.35). DR variability was substantially lower in NTVs than in TVs. The Lin concordance between [Formula: see text] and [Formula: see text] (resin) was significantly better for tumors larger than 150 mL than for tumors 150 mL or smaller ([Formula: see text] = 0.93 and [Formula: see text] = 0.95 vs. [Formula: see text] = 0.57 and [Formula: see text] = 0.93; P < 0.05). In 90 Y radioembolization of HCC, predictive dosimetry based on 99m Tc-MAA SPECT/CT provided good estimates of absorbed doses calculated from posttreatment 90 Y TOF PET/CT for tumor and nontumor tissues. The low variability of [Formula: see text] demonstrates that pretreatment dosimetry is particularly suitable for minimizing radiation-induced hepatotoxicity. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Cerebral blood flow variations in CNS lupus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushner, M.J.; Tobin, M.; Fazekas, F.
1990-01-01
We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebralmore » ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.« less
Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism
Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques
2015-01-01
Background Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Methods Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. Results During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Conclusions Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness. PMID:26241047
NASA Astrophysics Data System (ADS)
Ghaly, Michael; Links, Jonathan M.; Frey, Eric
2015-03-01
In this work, we used the ideal observer (IO) and IO with model mismatch (IO-MM) applied in the projection domain and an anthropomorphic Channelized Hotelling Observer (CHO) applied to reconstructed images to optimize the acquisition energy window width and evaluate various scatter compensation methods in the context of a myocardial perfusion SPECT defect detection task. The IO has perfect knowledge of the image formation process and thus reflects performance with perfect compensation for image-degrading factors. Thus, using the IO to optimize imaging systems could lead to suboptimal parameters compared to those optimized for humans interpreting SPECT images reconstructed with imperfect or no compensation. The IO-MM allows incorporating imperfect system models into the IO optimization process. We found that with near-perfect scatter compensation, the optimal energy window for the IO and CHO were similar; in its absence the IO-MM gave a better prediction of the optimal energy window for the CHO using different scatter compensation methods. These data suggest that the IO-MM may be useful for projection-domain optimization when model mismatch is significant, and that the IO is useful when followed by reconstruction with good models of the image formation process.
Crossed Wernicke's aphasia after aneurysmal subarachnoid hemorrhage: a case report.
Seçkin, Hakan; Yiğitkanli, Kazim; Kapucu, Ozlem; Bavbek, Murad
2009-01-01
Crossed aphasia (CA) refers to aphasia occurring after right brain damage in right handers. In the literature, numerous CA cases following cerebral ischemia have been reported, but few met the criteria for a prompt diagnosis. The authors present the case of a 52-year-old woman with SAH caused by a right middle cerebral artery (MCA) saccular aneurysm who developed non-fluent aphasia characterized by reduced verbal output, word-finding disturbances and phonemic paraphasias in both oral and written language. 99mTc-HMPAO SPECT was also consistent with right parieto-temporal and frontoparietal ischemia with crossed cerebellar diaschisis on the right cerebellum. A diagnosis of CA was made. One year follow-up showed improvement in communication skills but persistent right fronto-temporo-parietal ischemia. Cerebral vasospasm after aneurysmal SAH symptomatology may vary from motor and sensory disturbances to cognitive disabilities. Aphasia developing after cerebral ischemia of the right hemisphere in a right-hand dominant patient following vasospasm may be a misleading symptom for the localization of the insult. Keeping a high index of suspicion may help in making the correct diagnosis. The changes in the perfusion patterns of cerebellum as assessed by SPECT study during the acute and recovery phases suggests the involvement of cerebellum in language functions.
Mapping the literature of perfusion.
Hall, E F
1999-01-01
Perfusionists select and operate the equipment necessary for monitoring, supporting, or temporarily replacing the patient's circulatory or respiratory function. There are over 3,000 perfusionists working in U.S. hospitals, medical and perfusionist groups, and as independent contractors. The purpose of this study was to identify the core literature of perfusion and to determine which major databases provide the most thorough access to this literature. This paper is part of the Medical Library Association Nursing and Allied Health Resource Section's project to map the literature of the allied health professions. It uses a bibliometric methodology to identify core journals. A group of forty-three journals was determined to make up the core journal literature of perfusion. MEDLINE provided the best overall indexing coverage for these journals, but librarians and perfusionists will wish to supplement its use with the Cumulative Index to Nursing and Allied Health Literature in order to access the journals written primarily for perfusionists. The study results can guide purchasing and database searching decisions of collection development and reference librarians, encourage the database producer to increase coverage of titles that are unindexed or underindexed, and advise perfusionists of the best access to their core literature. PMID:10427432
Cassar, Andrew; Prasad, Megha; Rodriguez-Porcel, Martin; Reeder, Guy S; Karia, Darshak; DeMaria, Anthony N; Lerman, Amir
2014-03-01
To assess the safety and efficacy of extracorporeal shockwave myocardial revascularization (ESMR) therapy in treating patients with refractory angina pectoris. A single-arm multicenter prospective trial to assess safety and efficacy of the ESMR therapy in patients with refractory angina (class III/IV angina) was performed. Screening exercise treadmill tests and pharmacological single-photon emission computed tomography (SPECT) were performed for all patients to assess exercise capacity and ischemic burden. Patients were treated with 9 sessions of ESMR to ischemic areas over 9 weeks. Efficacy end points were exercise capacity by using treadmill test as well as ischemic burden on pharmacological SPECT at 4 months after the last ESMR treatment. Safety measures included electrocardiography, echocardiography, troponin, creatine kinase, and brain natriuretic peptide testing, and pain questionnaires. Fifteen patients with medically refractory angina and no revascularization options were enrolled. There was a statistically significant mean increase of 122.3±156.9 seconds (38% increase compared with baseline; P=.01) in exercise treadmill time from baseline (319.8±157.2 seconds) to last follow-up after the ESMR treatment (422.1±183.3 seconds). There was no improvement in the summed stress perfusion scores after pharmacologically induced stress SPECT at 4 months after the last ESMR treatment in comparison to that at screening; however, SPECT summed stress score revealed that untreated areas had greater progression in ischemic burden vs treated areas (3.69±6.2 vs 0.31±4.5; P=.03). There was no significant change in the mean summed echo score from baseline to posttreatment (0.4±5.1; P=.70). The ESMR therapy was performed safely without any adverse events in electrocardiography, echocardiography, troponins, creatine kinase, or brain natriuretic peptide. Pain during the ESMR treatment was minimal (a score of 0.5±1.2 to 1.1±1.2 out of 10). In this multicenter feasibility study, ESMR seems to be a safe and efficacious treatment for patients with refractory angina pectoris. However, larger sham-controlled trials will be required to confirm these findings. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Pharmacologic intervention as an alternative to exercise stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gould, K.L.
1987-04-01
Although thallium exercise imaging has served an important role in clinical cardiology, it is significantly limited by suboptimal sensitivity and specificity, particularly in asymptomatic man. The increasing recognition of silent myocardial ischemia, the significant prevalence of coronary artery disease in asymptomatic middle age men, and the frequent occurrence of myocardial infarction without preceding symptoms in 60% of cases emphasizes the need for a more definitive, noninvasive diagnostic test for the presence of coronary artery disease suitable for screening in asymptomatic or symptomatic patients. Intravenous dipyridamole combined with handgrip stress provides a potent stimulus for purposes of diagnostic perfusion imaging. Althoughmore » planar and single photon emission computed tomography (SPECT) imaging also have played an important role, these techniques are seriously hindered by their inability to quantitate radiotracer uptake or image modest differences in maximum relative flow caused by coronary artery stenosis. Accordingly, the combination of dipyridamole-handgrip stress with positron imaging of myocardial perfusion has become a powerful diagnostic tool suitable for routine clinical use. With the availability of generator-produced rubidium-82, dedicated clinically oriented positron cameras, the routine application of positron imaging to clinical cardiology has become feasible. 75 references.« less
Whitehead, Matthew T; Lee, Bonmyong; Gropman, Andrea
2016-08-01
Leigh disease is a metabolic disorder of the mitochondrial respiratory chain culminating in symmetrical necrotizing lesions in the deep gray nuclei or brainstem. Apart from classic gliotic/necrotic lesions, small-vessel proliferation is also characteristic on histopathology. We have observed lesional hyperperfusion on arterial spin-labeling (ASL) sequence in children with Leigh disease. In this cross-sectional analysis, we evaluated lesional ASL perfusion characteristics in children with Leigh syndrome. We searched the imaging database from an academic children's hospital for "arterial spin labeling, perfusion, necrosis, lactate, and Leigh" to build a cohort of children for retrospective analysis. We reviewed each child's medical record to confirm a diagnosis of Leigh disease, excluding exams with artifact, technical limitations, and without ASL images. We evaluated the degree and extent of cerebral blood flow and relationship to brain lesions. Images were compared to normal exams from an aged-matche cohort. The database search yielded 45 exams; 30 were excluded. We evaluated 15 exams from 8 children with Leigh disease and 15 age-matched normal exams. In general, Leigh brain perfusion ranged from hyperintense (n=10) to hypointense (n=5). Necrotic lesions appeared hypointense/hypoperfused. Active lesions with associated restricted diffusion demonstrated hyperperfusion. ASL perfusion patterns differed significantly from those on age-matched normal studies (P=<.0001). Disease activity positively correlated with cerebral deep gray nuclei hyperperfusion (P=0.0037) and lesion grade (P=0.0256). Children with Leigh disease have abnormal perfusion of brain lesions. Hyperperfusion can be found in active brain lesions, possibly associated with small-vessel proliferation characteristic of the disease.
Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.
2016-01-01
Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contributes to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), that enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the following iterations. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. PMID:26419769
Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W; Moritz, Robert L
2015-11-01
Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.
2015-11-01
Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website.
Ghaly, Michael; Links, Jonathan M; Frey, Eric C
2015-01-01
Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6–5 and acquisition energy window widths of 16–22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16–22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose. PMID:26083239
Mutoh, Tatsushi; Totsune, Tomoko; Takenaka, Shunsuke; Tatewaki, Yasuko; Nakagawa, Manabu; Suarez, Jose I; Taki, Yasuyuki; Ishikawa, Tatsuya
2018-02-01
The aim of this study was to evaluate the impact of cerebral blood flow (CBF) recovery obtained from brain single-photon emission computed tomography (SPECT) images on postoperative outcome after aneurysmal subarachnoid haemorrhage (SAH). Twenty-nine patients who had undergone surgical clipping for ruptured anterior communicating artery aneurysms were analyzed prospectively. Routine measurements of CBF were performed using technetium-99 m hexamethyl propyleneamine oxine SPECT on days 4 and 14 after SAH. Regional voxel data analyzed by three dimensional stereotactic surface projection (3D-SSP) were compared between patients and age-matched normal database (NDB). In 3D-SSP analysis of all patients, cortical hypoperfusion around the surgical site in bilateral frontal lobes was evident on day 4 (P < .05 vs NDB), which was improved significantly on day 14. However, the recovery was less complete in patients with poor clinical grades (P < .05) and presenting symptoms attributable to delayed cerebral ischaemia (DCI) (P < .05) than those without. Multivariate analysis showed that patients with mild to moderate CBF recovery (relative Z-score differences of <4) (P = .014; odds ratio, 2.5; 95% confidence interval, 1.93-3.31) was independently associated with poor functional outcome at 3 months. We conclude that reduced CBF recovery detected by serial 3D-SSP SPECT image analyses can be a potential predictor of poor prognosis in postoperative patients after SAH. © 2017 John Wiley & Sons Australia, Ltd.
Hashimura, Hiromi; Kiso, Keisuke; Yamada, Naoaki; Kono, Atsushi; Morita, Yoshiaki; Fukushima, Kazuto; Higashi, Masahiro; Noguchi, Teruo; Ishibashi-Ueda, Hatsue; Naito, Hiroaki; Sugimura, Kazuro
2013-06-17
Myocardial fibrosis is considered to be an important factor in myocardial dysfunction and sudden cardiac death in hypertrophic cardiomyopathy (HCM). The purpose of this study was to compare myocardial fibrosis detected by late gadolinium enhancement (LGE) on cardiac MRI with myocardial perfusion and fatty acid metabolism assessed by single photon emission computed tomography in HCM. We retrospectively evaluated 20 consecutive HCM patients (female, 7; mean age, 53.4 years) who underwent LGE, technetium-99m methoxyisobutylisonitrile/tetrofosmin (99mTc-MIBI/tetrofosmin), and iodine-123 beta-methyl-iodophenylpentadecanoic acid (123I-BMIPP) imaging. We calculated the myocardium-to-lumen signal ratio (M/L) for LGE in 17 segments based on the American Heart Association statement. Scoring of 99mTc-MIBI/tetrofosmin (PI) and 123I-BMIPP (BM) was performed for each segment using a 5-point scale (0, normal; 4, highly decreased). Nineteen of 20 patients (95%) and 153 of 340 segments (45%) showed LGE. M/Ls were 0.42±0.16, 0.55±0.17, and 0.65±0.24 in PI0/BM0, PI0/BM1-4 and PI1-4/BM1-4, respectively. All M/Ls were significantly higher than that of a normal control (0.34±0.14) (p<0.001). Myocardial fibrosis in HCM can occur despite normal perfusion and fatty acid metabolism, and is more strongly associated with disorders of fatty acid metabolism than with perfusion abnormalities. M/L may be a useful indicator of disease severity.
Jini service to reconstruct tomographic data
NASA Astrophysics Data System (ADS)
Knoll, Peter; Mirzaei, S.; Koriska, K.; Koehn, H.
2002-06-01
A number of imaging systems rely on the reconstruction of a 3- dimensional model from its projections through the process of computed tomography (CT). In medical imaging, for example magnetic resonance imaging (MRI), positron emission tomography (PET), and Single Computer Tomography (SPECT) acquire two-dimensional projections of a three dimensional projections of a three dimensional object. In order to calculate the 3-dimensional representation of the object, i.e. its voxel distribution, several reconstruction algorithms have been developed. Currently, mainly two reconstruct use: the filtered back projection(FBP) and iterative methods. Although the quality of iterative reconstructed SPECT slices is better than that of FBP slices, such iterative algorithms are rarely used for clinical routine studies because of their low availability and increased reconstruction time. We used Jini and a self-developed iterative reconstructions algorithm to design and implement a Jini reconstruction service. With this service, the physician selects the patient study from a database and a Jini client automatically discovers the registered Jini reconstruction services in the department's Intranet. After downloading the proxy object the this Jini service, the SPECT acquisition data are reconstructed. The resulting transaxial slices are visualized using a Jini slice viewer, which can be used for various imaging modalities.
Matsuda, Fumio; Nakabayashi, Ryo; Sawada, Yuji; Suzuki, Makoto; Hirai, Masami Y.; Kanaya, Shigehiko; Saito, Kazuki
2011-01-01
A novel framework for automated elucidation of metabolite structures in liquid chromatography–mass spectrometer metabolome data was constructed by integrating databases. High-resolution tandem mass spectra data automatically acquired from each metabolite signal were used for database searches. Three distinct databases, KNApSAcK, ReSpect, and the PRIMe standard compound database, were employed for the structural elucidation. The outputs were retrieved using the CAS metabolite identifier for identification and putative annotation. A simple metabolite ontology system was also introduced to attain putative characterization of the metabolite signals. The automated method was applied for the metabolome data sets obtained from the rosette leaves of 20 Arabidopsis accessions. Phenotypic variations in novel Arabidopsis metabolites among these accessions could be investigated using this method. PMID:22645535
Saura, Hiroaki; Ogasawara, Kuniaki; Suzuki, Taro; Kuroda, Hiroki; Yamashita, Takeshi; Kobayashi, Masakazu; Terasaki, Kazunori; Ogawa, Akira
2012-01-01
While the combination of an angiotensin receptor blocker with thiazide diuretics produces a clinically beneficial reduction in blood pressure in patients who otherwise only partially respond to monotherapy with an angiotensin receptor blocker, blood pressure-lowering therapy with combination antihypertensive drug regimens in patients with cerebral hemodynamic impairment may adversely affect cerebral hemodynamics. The purpose of the present exploratory study was to determine whether blood pressure-lowering therapy with the combination of the angiotensin receptor blocker losartan plus hydrochlorothiazide (LPH) worsens brain perfusion in patients with both hypertension and cerebral hemodynamic impairment due to symptomatic chronic major cerebral artery steno-occlusive disease. Patients with losartan-resistant hypertension and reduced cerebrovascular reactivity (CVR) to acetazolamide due to symptomatic chronic internal carotid artery (ICA) or middle cerebral artery (MCA) steno-occlusive disease were prospectively entered into the present study and received 50 mg/day of losartan plus 12.5 mg/day of hydrochlorothiazideat 14 weeks after the last ischemic event. Cerebral blood flow (CBF) and CVR were measured before and 12 weeks after initiating LPH using N-isopropyl-p-[(123)I]-iodoamphetamine single-photon emission computed tomography (SPECT). A region of interest (ROI) was automatically placed in the MCA territory on each SPECT image using a three-dimensional stereotactic ROI template. None of the 18 patients who participated in the study experienced any new neurological symptoms or adverse effects related to antihypertensive drugs. Systolic (p < 0.001) and diastolic (p < 0.001) blood pressures were significantly reduced after the administration of LPH, with average reductions of 11 mm Hg in systolic blood pressure and 10 mm Hg in diastolic blood pressure. While in the affected hemisphere CBF did not differ between measurements taken before and after the administration of LPH, CVR was significantly higher after the administration of LPH than before (p = 0.007) and was significantly improved in 5 of 18 patients. In the contralateral hemisphere, CBF and CVR did not differ between measurements taken before and after the administration of LPH. There were no patients who experienced a significant deterioration in CBF or CVR in the affected or contralateral hemisphere after the administration of LPH. Although the present study was exploratory and its results were preliminary due to the small sample size, the current data suggest that blood pressure-lowering therapy with LPH apparently does not result in worsening of cerebral hemodynamics in patients with both hypertension and cerebral hemodynamic impairment due to symptomatic chronic ICA or MCA steno-occlusive disease. Copyright © 2012 S. Karger AG, Basel.
Effect of color coding and subtraction on the accuracy of contrast echocardiography
NASA Technical Reports Server (NTRS)
Pasquet, A.; Greenberg, N.; Brunken, R.; Thomas, J. D.; Marwick, T. H.
1999-01-01
BACKGROUND: Contrast echocardiography may be used to assess myocardial perfusion. However, gray scale assessment of myocardial contrast echocardiography (MCE) is difficult because of variations in regional backscatter intensity, difficulties in distinguishing varying shades of gray, and artifacts or attenuation. We sought to determine whether the assessment of rest myocardial perfusion by MCE could be improved with subtraction and color coding. METHODS AND RESULTS: MCE was performed in 31 patients with previous myocardial infarction with a 2nd generation agent (NC100100, Nycomed AS), using harmonic triggered or continuous imaging and gain settings were kept constant throughout the study. Digitized images were post processed by subtraction of baseline from contrast data and colorized to reflect the intensity of myocardial contrast. Gray scale MCE alone, MCE images combined with baseline and subtracted colorized images were scored independently using a 16 segment model. The presence and severity of myocardial contrast abnormalities were compared with perfusion defined by rest MIBI-SPECT. Segments that were not visualized by continuous (17%) or triggered imaging (14%) after color processing were excluded from further analysis. The specificity of gray scale MCE alone (56%) or MCE combined with baseline 2D (47%) was significantly enhanced by subtraction and color coding (76%, p<0.001) of triggered images. The accuracy of the gray scale approaches (respectively 52% and 47%) was increased to 70% (p<0.001). Similarly, for continuous images, the specificity of gray scale MCE with and without baseline comparison was 23% and 42% respectively, compared with 60% after post processing (p<0.001). The accuracy of colorized images (59%) was also significantly greater than gray scale MCE (43% and 29%, p<0.001). The sensitivity of MCE for both acquisitions was not altered by subtraction. CONCLUSION: Post-processing with subtraction and color coding significantly improves the accuracy and specificity of MCE for detection of perfusion defects.
Carrascosa, Patricia; Cipriano, Silvina; De Zan, Macarena; Deviggiano, Alejandro; Capunay, Carlos; Cury, Ricardo C.
2015-01-01
Background Myocardial computed tomography perfusion (CTP) using conventional single energy (SE) imaging is influenced by the presence of beam hardening artifacts (BHA), occasionally resembling perfusion defects and commonly observed at the left ventricular posterobasal wall (PB). We therefore sought to explore the ability of dual energy (DE) CTP to attenuate the presence of BHA. Methods Consecutive patients without history of coronary artery disease who were referred for computed tomography coronary angiography (CTCA) due to atypical chest pain and a normal stress-rest SPECT and had absence or mild coronary atherosclerosis constituted the study population. The study group was acquired using DE and the control group using SE imaging. Results Demographical characteristics were similar between groups, as well as the heart rate and the effective radiation dose. Myocardial signal density (SD) levels were evaluated in 280 basal segments among the DE group (140 PB segments for each energy level from 40 to 100 keV; and 140 reference segments), and in 40 basal segments (at the same locations) among the SE group. Among the DE group, myocardial SD levels and myocardial SD ratio evaluated at the reference segment were higher at low energy levels, with significantly lower SD levels at increasing energy levels. Myocardial signal-to-noise ratio was not significantly influenced by the energy level applied, although 70 keV was identified as the energy level with the best overall signal-to-noise ratio. Significant differences were identified between the PB segment and the reference segment among the lower energy levels, whereas at ≥70 keV myocardial SD levels were similar. Compared to DE reconstructions at the best energy level (70 keV), SE acquisitions showed no significant differences overall regarding myocardial SD levels among the reference segments. Conclusions BHA that influence the assessment of myocardial perfusion can be attenuated using DE at 70 keV or higher. PMID:25774354
Comparison of CTAC and prone imaging for the detection of coronary artery disease using CZT SPECT.
Ito, Shimpei; Endo, Akihiro; Okada, Taiji; Nakamura, Taku; Sugamori, Takashi; Takahashi, Nobuyuki; Yoshitomi, Hiroyuki; Tanabe, Kazuaki
2017-10-01
Cadmium-zinc-telluride (CZT) cameras have improved the evaluation of patients with chest pain. However, inferior/inferolateral attenuation artifacts similar to those seen with conventional Anger cameras persist. We added prone acquisitions and CT attenuation correction (CTAC) to the standard supine image acquisition and analyzed the resulting examinations. Seventy-two patients referred for invasive coronary angiography (CAG), and who also underwent rest/stress myocardial perfusion imaging (MPI) on a CZT camera in the supine and prone positions plus CTAC imaging, to examine known or suspected CAD between April 2013 and March 2014 were included. A sixteen-slice CT scan acquired on a SPECT/CT scanner between rest and stress imaging provided data for iterative reconstruction. Sensitivity, specificity, accuracy, and positive and negative likelihood ratios (LRs) were calculated to compare MPI with CAG on a per-patient basis. Per-patient sensitivity, specificity, and accuracy of supine images to predict coronary abnormalities on CAG were 35% [95% confidence interval (CI) 19-52], 86% (95% CI 80-92), and 74% (95% CI 66-82); those of prone imaging were 65% (95% CI 45-81), 82% (95% CI 76-87), and 78% (95% CI 68-85); and those of CTAC were 59% (95% CI 41-71), 93% (95% CI 87-97), and 85% (95% CI 76-91), respectively. Prone acquisition and CTAC images improve the ability to assess the inferior/inferolateral area.
Ricci, Davide; Mennander, Ari A; Pham, Linh D; Rao, Vinay P; Miyagi, Naoto; Byrne, Guerard W; Russell, Stephen J; McGregor, Christopher GA
2008-01-01
Objectives We studied the concordance of transgene expression in the transplanted heart using bicistronic adenoviral vector coding for a transgene of interest (human carcinoembryonic antigen: hCEA - beta human chorionic gonadotropin: βhCG) and for a marker imaging transgene (human sodium iodide symporter: hNIS). Methods Inbred Lewis rats were used for syngeneic heterotopic cardiac transplantation. Donor rat hearts were perfused ex vivo for 30 minutes prior to transplantation with University of Wisconsin (UW) solution (n=3), with 109 pfu/ml of adenovirus expressing hNIS (Ad-NIS; n=6), hNIS-hCEA (Ad-NIS-CEA; n=6) and hNIS-βhCG (Ad-NIS-CG; n=6). On post-operative day (POD) 5, 10, 15 all animals underwent micro-SPECT/CT imaging of the donor hearts after tail vein injection of 1000 μCi 123I and blood sample collection for hCEA and βhCG quantification. Results Significantly higher image intensity was noted in the hearts perfused with Ad-NIS (1.1±0.2; 0.9±0.07), Ad-NIS-CEA (1.2±0.3; 0.9±0.1) and Ad-NIS-CG (1.1±0.1; 0.9±0.1) compared to UW group (0.44±0.03; 0.47±0.06) on POD 5 and 10 (p<0.05). Serum levels of hCEA and βhCG increased in animals showing high cardiac 123I uptake, but not in those with lower uptake. Above this threshold, image intensities correlated well with serum levels of hCEA and βhCG (R2=0.99 and R2=0.96 respectively). Conclusions These data demonstrate that hNIS is an excellent reporter gene for the transplanted heart. The expression level of hNIS can be accurately and non-invasively monitored by serial radioisotopic single photon emission computed tomography (SPECT) imaging. High concordance has been demonstrated between imaging and soluble marker peptides at the maximum transgene expression on POD 5. PMID:17980613
The Importance of Quality in Ventilation-Perfusion Imaging.
Mann, April; DiDea, Mario; Fournier, France; Tempesta, Daniel; Williams, Jessica; LaFrance, Norman
2018-06-01
As the health care environment continues to change and morph into a system focusing on increased quality and evidence-based outcomes, nuclear medicine technologists must be reminded that they play a critical role in achieving high-quality, interpretable images used to drive patient care, treatment, and best possible outcomes. A survey performed by the Quality Committee of the Society of Nuclear Medicine and Molecular Imaging Technologist Section demonstrated that a clear knowledge gap exists among technologists regarding their understanding of quality, how it is measured, and how it should be achieved by all practicing technologists regardless of role and education level. Understanding of these areas within health care, in conjunction with the growing emphasis on evidence-based outcomes, quality measures, and patient satisfaction, will ultimately elevate the role of nuclear medicine technologists today and into the future. The nuclear medicine role now requires technologists to demonstrate patient assessment skills, practice safety procedures with regard to staff and patients, provide patient education and instruction, and provide physicians with information to assist with the interpretation and outcome of the study. In addition, the technologist must be able to evaluate images by performing technical analysis, knowing the demonstrated anatomy and pathophysiology, and assessing overall quality. Technologists must also be able to triage and understand the disease processes being evaluated and how nuclear medicine diagnostic studies may drive care and treatment. Therefore, it is imperative that nuclear medicine technologists understand their role in the achievement of a high-quality, interpretable study by applying quality principles and understanding and using imaging techniques beyond just basic protocols for every type of disease or system being imaged. This article focuses on quality considerations related to ventilation-perfusion imaging. It provides insight on appropriate imaging techniques and protocols, true imaging variants and tracer distributions versus artifacts that may result in a lower-quality or misinterpreted study, and the use of SPECT and SPECT/CT as an alternative providing a high-quality, interpretable study with better diagnostic accuracy and fewer nondiagnostic procedures than historical planar imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users.
de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; den Heeten, Gerard J; van den Brink, Wim
2008-11-01
Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity (NeXT) study, we prospectively assessed sustained effects of ecstasy use on the brain in novel ecstasy users using repeated measurements with a combination of different neuroimaging parameters of neurotoxicity. At baseline, 188 ecstasy-naive volunteers with high probability of first ecstasy use were examined. After a mean period of 17 months follow-up, neuroimaging was repeated in 59 incident ecstasy users and 56 matched persistent ecstasy-naives and their outcomes were compared. Neuroimaging included [(123)I]beta-carbomethoxy-3beta-(4-iodophenyl)tropane (CIT) SPECT to measure serotonin transporter densities as indicators of serotonergic function; (1)H-MR spectroscopy ((1)H-MRS) to measure brain metabolites as indicators of neuronal damage; diffusion tensor imaging (DTI) to measure the apparent diffusion coefficient and fractional anisotropy (FA) of the diffusional motion of water molecules in the brain as indicators of axonal integrity; and perfusion weighted imaging (PWI) to measure regional relative cerebral blood volume (rrCBV) which indicates brain perfusion. With this approach, both structural ((1)H-MRS and DTI) and functional ([(123)I]beta-CIT SPECT and PWI) aspects of neurotoxicity were combined. Compared to persistent ecstasy-naives, novel low-dose ecstasy users (mean 6.0, median 2.0 tablets) showed decreased rrCBV in the globus pallidus and putamen; decreased FA in thalamus and frontoparietal white matter; increased FA in globus pallidus; and increased apparent diffusion coefficient in the thalamus. No changes in serotonin transporter densities and brain metabolites were observed. These findings suggest sustained effects of ecstasy on brain microvasculature, white matter maturation and possibly axonal damage due to low dosages of ecstasy. Although we do not know yet whether these effects are reversible or not, we cannot exclude that ecstasy even in low doses is neurotoxic to the brain.
Shiroodi, Mohammad Kazem; Shafiei, Babak; Baharfard, Nastaran; Gheidari, Mohammad Esmail; Nazari, Babak; Pirayesh, Elaheh; Kiasat, Ali; Hoseinzadeh, Samaneh; Hashemi, Abolghassem; Akbarzadeh, Mohammad Ali; Javadi, Hamid; Nabipour, Iraj; Assadi, Majid
2012-01-01
Rapid technetium-99 m methoxyisobutylisonitrile (99 mTc-MIBI) washout has been shown to occur in impaired myocardia. This study is based on the hypothesis that scintigraphy can be applied to calculate the myocardial 99 mTc-MIBI washout rate (WR) to diagnose and evaluate heart failure severity and other left ventricular functional parameters specifically in idiopathic dilated cardiomyopathy (IDCM) patients. Patients with IDCMP (n = 17; 52.65 ± 11.47 years) and normal subjects (n = 6; 49.67 ± 10.15 years) were intravenously administered 99 mTc-hexakis-2-methoxyisobutylisonitrile (99 mTc-MIBI). Next, early and delayed planar data were acquired (at 3.5-h intervals), and electrocardiogram (ECG)-gated myocardial perfusion single photon emission computed tomography (SPECT) was performed. The 99 mTc-MIBI WR was calculated using early and delayed planar images. Left ventricular functional parameters were also analyzed using quantitative gated SPECT (QGS) data. In target group, myocardial WRs (29.13 ± 6.68%) were significantly higher than those of control subjects (14.17 ± 3.31%; P < 0.001). The 99 mTc-MIBI WR increased with the increasing severity of the NYHA functional class (23.16 ± 1.72% for class I, 30.25 ± 0.95% for class II, 32.60 ± 6.73% for class III, and 37.50 ± 7.77% for class IV; P = 0.02). The WR was positively correlated with the end-diastolic volume (EDV) index (r (2) = 0.216; β = 0.464; P = 0.02 [ml/m(2)], the end-systolic volume (ESV) index (r (2) = 0.234; β = 0.484; P = 0.01 [ml/m(2)]), the summed motion score (SMS) (r (2) = 0.544; β = 0.738; P = 0.00), and the summed thickening score (STS) (r (2) = 0.656; β = 0.810; P = 0.00); it was negatively correlated with the left ventricular ejection fraction (LVEF) (r (2) = 0.679; β = -0.824; P = 0.00). It can be concluded that 99 mTc-MIBI scintigraphy might be a valuable molecular imaging tool for the diagnosis and evaluation of myocardial damage or dysfunction severity.
[Inferior frontal region hypoperfusion in Parkinson disease with dementia].
Ochudło, Stanisław; Opala, Grzegorz; Jasińska-Myga, Barbara; Siuda, Joanna; Nowak, Stanisław
2003-01-01
Dementia is more frequent in patients suffering from Parkinson's disease (PD) then in general population. The mechanism for mental deterioration in PD remains controversial. The aim of our study was comparison of the regional cerebral perfusion quantified by single photon emission computed tomography in patients suffering from idiopathic Parkinson's disease with and without dementia. We examined 49 PD patients: 22 PD patients with dementia and 27 PD patients without dementia. Dementia was recognized according to ICD-10 and DSM-IV criteria. Cognitive functions were executed by means of the Mini Mental State Examination (MMSE) and neuropsychological assessment. The Unified Parkinson's Disease Rating Scale (UPDRS) and Modified Hoehn & Yahr Scale was used to quantify the severity of PD. SPECT was performed with Siemens Diacam single--head rotating gamma camera after intravenous application of technetium 99m hexamethylpropylene amine oxime (99mTc-HMPAO). The perfusion values were expressed as cortical or basal ganglia regions of interest (ROIs)/cerebellum activity ratios. In both examined group of patients the lowest uptake was in basal ganglia region, while the highest uptake was in occipital region. In the subgroup of PD patients with dementia significant hypoperfusion affecting the inferior frontal cortices was observed. In Parkinson's disease with dementia hypoperfusion in inferior frontal region can be found.
Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro
2017-05-01
We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p < 0.001; 2D vs. 3D SPECT/CT, n.s.). The durations of interpretation of WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p < 0.0001) or WB + SPECT images (p < 0.0001). 3D SPECT/CT fusion offers comparable diagnostic accuracy to 2D SPECT/CT fusion. The visual effect of 3D SPECT/CT fusion facilitates reduction of reading time compared to 2D SPECT/CT fusion.
Jessop, Maryam; Thompson, John D; Coward, Joanne; Sanderud, Audun; Jorge, José; de Groot, Martijn; Lança, Luís; Hogg, Peter
2015-03-01
Incidental findings on low-dose CT images obtained during hybrid imaging are an increasing phenomenon as CT technology advances. Understanding the diagnostic value of incidental findings along with the technical limitations is important when reporting image results and recommending follow-up, which may result in an additional radiation dose from further diagnostic imaging and an increase in patient anxiety. This study assessed lesions incidentally detected on CT images acquired for attenuation correction on two SPECT/CT systems. An anthropomorphic chest phantom containing simulated lesions of varying size and density was imaged on an Infinia Hawkeye 4 and a Symbia T6 using the low-dose CT settings applied for attenuation correction acquisitions in myocardial perfusion imaging. Twenty-two interpreters assessed 46 images from each SPECT/CT system (15 normal images and 31 abnormal images; 41 lesions). Data were evaluated using a jackknife alternative free-response receiver-operating-characteristic analysis (JAFROC). JAFROC analysis showed a significant difference (P < 0.0001) in lesion detection, with the figures of merit being 0.599 (95% confidence interval, 0.568, 0.631) and 0.810 (95% confidence interval, 0.781, 0.839) for the Infinia Hawkeye 4 and Symbia T6, respectively. Lesion detection on the Infinia Hawkeye 4 was generally limited to larger, higher-density lesions. The Symbia T6 allowed improved detection rates for midsized lesions and some lower-density lesions. However, interpreters struggled to detect small (5 mm) lesions on both image sets, irrespective of density. Lesion detection is more reliable on low-dose CT images from the Symbia T6 than from the Infinia Hawkeye 4. This phantom-based study gives an indication of potential lesion detection in the clinical context as shown by two commonly used SPECT/CT systems, which may assist the clinician in determining whether further diagnostic imaging is justified. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Newberg, Andrew B.; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S.; Wintering, Nancy
2014-01-01
Background This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Methods and Findings Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both 99mTc exametazime to measure cerebral blood flow (CBF) and 123I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Conclusions Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario. PMID:24475210
Sahul, Zakir H.; Mukherjee, Rupak; Song, James; McAteer, Jarod; Stroud, Robert E.; Dione, Donald P.; Staib, Lawrence; Papademetris, Xenophon; Dobrucki, Lawrence W.; Duncan, James S.; Spinale, Francis G.; Sinusas, Albert J.
2011-01-01
Background Matrix metalloproteinases (MMPs) are known to modulate left ventricular (LV) remodeling after a myocardial infarction (MI). However, the temporal and spatial variation of MMP activation and their relationship to mechanical dysfunction post MI remains undefined. Methods and Results MI was surgically induced in pigs (n=23) and cine MR and dual isotope hybrid SPECT/CT imaging obtained using thallium-201 (201Tl) and a technetium-99m labeled MMP targeted tracer (99mTc-RP805) at 1, 2 and 4 weeks post MI along with controls (n=5). Regional myocardial strain was computed from MR images and related to MMP zymography and ex vivo myocardial 99mTc-RP805 retention. MMP activation as assessed by in vivo and ex vivo 99mTc-RP805 imaging/retention studies was increased nearly 5-fold within the infarct region at 1 week post-MI and remained elevated up to 1 month post-MI. The post-MI change in LV end-diastolic volumes was correlated with MMP activity (y=31.34e0.48x, p=0.04). MMP activity was increased within the border and remote regions early post-MI, but declined over 1 month. There was a high concordance between regional 99mTc-RP805 uptake and ex vivo MMP-2 activity. Conclusions A novel, multimodality non-invasive hybrid SPECT/CT imaging approach was validated and applied for in vivo evaluation of MMP activation in combination with cine MR analysis of LV deformation. Increased 99mTc-RP805 retention was seen throughout the heart early post-MI and was not purely a reciprocal of 201Tl perfusion. 99mTc-RP805 SPECT/CT imaging may provide unique information regarding regional myocardial MMP activation and predict late post-MI LV remodeling. PMID:21505092
Mueller, D; Kulkarni, Harshad; Baum, Richard P; Odparlik, Andreas
2017-04-01
99m Tc-labeled MAA is commonly used for single photon emission computed tomography SPECT. In contrast, positron emission tomography/CT (PET/CT) delivers images with significantly higher resolution. The generator produced radionuclide 68 Ga is widely used for PET/CT imaging agents and 68 Ga-labeled MAA represents an attractive alternative to 99m Tc-labeled MAA. We report a simple and rapid NaCl based labeling procedure for the labeling of MAA with 68 Ga using a commercially available MAA labeling kit for 99m Tc. The procedure delivers 68 Ga-labeled MAA with a high specific activity and a high labeling efficiency (>99%). The synthesis does not require a final step of separation or the use of organic solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens
2011-03-01
Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.
Trogrlic, Mate; Težak, Stanko
2017-06-12
The aim of this study was to evaluate the additional value of 99m Tc-HYNIC-TOC SPECT/CT over planar whole-body (WB) scintigraphy and SPECT alone in the detection and accurate localisation of neuroendocrine tumour (NET) lesions. This study included 65 patients with a definitive histological diagnosis of NET prior to scintigraphy. Planar WB scintigraphy, SPECT, and SPECT/CT images were acquired at 4 h post-administration of 670 MBq 99m Tc-HYNIC-TOC. Additional SPECT images at 10 min after tracer administration were also acquired. Clinical and imaging follow-up findings were considered as the reference standards (minimum follow-up period, 15 months). Patient and lesion-based analyses of the efficacies of the imaging modalities were performed. While 38 patients exhibited metastasis of NETs, 27 presented no evidence of metastasis. Upon patient-based analysis, the sensitivity and specificity of SPECT/CT were found to be 88.9 and 79.3 %, respectively. The diagnostic accuracies of WB scintigraphy, 4h-SPECT, and SPECT/CT were 72.3, 73.8, and 84.6 %, respectively. The area under curve (AUC) value for SPECT/CT (0.84) was the highest, followed by those for 4h-SPECT (0.75) and WB scintigraphy (0.74). The accuracy and AUC values of SPECT/CT were significantly better compared to those of WB scintigraphy (p < 0.001), 10 min-SPECT (p < 0.001), and 4 h-SPECT (p = 0.001). The findings of SPECT/CT led to the change in treatment plan of 11 patients (16.9 %). The sensitivity and diagnostic accuracy of SPECT/CT in the evaluation of NET lesions outperforms planar WB imaging or SPECT alone.
Daou, Doumit; Coaguila, Carlos; Vilain, Didier
2007-05-01
Electrocardiograph-gated single photon emission computed tomography (SPECT) radionuclide angiography provides accurate measurement of right ventricular ejection fraction and end-diastolic and end-systolic volumes. In this study, we report the interstudy precision and reliability of SPECT radionuclide angiography for the measurement of global systolic right ventricular function using two, three-dimensional volume processing methods (SPECT-QBS, SPECT-35%). These were compared with equilibrium planar radionuclide angiography. Ten patients with chronic coronary artery disease having two SPECT and planar radionuclide angiography acquisitions were included. For the right ventricular ejection fraction, end-diastolic volume and end-systolic volume, the interstudy precision and reliability were better with SPECT-35% than with SPECT-QBS. The sample sizes needed to objectify a change in right ventricular volumes or ejection fraction were lower with SPECT-35% than with SPECT-QBS. The interstudy precision and reliability of SPECT-35% and SPECT-QBS for the right ventricle were better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography on the same population. SPECT-35% and SPECT-QBS present good interstudy precision and reliability for right ventricular function, with the results favouring the use of SPECT-35%. The results are better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography. They need to be confirmed in a larger population.
Task-based design of a synthetic-collimator SPECT system used for small animal imaging.
Lin, Alexander; Kupinski, Matthew A; Peterson, Todd E; Shokouhi, Sepideh; Johnson, Lindsay C
2018-05-07
In traditional multipinhole SPECT systems, image multiplexing - the overlapping of pinhole projection images - may occur on the detector, which can inhibit quality image reconstructions due to photon-origin uncertainty. One proposed system to mitigate the effects of multiplexing is the synthetic-collimator SPECT system. In this system, two detectors, a silicon detector and a germanium detector, are placed at different distances behind the multipinhole aperture, allowing for image detection to occur at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. The unwanted effects of multiplexing are reduced by utilizing the additional data collected from the front silicon detector. However, determining optimal system configurations for a given imaging task requires efficient parsing of the complex parameter space, to understand how pinhole spacings and the two detector distances influence system performance. In our simulation studies, we use the ensemble mean-squared error of the Wiener estimator (EMSE W ) as the figure of merit to determine optimum system parameters for the task of estimating the uptake of an 123 I-labeled radiotracer in three different regions of a computer-generated mouse brain phantom. The segmented phantom map is constructed by using data from the MRM NeAt database and allows for the reduction in dimensionality of the system matrix which improves the computational efficiency of scanning the system's parameter space. To contextualize our results, the Wiener estimator is also compared against a region of interest estimator using maximum-likelihood reconstructed data. Our results show that the synthetic-collimator SPECT system outperforms traditional multipinhole SPECT systems in this estimation task. We also find that image multiplexing plays an important role in the system design of the synthetic-collimator SPECT system, with optimal germanium detector distances occurring at maxima in the derivative of the percent multiplexing function. Furthermore, we report that improved task performance can be achieved by using an adaptive system design in which the germanium detector distance may vary with projection angle. Finally, in our comparative study, we find that the Wiener estimator outperforms the conventional region of interest estimator. Our work demonstrates how this optimization method has the potential to quickly and efficiently explore vast parameter spaces, providing insight into the behavior of competing factors, which are otherwise very difficult to calculate and study using other existing means. © 2018 American Association of Physicists in Medicine.
Effects of video game playing on cerebral blood flow in young adults: a SPECT study.
Chou, Yuan-Hwa; Yang, Bang-Hung; Hsu, Ju-Wei; Wang, Shyh-Jen; Lin, Chun-Lung; Huang, Kai-Lin; Chien Chang, Alice; Lee, Shin-Min
2013-04-30
To study the impact of video game playing on the human brain, the effects of two video games playing on cerebral blood flow (CBF) in young adults were determined. Thirty healthy subjects comprising 18 males and 12 females who were familiar with video game playing were recruited. Each subject underwent three sessions of single photon emission computed tomography (SPECT) with a bolus injection of 20 mCi (99m)Tc ECD IV to measure their CBF. The first measurement was performed as baseline, the second and third measurements were performed after playing two different video games for 30 min, respectively. Statistic parametric mapping (SPM2) with Matlab 6.5 implemented on a personal computer was used for image analysis. CBF was significantly decreased in the prefrontal cortex and significantly increased in the temporal and occipital cortices after both video games playing. Furthermore, decreased CBF in the anterior cingulate cortex (ACC) which was significantly correlated with the number of killed characters was found after the violent game playing. The major finding of hypo-perfusion in prefrontal regions after video game playing is consistent with a previous study showing reduced or abnormal prefrontal cortex functions after video game playing. The second finding of decreased CBF in the ACC after playing the violent video game provides support for a previous hypothesis that the ACC might play a role in regulating violent behavior. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fakhri, G. El; Maksud, P.; Kijewski, M. F.; Haberi, M. O.; Todd-Pokropek, A.; Aurengo, A.; Moore, S. C.
2000-08-01
Simultaneous imaging of Tc-99m and I-123 would have a high clinical potential in the assessment of brain perfusion (Tc-99m) and neurotransmission (I-123) but is hindered by cross-talk between the two radionuclides. Monte Carlo simulations of 15 different dual-isotope studies were performed using a digital brain phantom. Several physiologic Tc-99m and I-123 uptake patterns were modeled in the brain structures. Two methods were considered to correct for cross-talk from both scattered and unscattered photons: constrained spectral factor analysis (SFA) and artificial neural networks (ANN). The accuracy and precision of reconstructed pixel values within several brain structures were compared to those obtained with an energy windowing method (WSA). In I-123 images, mean bias was close to 10% in all structures for SFA and ANN and between 14% (in the caudate nucleus) and 25% (in the cerebellum) for WSA. Tc-99m activity was overestimated by 35% in the cortex and 53% in the caudate nucleus with WSA, but by less than 9% in all structures with SFA and ANN. SFA and ANN performed well even in the presence of high-energy I-123 photons. The accuracy was greatly improved by incorporating the contamination into the SFA model or in the learning phase for ANN. SFA and ANN are promising approaches to correct for cross-talk in simultaneous Tc-99m/I-123 SPECT.
SPECT/CT in patients with lower back pain after lumbar fusion surgery.
Sumer, Johannes; Schmidt, Daniela; Ritt, Philipp; Lell, Michael; Forst, Raimund; Kuwert, Torsten; Richter, Richard
2013-10-01
The aim of the study was to investigate the incremental diagnostic value of skeletal hybrid imaging with single-photon emission computed tomography and X-ray computed tomography (SPECT/CT) over conventional nuclear medical imaging in patients with lower back pain after lumbar fusion surgery (LFS). This retrospective study comprised 37 patients suffering from lower back pain after LFS in whom three-phase planar bone scintigraphies of the lumbar spine including SPECT/CT of that region had been performed. The findings visible on these imaging data sets were classified into the following five diagnostic categories: (a) metal loosening; (b) insufficient stabilizing function of the metal implants indicated by metabolically active facet joint arthritis and/or intervertebral osteochondrosis in the instrumented region; (c) adjacent instability defined as metabolically active degenerative disease in the segments adjacent to the instrumented region; (d) indeterminate; and (e) normal. In the case of eight patients no lesions were visible on their planar scintigraphy and SPECT (planar/SPECT) or SPECT/CT images. In the remaining 29 patients, planar/SPECT disclosed 62 pathological foci of uptake within the graft region and SPECT/CT revealed 55. The rate of reclassification by SPECT/CT compared with planar/SPECT was 5/12 for lesions categorized as metal loosening by planar/SPECT, 16/29 for foci with a planar/SPECT diagnosis of insufficient stabilizing function, 7/20 when the planar/SPECT diagnosis had been adjacent instability, and 1/1 for the lesions indeterminate on planar/SPECT. Two lesions had been detected on SPECT/CT only. The overall rate of reclassification was 45.2% (28/62) (95% confidence interval, 33.4-57.5%). Because of its significantly higher accuracy compared with planar/SPECT, SPECT/CT should be the conventional nuclear medical procedure of choice for patients with lower back pain after LFS.
Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi
2014-01-01
The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.
Broseta, J; García-March, G; Sánchez-Ledesma, M J; Gonçalves, J; Silva, I; Barcia, J A; Llácer, J L; Barcia-Salorio, J L
1994-01-01
Previous studies of our group showed that C1-C2 spinal cord stimulation increases carotid and brain blood flow in normal conditions in the goat and dog and it has a beneficial vasomotor effect in a model of vasospasm in the rat. For further clinical application it seemed rational to investigate the possible vascular changes mediated by this technique in experimental brain infarction. To this aim, 45 New Zealand rabbits were used. Brain infarction was produced by bilateral carotid ligation in 15, unilateral microcoagulation of the middle cerebral artery in 15 and by microcoagulation of the vertebral artery at the craniocervical junction in the other 15. One week later, following daily clinical scoring and cortical and posterior fossa blood flow readings by laser Doppler, a period of 120 min of right C1-C2 spinal cord electric stimulation was performed. A mean of 27% increase in previous blood flow recordings was obtained at the right hemisphere and a mean of 32% in the posterior fossa. This procedure was used in 10 patients presenting with various cerebral low perfusion syndromes. Though not constant, an increase in alertness, retention, speech, emotional lability and performance in skilled acts was achieved. No MR changes were observed, though SPECT readings showed an increase in blood flow in the penumbral perilesional area.
2012-01-01
Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016
Soares-Filho, Gastão Luiz Fonseca; Mesquita, Claudio Tinoco; Mesquita, Evandro Tinoco; Arias-Carrión, Oscar; Machado, Sergio; González, Manuel Menéndez; Valença, Alexandre Martins; Nardi, Antonio Egidio
2012-09-21
Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease.
Use of atropine in patients with submaximal heart rate during exercise myocardial perfusion SPECT.
De Lorenzo, Andrea; Foerster, James; Sciammarella, Maria G; Suey, Cathy; Hayes, Sean W; Friedman, John D; Berman, Daniel S
2003-01-01
Failure to reach 85% of maximal predicted heart rate (MPHR) during exercise may render a myocardial perfusion single photon emission computed tomography (MPS) study nondiagnostic for ischemia detection. Although commonly used to increase heart rate (HR) during dobutamine stress, the administration of atropine for patients failing to achieve 85% of MPHR during exercise performed for MPS is still infrequent. Patients undergoing dual-isotope MPS were considered candidates for the study when, during exercise treadmill testing, they had less than 85% of MPHR and were unable to continue because of fatigue, without an ischemic response. Forty-seven patients (aged 65.3 +/- 12.5 years, 78.7% men) received atropine (0.6-1.2 mg). Maximal HR achieved before and after atropine was 118.0 +/- 14.8 beats/min (76.3% +/- 6.2% of MPHR) and 146.4 +/- 12.6 beats/min (94.4% +/- 8.1% of MPHR), respectively (P < .001). Of patients, 44 (93.6%) reached at least 85% of MPHR after atropine and had diagnostic MPS studies. After atropine, arrhythmias occurred in 14 patients (29.8%) and other minor side effects in 1 (2.1%). Atropine allows patients initially failing to achieve 85% of MPHR during exercise to increase HR and have a diagnostic MPS study, without major complications. It may provide an alternative to pharmacologic stress for patients with a blunted HR response to exercise.
DeCicco, Anthony E; Sokil, Alexis B; Marhefka, Gregary D; Reist, Kirk; Hansen, Christopher L
2015-04-01
Obesity is not only associated with an increased risk of coronary artery disease, but also decreases the accuracy of many diagnostic modalities pertinent to this disease. Advances in myocardial perfusion imaging (MPI) have mitigated somewhat the effects of obesity, although the feasibility of MPI in the super-obese (defined as a BMI > 50) is currently untested. We undertook this study to assess the practicality of MPI in the super-obese using a multi-headed solid-state gamma camera with attenuation correction. We retrospectively identified consecutive super-obese patients referred for MPI at our institution. The images were interpreted by 3 blinded, experienced readers and graded for quality and diagnosis, and subjectively evaluated the contribution of attenuation correction. Clinical follow-up was obtained from review of medical records. 72 consecutive super-obese patients were included. Their BMI ranged from 50 to 67 (55.7 ± 5.1). Stress image quality was considered good or excellent in 45 (63%), satisfactory in 24 (33%), poor in 3 (4%), and uninterpretable in 0 patients. Rest images were considered good or excellent in 34 (49%), satisfactory in 23 (33%), poor in 13 (19%), and uninterpretable in 0 patients. Attenuation correction changed the interpretation in 34 (47%) of studies. MPI is feasible and provides acceptable image quality for super-obese patients, although it may be camera and protocol dependent.
Harrison, Sheri D; Harrison, Mark A; Duvall, W Lane
2012-05-01
Emergency room evaluations of patients presenting with chest pain continue to rise, and these evaluations which often include cardiac imaging, are an increasing area of resource utilization in the current health system. Myocardial perfusion imaging from the emergency department remains a vital component of the diagnosis or exclusion of coronary artery disease as the etiology of chest pain. Recent advances in camera technology, and changes to the imaging protocols have allowed MPI to become a more efficient way of providing this diagnostic information. Compared with conventional SPECT, new high-efficiency CZT cameras provide a 3-5 fold increase in photon sensitivity, 1.65-fold improvement in energy resolution and a 1.7-2.5-fold increase in spatial resolution. With stress-only imaging, rest images are eliminated if stress images are normal, as they provide no additional prognostic or diagnostic value and cancelling the rest images would shorten the length of the test which is of particular importance to the ED population. The rapid but accurate triage of patients in an ED CPU is essential to their care, and stress-only imaging and new CZT cameras allow for shorter test time, lower radiation doses and lower costs while demonstrating good clinical outcomes. These changes to nuclear stress testing can allow for faster throughput of patients through the emergency department while providing a safe and efficient evaluation of chest pain.
Fei, W; Xu, S; Ma, J; Zhai, W; Cheng, S; Chang, Y; Wang, X; Gao, J; Tang, H; Yang, S; Zhang, X
2018-05-08
Skin blood flow is believed to link with many diseases, and shows a significant heterogeneity. There are several papers on basal cutaneous microcirculation perfusion in different races, while the data in Chinese is vacant. The aim was to establish the database of absolute fundamental supply of skin blood flow in the Chinese Han population. With a full-field laser perfusion imager (FLPI), the skin blood flow can be quantified. Cutaneous perfusion values were determined in 17 selected skin areas in 406 healthy participants aged between 20 and 80 years (mean 35.05 ± 11.33). Essential parameters such as weight, height were also measured and values of BMI were calculated. The perfusion values were reported in Arbitrary Perfusion Units (APU). The highest cutaneous perfusion value fell on eyelid (931.20 ± 242.59 in male and 967.83 ± 225.49 in female), and pretibial had the lowest value (89.09 ± 30.28 in male and 85.08 ± 33.59 in female). The values were higher in men than women on the bank of fingertips, nose, forehead, cheek, neck and earlobe (P < .05). Perfusion values on stretch and flexion side of forearm had negative correlation with age (P = .01 and P = 4.88 × 10 -3 , respectively) in male. Abdomen was negatively correlated with BMI in both gender (P = .02, respectively). Skin blood flow values vary with skin regions. There is a tendency to measure higher perfusion values in men than in women. And the values are irrelevant with age or BMI. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Doi, Yoshiko; Nakashima, Takeo
2015-11-15
Purpose: The purpose of this study was to prospectively investigate clinical correlations between dosimetric parameters associated with radiation pneumonitis (RP) and functional lung imaging. Methods and Materials: Functional lung imaging was performed using four-dimensional computed tomography (4D-CT) for ventilation imaging, single-photon emission computed tomography (SPECT) for perfusion imaging, or both (V/Q-matched region). Using 4D-CT, ventilation imaging was derived from a low attenuation area according to CT numbers below different thresholds (vent-860 and -910). Perfusion imaging at the 10th, 30th, 50th, and 70th percentile perfusion levels (F10-F70) were defined as the top 10%, 30%, 50%, and 70% hyperperfused normal lung, respectively.more » All imaging data were incorporated into a 3D planning system to evaluate correlations between RP dosimetric parameters (where fV20 is the percentage of functional lung volume irradiated with >20 Gy, or fMLD, the mean dose administered to functional lung) and the percentage of functional lung volume. Radiation pneumonitis was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Statistical significance was defined as a P value of <.05. Results: Sixty patients who underwent curative radiation therapy were enrolled (48 patients for non-small cell lung cancer, and 12 patients for small cell lung cancer). Grades 1, 2, and ≥3 RP were observed in 16, 44, and 6 patients, respectively. Significant correlations were observed between the percentage of functional lung volume and fV20 (r=0.4475 in vent-860 and 0.3508 in F30) or fMLD (r=0.4701 in vent-860 and 0.3128 in F30) in patients with grade ≥2 RP. F30∩vent-860 results exhibited stronger correlations with fV20 and fMLD in patients with grade ≥2 (r=0.5509 in fV20 and 0.5320 in fMLD) and grade ≥3 RP (r=0.8770 in fV20 and 0.8518 in fMLD). Conclusions: RP dosimetric parameters correlated significantly with functional lung imaging.« less
Bu, Lihong; Li, Renfei; Jin, Zhongnan; Wen, Xiaofei; Liu, Shuang; Yang, Baofeng; Shen, Baozhong; Chen, Xiaoyuan
2011-02-01
(99) (m)TcN-MPO ([(99) (m)TcN(mpo)(PNP5)](+): mpo = 2-mercaptopyridine oxide and PNP5 = N-ethoxyethyl-N,N-bis[2-(bis(3-methoxypropyl)phosphino)ethyl]amine) is a cationic (99) (m)Tc-nitrido complex, which has favorable biodistribution and myocardial uptake with rapid liver clearance in Sprague Dawley rats. The objective of this study was to compare the biodistribution and pharmacokinetics of (99) (m)TcN-MPO and (99) (m)Tc-Sestamibi in normal dogs, and to evaluate the potential of (99) (m)TcN-MPO as a myocardial perfusion agent in canines with acute myocardial infarction. Five normal mongrel dogs were injected intravenously with (99) (m)TcN-MPO. Venous blood samples were collected via a femoral vein catheter at 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 60, and 90 min post-injection (p.i.). Anterior-posterior planar images were acquired by γ-camera at 10, 20, 30, 60, 90, and 120 min p.i. Regions of interest (ROIs) were drawn around the heart, liver, and lungs. The heart/liver and heart/lung ratios were calculated by dividing the mean counts in heart ROI by the mean counts in the liver and lung ROI, respectively. For comparison, (99) (m)Tc-sestamibi was also evaluated in the same five dogs. The interval period between the two examinations was 1 week to eliminate possible interference between these two radiotracers. In addition, single positron emission computed tomography (SPECT) images in the canine infarct model were collected 24 h after myocardial infarction at 30 and 60 min after the administration of (99) (m)TcN-MPO (n = 4) or (99) (m)Tc-Sestamibi (n = 4). It was found that (99) (m)TcN-MPO and (99) (m)Tc-Sestamibi displayed very similar blood clearance characteristics during the first 90 min p.i. Both (99) (m)TcN-MPO and (99) (m)Tc-Sestamibi had a rapid blood clearance with less than 50% of initial radioactivity remaining at 1 min and less than 5% at 30 min p.i. (99) (m)TcN-MPO and (99) (m)Tc-Sestamibi both showed good heart/lung contrast. The heart/liver ratio of (99) (m)TcN-MPO increased with time (0.53 ± 0.06 at 10 min, 0.90 ± 0.062 at 30 min, and 1.22 ± 0.06 at 60 min p.i.), whereas the heart/liver ratio of (99) (m)Tc-Sestamibi remained low at all time points (0.50 ± 0.03 at 10 min, 0.64 ± 0.03 at 30 min, and 0.60 ± 0.02 at 60 min p.i.). SPECT imaging studies in canines with acute myocardial infarction indicated that good visualization of the left ventricular wall and perfusion defects could be achieved at 30 min after administration of (99) (m)TcN-MPO but not after (99) (m)Tc-Sestamibi. The combination of reasonable heart uptake with rapid hepatobiliary excretion makes (99) (m)TcN-MPO a promising new radiotracer for myocardial perfusion imaging.
Shachar, Yair; Adileh, Mohamed; Keidar, Assaf; Eid, Luminita; Hubert, Ayalah; Temper, Mark; Azam, Salah; Beny, Alex; Grednader, Tal; Khalaileh, Abed; Yuval, Jonathan B; Stojadinovic, Alexander; Avital, Itzhak; Nissan, Aviram
2015-01-01
Achieving complete cytoreduction of peritoneal surface malignancies (PSM) can be challenging. In most cases, delivery of heated intra-peritoneal chemotherapy (HIPEC) is straightforward. However, using the closed technique in some cases may be technically challenging; for example, in patients requiring abdominal closure using a large synthetic mesh. In cases where groin hernias are present, it is imperative to resect the hernia sac, since it may contain tumor deposits. In cases with major inguinal involvement where disease may spread out of the hernia sac or in cases where a hernia repair was performed while disease is present, inguinal perfusion should be considered. To describe our experience with combined intra-peritoneal and inguinal perfusion of HIPEC following cytoreductive surgery. This is a retrospective review of all patients who underwent cytoreductive surgery (CRS) and HIPEC at our institution. A prospectively maintained database containing data of patients treated by CRS and HIPEC (n=122) was reviewed. All patients with macroscopic inguinal involvement by PSM with complete cytoreduction perfused by HIPEC were included. We identified five cases who underwent CRS and combined intraperitoneal and inguinal perfusion after resection of large inguinal tumor deposits (n=4) or after a recent hernia repair with hernial sac involvement by mucinous adenocarcinoma (n=1). All five patients were successfully perfused using an additional outflow catheter placed in the groin. In cases of inguinal involvement by PSM, complete cytoreduction should be achieved and perfusion of the involved groin considered as it is feasible and safe.
Lee, Grace S; McKenzie, Travis J; Mullan, Brian P; Farley, David R; Thompson, Geoffrey B; Richards, Melanie L
2016-03-01
Focused parathyroidectomy in primary hyperparathyroidism (1°HPT) is possible with accurate preoperative localization and intraoperative PTH monitoring (IOPTH). The added benefit of multimodal imaging techniques for operative success is unknown. Patients with 1°HPT, who underwent parathyroidectomy in 2012-2014 at a single institution, were retrospectively reviewed. Only the patients who underwent the standardized multimodal imaging workup consisting of (123)I/(99)Tc-sestamibi subtraction scintigraphy, SPECT, and SPECT/CT were assessed. Of 360 patients who were identified, a curative operation was performed in 96%, using pre-operative imaging and IOPTH. Imaging analysis showed that (123)I/(99)Tc-sestamibi had a sensitivity of 86% (95% CI 82-90%), positive predictive value (PPV) 93%, and accuracy 81%, based on correct lateralization. SPECT had a sensitivity of 77% (95% CI 72-82%), PPV 92% and accuracy 72%. SPECT/CT had a sensitivity of 75% (95% CI 70-80%), PPV of 94%, and accuracy 71%. There were 3 of 45 (7%) patients with negative sestamibi imaging that had an accurate SPECT and SPECT/CT. Of 312 patients (87%) with positive uptake on sestamibi (93% true positive, 7% false positive), concordant findings were present in 86% SPECT and 84% SPECT/CT. In cases where imaging modalities were discordant, but at least one method was true-positive, (123)I/(99)Tc-sestamibi was significantly better than both SPECT and SPECT/CT (p < 0.001). The inclusion of SPECT and SPECT/CT in 1°HPT imaging protocol increases patient cost up to 2.4-fold. (123)I/(99)Tc-sestamibi subtraction imaging is highly sensitive for preoperative localization in 1°HPT. SPECT and SPECT/CT are commonly concordant with (123)I/(99)Tc-sestamibi and rarely increase the sensitivity. Routine inclusion of multimodality imaging technique adds minimal clinical benefit but increases cost to patient in high-volume setting.
A quantitative reconstruction software suite for SPECT imaging
NASA Astrophysics Data System (ADS)
Namías, Mauro; Jeraj, Robert
2017-11-01
Quantitative Single Photon Emission Tomography (SPECT) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. Although SPECT has usually been perceived as non-quantitative by the medical community, the introduction of accurate CT based attenuation correction and scatter correction from hybrid SPECT/CT scanners has enabled SPECT systems to be as quantitative as Positron Emission Tomography (PET) systems. We implemented a software suite to reconstruct quantitative SPECT images from hybrid or dedicated SPECT systems with a separate CT scanner. Attenuation, scatter and collimator response corrections were included in an Ordered Subset Expectation Maximization (OSEM) algorithm. A novel scatter fraction estimation technique was introduced. The SPECT/CT system was calibrated with a cylindrical phantom and quantitative accuracy was assessed with an anthropomorphic phantom and a NEMA/IEC image quality phantom. Accurate activity measurements were achieved at an organ level. This software suite helps increasing quantitative accuracy of SPECT scanners.
A guide to SPECT equipment for brain imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffer, P.B.; Zubal, G.
1991-12-31
Single photon emission computed tomography (SPECT) was started by Kuhl and Edwards about 30 years ago. Their original instrument consisted of four focused Nal probes mounted on a moving gantry. During the 1980s, clinical SPECT imaging was most frequently performed using single-headed Anger-type cameras which were modified for rotational as well as static imaging. Such instruments are still available and may be useful in settings where there are few patients and SPECT is used only occasionally. More frequently, however, dedicated SPECT devices are purchased which optimize equipment potential while being user-friendly. Modern SPECT instrumentation incorporates improvements in the detector, computers,more » mathematical formulations, electronics and display systems. A comprehensive discussion of all aspects of SPECT is beyond the scope of this article. The authors, however, discuss general concepts of SPECT, the current state-of-the-art in clinical SPECT instrumentation, and areas of common misunderstanding. 9 refs.« less
C-SPECT - a Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential
Chang, Wei; Ordonez, Caesar E.; Liang, Haoning; Li, Yusheng; Liu, Jingai
2013-01-01
Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient’s thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system. PMID:23885129
Yoda, Shunichi; Nakanishi, Kanae; Tano, Ayako; Hori, Yusuke; Suzuki, Yasuyuki; Matsumoto, Naoya; Hirayama, Atsushi
2015-11-01
Estimated glomerular filtration rates (eGFRs) at baseline are useful to determine the severity of renal function and to predict cardiac events. However, no studies aimed to demonstrate significance of eGFRs measured during follow-up and usefulness of combination with nuclear cardiology for prediction of cardiac death in patients with coronary artery disease (CAD). We retrospectively investigated 1739 patients with known/suspected CAD who underwent myocardial perfusion single photon emission computed tomography (SPECT), who had eGFRs measured at baseline and after one year and who underwent a three-year follow-up. The SPECT images were analyzed with the visual scoring model to estimate summed defect scores. Reduction in eGFRs (ΔeGFR) was defined as the difference between eGFRs measured after one year and at baseline. The endpoint of the follow-up was cardiac deaths within three years after the SPECT, which were identified with medical records or responses to posted questionnaires. Cardiac death was observed in 54 of 1739 patients during the follow-up period (45.6±9.1 months). The multivariate Cox regression analysis showed baseline eGFRs, ΔeGFR, and summed stress scores to be significant independent variables for prediction of cardiac death. The area under receiver operating characteristic curves for detection of cardiac death was 0.677 for the baseline eGFR and 0.802 for the follow-up eGFR. Sensitivity of detection of cardiac death was significantly higher in the follow-up eGFR than in the baseline eGFR (p=0.0002). Combination of the best cut-off values, i.e. 9 for the summed stress scores and 10 for the ΔeGFR, which were suggested by receiver operating characteristic analysis, was useful for risk stratification of cardiac death both in patients with and without chronic kidney disease. Baseline and follow-up eGFRs as well as nuclear variables are useful to predict cardiac death in patients with known/suspected CAD. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Added value of SPECT/spiral CT versus SPECT or CT alone in diagnosing solitary skeletal lesions.
Zhang, Yiqiu; Li, Beilei; Shi, Hongcheng; Yu, Haojun; Gu, Yushen; Xiu, Yan
2017-08-14
The aim of this study was to investigate the added value of SPECT/spiral CT versus SPECT or CT alone in the differential diagnosis of solitary skeletal lesions. This was a retrospective study on a total of 69 patients who had a solitary skeletal "hot spot" that could not be definitively diagnosed using planar scintigraphy. Thus, SPECT/spiral CT was performed on the indeterminate lesions. SPECT, CT and SPECT/spiral CT images were independently interpreted by two experienced doctors who have both identification of CT and nuclear medicine. Each lesion was graded on a 4-point diagnostic scale (1: benign, 2: likely benign, 3: likely malignant, 4: malignant). The final diagnosis of each lesion was based on pathological confirmation after surgery within 3 weeks of the bone scan. Final diagnoses based on the pathological results revealed that 43 of the 69 patients were diagnosed with malignancy, and the remaining 26 patients were diagnosed as having benign lesions. For SPECT and CT scans, both of the reviewers rated 55.1 % (38/69) and 37.7 % (26/69) of lesions as equivocal, with the help of SPECT/CT, 33.3 % (23/69) of lesions were rated as equivocal. The diagnostic accuracies of SPECT, CT alone and SPECT/CT were 66.7 % (46/69) ,82.6 % (57/69) and 85.5 %(59/69), respectively. The kappa scores for the degree of agreement between SPECT, CT alone or SPECT/CT with pathological results were 0.185 (p = 0.054) , 0.612 (p < 0.001) and 0.671 (p < 0.001), respectively. Compared with SPECT or imaging alone, SPECT/spiral CT imaging was more accurate and valuable in the differential diagnosis of solitary skeletal lesions and resulted in significantly fewer equivocal findings.
The origins of SPECT and SPECT/CT.
Hutton, Brian F
2014-05-01
Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.
Nardo, D; Högberg, G; Flumeri, F; Jacobsson, H; Larsson, S A; Hällström, T; Pagani, M
2011-12-01
The aim of this study was to investigate the distribution of the regional cerebral blood flow (rCBF) in occupational-related post-traumatic stress disorder (PTSD) subjects and to seek possible correlations between brain perfusion and self-rating scales (SRS) in order to cross-check their diagnostic value and to look for their neural correlates. A total of 13 traumatized underground and long-distance train drivers developing (S) and 17 not developing (NS) PTSD who had experienced a 'person under train' accident or who had been assaulted at work underwent clinical assessment and 99mTc-HMPAO SPECT imaging during autobiographical trauma scripts. Statistical parametric mapping was applied to analyse rCBF changes in S as compared with NS and to search for correlations between rCBF and the administered SRS scores, modelling age, months to SPECT and the ratio 'grey matter/intra-cranial volume' as nuisance variables. Significantly higher activity was observed during trauma script in left posterior and anterior insula, posterior cingulate, inferior parietal lobule, precuneus, caudate and putamen in PTSD subjects as compared with the trauma-exposed control group. Impact of Event Scale and World Health Organisation (10) Well-Being Index scores highly correlated with tracer uptake to a great extent in the same regions in which rCBF differences between S and NS were found. These findings support the involvement of insular, cingulate and parietal cortices (as well as the basal ganglia) in the pathogenesis of PTSD and in the processing of related subjective well-being and distress.
Hamami, Monia E; Poeppel, Thorsten D; Müller, Stephan; Heusner, Till; Bockisch, Andreas; Hilgard, Philipp; Antoch, Gerald
2009-05-01
Radioembolization with (90)Y microspheres is a novel treatment for hepatic tumors. Generally, hepatic arteriography and (99m)Tc-macroaggregated albumin (MAA) scanning are performed before selective internal radiation therapy to detect extrahepatic shunting to the lung or the gastrointestinal tract. Whereas previous studies have used only planar or SPECT scans, the present study used (99m)Tc-MAA SPECT/CT scintigraphy (SPECT with integrated low-dose CT) to evaluate whether SPECT/CT and additional diagnostic contrast-enhanced CT before radioembolization with (90)Y microspheres are superior to SPECT or planar imaging alone for detection of gastrointestinal shunting. In a prospective study, we enrolled 58 patients (mean age, 66 y; SD, 12 y; 10 women and 48 men) with hepatocellular carcinoma who underwent hepatic arteriography and scintigraphy with (99m)Tc-MAA using planar imaging, SPECT, and SPECT with integrated low-dose CT of the upper abdomen (acquired with a hybrid SPECT/CT camera). The ability of the different imaging modalities to detect extrahepatic MAA shunting was compared. Patient follow-up of a mean of 180 d served as the standard of reference. Gastrointestinal shunting was revealed by planar imaging in 4, by SPECT in 9, and by SPECT/CT in 16 of the 68 examinations. For planar imaging, the sensitivity for detection of gastrointestinal shunting was 25%, the specificity 87%, and the accuracy 72%. For SPECT without CT, the sensitivity was 56%, the specificity 87%, and the accuracy 79%. SPECT with CT fusion had a sensitivity of 100%, a specificity of 94%, and an accuracy of 96%. In 3 patients, MAA deposits in the portal vein could accurately be attributed to tumor thrombus only with additional information from contrast-enhanced CT. The follow-up did not show any gastrointestinal complications. SPECT with integrated low-dose CT using (99m)Tc-MAA is beneficial in radioembolization with (90)Y microspheres because it increases the sensitivity and specificity of (99m)Tc-MAA SPECT when detecting extrahepatic arterial shunting. The overall low risk of gastrointestinal complications in radioembolization may therefore be further reduced by SPECT/CT.
Shachar, Yair; Adileh, Mohamed; Keidar, Assaf; Eid, Luminita; Hubert, Ayalah; Temper, Mark; Azam, Salah; Beny, Alex; Grednader, Tal; Khalaileh, Abed; Yuval, Jonathan B.; Stojadinovic, Alexander; Avital, Itzhak; Nissan, Aviram
2015-01-01
Background: Achieving complete cytoreduction of peritoneal surface malignancies (PSM) can be challenging. In most cases, delivery of heated intra-peritoneal chemotherapy (HIPEC) is straightforward. However, using the closed technique in some cases may be technically challenging; for example, in patients requiring abdominal closure using a large synthetic mesh. In cases where groin hernias are present, it is imperative to resect the hernia sac, since it may contain tumor deposits. In cases with major inguinal involvement where disease may spread out of the hernia sac or in cases where a hernia repair was performed while disease is present, inguinal perfusion should be considered. Aim: To describe our experience with combined intra-peritoneal and inguinal perfusion of HIPEC following cytoreductive surgery. Patients and Methods: This is a retrospective review of all patients who underwent cytoreductive surgery (CRS) and HIPEC at our institution. A prospectively maintained database containing data of patients treated by CRS and HIPEC (n=122) was reviewed. All patients with macroscopic inguinal involvement by PSM with complete cytoreduction perfused by HIPEC were included. Results: We identified five cases who underwent CRS and combined intraperitoneal and inguinal perfusion after resection of large inguinal tumor deposits (n=4) or after a recent hernia repair with hernial sac involvement by mucinous adenocarcinoma (n=1). All five patients were successfully perfused using an additional outflow catheter placed in the groin. Discussion: In cases of inguinal involvement by PSM, complete cytoreduction should be achieved and perfusion of the involved groin considered as it is feasible and safe. PMID:25663941
Nanasato, M; Ando, A; Isobe, S; Nonokawa, M; Hirayama, H; Tsuboi, N; Ito, T; Hirai, M; Yokota, M; Saito, H
2001-12-01
Electrocardiographically (ECG) gated myocardial SPECT with (99m)Tc-tetrofosmin has been used widely to assess left ventricular (LV) function. However, the accuracy of variables using ECG gated myocardial SPECT with beta-methyl-p-(123)I-iodophenylpentadecanoic acid (BMIPP) has not been well defined. Thirty-six patients (29 men, 7 women; mean age, 61.6 +/- 15.6 y) with ischemic heart disease underwent ECG gated myocardial SPECT with (123)I-BMIPP and with (99m)Tc-tetrofosmin and left ventriculography (LVG) within 1 wk. LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), and LV end-systolic volume (LVESV) were determined on gated SPECT using commercially available software for automatic data analysis. These volume-related items on LVG were calculated with an area-length method and were estimated by 2 independent observers to evaluate interobserver validity. The regional wall motion with these methods was assessed visually. LVEF was 41.1% +/- 12.5% on gated SPECT with (123)I-BMIPP, 44.5% +/- 13.1% on gated SPECT with (99m)Tc-tetrofosmin, and 46.0% +/- 12.7% on LVG. Global LV function and regional wall motion between both gated SPECT procedures had excellent correlation (LVEF, r = 0.943; LVEDV, r = 0.934; LVESV, r = 0.952; regional wall motion, kappa = 0.92). However, the correlations of global LV function and regional wall motion between each gated SPECT and LVG were significantly lower. Gated SPECT with (123)I-BMIPP showed the same interobserver validity as gated SPECT with (99m)Tc-tetrofosmin. Gated SPECT with (123)I-BMIPP provides high accuracy with regard to LV function and is sufficiently applicable for use in clinical SPECT. This technique can simultaneously reveal myocardial fatty acid metabolism and LV function, which may be useful to evaluate various cardiac diseases.
Lambrechts, T; Papantoniou, I; Sonnaert, M; Schrooten, J; Aerts, J-M
2014-10-01
Online and non-invasive quantification of critical tissue engineering (TE) construct quality attributes in TE bioreactors is indispensable for the cost-effective up-scaling and automation of cellular construct manufacturing. However, appropriate monitoring techniques for cellular constructs in bioreactors are still lacking. This study presents a generic and robust approach to determine cell number and metabolic activity of cell-based TE constructs in perfusion bioreactors based on single oxygen sensor data in dynamic perfusion conditions. A data-based mechanistic modeling technique was used that is able to correlate the number of cells within the scaffold (R(2) = 0.80) and the metabolic activity of the cells (R(2) = 0.82) to the dynamics of the oxygen response to step changes in the perfusion rate. This generic non-destructive measurement technique is effective for a large range of cells, from as low as 1.0 × 10(5) cells to potentially multiple millions of cells, and can open-up new possibilities for effective bioprocess monitoring. © 2014 Wiley Periodicals, Inc.
Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J
1993-01-01
Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.
Bybee, Kevin A; Lee, John; Markiewicz, Richard; Longmore, Ryan; McGhie, A Iain; O'Keefe, James H; Hsu, Bai-Ling; Kennedy, Kevin; Thompson, Randall C; Bateman, Timothy M
2010-04-01
A limitation of stress myocardial perfusion imaging (MPI) is the inability to detect non-obstructive coronary artery disease (CAD). One advantage of MPI with a hybrid CT device is the ability to obtain same-setting measurement of the coronary artery calcium score (CACS). Utilizing our single-center nuclear database, we identified 760 consecutive patients with: (1) no CAD history; (2) a normal clinically indicated Rb-82 PET/CT stress perfusion study; and (3) a same-setting CAC scan. 487 of 760 patients (64.1%) had subclinical CAD based on an abnormal CACS. Of those with CAC, the CACS was > or =100, > or =400, and > or =1000 in 47.0%, 22.4%, and 8.4% of patients, respectively. Less than half of the patients with CAC were receiving aspirin or statin medications prior to PET/CT imaging. Patients with CAC were more likely to be initiated or optimized on proven medical therapy for CAD immediately following PET/CT MPI compared to those without CAC. Subclinical CAD is common in patients without known CAD and normal myocardial perfusion assessed by hybrid PET/CT imaging. Identification of CAC influences subsequent physician prescribing patterns such that those with CAC are more likely to be treated with proven medical therapy for the treatment of CAD.
Gonul, Ali Saffet; Kula, Mustafa; Bilgin, Arzu Guler; Tutus, Ahmet; Oguz, Aslan
2004-09-01
Depressive patients with psychotic features demonstrate distinct biological abnormalities in the hypothalamic-pituitary-adrenal axis (HPA), dopaminergic activity, electroencephalogram sleep profiles and measures of serotonergic function when compared to nonpsychotic depressive patients. However, very few functional neuroimaging studies were specifically designed for studying the effects of psychotic features on neuroimaging findings in depressed patients. The objective of the present study was to compare brain Single Photon Emission Tomography (SPECT) images in a group of unmedicated depressive patients with and without psychotic features. Twenty-eight patients who fully met DSM-IV criteria for major depressive disorder (MDD, 12 had psychotic features) were included in the study. They were compared with 16 control subjects matched for age, gender and education. Both psychotic and nonpsychotic depressed patients showed significantly lower regional cerebral blood flow (rCBF) values in the left and right superior frontal cortex, and left anterior cingulate cortex compared to those of controls. In comparison with depressive patients without psychotic features (DwoPF), depressive patients with psychotic features (DwPF) showed significantly lower rCBF perfusion ratios in left parietal cortex, left cerebellum but had higher rCBF perfusion ratio in the left inferior frontal cortex and caudate nucleus. The present study showed that DwPF have a different rCBF pattern compared to patients without psychotic features. Abnormalities involving inferior frontal cortex, striatum and cerebellum may play an important role in the generation of psychotic symptoms in depression.
Cholinergic and perfusion brain networks in Parkinson disease dementia.
Colloby, Sean J; McKeith, Ian G; Burn, David J; Wyper, David J; O'Brien, John T; Taylor, John-Paul
2016-07-12
To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Forty-nine participants (25 PDD and 24 elderly controls) underwent (123)I-QNB and (99m)Tc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor-naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition. © 2016 American Academy of Neurology.
Cholinergic and perfusion brain networks in Parkinson disease dementia
McKeith, Ian G.; Burn, David J.; Wyper, David J.; O'Brien, John T.; Taylor, John-Paul
2016-01-01
Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). Results: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor–naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition. PMID:27306636
NASA Astrophysics Data System (ADS)
Kalayeh, Mahdi M.; Marin, Thibault; Pretorius, P. Hendrik; Wernick, Miles N.; Yang, Yongyi; Brankov, Jovan G.
2011-03-01
In this paper, we present a numerical observer for image quality assessment, aiming to predict human observer accuracy in a cardiac perfusion defect detection task for single-photon emission computed tomography (SPECT). In medical imaging, image quality should be assessed by evaluating the human observer accuracy for a specific diagnostic task. This approach is known as task-based assessment. Such evaluations are important for optimizing and testing imaging devices and algorithms. Unfortunately, human observer studies with expert readers are costly and time-demanding. To address this problem, numerical observers have been developed as a surrogate for human readers to predict human diagnostic performance. The channelized Hotelling observer (CHO) with internal noise model has been found to predict human performance well in some situations, but does not always generalize well to unseen data. We have argued in the past that finding a model to predict human observers could be viewed as a machine learning problem. Following this approach, in this paper we propose a channelized relevance vector machine (CRVM) to predict human diagnostic scores in a detection task. We have previously used channelized support vector machines (CSVM) to predict human scores and have shown that this approach offers better and more robust predictions than the classical CHO method. The comparison of the proposed CRVM with our previously introduced CSVM method suggests that CRVM can achieve similar generalization accuracy, while dramatically reducing model complexity and computation time.
Betancur, Julian; Commandeur, Frederic; Motlagh, Mahsaw; Sharir, Tali; Einstein, Andrew J; Bokhari, Sabahat; Fish, Mathews B; Ruddy, Terrence D; Kaufmann, Philipp; Sinusas, Albert J; Miller, Edward J; Bateman, Timothy M; Dorbala, Sharmila; Di Carli, Marcelo; Germano, Guido; Otaki, Yuka; Tamarappoo, Balaji K; Dey, Damini; Berman, Daniel S; Slomka, Piotr J
2018-03-12
The study evaluated the automatic prediction of obstructive disease from myocardial perfusion imaging (MPI) by deep learning as compared with total perfusion deficit (TPD). Deep convolutional neural networks trained with a large multicenter population may provide improved prediction of per-patient and per-vessel coronary artery disease from single-photon emission computed tomography MPI. A total of 1,638 patients (67% men) without known coronary artery disease, undergoing stress 99m Tc-sestamibi or tetrofosmin MPI with new generation solid-state scanners in 9 different sites, with invasive coronary angiography performed within 6 months of MPI, were studied. Obstructive disease was defined as ≥70% narrowing of coronary arteries (≥50% for left main artery). Left ventricular myocardium was segmented using clinical nuclear cardiology software and verified by an expert reader. Stress TPD was computed using sex- and camera-specific normal limits. Deep learning was trained using raw and quantitative polar maps and evaluated for prediction of obstructive stenosis in a stratified 10-fold cross-validation procedure. A total of 1,018 (62%) patients and 1,797 of 4,914 (37%) arteries had obstructive disease. Area under the receiver-operating characteristic curve for disease prediction by deep learning was higher than for TPD (per patient: 0.80 vs. 0.78; per vessel: 0.76 vs. 0.73: p < 0.01). With deep learning threshold set to the same specificity as TPD, per-patient sensitivity improved from 79.8% (TPD) to 82.3% (deep learning) (p < 0.05), and per-vessel sensitivity improved from 64.4% (TPD) to 69.8% (deep learning) (p < 0.01). Deep learning has the potential to improve automatic interpretation of MPI as compared with current clinical methods. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
De Lorenzo, Andrea; Hachamovitch, Rory; Kang, Xingping; Gransar, Heidi; Sciammarella, Maria G; Hayes, Sean W; Friedman, John D; Cohen, Ishac; Germano, Guido; Berman, Daniel S
2005-01-01
The value of exercise-induced ST-segment depression for the prognostic evaluation of patients with 1 mm of ST depression or greater on the resting electrocardiogram is controversial. Patients who underwent exercise myocardial perfusion single photon emission computed tomography (MPS) and had resting ST depression of 1 mm or greater with a nondiagnostic exercise electrocardiographic response (n = 1122) were followed up for 3.4 +/- 2.3 years. Those with paced rhythm, pre-excitation, left bundle branch block, or myocardial revascularization within the first 60 days after MPS were excluded. Additional exercise-induced ST-segment depression was considered significant if > or = 2 mm MPS was scored semiquantitatively by use of a 20-segment model of the left ventricle; the percentage of myocardium involved with stress defects (% myo) was derived by normalizing to the maximal possible score of 80. Hard events were defined as nonfatal myocardial infarction or cardiac death. A Cox analysis was used to determine independent predictors of hard events among clinical, exercise, and nuclear variables. Hard event rates increased as a function of % myo for either patients with exercise-induced ST depression (1.4%/y for normal MPS vs 4.1%/y for % myo >10%, P < .03) or those without it (0.7%/y for normal MPS vs 3.0%/y for % myo >10%, P = .0001). Age, diabetes mellitus, shortness of breath as the presenting symptom, and % myo were independent predictors of hard events. Exercise-induced ST depression was predictive of hard events only when it was 3 mm or greater. The presence and extent of perfusion defects, reflected in the % myo, had incremental prognostic value over clinical variables and also over all degrees of exercise-induced ST depression. Although MPS effectively risk-stratifies patients with resting ST depression of 1 mm or greater, the prognostic value of exercise-induced ST depression is limited in these patients, with a small added risk when severe (> or = 3 mm).
NASA Astrophysics Data System (ADS)
Lai, Xiaochun; Meng, Ling-Jian
2018-02-01
In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.
Myocardial perfusion imaging: Lessons learned and work to be done-update.
Iskandrian, Ami E; Dilsizian, Vasken; Garcia, Ernest V; Beanlands, Rob S; Cerqueira, Manuel; Soman, Prem; Berman, Daniel S; Cuocolo, Alberto; Einstein, Andrew J; Morgan, Charity J; Hage, Fadi G; Schelbert, Heinrich R; Bax, Jeroen J; Wu, Joseph C; Shaw, Leslee J; Sadeghi, Mehran M; Tamaki, Nagara; Kaufmann, Philipp A; Gropler, Robert; Dorbala, Sharmila; Van Decker, William
2018-02-01
As the second term of our commitment to Journal begins, we, the editors, would like to reflect on a few topics that have relevance today. These include prognostication and paradigm shifts; Serial testing: How to handle data? Is the change in perfusion predictive of outcome and which one? Ischemia-guided therapy: fractional flow reserve vs perfusion vs myocardial blood flow; positron emission tomography (PET) imaging using Rubidium-82 vs N-13 ammonia vs F-18 Flurpiridaz; How to differentiate microvascular disease from 3-vessel disease by PET? The imaging scene outside the United States, what are the differences and similarities? Radiation exposure; Special issues with the new cameras? Is attenuation correction needed? Are there normal databases and are these specific to each camera system? And finally, hybrid imaging with single-photon emission tomography or PET combined with computed tomography angiography or coronary calcium score. We hope these topics are of interest to our readers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negus, Ian S.; Holmes, Robin B.; Thorne, Gareth C.
Purpose: To make an adaptable, head shaped radionuclide phantom to simulate molecular imaging of the brain using clinical acquisition and reconstruction protocols. This will allow the characterization and correction of scanner characteristics, and improve the accuracy of clinical image analysis, including the application of databases of normal subjects. Methods: A fused deposition modeling 3D printer was used to create a head shaped phantom made up of transaxial slabs, derived from a simulated MRI dataset. The attenuation of the printed polylactide (PLA), measured by means of the Hounsfield unit on CT scanning, was set to match that of the brain bymore » adjusting the proportion of plastic filament and air (fill ratio). Transmission measurements were made to verify the attenuation of the printed slabs. The radionuclide distribution within the phantom was created by adding {sup 99m}Tc pertechnetate to the ink cartridge of a paper printer and printing images of gray and white matter anatomy, segmented from the same MRI data. The complete subresolution sandwich phantom was assembled from alternate 3D printed slabs and radioactive paper sheets, and then imaged on a dual headed gamma camera to simulate an HMPAO SPECT scan. Results: Reconstructions of phantom scans successfully used automated ellipse fitting to apply attenuation correction. This removed the variability inherent in manual application of attenuation correction and registration inherent in existing cylindrical phantom designs. The resulting images were assessed visually and by count profiles and found to be similar to those from an existing elliptical PMMA phantom. Conclusions: The authors have demonstrated the ability to create physically realistic HMPAO SPECT simulations using a novel head-shaped 3D printed subresolution sandwich method phantom. The phantom can be used to validate all neurological SPECT imaging applications. A simple modification of the phantom design to use thinner slabs would make it suitable for use in PET.« less
MR-based keyhole SPECT for small animal imaging
Lee, Keum Sil; Roeck, Werner W; Gullberg, Grant T; Nalcioglu, Orhan
2011-01-01
The rationale for multi-modality imaging is to integrate the strengths of different imaging technologies while reducing the shortcomings of an individual modality. The work presented here proposes a limited-field-of-view (LFOV) SPECT reconstruction technique that can be implemented on a multi-modality MR/SPECT system that can be used to obtain simultaneous MRI and SPECT images for small animal imaging. The reason for using a combined MR/SPECT system in this work is to eliminate any possible misregistration between the two sets of images when MR images are used as a priori information for SPECT. In nuclear imaging the target area is usually smaller than the entire object; thus, focusing the detector on the LFOV results in various advantages including the use of a smaller nuclear detector (less cost), smaller reconstruction region (faster reconstruction) and higher spatial resolution when used in conjunction with pinhole collimators with magnification. The MR/SPECT system can be used to choose a region of interest (ROI) for SPECT. A priori information obtained by the full field-of-view (FOV) MRI combined with the preliminary SPECT image can be used to reduce the dimensions of the SPECT reconstruction by limiting the computation to the smaller FOV while reducing artifacts resulting from the truncated data. Since the technique is based on SPECT imaging within the LFOV it will be called the keyhole SPECT (K-SPECT) method. At first MRI images of the entire object using a larger FOV are obtained to determine the location of the ROI covering the target organ. Once the ROI is determined, the animal is moved inside the radiofrequency (rf) coil to bring the target area inside the LFOV and then simultaneous MRI and SPECT are performed. The spatial resolution of the SPECT image is improved by employing a pinhole collimator with magnification >1 by having carefully calculated acceptance angles for each pinhole to avoid multiplexing. In our design all the pinholes are focused to the center of the LFOV. K-SPECT reconstruction is accomplished by generating an adaptive weighting matrix using a priori information obtained by simultaneously acquired MR images and the radioactivity distribution obtained from the ROI region of the SPECT image that is reconstructed without any a priori input. Preliminary results using simulations with numerical phantoms show that the image resolution of the SPECT image within the LFOV is improved while minimizing artifacts arising from parts of the object outside the LFOV due to the chosen magnification and the new reconstruction technique. The root-mean-square-error (RMSE) in the out-of-field artifacts was reduced by 60% for spherical phantoms using the K-SPECT reconstruction technique and by 48.5–52.6% for the heart in the case with the MOBY phantom. The KSPECT reconstruction technique significantly improved the spatial resolution and quantification while reducing artifacts from the contributions outside the LFOV as well as reducing the dimension of the reconstruction matrix. PMID:21220840
The AdaptiSPECT Imaging Aperture
Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.
2015-01-01
In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577
The role of PET quantification in cardiovascular imaging.
Slomka, Piotr; Berman, Daniel S; Alexanderson, Erick; Germano, Guido
2014-08-01
Positron Emission Tomography (PET) has several clinical and research applications in cardiovascular imaging. Myocardial perfusion imaging with PET allows accurate global and regional measurements of myocardial perfusion, myocardial blood flow and function at stress and rest in one exam. Simultaneous assessment of function and perfusion by PET with quantitative software is currently the routine practice. Combination of ejection fraction reserve with perfusion information may improve the identification of severe disease. The myocardial viability can be estimated by quantitative comparison of fluorodeoxyglucose ( 18 FDG) and rest perfusion imaging. The myocardial blood flow and coronary flow reserve measurements are becoming routinely included in the clinical assessment due to enhanced dynamic imaging capabilities of the latest PET/CT scanners. Absolute flow measurements allow evaluation of the coronary microvascular dysfunction and provide additional prognostic and diagnostic information for coronary disease. Standard quantitative approaches to compute myocardial blood flow from kinetic PET data in automated and rapid fashion have been developed for 13 N-ammonia, 15 O-water and 82 Rb radiotracers. The agreement between software methods available for such analysis is excellent. Relative quantification of 82 Rb PET myocardial perfusion, based on comparisons to normal databases, demonstrates high performance for the detection of obstructive coronary disease. New tracers, such as 18 F-flurpiridaz may allow further improvements in the disease detection. Computerized analysis of perfusion at stress and rest reduces the variability of the assessment as compared to visual analysis. PET quantification can be enhanced by precise coregistration with CT angiography. In emerging clinical applications, the potential to identify vulnerable plaques by quantification of atherosclerotic plaque uptake of 18 FDG and 18 F-sodium fluoride tracers in carotids, aorta and coronary arteries has been demonstrated.
Campbell, Fiona; Thokala, Praveen; Uttley, Lesley C; Sutton, Anthea; Sutton, Alex J; Al-Mohammad, Abdallah; Thomas, Steven M
2014-09-01
Cardiac magnetic resonance imaging (CMR) is increasingly used to assess patients for myocardial viability prior to revascularisation. This is important to ensure that only those likely to benefit are subjected to the risk of revascularisation. To assess current evidence on the accuracy and cost-effectiveness of CMR to test patients prior to revascularisation in ischaemic cardiomyopathy; to develop an economic model to assess cost-effectiveness for different imaging strategies; and to identify areas for further primary research. Databases searched were: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations Initial searches were conducted in March 2011 in the following databases with dates: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations via Ovid (1946 to March 2011); Bioscience Information Service (BIOSIS) Previews via Web of Science (1969 to March 2011); EMBASE via Ovid (1974 to March 2011); Cochrane Database of Systematic Reviews via The Cochrane Library (1996 to March 2011); Cochrane Central Register of Controlled Trials via The Cochrane Library 1998 to March 2011; Database of Abstracts of Reviews of Effects via The Cochrane Library (1994 to March 2011); NHS Economic Evaluation Database via The Cochrane Library (1968 to March 2011); Health Technology Assessment Database via The Cochrane Library (1989 to March 2011); and the Science Citation Index via Web of Science (1900 to March 2011). Additional searches were conducted from October to November 2011 in the following databases with dates: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations via Ovid (1946 to November 2011); BIOSIS Previews via Web of Science (1969 to October 2011); EMBASE via Ovid (1974 to November 2011); Cochrane Database of Systematic Reviews via The Cochrane Library (1996 to November 2011); Cochrane Central Register of Controlled Trials via The Cochrane Library (1998 to November 2011); Database of Abstracts of Reviews of Effects via The Cochrane Library (1994 to November 2011); NHS Economic Evaluation Database via The Cochrane Library (1968 to November 2011); Health Technology Assessment Database via The Cochrane Library (1989 to November 2011); and the Science Citation Index via Web of Science (1900 to October 2011). Electronic databases were searched March-November 2011. The systematic review selected studies that assessed the clinical effectiveness and cost-effectiveness of CMR to establish the role of CMR in viability assessment compared with other imaging techniques: stress echocardiography, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Studies had to have an appropriate reference standard and contain accuracy data or sufficient details so that accuracy data could be calculated. Data were extracted by two reviewers and discrepancies resolved by discussion. Quality of studies was assessed using the QUADAS II tool (University of Bristol, Bristol, UK). A rigorous diagnostic accuracy systematic review assessed clinical and cost-effectiveness of CMR in viability assessment. A health economic model estimated costs and quality-adjusted life-years (QALYs) accrued by diagnostic pathways for identifying patients with viable myocardium in ischaemic cardiomyopathy with a view to revascularisation. The pathways involved CMR, stress echocardiography, SPECT, PET alone or in combination. Strategies of no testing and revascularisation were included to determine the most cost-effective strategy. Twenty-four studies met the inclusion criteria. All were prospective. Participant numbers ranged from 8 to 52. The mean left ventricular ejection fraction in studies reporting this outcome was 24-62%. CMR approaches included stress CMR and late gadolinium-enhanced cardiovascular magnetic resonance imaging (CE CMR). Recovery following revascularisation was the reference standard. Twelve studies assessed diagnostic accuracy of stress CMR and 14 studies assessed CE CMR. A bivariate regression model was used to calculate the sensitivity and specificity of CMR. Summary sensitivity and specificity for stress CMR was 82.2% [95% confidence interval (CI) 73.2% to 88.7%] and 87.1% (95% CI 80.4% to 91.7%) and for CE CMR was 95.5% (95% CI 94.1% to 96.7%) and 53% (95% CI 40.4% to 65.2%) respectively. The sensitivity and specificity of PET, SPECT and stress echocardiography were calculated using data from 10 studies and systematic reviews. The sensitivity of PET was 94.7% (95% CI 90.3% to 97.2%), of SPECT was 85.1% (95% CI 78.1% to 90.2%) and of stress echocardiography was 77.6% (95% CI 70.7% to 83.3%). The specificity of PET was 68.8% (95% CI 50% to 82.9%), of SPECT was 62.1% (95% CI 52.7% to 70.7%) and of stress echocardiography was 69.6% (95% CI 62.4% to 75.9%). All currently used diagnostic strategies were cost-effective compared with no testing at current National Institute for Health and Care Excellence thresholds. If the annual mortality rates for non-viable patients were assumed to be higher for revascularised patients, then testing with CE CMR was most cost-effective at a threshold of £20,000/QALY. The proportion of model runs in which each strategy was most cost-effective, at a threshold of £20,000/QALY, was 40% for CE CMR, 42% for PET and 16.5% for revascularising everyone. The expected value of perfect information at £20,000/QALY was £620 per patient. If all patients (viable or not) gained benefit from revascularisation, then it was most cost-effective to revascularise all patients. Definitions and techniques assessing viability were highly variable, making data extraction and comparisons difficult. Lack of evidence meant assumptions were made in the model leading to uncertainty; differing scenarios were generated around key assumptions. All the diagnostic pathways are a cost-effective use of NHS resources. Given the uncertainty in the mortality rates, the cost-effectiveness analysis was performed using a set of scenarios. The cost-effectiveness analyses suggest that CE CMR and revascularising everyone were the optimal strategies. Future research should look at implementation costs for this type of imaging service, provide guidance on consistent reporting of diagnostic testing data for viability assessment, and focus on the impact of revascularisation or best medical therapy in this group of high-risk patients. The National Institute of Health Technology Assessment programme.
Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.
2010-01-01
FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137
Blood-pool SPECT in addition to bone SPECT in the viability assessment in mandibular reconstruction.
Aydogan, F; Akbay, E; Cevik, C; Kalender, E
2014-01-01
The assessment of the postoperative viability of vascularized and non-vascularized grafts used in the reconstruction of mandibular defects due to trauma and surgical reasons is a major problem in maxillofacial surgery. In the present study, we evaluated the feasibility and image quality of blood-pool SPECT, which is used for the first time in the literature here in the assessment of mandibular reconstruction, in addition to non-invasive bone scintigraphy and bone SPECT. We also evaluated whether it would be useful in clinical prediction. Micro-vascularized and non-vascularized bone grafts were used in 12 Syrian men with maxillofacial trauma. Between days 5-7 after surgery, three-phase bone scintigraphy, blood-pool SPECT and delayed bone SPECT scans were performed. After month 6, the patients were assessed by control CT scans. Of the non-vascularized grafts, one graft was reported as non-viable at week one. At month 6, graft resorption was demonstrated on the CT images. The remaining non-vascularized grafts and all of the micro-vascularized grafts were considered to be viable according to delayed bone SPECT and blood-pool SPECT images. However, only the anterior and posterior ends could be clearly assessed on delayed SPECT images, while blood-pool SPECT images allowed the clear assessment of the entire graft. The combined use of blood-pool and delayed SPECT scans could allow for better assessment of graft viability in the early period, and can provide more detailed information to clinicians about prognosis in the follow-up of patients undergoing mandibular graft reconstruction.
Molecular imaging of angiogenesis with SPECT
Boerman, Otto C.
2010-01-01
Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. PMID:20617435
Fujimoto, Ayataka; Okanishi, Tohru; Kanai, Sotaro; Sato, Keishiro; Itamura, Shinji; Baba, Shimpei; Nishimura, Mitsuyo; Masui, Takayuki; Enoki, Hideo
2018-06-01
When the results of electroencephalography (EEG), magnetic resonance imaging (MRI), and seizure semiology are discordant or no structural lesion is evident on MRI, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are important examinations for lateralization or localization of epileptic regions. We hypothesized that the concordance between interictal 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG)-PET and iomazenil (IMZ)-SPECT could suggest the epileptogenic lobe in patients with non-lesional findings on MRI. Fifty-nine patients (31 females, 28 males; mean age, 29 years; median age, 27 years; range, 7-56 years) underwent subdural electrode implantation followed by focus resection. All patients underwent 18 FDG-PET, IMZ-SPECT, and focus resection surgery. Follow-up was continued for ≥ 2 years. We evaluated surgical outcomes as seizure-free or not and analyzed correlations between outcomes and concordances of low-uptake lobes on PET, SPECT, or both PET and SPECT to the resection lobes. We used uni- and multivariate logistic regression analyses. In univariate analyses, all three concordances correlated significantly with seizure-free outcomes (PET, p = 0.017; SPECT, p = 0.030; both PET and SPECT, p = 0.006). In multivariate analysis, concordance between resection and low-uptake lobes in both PET and SPECT correlated significantly with seizure-free outcomes (p = 0.004). The odds ratio was 6.0. Concordance between interictal 18 FDG-PET and IMZ-SPECT suggested that the epileptogenic lobe is six times better than each examination alone among patients with non-lesional findings on MRI. IMZ-SPECT and 18 FDG-PET are complementary examinations in the assessment of localization-related epilepsy.
NASA Astrophysics Data System (ADS)
Tsui, Benjamin M. W.; Hugg, James W.; Xu, Jingyan; Chen, Si; Meier, Dirk; Edelstein, William; El-Sharkawy, Abdel; Wagenaar, Douglas J.; Patt, Bradley E.
2011-03-01
We describe a continuing design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals. A first generation prototype SPECT system was designed and constructed to fit inside a MRI system with a gradient bore inner diameter of 12 cm. It consists of 3 angularly offset rings of 8 detectors (1"x1", 16x16 pixels MR-compatible solid-state CZT). A matching 24-pinhole collimator sleeve, made of a tungsten-compound, provides projections from a common FOV of ~25 mm. A birdcage RF coil for MRI data acquisition surrounds the collimator. The SPECT system was tested inside a clinical 3T MRI system. Minimal interference was observed on the simultaneously acquired SPECT and MR images. We developed a sparse-view image reconstruction method based on accurate modeling of the point response function (PRF) of each of the 24 pinholes to provide artifact-free SPECT images. The stationary SPECT system provides relatively low resolution of 3-5 mm but high geometric efficiency of 0.5- 1.2% for fast dynamic acquisition, demonstrated in a SPECT renal kinetics study using Tc-99m DTPA. Based on these results, a second generation prototype MR-compatible SPECT system with an outer diameter of 20 cm that fits inside a mid-sized preclinical MRI system is being developed. It consists of 5 rings of 19 CZT detectors. The larger ring diameter allows the use of optimized multi-pinhole collimator designs, such as high system resolution up to ~1 mm, high geometric efficiency, or lower system resolution without collimator rotation. The anticipated performance of the new system is supported by simulation data.
NASA Astrophysics Data System (ADS)
Fakhri, G. El; Kijewski, M. F.; Moore, S. C.
2001-06-01
Estimates of SPECT activity within certain deep brain structures could be useful for clinical tasks such as early prediction of Alzheimer's disease with Tc-99m or Parkinson's disease with I-123; however, such estimates are biased by poor spatial resolution and inaccurate scatter and attenuation corrections. We compared an analytical approach (AA) of more accurate quantitation to a slower iterative approach (IA). Monte Carlo simulated projections of 12 normal and 12 pathologic Tc-99m perfusion studies, as well as 12, normal and 12 pathologic I-123 neurotransmission studies, were generated using a digital brain phantom and corrected for scatter by a multispectral fitting procedure. The AA included attenuation correction by a modified Metz-Fan algorithm and activity estimation by a technique that incorporated Metz filtering to compensate for variable collimator response (VCR), IA-modeled attenuation, and VCR in the projector/backprojector of an ordered subsets-expectation maximization (OSEM) algorithm. Bias and standard deviation over the 12 normal and 12 pathologic patients were calculated with respect to the reference values in the corpus callosum, caudate nucleus, and putamen. The IA and AA yielded similar quantitation results in both Tc-99m and I-123 studies in all brain structures considered in both normal and pathologic patients. The bias with respect to the reference activity distributions was less than 7% for Tc-99m studies, but greater than 30% for I-123 studies, due to partial volume effect in the striata. Our results were validated using I-123 physical acquisitions of an anthropomorphic brain phantom. The IA yielded quantitation accuracy comparable to that obtained with IA, while requiring much less processing time. However, in most conditions, IA yielded lower noise for the same bias than did AA.
SPECT-CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone.
Sharma, Punit; Sharma, Shekhar; Ballal, Sanjana; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh
2012-09-01
To assess the patient radiation dose during routine clinical single-photon emission computed tomography-computed tomography (SPECT-CT) and measure the increase as compared with SPECT alone. Data pertaining to 357 consecutive patients who had undergone radioisotope imaging along with SPECT-CT of a selected volume were retrospectively evaluated. Dose of the injected radiopharmaceutical (MBq) was noted, and the effective dose (mSv) was calculated as per International Commission on Radiological Protection (ICRP) guidelines. The volume-weighted computed tomography dose index (CTDIvol) and dose length product of the CT were also assessed using standard phantoms. The effective dose (mSv) due to CT was calculated as the product of dose length product and a conversion factor depending on the region of investigation, using ICRP guidelines. The dose due to CT was compared among different investigations. The increase in effective dose was calculated as CT dose expressed as a percentage of radiopharmaceutical dose. The per-patient CT effective dose for different studies varied between 0.06 and 11.9 mSv. The mean CT effective dose was lowest for 99mTc-ethylene cysteine dimer brain SPECT-CT (0.9 ± 0.7) and highest for 99mTc-methylene diphosphonate bone SPECT-CT (4.2 ± 2.8). The increase in radiation dose (SPECT-CT vs. SPECT) varied widely (2.3-666.4% for 99mTc-tracers and 0.02-96.2% for 131I-tracers). However, the effective dose of CT in SPECT-CT was less than the values reported for conventional CT examinations of the same regions. Addition of CT to nuclear medicine imaging in the form of SPECT-CT increases the radiation dose to the patient, with the effective dose due to CT exceeding the effective dose of RP in many instances. Hence, appropriate utilization and optimization of the protocols of SPECT-CT is needed to maximize benefit to patients.
Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.
2013-01-01
Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y microsphere distribution after radioembolization. PMID:23405207
Detection of Sentinel Lymph Nodes in Gynecologic Tumours by Planar Scintigraphy and SPECT/CT
Kraft, Otakar; Havel, Martin
2012-01-01
Objective: Assess the role of planar lymphoscintigraphy and fusion imaging of SPECT/CT in sentinel lymph node (SLN) detection in patients with gynecologic tumours. Material and Methods: Planar scintigraphy and hybrid modality SPECT/CT were performed in 64 consecutive women with gynecologic tumours (mean age 53.6 with range 30-77 years): 36 pts with cervical cancer (Group A), 21 pts with endometrial cancer (Group B), 7 pts with vulvar carcinoma (Group C). Planar and SPECT/CT images were interpreted separately by two nuclear medicine physicians. Efficacy of these two techniques to image SLN were compared. Results: Planar scintigraphy did not image SLN in 7 patients (10.9%), SPECT/CT was negative in 4 patients (6.3%). In 35 (54.7%) patients the number of SLNs captured on SPECT/CT was higher than on planar imaging. Differences in detection of SLN between planar and SPECT/CT imaging in the group of all 64 patients are statistically significant (p<0.05). Three foci of uptake (1.7% from totally visible 177 foci on planar images) in 2 patients interpreted on planar images as hot LNs were found to be false positive non-nodal sites of uptake when further assessed on SPECT/CT. SPECT/CT showed the exact anatomical location of all visualised sentinel nodes. Conclusion: In some patients with gynecologic cancers SPECT/CT improves detection of sentinel lymph nodes. It can image nodes not visible on planar scintigrams, exclude false positive uptake and exactly localise pelvic and paraaortal SLNs. It improves anatomic localization of SLNs. Conflict of interest:None declared. PMID:23486989
NOTE: Implementation of angular response function modeling in SPECT simulations with GATE
NASA Astrophysics Data System (ADS)
Descourt, P.; Carlier, T.; Du, Y.; Song, X.; Buvat, I.; Frey, E. C.; Bardies, M.; Tsui, B. M. W.; Visvikis, D.
2010-05-01
Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy.
Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru
The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.
Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; ...
2015-10-09
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Finally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less
Non-Invasive Detection of Risk for Emotion Provoked Myocardial Ischemia
Burg, Matthew M.; Graeber, Brendon; Vashist, Aseem; Collins, Dorothea; Earley, Christine; Liu, Joyce; Lampert, Rachel; Soufer, Robert
2009-01-01
Objectives To test an easily administered, noninvasive technology to identify vulnerability to mental stress ischemia. Background Myocardial ischemia provoked by emotional stress (MSI) in patients with stable coronary artery disease (CAD) predicts major adverse cardiac events. A clinically useful tool to risk stratify patients on this factor is not available. Methods Patients with documented CAD (n=68) underwent single photon emission computed tomography (SPECT) myocardial perfusion imaging concurrent with pulse wave amplitude assessment by peripheral arterial tonometry (PAT) during a mental stress protocol of sequential rest and anger stress periods. Heart rate and blood pressure were assessed, and blood was drawn for catecholamine assay, during rest and stress. MSI was defined by the presence of a new perfusion defect during anger stress (n=26) and the ratio of stress to rest PAT response was calculated. Results Patients with MSI had a significantly lower PAT ratio than those without MSI (0.76 ± 0.04 vs. 0.91 ± 0.05, p=0.03). An ROC curve for optimum sensitivity/specificity of PAT ratio as an index of MSI produced a sensitivity of 0.62 and a specificity of 0.63. Among patients taking angiotensin converter enzyme (ACE) inhibitors, the sensitivity and specificity of the test increased to 0.86 and 0.73 (respectively); 90% of patients without MSI were correctly identified. Conclusions PAT in concert with ACE inhibition may provide a useful approach to assess risk for MSI. Future studies should help determine how best to utilize this approach for risk assessment in the clinical setting. PMID:18941131
NASA Astrophysics Data System (ADS)
Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.
2015-11-01
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Finally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less
Shrestha, Uttam M; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T
2015-11-07
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.
Raji, Cyrus A; Willeumier, Kristen; Taylor, Derek; Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A; Amen, Daniel G
2015-09-01
PTSD and TBI are two common conditions in veteran populations that can be difficult to distinguish clinically. The default mode network (DMN) is abnormal in a multitude of neurological and psychiatric disorders. We hypothesize that brain perfusion SPECT can be applied to diagnostically separate PTSD from TBI reliably in a veteran cohort using DMN regions. A group of 196 veterans (36 with PTSD, 115 with TBI, 45 with PTSD/TBI) were selected from a large multi-site population cohort of individuals with psychiatric disease. Inclusion criteria were peacetime or wartime veterans regardless of branch of service and included those for whom the traumatic brain injury was not service related. SPECT imaging was performed on this group both at rest and during a concentration task. These measures, as well as the baseline-concentration difference, were then inputted from DMN regions into separate binary logistic regression models controlling for age, gender, race, clinic site, co-morbid psychiatric diseases, TBI severity, whether or not the TBI was service related, and branch of armed service. Predicted probabilities were then inputted into a receiver operating characteristic analysis to compute sensitivity, specificity, and accuracy. Compared to PSTD, persons with TBI were older, male, and had higher rates of bipolar and major depressive disorder (p < 0.05). Baseline quantitative regions with SPECT separated PTSD from TBI in the veterans with 92 % sensitivity, 85 % specificity, and 94 % accuracy. With concentration scans, there was 85 % sensitivity, 83 % specificity and 89 % accuracy. Baseline-concentration (the difference metric between the two scans) scans were 85 % sensitivity, 80 % specificity, and 87 % accuracy. In separating TBI from PTSD/TBI visual readings of baseline scans had 85 % sensitivity, 81 % specificity, and 83 % accuracy. Concentration scans had 80 % sensitivity, 65 % specificity, and 79 % accuracy. Baseline-concentration scans had 82 % sensitivity, 69 % specificity, and 81 % accuracy. For separating PTSD from PTSD/TBI baseline scans had 87 % sensitivity, 83 % specificity, and 92 % accuracy. Concentration scans had 91 % sensitivity, 76 % specificity, and 88 % accuracy. Baseline-concentration scans had 84 % sensitivity, 64 % specificity, and 85 % accuracy. This study demonstrates the ability to separate PTSD and TBI from each other in a veteran population using functional neuroimaging.
Current status of nuclear cardiology practice in Latin America and the Caribbean.
Paez, Diana; Peix, Amalia; Orellana, Pilar; Vitola, Joao; Mut, Fernando; Gutiérrez, Claudia; Plaza, Crosby; Becic, Tarik; Dondi, Maurizio; Estrada, Enrique
2017-02-01
The burden of cardiovascular diseases (CVDs) in the world is ever growing. They represent the first cause of death worldwide and in Latin America. Nuclear cardiology has a well-established role in the management of patient with CVDs and is being increasingly integrated into the healthcare systems in the region. However, there remains variability as to the infrastructure available across the countries, in terms of existing technology, radiopharmaceuticals, and human resources. The approximate number of gamma (γ) cameras in the region is 1348, with an average of 2.25 per million population; Argentina and Brazil having the largest number. Nearly 80% of the existing cameras are single-photon emission tomography (SPECT), of which 8% are hybrid SPECT-CT systems. Positron emission tomography technology is steadily increasing, and currently, there is an average of 0.25 scanners per million inhabitants, indicating that there is a potential to expand the capacities in order to cover the needs. Four countries have nuclear reactors for research purposes, which allow the production of technetium-99 m (Argentina, Chile, Mexico and Peru), while four (Argentina, Brazil, Cuba, and Mexico) assemble 99 Mo- 99m Tc generators. As for the nuclear cardiology studies, about 80% of studies performed are gated SPECT myocardial perfusion imaging; less than 10% are multi-gated acquisition (mainly for evaluation of cardiac toxicity in cancer patients), and the other 10% correspond to other types of studies, such as viability detection, and adrenergic innervation studies with 123 I-MIBG. Physical stress is preferred, when possible, based on the clinical condition of the patient. Regarding human resources, there is an average of 1.1 physicians and 1.3 technologists per γ camera, with 0.1 medical physicists and 0.1 radiopharmacists per center in the region. The future of nuclear cardiology in Latin America and the Caribbean is encouraging, with great potential and possibilities for growth. National, regional, and international cooperation including support from scientific societies and organizations such as International Atomic Energy Agency, American Society of Nuclear Cardiology, and Latin American Association of Biology and Nuclear Medicine Societies, as well as governmental commitment are key factors for the development of the specialty. A multimodality approach in cardiac imaging will contribute to a better management of patients with CVDs.
Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaManna, M.M.; Sussman, N.M.; Harner, R.N.
1989-06-01
Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits.