Science.gov

Sample records for perinephric tissues ct

  1. Factors Predicting Adhesion between Renal Capsule and Perinephric Adipose Tissue in Partial Nephrectomy.

    PubMed

    Kobayashi, Yasuyuki; Kurahashi, Hiroaki; Matsumoto, Yuko; Wada, Koichiro; Sasaki, Katsumi; Araki, Motoo; Ebara, Shin; Watanabe, Toyohiko; Nasu, Yasutomo

    2016-01-01

    In minimally invasive partial nephrectomy (MIPN), it is important to preoperatively predict the degree of difficulty of tumor resection. When severe adhesions occur between the renal capsule and perinephric adipose tissue, detachment can be difficult. Preoperative prediction of adhesion is thought to be useful in the selection of surgical procedure. Subjects were 63 patients of a single surgeon who had received MIPN between April 2008 and August 2013 at Okayama University Hospital. Of these patients, this study followed 47 in whom the presence or absence of adhesions between the renal capsule and perinephric adipose tissue was confirmed using intraoperative videos. Data collected included: sex, BMI, CT finding (presence of fi broids in perinephric adipose tissue), comorbidities and lifestyle. Adhesion was observed in 7 patients (14.9%). The mean operative time was 291.6 min in the adhesion group, and 226.3 min in the group without. The increased time in the adhesions group was significant (p<0.05). Predictive factors were a positive CT finding for fibroid structure and comorbidity of hypertension (p<0.05). In MIPN, difficulty of surgery can be affected by the presence of adhesion of the perinephric adipose tissue. Predicting such adhesion from preoperative CT is thus important.

  2. Nephrogenic adenoma: a report of 3 unusual cases infiltrating into perinephric adipose tissue.

    PubMed

    Diolombi, Mairo; Ross, Hillary M; Mercalli, Francesca; Sharma, Rajni; Epstein, Jonathan I

    2013-04-01

    Nephrogenic adenoma of the urinary bladder, where they present most frequently, are typically confined to the lamina propria but can on occasion focally involve the superficial muscularis propria. Less commonly, nephrogenic adenoma involves the renal pelvis and ureter where again they almost always only involve the lamina propria. We identified 3 consult cases in which tubules of nephrogenic adenoma extensively involved the muscularis propria and focally infiltrated the perinephric adipose tissue, for which the contributing pathologists considered the diagnosis of adenocarcinoma. In 1 case, that of a 71-year-old man, the lesion was associated with a hemorrhagic renal cyst (3.0 cm) and a spontaneous retroperitoneal bleed (6.0 cm) of unknown origin. In the second case, that of a 73-year-old woman, 2 foci (2.2, 1.6 cm) were present in the renal pelvis. They developed after biopsy of a low-grade noninvasive papillary urothelial carcinoma in the same site complicated by perforation. The third case was that of a 20-year-old woman with ureteropelvic junction obstruction and severe hydronephrosis associated with renal calculi. In all cases, the lesions were positive for CK7 and PAX8. These 3 cases report the novel finding that nephrogenic adenoma can occasionally have a deep infiltrative pattern into perinephric adipose tissue, possibly as a result of either biopsy-associated perforation or extensive disruption due to hemorrhage or mechanical obstruction. Awareness of this worrisome infiltration pattern, although rare, can prevent a misdiagnosis of an infiltrating carcinoma.

  3. [Perinephric liposarcoma mimicking cystic renal tumor].

    PubMed

    Horiguchi, Akio; Oyama, Masafumi

    2002-03-01

    Liposarcoma is one of the most common primary retroperitoneal neoplasms, and the perinephric region is a frequent location for them. Liposarcomas show a variety of radiographic features in terms of histological types and tumor sizes, so the specific diagnosis of liposarcoma is often difficult. We present a unique case of perinephric dedifferentiated liposarcoma mimicking cystic renal tumor. A 71-year-old man presented himself at our hospital with a palpable mass in his upper right abdomen. Abdominal computerized tomography (CT) revealed a well-defined cystic mass at the lower pole of the right kidney that contained heterogeneous solid components and small foci of fat. There were no signs of lymphadenopathy or tumor thrombus in the renal vein. Metastatic evaluation by chest x-ray and bone scan was negative. The probable diagnosis was cystic renal cell carcinoma or atypical angiomyolipoma. Because we could not exclude the possibility of cystic malignancy, a right radical nephrectomy was performed. Grossly, the tumor was predominantly encapsulated by a unilocular fibrous capsule and was filled with bloody fluid and debris. The anterior portion of the tumor was composed of various-sized soft and rubbery masses covered with necrotic tissue. The histological diagnosis was dedifferentiated liposarcoma arising in the perinephric retroperitoneum with extensive necrosis, and the cyst wall was composed of a necrotic tumor with a well differentiated liposarcoma and a fibrous capsule. Although the tumor widely covered the right kidney, there was no microscopic invasion of the kidney. No signs of tumor recurrence were noted six months after the operation.

  4. The perinephric space and renal fascia: review of normal anatomy, pathology, and pathways of disease spread.

    PubMed

    Aizenstein, R I; Owens, C; Sabnis, S; Wilbur, A C; Hibbeln, J F; O'Neil, H K

    1997-08-01

    The perinephric space is a cone-shaped retroperitoneal compartment containing the kidney, adrenal gland, perinephric fat, fibrous bridging septa, and a rich network of perirenal vessel and lymphatics. Perinephric space pathology may originate from within or outside the confines of the perirenal fascia. Most intrinsic perinephric space disease arises from the kidney or adrenal gland, and secondarily involves the perinephric space. Disease originating outside the cone of renal fascia may spread to the perinephric space via lymphatics (i.e., metastatic spread) or by directly transgressing perirenal fascial planes (e.g., invasive tumor or infections). Additionally, infiltrating soft tissue or rapidly accumulating retroperitoneal fluid may travel into or out of the perinephric space via perinephric bridging septa and renal fascia. In this article, we review the normal anatomy of the perinephric space and renal fascia, emphasizing the significance of retroperitoneal interfascial planes and perinephric bridging septa as a potential conduit for retroperitoneal disease spread. This review of normal anatomy and pathways of disease spread serves as background for a discussion of a variety of specific pathologic conditions that may involve the perinephric space and retroperitoneal fascia, including pancreatitis, retroperitoneal hematoma, urinoma, metastatic disease, and perirenal varices.

  5. Imaging Manifestations of Hematologic Diseases with Renal and Perinephric Involvement.

    PubMed

    Purysko, Andrei S; Westphalen, Antonio C; Remer, Erick M; Coppa, Christopher P; Leão Filho, Hilton M; Herts, Brian R

    2016-01-01

    The kidneys and perinephric tissues can be affected by a variety of hematologic disorders, which usually occur in the setting of multisystem involvement. In many of these disorders, imaging is used to evaluate the extent of disease, guide biopsy, and/or monitor disease activity and patient response to therapy. Lymphoma, leukemia, and multiple myeloma commonly manifest as multiple parenchymal or perinephric lesions. Erdheim-Chester disease and Rosai-Dorfman disease, rare forms of multisystemic histiocytosis, are often identified as perinephric and periureteral masses. Renal abnormalities depicted at imaging in patients with sickle cell disease include renal enlargement, papillary necrosis, and renal medullary carcinoma. Sickle cell disease, along with other causes of intravascular hemolysis, can also lead to hemosiderosis of the renal cortex. Thrombosis of renal veins is sometimes seen in patients with coagulation disorders but more often occurs in association with certain malignancies and nephrotic syndrome. Immunoglobulin G4-related sclerosing disease is another multisystem process that often produces focal renal lesions, seen along with involvement of more characteristic organs such as the pancreas. Perinephric lesions with calcifications should raise the possibility of secondary amyloidosis, especially in patients with a history of lymphoma and multiple myeloma. Although the imaging patterns of renal and perinephric involvement are usually not specific for a single entity, and the same entity can manifest with different or overlapping patterns, familiarity with these patterns and key clinical and histopathologic features may help to narrow the differential diagnosis and determine the next step of care. (©)RSNA, 2016. PMID:27257766

  6. Case report: perinephric-splenic fistula--a complication of percutaneous perinephric abscess drainage.

    PubMed

    Stewart, I E; Borland, C

    1994-09-01

    A case of acute perinephric abscess due to chronic parenchymal disease and calculi is presented. During percutaneous drainage a reno-splenic vein communication developed acutely. The aetiology and treatment complications of perinephric abscesses are reviewed.

  7. Perinephric abscess following extracorporeal shockwave lithotripsy.

    PubMed

    Pautler, Stephen E.; Vallely, John F.; Denstedt, John D.

    1998-10-01

    Since the introduction and widespread use of extracorporeal shockwave lithotripsy (SWL), various complications have been noted. Perinephric hematoma and ureteral obstruction may be anticipated by urologists as potential problems. We report the first case of perinephric abscess encountered after 17 895 SWL treatments at our institution. A 65 year old woman presented 4 months following a second SWL procedure with a perinephric abscess and was successfully treated with percutaneous drainage. A review of the English literature revealed only 3 other cases of perinephric abscess following SWL. This diagnosis should be considered in early and late presentations of flank pain following SWL.

  8. Perinephric abscess caused by ruptured retrocecal appendix: MDCT demonstration

    PubMed Central

    Wani, Nisar Ahmad; Farooq, Mir; Gojwari, Tariq; Kosar, Tasleem

    2010-01-01

    Acute appendicitis may occasionally become extraordinarily complicated and life threatening yet difficult to diagnose. One such presentation is described in a 60-year-old man who was brought to the hospital due to right lumbar pain and fever for the last 15 days. Ultrasonography showed a right perinephric gas and fluid collection. Abdominal computed tomography with multidetector-row CT (MDCT) revealed gas-containing abscess in the right retroperitoneal region involving the perinephric space, extending from the lower pole of the right kidney up to the bare area of the liver. Inflamed retrocecal appendix was seen on thick multiplanar reformat images with its tip at the lower extent of the abscess. Laparotomy and retroperitoneal exploration were performed immediately and a large volume of foul smelling pus was drained. A ruptured retrocecal appendix was confirmed as the cause of the abscess. PMID:20842255

  9. Severe perinephric hemorrhage after shockwave lithotripsy.

    PubMed

    Antoniou, N K; Karanastasis, D; Stenos, J L

    1995-06-01

    We report a case of a 69-year-old man who, after a second session of shockwave lithotripsy for multiple stones in the right kidney, showed symptoms of severe hemorrhage and flank pain unresponsive to analgesics, with the gradual development of extensive and serious perinephric hematoma. The bleeding necessitated nephrectomy. Unrecognized chronic pyelonephritis may have been a predisposing factor.

  10. [A case of mesothelioma of perinephric space origin].

    PubMed

    Furuta, N; Machida, T; Ohishi, Y; Akasaka, Y; Ikemoto, I; Nakauchi, K

    1991-12-01

    Cystic mesothelioma of perinephric retroperitoneum origin are very uncommon tumors and considered potentially malignant. We report one such case and discuss the clinical and pathological findings. A 70-year-old man was seen with complaint of discomfort in the right flank and hospitalized in May 1989. Computerized tomography revealed multiple cystic masses in the right retroperitoneal space which appeared to be infiltrating the kidney and the iliopsoas muscles. Magnetic resonance imaging showed deformation of the right kidney with many impressions in the parenchyma. The cystic lesions and the right kidney were extirpated on June 2, 1989. Grossly the specimen was 16 x 10 x 8 cm in size and 630 g in weight. The multiple cysts surrounding the kidney were each approximately 10 mm in diameter and had thin outer walls. The cyst fluid was clear and serous. The kidney had not been infiltrated but had only external impressions caused by the cystic lesions. Microscopically, the cysts were lined by a single layer of cuboidal cells accompanied by some hobnail-shaped cells, and no evidence of malignancy was found. The epithelium was focally positive for periodate acid Schiff and slightly positive for Alcian blue. It was strongly positive for cytokeratin and vimentin, and slightly positive for EMA but negative for lectins. The diagnosis was diffused benign multicystic mesothelioma. However, CT taken four months after the operation revealed local recurrence and radiotherapy (40 Gy) was instituted. Since the cystic mass tended to grow in size thereafter, the lesion appeared to be malignant clinically. We consider this is the first case of cystic mesothelioma of perinephric retroperitoneum origin reported in Japan.

  11. CT of soft-tissue neoplasms

    SciTech Connect

    Weekes, R.G.; McLeod, R.A.; Reiman, H.M.; Pritchard, D.J.

    1985-02-01

    The computed tomographic scans (CT) of 84 patients with untreated soft-tissue neoplasms were studied, 75 with primary and nine with secondary lesions. Each scan was evaluated using several criteria: homogeneity and density, presence and type of calcification, presence of bony destruction, involvement of multiple muscle groups, definition of adjacent fat, border definition, and vessel or nerve involvement. CT demonstrated the lesion in all 84 patients and showed excellent anatomic detail in 64 of the 75 patients with primary neoplasms. The CT findings were characteristic enough to suggest the histology of the neoplasm in only 13 lesions (nine lipomas, three hemangiomas, one neurofibroma). No malignant neoplasm had CT characteristics specific enough to differentiate it from any other malignant tumor. However, malignant neoplasms could be differentiated from benign neoplasms in 88% of the cases.

  12. Soft tissue imaging with photon counting spectroscopic CT

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2015-03-01

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm2 pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  13. Splenectomy and risk of renal and perinephric abscesses

    PubMed Central

    Lai, Shih-Wei; Lin, Hsien-Feng; Lin, Cheng-Li; Liao, Kuan-Fu

    2016-01-01

    Abstract Little epidemiological research is available on the relationship between splenectomy and renal and perinephric abscesses. The purpose of the study was to examine this issue in Taiwan. We conducted a population-based retrospective cohort study using the hospitalization dataset of the Taiwan National Health Insurance Program. A total of 16,426 participants aged 20 and older who were newly diagnosed with splenectomy from 1998 to 2010 were assigned to the splenectomy group, whereas 65,653 sex-matched, age-matched, and comorbidity-matched, randomly selected participants without splenectomy were assigned to the nonsplenectomy group. The incidence of renal and perinephric abscesses at the end of 2011 was measured in both groups. The multivariable Cox proportional hazards regression model was used to measure the hazard ratio (HR) and 95% confidence interval (CI) for risk of renal and perinephric abscesses associated with splenectomy and other comorbidities including cystic kidney disease, diabetes mellitus, urinary tract infection, and urolithiasis. The overall incidence rate of renal and perinephric abscesses was 2.14-fold greater in the splenectomy group than that in the nonsplenectomy group (2.24 per 10,000 person-years vs 1.05 per 10,000 person-years, 95% CI 2.02, 2.28). After controlling for sex, age, cystic kidney disease, diabetes mellitus, urinary tract infection, and urolithiasis, the multivariable regression analysis demonstrated that the adjusted HR of renal and perinephric abscesses was 2.24 for the splenectomy group (95 % CI 1.30, 3.88), when compared with the nonsplenectomy group. In further analysis, the adjusted HR markedly increased to 7.69 for those comorbid with splenectomy and diabetes mellitus (95% CI 3.31, 17.9). Splenectomy is associated with renal and perinephric abscesses, particularly comorbid with diabetes mellitus. In view of its potential morbidity and mortality, clinicians should consider the possibility of renal and perinephric

  14. Spontaneous perinephric hemorrhage (Wunderlich syndrome) secondary to polyarteritis nodosa: Computed tomography and angiographic findings.

    PubMed

    Venkatramani, Vivek; Banerji, John S

    2014-10-01

    We report the case of a young man who presented with spontaneous left perinephric hematoma and per-rectal bleeding. Evaluation revealed renal and superior mesenteric arterial aneurysms secondary to polyarteritis nodosa (PAN). Computed tomography and angiographic findings are presented. The aetiology of spontaneous perinephric hemorrhage along with relevant features of PAN are discussed.

  15. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  16. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. PMID:26055434

  17. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

  18. Soft-Tissue Masses and Masslike Conditions: What Does CT Add to Diagnosis and Management?

    PubMed Central

    Subhawong, Ty K.; Fishman, Elliot K.; Swart, Jennifer E.; Carrino, John A.; Attar, Samer; Fayad, Laura M.

    2010-01-01

    OBJECTIVE Although MRI is the technique of choice for evaluating most soft-tissue masses, CT often provides valuable complementary information. Specifically, there are distinguishing CT characteristics that can suggest a specific diagnosis, including the lesion’s mineralization pattern, density, pattern of adjacent bone involvement, and degree and pattern of vascularity. CONCLUSION This article provides an overview of the CT evaluation of soft-tissue masses, emphasizing a differential diagnosis based on these CT features. PMID:20489097

  19. Splenectomy and risk of renal and perinephric abscesses: A population-based cohort study in Taiwan.

    PubMed

    Lai, Shih-Wei; Lin, Hsien-Feng; Lin, Cheng-Li; Liao, Kuan-Fu

    2016-08-01

    Little epidemiological research is available on the relationship between splenectomy and renal and perinephric abscesses. The purpose of the study was to examine this issue in Taiwan.We conducted a population-based retrospective cohort study using the hospitalization dataset of the Taiwan National Health Insurance Program. A total of 16,426 participants aged 20 and older who were newly diagnosed with splenectomy from 1998 to 2010 were assigned to the splenectomy group, whereas 65,653 sex-matched, age-matched, and comorbidity-matched, randomly selected participants without splenectomy were assigned to the nonsplenectomy group. The incidence of renal and perinephric abscesses at the end of 2011 was measured in both groups. The multivariable Cox proportional hazards regression model was used to measure the hazard ratio (HR) and 95% confidence interval (CI) for risk of renal and perinephric abscesses associated with splenectomy and other comorbidities including cystic kidney disease, diabetes mellitus, urinary tract infection, and urolithiasis.The overall incidence rate of renal and perinephric abscesses was 2.14-fold greater in the splenectomy group than that in the nonsplenectomy group (2.24 per 10,000 person-years vs 1.05 per 10,000 person-years, 95% CI 2.02, 2.28). After controlling for sex, age, cystic kidney disease, diabetes mellitus, urinary tract infection, and urolithiasis, the multivariable regression analysis demonstrated that the adjusted HR of renal and perinephric abscesses was 2.24 for the splenectomy group (95 % CI 1.30, 3.88), when compared with the nonsplenectomy group. In further analysis, the adjusted HR markedly increased to 7.69 for those comorbid with splenectomy and diabetes mellitus (95% CI 3.31, 17.9).Splenectomy is associated with renal and perinephric abscesses, particularly comorbid with diabetes mellitus. In view of its potential morbidity and mortality, clinicians should consider the possibility of renal and perinephric abscesses when

  20. Soft-tissue abnormalities of the external auditory canal: Subject review of CT findings

    SciTech Connect

    Chakeres, D.W.; Kapila, A.; LaMasters, D.

    1985-07-01

    The authors review the normal anatomy and discuss characteristic findings of soft-tissue abnormalities of the external auditory canal (EAC). The indications for computed tomography (CT) of the temporal bone have been significantly expanded with the inclusion of soft-tissue abnormalities of the external ear and the auditory canal. CT scans of 25 patients who had soft-tissue abnormalities of the EAC were reviewed. The clinical data were correlated with the radiographic findings. They conclude that CT is the best overall radiographic modality for evaluating the extent and character of soft-tissue abnormalities of the EAC. Significant clinical information that is helpful in patient management decisions is added by this technique.

  1. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  2. Comparison of CT-Number and Gray Scale Value of Different Dental Materials and Hard Tissues in CT and CBCT

    PubMed Central

    Emadi, Naghmeh; Safi, Yaser; Akbarzadeh Bagheban, Alireza; Asgary, Saeed

    2014-01-01

    Introduction: Computed tomography (CT) and cone-beam CT (CBCT) are valuable diagnostic aids for many clinical applications. This study was designed to compare the gray scale value (GSV) and Hounsfield unit (HU) of selected dental materials and various hard tissues using CT or CBCT. Methods and Materials: Three samples of all test materials including amalgam (AM), composite resin (CR), glass ionomer (GI), zinc-oxide eugenol (ZOE), calcium-enriched mixture (CEM) cement, AH-26 root canal sealer (AH-26), gutta-percha (GP), Coltosol (Col), Dycal (DL), mineral trioxide aggregate (MTA), zinc phosphate (ZP), and polycarbonate cement (PC) were prepared and scanned together with samples of bone, dentin and enamel using two CBCT devices, Scanora 3D (S3D) and NewTom VGi (NTV) and a spiral CT (SCT) scanner (Somatom Emotion 16 multislice spiral CT);. Subsequently, the HU and GSV values were determined and evaluated. The data were analyzed by the Kruskal-Wallis and Mann-Whitney U tests. The level of significance was determined at 0.05. Results: There were significant differences among the three different scanners (P<0.05). The differences between HU/GSV values of 12 selected dental materials using NTV was significant (P<0.05) and for S3D and SCT was insignificant (P>0.05). All tested materials showed maximum values in S3D and SCT (3094 and 3071, respectively); however, bone and dentin showed low/medium values (P<0.05). In contrast, the tested materials and tissues showed a range of values in NTV (366 to15383; P<0.05). Conclusion: Scanner system can influence the obtained HU/GSV of dental materials. NTV can discriminate various dental materials, in contrast to S3D/SCT scanners. NTV may be a more useful diagnostic aid for clinical practice. PMID:25386210

  3. CT Hounsfield Numbers of Soft Tissues on Unenhanced Abdominal CT Scans: Variability Between Two Different Manufacturers’ MDCT Scanners

    PubMed Central

    Lamba, Ramit; McGahan, John P.; Corwin, Michael T.; Li, Chin-Shang; Tran, Tien; Seibert, J. Anthony; Boone, John M.

    2016-01-01

    OBJECTIVE The purpose of this study is to determine whether Hounsfield numbers of soft tissues on unenhanced abdominal CT of the same patient vary on repeat scans done on two different manufacturers’ MDCT scanners. MATERIALS AND METHODS A database search was performed to identify patients older than 18 years who underwent unenhanced CT of the abdomen and pelvis performed both on a Volume CT (GE Healthcare) and a Definition AS Plus (Siemens Healthcare) 64-MDCT scanner within 12 months of each other. After excluding those patients for whom Hounsfield unit measurements would be affected by mitigating factors, 48 patients (mean age, 58.8 years) were identified. Hounsfield unit measurements were obtained in nine different soft-tissue anatomic locations on each scan, and the location of these sites was kept identical on each scan pair. Data were analyzed to evaluate Hounsfield unit differences between these scanners. RESULTS In general, there was a low consistency in the Hounsfield unit measurements for each of these sites on scans obtained by the two scanners, with the subcutaneous fat in the left posterolateral flank showing the lowest correlation (intraclass correlation coefficient, 0.198). There were differences in the Hounsfield unit measurements obtained in all anatomic sites on scans obtained by both scanners. Mean Hounsfield unit measurements obtained on the Definition AS Plus scanner were lower than those obtained on the Volume CT scanner, with the intriguing exception of the anterior midline subcutaneous fat Hounsfield unit measurements, which were higher on the Definition AS Plus scanner. All differences were statistically significant (p < 0.05). CONCLUSION Hounsfield unit measurements for unenhanced abdominal soft tissues of the same patient vary between scanners of two common MDCT manufacturers. PMID:25341139

  4. [CT imaging features of pulmonary involvement in connective tissue disorders].

    PubMed

    Brillet, P Y; Mama, N; Nunes, H; Uzunhan, Y; Abbad, S; Brauner, M W

    2009-11-01

    Connective tissue disorders correspond to a heterogeneous group of inflammatory diseases characterized by abnormal immune system activity leading to connective tissue alterations in multiple parts of the body. In adults, connective tissue disorders include rheumatoid arthritis, progressive systemic sclerosis, Sjögren syndrome, systemic lupus erythematosus, dermatomyositis and polymyositis, ankylosing spondylitis, and mixed connective tissue disease. Broncho-pulmonary involvement may be variable with involvement of all anatomical components of the lung. Involvement of other intrathoracic structures (pleura, respiratory muscles, heart, rib cage) is frequent. The most specific manifestations include interstitial lung diseases and pulmonary hypertension. During follow-up, progressive respiratory diseases may occur due to the treatment, infections, pulmonary embolism or neoplasms.

  5. Quantitative CT imaging for adipose tissue analysis in mouse model of obesity

    NASA Astrophysics Data System (ADS)

    Marchadier, A.; Vidal, C.; Tafani, J.-P.; Ordureau, S.; Lédée, R.; Léger, C.

    2011-03-01

    In obese humans CT imaging is a validated method for follow up studies of adipose tissue distribution and quantification of visceral and subcutaneous fat. Equivalent methods in murine models of obesity are still lacking. Current small animal micro-CT involves long-term X-ray exposure precluding longitudinal studies. We have overcome this limitation by using a human medical CT which allows very fast 3D imaging (2 sec) and minimal radiation exposure. This work presents novel methods fitted to in vivo investigations of mice model of obesity, allowing (i) automated detection of adipose tissue in abdominal regions of interest, (ii) quantification of visceral and subcutaneous fat. For each mouse, 1000 slices (100μm thickness, 160 μm resolution) were acquired in 2 sec using a Toshiba medical CT (135 kV, 400mAs). A Gaussian mixture model of the Hounsfield curve of 2D slices was computed with the Expectation Maximization algorithm. Identification of each Gaussian part allowed the automatic classification of adipose tissue voxels. The abdominal region of interest (umbilical) was automatically detected as the slice showing the highest ratio of the Gaussian proportion between adipose and lean tissues. Segmentation of visceral and subcutaneous fat compartments was achieved with 2D 1/2 level set methods. Our results show that the application of human clinical CT to mice is a promising approach for the study of obesity, allowing valuable comparison between species using the same imaging materials and software analysis.

  6. Scenes from the past: MR imaging versus CT of ancient Peruvian and Egyptian mummified tissues.

    PubMed

    Ohrström, Lena Maria; von Waldburg, Hendrik; Speier, Peter; Bock, Michael; Suri, Roland Erwin; Rühli, Frank Jakobus

    2013-01-01

    Ancient Egyptian and Peruvian mummies are extremely valuable historical remains, and noninvasive methods for their examination are desirable. The current standard of reference for radiologic imaging of mummies is computed tomography (CT), with tissue having a homogeneous appearance on all CT images. It was long believed that ancient mummified tissue could not be studied with magnetic resonance (MR) imaging because of the low water content in mummies. Recently, however, the usefulness of MR imaging in the evaluation of mummified tissue was demonstrated for the first time, with use of a special ultrashort echo time technique. The authors of the present study acquired and analyzed MR imaging and CT data from the left hands of two ancient Egyptian mummies and the head of a third Egyptian mummy (ca 1500-1100 bce), as well as data from an ancient Peruvian mummy (ca 1100 ce). CT was found to provide superior detail of the anatomic structures, mainly because of its higher spatial resolution. The signal intensity of mummified tissue varied greatly on MR images; thus, the quality of these images is not yet comparable to that of clinical MR images, and further research will be needed to determine the full capacity of MR imaging in this setting. Nevertheless, additional information may theoretically be obtained with MR imaging, which should be viewed as complementary to, rather than a replacement for, CT.

  7. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  8. CT-Based Assessment of Relative Soft-Tissue Alteration in Different Types of Ancient Mummies.

    PubMed

    Sydler, Christina; Öhrström, Lena; Rosendahl, Wilfried; Woitek, Ulrich; Rühli, Frank

    2015-06-01

    Mummification leads to alteration of soft-tissue morphology. No research has focused specifically on differences in soft-tissue shrinkage depending on mummification type. This study evaluated whether soft-tissue alteration is dependent on type of mummification. A total of 17 human mummies have been investigated by computed tomography (CT). Samples included artificially embalmed ancient Egyptian mummies, naturally mummified South American corpses, ice mummies (including the Iceman, South Tyrol Museum of Archeology, Bolzano, Italy, ca. 3,300 BC), bog bodies and a desiccated mummy of possibly Asian provenance. The acquired data were compared to four contemporary bodies. The extent of soft-tissue shrinkage was evaluated using CT data. Shrinkage was defined as soft-tissue relative to area of bone (in number of voxels). Measurements were taken at 13 anatomically defined locations. Ice mummies show the highest degree of preservation. This finding is most likely explained due to frozen water within tissues. All other types of mummies show significantly (at P < 0.05) smaller relative area of preserved soft-tissue. Variation between different anatomical structures (e.g., upper lip vs. mid-femur) is significant, unlike variation within one compartment (e.g., proximal vs. distal humerus). Mummification type strongly affects the degree of soft-tissue alteration, surprisingly mostly independent of overall historical age. These results highlight the unique morphological impact of taphonomy on soft-tissue preservation and are of particular interest in tissue research as well as in forensics. PMID:25998649

  9. CT-Based Assessment of Relative Soft-Tissue Alteration in Different Types of Ancient Mummies.

    PubMed

    Sydler, Christina; Öhrström, Lena; Rosendahl, Wilfried; Woitek, Ulrich; Rühli, Frank

    2015-06-01

    Mummification leads to alteration of soft-tissue morphology. No research has focused specifically on differences in soft-tissue shrinkage depending on mummification type. This study evaluated whether soft-tissue alteration is dependent on type of mummification. A total of 17 human mummies have been investigated by computed tomography (CT). Samples included artificially embalmed ancient Egyptian mummies, naturally mummified South American corpses, ice mummies (including the Iceman, South Tyrol Museum of Archeology, Bolzano, Italy, ca. 3,300 BC), bog bodies and a desiccated mummy of possibly Asian provenance. The acquired data were compared to four contemporary bodies. The extent of soft-tissue shrinkage was evaluated using CT data. Shrinkage was defined as soft-tissue relative to area of bone (in number of voxels). Measurements were taken at 13 anatomically defined locations. Ice mummies show the highest degree of preservation. This finding is most likely explained due to frozen water within tissues. All other types of mummies show significantly (at P < 0.05) smaller relative area of preserved soft-tissue. Variation between different anatomical structures (e.g., upper lip vs. mid-femur) is significant, unlike variation within one compartment (e.g., proximal vs. distal humerus). Mummification type strongly affects the degree of soft-tissue alteration, surprisingly mostly independent of overall historical age. These results highlight the unique morphological impact of taphonomy on soft-tissue preservation and are of particular interest in tissue research as well as in forensics.

  10. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    SciTech Connect

    Verhaart, René F. Paulides, Margarethus M.; Fortunati, Valerio; Walsum, Theo van; Veenland, Jifke F.; Lugt, Aad van der

    2014-12-15

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm

  11. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    NASA Astrophysics Data System (ADS)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  12. Evolving Bioprosthetic Tissue Calcification Can Be Quantified Using Serial Multislice CT Scanning

    PubMed Central

    Meuris, B.; De Praetere, H.; Coudyzer, W.; Flameng, W.

    2013-01-01

    Background. We investigated the value of serial multislice CT scanning for in vivo determination of evolving tissue calcification in three separate experimental settings. Materials and Methods. Bioprosthetic valve tissue was implanted in three different conditions: (1) glutaraldehyde-fixed porcine stentless conduits in pulmonary position (n = 6); (2) glutaraldehyde-fixed stented pericardial valves in mitral position (n = 3); and (3) glutaraldehyde-fixed pericardial tissue as patch in the jugular vein and carotid artery (n = 16). Multislice CT scanning was performed at various time intervals. Results. In stentless conduits, the distribution of wall calcification can be reliably quantified with CT. After 20 weeks, the CT-determined mean calcium volume was 1831 ± 581 mm³, with a mean wall calcium content of 89.8 ± 44.4 μg/mg (r2 = 0.68). In stented pericardial valves implanted in mitral position, reliable determination of tissue mineralization is disturbed by scattering caused by the (continuously moving) alloy of the stent material. Pericardial patches in the neck vessels revealed progressive mineralization, with a significant increase in mean HU and calcium volume at 8 weeks after implantation, rising up to a level of 131.1 ± 39.6 mm³ (mean calcium volume score) and a mean calcium content of 19.1 ± 12.3 μg/mg. Conclusion. The process of bioprosthetic tissue mineralization can be visualized and quantified in vivo using multislice CT scanning. This allows determination of the kinetics of tissue mineralization with intermediate in vivo evaluations. PMID:24089616

  13. Pancreatic pseudocysts presenting as thick-walled renal and perinephric cysts.

    PubMed

    Lilienfeld, R M; Lande, A

    1976-02-01

    Posterior extension of a pancreatic pseudocyst should be considered in the differential diagnosis of a thick-walled renal or perinephric cyst seen on infusion pyelography with tomography. Opacification of the wall of a pancreatic pseudocyst by this technique has not been reported previously and lack of knowledge of this possibility can lead to mistaken diagnosis and the possibility of an unnecessary exploratory operation, particularly when angiography is inconclusive and a gastrointestinal series is negative or equivocal. The mechanism of opacification of the wall of a pancreatic pseudocyst is discussed. Parasitization of the renal capsular arteries by a pancreatic pseudocyst can further compound the difficulty of diagnosis.

  14. Precise anatomy localization in CT data by an improved probabilistic tissue type atlas

    NASA Astrophysics Data System (ADS)

    Franz, Astrid; Schadewaldt, Nicole; Schulz, Heinrich; Vik, Torbjørn; Bergtholdt, Martin; Bystrov, Daniel

    2016-03-01

    Automated interpretation of CT scans is an important, clinically relevant area as the number of such scans is increasing rapidly and the interpretation is time consuming. Anatomy localization is an important prerequisite for any such interpretation task. This can be done by image-to-atlas registration, where the atlas serves as a reference space for annotations such as organ probability maps. Tissue type based atlases allow fast and robust processing of arbitrary CT scans. Here we present two methods which significantly improve organ localization based on tissue types. A first problem is the definition of tissue types, which until now is done heuristically based on experience. We present a method to determine suitable tissue types from sample images automatically. A second problem is the restriction of the transformation space: all prior approaches use global affine maps. We present a hierarchical strategy to refine this global affine map. For each organ or region of interest a localized tissue type atlas is computed and used for a subsequent local affine registration step. A three-fold cross validation on 311 CT images with different fields-of-view demonstrates a reduction of the organ localization error by 33%.

  15. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    PubMed Central

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S.; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  16. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

    PubMed

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  17. A CT calibration method based on the polybinary tissue model for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kohno, Ryosuke; Minohara, Shinichi; Kanai, Tatsuaki

    2003-04-01

    A method to establish the relationship between CT number and effective density for therapeutic radiations is proposed. We approximated body tissues to mixtures of muscle, air, fat and bone. Consequently, the relationship can be calibrated only with a CT scan of their substitutes, for which we chose water, air, ethanol and potassium phosphate solution, respectively. With simple and specific corrections for non-equivalencies of the substitutes, a calibration accuracy of 1% will be achieved. We tested the calibration method with some biological materials to verify that the proposed method would offer the accuracy, simplicity and specificity required for a standard in radiotherapy treatment planning, in particular with heavy charged particles.

  18. TU-F-18C-01: Breast Tissue Decomposition Using Spectral CT After Distortion Correction

    SciTech Connect

    Ding, H; Zhao, B; Klopfer, M; Masaki, F; Baturin, P; Molloi, S

    2014-06-15

    Purpose: To investigate the feasibility of accurate breast tissue compositional characterization by using spectral-distortion-corrected dual energy images from a photon-counting spectral CT. Methods: Thirty eight postmortem breasts were imaged with a Cadmium-Zinc-Telluride (CZT)-based photon-counting spectral CT system at beam energy of 100 kVp. The energy-resolved detector sorted photons into low and high energy bins with a splitting energy of 42 keV. The estimated mean glandular dose (MGD) for each breast was approximately 2.0 mGy. Dual energy technique was used to decompose breast tissue into water, lipid, and protein contents. Two image-based methods were investigated to improve the accuracy of tissue compositional characterization. The first method simply limited the recorded spectra up to 90 keV. This reduced the pulse pile-up artifacts but it has some dose penalty. The second method corrected the spectral information of all measured photons by using a spectral distortion correction technique. Breasts were then chemically decomposed into their respective water, lipid, and protein contents, which was used as the reference standard. The accuracy of the tissue compositional measurement with spectral CT was evaluated by the root-mean-square (RMS) errors in percentage composition. Results: The errors in quantitative material decomposition were significantly reduced after the appropriate image processing methods. As compared to the chemical analysis as the reference standard, the averages of the RMS errors were estimated to be 15.5%, 3.3%, and 2.8% for the raw, energy-limited, and spectral-corrected images, respectively. Conclusion: Spectral CT can be used to accurately quantify the water, lipid, and protein contents in breast tissues by implementing a spectral distortion correction algorithm. The tissue compositional information can potentially improve the sensitivity and specificity for breast cancer diagnosis.

  19. Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria; Olivier, Cécile; Langer, Max; Cloetens, Peter

    2012-10-01

    During the last decade, X-ray micro Computerized Tomography (CT) has become a conventional technique for the three-dimensional (3D) investigation of trabecular bone micro-architecture. Coupling micro-CT to synchrotron sources possesses significant advantages in terms of image quality and gives access to information on bone mineralization which is an important factor of bone quality. We present an overview of the investigation of bone using Synchrotron Radiation (SR) CT from the micro to the nano scale. We introduce two synchrotron CT systems developed at the ESRF based on SR parallel-beam micro-CT and magnified phase CT respectively, achieving down to submicrometric and nanometric spatial resolution. In the latter, by using phase retrieval prior to tomographic reconstruction, the system provides maps of the 3D refractive index distribution. Parallel-beam SR micro-CT has extensively been used for the analysis of trabecular or cortical bone in human or small animals with spatial resolution in the range [3-10] μm. However, the characterization of the bone properties at the cellular scale is also of major interest. At the micrometric scale, the shape, density and morphology of osteocyte lacunae can be studied on statistically representative volumes. At the nanometric scale, unprecedented 3D displays of the canaliculi network have been obtained on fields of views including a large number of interconnected osteocyte lacunae. Finally SR magnified phase CT provides a detailed analysis of the lacuno-canalicular network and in addition information on the organization of the collagen fibers. These findings open new perspectives for three-dimensional quantitative assessment of bone tissue at the cellular scale.

  20. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  1. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    PubMed

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues. PMID:24437605

  2. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning

    PubMed Central

    Wang, Hong-kui; Wang, Ya-xian; Xue, Cheng-bin; Li, Zhen-mei-yu; Huang, Jing; Zhao, Ya-hong; Yang, Yu-min; Gu, Xiao-song

    2016-01-01

    Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo. PMID:26981108

  3. Male and Female Human Body Tissue Radiation Shielding Models Based upon CT-scan Data for Organ Dose Prediction

    NASA Astrophysics Data System (ADS)

    Qualls, G.; Nealy, J.; Wilson, J.; Cucinotta, F.

    As present and future human space mission lengths are extended, it becomes increasingly important and valuable to have accurate analytic predictions of radiation doses to specific tissues within the body. New computational models are being developed to help predict the effective radiation shielding to points inside the human body provided by the surrounding body tissue. A female body tissue model, based upon a full-body CT-scan from the Visible Human Project, is presented along with a male body tissue model based upon a full-body CT-scan data set obtained from Johns Hopkins University. The advantages of using CT-scan based models are presented along with initial results and comparisons to previous models. Details of the data processing required to transform a raw CT-scan into a tissue shielding model are also presented.

  4. Dosimetry concepts for scanner quality assurance and tissue dose assessment in micro-CT

    SciTech Connect

    Hupfer, Martin; Kolditz, Daniel; Nowak, Tristan; Eisa, Fabian; Brauweiler, Robert; Kalender, Willi A.

    2012-02-15

    Purpose: At present, no established methods exist for dosimetry in micro computed tomography (micro-CT). The purpose of this study was therefore to investigate practical concepts for both dosimetric scanner quality assurance and tissue dose assessment for micro-CT. Methods: The computed tomography dose index (CTDI) was adapted to micro-CT and measurements of the CTDI both free in air and in the center of cylindrical polymethyl methacrylate (PMMA) phantoms of 20 and 32 mm diameter were performed in a 6 month interval with a 100 mm pencil ionization chamber calibrated for low tube voltages. For tissue dose assessment, z-profile measurements using thermoluminescence dosimeters (TLDs) were performed and both profile and CTDI measurements were compared to Monte Carlo (MC) dose calculations to validate an existing MC tool for use in micro-CT. The consistency of MC calculations and TLD measurements was further investigated in two mice cadavers. Results: CTDI was found to be a reproducible quantity for constancy tests on the micro-CT system under study, showing a linear dependence on tube voltage and being by definition proportional to mAs setting and z-collimation. The CTDI measured free in air showed larger systematic deviations after the 6 month interval compared to the CTDI measured in PMMA phantoms. MC calculations were found to match CTDI measurements within 3% when using x-ray spectra measured at our micro-CT installation and better than 10% when using x-ray spectra calculated from semi-empirical models. Visual inspection revealed good agreement for all z-profiles. The consistency of MC calculations and TLD measurements in mice was found to be better than 10% with a mean deviation of 4.5%. Conclusions: Our results show the CTDI implemented for micro-CT to be a promising candidate for dosimetric quality assurance measurements as it linearly reflects changes in tube voltage, mAs setting, and collimation used during the scan, encouraging further studies on a variety of

  5. Automated characterization of normal and pathologic lung tissue by topological texture analysis of multidetector CT

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Fink, C.; Becker, C.; Reiser, M.

    2007-03-01

    Reliable and accurate methods for objective quantitative assessment of parenchymal alterations in the lung are necessary for diagnosis, treatment and follow-up of pulmonary diseases. Two major types of alterations are pulmonary emphysema and fibrosis, emphysema being characterized by abnormal enlargement of the air spaces distal to the terminal, nonrespiratory bronchiole, accompanied by destructive changes of the alveolar walls. The main characteristic of fibrosis is coursening of the interstitial fibers and compaction of the pulmonary tissue. With the ability to display anatomy free from superimposing structures and greater visual clarity, Multi-Detector-CT has shown to be more sensitive than the chest radiograph in identifying alterations of lung parenchyma. In automated evaluation of pulmonary CT-scans, quantitative image processing techniques are applied for objective evaluation of the data. A number of methods have been proposed in the past, most of which utilize simple densitometric tissue features based on the mean X-ray attenuation coefficients expressed in terms of Hounsfield Units [HU]. Due to partial volume effects, most of the density-based methodologies tend to fail, namely in cases, where emphysema and fibrosis occur within narrow spatial limits. In this study, we propose a methodology based upon the topological assessment of graylevel distribution in the 3D image data of lung tissue which provides a way of improving quantitative CT evaluation. Results are compared to the more established density-based methods.

  6. Robust separation of visceral and subcutaneous adipose tissues in micro-CT of mice.

    PubMed

    Shi, Bibo; Xie, Shuisheng; Berryman, Darlene; List, Ed; Liu, Jundong

    2013-01-01

    One of the common practices in obesity and diabetes studies is to measure the volumes and weights of various adipose tissues, among which, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) play critical yet different physiological roles in mouse aging. In this paper, a robust two-stage VAT/SAT separation framework for micro-CT mouse data is proposed. The first stage is to distinguish adipose from other tissue types, including background, soft tissue and bone, through a robust mixture of Gaussian model. Spatial recognition relevant to anatomical locations is carried out in the second step to determine whether the adipose is visceral or subcutaneous. We tackle this problem through a novel approach that relies on evolving the abdominal muscular wall to keep VAT/SAT separated. The VAT region of interest (ROI) is also automatically set up through an atlas based skeleton matching procedure. The results of our method are compared with VAT/SAT delineations by human experts, and a high classification accuracy is demonstrated on eight micro-CT mouse volume sets.

  7. Cuvier's beaked whale (Ziphius cavirostris) head tissues: physical properties and CT imaging.

    PubMed

    Soldevilla, Melissa S; McKenna, Megan F; Wiggins, Sean M; Shadwick, Robert E; Cranford, Ted W; Hildebrand, John A

    2005-06-01

    Tissue physical properties from a Cuvier's beaked whale (Ziphius cavirostris) neonate head are reported and compared with computed tomography (CT) X-ray imaging. Physical properties measured include longitudinal sound velocity, density, elastic modulus and hysteresis. Tissues were classified by type as follows: mandibular acoustic fat, mandibular blubber, forehead acoustic fat (melon), forehead blubber, muscle and connective tissue. Results show that each class of tissues has unique, co-varying physical properties. The mandibular acoustic fats had minimal values for sound speed (1350+/-10.6 m s(-1)) and mass density (890+/-23 kg m(-3)). These values increased through mandibular blubber (1376+/-13 m s(-1), 919+/-13 kg m(-3)), melon (1382+/-23 m s(-1), 937+/-17 kg m(-3)), forehead blubber (1401+/-7.8 m s(-1), 935+/-25 kg m(-3)) and muscle (1517+/-46.8 m s(-1), 993+/-58 kg m(-3)). Connective tissue had the greatest mean sound speed and density (1628+/-48.7 m s(-1), 1087+/-41 kg m(-3)). The melon formed a low-density, low-sound-speed core, supporting its function as a sound focusing organ. Hounsfield unit (HU) values from CT X-ray imaging are correlated with density and sound speed values, allowing HU values to be used to predict these physical properties. Blubber and connective tissues have a higher elastic modulus than acoustic fats and melon, suggesting more collagen structure in blubber and connective tissues. Blubber tissue elastic modulus is nonlinear with varying stress, becoming more incompressible as stress is increased. These data provide important physical properties required to construct models of the sound generation and reception mechanisms in Ziphius cavirostris heads, as well as models of their interaction with anthropogenic sound.

  8. Value and limits of μ-CT for nondemineralized bone tissue processing.

    PubMed

    Draenert, Miriam Esther; Draenert, Alice Irène; Forriol, Francisco; Cerler, Michael; Kunzelmann, Karl-Heinz; Hickel, Reinhard; Draenert, Klaus

    2012-04-01

    An experimental approach was performed on 20 giant rabbits to establish the possibilities and limitations of μ-CT for routine processing of nondemineralized bone tissue. Hydroxyapatite (HA) or β-tricalciumphosphate (β-TCP) bead implants or a melange of both, microchambered and solid, were implanted into a standardized and precise defect in the patellar groove. The bone-healing phase was chosen for the histology considering 1 or 2 days, and 2, 3, and 6 weeks. Normal X-ray and μ-CT were applied on all specimens; five specimens in the 6-week stage were additionally processed according to the full range of conventional nondemineralized bone processing methods. μ-CT increased the possibilities of nondemineralized histology with respect to bone morphometry and a complete sequence of sections, thus providing a complete analysis of the bone response. μ-CT was limited in differentiating bone quality, cell analyses, and mineralization stages. The investigation based on normal X-rays is limited to defining integration and excluding the fibrous and bony encapsulation of loose implants. μ-CT allows a 3D evaluation of newly formed bone which is clearly marked against the ceramic implant. It does not allow, however, for the differentiation between woven and lamellar bone, the presentation of the canalicular lacunar system, or on the cell level, revealing canaliculi or details of the mineralization process which can be documented by high-resolution microradiography. Titer dynamics of bone formation remains the domain of polychromatic sequential labeling. The complete sequence of μ-CT slices enhances the possibilities for routine histology, tremendously allowing to the focus on detail histology to topographically well-defined cuts, thus providing more precise conclusions which take into consideration the whole implant.

  9. Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium

    NASA Astrophysics Data System (ADS)

    Karwoski, Ronald A.; Bartholmai, Brian; Zavaletta, Vanessa A.; Holmes, David; Robb, Richard A.

    2008-03-01

    The goal of Lung Tissue Resource Consortium (LTRC) is to improve the management of diffuse lung diseases through a better understanding of the biology of Chronic Obstructive Pulmonary Disease (COPD) and fibrotic interstitial lung disease (ILD) including Idiopathic Pulmonary Fibrosis (IPF). Participants are subjected to a battery of tests including tissue biopsies, physiologic testing, clinical history reporting, and CT scanning of the chest. The LTRC is a repository from which investigators can request tissue specimens and test results as well as semi-quantitative radiology reports, pathology reports, and automated quantitative image analysis results from the CT scan data performed by the LTRC core laboratories. The LTRC Radiology Core Laboratory (RCL), in conjunction with the Biomedical Imaging Resource (BIR), has developed novel processing methods for comprehensive characterization of pulmonary processes on volumetric high-resolution CT scans to quantify how these diseases manifest in radiographic images. Specifically, the RCL has implemented a semi-automated method for segmenting the anatomical regions of the lungs and airways. In these anatomic regions, automated quantification of pathologic features of disease including emphysema volumes and tissue classification are performed using both threshold techniques and advanced texture measures to determine the extent and location of emphysema, ground glass opacities, "honeycombing" (HC) and "irregular linear" or "reticular" pulmonary infiltrates and normal lung. Wall thickness measurements of the trachea, and its branches to the 3 rd and limited 4 th order are also computed. The methods for processing, segmentation and quantification are described. The results are reviewed and verified by an expert radiologist following processing and stored in the public LTRC database for use by pulmonary researchers. To date, over 1200 CT scans have been processed by the RCL and the LTRC project is on target for recruitment of the

  10. Interaction of expanding abdominal aortic aneurysm with surrounding tissue: Retrospective CT image studies

    PubMed Central

    Kwon, Sebastian T.; Burek, William; Dupay, Alexander C.; Farsad, Mehdi; Baek, Seungik; Park, Eun-Ah; Lee, Whal

    2015-01-01

    Objectives Abdominal aortic aneurysms (AAA) that rupture have a high mortality rate. Rupture occurs when local mechanical stress exceeds the local mechanical strength of an AAA, so stress profiles such as those from finite element analysis (FEA) are useful. The role and effect of surrounding tissues, like the vertebral column, which have not been extensively studied, are examined in this paper. Methods Longitudinal CT scans from ten patients with AAAs were studied to see the effect of surrounding tissues on AAAs. Segmentation was performed to distinguish the AAA from other tissues and we studied how these surrounding tissues affected the shape and curvature of the AAA. Previously established methods by Veldenz et al. were used to split the AAA into 8 sections and examine the specific effects of surrounding tissues on these sections [1]. Three-dimensional models were created to better examine these effects over time. Registration was done in order to compare AAAs longitudinally. Results The vertebral column and osteophytes were observed to have been affecting the shape and the curvature of the AAA. Interaction with the spine caused focal flattening in certain areas of the AAA. In 16 of the 41 CT scans, the right posterior dorsal section (section 5), had the highest radius of curvature, which was by far the section that had the maximum radius for a specified CT scan. Evolution of the growing AAA showed increased flattening in this section when comparing the last CT scan to the first scan. Conclusion Surrounding tissues have a clear influence on the geometry of an AAA, which may in turn affect the stress profile of AAA. Incorporating these structures in FEA and G&R models will provide a better estimate of stress. Clinical Relevance Currently, size is the only variable considered when deciding whether to undergo elective surgery to repair AAA since it is an easy enough measure for clinicians to utilize. However, this may not be the best indicator of rupture risk

  11. Breast Tissue Characterization with Photon-counting Spectral CT Imaging: A Postmortem Breast Study

    PubMed Central

    Ding, Huanjun; Klopfer, Michael J.; Ducote, Justin L.; Masaki, Fumitaro

    2014-01-01

    Purpose To investigate the feasibility of breast tissue characterization in terms of water, lipid, and protein contents with a spectral computed tomographic (CT) system based on a cadmium zinc telluride (CZT) photon-counting detector by using postmortem breasts. Materials and Methods Nineteen pairs of postmortem breasts were imaged with a CZT-based photon-counting spectral CT system with beam energy of 100 kVp. The mean glandular dose was estimated to be in the range of 1.8–2.2 mGy. The images were corrected for pulse pile-up and other artifacts by using spectral distortion corrections. Dual-energy decomposition was then applied to characterize each breast into water, lipid, and protein contents. The precision of the three-compartment characterization was evaluated by comparing the composition of right and left breasts, where the standard error of the estimations was determined. The results of dual-energy decomposition were compared by using averaged root mean square to chemical analysis, which was used as the reference standard. Results The standard errors of the estimations of the right-left correlations obtained from spectral CT were 7.4%, 6.7%, and 3.2% for water, lipid, and protein contents, respectively. Compared with the reference standard, the average root mean square error in breast tissue composition was 2.8%. Conclusion Spectral CT can be used to accurately quantify the water, lipid, and protein contents in breast tissue in a laboratory study by using postmortem specimens. © RSNA, 2014 PMID:24814180

  12. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates.

    PubMed

    Farace, Paolo

    2014-11-21

    A two-steps procedure is presented to convert dual-energy CT data to stopping power ratio (SPR), relative to water. In the first step the relative electron density (RED) is calculated from dual-energy CT-numbers by means of a bi-linear relationship: RED=a HUscH+b HUscL+c, where HUscH and HUscL are scaled units (HUsc=HU+1000) acquired at high and low energy respectively, and the three parameters a, b and c has to be determined for each CT scanner. In the second step the RED values were converted into SPR by means of published poly-line functions, which are invariant as they do not depend on a specific CT scanner. The comparison with other methods provides encouraging results, with residual SPR error on human tissue within 1%. The distinctive features of the proposed method are its simplicity and the generality of the conversion functions. PMID:25360874

  13. CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction

    SciTech Connect

    Liu, Dong; Brace, Christopher L.

    2014-11-01

    Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 × 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. The spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 ± 1.8 mm (∼20%) smaller in the radial direction and 7.1 ± 1.0 mm (∼10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ∼70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.

  14. Range prediction for tissue mixtures based on dual-energy CT

    NASA Astrophysics Data System (ADS)

    Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen

    2016-06-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient’s CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV u‑1 and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is suggested for arbitrary mixtures of human body tissues.

  15. Range prediction for tissue mixtures based on dual-energy CT

    NASA Astrophysics Data System (ADS)

    Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen

    2016-06-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient’s CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV u-1 and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is suggested for arbitrary mixtures of human body tissues.

  16. High-resolution CT analysis of facial struts in trauma: 1. Osseous and soft-tissue complications

    SciTech Connect

    Gentry, L.R.; Manor, W.F.; Turski, P.A.; Strother, C.M.

    1983-03-01

    In six cadavers, high-resolution thin-section computed tomography (CT) was used to evaluate the sequelae of experimentally produced facial trauma. As confirmed by pluridirectional tomography, CT was an effective imaging method for the detection and classification of facial fractures. The ability of CT to simultaneously depict both osseous and soft-tissue structures expands the role that diagnostic radiology can play in the evaluation of the traumatized face. A method of evaluation is presented in which the face is geometrically conceptualized as a series of triplanar (horizontal, sagittal, and coronal) osseous struts. Sequential, systematic assessment of each strut for fracture and its adjacent soft tissue for injury can facilitate evaluation of the traumatized face. Using this approach the osseous and soft-tissue complications arising from experimentally produced trauma are reviewed and illustrated with CT.

  17. PET/CT for Radiotherapy Treatment Planning in Patients With Soft Tissue Sarcomas

    SciTech Connect

    Karam, Irene; Devic, Slobodan; Hickeson, Marc; Roberge, David; Turcotte, Robert E.; Freeman, Carolyn R.

    2009-11-01

    Purpose: To study the possibility of incorporating positron emission tomography/computed tomography (PET/CT) information into radiotherapy treatment planning in patients with high-grade soft tissue sarcomas (STS). Methods and Materials: We studied 17 patients treated with preoperative radiotherapy at our institution from 2005 to 2007. All patients had a high-grade STS and had had a staging PET/CT scan. For each patient, an MRI-based gross tumor volume (GTV), considered to be the contemporary standard for radiotherapy treatment planning, was outlined on a T1-gadolinium enhanced axial MRI (GTV{sub MRI}), and a second set of GTVs were outlined using different threshold values on PET images (GTV{sub PET}). PET-based target volumes were compared with the MRI-based GTV. Threshold values for target contouring were determined as a multiple (from 2 to 10 times) of the background soft tissue uptake values (B) sampled over healthy tissue. Results: PET-based GTVs contoured using a threshold value of 2 or 2.5 most closely resembled the GTV{sub MRI} volumes. Higher threshold values lead to PET volumes much smaller than the GTV{sub MRI}. The standard deviations between the average volumes of GTV{sub PET} and GTV{sub MRI} ratios for all thresholds were large, ranging from 36% for 2 xB up to 93% for 10 xB. Maximum uptake-to-background ratio correlated poorly with the maximum standardized uptake values. Conclusions: It is unlikely that PET/CT will make a significant contribution in GTV definition for radiotherapy treatment planning in patients with STS using threshold methods on PET images. Future studies will focus on molecular imaging and tumor physiology.

  18. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Adam S.; Webster Stayman, J.; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L.; Khanna, A. Jay; Siewerdsen, Jeffrey H.

    2014-02-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (˜40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ˜1.7 mGy and benefits from 50% sparsity at dose below ˜1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose.

  19. PET/CT Imaging Reveals Unrivaled Placental Avidity for Glucose Compared to Other Tissues

    PubMed Central

    Sawatzke, Alexander B.; Norris, Andrew W.; Spyropoulos, Fotios; Walsh, Susan A.; Acevedo, Michael R.; Hu, Shanming; Yao, Jianrong; Wang, Chunlin; Sunderland, John J.; Boles Ponto, Laura L.

    2014-01-01

    Introduction The goal of this study was to define the kinetics of glucose transport from maternal blood to placenta to fetus using real time imaging. Methods Positron emission tomography (PET) imaging of the glucose tracer [18F]fluorodeoxyglucose (FDG) was used to temporally and spatially define, in vivo, the kinetics of glucose transport from maternal blood into placentae and fetuses, in the late gestational gravid rat. Computed tomography (CT), with intravenous contrast, co-registered to the PET images allowed anatomic differentiation of placentae from fetal and maternal tissues. Results FDG was rapidly taken up by placentae and subsequently appeared in fetuses with minimal temporal lag. FDG standardized uptake values in placentae and fetuses approached that of maternal brain. In both anesthetized and awake dams, one quarter of the administered FDG ultimately was accrued in the collective fetuses and placentae. Accordingly, kinetic modeling demonstrated that the placentae had very high avidity for FDG, 2-fold greater than that of the fetus and maternal brain, when accounting for the fact that fetal FDG necessarily must first be taken up by placentae. Consistent with this, placental expression of glucose transporter 1 exceeded that of all other tissues. Discussion Fetal and placental tissues place a substantial glucose metabolic burden on the mother, owing to very high avidity of placentae for glucose coupled with the large relative mass of fetal and placental tissues. Conclusions The placenta has a tremendous capacity to uptake and transport glucose. PET/CT imaging is an ideal means to study metabolite transport kinetics in the fetoplacental unit. PMID:25555498

  20. Improved correction for the tissue fraction effect in lung PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F.; Maher, Toby M.; Groves, Ashley M.; Thielemans, Kris

    2015-09-01

    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted.

  1. Micro-CT scouting for transmission electron microscopy of human tissue specimens.

    PubMed

    Morales, A G; Stempinski, E S; Xiao, X; Patel, A; Panna, A; Olivier, K N; McShane, P J; Robinson, C; George, A J; Donahue, D R; Chen, P; Wen, H

    2016-07-01

    Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. We describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 μm resolution was used to determine the location of patches of the mucous membrane in osmium-stained human nasal scraping samples. Once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. PMID:26854176

  2. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems.

    PubMed

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm(-3) and 1.1 g cm(-3) occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  3. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems.

    PubMed

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm(-3) and 1.1 g cm(-3) occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems. PMID:27300449

  4. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm‑3 and 1.1 g cm‑3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  5. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  6. Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy

    SciTech Connect

    Hünemohr, Nora Greilich, Steffen; Paganetti, Harald; Seco, Joao; Jäkel, Oliver

    2014-06-15

    Purpose: The authors describe a novel method of predicting mass density and elemental mass fractions of tissues from dual energy CT (DECT) data for Monte Carlo (MC) based dose planning. Methods: The relative electron density ϱ{sub e} and effective atomic number Z{sub eff} are calculated for 71 tabulated tissue compositions. For MC simulations, the mass density is derived via one linear fit in the ϱ{sub e} that covers the entire range of tissue compositions (except lung tissue). Elemental mass fractions are predicted from the ϱ{sub e} and the Z{sub eff} in combination. Since particle therapy dose planning and verification is especially sensitive to accurate material assignment, differences to the ground truth are further analyzed for mass density, I-value predictions, and stopping power ratios (SPR) for ions. Dose studies with monoenergetic proton and carbon ions in 12 tissues which showed the largest differences of single energy CT (SECT) to DECT are presented with respect to range uncertainties. The standard approach (SECT) and the new DECT approach are compared to reference Bragg peak positions. Results: Mean deviations to ground truth in mass density predictions could be reduced for soft tissue from (0.5±0.6)% (SECT) to (0.2±0.2)% with the DECT method. Maximum SPR deviations could be reduced significantly for soft tissue from 3.1% (SECT) to 0.7% (DECT) and for bone tissue from 0.8% to 0.1%. MeanI-value deviations could be reduced for soft tissue from (1.1±1.4%, SECT) to (0.4±0.3%) with the presented method. Predictions of elemental composition were improved for every element. Mean and maximum deviations from ground truth of all elemental mass fractions could be reduced by at least a half with DECT compared to SECT (except soft tissue hydrogen and nitrogen where the reduction was slightly smaller). The carbon and oxygen mass fraction predictions profit especially from the DECT information. Dose studies showed that most of the 12 selected tissues would

  7. A CT-scan database for the facial soft tissue thickness of Taiwan adults.

    PubMed

    Chung, Ju-Hui; Chen, Hsiao-Ting; Hsu, Wan-Yi; Huang, Guo-Shu; Shaw, Kai-Ping

    2015-08-01

    Facial reconstruction is a branch of forensic anthropology used to assist in the identification of skeletal remains. The majority of facial reconstruction techniques use facial soft tissue depth chart data to recreate facial tissue on a skull or a model of a skull through the use of modeling clay. This study relied on 193 subjects selected from the Taiwanese population on the basis of age and gender to determine the average values of 32 landmarks, include midline and bilateral measures, by means of CT scans. The mean age of the subjects was 46.9±16.4 years, with a mean age of 43.8±16.6 for males and 49.9±15.8 for females respectively. There were 16 landmarks with statistically significant differences between male and female subjects, namely S, G, N, Na, Ph, Sd and Id in the midline portion, FE, LO, ZA and Sub M2 in the bilateral-right and left portion, and IM point in the bilateral-left portion (abbreviations adapted from Karen T. Taylor's work). The mean soft tissue depth was greater in males than in females, and there was significant difference between the right and left sides of the face in Za point. This study's findings were compared with those of Bulut et al. PMID:26028278

  8. High-performance soft-tissue imaging in extremity cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Muhit, A.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. Methods: The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. Results: The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5ṡ106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. Conclusion: The combination of rapid (5-10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging.

  9. Nonlinear histogram binning for quantitative analysis of lung tissue fibrosis in high-resolution CT data

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A.

    2007-03-01

    Diffuse lung diseases, such as idiopathic pulmonary fibrosis (IPF), can be characterized and quantified by analysis of volumetric high resolution CT scans of the lungs. These data sets typically have dimensions of 512 x 512 x 400. It is too subjective and labor intensive for a radiologist to analyze each slice and quantify regional abnormalities manually. Thus, computer aided techniques are necessary, particularly texture analysis techniques which classify various lung tissue types. Second and higher order statistics which relate the spatial variation of the intensity values are good discriminatory features for various textures. The intensity values in lung CT scans range between [-1024, 1024]. Calculation of second order statistics on this range is too computationally intensive so the data is typically binned between 16 or 32 gray levels. There are more effective ways of binning the gray level range to improve classification. An optimal and very efficient way to nonlinearly bin the histogram is to use a dynamic programming algorithm. The objective of this paper is to show that nonlinear binning using dynamic programming is computationally efficient and improves the discriminatory power of the second and higher order statistics for more accurate quantification of diffuse lung disease.

  10. Pulmonary CT image registration and warping for tracking tissue deformation during the respiratory cycle through 3D consistent image registration

    PubMed Central

    Li, Baojun; Christensen, Gary E.; Hoffman, Eric A.; McLennan, Geoffrey; Reinhardt, Joseph M.

    2008-01-01

    Tracking lung tissues during the respiratory cycle has been a challenging task for diagnostic CT and CT-guided radiotherapy. We propose an intensity- and landmark-based image registration algorithm to perform image registration and warping of 3D pulmonary CT image data sets, based on consistency constraints and matching corresponding airway branchpoints. In this paper, we demonstrate the effectivenss and accuracy of this algorithm in tracking lung tissues by both animal and human data sets. In the animal study, the result showed a tracking accuracy of 1.9 mm between 50% functional residual capacity (FRC) and 85% total lung capacity (TLC) for 12 metal seeds implanted in the lungs of a breathing sheep under precise volume control using a pulmonary ventilator. Visual inspection of the human subject results revealed the algorithm’s potential not only in matching the global shapes, but also in registering the internal structures (e.g., oblique lobe fissures, pulmonary artery branches, etc.). These results suggest that our algorithm has significant potential for warping and tracking lung tissue deformation with applications in diagnostic CT, CT-guided radiotherapy treatment planning, and therapeutic effect evaluation. PMID:19175115

  11. Pulmonary CT image registration and warping for tracking tissue deformation during the respiratory cycle through 3D consistent image registration.

    PubMed

    Li, Baojun; Christensen, Gary E; Hoffman, Eric A; McLennan, Geoffrey; Reinhardt, Joseph M

    2008-12-01

    Tracking lung tissues during the respiratory cycle has been a challenging task for diagnostic CT and CT-guided radiotherapy. We propose an intensity- and landmark-based image registration algorithm to perform image registration and warping of 3D pulmonary CT image data sets, based on consistency constraints and matching corresponding airway branchpoints. In this paper, we demonstrate the effectivenss and accuracy of this algorithm in tracking lung tissues by both animal and human data sets. In the animal study, the result showed a tracking accuracy of 1.9 mm between 50% functional residual capacity (FRC) and 85% total lung capacity (TLC) for 12 metal seeds implanted in the lungs of a breathing sheep under precise volume control using a pulmonary ventilator. Visual inspection of the human subject results revealed the algorithm's potential not only in matching the global shapes, but also in registering the internal structures (e.g., oblique lobe fissures, pulmonary artery branches, etc.). These results suggest that our algorithm has significant potential for warping and tracking lung tissue deformation with applications in diagnostic CT, CT-guided radiotherapy treatment planning, and therapeutic effect evaluation.

  12. Extracting tissue and cell outlines of Arabidopsis seeds using refraction contrast X-ray CT at the SPring-8 facility

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Tamaoki, Daisuke; Hayami, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Karahara, Ichirou; Mineyuki, Yoshinobu

    2012-07-01

    How biological form is determined is one of the important questions in developmental biology. Physical forces are thought to be the primary determinants of the biological forms, and several theories for this were proposed nearly a century ago. To evaluate how physical forces can influence biological forms, precise determination of cell and tissue shapes and their geometries is necessary. Computed tomography (CT) is useful for visualizing three-dimensional structures without destroying a sample. Because recent progress in micro-CT has enabled visualizing cells and tissues at the sub-micron level, we investigated if we could extract cell and tissue outlines of seeds using refraction contrast X-ray CT available at the SPring-8 synchrotron radiation facility. We used Arabidopsis seeds because Arabidopsis is a well-known model plant and its seed size is small enough to obtain whole images using the X-ray CT experimental system. We could trace the outlines of tissues in dry seeds using beamline BL20B2 (10 keV, 2.4µm.pixel-1). Although we could also detect the outlines of some cell types, the image resolution was not adequate to extract whole cell edges. To detect the edges of cells in the epidermis and cortex, we obtained CT images using beamline BL20XU (8 keV, 0.5 µm.pixel-1). With these CT images, we could extract the facets and edges of each cell and determine cell vertices. This method enabled us to compare the numbers of cell facets among various cell types. We could also describe cell geometry as a set of points that showed these cell vertices.

  13. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan

  14. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan

  15. Size effect of Au/PAMAM contrast agent on CT imaging of reticuloendothelial system and tumor tissue

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Jian; Liu, Ransheng; Zhang, Aixu; Yuan, Zhiyong

    2016-09-01

    Polyamidoamine (PAMAM)-entrapped Au nanoparticles were synthesized with distinct sizes to figure out the size effect of Au-based contrast agent on CT imaging of passively targeted tissues. Au/PAMAM nanoparticles were first synthesized with narrow distribution of particles size of 22.2 ± 3.1, 54.2 ± 3.7, and 104.9 ± 4.7 nm in diameters. Size effect leads no significant difference on X-ray attenuation when Au/PAMAM was ≤0.05 mol/L. For CT imaging of a tumor model, small Au/PAMAM were more easily internalized via endocytosis in the liver, leading to more obviously enhanced contrast. Similarly, contrast agents with small sizes were more effective in tumor imaging because of the enhanced permeability and retention effect. Overall, the particle size of Au/PAMAM heavily affected the efficiency of CT enhancement in imaging RES and tumors.

  16. The correlation of epicardial adipose tissue on postmortem CT with coronary artery stenosis as determined by autopsy.

    PubMed

    Sequeira, Damien I; Ebert, Lars C; Flach, Patricia M; Ruder, Thomas D; Thali, Michael J; Ampanozi, Garyfalia

    2015-06-01

    The goal of this study was to assess whether epicardial and paracardial adipose tissue volumes, as determined by computed tomography (CT), correlate with coronary artery stenosis as determined by autopsy. The postmortem CT data and autopsy findings of 116 adult human decedents were retrospectively compared. Subjects were classified into three groups according to their degree of coronary artery stenosis: ≥50, <50%, and no stenosis. Epicardial and paracardial adipose tissue volumes were calculated based on manual segmentation after threshold based masking. In addition, epicardial adipose tissue thickness was measured using a caliper. All three parameters (thickness of epicardial fat and volumes of both epicardial and paracardial fat) were compared among the three groups and correlated with the degree of coronary artery stenosis. The group with no coronary artery stenosis showed the lowest mean values of epicardial adipose tissue volume, while the coronary artery stenosis ≥50 % group showed the highest volume. All measured variables (thickness of epicardial fat and volumes of both epicardial and paracardial fat) correlated significantly with the grade of coronary artery stenosis, even after controlling for BMI, however, epicardial adipose tissue volume exhibited the strongest correlation. This study reveals that there is an association between the degree of coronary artery stenosis and the amount of epicardial fat tissue: The larger the volume of epicardial fat, the higher the degree of coronary artery stenosis. PMID:25711291

  17. The use of CT density changes at internal tissue interfaces to correlate internal organ motion with an external surrogate

    NASA Astrophysics Data System (ADS)

    Gaede, Stewart; Carnes, Gregory; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-01-01

    The purpose of this paper is to describe a non-invasive method to monitor the motion of internal organs affected by respiration without using external markers or spirometry, to test the correlation with external markers, and to calculate any time shift between the datasets. Ten lung cancer patients were CT scanned with a GE LightSpeed Plus 4-Slice CT scanner operating in a ciné mode. We retrospectively reconstructed the raw CT data to obtain consecutive 0.5 s reconstructions at 0.1 s intervals to increase image sampling. We defined regions of interest containing tissue interfaces, including tumour/lung interfaces that move due to breathing on multiple axial slices and measured the mean CT number versus respiratory phase. Tumour motion was directly correlated with external marker motion, acquired simultaneously, using the sample coefficient of determination, r2. Only three of the ten patients showed correlation higher than r2 = 0.80 between tumour motion and external marker position. However, after taking into account time shifts (ranging between 0 s and 0.4 s) between the two data sets, all ten patients showed correlation better than r2 = 0.8. This non-invasive method for monitoring the motion of internal organs is an effective tool that can assess the use of external markers for 4D-CT imaging and respiratory-gated radiotherapy on a patient-specific basis.

  18. Automated quantitative characterization of alginate/hydroxyapatite bone tissue engineering scaffolds by means of micro-CT image analysis.

    PubMed

    Brun, Francesco; Turco, Gianluca; Accardo, Agostino; Paoletti, Sergio

    2011-12-01

    Accurate image acquisition techniques and analysis protocols for a reliable characterization of tissue engineering scaffolds are yet to be well defined. To this aim, the most promising imaging technique seems to be the X-ray computed microtomography (μ-CT). However critical issues of the analysis process deal with the representativeness of the selected Volume of Interest (VOI) and, most significantly, its segmentation. This article presents an image analysis protocol that computes a set of quantitative descriptors suitable for characterizing the morphology and the micro-architecture of alginate/hydroxyapatite bone tissue engineering scaffolds. Considering different VOIs extracted from different μ-CT datasets, an automated segmentation technique is suggested and compared against a manual segmentation. Variable sizes of VOIs are also considered in order to assess their representativeness. The resulting image analysis protocol is reproducible, parameter-free and it automatically provides accurate quantitative information in addition to the simple qualitative observation of the acquired images.

  19. Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging.

    PubMed

    Gifford, Aliya; Towse, Theodore F; Walker, Ronald C; Avison, Malcolm J; Welch, E Brian

    2016-07-01

    Activated brown adipose tissue (BAT) plays an important role in thermogenesis and whole body metabolism in mammals. Positron emission tomography (PET)-computed tomography (CT) imaging has identified depots of BAT in adult humans, igniting scientific interest. The purpose of this study is to characterize both active and inactive supraclavicular BAT in adults and compare the values to those of subcutaneous white adipose tissue (WAT). We obtained [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET-CT and magnetic resonance imaging (MRI) scans of 25 healthy adults. Unlike [(18)F]FDG PET, which can detect only active BAT, MRI is capable of detecting both active and inactive BAT. The MRI-derived fat signal fraction (FSF) of active BAT was significantly lower than that of inactive BAT (means ± SD; 60.2 ± 7.6 vs. 62.4 ± 6.8%, respectively). This change in tissue morphology was also reflected as a significant increase in Hounsfield units (HU; -69.4 ± 11.5 vs. -74.5 ± 9.7 HU, respectively). Additionally, the CT HU, MRI FSF, and MRI R2* values are significantly different between BAT and WAT, regardless of the activation status of BAT. To the best of our knowledge, this is the first study to quantify PET-CT and MRI FSF measurements and utilize a semiautomated algorithm to identify inactive and active BAT in the same adult subjects. Our findings support the use of these metrics to characterize and distinguish between BAT and WAT and lay the foundation for future MRI analysis with the hope that some day MRI-based delineation of BAT can stand on its own. PMID:27166284

  20. Severe Hydronephrosis and Perinephric Urinoma with Rupture of Renal Fornix Secondary to Postoperative Urinary Retention following Laparoscopic Umbilical Hernia Repair.

    PubMed

    Dakwar, Anthony; Wysock, James; Satterfield, James

    2016-01-01

    Postoperative urinary retention (POUR) is a known complication following a variety of procedures, with a reported incidence of 2.1-3.8% in general surgery and up to 52% in anorectal surgery. We report a case of POUR in a female resulting in severe unilateral hydronephrosis with a perinephric urinoma due to a ruptured fornix. The extent of hydroureter caused an axial rotation upon itself producing further outflow obstruction. This phenomenon of an anatomical ureter deformity secondary to urinary retention resulting in a ruptured fornix is an unusual occurrence. The patient underwent a percutaneous nephrogram where a stiff guidewire was successfully passed into the bladder by interventional radiology (IR) and allowed for placement of an indwelling ureteral stent. The case presentation, diagnostic evaluation, and therapeutic intervention are discussed. PMID:27555977

  1. Severe Hydronephrosis and Perinephric Urinoma with Rupture of Renal Fornix Secondary to Postoperative Urinary Retention following Laparoscopic Umbilical Hernia Repair

    PubMed Central

    Wysock, James; Satterfield, James

    2016-01-01

    Postoperative urinary retention (POUR) is a known complication following a variety of procedures, with a reported incidence of 2.1–3.8% in general surgery and up to 52% in anorectal surgery. We report a case of POUR in a female resulting in severe unilateral hydronephrosis with a perinephric urinoma due to a ruptured fornix. The extent of hydroureter caused an axial rotation upon itself producing further outflow obstruction. This phenomenon of an anatomical ureter deformity secondary to urinary retention resulting in a ruptured fornix is an unusual occurrence. The patient underwent a percutaneous nephrogram where a stiff guidewire was successfully passed into the bladder by interventional radiology (IR) and allowed for placement of an indwelling ureteral stent. The case presentation, diagnostic evaluation, and therapeutic intervention are discussed. PMID:27555977

  2. Targeted in-vivo computed tomography (CT) imaging of tissue ACE using concentrated lisinopril-capped gold nanoparticle solutions

    NASA Astrophysics Data System (ADS)

    Daniel, Marie-Christine; Aras, Omer; Smith, Mark F.; Nan, Anjan; Fleiter, Thorsten

    2010-04-01

    The development of cardiac and pulmonary fibrosis have been associated with overexpression of angiotensin-converting enzyme (ACE). Moreover, ACE inhibitors, such as lisinopril, have shown a benificial effect for patients diagnosed with heart failure or systemic hypertension. Thus targeted imaging of the ACE is of crucial importance for monitoring of the tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-capped gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. Concentrated solutions of these modified gold nanoparticles, with a diameter around 16 nm, showed high contrast in CT imaging. These new targeted imaging agents were thus used for in vivo imaging on rat models.

  3. Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT

    SciTech Connect

    Weiss, Elisabeth . E-mail: eweiss@mcvh-vcu.edu; Wijesooriya, Krishni; Dill, S. Vaughn; Keall, Paul J.

    2007-01-01

    Purpose: To investigate temporospatial variations of tumor and normal tissue during respiration in lung cancer patients. Methods and Materials: In 14 patients, gross tumor volume (GTV) and normal tissue structures were manually contoured on four-dimensional computed tomography (4D-CT) scans. Structures were evaluated for volume changes, centroid (center of mass) motion, and phase dependence of variations relative to inspiration. Only volumetrically complete structures were used for analysis (lung in 2, heart in 8, all other structures in >10 patients). Results: During respiration, the magnitude of contoured volumes varied up to 62.5% for GTVs, 25.5% for lungs, and 12.6% for hearts. The range of maximum three-dimensional centroid movement for individual patients was 1.3-24.0 mm for GTV, 2.4-7.9 mm for heart, 5.2-12.0 mm for lungs, 0.3-5.5 mm for skin markers, 2.9-10.0 mm for trachea, and 6.6-21.7 mm for diaphragm. During respiration, the centroid positions of normal structures varied relative to the centroid position of the respective GTV by 1.5-8.1 mm for heart, 2.9-9.3 mm for lungs, 1.2-9.2 mm for skin markers, 0.9-7.1 mm for trachea, and 2.7-16.4 mm for diaphragm. Conclusion: Using 4D-CT, volumetric changes, positional alterations as well as changes in the position of contoured structures relative to the GTV were observed with large variations between individual patients. Although the interpretation of 4D-CT data has considerable uncertainty because of 4D-CT artifacts, observer variations, and the limited acquisition time, the findings might have a significant impact on treatment planning.

  4. Size effect of Au/PAMAM contrast agent on CT imaging of reticuloendothelial system and tumor tissue.

    PubMed

    Wang, Wei; Li, Jian; Liu, Ransheng; Zhang, Aixu; Yuan, Zhiyong

    2016-12-01

    Polyamidoamine (PAMAM)-entrapped Au nanoparticles were synthesized with distinct sizes to figure out the size effect of Au-based contrast agent on CT imaging of passively targeted tissues. Au/PAMAM nanoparticles were first synthesized with narrow distribution of particles size of 22.2 ± 3.1, 54.2 ± 3.7, and 104.9 ± 4.7 nm in diameters. Size effect leads no significant difference on X-ray attenuation when Au/PAMAM was ≤0.05 mol/L. For CT imaging of a tumor model, small Au/PAMAM were more easily internalized via endocytosis in the liver, leading to more obviously enhanced contrast. Similarly, contrast agents with small sizes were more effective in tumor imaging because of the enhanced permeability and retention effect. Overall, the particle size of Au/PAMAM heavily affected the efficiency of CT enhancement in imaging RES and tumors. PMID:27671016

  5. Soft tissue navigation using needle-shaped markers: Evaluation of navigation aid tracking accuracy and CT registration

    NASA Astrophysics Data System (ADS)

    Maier-Hein, L.; Maleike, D.; Neuhaus, J.; Franz, A.; Wolf, I.; Meinzer, H.-P.

    2007-03-01

    We evaluate two core modules of a novel soft tissue navigation system. The system estimates the position of a hidden target (e.g. a tumor) during a minimally invasive intervention from the location of a set of optically tracked needle-shaped navigation aids which are placed in the vicinity of the target. The initial position of the target relative to the navigation aids is obtained from a CT scan. The accuracy of the entire system depends on (a) the accuracy for locating a set of navigation aids in a CT image, (b) the accuracy for determining the positions of the navigation aids during the intervention by means of optical tracking, (c) the accuracy for tracking the applicator (e.g. the biopsy needle), and (d) the accuracy of the real-time deformation model which continuously computes the location of the initially determined target point from the current positions of the navigation aids. In this paper, we focus on the first two aspects. We introduce the navigation aids we constructed for our system and show that the needle tips can be tracked with submillimeter accuracy. Furthermore, we present and evaluate three methods for registering a set of navigation aid models with a given CT image. The fully-automatic algorithm outperforms both the manual method and the semi-automatic algorithm, yielding an average distance of 0.27 +/- 0.08 mm between the estimated needle tip position and the reference position.

  6. Unenhanced CT for the evaluation of acute ureteric colic: the essential pictorial guide.

    PubMed

    Kennish, Steven J; Wah, Tze M; Irving, Henry C

    2010-07-01

    Acute ureteric colic is a common emergency, often dealt with by the emergency physician or general practitioner and referred on to the urologist. Unenhanced CT of the kidneys, ureters and bladder (CTKUB) is the 'gold standard' imaging investigation for establishing a diagnosis and guiding management. An appreciation of the CTKUB signs, which support or refute a diagnosis of ureteric colic, is highly valuable to the clinician when making a urological referral, and to the urologist, who must make appropriate management plans. All salient diagnostic and supportive features of ureteric colic are carefully illustrated, as are important radiological mimics, with the objectives of educating and informing the non-radiologist. Ready access to the picture archive and communication system (PACS) allows all specialists involved to interpret the radiological report with the benefit of images. A stone within the ureter may not always be readily apparent. Soft tissue rim sign around a calcific focus is an important indicator of a ureteric stone, whereas a comet tail sign suggests a phlebolith (a calcified venous thrombosis), a radiological mimic of a ureteric stone. Numerous secondary signs of ureteric obstruction may be present including hydronephrosis and perinephric stranding, and can help to confirm the diagnosis. The relative diagnostic weighting of signs is discussed, and a checklist is provided to assist with interpretation. Unexpected alternative radiological diagnoses are also illustrated, which may have significant management consequences necessitating specialist referral. PMID:20634253

  7. Unenhanced CT for the evaluation of acute ureteric colic: the essential pictorial guide.

    PubMed

    Kennish, Steven J; Wah, Tze M; Irving, Henry C

    2010-07-01

    Acute ureteric colic is a common emergency, often dealt with by the emergency physician or general practitioner and referred on to the urologist. Unenhanced CT of the kidneys, ureters and bladder (CTKUB) is the 'gold standard' imaging investigation for establishing a diagnosis and guiding management. An appreciation of the CTKUB signs, which support or refute a diagnosis of ureteric colic, is highly valuable to the clinician when making a urological referral, and to the urologist, who must make appropriate management plans. All salient diagnostic and supportive features of ureteric colic are carefully illustrated, as are important radiological mimics, with the objectives of educating and informing the non-radiologist. Ready access to the picture archive and communication system (PACS) allows all specialists involved to interpret the radiological report with the benefit of images. A stone within the ureter may not always be readily apparent. Soft tissue rim sign around a calcific focus is an important indicator of a ureteric stone, whereas a comet tail sign suggests a phlebolith (a calcified venous thrombosis), a radiological mimic of a ureteric stone. Numerous secondary signs of ureteric obstruction may be present including hydronephrosis and perinephric stranding, and can help to confirm the diagnosis. The relative diagnostic weighting of signs is discussed, and a checklist is provided to assist with interpretation. Unexpected alternative radiological diagnoses are also illustrated, which may have significant management consequences necessitating specialist referral.

  8. High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Karwoski, Ronald A.; Bartholmai, Brian; Robb, Richard A.

    2006-03-01

    Idiopathic pulmonary fibrosis (IPF, also known as Idiopathic Usual Interstitial Pneumontis, pathologically) is a progressive diffuse lung disease which has a median survival rate of less than four years with a prevalence of 15-20/100,000 in the United States. Global function changes are measured by pulmonary function tests and the diagnosis and extent of pulmonary structural changes are typically assessed by acquiring two-dimensional high resolution CT (HRCT) images. The acquisition and analysis of volumetric high resolution Multi-Detector CT (MDCT) images with nearly isotropic pixels offers the potential to measure both lung function and structure. This paper presents a new approach to three dimensional lung image analysis and classification of normal and abnormal structures in lungs with IPF.

  9. Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates.

    PubMed

    Gignac, Paul M; Kley, Nathan J

    2014-05-01

    The now widespread use of non-destructive X-ray computed tomography (CT) and micro-CTCT) has greatly augmented our ability to comprehensively detail and quantify the internal hard-tissue anatomy of vertebrates. However, the utility of X-ray imaging for gaining similar insights into vertebrate soft-tissue anatomy has yet to be fully realized due to the naturally low X-ray absorption of non-mineralized tissues. In this study, we show how a wide diversity of soft-tissue structures within the vertebrate head-including muscles, glands, fat deposits, perichondria, dural venous sinuses, white and gray matter of the brain, as well as cranial nerves and associated ganglia-can be rapidly visualized in their natural relationships with extraordinary levels of detail using iodine-enhanced (i-e) µCT imaging. To date, Lugol's iodine solution (I2 KI) has been used as a contrast agent for µCT imaging of small invertebrates, vertebrate embryos, and certain isolated parts of larger, post-embryonic vertebrates. These previous studies have all yielded promising results, but visualization of soft tissues in smaller invertebrate and embryonic vertebrate specimens has generally been more complete than that for larger, post-embryonic vertebrates. Our research builds on these previous studies by using high-energy µCT together with more highly concentrated I2 KI solutions and longer staining times to optimize the imaging and differentiation of soft tissues within the heads of post-embryonic archosaurs (Alligator mississippiensis and Dromaius novaehollandiae). We systematically quantify the intensities of tissue staining, demonstrate the range of anatomical structures that can be visualized, and generate a partial three-dimensional reconstruction of alligator cephalic soft-tissue anatomy.

  10. Evaluating the dose effects of a longitudinal micro-CT study on pulmonary tissue in C57BL/6 mice

    NASA Astrophysics Data System (ADS)

    Detombe, Sarah A.; Dunmore-Buyze, Joy; Petrov, Ivailo E.; Drangova, Maria

    2012-03-01

    Background: Micro-computed tomography offers numerous advantages for small animal imaging, including the ability to monitor the same animals throughout a longitudinal study. However, concerns are often raised regarding the effects of x-ray dose accumulated over the course of the experiment. In this study, we scan C57BL/6 mice multiple times per week for six weeks, to determine the effect of the cumulative dose on pulmonary tissue at the end of the study. Methods/Results: C57BL/6 male mice were split into two groups (irradiated group=10, control group=10). The irradiated group was scanned (80kVp/50mA) each week for 6 weeks; the weekly scan session had three scans. This resulted in a weekly dose of 0.84 Gy, and a total study dose of 5.04 Gy. The control group was scanned on the final week. Scans from weeks 1 and 6 were reconstructed and analyzed: overall, there was no significant difference in lung volume or lung density between the control group and the irradiated group. Similarly, there were no significant differences between the week 1 and week 6 scans in the irradiated group. Histological samples taken from excised lung tissue also showed no evidence of inflammation or fibrosis in the irradiated group. Conclusion: This study demonstrates that a 5 Gy x-ray dose accumulated over six weeks during a longitudinal micro-CT study has no significant effects on the pulmonary tissue of C57BL/6 mice. As a result, the many advantages of micro- CT imaging, including rapid acquisition of high-resolution, isotropic images in free-breathing mice, can be taken advantage of in longitudinal studies without concern for negative dose-related effects.

  11. A topology-oriented and tissue-specific approach to detect pleural thickenings from 3D CT data

    NASA Astrophysics Data System (ADS)

    Buerger, C.; Chaisaowong, K.; Knepper, A.; Kraus, T.; Aach, T.

    2009-02-01

    Pleural thickenings are caused by asbestos exposure and may evolve into malignant pleural mesothelioma. The detection of pleural thickenings is today mostly done by a visual inspection of CT data, which is time-consuming and underlies the physician's subjective judgment. We propose a new detection algorithm within our computer-assisted diagnosis (CAD) system to automatically detect pleural thickenings within CT data. First, pleura contours are identified by thresholding and contour relaxation with a probabilistic model. Subsequently, the approach to automatically detect pleural thickenings is proposed as a two-step procedure. Step one; since pleural thickenings appear as fine-scale occurrences on the rather large-scale pleura contour, a surface-based smoothing algorithm is developed. Pleural thickenings are initially detected as the difference between the original contours and the resulting "healthy" model of the pleura. Step two; as pleural thickenings can expand into the surrounding thoracic tissue, a subsequent tissue-specific segmentation for the initially detected pleural thickenings is performed in order to separate pleural thickenings from the surrounding thoracic tissue. For this purpose, a probabilistic Hounsfield model for pleural thickenings as a mixture of Gaussian distributions has been constructed. The parameters were estimated by applying the Expectation-Maximization (EM) algorithm. A model fitting technique in combination with the application of a Gibbs-Markov random field (GMRF) model then allows the tissuespecific segmentation of pleural thickenings with high precision. With these methods, a new approach is presented in order to assure a precise and reproducible detection of pleural mesothelioma in its early stage.

  12. A correlative method for imaging identical regions of samples by micro-CT, light microscopy, and electron microscopy: imaging adipose tissue in a model system.

    PubMed

    Sengle, Gerhard; Tufa, Sara F; Sakai, Lynn Y; Zulliger, Martin A; Keene, Douglas R

    2013-04-01

    We present a method in which a precise region of interest within an intact organism is spatially mapped in three dimensions by non-invasive micro-computed X-ray tomography (micro-CT), then further evaluated by light microscopy (LM) and transmission electron microscopy (TEM). Tissues are prepared as if for TEM including osmium fixation, which imparts soft tissue contrast in the micro-CT due to its strong X-ray attenuation. This method may therefore be applied to embedded, archived TEM samples. Upon selection of a two-dimensional (2-D) projection from a region of interest (ROI) within the three-dimensional volume, the epoxy-embedded sample is oriented for microtomy so that the sectioning plane is aligned with the micro-CT projection. Registration is verified by overlaying LM images with 2-D micro-CT projections. Structures that are poorly resolved in the micro-CT may be evaluated at TEM resolution by observing the next serial ultrathin section, thereby accessing the same ROI by all three imaging techniques. We compare white adipose tissue within the forelimbs of mice harboring a lipid-altering mutation with their littermate controls. We demonstrate that individual osmium-stained lipid droplets as small as 15 µm and separated by as little as 35 µm may be discerned as separate entities in the micro-CT, validating this to be a high-resolution, non-destructive technique for evaluation of fat content.

  13. Polarization effects in thermoacoustic CT of biologic tissue at 434 MHz

    NASA Astrophysics Data System (ADS)

    DelRio, Stephen P.; Kruger, Robert A.; Lam, Richard B.; Reinecke, Daniel R.

    2010-02-01

    Thermoacoustic image contrast is dependent on the dielectric and thermoacoustic properties of the tissue being imaged, its spatial distribution, and the polarization of the incident microwave radiation. We have designed and constructed a thermoacoustic computed tomography (TCT) test platform to study these effects in phantoms and biologic tissue (e.g., beefsteak and mice). Our results indicate that muscle and fat are easily differentiated, but the relative thermoacoustic absorption is strongly dependent upon the polarization angle of the microwave radiation and the morphology of fat and muscle tissues.

  14. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    PubMed

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-01

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  15. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment

    NASA Astrophysics Data System (ADS)

    Miksys, N.; Xu, C.; Beaulieu, L.; Thomson, R. M.

    2015-08-01

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  16. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    PubMed

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-01

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  17. Development of in vivo characterization of breast tissues through absolute attenuation coefficients using dedicated cone-beam CT

    NASA Astrophysics Data System (ADS)

    Madhav, Priti; Li, Christina M.; Tornai, Martin P.

    2010-04-01

    With advances in 3D in vivo imaging technology, non-invasive procedures can be used to characterize tissues to identify tumors and monitor changes over time. Using a dedicated breast CT system with a quasi-monochromatic cone-beam x-ray source and flat-panel digital detector, this study was performed in an effort to directly characterize different materials in vivo based on their absolute attenuation coefficients. CT acquisitions were first acquired using a multi-material rod phantom with acrylic, delrin, polyethylene, fat-equivalent, and glandular-equivalent plastic rods, and also with a human cadaver breast. Projections were collected with and without a beam stop array for scatter correction. For each projection, the 2D scatter was estimated with cubic spline interpolation of the average values behind the shadow of each beam stop overlapping the object. Scatter-corrected projections were subsequently calculated by subtracting the scatter images containing only the region of the object from corresponding projections (consisting of primary and scatter x-rays) without the beam stop array. Iterative OSTR was used to reconstruct the data and estimate the non-uniform attenuation distribution. Preliminary results show that with reduced beam hardening from the x-ray beam, scatter correction further reduces the cupping artifact, improves image contrast, and yields attenuation coefficients < 8% of narrow-beam values of the known materials (range 1.2 - 7.8%). Peaks in the histogram showed clear separation between the different material attenuation coefficients. These findings indicate that minimizing beam hardening and applying scatter correction make it practical to directly characterize different tissues in vivo using absolute attenuation coefficients.

  18. SU-D-12A-02: DeTECT, a Method to Enhance Soft Tissue Contrast From Mega Voltage CT

    SciTech Connect

    Sheng, K; Gou, S; Qi, S

    2014-06-01

    Purpose: MVCT images have been used on TomoTherapy system to align patients based on bony anatomies but its usefulness for soft tissue registration, delineation and adaptive radiation therapy is severely limited due to minimal photoelectric interaction and prominent presence of noise resulting from low detector quantum efficiency of megavoltage x-rays. We aim to utilize a non-local means denoising method and texture analysis to recover the soft tissue information for MVCT. Methods: A block matching 3D (BM3D) algorithm was adapted to reduce the noise while keeping the texture information of the MVCT images. BM3D is an imaging denoising algorithm developed from non-local means methods. BM3D additionally creates 3D groups by stacking 2D patches by the order of similarity. 3D denoising operation is then performed. The resultant 3D group is inversely transformed back to 2D images. In this study, BM3D was applied to MVCT images of a CT quality phantom, a head and neck and a prostate patient. Following denoising, imaging texture was enhanced to create the denoised and texture enhanced CT (DeTECT). Results: The original MVCT images show prevalent noise and poor soft tissue contrast. By applying BM3D denoising and texture enhancement, all MVCT images show remarkable improvements. For the phantom, the contrast to noise ratio for the low contrast plug was improved from 2.2 to 13.1 without compromising line pair conspicuity. For the head and neck patient, the lymph nodes and vein in the carotid space inconspicuous in the original MVCT image becomes highly visible in DeTECT. For the prostate patient, the boundary between the bladder and the prostate in the original MVCT is successfully recovered. Both results are visually validated by kVCT images of the corresponding patients. Conclusion: DeTECT showed the promise to drastically improve the soft tissue contrast of MVCT for image guided radiotherapy and adaptive radiotherapy.

  19. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering

    SciTech Connect

    Bal, Matthieu; Spies, Lothar

    2006-08-15

    High-density objects such as metal prostheses, surgical clips, or dental fillings generate streak-like artifacts in computed tomography images. We present a novel method for metal artifact reduction by in-painting missing information into the corrupted sinogram. The information is provided by a tissue-class model extracted from the distorted image. To this end the image is first adaptively filtered to reduce the noise content and to smooth out streak artifacts. Consecutively, the image is segmented into different material classes using a clustering algorithm. The corrupted and missing information in the original sinogram is completed using the forward projected information from the tissue-class model. The performance of the correction method is assessed on phantom images. Clinical images featuring a broad spectrum of metal artifacts are studied. Phantom and clinical studies show that metal artifacts, such as streaks, are significantly reduced and shadows in the image are eliminated. Furthermore, the novel approach improves detectability of organ contours. This can be of great relevance, for instance, in radiation therapy planning, where images affected by metal artifacts may lead to suboptimal treatment plans.

  20. Volume and tissue composition preserving deformation of breast CT images to simulate breast compression in mammographic imaging

    NASA Astrophysics Data System (ADS)

    Han, Tao; Chen, Lingyun; Lai, Chao-Jen; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.

    2009-02-01

    Images of mastectomy breast specimens have been acquired with a bench top experimental Cone beam CT (CBCT) system. The resulting images have been segmented to model an uncompressed breast for simulation of various CBCT techniques. To further simulate conventional or tomosynthesis mammographic imaging for comparison with the CBCT technique, a deformation technique was developed to convert the CT data for an uncompressed breast to a compressed breast without altering the breast volume or regional breast density. With this technique, 3D breast deformation is separated into two 2D deformations in coronal and axial views. To preserve the total breast volume and regional tissue composition, each 2D deformation step was achieved by altering the square pixels into rectangular ones with the pixel areas unchanged and resampling with the original square pixels using bilinear interpolation. The compression was modeled by first stretching the breast in the superior-inferior direction in the coronal view. The image data were first deformed by distorting the voxels with a uniform distortion ratio. These deformed data were then deformed again using distortion ratios varying with the breast thickness and re-sampled. The deformation procedures were applied in the axial view to stretch the breast in the chest wall to nipple direction while shrinking it in the mediolateral to lateral direction re-sampled and converted into data for uniform cubic voxels. Threshold segmentation was applied to the final deformed image data to obtain the 3D compressed breast model. Our results show that the original segmented CBCT image data were successfully converted into those for a compressed breast with the same volume and regional density preserved. Using this compressed breast model, conventional and tomosynthesis mammograms were simulated for comparison with CBCT.

  1. Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM).

    PubMed

    Buytaert, Jan; Goyens, Jana; De Greef, Daniel; Aerts, Peter; Dirckx, Joris

    2014-08-01

    Two methods are especially suited for tomographic imaging with histological detail of macroscopic samples that consist of multiple tissue types (bone, muscle, nerve or fat): Light sheet (based) fluorescence microscopy (LSFM) and micro-computed tomography (micro-CT). Micro-CT requires staining with heavy chemical elements (and thus fixation and sometimes dehydration) in order to make soft tissue imageable when measured alongside denser structures. LSMF requires fixation, decalcification, dehydration, clearing and staining with a fluorescent dye. The specimen preparation of both imaging methods is prone to shrinkage, which is often not mentioned, let alone quantified. In this paper the presence and degree of shrinkage are quantitatively identified for the selected preparation methods/stains. LSFM delivers a volume shrinkage of 17% for bone, 56% for muscle and 62% for brain tissue. The three most popular micro-CT stains (phosphotungstic acid, iodine with potassium iodide, and iodine in absolute ethanol) deliver a volume shrinkage ranging from 10 to 56% for muscle and 27-66% for brain, while bone does not shrink in micro-CT preparation. PMID:24963987

  2. Heidelberg-mCT-Analyzer: a novel method for standardized microcomputed-tomography-guided evaluation of scaffold properties in bone and tissue research

    PubMed Central

    Weis, Christian; Hoellig, Melanie; Swing, Tyler; Schmidmaier, Gerhard; Weber, Marc-André; Stiller, Wolfram; Kauczor, Hans-Ulrich; Moghaddam, Arash

    2015-01-01

    Bone tissue engineering and bone scaffold development represent two challenging fields in orthopaedic research. Micro-computed tomography (mCT) allows non-invasive measurement of these scaffolds’ properties in vivo. However, the lack of standardized mCT analysis protocols and, therefore, the protocols’ user-dependency make interpretation of the reported results difficult. To overcome these issues in scaffold research, we introduce the Heidelberg-mCT-Analyzer. For evaluation of our technique, we built 10 bone-inducing scaffolds, which underwent mCT acquisition before ectopic implantation (T0) in mice, and at explantation eight weeks thereafter (T1). The scaffolds’ three-dimensional reconstructions were automatically segmented using fuzzy clustering with fully automatic level-setting. The scaffold itself and its pores were then evaluated for T0 and T1. Analysing the scaffolds’ characteristic parameter set with our quantification method showed bone formation over time. We were able to demonstrate that our algorithm obtained the same results for basic scaffold parameters (e.g. scaffold volume, pore number and pore volume) as other established analysis methods. Furthermore, our algorithm was able to analyse more complex parameters, such as pore size range, tissue mineral density and scaffold surface. Our imaging and post-processing strategy enables standardized and user-independent analysis of scaffold properties, and therefore is able to improve the quantitative evaluations of scaffold-associated bone tissue-engineering projects. PMID:26716008

  3. Heidelberg-mCT-Analyzer: a novel method for standardized microcomputed-tomography-guided evaluation of scaffold properties in bone and tissue research.

    PubMed

    Westhauser, Fabian; Weis, Christian; Hoellig, Melanie; Swing, Tyler; Schmidmaier, Gerhard; Weber, Marc-André; Stiller, Wolfram; Kauczor, Hans-Ulrich; Moghaddam, Arash

    2015-11-01

    Bone tissue engineering and bone scaffold development represent two challenging fields in orthopaedic research. Micro-computed tomography (mCT) allows non-invasive measurement of these scaffolds' properties in vivo. However, the lack of standardized mCT analysis protocols and, therefore, the protocols' user-dependency make interpretation of the reported results difficult. To overcome these issues in scaffold research, we introduce the Heidelberg-mCT-Analyzer. For evaluation of our technique, we built 10 bone-inducing scaffolds, which underwent mCT acquisition before ectopic implantation (T0) in mice, and at explantation eight weeks thereafter (T1). The scaffolds' three-dimensional reconstructions were automatically segmented using fuzzy clustering with fully automatic level-setting. The scaffold itself and its pores were then evaluated for T0 and T1. Analysing the scaffolds' characteristic parameter set with our quantification method showed bone formation over time. We were able to demonstrate that our algorithm obtained the same results for basic scaffold parameters (e.g. scaffold volume, pore number and pore volume) as other established analysis methods. Furthermore, our algorithm was able to analyse more complex parameters, such as pore size range, tissue mineral density and scaffold surface. Our imaging and post-processing strategy enables standardized and user-independent analysis of scaffold properties, and therefore is able to improve the quantitative evaluations of scaffold-associated bone tissue-engineering projects.

  4. Topical contrast agents to improve soft-tissue contrast in the upper airway using cone beam CT: a pilot study

    PubMed Central

    Alsufyani, N A; Noga, M L; Finlay, W H; Major, P W

    2013-01-01

    The purpose of this study is to explore the topical use of radiographic contrast agents to enhance soft-tissue contrast on cone beam CT (CBCT) images. Different barium sulphate concentrations were first tested using an airway phantom. Different methods of barium sulphate application (nasal drops, syringe, spray and sinus wash) were then tested on four volunteers, and nebulized iodine was tested in one volunteer. CBCT images were performed and then assessed subjectively by two examiners for contrast agent uniformity and lack of streak artefact. 25.0% barium sulphate presented adequate viscosity and radiodensity. Barium sulphate administered via nasal drops and sprays showed non-uniform collection at the nostrils, along the inferior and/or middle nasal meatuses and posterior nasal choana. The syringe and sinus wash showed similar results with larger volumes collecting in the naso-oropharynx. Nebulized iodine failed to distribute into the nasal cavity and scarcely collected at the nostrils. All methods of nasal application failed to adequately reach or uniformly coat the nasal cavity beyond the inferior nasal meatuses. The key factors to consider for optimum topical radiographic contrast in the nasal airway are particle size, flow velocity and radio-opacity. PMID:23625065

  5. Pilot Study to Confirm that Fat and Liver can be Distinguished by Spectroscopic Tissue Response on a Medipix-All-Resolution System-CT (MARS-CT)

    SciTech Connect

    Berg, Kyra B.; Anderson, Nigel G.; Butler, Alexandra P.; Carr, James M.; Clark, Michael J.; Cook, Nick J.; Scott, Nicola J.; Butler, Philip H.; Butler, Anthony P.

    2009-07-23

    NAFLD, liver component of the 'metabolic' syndrome, has become the most common liver disease in western nations. Non-invasive imaging techniques exist, but have limitations, especially in detection and quantification of mild to moderate fatty liver. In this pilot study, we produced attenuation curves from biomedical-quality projection images of liver and fat using the MARS spectroscopic-CT scanner. Difficulties obtaining attenuation spectra after reconstruction demonstrated that standard reconstruction programs do not preserve spectral information.

  6. Pilot Study to Confirm that Fat and Liver can be Distinguished by Spectroscopic Tissue Response on a Medipix-All-Resolution System-CT (MARS-CT)

    NASA Astrophysics Data System (ADS)

    Berg, Kyra B.; Carr, James M.; Clark, Michael J.; Cook, Nick J.; Anderson, Nigel G.; Scott, Nicola J.; Butler, Alexandra P.; Butler, Philip H.; Butler, Anthony P.

    2009-07-01

    NAFLD, liver component of the "metabolic" syndrome, has become the most common liver disease in western nations. Non-invasive imaging techniques exist, but have limitations, especially in detection and quantification of mild to moderate fatty liver. In this pilot study, we produced attenuation curves from biomedical-quality projection images of liver and fat using the MARS spectroscopic-CT scanner. Difficulties obtaining attenuation spectra after reconstruction demonstrated that standard reconstruction programs do not preserve spectral information.

  7. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    SciTech Connect

    Steinmann, A; Stafford, R; Yung, J; Followill, D

    2015-06-15

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.

  8. Monte Carlo investigations of megavoltage cone-beam CT using thick, segmented scintillating detectors for soft tissue visualization

    SciTech Connect

    Wang Yi; Antonuk, Larry E.; El-Mohri, Youcef; Zhao Qihua; Sawant, Amit; Du Hong

    2008-01-15

    Megavoltage cone-beam computed tomography (MV CBCT) is a highly promising technique for providing volumetric patient position information in the radiation treatment room. Such information has the potential to greatly assist in registering the patient to the planned treatment position, helping to ensure accurate delivery of the high energy therapy beam to the tumor volume while sparing the surrounding normal tissues. Presently, CBCT systems using conventional MV active matrix flat-panel imagers (AMFPIs), which are commonly used in portal imaging, require a relatively large amount of dose to create images that are clinically useful. This is due to the fact that the phosphor screen detector employed in conventional MV AMFPIs utilizes only {approx}2% of the incident radiation (for a 6 MV x-ray spectrum). Fortunately, thick segmented scintillating detectors can overcome this limitation, and the first prototype imager has demonstrated highly promising performance for projection imaging at low doses. It is therefore of definite interest to examine the potential performance of such thick, segmented scintillating detectors for MV CBCT. In this study, Monte Carlo simulations of radiation energy deposition were used to examine reconstructed images of cylindrical CT contrast phantoms, embedded with tissue-equivalent objects. The phantoms were scanned at 6 MV using segmented detectors having various design parameters (i.e., detector thickness as well as scintillator and septal wall materials). Due to constraints imposed by the nature of this study, the size of the phantoms was limited to {approx}6 cm. For such phantoms, the simulation results suggest that a 40 mm thick, segmented CsI detector with low density septal walls can delineate electron density differences of {approx}2.3% and 1.3% at doses of 1.54 and 3.08 cGy, respectively. In addition, it was found that segmented detectors with greater thickness, higher density scintillator material, or lower density septal walls

  9. Monte Carlo investigations of megavoltage cone-beam CT using thick, segmented scintillating detectors for soft tissue visualization

    PubMed Central

    Wang, Yi; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Sawant, Amit; Du, Hong

    2010-01-01

    Megavoltage cone-beam computed tomography (MY CBCT) is a highly promising technique for providing volumetric patient position information in the radiation treatment room. Such information has the potential to greatly assist in registering the patient to the planned treatment position, helping to ensure accurate delivery of the high energy therapy beam to the tumor volume while sparing the surrounding normal tissues. Presently, CBCT systems using conventional MV active matrix flat-panel imagers (AMFPIs), which are commonly used in portal imaging, require a relatively large amount of dose to create images that are clinically useful. This is due to the fact that the phosphor screen detector employed in conventional MV AMFPIs utilizes only ~2% of the incident radiation (for a 6 MV x-ray spectrum). Fortunately, thick, segmented scintillating detectors can overcome this limitation, and the first prototype imager has demonstrated highly promising performance for projection imaging at low doses. It is therefore of definite interest to examine the potential performance of such thick, segmented scintillating detectors for MV CBCT. In this study, Monte Carlo simulations of radiation energy deposition were used to examine reconstructed images of cylindrical CT contrast phantoms, embedded with tissue-equivalent objects. The phantoms were scanned at 6 MV using segmented detectors having various design parameters (i.e., detector thickness, as well as scintillator and septal wall materials). Due to constraints imposed by the nature of this study, the size of the phantoms was limited to ~6 cm. For such phantoms, the simulation results suggest that a 40 mm thick, segmented CsI detector with low density septal walls can delineate electron density differences of ~2.3% and 1.3% at doses of 1.54 and 3.08 cGy, respectively. In addition, it was found that segmented detectors with greater thickness, higher density scintillator material, or lower density septal walls exhibit higher contrast

  10. Mapping transitions between healthy and pathological lesions in human breast tissues by diffraction enhanced imaging computed tomography (DEI-CT) and small angle x-ray scattering (SAXS)

    NASA Astrophysics Data System (ADS)

    Conceição, A. L. C.; Antoniassi, M.; Geraldelli, W.; Poletti, M. E.

    2014-02-01

    In this work we have combined the DEI-CT and SAXS technique to study the transition between healthy and pathological breast tissues, which include benign and malignant lesions. The ability of DEI-CT to enhance the contrast between soft tissues was used to localize the tumor region in the sample. Then, the tumor region and its surroundings were scanned by SAXS in order to map the changes promoted by the neoplasias at nano-level.It was clearly observed that pathological tissues present distinguishable SAXS scattering profiles from those of normal tissue. These differences are mainly related to changes in arrangement and diameter of collagen fibrils, evaluated by the higher order of reflection peaks of these fibrils. Differences related to the peak intensities and the total scattered intensity were found by comparing the healthy and pathological regions. The 2nd order of collagen reflection arises only in the healthy region neighboring the benign lesion. A broader peak at q=0.16 nm-1 seems to characterize the malignant lesions. Finally, based on this information, the transition between healthy and pathological human breast tissues was mapped which allowed to get insights into the changes promoted by tumors during growth and progression.

  11. Assessing the three-dimensional collagen network in soft tissues using contrast agents and high resolution micro-CT: Application to porcine iliac veins.

    PubMed

    Nierenberger, Mathieu; Rémond, Yves; Ahzi, Saïd; Choquet, Philippe

    2015-07-01

    The assessment of the three-dimensional architecture of collagen fibers inside vessel walls constitutes one of the bases for building structural models for the description of the mechanical behavior of these tissues. Multiphoton microscopy allows for such observations, but is limited to volumes of around a thousand of microns. In the present work, we propose to observe the collagenous network of vascular tissues using micro-CT. To get a contrast, three staining solutions (phosphotungstic acid, phosphomolybdic acid and iodine potassium iodide) were tested. Two of these stains were showed to lead to similar results and to a satisfactory contrast within the tissue. A detailed observation of a small porcine iliac vein sample allowed assessing the collagen fibers orientations within the medial and adventitial layers of the vein. The vasa vasorum network, which is present inside the adventitia of the vein, was also observed. Finally, the demonstrated micro-CT staining technique for the three-dimensional observation of thin soft tissues samples, like vein walls, contributes to the assessment of their structure at different scales while keeping a global overview of the tissue. PMID:26033495

  12. The Value of SPECT/CT in Monitoring Prefabricated Tissue-Engineered Bone and Orthotopic rhBMP-2 Implants for Mandibular Reconstruction

    PubMed Central

    Zhou, Miao; Peng, Xin; Mao, Chi; Tian, Jia-he; Zhang, Shu-wen; Xu, Fang; Tu, Jing-jing; Liu, Sheng; Hu, Min; Yu, Guang-yan

    2015-01-01

    Bone tissue engineering shows good prospects for mandibular reconstruction. In recent studies, prefabricated tissue-engineered bone (PTEB) by recombinant human bone morphogenetic proteins (rhBMPs) applied in vivo has found to be an effective alternative for autologous bone grafts. However, the optimal time to transfer PTEB for mandibular reconstruction is still not elucidated. Thus, here in an animal experiment of rhesus monkey, the suitable transferring time for PTEB to reconstruct mandibular defects was evaluated by 99mTc-MDP SPECT/CT, and its value in monitoring orthotopic rhBMP-2 implants for mandibular reconstruction was also evaluated. The result of SPECT/CT showed higher 99mTc-MDP uptake, indicating osteoinductivity, in rhBMP-2 incorporated demineralized freeze-dried bone allograft (DFDBA) and coralline hydroxyapatite (CHA) implants than those without BMP stimulation. 99mTc-MDP uptake of rhBMP-2 implant peaked at 8 weeks following implantation while CT showed the density of these implants increased after 13 weeks’ prefabrication. Histology confirmed that mandibular defects were repaired successfully with PTEB or orthotopically rhBMP-2 incorporated CHA implants, in accordance with SPECT/CT findings. Collectively, data shows 99mTc-MDP SPECT/CT is a sensitive and noninvasive tool to monitor osteoinductivity and bone regeneration of PTEB and orthotopic implants. The PTEB achieved peak osteoinductivity and bone density at 8 to 13 weeks following ectopic implantation, which would serve as a recommendable time frame for its transfer to mandibular reconstruction. PMID:26340447

  13. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering

    NASA Astrophysics Data System (ADS)

    Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin

    2015-05-01

    Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.

  14. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering

    PubMed Central

    Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin

    2015-01-01

    Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials. PMID:25989250

  15. Sixty-four-slice CT angiography to determine the three dimensional relationships of vascular and soft tissue wounds in lower extremity war time injuries.

    PubMed

    Smith, Jennifer M; Fox, Charles J; Brazaitis, Michael P; Via, Kathy; Garcia, Roman; Feuerstein, Irwin M

    2010-01-01

    This article analyzes the use and benefits of the 64-slice CT scanner in determining the 3D relationships of vascular and soft tissue wounds in lower extremity war time injuries. A brief overview of CT scanning is given as well as the techniques used to produce the images needed for diagnosis. The series follows two similar cases of war time injury patients at the Walter Reed Army Medical Center. The first case is a 30-year-old active duty male, who presented with multiple trauma from a motor vehicle accident because of an improvised explosive device (IED) blast, sustaining substantial lower extremity injuries. The second case is a 34-year-old active duty male, who presented with multiple trauma blast injuries. Both cases were of interest because the vasculature was found to be very close to the surface of the wound, which put the arteries at risk for rupture and for iatrogenic injury during repeated debridements.

  16. Influence of radiation therapy on the lung-tissue in breast cancer patients: CT-assessed density changes and associated symptoms

    SciTech Connect

    Rotstein, S.; Lax, I.; Svane, G. )

    1990-01-01

    The relative electron density of lung tissue was measured from computer tomography (CT) slices in 33 breast cancer patients treated by various techniques of adjuvant radiotherapy. The measurements were made before radiotherapy, 3 months and 9 months after completion of radiation therapy. The changes in lung densities at 3 months and 9 months were compared to radiation induced radiological (CT) findings. In addition, subjective symptoms such as cough and dyspnoea were assessed before and after radiotherapy. It was observed that the mean of the relative electron density of lung tissue varied from 0.25 when the whole lung was considered to 0.17 when only the anterior lateral quarter of the lung was taken into account. In patients with positive radiological (CT) findings the mean lung density of the anterior lateral quarter increased 2.1 times 3 months after radiotherapy and was still increased 1.6 times 6 months later. For those patients without findings, in the CT pictures the corresponding values were 1.2 and 1.1, respectively. The standard deviation of the pixel values within the anterior lateral quarter of the lung increased 3.8 times and 3.2 times at 3 months and 9 months, respectively, in the former group, as opposed to 1.2 and 1.1 in the latter group. Thirteen patients had an increase in either cough or dyspnoea as observed 3 months after completion of radiotherapy. In eleven patients these symptoms persisted 6 months later. No significant correlation was found between radiological findings and subjective symptoms. However, when three different treatment techniques were compared among 29 patients the highest rate of radiological findings was observed in patients in which the largest lung volumes received the target dose. A tendency towards an increased rate of subjective symptoms was also found in this group.

  17. Consecutive CT-guided core needle tissue biopsy of lung lesions in the same dog at different phases of radiation-induced lung injury

    PubMed Central

    Yin, Zhongyuan; Deng, Sisi; Liang, Zhiwen; Wang, Qiong

    2016-01-01

    This project aimed to set up a Beagle dog model of radiation-induced lung injury in order to supply fresh lung tissue samples in the different injury phases for gene and protein research. Three dogs received 18 Gy X-ray irradiation in one fraction, another three dogs received 8 Gy in each of three fractions at weekly intervals, and one control dog was not irradiated. Acute pneumonitis was observed during the first 3 months after radiation, and chronic lung fibrosis was found during the next 4–12 months in all the dogs exposed to radiation. CT-guided core needle lung lesion biopsies were extracted from each dog five times over the course of 1 year. The dogs remained healthy after each biopsy, and 50–100 mg fresh lung lesion tissues were collected in each operation. The incidence of pneumothorax and hemoptysis was 20% and 2.8%, respectively, in the 35 tissue biopsies. A successful and stable radiation-induced lung injury dog model was established. Lung lesion tissue samples from dogs in acute stage, recovery stage and fibrosis stage were found to be sufficient to support cytology, genomics and proteomics research. This model safely supplied fresh tissue samples that would allow future researchers to more easily explore and develop treatments for radiation-induced lung injury. PMID:27422930

  18. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning

    SciTech Connect

    Tsukihara, Masayoshi; Noto, Yoshiyuki; Sasamoto, Ryuta; Hayakawa, Takahide; Saito, Masatoshi

    2015-03-15

    Purpose: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide range of ρ{sub e}. The purpose of this study is to present an initial implementation of the ΔHU–ρ{sub e} conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU–ρ{sub e} conversion method. Methods: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80–140 kV/Sn and 100–140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU–ρ{sub e} conversion method with a conventional conversion from a CT number to ρ{sub e} (Hounsfield units, HU–ρ{sub e} conversion). Lookup tables for ρ{sub e} calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ{sub e} calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. Results: In both treatment plans, the performance of the ΔHU–ρ{sub e} conversion was superior to that of the conventional HU–ρ{sub e} conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment

  19. Modeling mechanical signals on the surface of µCT and CAD based rapid prototype scaffold models to predict (early stage) tissue development.

    PubMed

    Hendrikson, W J; van Blitterswijk, C A; Verdonschot, N; Moroni, L; Rouwkema, J

    2014-09-01

    In the field of tissue engineering, mechano-regulation theories have been applied to help predict tissue development in tissue engineering scaffolds in the past. For this, finite element models (FEMs) were used to predict the distribution of strains within a scaffold. However, the strains reported in these studies are volumetric strains of the material or strains developed in the extracellular matrix occupying the pore space. The initial phase of cell attachment and growth on the biomaterial surface has thus far been neglected. In this study, we present a model that determines the magnitude of biomechanical signals on the biomaterial surface, enabling us to predict cell differentiation stimulus values at this initial stage. Results showed that magnitudes of the 2D strain--termed surface strain--were lower when compared to the 3D volumetric strain or the conventional octahedral shear strain as used in current mechano-regulation theories. Results of both µCT and CAD derived FEMs from the same scaffold were compared. Strain and fluid shear stress distributions, and subsequently the cell differentiation stimulus, were highly dependent on the pore shape. CAD models were not able to capture the distributions seen in the µCT FEM. The calculated mechanical stimuli could be combined with current mechanobiological models resulting in a tool to predict cell differentiation in the initial phase of tissue engineering. Although experimental data is still necessary to properly link mechanical signals to cell behavior in this specific setting, this model is an important step towards optimizing scaffold architecture and/or stimulation regimes. PMID:24824318

  20. Modeling mechanical signals on the surface of µCT and CAD based rapid prototype scaffold models to predict (early stage) tissue development.

    PubMed

    Hendrikson, W J; van Blitterswijk, C A; Verdonschot, N; Moroni, L; Rouwkema, J

    2014-09-01

    In the field of tissue engineering, mechano-regulation theories have been applied to help predict tissue development in tissue engineering scaffolds in the past. For this, finite element models (FEMs) were used to predict the distribution of strains within a scaffold. However, the strains reported in these studies are volumetric strains of the material or strains developed in the extracellular matrix occupying the pore space. The initial phase of cell attachment and growth on the biomaterial surface has thus far been neglected. In this study, we present a model that determines the magnitude of biomechanical signals on the biomaterial surface, enabling us to predict cell differentiation stimulus values at this initial stage. Results showed that magnitudes of the 2D strain--termed surface strain--were lower when compared to the 3D volumetric strain or the conventional octahedral shear strain as used in current mechano-regulation theories. Results of both µCT and CAD derived FEMs from the same scaffold were compared. Strain and fluid shear stress distributions, and subsequently the cell differentiation stimulus, were highly dependent on the pore shape. CAD models were not able to capture the distributions seen in the µCT FEM. The calculated mechanical stimuli could be combined with current mechanobiological models resulting in a tool to predict cell differentiation in the initial phase of tissue engineering. Although experimental data is still necessary to properly link mechanical signals to cell behavior in this specific setting, this model is an important step towards optimizing scaffold architecture and/or stimulation regimes.

  1. Soft-tissue contrast resolution within the head of human cadaver by means of flat-detector-based cone-beam CT

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias; Schaefer, Dirk; Conrads, Norbert; Noordhoek, Niels; de Jong, Kees; Aach, Til; Rose, Georg

    2004-05-01

    In this paper, soft tissue contrast visibility in neural applications is investigated for volume imaging based on flat X-ray detector cone-beam CT. Experiments have been performed on a high precision bench-top system with rotating object table and fixed X-ray tube-detector arrangement. Several scans of a post mortem human head specimen have been performed under various conditions. Hereby two different flat X-ray detectors with 366 x 298mm2 (Trixell Pixium 4700) and 176 x 176mm2 (Trixell Pixium 4800) active area have been employed. During a single rotation up to 720 projections have been acquired. For reconstruction of the 3D images a Feldkamp algorithm has been employed. Reconstructed images of the head of human cadaver demonstrate that added soft tissue contrast down to 10 HU is detectable for X-ray dose comparable to CT. However, the limited size of the smaller detector led to truncation artifacts, which were partly compensated by extrapolation of the projections outside the field of view. To reduce cupping artifacts resulting from scattered radiation and to improve visibility of low contrast details, a novel homogenization procedure based on segmentation and polynomial fitting has been developed and applied on the reconstructed voxel data. Even for narrow HU-Windows, limitations due to scatter induced cupping artifacts are no longer noticeable after applying the homogenization procedure.

  2. Prediction of recurrence after HCC resection. Faint oily deposits on preoperative Lipiodol-CT of remnant liver tissue.

    PubMed

    Yamamoto, M; Iimuro, Y; Mogaki, M; Kachi, K; Fujii, H; Matsumoto, Y

    1994-07-01

    In trying to clarify the high recurrence rate after removal of small hepatocellular carcinoma (HCC), we assessed the postoperative evolution of minute hepatic Lipiodol deposits which had been diagnosed as artifacts on the preoperative Lipiodol-CT. Of 27 patients with solitary HCC less than 5 cm in diameter, 14 had such Lipiodol deposits in the preoperative CT and 9 of them (64%) developed recurrent tumors. On the other hand, 6 of the 13 patients without deposits (46%) suffered recurrence, but in 5 of these 6 patients the HCC was metachronous multicentric. The cumulative survival rate of the non-deposit group was better than that of the deposit group (p < 0.1). The present study suggested that, even in patients with small HCC, minute concomitant tumors invisible by conventional imaging techniques may exist at the time of surgery. Some of these lesions without sufficient tumor vasculature showing a hypervascular blush on angiography appear to retain small, vague Lipiodol deposits.

  3. Characterization of brown adipose tissue ¹⁸F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population.

    PubMed

    Shao, Xiaonan; Shao, Xiaoliang; Wang, Xiaosong; Wang, Yuetao

    2016-01-01

    (18)F-FDG PET/CT has been widely applied for tumor imaging. However, it is reported that many normal tissues, e.g., brown adipose tissue, can also uptake (18)F-FDG. The purpose of this study was to determine the imaging characteristics of (18)F-FDG uptake in brown adipose tissue (BAT) in PET/CT. A total of 2,944 patients who underwent PET/CT from September 2011 to March 2013 were analyzed retrospectively. Imaging features of (18)F-FDG uptake in BAT were analyzed. Univariate analysis and logistic regression analysis were performed to evaluate the effect of age, gender, cancer status, body mass index (BMI), average daily maximum temperature of imaging month and fasting plasma glucose (Glu) on the positive rate of (18)F-FDG uptake in BAT. The results showed that 1.9% (57/2944) patients had (18)F-FDG uptake in BAT. (18)F-FDG, manifested as flaky, nodular and beaded shape, was symmetrically distributed in the adipose tissues of cervical and supraclavicular, mediastinal, paravertebral, and perirenal areas. Uptake of (18)F-FDG within cervical/supraclavicular area was most common (89.5%, 51/57) with an SUVmax ranging from 2.8 to 31.4. Univariate analysis showed that gender and cancer status were not significantly correlated with the BAT (18)F-FDG uptake rate. In contrast, age, BMI, Glu and average daily maximum temperature in the imaging month were significantly correlated with the BAT (18)F-FDG uptake rate (P<0.05). Further logistic regression analysis showed that only age, BMI and average daily maximum temperature were significant (OR<1, P<0.05). Based on the value of OR, the most significant factor that affects BAT (18)F-FDG uptake rate was age, followed by the average daily maximum temperature and BMI. We concluded that Chinese adult has low positive rate of (18)F-FDG uptake in BAT. Cervical/Supraclavicular is the most common area with BAT (18)F-FDG uptake. Age, average daily maximum temperature and BMI are independent factors affecting (18)F-FDG uptake. PMID:26702781

  4. Characterization of brown adipose tissue ¹⁸F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population.

    PubMed

    Shao, Xiaonan; Shao, Xiaoliang; Wang, Xiaosong; Wang, Yuetao

    2016-01-01

    (18)F-FDG PET/CT has been widely applied for tumor imaging. However, it is reported that many normal tissues, e.g., brown adipose tissue, can also uptake (18)F-FDG. The purpose of this study was to determine the imaging characteristics of (18)F-FDG uptake in brown adipose tissue (BAT) in PET/CT. A total of 2,944 patients who underwent PET/CT from September 2011 to March 2013 were analyzed retrospectively. Imaging features of (18)F-FDG uptake in BAT were analyzed. Univariate analysis and logistic regression analysis were performed to evaluate the effect of age, gender, cancer status, body mass index (BMI), average daily maximum temperature of imaging month and fasting plasma glucose (Glu) on the positive rate of (18)F-FDG uptake in BAT. The results showed that 1.9% (57/2944) patients had (18)F-FDG uptake in BAT. (18)F-FDG, manifested as flaky, nodular and beaded shape, was symmetrically distributed in the adipose tissues of cervical and supraclavicular, mediastinal, paravertebral, and perirenal areas. Uptake of (18)F-FDG within cervical/supraclavicular area was most common (89.5%, 51/57) with an SUVmax ranging from 2.8 to 31.4. Univariate analysis showed that gender and cancer status were not significantly correlated with the BAT (18)F-FDG uptake rate. In contrast, age, BMI, Glu and average daily maximum temperature in the imaging month were significantly correlated with the BAT (18)F-FDG uptake rate (P<0.05). Further logistic regression analysis showed that only age, BMI and average daily maximum temperature were significant (OR<1, P<0.05). Based on the value of OR, the most significant factor that affects BAT (18)F-FDG uptake rate was age, followed by the average daily maximum temperature and BMI. We concluded that Chinese adult has low positive rate of (18)F-FDG uptake in BAT. Cervical/Supraclavicular is the most common area with BAT (18)F-FDG uptake. Age, average daily maximum temperature and BMI are independent factors affecting (18)F-FDG uptake.

  5. Perinephric Hematoma and Hemorrhagic Shock as a Rare Presentation for an Acutely Obstructive Ureteral Stone with Forniceal Rupture: A Case Report

    PubMed Central

    Zynger, Debra L.; Box, Geoffrey N.; Shah, Ketul K.

    2016-01-01

    Abstract Background: Spontaneous perinephric hematoma (SPH) secondary to a forniceal rupture as the first presenting sign for an obstructive ureteral stone in a patient without history of urolithiasis has not been described previously. Case presentation: We report a 70-year-old Caucasian male patient who presented to our emergency room with fever, altered mental status, and left flank pain. He had a temperature of 103.3°F, tachycardia, but stable blood pressure. He had left flank tenderness. A computed tomography scan of the abdomen/pelvis with intravenous contrast revealed an intracapsular hematoma (13.3 × 10.0 × 6.4 cm) with an active bleeding and a 1.1 cm left proximal ureteral stone. The patient became quickly hemodynamically unstable and was taken for emergent exploratory laparotomy and left nephrectomy. An active bleeding was encountered secondary to a (2.4 × 2.0 cm) lateral capsular defect in the kidney. Conclusion: Hemorrhagic/septic shock as a presenting sign for an obstructive ureteral stone may require an emergent nephrectomy in a hemodynamically unstable patient. PMID:27579423

  6. Reproducibility of Facial Soft Tissue Thickness Measurements Using Cone-Beam CT Images According to the Measurement Methods.

    PubMed

    Hwang, Hyeon-Shik; Choe, Seon-Yeong; Hwang, Ji-Sup; Moon, Da-Nal; Hou, Yanan; Lee, Won-Joon; Wilkinson, Caroline

    2015-07-01

    The purpose of this study was to establish the reproducibility of facial soft tissue (ST) thickness measurements by comparing three different measurement methods applied at 32 landmarks on three-dimensional cone-beam computed tomography (CBCT) images. Two observers carried out the measurements of facial ST thickness of 20 adult subjects using CBCT scan data, and inter- and intra-observer reproducibilities were evaluated. The measurement method of "perpendicular to bone" resulted in high inter- and intra-observer reproducibility at all 32 landmarks. In contrast, the "perpendicular to skin" method and "direct" method, which measures a distance between one point on bone and the other point on skin, presented low reproducibility. The results indicate that reproducibility could be increased by identifying the landmarks on hard tissue images, rather than on ST images, and the landmark description used in this study can be used in the establishment of reliable tissue depth data using CBCT images.

  7. Reproducibility of Facial Soft Tissue Thickness Measurements Using Cone-Beam CT Images According to the Measurement Methods.

    PubMed

    Hwang, Hyeon-Shik; Choe, Seon-Yeong; Hwang, Ji-Sup; Moon, Da-Nal; Hou, Yanan; Lee, Won-Joon; Wilkinson, Caroline

    2015-07-01

    The purpose of this study was to establish the reproducibility of facial soft tissue (ST) thickness measurements by comparing three different measurement methods applied at 32 landmarks on three-dimensional cone-beam computed tomography (CBCT) images. Two observers carried out the measurements of facial ST thickness of 20 adult subjects using CBCT scan data, and inter- and intra-observer reproducibilities were evaluated. The measurement method of "perpendicular to bone" resulted in high inter- and intra-observer reproducibility at all 32 landmarks. In contrast, the "perpendicular to skin" method and "direct" method, which measures a distance between one point on bone and the other point on skin, presented low reproducibility. The results indicate that reproducibility could be increased by identifying the landmarks on hard tissue images, rather than on ST images, and the landmark description used in this study can be used in the establishment of reliable tissue depth data using CBCT images. PMID:25845397

  8. FDG PET/CT and MR imaging of CD34-negative soft-tissue solitary fibrous tumor with NAB2-STAT6 fusion gene.

    PubMed

    Nishio, Jun; Iwasaki, Hiroshi; Aoki, Mikiko; Nabeshima, Kazuki; Naito, Masatoshi

    2015-02-01

    Extrapleural solitary fibrous tumor (SFT) is an uncommon mesenchymal neoplasm of intermediate biological potential. Herein, we describe the radiological, histological, immunohistochemical and molecular genetic features of an SFT arising in the left thigh of a 55-year-old woman. Magnetic resonance imaging exhibited a well-defined mass with intermediate signal intensity on T1-weighted sequences and heterogeneous high signal intensity on T2-weighted sequences. Contrast-enhanced T1-weighted sequences showed strong homogeneous enhancement of the mass. A prominent vascular pedicle was visible. Integrated positron-emission tomography (PET)/computed tomographic (CT) scan demonstrated a moderate 18F-fluorodeoxyglucose (FDG) uptake (maximum standardized uptake value, 4.45) in the mass. Following an open biopsy, wide excision of the tumor was performed. Histologically, the tumor was composed of a proliferation of spindle cells in a fibrous stroma with focal hyalinization. Thin-walled branching hemangiopericytoma-like vessels were observed. Immunohistochemically, the tumor cells were diffusely positive for signal transducer and activator of transcription 6 (STAT6) but negative for CD34. The MIB-1 labeling index was less than 5%. Subsequent reverse transcriptase-polymerase chain reaction analysis identified a nerve growth factor inducible-A binding protein 2-STAT6 gene fusion. Our case supports the utility of STAT6 immunohistochemistry as an adjunct in the diagnosis of soft-tissue SFT with loss of CD34 positivity. To the best of our knowledge, this is the first report showing the FDG PET/CT findings of soft-tissue SFT.

  9. FDG PET/CT and MR imaging of CD34-negative soft-tissue solitary fibrous tumor with NAB2-STAT6 fusion gene.

    PubMed

    Nishio, Jun; Iwasaki, Hiroshi; Aoki, Mikiko; Nabeshima, Kazuki; Naito, Masatoshi

    2015-02-01

    Extrapleural solitary fibrous tumor (SFT) is an uncommon mesenchymal neoplasm of intermediate biological potential. Herein, we describe the radiological, histological, immunohistochemical and molecular genetic features of an SFT arising in the left thigh of a 55-year-old woman. Magnetic resonance imaging exhibited a well-defined mass with intermediate signal intensity on T1-weighted sequences and heterogeneous high signal intensity on T2-weighted sequences. Contrast-enhanced T1-weighted sequences showed strong homogeneous enhancement of the mass. A prominent vascular pedicle was visible. Integrated positron-emission tomography (PET)/computed tomographic (CT) scan demonstrated a moderate 18F-fluorodeoxyglucose (FDG) uptake (maximum standardized uptake value, 4.45) in the mass. Following an open biopsy, wide excision of the tumor was performed. Histologically, the tumor was composed of a proliferation of spindle cells in a fibrous stroma with focal hyalinization. Thin-walled branching hemangiopericytoma-like vessels were observed. Immunohistochemically, the tumor cells were diffusely positive for signal transducer and activator of transcription 6 (STAT6) but negative for CD34. The MIB-1 labeling index was less than 5%. Subsequent reverse transcriptase-polymerase chain reaction analysis identified a nerve growth factor inducible-A binding protein 2-STAT6 gene fusion. Our case supports the utility of STAT6 immunohistochemistry as an adjunct in the diagnosis of soft-tissue SFT with loss of CD34 positivity. To the best of our knowledge, this is the first report showing the FDG PET/CT findings of soft-tissue SFT. PMID:25667482

  10. (18)F Sodium Fluoride PET/CT in Patients with Prostate Cancer: Quantification of Normal Tissues, Benign Degenerative Lesions, and Malignant Lesions.

    PubMed

    Oldan, Jorge D; Hawkins, A Stewart; Chin, Bennett B

    2016-01-01

    Understanding the range and variability of normal, benign degenerative, and malignant (18)F sodium fluoride ((18)F NaF) positron emission tomography/computed tomography (PET/CT) uptake is important in influencing clinical interpretation. Further, it is essential for the development of realistic semiautomated quantification techniques and simulation models. The purpose of this study is to determine the range of these values in a clinically relevant patient population with prostate cancer. (18)F NaF PET/CT scans were analyzed in patients with prostate cancer (n = 47) referred for evaluation of bone metastases. Mean and maximum standardized uptake values [SUVs (SUVmean and SUVmax)] were made in normal background regions (n = 470) including soft tissues (liver, aorta, bladder, adipose, brain, and paraspinal muscle) and osseous structures (T12 vertebral body, femoral diaphyseal cortex, femoral head medullary space, and ribs). Degenerative joint disease (DJD; n = 281) and bone metastases (n = 159) were identified and quantified by an experienced reader using all scan information including coregistered CT. For normal bone regions, the highest (18)F NaF PET SUVmean occurred in T12 (6.8 ± 1.4) and it also showed the lowest coefficient of variation (cv = 21%). For normal soft tissues, paraspinal muscles showed very low SUVmean (0.70 ± 0.11) and also showed the lowest variability (cv = 16%). Average SUVmean in metastatic lesions is higher than uptake in benign degenerative lesions but values showed a wide variance and overlapping values (16.3 ± 13 vs 11.1 ± 3.8; P < 0.00001). The normal (18)F NaF PET uptake values for prostate cancer patients in normal background, benign degenerative disease, and osseous metastases are comparable to those reported for a general population with a wide variety of diagnoses. These normal ranges, specifically for prostate cancer patients, will aid in clinical interpretation and also help to establish the basis of normal limits in a

  11. 18F Sodium Fluoride PET/CT in Patients with Prostate Cancer: Quantification of Normal Tissues, Benign Degenerative Lesions, and Malignant Lesions

    PubMed Central

    Oldan, Jorge D.; Hawkins, A. Stewart; Chin, Bennett B.

    2016-01-01

    Understanding the range and variability of normal, benign degenerative, and malignant 18F sodium fluoride (18F NaF) positron emission tomography/computed tomography (PET/CT) uptake is important in influencing clinical interpretation. Further, it is essential for the development of realistic semiautomated quantification techniques and simulation models. The purpose of this study is to determine the range of these values in a clinically relevant patient population with prostate cancer. 18F NaF PET/CT scans were analyzed in patients with prostate cancer (n = 47) referred for evaluation of bone metastases. Mean and maximum standardized uptake values [SUVs (SUVmean and SUVmax)] were made in normal background regions (n = 470) including soft tissues (liver, aorta, bladder, adipose, brain, and paraspinal muscle) and osseous structures (T12 vertebral body, femoral diaphyseal cortex, femoral head medullary space, and ribs). Degenerative joint disease (DJD; n = 281) and bone metastases (n = 159) were identified and quantified by an experienced reader using all scan information including coregistered CT. For normal bone regions, the highest 18F NaF PET SUVmean occurred in T12 (6.8 ± 1.4) and it also showed the lowest coefficient of variation (cv = 21%). For normal soft tissues, paraspinal muscles showed very low SUVmean (0.70 ± 0.11) and also showed the lowest variability (cv = 16%). Average SUVmean in metastatic lesions is higher than uptake in benign degenerative lesions but values showed a wide variance and overlapping values (16.3 ± 13 vs 11.1 ± 3.8; P < 0.00001). The normal 18F NaF PET uptake values for prostate cancer patients in normal background, benign degenerative disease, and osseous metastases are comparable to those reported for a general population with a wide variety of diagnoses. These normal ranges, specifically for prostate cancer patients, will aid in clinical interpretation and also help to establish the basis of normal limits in a semiautomated data

  12. Checklist and Scoring System for the Assessment of Soft Tissue Preservation in CT Examinations of Human Mummies

    PubMed Central

    Panzer, Stephanie; Mc Coy, Mark R.; Hitzl, Wolfgang; Piombino-Mascali, Dario; Jankauskas, Rimantas; Zink, Albert R.; Augat, Peter

    2015-01-01

    The purpose of this study was to develop a checklist for standardized assessment of soft tissue preservation in human mummies based on whole-body computed tomography examinations, and to add a scoring system to facilitate quantitative comparison of mummies. Computed tomography examinations of 23 mummies from the Capuchin Catacombs of Palermo, Sicily (17 adults, 6 children; 17 anthropogenically and 6 naturally mummified) and 7 mummies from the crypt of the Dominican Church of the Holy Spirit of Vilnius, Lithuania (5 adults, 2 children; all naturally mummified) were used to develop the checklist following previously published guidelines. The scoring system was developed by assigning equal scores for checkpoints with equivalent quality. The checklist was evaluated by intra- and inter-observer reliability. The finalized checklist was applied to compare the groups of anthropogenically and naturally mummified bodies. The finalized checklist contains 97 checkpoints and was divided into two main categories, “A. Soft Tissues of Head and Musculoskeletal System” and “B. Organs and Organ Systems”, each including various subcategories. The complete checklist had an intra-observer reliability of 98% and an inter-observer reliability of 93%. Statistical comparison revealed significantly higher values in anthropogenically compared to naturally mummified bodies for the total score and for three subcategories. In conclusion, the developed checklist allows for a standardized assessment and documentation of soft tissue preservation in whole-body computed tomography examinations of human mummies. The scoring system facilitates a quantitative comparison of the soft tissue preservation status between single mummies or mummy collections. PMID:26244862

  13. Cervical CT derived neck fat tissue distribution differences in Japanese males and females and its effect on retroglossal and retropalatal airway volume

    PubMed Central

    Shigeta, Yuko; Enciso, Reyes; Ogawa, Takumi; Ikawa, Tomoko; Clark, Glenn T

    2008-01-01

    Objective To investigate the difference of neck fat tissue distribution by sex and its correlation with retropalatal and retroglossal airway. Study Design 38 consecutive patients (Male:19;Female:19) who received a CT scan were compared in the retroglossal region and at the narrowest cross-section of the airway. Retroglossal fat tissue volume (FV) was segmented with Amira software and separated into subcutaneous and internal fat volume (SFV, IFV). These volumes were normalized by retroglossal neck volume (NV). Results Men had 51.9% more IFV/NV and 64.4% less SFV/NV compared to the women. Age-adjusted BMI was negatively correlated with retroglossal airway volume (normalized by NV) and with the lateral width of the smallest cross-section airway (LW) in females. In males the IFV/NV was negatively correlated with LW, after adjusting for BMI and age. Conclusion Upper airway collapsibility analysis is needed to rule out whether increased BMI or IFV causes an increase in airway collapsibility. PMID:18554948

  14. Implications of Pericardial, Visceral and Subcutaneous Adipose Tissue on Vascular Inflammation Measured Using 18FDG-PET/CT

    PubMed Central

    Hong, Ho Cheol; Hwang, Soon Young; Park, Soyeon; Ryu, Ja Young; Choi, Hae Yoon; Yoo, Hye Jin; Seo, Ji-A; Kim, Sin Gon; Kim, Nan Hee; Baik, Sei Hyun; Choi, Dong Seop

    2015-01-01

    Objective Pericardial adipose tissue (PAT) is associated with adverse cardiometabolic risk factors and cardiovascular disease (CVD). However, the relative implications of PAT, abdominal visceral and subcutaneous adipose tissue on vascular inflammation have not been explored. Method and Results We compared the association of PAT, abdominal visceral fat area (VFA), and subcutaneous fat area (SFA) with vascular inflammation, represented as the target-to-background ratio (TBR), the blood-normalized standardized uptake value measured using 18F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) in 93 men and women without diabetes or CVD. Age- and sex-adjusted correlation analysis showed that PAT, VFA, and SFA were positively associated with most cardiometabolic risk factors, including systolic blood pressure, LDL-cholesterol, triglycerides, glucose, insulin resistance and high sensitive C-reactive proteins (hsCRP), whereas they were negatively associated with HDL-cholesterol. In particular, the maximum TBR (maxTBR) values were positively correlated with PAT and VFA (r = 0.48 and r = 0.45, respectively; both P <0.001), whereas SFA showed a relatively weak positive relationship with maxTBR level (r = 0.31, P = 0.003). Conclusion This study demonstrated that both PAT and VFA are significantly and similarly associated with vascular inflammation and various cardiometabolic risk profiles. PMID:26270050

  15. Estimation of CT-Derived Abdominal Visceral and Subcutaneous Adipose Tissue Depots from Anthropometry in Europeans, South Asians and African Caribbeans

    PubMed Central

    Eastwood, Sophie V.; Tillin, Therese; Wright, Andrew; Heasman, John; Willis, Joseph; Godsland, Ian F.; Forouhi, Nita; Whincup, Peter; Hughes, Alun D.; Chaturvedi, Nishi

    2013-01-01

    Background South Asians and African Caribbeans experience more cardiometabolic disease than Europeans. Risk factors include visceral (VAT) and subcutaneous abdominal (SAT) adipose tissue, which vary with ethnicity and are difficult to quantify using anthropometry. Objective We developed and cross-validated ethnicity and gender-specific equations using anthropometrics to predict VAT and SAT. Design 669 Europeans, 514 South Asians and 227 African Caribbeans (70±7 years) underwent anthropometric measurement and abdominal CT scanning. South Asian and African Caribbean participants were first-generation migrants living in London. Prediction equations were derived for CT-measured VAT and SAT using stepwise regression, then cross-validated by comparing actual and predicted means. Results South Asians had more and African Caribbeans less VAT than Europeans. For basic VAT prediction equations (age and waist circumference), model fit was better in men (R2 range 0.59-0.71) than women (range 0.35-0.59). Expanded equations (+ weight, height, hip and thigh circumference) improved fit for South Asian and African Caribbean women (R2 0.35 to 0.55, and 0.43 to 0.56 respectively). For basic SAT equations, R2 was 0.69-0.77, and for expanded equations it was 0.72-0.86. Cross-validation showed differences between actual and estimated VAT of <7%, and SAT of <8% in all groups, apart from VAT in South Asian women which disagreed by 16%. Conclusion We provide ethnicity- and gender-specific VAT and SAT prediction equations, derived from a large tri-ethnic sample. Model fit was reasonable for SAT and VAT in men, while basic VAT models should be used cautiously in South Asian and African Caribbean women. These equations will aid studies of mechanisms of cardiometabolic disease in later life, where imaging data are not available. PMID:24069381

  16. Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics

    SciTech Connect

    Tward, D. J.; Siewerdsen, J. H.; Daly, M. J.; Richard, S.; Moseley, D. J.; Jaffray, D. A.; Paul, N. S.

    2007-11-15

    Soft-tissue detectability in cone-beam computed tomography (CBCT) was evaluated via two-alternative forced-choice (2AFC) tests. Investigations included the dependence of detectability on radiation dose, the influence of the asymmetric three-dimensional (3D) noise-power spectrum (NPS) in axial and sagittal or coronal planes, and the effect of prior knowledge on detectability. Custom-built phantoms ({approx}15 cm diameter cylinders) containing soft-tissue-simulating spheres of variable contrast and diameter were imaged on an experimental CBCT bench. The proportion of correct responses (P{sub corr}) in 2AFC tests was analyzed as a figure of merit, ideally equal to the area under the receiver operating characteristic curve. P{sub corr} was evaluated as a function of the sphere diameter (1.6-12.7 mm), contrast (20-165 HU), dose (1-7 mGy), plane of visualization (axial/sagittal), apodization filter (Hanning and Ram-Lak), and prior knowledge provided to the observer [ranging from stimulus known exactly (SKE) to stimulus unknown (SUK)]. Detectability limits were characterized in terms of the dose required to achieve a given level of P{sub corr} (e.g., 70%). For example, a 20 HU stimulus of diameter down to {approx}6 mm was detected with P{sub corr} 70% at dose {>=}2 mGy. Detectability tended to be greater in axial than in sagittal planes, an effect amplified by sharper apodization filters in a manner consistent with 3D NPS asymmetry. Prior knowledge had a marked influence on detectability - e.g., P{sub corr} for a {approx}6 mm(20 HU) sphere was {approx}55%-65% under SUK conditions, compared to {approx}70%-85% for SKE conditions. Human observer tests suggest practical implications for implementation of CBCT: (i) Detectability limits help to define minimum-dose imaging techniques for specific imaging tasks; (ii) detectability of a given structure can vary between axial and sagittal/coronal planes, owing to the spatial-frequency content of the 3D NPS in relation to the

  17. CT -- Body

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses special x-ray ... Body? What is CT Scanning of the Body? Computed tomography, more commonly known as a CT or CAT ...

  18. Best single-slice location to measure visceral adipose tissue on paediatric CT scans and the relationship between anthropometric measurements, gender and VAT volume in children

    PubMed Central

    Ryan, John; Foley, Shane

    2015-01-01

    Objective: Visceral adipose tissue (VAT) is a significant risk factor for obesity-related metabolic diseases. This study investigates (1) the best single CT slice location for predicting total abdominal VAT volume in paediatrics and (2) the relationship between waist circumference (WC), sagittal diameter (SD), gender and VAT volume. Methods: A random sample of 130 paediatric abdomen CT scans, stratified according to age and gender, was collected. Three readers measured VAT area at each intervertebral level between T12 and S1 using ImageJ analysis (National Institute of Health, Bethesda, MD) software by thresholding −190 to −30 HU and manually segmenting VAT. Single-slice VAT measurements were correlated with total VAT volume to identify the most representative slice. WC and SD were measured at L3–L4 and L4–L5 slices, respectively. Regression analysis was used to evaluate WC, SD and gender as VAT volume predictors. Results: Interviewer and intraviewer reliability were excellent (intraclass correlation coefficient = 0.99). Although VAT measured at multiple slices correlated strongly with abdominal VAT, only one slice in females at L2–L3 and two slices in males at L1–L2 and L5–S1 were strongly correlated across all age groups. Linear regression analysis showed that WC was strongly correlated with VAT volume (beta = 0.970, p < 0.001). Conclusion: Single-slice VAT measurements are highly reproducible. Measurements performed at L2–L3 in females and L1–L2 or L5–S1 in males were most representative of VAT. WC is indicative of VAT. Advances in knowledge: VAT should be measured at L2–L3 in female children and at either L1–L2 or L5–S1 in males. WC is a strong indicator of VAT in children. PMID:26317895

  19. The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256-slice CT: How can we minimize the risk for deterministic effects?

    SciTech Connect

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis; Papadakis, Antonios E.; Damilakis, John

    2013-01-15

    Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peak tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of

  20. Chronic osteomyelitis examined by CT

    SciTech Connect

    Wing, V.W.; Jeffrey, R.B. Jr.; Federle, M.P.; Helms, C.A.; Trafton, P.

    1985-01-01

    CT examination of 25 patients who had acute exacerbations of chronic osteomyelitis allowed for the correct identification of single or multiple sequestra in 14 surgical patients. Plain radiographs were equivocal for sequestra in seven of these patients, because the sequestra were too small or because diffuse bony sclerosis was present. CT also demonstrated a foreign body and five soft tissue abscesses not suspected on the basis of plain radiographs. CT studies, which helped guide the operative approach, were also useful in treating those patients whose plain radiographs were positive for sequestra. The authors review the potential role of CT in evaluating patients with chronic osteomyelitis.

  1. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  2. CT-guided Irreversible Electroporation in an Acute Porcine Liver Model: Effect of Previous Transarterial Iodized Oil Tissue Marking on Technical Parameters, 3D Computed Tomographic Rendering of the Electroporation Zone, and Histopathology

    SciTech Connect

    Sommer, C. M.; Fritz, S.; Vollherbst, D.; Zelzer, S.; Wachter, M. F. Bellemann, N. Gockner, T. Mokry, T. Schmitz, A.; Aulmann, S.; Stampfl, U.; Pereira, P.; Kauczor, H. U.; Werner, J.; Radeleff, B. A.

    2015-02-15

    PurposeTo evaluate the effect of previous transarterial iodized oil tissue marking (ITM) on technical parameters, three-dimensional (3D) computed tomographic (CT) rendering of the electroporation zone, and histopathology after CT-guided irreversible electroporation (IRE) in an acute porcine liver model as a potential strategy to improve IRE performance.MethodsAfter Ethics Committee approval was obtained, in five landrace pigs, two IREs of the right and left liver (RL and LL) were performed under CT guidance with identical electroporation parameters. Before IRE, transarterial marking of the LL was performed with iodized oil. Nonenhanced and contrast-enhanced CT examinations followed. One hour after IRE, animals were killed and livers collected. Mean resulting voltage and amperage during IRE were assessed. For 3D CT rendering of the electroporation zone, parameters for size and shape were analyzed. Quantitative data were compared by the Mann–Whitney test. Histopathological differences were assessed.ResultsMean resulting voltage and amperage were 2,545.3 ± 66.0 V and 26.1 ± 1.8 A for RL, and 2,537.3 ± 69.0 V and 27.7 ± 1.8 A for LL without significant differences. Short axis, volume, and sphericity index were 16.5 ± 4.4 mm, 8.6 ± 3.2 cm{sup 3}, and 1.7 ± 0.3 for RL, and 18.2 ± 3.4 mm, 9.8 ± 3.8 cm{sup 3}, and 1.7 ± 0.3 for LL without significant differences. For RL and LL, the electroporation zone consisted of severely widened hepatic sinusoids containing erythrocytes and showed homogeneous apoptosis. For LL, iodized oil could be detected in the center and at the rim of the electroporation zone.ConclusionThere is no adverse effect of previous ITM on technical parameters, 3D CT rendering of the electroporation zone, and histopathology after CT-guided IRE of the liver.

  3. Imaging strategies in the evaluation of soft-tissue hemangiomas of the extremities: correlation of the findings of plain radiography, angiography, CT, MRI, and ultrasonography in 12 histologically proven cases.

    PubMed

    Greenspan, A; McGahan, J P; Vogelsang, P; Szabo, R M

    1992-01-01

    Twelve patients with the histologic diagnosis of soft-tissue hemangioma of the extremities (nine intramuscular, two subcutaneous, and one synovial) were evaluated in a retrospective study using plain film radiography (n = 12), angiography (n = 8), computed tomography (CT; n = 4), magnetic resonance imaging (MRI; n = 3), and ultrasonography (US; n = 2). In eight of nine intramuscular lesions, the plain film demonstration of phleboliths suggested the diagnosis, while the plain radiographs were normal in three. Angiograms showed the pathognomonic features of soft-tissue hemangioma in six patients. MRI was characteristic in all three patients: The lesion demonstrated intermediate signal intensity on T1-weighted spin echo images and extremely bright signal on T2-weighting. US showed a hypoechoic soft-tissue mass in one case and a mixed echo pattern in the other. In one case, a central echogenic focus with acoustic shadowing consistent with a calcified phlebolith was identified, and one lesion exhibited increased color flow and low resistance arterial Doppler signal. CT showed a nonspecific mass in one of four cases and a mass with phleboliths in three. If a deep hemangioma is suspected, we recommend initial imaging with plain radiography followed by MRI. US may be useful in confirming the presence of a mass in doubtful cases or if MRI is unavailable. CT offers no distinct advantage over the combined use of plain radiography and MRI. Although angiography demonstrated the pathognomonic features in all six deeply situated lesions, because of its invasiveness it should be reserved chiefly for those patients undergoing surgical resection. PMID:1546331

  4. Coupling multiscale X-ray physics and micromechanics for bone tissue composition and elasticity determination from micro-CT data, by example of femora from OVX and sham rats

    NASA Astrophysics Data System (ADS)

    Hasslinger, Patricia; Vass, Viktoria; Dejaco, Alexander; Blanchard, Romane; Örlygsson, Gissur; Gargiulo, Paolo; Hellmich, Christian

    2016-05-01

    Due to its high resolution, micro-CT (Computed Tomograph) scanning is the key to assess bone quality of sham and OVX (ovariectomized) rats. Combination of basic X-ray physics, such as the energy- and chemistry-dependence of attenuation coefficients, with results from ashing tests on rat bones, delivers mineral, organic, and water volume fractions within the voxels. Additional use of a microelastic model for bone provides voxel-specific elastic properties. The new method delivers realistic bone mass densities, and reveals that OVX protocols may indeed induce some bone mass loss, while the average composition of the bone tissue remains largely unaltered.

  5. CTC-ask: a new algorithm for conversion of CT numbers to tissue parameters for Monte Carlo dose calculations applying DICOM RS knowledge

    NASA Astrophysics Data System (ADS)

    Ottosson, Rickard O.; Behrens, Claus F.

    2011-11-01

    One of the building blocks in Monte Carlo (MC) treatment planning is to convert patient CT data to MC compatible phantoms, consisting of density and media matrices. The resulting dose distribution is highly influenced by the accuracy of the conversion. Two major contributing factors are precise conversion of CT number to density and proper differentiation between air and lung. Existing tools do not address this issue specifically. Moreover, their density conversion may depend on the number of media used. Differentiation between air and lung is an important task in MC treatment planning and misassignment may lead to local dose errors on the order of 10%. A novel algorithm, CTC-ask, is presented in this study. It enables locally confined constraints for the media assignment and is independent of the number of media used for the conversion of CT number to density. MC compatible phantoms were generated for two clinical cases using a CT-conversion scheme implemented in both CTC-ask and the DICOM-RT toolbox. Full MC dose calculation was subsequently conducted and the resulting dose distributions were compared. The DICOM-RT toolbox inaccurately assigned lung in 9.9% and 12.2% of the voxels located outside of the lungs for the two cases studied, respectively. This was completely avoided by CTC-ask. CTC-ask is able to reduce anatomically irrational media assignment. The CTC-ask source code can be made available upon request to the authors.

  6. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector

    PubMed Central

    Dudak, Jan; Zemlicka, Jan; Karch, Jakub; Patzelt, Matej; Mrzilkova, Jana; Zach, Petr; Hermanova, Zuzana; Kvacek, Jiri; Krejci, Frantisek

    2016-01-01

    Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation. PMID:27461900

  7. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector.

    PubMed

    Dudak, Jan; Zemlicka, Jan; Karch, Jakub; Patzelt, Matej; Mrzilkova, Jana; Zach, Petr; Hermanova, Zuzana; Kvacek, Jiri; Krejci, Frantisek

    2016-01-01

    Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation. PMID:27461900

  8. TU-A-12A-04: Quantitative Texture Features Calculated in Lung Tissue From CT Scans Demonstrate Consistency Between Two Databases From Different Institutions

    SciTech Connect

    Cunliffe, A; Armato, S; Castillo, R; Pham, N; Guerrero, T; Al-Hallaq, H

    2014-06-15

    Purpose: To evaluate the consistency of computed tomography (CT) scan texture features, previously identified as stable in a healthy patient cohort, in esophageal cancer patient CT scans. Methods: 116 patients receiving radiation therapy (median dose: 50.4Gy) for esophageal cancer were retrospectively identified. For each patient, diagnostic-quality pre-therapy (0-183 days) and post-therapy (5-120 days) scans (mean voxel size: 0.8mm×0.8mm×2.5mm) and a treatment planning scan and associated dose map were collected. An average of 501 32x32-pixel ROIs were placed randomly in the lungs of each pre-therapy scan. ROI centers were mapped to corresponding locations in post-therapy and planning scans using the displacement vector field output by demons deformable registration. Only ROIs with mean dose <5Gy were analyzed, as these were expected to contain minimal post-treatment damage. 140 texture features were calculated in pre-therapy and post-therapy scan ROIs and compared using Bland-Altman analysis. For each feature, the mean feature value change and the distance spanned by the 95% limits of agreement were normalized to the mean feature value, yielding normalized range of agreement (nRoA) and normalized bias (nBias). Using Wilcoxon signed rank tests, nRoA and nBias were compared with values computed previously in 27 healthy patient scans (mean voxel size: 0.67mm×0.67mm×1mm) acquired at a different institution. Results: nRoA was significantly (p<0.001) larger in cancer patients than healthy patients. Differences in nBias were not significant (p=0.23). The 20 features identified previously as having nRoA<20% for healthy patients had the lowest nRoA values in the current database, with an average increase of 5.6%. Conclusion: Despite differences in CT scanner type, scan resolution, and patient health status, the same 20 features remained stable (i.e., low variability and bias) in the absence of disease changes for databases from two institutions. Identification of

  9. A comparison of 3D poly(ε-caprolactone) tissue engineering scaffolds produced with conventional and additive manufacturing techniques by means of quantitative analysis of SR μ-CT images

    NASA Astrophysics Data System (ADS)

    Brun, F.; Intranuovo, F.; Mohammadi, S.; Domingos, M.; Favia, P.; Tromba, G.

    2013-07-01

    The technique used to produce a 3D tissue engineering (TE) scaffold is of fundamental importance in order to guarantee its proper morphological characteristics. An accurate assessment of the resulting structural properties is therefore crucial in order to evaluate the effectiveness of the produced scaffold. Synchrotron radiation (SR) computed microtomography (μ-CT) combined with further image analysis seems to be one of the most effective techniques to this aim. However, a quantitative assessment of the morphological parameters directly from the reconstructed images is a non trivial task. This study considers two different poly(ε-caprolactone) (PCL) scaffolds fabricated with a conventional technique (Solvent Casting Particulate Leaching, SCPL) and an additive manufacturing (AM) technique (BioCell Printing), respectively. With the first technique it is possible to produce scaffolds with random, non-regular, rounded pore geometry. The AM technique instead is able to produce scaffolds with square-shaped interconnected pores of regular dimension. Therefore, the final morphology of the AM scaffolds can be predicted and the resulting model can be used for the validation of the applied imaging and image analysis protocols. It is here reported a SR μ-CT image analysis approach that is able to effectively and accurately reveal the differences in the pore- and throat-size distributions as well as connectivity of both AM and SCPL scaffolds.

  10. PET/CT in radiation oncology

    SciTech Connect

    Pan, Tinsu; Mawlawi, Osama

    2008-11-15

    PET/CT is an effective tool for the diagnosis, staging and restaging of cancer patients. It combines the complementary information of functional PET images and anatomical CT images in one imaging session. Conventional stand-alone PET has been replaced by PET/CT for improved patient comfort, patient throughput, and most importantly the proven clinical outcome of PET/CT over that of PET and that of separate PET and CT. There are over two thousand PET/CT scanners installed worldwide since 2001. Oncology is the main application for PET/CT. Fluorine-18 deoxyglucose is the choice of radiopharmaceutical in PET for imaging the glucose uptake in tissues, correlated with an increased rate of glycolysis in many tumor cells. New molecular targeted agents are being developed to improve the accuracy of targeting different disease states and assessing therapeutic response. Over 50% of cancer patients receive radiation therapy (RT) in the course of their disease treatment. Clinical data have demonstrated that the information provided by PET/CT often changes patient management of the patient and/or modifies the RT plan from conventional CT simulation. The application of PET/CT in RT is growing and will become increasingly important. Continuing improvement of PET/CT instrumentation will also make it easier for radiation oncologists to integrate PET/CT in RT. The purpose of this article is to provide a review of the current PET/CT technology, to project the future development of PET and CT for PET/CT, and to discuss some issues in adopting PET/CT in RT and potential improvements in PET/CT simulation of the thorax in radiation therapy.

  11. Application of SPECT/CT imaging system and radiochemical analysis for investigation of blood kinetics and tissue distribution of radiolabeled plumbagin in healthy and Plasmodium berghei-infected mice.

    PubMed

    Sumsakul, W; Karbwang, J; Na-Bangchang, K

    2016-02-01

    Plumbagin is a derivative of napthoquinone which is isolated from the roots of plants in several families. These compound exhibits a wide range of biological and pharmacological activities including antimalarial, antibacterial, antifungal, and anticancer activities. The aim of the study was to investigate blood kinetics and tissue distribution of plumbagin in healthy and Plasmodium berghei-infected mice using Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and radiochemical analysis by gamma counter. Plumbagin was labeled with (99m)technetium and the reducing agent stannous chloride dihydrate (50 μg/ml) at pH 6.5. Blood kinetics and tissue distribution of the radiolabeled plumbagin were investigated in healthy and P. berghei-infected mice (2 males and 2 females for each experimental group). In vitro and in vivo stability of plumbagin complex suggested satisfactory stability profiles of (99m)Tc-plumbagin complex in plasma and normal saline (92.21-95.47%) within 24 h. Significant difference in blood kinetics parameters (Cmax, AUC, t1/2, MRT, Vd, and CL) were observed between P. berghei-infected and healthy mice. The labeled complex distributed to all organs of both healthy and infected mice but with high intensity in liver, followed by lung, stomach, large intestine and kidney. Accumulation in spleen was markedly noticeable in the infected mice. Plumbagin-labeled complex was rapidly cleared from blood and major routes of excretion were hepatobiliary and pulmonary routes. In P. berghei-infected mice, t1/2 was significantly decreased, while Vd and CL were increased compared with healthy mice. Result suggests that malaria disease state influenced the pharmacokinetics and disposition of plumbagin. SPECT/CT imaging with radiolabeled (99m)Tc is a viable non-invasive technique that can be applied for investigation of kinetics and biodistribution of plumbagin in animal models. PMID:26713669

  12. Achieving high-resolution soft-tissue imaging with cone-beam CT: a two-pronged approach for modulation of x-ray fluence and detector gain

    NASA Astrophysics Data System (ADS)

    Graham, S. A.; Siewerdsen, J. H.; Moseley, D. J.; Keller, H.; Shkumat, N. A.; Jaffray, D. A.

    2005-04-01

    Cone-beam computed tomography (CBCT) presents a highly promising and challenging advanced application of flat-panel detectors (FPDs). The great advantage of this adaptable technology is in the potential for sub-mm 3D spatial resolution in combination with soft-tissue detectability. While the former is achieved naturally by CBCT systems incorporating modern FPD designs (e.g., 200 - 400 um pixel pitch), the latter presents a significant challenge due to limitations in FPD dynamic range, large field of view, and elevated levels of x-ray scatter in typical CBCT configurations. We are investigating a two-pronged strategy to maximizing soft-tissue detectability in CBCT: 1) front-end solutions, including novel beam modulation designs (viz., spatially varying compensators) that alleviate detector dynamic range requirements, reduce x-ray scatter, and better distribute imaging dose in a manner suited to soft-tissue visualization throughout the field of view; and 2) back-end solutions, including implementation of an advanced FPD design (Varian PaxScan 4030CB) that features dual-gain and dynamic gain switching that effectively extends detector dynamic range to 18 bits. These strategies are explored quantitatively on CBCT imaging platforms developed in our laboratory, including a dedicated CBCT bench and a mobile isocentric C-arm (Siemens PowerMobil). Pre-clinical evaluation of improved soft-tissue visibility was carried out in phantom and patient imaging with the C-arm device. Incorporation of these strategies begin to reveal the full potential of CBCT for soft-tissue visualization, an essential step in realizing broad utility of this adaptable technology for diagnostic and image-guided procedures.

  13. Contrast-Enhanced Abdominal Angiographic CT for Intra-abdominal Tumor Embolization: A New Tool for Vessel and Soft Tissue Visualization

    SciTech Connect

    Meyer, Bernhard Christian Frericks, Bernd Benedikt; Albrecht, Thomas; Wolf, Karl-Juergen; Wacker, Frank Klaus

    2007-07-15

    C-Arm cone-beam computed tomography (CACT), is a relatively new technique that uses data acquired with a flat-panel detector C-arm angiography system during an interventional procedure to reconstruct CT-like images. The purpose of this Technical Note is to present the technique, feasibility, and added value of CACT in five patients who underwent abdominal transarterial chemoembolization procedures. Target organs for the chemoembolizations were kidney, liver, and pancreas and a liposarcoma infiltrating the duodenum. The time for patient positioning, C-arm and system preparation, CACT raw data acquisition, and data reconstruction for a single CACT study ranged from 6 to 12 min. The volume data set produced by the workstation was interactively reformatted using maximum intensity projections and multiplanar reconstructions. As part of an angiography system CACT provided essential information on vascular anatomy, therapy endpoints, and immediate follow-up during and immediately after the abdominal interventions without patient transfer. The quality of CACT images was sufficient to influence the course of treatment. This technology has the potential to expedite any interventional procedure that requires three-dimensional information and navigation.

  14. CT Angiography after 20 Years

    PubMed Central

    Rubin, Geoffrey D.; Leipsic, Jonathon; Schoepf, U. Joseph; Fleischmann, Dominik; Napel, Sandy

    2015-01-01

    Through a marriage of spiral computed tomography (CT) and graphical volumetric image processing, CT angiography was born 20 years ago. Fueled by a series of technical innovations in CT and image processing, over the next 5–15 years, CT angiography toppled conventional angiography, the undisputed diagnostic reference standard for vascular disease for the prior 70 years, as the preferred modality for the diagnosis and characterization of most cardiovascular abnormalities. This review recounts the evolution of CT angiography from its development and early challenges to a maturing modality that has provided unique insights into cardiovascular disease characterization and management. Selected clinical challenges, which include acute aortic syndromes, peripheral vascular disease, aortic stent-graft and transcatheter aortic valve assessment, and coronary artery disease, are presented as contrasting examples of how CT angiography is changing our approach to cardiovascular disease diagnosis and management. Finally, the recently introduced capabilities for multispectral imaging, tissue perfusion imaging, and radiation dose reduction through iterative reconstruction are explored with consideration toward the continued refinement and advancement of CT angiography. PMID:24848958

  15. A μCT-based investigation of the influence of tissue modulus variation, anisotropy and inhomogeneity on ultrasound propagation in trabecular bone.

    PubMed

    Pan, Wenlei; Shen, Yi; van Lenthe, G Harry

    2016-07-01

    Ultrasound propagation is widely used in the diagnosis of osteoporosis by providing information on bone mechanical quality. When it loses calcium, the tissue properties will first decrease. However, limited research about the influence of tissue properties on ultrasound propagation have been done due to the cumbersome experiment. The goal of this study was to explore the relationships between tissue modulus (Es) and speed of sound (SOS) through numerical simulations, and to study the influence of Es on the acoustical behavior in characterizing the local structural anisotropy and inhomogeneity. In this work, three-dimensional finite element (FE) simulations were performed on a cubic high-resolution (15μm) bovine trabecular bone sample (4×4×4mm(3), BV/TV=0.18) mapped from micro-computed tomography. Ultrasound excitations of 50kHz, 500kHz and 2MHz were applied in three orthogonal axes and the first arriving signal (FAS) was collected to quantify wave velocity. In this study, a strong power law relationship between Es and SOS was measured with estimated exponential index β=2.08-3.44 for proximal-distal (PD), anterior-posterior (AP) and medial-lateral (ML), respectively (all R(2)>0.95). For various Es, a positive dispersion of sound speed with respect to sound frequency was observed and the velocity dispersion magnitude (VDM) was measured. Also, with Es=15GPa in three orientations, the SOS in PD axis is 2009±120m/s, faster than that of AP (1762±106m/s) and ML (1798±132m/s) (f=2MHz) directions. Besides, the standard deviation of SOS increases with the sound frequency and the Es in all directions except for that at 50kHz. For the mechanical properties, the apparent modulus with certain Es was highest in the longitudinal direction compared with the transverse directions. It indicates that the tissue modulus combining with anisotropy and inhomogeneity has great influence on ultrasound propagation. Simulation results agree well with theoretical and experimental

  16. CT & CBCT imaging: assessment of the orbits.

    PubMed

    Hatcher, David C

    2012-11-01

    The orbits can be visualized easily on routine or customized protocols for computed tomography (CT) or cone beam CT (CBCT) scans. Detailed orbital investigations are best performed with 3-dimensional imaging methods. CT scans are preferred for visualizing the osseous orbital anatomy and fissures while magnetic resonance imaging is preferred for evaluating tumors and inflammation. CBCT provides high-resolution anatomic data of the sinonasal spaces, airway, soft tissue surfaces, and bones but does not provide much detail within the soft tissues. This article discusses CBCT imaging of the orbits, osseous anatomy of the orbits, and CBCT investigation of selected orbital pathosis.

  17. Abdominal and Pelvic CT

    MedlinePlus

    ... Professions Site Index A-Z Computed Tomography (CT) - Abdomen and Pelvis Computed tomography (CT) of the abdomen ... and Pelvis? What is CT Scanning of the Abdomen/Pelvis? Computed tomography, more commonly known as a ...

  18. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... 2016:chap 133. Radiologyinfo.org. Computed tomography (CT) - abdomen and pelvis. Updated June 16, 2016. www.radiologyinfo. ...

  19. Malignant external otitis: CT evaluation

    SciTech Connect

    Curtin, H.D.; Wolfe, P.; May, M.

    1982-11-01

    Malignant external otitis is an aggressive infection caused by Pseudomonas aeruginosa that most often occurs in elderly diabetics. Malignant external otitis often spreads inferiorly from the external canal to involve the subtemporal area and progresses medially towards the petrous apex leading to multiple cranial nerve palsies. The computed tomographic (CT) findings in malignant external otitis include obliteration of the normal fat planes in the subtemporal area as well as patchy destruction of the bony cortex of the mastoid. The point of exit of the various cranial nerves can be identified on CT scans, and the extent of the inflammatory mass correlates well with the clinical findings. Four cases of malignant external otitis are presented. In each case CT provided a good demonstration of involvement of the soft tissues at the base of the skull.

  20. Tissue variation in hydrocarbon composition in the rabbit.

    PubMed

    Ferretti, A; Flanagan, V P

    1977-02-01

    This study, which deals with the distribution of hydrocarbons in seven types of rabbit tissues, was done for the purpose of providing information that might help shed light on the biological relevance of the hydrocarbons in mammalian metabolism. Liver, kidneys, brain, spleen, skeletal muscle, perinephric adipose, and a sample of blood serum were collected from a single animal for analysis of their hydrocarbon composition. The analytical methodology consisted of solvent extraction, saponification (adipose), elution chromatography on hydrated alumina, and combined gas chromatography-mass spectrometry. Hydrocarbons were detected in all of the tissues examined at concentrations estimated to range from 0.1 to 0.01% of the total lipid extracted Three quite distinct distribution modes were recognized. The bulk of the identified components consisted of normal, saturated, nonterpenoid hydrocarbons in the C16 to C33 range. Squalene, phytene, phytadiene, and pristane were the only terpenoids detected. Nonterpenoid branched (iso and anteiso) hydrocarbons were identified unequivocally and in significant amounts in the muscle only. The adipose was the only tissue which was relatively rich in monoalkenes, and its overall hydrocarbon composition closely resembled that of the feed. The results of the study are not consistent with metabolic inertness. The observed qualitative and quantitative differences might reflect function and metabolic activities of the individual organs in a way yet to be elucidated.

  1. Virtual hybrid bronchoscopy using PET/CT data sets

    NASA Astrophysics Data System (ADS)

    Englmeier, Karl-Hans; Seemann, Marcus D.

    2007-03-01

    The aim of this study was to demonstrate the possibilities, advantages and limitations of virtual bronchoscopy using data sets from positron emission tomography (PET) and computed tomography (CT). Eight consecutive patients with lung cancer underwent PET/CT. PET was performed with F-18-labelled 2-[fluorine-18]-fluoro-2-deoxy-D: -glucose ((18)F-FDG). The tracheobronchial system was segmented with a volume-growing algorithm, using the CT data sets, and visualized with a shaded-surface rendering method. The primary tumours and the lymph node metastases were segmented for virtual CT-bronchoscopy using the CT data set and for virtual PET/CT-bronchoscopy using the PET/CT data set. Virtual CT-bronchoscopy using the low-dose or diagnostic CT facilitates the detection of anatomical/morphological structure changes of the tracheobronchial system. Virtual PET/CT-bronchoscopy was superior to virtual CT-bronchoscopy in the detection of lymph node metastases (P=0.001), because it uses the CT information and the molecular/metabolic information from PET. Virtual PET/CT-bronchoscopy with a transparent colour-coded shaded-surface rendering model is expected to improve the diagnostic accuracy of identification and characterization of malignancies, assessment of tumour staging, differentiation of viable tumour tissue from atelectases and scars, verification of infections, evaluation of therapeutic response and detection of an early stage of recurrence that is not detectable or is misjudged in comparison with virtual CT-bronchoscopy.

  2. Computed Tomography (CT) - Spine

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is a diagnostic imaging ... Spine? What is CT Scanning of the Spine? Computed tomography, more commonly known as a CT or CAT ...

  3. Small-animal CT: Its difference from, and impact on, clinical CT

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.

    2007-10-01

    For whole-body computed tomography (CT) images of small rodents, a voxel resolution of at least 10 -3 mm 3 is needed for scale-equivalence to that currently achieved in clinical CT scanners (˜1 mm 3) in adult humans. These "mini-CT" images generally require minutes rather than seconds to complete a scan. The radiation exposure resulting from these mini-CT scans, while higher than clinical CT scans, is below the level resulting in acute tissue damage. Hence, these scans are useful for performing clinical-type diagnostic and monitoring scans for animal models of disease and their response to treatment. "Micro-CT", with voxel size <10 -5 mm 3, has been useful for imaging isolated, intact organs at an almost cellular level of resolution. Micro-CT has the great advantage over traditional microscopic methods in that it generates detailed three-dimensional images in relatively large, opaque volumes such as an intact rodent heart or kidney. The radiation exposure needed in these scans results in acute tissue damage if used in living animals. Experience with micro-CT is contributing to exploration of new applications for clinical CT imaging by providing insights into different modes of X-ray image formation as follows: Spatial resolution should be sufficient to detect an individual Basic Functional Unit (BFU, the smallest collection of diverse cells, such as hepatic lobule, that behaves like the organ), which requires voxels ˜10 -3 mm 3 in volume, so that the BFUs can be counted. Contrast resolution sufficient to allow quantitation of: New microvascular growth, which manifests as increased tissue contrast due to X-ray contrast agent in those vessels' lumens during passage of injected contrast agent in blood. Impaired endothelial integrity which manifests as increased opacification and delayed washout of contrast from tissues. Discrimination of pathological accumulations of metals such as Fe and Ca, which occur in the arterial wall following hemorrhage or tissue damage

  4. Progress in Fully Automated Abdominal CT Interpretation

    PubMed Central

    Summers, Ronald M.

    2016-01-01

    OBJECTIVE Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically. CONCLUSION This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation. PMID:27101207

  5. Endocrine scintigraphy with hybrid SPECT/CT.

    PubMed

    Wong, Ka Kit; Fig, Lorraine M; Youssef, Ehab; Ferretti, Alice; Rubello, Domenico; Gross, Milton D

    2014-10-01

    Nuclear medicine imaging of endocrine disorders takes advantage of unique cellular properties of endocrine organs and tissues that can be depicted by targeted radiopharmaceuticals. Detailed functional maps of biodistributions of radiopharmaceutical uptake can be displayed in three-dimensional tomographic formats, using single photon emission computed tomography (CT) that can now be directly combined with simultaneously acquired cross-sectional anatomic maps derived from CT. The integration of function depicted by scintigraphy and anatomy with CT has synergistically improved the efficacy of nuclear medicine imaging across a broad spectrum of clinical applications, which include some of the oldest imaging studies of endocrine dysfunction.

  6. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  7. SU-E-J-24: Can Fiducial Marker-Based Setup Using ExacTrac Be An Alternative to Soft Tissue-Based Setup Using Cone-Beam CT for Prostate IMRT?

    SciTech Connect

    Tanabe, S; Utsunomiya, S; Abe, E; Aoyama, H; Satou, H; Sakai, H; Yamada, T

    2015-06-15

    Purpose: To assess an accuracy of fiducial maker-based setup using ExacTrac (ExT-based setup) as compared with soft tissue-based setup using Cone-beam CT (CBCT-based setup) for patients with prostate cancer receiving intensity-modulated radiation therapy (IMRT) for the purpose of investigating whether ExT-based setup can be an alternative to CBCT-based setup. Methods: The setup accuracy was analyzed prospectively for 7 prostate cancer patients with implanted three fiducial markers received IMRT. All patients were treated after CBCT-based setup was performed and corresponding shifts were recorded. ExacTrac images were obtained before and after CBCT-based setup. The fiducial marker-based shifts were calculated based on those two images and recorded on the assumption that the setup correction was carried out by fiducial marker-based auto correction. Mean and standard deviation of absolute differences and the correlation between CBCT and ExT shifts were estimated. Results: A total of 178 image dataset were analyzed. On the differences between CBCT and ExT shifts, 133 (75%) of 178 image dataset resulted in smaller differences than 3 mm in all dimensions. Mean differences in the anterior-posterior (AP), superior-inferior (SI), and left-right (LR) dimensions were 1.8 ± 1.9 mm, 0.7 ± 1.9 mm, and 0.6 ± 0.8 mm, respectively. The percentages of shift agreements within ±3 mm were 76% for AP, 90% for SI, and 100% for LR. The Pearson coefficient of correlation for CBCT and ExT shifts were 0.80 for AP, 0.80 for SI, and 0.65 for LR. Conclusion: This work showed that the accuracy of ExT-based setup was correlated with that of CBCT-based setup, implying that ExT-based setup has a potential ability to be an alternative to CBCT-based setup. The further work is to specify the conditions that ExT-based setup can provide the accuracy comparable to CBCT-based setup.

  8. NETL CT Imaging Facility

    ScienceCinema

    None

    2016-07-12

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  9. NETL CT Imaging Facility

    SciTech Connect

    2013-09-04

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  10. CT appearance of splenosis

    SciTech Connect

    Mendelson, D.S.; Cohen, B.A.; Armas, R.R.

    1982-12-01

    Splenosis is an unusual complication of splenic trauma. The computed tomographic (CT) appearance of splenosis is described. One should consider this diagnosis when faced with a history of splenic trauma and multiple round or oval masses at CT.

  11. Iterative image reconstruction in spectral CT

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Michel, Eric; Kim, Hye S.; Kim, Jae G.; Han, Byung H.; Cho, Min H.; Lee, Soo Y.

    2012-03-01

    Scan time of spectral-CTs is much longer than conventional CTs due to limited number of x-ray photons detectable by photon-counting detectors. However, the spectral pixel information in spectral-CT has much richer information on physiological and pathological status of the tissues than the CT-number in conventional CT, which makes the spectral- CT one of the promising future imaging modalities. One simple way to reduce the scan time in spectral-CT imaging is to reduce the number of views in the acquisition of projection data. But, this may result in poorer SNR and strong streak artifacts which can severely compromise the image quality. In this work, spectral-CT projection data were obtained from a lab-built spectral-CT consisting of a single CdTe photon counting detector, a micro-focus x-ray tube and scan mechanics. For the image reconstruction, we used two iterative image reconstruction methods, the simultaneous iterative reconstruction technique (SIRT) and the total variation minimization based on conjugate gradient method (CG-TV), along with the filtered back-projection (FBP) to compare the image quality. From the imaging of the iodine containing phantoms, we have observed that SIRT and CG-TV are superior to the FBP method in terms of SNR and streak artifacts.

  12. Marketing cardiac CT programs.

    PubMed

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.

  13. Primary intraosseous meningioma: CT and MRI appearance.

    PubMed

    Tokgoz, Nil; Oner, Yusuf A; Kaymaz, Memduh; Ucar, Murat; Yilmaz, Guldal; Tali, Turgut E

    2005-09-01

    Benign primary intraosseous meningioma presenting with osteolytic skull lesion and soft-tissue component is rare. CT and MR imaging of a patient with frontoparietal scalp swelling showed an osteolytic intracalvarial lesion with an extradural soft-tissue component. Following wide surgical resection, the histological examination revealed an intraosseous chordoid meningioma. The clinical and radiological findings of primary intraosseous meningioma are discussed and the relevant literature is reviewed.

  14. High resolution CT mammography for surgical biopsy specimens

    SciTech Connect

    Raptopoulos, V.; Baum, J.K.; Hochman, M.; Houlihan, M.J.

    1996-03-01

    Our goal was to assess the performance of high resolution CT on breast biopsy specimens before considering the reevaluation of refined CT techniques in patients with breast abnormalities. High resolution CT was done in 44 surgical biopsy specimens following conventional X-ray specimen mammography. The specimens comprised 38 palpable and nonpalpable soft tissue abnormalities with mean size of 19 mm and 6 specimens with clustered microcalcifications only. There were 21 carcinomas, 10 fibroadenomas, and 13 other benign conditions. Evaluation of CT and conventional images was done separately, and a feature-grading list was used to compare the two modalities. In fatty specimens, grading of morphologic features of masses and the confidence to detect a soft tissue abnormality were equal with both techniques. CT significantly improved the confidence to detect a mass in 17 specimens with dense tissue: On a scale of 0-10, the mean score for detection was 3.8 with radiography and 5.8 with CT (p < 0.008). For clustered microcalcifications, X-ray was superior to CT. The mean CT attenuation of 18 malignant masses (82 HU) was significantly lower than the mean attenuation of 10 fibroadenomas (131 HU; p = 0.003). CT scans of the American College of Radiology test phantom met the requirements for X-ray accreditation. For soft tissue abnormalities, CT specimen mammography performed equally as or better than specimen radiography. These in vitro results suggest potential advantages for increased sensitivity and specificity with CT and justify further investigations. 25 refs., 4 figs.

  15. CT and intracranial manifestations of otorhinologic disease.

    PubMed

    Keller, M A; Holgate, R C; McClarty, B M

    1982-12-01

    Most inflammatory and neoplastic diseases of the ear, nose, nasopharynx, and paranasal sinuses have the capability of intracranial extension. CT is extremely important in defining such lesions, and surpasses complex motion tomography in delineating the extracranial soft tissue involvement and intracranial spread. Trauma can simultaneously affect both intracranial and extracranial compartments but because of its scope, is not dealt with in this submission.

  16. CT perfusion: principles, applications, and problems

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Yim

    2004-10-01

    The fast scanning speed of current slip-ring CT scanners has enabled the development of perfusion imaging techniques with intravenous injection of contrast medium. In a typical CT perfusion study, contrast medium is injected and rapid scanning at a frequency of 1-2 Hz is used to monitor the first circulation of the injected contrast medium through a 1-2 cm thick slab of tissue. From the acquired time-series of CT images, arteries can be identified within the tissue slab to derive the arterial contrast concentration curve, Ca(t) while each individual voxel produces a tissue residue curve, Q(t) for the corresponding tissue region. Deconvolution between the measured Ca(t) and Q(t) leads to the determination of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in brain studies. In this presentation, an important application of CT perfusion in acute stroke studies - the identification of the ischemic penumbra via the CBF/CBV mismatch and factors affecting the quantitative accuracy of deconvolution, including partial volume averaging, arterial delay and dispersion are discussed.

  17. RONI Based Secured and Authenticated Indexing of Lung CT Images

    PubMed Central

    Jasmine Selvakumari Jeya, I.; Suganthi, J.

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks. PMID:26078782

  18. RONI Based Secured and Authenticated Indexing of Lung CT Images.

    PubMed

    Jasmine Selvakumari Jeya, I; Suganthi, J

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks.

  19. RONI Based Secured and Authenticated Indexing of Lung CT Images.

    PubMed

    Jasmine Selvakumari Jeya, I; Suganthi, J

    2015-01-01

    Medical images need to be transmitted with the patient's information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender's logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks. PMID:26078782

  20. Future generation CT imaging.

    PubMed

    Walter, Deborah; De Man, Bruno; Iatrou, Maria; Edic, Peter M

    2004-02-01

    X-ray CT technology has been available for more than 30 years, yet continued technological advances have kept CT imaging at the forefront of medical imaging innovation. Consequently, the number of clinical CT applications has increased steadily. Other imaging modalities might be superior to CT imaging for some specific applications, but no other single modality is more often used in chest imaging today. Future technological developments in the area of high-resolution detectors, high-capacity x-ray tubes, advanced reconstruction algorithms, and improved visualization techniques will continue to expand the imaging capability. Future CT imaging technology will combine improved imaging capability with advanced and specific computer-assisted tools, which will expand the usefulness of CT imaging in many areas.

  1. Utilizing time-lapse micro-CT-correlated bisphosphonate binding kinetics and soft tissue-derived input functions to differentiate site-specific changes in bone metabolism in vivo.

    PubMed

    Tower, R J; Campbell, G M; Müller, M; Glüer, C C; Tiwari, S

    2015-05-01

    The turnover of bone is a tightly regulated process between bone formation and resorption to ensure skeletal homeostasis. This process differs between bone types, with trabecular bone often associated with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) reveal changes in structure and mineral content, but are limited in the study of metabolic activity at a single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, we show that early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing volume and surface in response to OVX, while mice treated with PTH showed significantly greater resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool correction method which now allows for quantitative multi-compartment analyses to be conducted using FMT. These results further expand our understanding of bisphosphonate binding and the use of bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in

  2. PET/CT artifacts.

    PubMed

    Blodgett, Todd M; Mehta, Ajeet S; Mehta, Amar S; Laymon, Charles M; Carney, Jonathan; Townsend, David W

    2011-01-01

    There are several artifacts encountered in positron emission tomography/computed tomographic (PET/CT) imaging, including attenuation correction (AC) artifacts associated with using CT for AC. Several artifacts can mimic a 2-deoxy-2-[18F] fluoro-d-glucose (FDG) avid malignant lesions and therefore recognition of these artifacts is clinically relevant. Our goal was to identify and characterize these artifacts and also discuss some protocol variables that may affect image quality in PET/CT.

  3. Esophageal carcinoma: CT findings

    SciTech Connect

    Quint, L.E.; Glazer, G.M.; Orringer, M.B.; Gross, B.H.

    1985-04-01

    Preoperative CT scans of 33 patients with esophageal cancer were reviewed to assess staging accuracy and define the role of CT in patients being considered for transhiatal blunt esophagectomy. Surgical and pathological verification was obtained in all cases. Only 13 tumors were staged correctly according to the TNM classification. In addition, CT was not useful in assessing resectability because of its low accuracy in evaluating aortic invasion and the fact that few patients had tracheobronchial or aortic invasion or hepatic metastases at presentation.

  4. CT-guided percutaneous needle placement in forensic medicine.

    PubMed

    Hyodoh, Hideki; Shimizu, Jyunya; Mizuo, Keisuke; Okazaki, Shunichiro; Watanabe, Satoshi; Inoue, Hiromasa

    2015-03-01

    We have developed a technique of CT-guided needle placement in the destructed human body in forensic practice. A sixty-year-old male was found in a burned car and he was also destructed severely. Although blood was needed for the external examination, it was difficult to approach the vessels because of the severely burned condition of the cadaver. Thus, we attempted to obtain a blood sample from a vessel using a CT-guided technique. Postmortem CT demonstrated the presence of blood-containing vessels in the pelvis. Indeed, CT-guided needle placement had no difficulty with surface markers, table location, or depth measurement from the surface. CT-guide needle placement is a feasible and reliable technique, so that when the tissue/blood sample is at risk of being spoiled, CT-guided needle placement could be a substitute for conventional sampling techniques.

  5. CT angiography - chest

    MedlinePlus

    Computed tomography angiography - thorax; CTA - lungs; Pulmonary embolism - CTA chest; Thoracic aortic aneurysm - CTA chest; Venous thromboembolism - CTA lung; Blood clot - CTA lung; Embolus - CTA lung; CT ...

  6. Method for transforming CT images for attenuation correction in PET/CT imaging

    SciTech Connect

    Carney, Jonathan P.J.; Townsend, David W.; Rappoport, Vitaliy; Bendriem, Bernard

    2006-04-15

    A tube-voltage-dependent scheme is presented for transforming Hounsfield units (HU) measured by different computed tomography (CT) scanners at different x-ray tube voltages (kVp) to 511 keV linear attenuation values for attenuation correction in positron emission tomography (PET) data reconstruction. A Gammex 467 electron density CT phantom was imaged using a Siemens Sensation 16-slice CT, a Siemens Emotion 6-slice CT, a GE Lightspeed 16-slice CT, a Hitachi CXR 4-slice CT, and a Toshiba Aquilion 16-slice CT at kVp ranging from 80 to 140 kVp. All of these CT scanners are also available in combination with a PET scanner as a PET/CT tomograph. HU obtained for various reference tissue substitutes in the phantom were compared with the known linear attenuation values at 511 keV. The transformation, appropriate for lung, soft tissue, and bone, yields the function 9.6x10{sup -5}{center_dot}(HU+1000) below a threshold of {approx}50 HU and a{center_dot}(HU+1000)+b above the threshold, where a and b are fixed parameters that depend on the kVp setting. The use of the kVp-dependent scaling procedure leads to a significant improvement in reconstructed PET activity levels in phantom measurements, resolving errors of almost 40% otherwise seen for the case of dense bone phantoms at 80 kVp. Results are also presented for patient studies involving multiple CT scans at different kVp settings, which should all lead to the same 511 keV linear attenuation values. A linear fit to values obtained from 140 kVp CT images using the kVp-dependent scaling plotted as a function of the corresponding values obtained from 80 kVp CT images yielded y=1.003x-0.001 with an R{sup 2} value of 0.999, indicating that the same values are obtained to a high degree of accuracy.

  7. CT of Gastric Emergencies.

    PubMed

    Guniganti, Preethi; Bradenham, Courtney H; Raptis, Constantine; Menias, Christine O; Mellnick, Vincent M

    2015-01-01

    Abdominal pain, nausea, and vomiting are common presenting symptoms among adult patients seeking care in the emergency department, and, with the increased use of computed tomography (CT) to image patients with these complaints, radiologists will more frequently encounter a variety of emergent gastric pathologic conditions on CT studies. Familiarity with the CT appearance of emergent gastric conditions is important, as the clinical presentation is often nonspecific and the radiologist may be the first to recognize gastric disease as the cause of a patient's symptoms. Although endoscopy and barium fluoroscopy remain important tools for evaluating patients with suspected gastric disease in the outpatient setting, compared with CT these modalities enable less comprehensive evaluation of patients with nonspecific complaints and are less readily available in the acute setting. Endoscopy is also more invasive than CT and has greater potential risks. Although the mucosal detail of CT is relatively poor compared with barium fluoroscopy or endoscopy, CT can be used with the appropriate imaging protocols to identify inflammatory conditions of the stomach ranging from gastritis to peptic ulcer disease. In addition, CT can readily demonstrate the various complications of gastric disease, including perforation, obstruction, and hemorrhage, which may direct further clinical, endoscopic, or surgical management. We will review the normal anatomy of the stomach and discuss emergent gastric disease with a focus on the usual clinical presentation, typical imaging appearance, and differentiating features, as well as potential imaging pitfalls.

  8. Connective tissue: Vascular and hematological (blood) support

    PubMed Central

    Calvino, Nick

    2003-01-01

    Abstract Connective Tissue (CT) is a ubiquitous component of all major tissues and structures of the body (50% of all body protein is CT), including that of the blood, vascular, muscle, tendon, ligament, fascia, bone, joint, IVD's (intervertebral discs) and skin. Because of its ubiquitous nature, CT is an often overlooked component of any essential nutritional program that may address the structure, and/or function of these tissues. The central role of CT in the health of a virtually all cells, tissues, organs, and organ systems, is discussed. General nutritional CT support strategies, as well as specific CT support strategies that focus on blood, vascular, structural system (eg, muscles, tendons, ligaments, fascia, bone, and joints), integument (skin) and inflammatory and immune mediation will be discussed here and will deal with connective tissue dynamics and dysfunction. An overview of the current scientific understanding and possible options for naturally enhancing the structure and function of CT through the application of these concepts will be discussed in this article, with specific attention on the vascular and hematological systems. PMID:19674592

  9. SNOMED CT in pathology.

    PubMed

    García-Rojo, Marcial; Daniel, Christel; Laurinavicius, Arvydas

    2012-01-01

    Pathology information systems have been using SNOMED II for many years, and in most cases, they are in a migration process to SNOMED CT. COST Action IC0604 (EURO-TELEPATH) has considered terminology normalization one of its strategic objectives. This paper reviews the use of SNOMED CT in healthcare, with a special focus in pathology. Nowadays, SNOMED CT is mainly used for concept search and coding of clinical data. Some ontological errors found in SNOMED CT are described. The Integrating the Healthcare Enterprise (IHE) initiative has fostered the use of SNOMED CT, also in Pathology, as recommended in the Supplement Anatomic Pathology Structured Reports of the IHE Anatomic Pathology Technical Framework. Rule governing concept post-coordination is also described. Some recent initiatives are trying to define a SNOMED CT subset for Pathology. The Spanish Society of Pathology has defined a subset for specimens and procedures in Pathology. Regarding diagnosis coding, the morphological abnormality sub-hierarchy of SNOMED CT need to be significantly extended and improved to become useful for pathologists. A consensus is needed to encode pathology reports with the adequate hierarchies and concepts. This will make the implementation of pathology structured reports more feasible.

  10. Medipix-based Spectral Micro-CT

    PubMed Central

    Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge

    2013-01-01

    Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT. PMID:24194631

  11. Evaluation of CT-based SUV normalization

    NASA Astrophysics Data System (ADS)

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van de Wiele, Christophe; Pottel, Hans

    2016-09-01

    The purpose of this study was to determine patients’ lean body mass (LBM) and lean tissue (LT) mass using a computed tomography (CT)-based method, and to compare standardized uptake value (SUV) normalized by these parameters to conventionally normalized SUVs. Head-to-toe positron emission tomography (PET)/CT examinations were retrospectively retrieved and semi-automatically segmented into tissue types based on thresholding of CT Hounsfield units (HU). The following HU ranges were used for determination of CT-estimated LBM and LT (LBMCT and LTCT):  -180 to  -7 for adipose tissue (AT), -6 to 142 for LT, and 143 to 3010 for bone tissue (BT). Formula-estimated LBMs were calculated using formulas of James (1976 Research on Obesity: a Report of the DHSS/MRC Group (London: HMSO)) and Janmahasatian et al (2005 Clin. Pharmacokinet. 44 1051-65), and body surface area (BSA) was calculated using the DuBois formula (Dubois and Dubois 1989 Nutrition 5 303-11). The CT segmentation method was validated by comparing total patient body weight (BW) to CT-estimated BW (BWCT). LBMCT was compared to formula-based estimates (LBMJames and LBMJanma). SUVs in two healthy reference tissues, liver and mediastinum, were normalized for the aforementioned parameters and compared to each other in terms of variability and dependence on normalization factors and BW. Comparison of actual BW to BWCT shows a non-significant difference of 0.8 kg. LBMJames estimates are significantly higher than LBMJanma with differences of 4.7 kg for female and 1.0 kg for male patients. Formula-based LBM estimates do not significantly differ from LBMCT, neither for men nor for women. The coefficient of variation (CV) of SUV normalized for LBMJames (SUVLBM-James) (12.3%) was significantly reduced in liver compared to SUVBW (15.4%). All SUV variances in mediastinum were significantly reduced (CVs were 11.1-12.2%) compared to SUVBW (15.5%), except SUVBSA (15.2%). Only SUVBW and SUVLBM-James show

  12. Evaluation of CT-based SUV normalization

    NASA Astrophysics Data System (ADS)

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van de Wiele, Christophe; Pottel, Hans

    2016-09-01

    The purpose of this study was to determine patients’ lean body mass (LBM) and lean tissue (LT) mass using a computed tomography (CT)-based method, and to compare standardized uptake value (SUV) normalized by these parameters to conventionally normalized SUVs. Head-to-toe positron emission tomography (PET)/CT examinations were retrospectively retrieved and semi-automatically segmented into tissue types based on thresholding of CT Hounsfield units (HU). The following HU ranges were used for determination of CT-estimated LBM and LT (LBMCT and LTCT):  ‑180 to  ‑7 for adipose tissue (AT), ‑6 to 142 for LT, and 143 to 3010 for bone tissue (BT). Formula-estimated LBMs were calculated using formulas of James (1976 Research on Obesity: a Report of the DHSS/MRC Group (London: HMSO)) and Janmahasatian et al (2005 Clin. Pharmacokinet. 44 1051–65), and body surface area (BSA) was calculated using the DuBois formula (Dubois and Dubois 1989 Nutrition 5 303–11). The CT segmentation method was validated by comparing total patient body weight (BW) to CT-estimated BW (BWCT). LBMCT was compared to formula-based estimates (LBMJames and LBMJanma). SUVs in two healthy reference tissues, liver and mediastinum, were normalized for the aforementioned parameters and compared to each other in terms of variability and dependence on normalization factors and BW. Comparison of actual BW to BWCT shows a non-significant difference of 0.8 kg. LBMJames estimates are significantly higher than LBMJanma with differences of 4.7 kg for female and 1.0 kg for male patients. Formula-based LBM estimates do not significantly differ from LBMCT, neither for men nor for women. The coefficient of variation (CV) of SUV normalized for LBMJames (SUVLBM-James) (12.3%) was significantly reduced in liver compared to SUVBW (15.4%). All SUV variances in mediastinum were significantly reduced (CVs were 11.1–12.2%) compared to SUVBW (15.5%), except SUVBSA (15.2%). Only SUVBW and SUVLBM

  13. Evaluation of CT-based SUV normalization.

    PubMed

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van de Wiele, Christophe; Pottel, Hans

    2016-09-01

    The purpose of this study was to determine patients' lean body mass (LBM) and lean tissue (LT) mass using a computed tomography (CT)-based method, and to compare standardized uptake value (SUV) normalized by these parameters to conventionally normalized SUVs. Head-to-toe positron emission tomography (PET)/CT examinations were retrospectively retrieved and semi-automatically segmented into tissue types based on thresholding of CT Hounsfield units (HU). The following HU ranges were used for determination of CT-estimated LBM and LT (LBMCT and LTCT):  -180 to  -7 for adipose tissue (AT), -6 to 142 for LT, and 143 to 3010 for bone tissue (BT). Formula-estimated LBMs were calculated using formulas of James (1976 Research on Obesity: a Report of the DHSS/MRC Group (London: HMSO)) and Janmahasatian et al (2005 Clin. Pharmacokinet. 44 1051-65), and body surface area (BSA) was calculated using the DuBois formula (Dubois and Dubois 1989 Nutrition 5 303-11). The CT segmentation method was validated by comparing total patient body weight (BW) to CT-estimated BW (BWCT). LBMCT was compared to formula-based estimates (LBMJames and LBMJanma). SUVs in two healthy reference tissues, liver and mediastinum, were normalized for the aforementioned parameters and compared to each other in terms of variability and dependence on normalization factors and BW. Comparison of actual BW to BWCT shows a non-significant difference of 0.8 kg. LBMJames estimates are significantly higher than LBMJanma with differences of 4.7 kg for female and 1.0 kg for male patients. Formula-based LBM estimates do not significantly differ from LBMCT, neither for men nor for women. The coefficient of variation (CV) of SUV normalized for LBMJames (SUVLBM-James) (12.3%) was significantly reduced in liver compared to SUVBW (15.4%). All SUV variances in mediastinum were significantly reduced (CVs were 11.1-12.2%) compared to SUVBW (15.5%), except SUVBSA (15.2%). Only SUVBW and SUVLBM-James show independence

  14. Material Separation Using Dual-Energy CT: Current and Emerging Applications.

    PubMed

    Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V

    2016-01-01

    Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.

  15. Material Separation Using Dual-Energy CT: Current and Emerging Applications.

    PubMed

    Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V

    2016-01-01

    Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016. PMID:27399237

  16. Combination of CT and ultrasound in the retroperitoneum and pelvis examination.

    PubMed

    Raskin, M M

    1980-01-01

    The retroperitoneum and the pelvis are difficult areas to examine by conventional radiographic means. Pelvic ultrasound can distinguish cystic from solid masses, but is poor in defining tissue planes. Computed tomography (CT) easily detects calcifications, is rarely affected by overlying bowel gas, and usually demonstrates the mass with good definition of tissue planes. Although less accurate than ultrasound in distinguishing cystic from solid masses, CT is superior for demonstrating contiguous anatomical structures such as the rectum, bony pelvis, vertebral bodies, abdominal aorta, and inferior vena cava. Overlying bowel gas often precludes obtaining a diagnostic ultrasound examination of the retroperitoneum. In addition, ultrasound is unable to reproducibly demonstrate soft tissue relationships in the retroperitoneum as does CT. Both CT and ultrasound are capable of providing diagnostic information. Ultrasound can more easily distinguish cystic from solid masses, but CT may be better for determining the extent of disease. CT should become the procedure of choice for evaluation of the retroperitoneum.

  17. Computed Tomography (CT) -- Head

    MedlinePlus

    ... further information please consult the ACR Manual on Contrast Media and its references. The risk of serious allergic ... Angiography (CTA) Stroke Brain Tumors Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, ...

  18. Computed Tomography (CT) -- Sinuses

    MedlinePlus

    ... further information please consult the ACR Manual on Contrast Media and its references. The risk of serious allergic ... X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - Sinuses About ...

  19. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... creates detailed pictures of the body, including the pelvis and areas near the pelvis. The test may ...

  20. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  1. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... on film. Three-dimensional (3D) models of the leg can be created by adding the slices together. ...

  2. CT Colonography (Virtual Colonoscopy)

    MedlinePlus

    ... into the colon using a hand-held squeeze bulb. Sometimes an electronic pump is used to deliver ... When you enter the CT scanner room, special light lines may be seen projected onto your body, ...

  3. CT Angiography (CTA)

    MedlinePlus

    ... CT Angiography? Angiography is a minimally invasive medical test that helps physicians diagnose and treat medical conditions. Angiography uses one of three imaging technologies and, in most cases, a contrast material injection ...

  4. CT of the normal and abnormal parametria in cervical cancer

    SciTech Connect

    Vick, C.W.; Walsh, J.W.; Wheelock, J.B.; Brewer, W.H.

    1984-09-01

    To evaluate CT criteria for differentiating a cervical cancer confined to the cervix from a lesion that invades the parametria, 16 patients with newly diagnosed, untreated cervical cancer were studied with CT. Twenty-five parameria were confined by radical hysterectomy, transvaginal parametrial fine-needle aspiration cytology, or excretory urography. In 17 tumor-positive parametria, CT findings associated with parametrial tumor invasion were: 1) irregularity or poor definition of the lateral cervical margins; 2) prominent parametrial soft-tissue strands; 3) obliteration of the periureteral fat plane; and 4) an eccentric parametrial soft-tissue mass. Irregularity of the cervical margins and prominent parametrial strands were seen most commonly with parametrial tumor invasion, but were also occasionally seen with parametrial inflammation. On the basis of the criteria developed in this report, CT may be used as an adjunct to the physical examination in differentiating stage I cervical cancer from more advanced disease in selected patients.

  5. Iterative CT shading correction with no prior information

    NASA Astrophysics Data System (ADS)

    Wu, Pengwei; Sun, Xiaonan; Hu, Hongjie; Mao, Tingyu; Zhao, Wei; Sheng, Ke; Cheung, Alice A.; Niu, Tianye

    2015-11-01

    Shading artifacts in CT images are caused by scatter contamination, beam-hardening effect and other non-ideal imaging conditions. The purpose of this study is to propose a novel and general correction framework to eliminate low-frequency shading artifacts in CT images (e.g. cone-beam CT, low-kVp CT) without relying on prior information. The method is based on the general knowledge of the relatively uniform CT number distribution in one tissue component. The CT image is first segmented to construct a template image where each structure is filled with the same CT number of a specific tissue type. Then, by subtracting the ideal template from the CT image, the residual image from various error sources are generated. Since forward projection is an integration process, non-continuous shading artifacts in the image become continuous signals in a line integral. Thus, the residual image is forward projected and its line integral is low-pass filtered in order to estimate the error that causes shading artifacts. A compensation map is reconstructed from the filtered line integral error using a standard FDK algorithm and added back to the original image for shading correction. As the segmented image does not accurately depict a shaded CT image, the proposed scheme is iterated until the variation of the residual image is minimized. The proposed method is evaluated using cone-beam CT images of a Catphan©600 phantom and a pelvis patient, and low-kVp CT angiography images for carotid artery assessment. Compared with the CT image without correction, the proposed method reduces the overall CT number error from over 200 HU to be less than 30 HU and increases the spatial uniformity by a factor of 1.5. Low-contrast object is faithfully retained after the proposed correction. An effective iterative algorithm for shading correction in CT imaging is proposed that is only assisted by general anatomical information without relying on prior knowledge. The proposed method is thus practical

  6. [Isolated retroperitoneal hydatid cyst. CT study. Apropos of a case].

    PubMed

    Ménor Serrano, F; Marti-Bonmati, L; Garcia Aguayo, F; Gordo Roman, G; Ballesta Cunat, A

    1987-03-01

    A 30 year old patient with isolated retroperitoneal hydatid cyst was the first case of this type to be studied by CT scanning. Isolated retroperitoneal hydatid cyst is defined as any zone of hydatidosis occurring in the fatty tissue of the spaces lying behind posterior parietal peritoneum, without any parasitic foci in other organs. Differential diagnosis from other primary retroperitoneal cysts has been improved by the availability of modern imaging procedures: ultrasonography and CT scan.

  7. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems

    PubMed Central

    Mahmoudi, Reza; Jabbari, Nasrollah; aghdasi, Mehdi; Khalkhali, Hamid Reza

    2016-01-01

    Introduction For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs). The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses. Materials and Methods In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp) on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN). Dose calculations were performed on two TPSs. Results The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV) at three kVp's was less than 1.2%. Discussion The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems. PMID:27391672

  8. Bone Windows for Distinguishing Malignant from Benign Primary Bone Tumors on FDG PET/CT

    PubMed Central

    Costelloe, Colleen M.; Chuang, Hubert H.; Chasen, Beth A.; Pan, Tinsu; Fox, Patricia S.; Bassett, Roland L.; Madewell, John E.

    2013-01-01

    Objective. The default window setting on PET/CT workstations is soft tissue. This study investigates whether bone windowing and hybrid FDG PET/CT can help differentiate between malignant and benign primary bone tumors. Materials and methods. A database review included 98 patients with malignant (n=64) or benign primary bone (n=34) tumors. The reference standard was biopsy for malignancies and biopsy or >1 year imaging follow-up of benign tumors. Three radiologists and/or nuclear medicine physicians blinded to diagnosis and other imaging viewed the lesions on CT with bone windows (CT-BW) without and then with PET (PET/CT-BW), and separate PET-only images for malignancy or benignity. Three weeks later the tumors were viewed on CT with soft tissue windows (CT-STW) without and then with PET (PET/CT-STW). Results. Mean sensitivity and specificity for identifying malignancies included: CT-BW: 96%, 90%; CT-STW: 90%, 90%; PET/CT-BW: 95%, 85%, PET/CT-STW: 95%, 86% and PET-only: 96%, 75%, respectively. CT-BW demonstrated higher specificity than PET-only and PET/CT-BW (p=0.0005 and p=0.0103, respectively) and trended toward higher sensitivity than CT-STW (p=0.0759). Malignant primary bone tumors were more avid than benign lesions overall (p<0.0001) but the avidity of benign aggressive lesions (giant cell tumors and Langerhans Cell Histiocytosis) trended higher than the malignancies (p=0.08). Conclusion. Bone windows provided high specificity for distinguishing between malignant and benign primary bone tumors and are recommended when viewing FDG PET/CT. PMID:23983816

  9. Imaging features of rhinosporidiosis on contrast CT

    PubMed Central

    Prabhu, Shailesh M; Irodi, Aparna; Khiangte, Hannah L; Rupa, V; Naina, P

    2013-01-01

    Context: Rhinosporidiosis is a chronic granulomatous disease endemic in certain regions of India. Computed tomography (CT) imaging appearances of rhinosporidiosis have not been previously described in the literature. Aims: To study imaging features in rhinosporidiosis with contrast-enhanced CT and elucidate its role in the evaluation of this disease. Materials and Methods: Sixteen patients with pathologically proven rhinosporidiosis were included in the study. Contrast-enhanced CT images were analyzed retrospectively and imaging findings were correlated with surgical and histopathologic findings. Results: A total of 29 lesions were found and evaluated. On contrast-enhanced CT, rhinosporidiosis was seen as moderately enhancing lobulated or irregular soft tissue mass lesions in the nasal cavity (n = 13), lesions arising in nasal cavity and extending through choana into nasopharynx (n = 5), pedunculated polypoidal lesions arising from the nasopharyngeal wall (n = 5), oropharyngeal wall (n = 2), larynx (n = 1), bronchus (n = 1), skin and subcutaneous tissue (n = 2). The inferior nasal cavity comprising nasal floor, inferior turbinate, and inferior meatus was the most common site of involvement (n = 13). Surrounding bone involvement was seen in the form of rarefaction (n = 6), partial (n = 3) or complete erosion (n = 3) of inferior turbinate, thinning of medial maxillary wall (n = 2), and septal erosion (n = 2). Nasolacrimal duct involvement was seen in four cases. Conclusions: Contrast-enhanced CT has an important role in delineating the site and extent of the disease, as well as the involvement of surrounding bone, nasolacrimal duct and tracheobronchial tree. This provides a useful roadmap prior to surgery. PMID:24347850

  10. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Bravin, A.; Keyriläinen, J.; Fernández, M.; Suortti, P.; Thomlinson, W.; Tenhunen, M.; Virkkunen, P.; Karjalainen-Lindsberg, M.-L.

    2004-01-01

    Different modalities for imaging cancer-bearing breast tissue samples are described and compared. The images include clinical mammograms and computed tomography (CT) images, CT images with partly coherent synchrotron radiation (SR), and CT and radiography images taken with SR using the diffraction enhanced imaging (DEI) method. The images are evaluated by a radiologist and compared with histopathological examination of the samples. Two cases of lobular carcinoma are studied in detail. The indications of cancer are very weak or invisible in the conventional images, but the morphological changes due to invasion of cancer become pronounced in the images taken by the DEI method. The strands penetrating adipose tissue are seen clearly in the DEI-CT images, and the histopathology confirms that some strands contain the so-called 'Indian file' formations of cancer cells. The radiation dose is carefully measured for each of the imaging modalities. The mean glandular dose (MGD) for 50% glandular breast tissue is about 1 mGy in conventional mammography and less than 0.25 mGy in projection DEI, while in the clinical CT imaging the MGD is very high, about 45 mGy. The entrance dose of 95 mGy in DEI-CT imaging gives rise to an MGD of 40 mGy, but the dose may be reduced by an order of magnitude, because the contrast is very large in most images.

  11. Calibration free beam hardening correction for cardiac CT perfusion imaging

    NASA Astrophysics Data System (ADS)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  12. CT Perfusion Characteristics Identify Metastatic Sites in Liver.

    PubMed

    Wang, Yuan; Hobbs, Brian P; Ng, Chaan S

    2015-01-01

    Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT) perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF), blood volume (BV), mean transit time (MTT), permeability (PS), and hepatic arterial fraction (HAF), for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  13. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  14. Deformable planning CT to cone-beam CT image registration in head-and-neck cancer

    SciTech Connect

    Hou Jidong; Guerrero, Mariana; Chen, Wenjuan; D'Souza, Warren D.

    2011-04-15

    Purpose: The purpose of this work was to implement and validate a deformable CT to cone-beam computed tomography (CBCT) image registration method in head-and-neck cancer to eventually facilitate automatic target delineation on CBCT. Methods: Twelve head-and-neck cancer patients underwent a planning CT and weekly CBCT during the 5-7 week treatment period. The 12 planning CT images (moving images) of these patients were registered to their weekly CBCT images (fixed images) via the symmetric force Demons algorithm and using a multiresolution scheme. Histogram matching was used to compensate for the intensity difference between the two types of images. Using nine known anatomic points as registration targets, the accuracy of the registration was evaluated using the target registration error (TRE). In addition, region-of-interest (ROI) contours drawn on the planning CT were morphed to the CBCT images and the volume overlap index (VOI) between registered contours and manually delineated contours was evaluated. Results: The mean TRE value of the nine target points was less than 3.0 mm, the slice thickness of the planning CT. Of the 369 target points evaluated for registration accuracy, the average TRE value was 2.6{+-}0.6 mm. The mean TRE for bony tissue targets was 2.4{+-}0.2 mm, while the mean TRE for soft tissue targets was 2.8{+-}0.2 mm. The average VOI between the registered and manually delineated ROI contours was 76.2{+-}4.6%, which is consistent with that reported in previous studies. Conclusions: The authors have implemented and validated a deformable image registration method to register planning CT images to weekly CBCT images in head-and-neck cancer cases. The accuracy of the TRE values suggests that they can be used as a promising tool for automatic target delineation on CBCT.

  15. Evaluation of a bilinear model for attenuation correction using CT numbers generated from a parametric method.

    PubMed

    Martinez, L C; Calzado, A

    2016-01-01

    A parametric model is used for the calculation of the CT number of some selected human tissues of known compositions (Hi) in two hybrid systems, one SPECT-CT and one PET-CT. Only one well characterized substance, not necessarily tissue-like, needs to be scanned with the protocol of interest. The linear attenuation coefficients of these tissues for some energies of interest (μ(i)) have been calculated from their tabulated compositions and the NIST databases. These coefficients have been compared with those calculated with the bilinear model from the CT number (μ(B)i). No relevant differences have been found for bones and lung. In the soft tissue region, the differences can be up to 5%. These discrepancies are attributed to the different chemical composition for the tissues assumed by both methods.

  16. CT evaluation of primary benign retroperitoneal tumor.

    PubMed

    Hayasaka, K; Yamada, T; Saitoh, Y; Yoshikawa, D; Aburano, T; Hashimoto, H; Yachiku, S

    1994-01-01

    We studied CT patterns in 21 cases of primary benign retroperitoneal tumor including teratoma in nine cases, schwannoma in six, leiomyoma in three, lipoma in one, lymphangioma in one, and neurofibroma in one. The tumors were analyzed for size, internal homogeneity, CT density, calcification, border with neighboring organs, and contrast enhancement (CE). The mean diameter of the tumors was 10.2 (+/- 4.8) cm. Internal homogeneous distribution was observed in 33%, calcification in 43%, and well-defined border in 86%. The CT density and calcification were compared according to histology, and the results were as follows: teratoma showed fat density in 78%, water density in 100%, and calcification in 89%; schwannoma showed water density in 100% and septal CE in 33%; leiomyoma showed soft tissue density in 100%, CE in 100%, and water density in 33%; lipoma showed fat density and calcification; and lymphangioma and neurofibroma showed water density. Internal homogeneity, fat density, cyst formation, and calcification are considered to be important predictors of primary benign retroperitoneal tumor on CT.

  17. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams.

    PubMed

    Arbor, N; Dauvergne, D; Dedes, G; Létang, J M; Parodi, K; Quiñones, C T; Testa, E; Rit, S

    2015-10-01

    Proton computed tomography (CT) has been described as a solution for imaging the proton stopping power of patient tissues, therefore reducing the uncertainty of the conversion of x-ray CT images to relative stopping power (RSP) maps and its associated margins. This study aimed to investigate this assertion under the assumption of ideal detection systems. We have developed a Monte Carlo framework to assess proton CT performances for the main steps of a proton therapy treatment planning, i.e. proton or x-ray CT imaging, conversion to RSP maps based on the calibration of a tissue phantom, and proton dose simulations. Irradiations of a computational phantom with pencil beams were simulated on various anatomical sites and the proton range was assessed on the reference, the proton CT-based and the x-ray CT-based material maps. Errors on the tissue's RSP reconstructed from proton CT were found to be significantly smaller and less dependent on the tissue distribution. The imaging dose was also found to be much more uniform and conformal to the primary beam. The mean absolute deviation for range calculations based on x-ray CT varies from 0.18 to 2.01 mm depending on the localization, while it is smaller than 0.1 mm for proton CT. Under the assumption of a perfect detection system, proton range predictions based on proton CT are therefore both more accurate and more uniform than those based on x-ray CT.

  18. A realistic simulation framework for assessing deformable slice-to-volume (CT-fluoroscopy/CT) registration

    NASA Astrophysics Data System (ADS)

    Yaniv, Ziv; Stenzel, Roland; Cleary, Kevin; Banovac, Filip

    2006-03-01

    Lung cancer screening for early diagnosis is a clinically important problem. One screening method is to test tissue samples obtained from CT-fluoroscopy (CTF) guided lung biopsy. CTF provides real-time imaging; however on most machines the view is limited to a single slice. Mentally reconstructing the direction of the needle when it is not in the imaging plane is a difficult task. We are currently developing 3D visualization software that will augment the physician's ability to perform this task. At the beginning of the procedure a CT scan is acquired at breath-hold. The physician then specifies an entry point and a target point on the CT. As the procedure advances the physician acquires a CTF image at breath-hold; the system then registers the current setup to the CT scan. To assess the performance of different registration algorithms for CTF/CT registration we propose to use simulated CTF images. These images are created by deforming the original CT volume and extracting a slice from it. Realistic deformation of the CT volume is achieved by using positional information from electromagnetically tracked fiducials, acquired throughout the respiratory cycle. To estimate the dense displacement field underlying the sparse displacement field provided by the fiducials we use radial basis function interpolation. Finally, we evaluated Thirion's "demons" algorithm, as implemented in ITK, for the task of slice-to-volume registration. We found it to be unsuitable for this task, as in most cases the recovered displacements were less than 50% of the original ones.

  19. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  20. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    SciTech Connect

    Wood, Bradford J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kam, A.; Li, K. C. P.; Yanof, J.; Bauer, C.; Kruecker, J.; Seip, R.

    2006-05-08

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  1. Pyogenic myositis: CT evaluation

    SciTech Connect

    Tumeh, S.S.; Butler, G.J.; Maguire, J.H.; Nagel, J.S.

    1988-11-01

    Computed tomography and gallium scintigraphy uncovered clinically occult muscle infection in eight patients. The CT findings included enlargement of the muscle, effacement of the intramuscular fat planes, fluid density, rim enhancement, and involvement of the underlying bone. Computed tomography suggested the diagnosis in seven of eight cases. Gallium scintigraphy was positive in all seven cases in which it was performed.

  2. State of the art: dual-energy CT of the abdomen.

    PubMed

    Marin, Daniele; Boll, Daniel T; Mileto, Achille; Nelson, Rendon C

    2014-05-01

    Recent technologic advances in computed tomography (CT)--enabling the nearly simultaneous acquisition of clinical images using two different x-ray energy spectra--have sparked renewed interest in dual-energy CT. By interrogating the unique characteristics of different materials at different x-ray energies, dual-energy CT can be used to provide quantitative information about tissue composition, overcoming the limitations of attenuation-based conventional single-energy CT imaging. In the past few years, intensive research efforts have been devoted to exploiting the unique and powerful opportunities of dual-energy CT for a variety of clinical applications. This has led to CT protocol modifications for radiation dose reduction, improved diagnostic performance for detection and characterization of diseases, as well as image quality optimization. In this review, the authors discuss the basic principles, instrumentation and design, examples of current clinical applications in the abdomen and pelvis, and future opportunities of dual-energy CT.

  3. Dual energy CT: preliminary observations and potential clinical applications in the abdomen.

    PubMed

    Graser, Anno; Johnson, Thorsten R C; Chandarana, Hersh; Macari, Michael

    2009-01-01

    Dual energy CT (DECT) is a new technique that allows differentiation of materials and tissues based on CT density values derived from two synchronous CT acquisitions at different tube potentials. With the introduction of a new dual source CT system, this technique can now be used routinely in abdominal imaging. Potential clinical applications include evaluation of renal masses, liver lesions, urinary calculi, small bowel, pancreas, and adrenal glands. In CT angiography of abdominal aortic aneurysms, dual energy CT techniques can be used to remove bones from the datasets, and virtual unenhanced images allow differentiation of contrast agent from calcifying thrombus in patients with endovascular stents. This review describes potential applications, practical guidelines, and limitations of dual energy CT in the abdomen.

  4. Limits of normality of quantitative thoracic CT analysis

    PubMed Central

    2013-01-01

    Introduction Although computed tomography (CT) is widely used to investigate different pathologies, quantitative data from normal populations are scarce. Reference values may be useful to estimate the anatomical or physiological changes induced by various diseases. Methods We analyzed 100 helical CT scans taken for clinical purposes and referred as nonpathological by the radiologist. Profiles were manually outlined on each CT scan slice and each voxel was classified according to its gas/tissue ratio. For regional analysis, the lungs were divided into 10 sterno-vertebral levels. Results We studied 53 males and 47 females (age 64 ± 13 years); males had a greater total lung volume, lung gas volume and lung tissue. Noninflated tissue averaged 7 ± 4% of the total lung weight, poorly inflated tissue averaged 18 ± 3%, normally inflated tissue averaged 65 ± 8% and overinflated tissue averaged 11 ± 7%. We found a significant correlation between lung weight and subject's height (P <0.0001, r2 = 0.49); the total lung capacity in a supine position was 4,066 ± 1,190 ml, ~1,800 ml less than the predicted total lung capacity in a sitting position. Superimposed pressure averaged 2.6 ± 0.5 cmH2O. Conclusion Subjects without lung disease present significant amounts of poorly inflated and overinflated tissue. Normal lung weight can be predicted from patient's height with reasonable confidence. PMID:23706034

  5. Seventh-generation CT

    NASA Astrophysics Data System (ADS)

    Besson, G. M.

    2016-03-01

    A new dual-drum CT system architecture has been recently introduced with the potential to achieve significantly higher temporal resolution than is currently possible in medical imaging CT. The concept relies only on known technologies; in particular rotation speeds several times higher than what is possible today could be achieved leveraging typical x-ray tube designs and capabilities. However, the architecture lends itself to the development of a new arrangement of x-ray sources in a toroidal vacuum envelope containing a rotating cathode ring and a (optionally rotating) shared anode ring to potentially obtain increased individual beam power as well as increase total exposure per rotation. The new x-ray source sub-system design builds on previously described concepts and could make the provision of multiple conventional high-power cathodes in a CT system practical by distributing the anode target between the cathodes. In particular, relying on known magnetic-levitation technologies, it is in principle possible to more than double the relative speed of the electron-beam with respect to the target, thus potentially leading to significant individual beam power increases as compared to today's state-of-the-art. In one embodiment, the proposed design can be naturally leveraged by the dual-drum CT concept previously described to alleviate the problem of arranging a number of conventional rotating anode-stem x-ray tubes and power conditioners on the limited space of a CT gantry. In another embodiment, a system with three cathodes is suggested leveraging the architecture previously proposed by Franke.

  6. Technical aspects of CT scanning.

    PubMed

    Maravilla, K R; Pastel, M S

    1978-01-01

    The advent of computed tomography (CT) has initiated a technological revolution which continues to the present time. A brief review of basic principles of CT scanning is presented, and the evolution of modern CT scanner systems is traced. Some early indications of future trends are also presented.

  7. [Preliminary investigation on dynamic CT scan of intracranial tumors].

    PubMed

    Wu, E H

    1989-04-01

    74 patients with various intracranial tumors were studied by means of dynamic CT, among them 45 cases were confirmed by operation and pathology. In analyzing the time-density curve and the ratio of increase in CT number of the tumoral tissue to that in the arterial lumens (tissue-blood ratio, TBR), we found that: (1) Dynamic CT technique is safe and easy to perform suitable for out-patients; (2) The time-density curves in acoustic neurinoma, meningioma, glioma and metastatic tumors are different from each other because of difference in vascularity and the degree of B.B.B. breakdown. Meningioma curve shows a rapid rise to the peak followed by a subsequent plateau; (3) TBR at the peak time (TBRp) is useful as an index for tumor. Combined analysis of time-density curve and TBRp is helpful for tumor differentiation. PMID:2758930

  8. Comparison of FDG-PET/CT and CT for Delineation of Lumpectomy Cavity for Partial Breast Irradiation

    SciTech Connect

    Ford, Eric C. Lavely, William C.; Frassica, Deborah A.; Myers, Lee T.; Asrari, Fariba; Wahl, Richard L.; Zellars, Richard C.

    2008-06-01

    Purpose: The success of partial breast irradiation critically depends on proper target localization. We examined the use of fluorodeoxyglucose-positron emission tomography (FDG-PET)/computed tomography (CT) for improved lumpectomy cavity (LC) delineation and treatment planning. Methods and Materials: Twelve breast cancer patients underwent FDG-PET/CT on a GE Discovery scanner with a median time from surgery to PET/CT of 49 days. The LC was contoured on the CT scan by a radiation oncologist and, together with a nuclear medicine physician, on the PET/CT scan. The volumes were calculated and compared in each patient. Treatment planning target volumes (PTVs) were calculated by expanding the margin 2 cm beyond the LC, maintaining a 5-mm margin from the skin and chest wall, and the treatment plans were evaluated. In addition, a study with a patient-like phantom was conducted to evaluate the effect that the window/level settings might have on contouring. Results: The margin of the LC was well visualized on all FDG-PET images. The phantom results indicated that the difference between the known volume and the FDG-PET-delineated volume was <10%, regardless of the window/level settings. The PET/CT volumes were larger than the CT volumes in all cases (median volume ratio, 1.68; range, 1.24-2.45; p = 0.004). The PET/CT-based PTVs were also larger than the CT-based PTV (median volume ratio, 1.16; range, 1.08-1.64; p = 0.006). In 9 of 12 patients, a CT-based treatment plan did not provide adequate coverage of the PET/CT-based PTV (99% of the PTV received <95% of the prescribed dose), resulting in substantial cold spots in some plans. In these cases, treatment plans were generated which were specifically designed to cover the larger PET/CT-based PTV. Although these plans showed an increased dose to the normal tissues, the increases were modest: the non-target breast volume receiving {>=}50 Gy, lung volume receiving {>=}30 Gy, and heart volume receiving {>=}5 Gy increased by 5

  9. Multi-modal CT in Stroke Imaging: New Concepts

    PubMed Central

    Ledezma, Carlos J.; Wintermark, Max

    2009-01-01

    A multimodal CT protocol provides a comprehensive non-invasive survey of acute stroke patients with accurate demonstration of the site of arterial occlusion and its hemodynamic tissue status. It combines widespread availability with the ability to provide functional characterization of cerebral ischemia, and could potentially allow more accurate selection of candidates for acute stroke reperfusion therapy. PMID:19195537

  10. Intracranial extramedullary hematopoiesis. CT and bone marrow scan findings

    SciTech Connect

    Urman, M.; O'Sullivan, R.A.; Nugent, R.A.; Lentle, B.C. )

    1991-06-01

    This case concerns a patient with intracranial extramedullary hematopoiesis (EH) suspected on a CT scan and subsequently confirmed with In-111 chloride and Tc-99m SC bone marrow scans. The bone marrow scans also provided additional information by demonstrating other sites of EH in the paravertebral tissues and bone marrow expansion into the distal extremities.

  11. SU-E-J-187: Individually Optimized Contrast-Enhancement 4D-CT for Pancreatic Adenocarcinoma in Radiotherapy Simulation

    SciTech Connect

    Xue, M; Patel, K; Regine, W; Lane, B; D'Souza, W; Lu, W; Klahr, P

    2014-06-01

    Purpose: To study the feasibility of individually optimized contrastenhancement (CE) 4D-CT for pancreatic adenocarcinoma (PDA) in radiotherapy simulation. To evaluate the image quality and contrast enhancement of tumor in the CE 4D-CT, compared to the clinical standard of CE 3D-CT and 4D-CT. Methods: In this IRB-approved study, each of the 7 PDA patients enrolled underwent 3 CT scans: a free-breathing 3D-CT with contrast (CE 3D-CT) followed by a 4D-CT without contrast (4D-CT) in the first study session, and a 4D-CT with individually synchronized contrast injection (CE 4D-CT) in the second study session. In CE 4D-CT, the time of full contrast injection was determined based on the time of peak enhancement for the test injection, injection rate, table speed, and longitudinal location and span of the pancreatic region. Physicians contoured both the tumor (T) and the normal pancreatic parenchyma (P) on the three CTs (end-of-exhalation for 4D-CT). The contrast between the tumor and normal pancreatic tissue was computed as the difference of the mean enhancement level of three 1 cm3 regions of interests in T and P, respectively. Wilcoxon rank sum test was used to statistically compare the scores and contrasts. Results: In qualitative evaluations, both CE 3D-CT and CE 4D-CT scored significantly better than 4D-CT (4.0 and 3.6 vs. 2.6). There was no significant difference between CE 3D-CT and CE 4D-CT. In quantitative evaluations, the contrasts between the tumor and the normal pancreatic parenchyma were 0.6±23.4, −2.1±8.0, and −19.6±28.8 HU, in CE 3D-CT, 4D-CT, and CE 4D-CT, respectively. Although not statistically significant, CE 4D-CT achieved better contrast enhancement between the tumor and the normal pancreatic parenchyma than both CE 3D-CT and 4DCT. Conclusion: CE 4D-CT achieved equivalent image quality and better contrast enhancement between tumor and normal pancreatic parenchyma than the clinical standard of CE 3D-CT and 4D-CT. This study was supported in part

  12. CT120A Acts as an Oncogene in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Baltaci, Elif; Ekizoglu, Seda; Sari, Elif; Karaman, Emin; Ulutin, Turgut; Buyru, Nur

    2015-01-01

    Squamous cell carcinoma of the head and neck (HNSCC) is among the most frequent cancers worldwide. The etiology and pathogenesis of HNSCC are influenced by multiple genetic factors in addition to environmental and lifestyle-related factors. However, the mechanism underlying the HNSCC is still far from clear. The membrane associated gene CT120 was previously identified from chromosome 17p13.3 as a lung cancer-associated gene. Its function as an activator of the Erk and Akt signaling pathways in human lung cancer cell lines suggested that CT120 has an oncogenic function. However, there is no data in the literature on the role of CT120 in any other cancer type. Therefore, the aim of this study was to determine the expression rate and probable function of CT120 in HNSCC. Tumor tissues from 50 patients were analyzed by real-time quantitative RT-PCR to investigate the expression rate and by direct sequencing to differentiate the CT120A and CT120B variants. CT120 overexpression was observed in 58% of tumors compared to non-cancerous tissue samples and this up-regulation was directly associated with the upregulation of the CT120A variant and with the stage of the disease (p=0.001). Our results indicate that the CT120 gene may function in the development of HNSCC. PMID:26535067

  13. Idiopathic Isolated Omental Panniculitis Confirmed by Percutaneous CT-Guided Biopsy

    PubMed Central

    Jeon, Eun Jung

    2009-01-01

    The preoperative diagnosis of intraabdominal panniculitis is difficult due to its rarity. However, the increased use of abdominal computed tomography (CT) for a variety of indications has increased the diagnosis of intraabdominal panniculitis, including omental panniculitis. The characteristic CT features of intraabdominal panniculitis are increased attenuation of the adipose tissue, the fat-ring sign, a tumoral pseudocapsule, soft-tissue nodules, and a left-sided orientation of mass maximum transverse diameter. Recognition of these features is valuable in the diagnosis of panniculitis, and hence percutaneous CT-guided biopsy to determine their presence may prevent unwarranted surgery. We report the case of a 61-year-old man found to have an idiopathic isolated omental panniculitis that was diagnosed by abdominal CT and percutaneous CT-guided biopsy. PMID:20431769

  14. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    SciTech Connect

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; and others

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm

  15. CT evaluation of intracholecystic bile

    SciTech Connect

    Rebner, M.; Ruggieri, P.M.; Gross, B.H.; Glazer, G.M.

    1985-08-01

    Computed tomography (CT) has been used to detect a variety of gallbladder abnormalities, but the accuracy of routine abdominal CT in evaluating intracholecystic bile has not been established. Forty-six patients were identified in whom abdominal CT and sonography were performed within 1 week of each other. Using sonographic results as the standard, sensitivity specificity, and accuracy of CT gallbladder evaluation were calculated; both initial CT interpretations and retrospective review of scans were used for this analysis. In the retrospective review, visual interpretation of gallbladder images and measurement of intracholecystic bile attenuation were analyzed. The most common cause of high-attenuation bile in the series was sludge, a cause not previously reported. It was concluded that intracholecystic bile is poorly evaluated on routine abdominal CT, particularly because of low sensitivity in disease detection.

  16. Tissue types (image)

    MedlinePlus

    There are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports other tissues and binds them together (bone, blood, and lymph tissues). Epithelial tissue ...

  17. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  18. CT findings of atrial myxoma

    SciTech Connect

    Tsuchiya, F.; Kohno, A.; Saitoh, R.; Shigeta, A.

    1984-04-01

    The computed tomographic (CT) appearance of six atrial myxomas was analyzed. Five of the myxomas were located in the left atrium and one was in the right atrium. The margin of the myxoma was at least slightly lobulated in five cases and the content was inhomogeneous in all. Calcification was demonstrated in three cases. The site of attachment of the myxoma was demonstrated by CT to be the arial septum in all cases. The CT finding correlated well with the operative findings. It is concluded that it is possible with CT to diagnose atrial myxoma by the location and nature of the intracardiac mass and to differentiate it from thrombus.

  19. CT of fluid collections associated with pancreatitis.

    PubMed

    Siegelman, S S; Copeland, B E; Saba, G P; Cameron, J L; Sanders, R C; Zerhouni, E A

    1980-06-01

    Fluid collections are an important component of severe pancreatitis because they may produce a detectable mass and may be responsible for prolongation of fever and pain. Among 59 cases of clinically verified pancreatitis, 32 were shown by CT to be complicated by pancreatic and/or extrapancreatic fluid collections. Pancreatic fluid collections, diagnosed in 16 patients, were typically on the anterior or anterolateral surface of the gland and were covered only by a thin layer of fibrous connective tissue. Extrapancreatic fluid collections were detected in the lesser sac (19 cases), anterior pararenal space (15), posterior pararenal space (six), in or around the left lobe of the liver (five), in the spleen (three), and in the mediastinum (one). The potential undesirable consequences of escape of pancreatic juice are necrosis, abscess formation, or prolonged inflammation of the peripancreatic tissues. Relative preservation of pancreatic integrity as observed by CT was regularly found in patients with large extrapancreatic fluid collections, suggesting that escape of pancreatic juice produces a beneficial decompression of the pancreatic duct system.

  20. Optimising μCT imaging of the middle and inner cat ear.

    PubMed

    Seifert, H; Röher, U; Staszyk, C; Angrisani, N; Dziuba, D; Meyer-Lindenberg, A

    2012-04-01

    This study's aim was to determine the optimal scan parameters for imaging the middle and inner ear of the cat with micro-computertomography (μCT). Besides, the study set out to assess whether adequate image quality can be obtained to use μCT in diagnostics and research on cat ears. For optimisation, μCT imaging of two cat skull preparations was performed using 36 different scanning protocols. The μCT-scans were evaluated by four experienced experts with regard to the image quality and detail detectability. By compiling a ranking of the results, the best possible scan parameters could be determined. From a third cat's skull, a μCT-scan, using these optimised scan parameters, and a comparative clinical CT-scan were acquired. Afterwards, histological specimens of the ears were produced which were compared to the μCT-images. The comparison shows that the osseous structures are depicted in detail. Although soft tissues cannot be differentiated, the osseous structures serve as valuable spatial orientation of relevant nerves and muscles. Clinical CT can depict many anatomical structures which can also be seen on μCT-images, but these appear a lot less sharp and also less detailed than with μCT.

  1. A minimum spanning forest based classification method for dedicated breast CT images

    SciTech Connect

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei

    2015-11-15

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.

  2. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    NASA Astrophysics Data System (ADS)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  3. WE-D-9A-02: Automated Landmark-Guided CT to Cone-Beam CT Deformable Image Registration

    SciTech Connect

    Kearney, V; Gu, X; Chen, S; Jiang, L; Liu, H; Chiu, T; Yordy, J; Nedzi, L; Mao, W

    2014-06-15

    Purpose: The anatomical changes that occur between the simulation CT and daily cone-beam CT (CBCT) are investigated using an automated landmark-guided deformable image registration (LDIR) algorithm with simultaneous intensity correction. LDIR was designed to be accurate in the presence of tissue intensity mismatch and heavy noise contamination. Method: An auto-landmark generation algorithm was used in conjunction with a local small volume (LSV) gradient matching search engine to map corresponding landmarks between the CBCT and planning CT. The LSVs offsets were used to perform an initial deformation, generate landmarks, and correct local intensity mismatch. The landmarks act as stabilizing controlpoints in the Demons objective function. The accuracy of the LDIR algorithm was evaluated on one synthetic case with ground truth and data of ten head and neck cancer patients. The deformation vector field (DVF) accuracy was accessed using a synthetic case. The Root mean square error of the 3D canny edge (RMSECE), mutual information (MI), and feature similarity index metric (FSIM) were used to access the accuracy of LDIR on the patient data. The quality of the corresponding deformed contours was verified by an attending physician. Results: The resulting 90 percentile DVF error for the synthetic case was within 5.63mm for the original demons algorithm, 2.84mm for intensity correction alone, 2.45mm using controlpoints without intensity correction, and 1.48 mm for the LDIR algorithm. For the five patients the mean RMSECE of the original CT, Demons deformed CT, intensity corrected Demons CT, control-point stabilized deformed CT, and LDIR CT was 0.24, 0.26, 0.20, 0.20, and 0.16 respectively. Conclusion: LDIR is accurate in the presence of multimodal intensity mismatch and CBCT noise contamination. Since LDIR is GPU based it can be implemented with minimal additional strain on clinical resources. This project has been supported by a CPRIT individual investigator award RP11032.

  4. Thoracic textilomas: CT findings*

    PubMed Central

    Machado, Dianne Melo; Zanetti, Gláucia; Araujo, Cesar Augusto; Nobre, Luiz Felipe; Meirelles, Gustavo de Souza Portes; Pereira e Silva, Jorge Luiz; Guimarães, Marcos Duarte; Escuissato, Dante Luiz; Souza, Arthur Soares; Hochhegger, Bruno; Marchiori, Edson

    2014-01-01

    OBJECTIVE: The aim of this study was to analyze chest CT scans of patients with thoracic textiloma. METHODS: This was a retrospective study of 16 patients (11 men and 5 women) with surgically confirmed thoracic textiloma. The chest CT scans of those patients were evaluated by two independent observers, and discordant results were resolved by consensus. RESULTS: The majority (62.5%) of the textilomas were caused by previous heart surgery. The most common symptoms were chest pain (in 68.75%) and cough (in 56.25%). In all cases, the main tomographic finding was a mass with regular contours and borders that were well-defined or partially defined. Half of the textilomas occurred in the right hemithorax and half occurred in the left. The majority (56.25%) were located in the lower third of the lung. The diameter of the mass was ≤ 10 cm in 10 cases (62.5%) and > 10 cm in the remaining 6 cases (37.5%). Most (81.25%) of the textilomas were heterogeneous in density, with signs of calcification, gas, radiopaque marker, or sponge-like material. Peripheral expansion of the mass was observed in 12 (92.3%) of the 13 patients in whom a contrast agent was used. Intraoperatively, pleural involvement was observed in 14 cases (87.5%) and pericardial involvement was observed in 2 (12.5%). CONCLUSIONS: It is important to recognize the main tomographic aspects of thoracic textilomas in order to include this possibility in the differential diagnosis of chest pain and cough in patients with a history of heart or thoracic surgery, thus promoting the early identification and treatment of this postoperative complication. PMID:25410842

  5. A preliminary study on a dual-modality OPT/micro-CT system

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Di, Dong; Shi, Liangliang; Wang, Jun; Hui, Hui; Yang, Xin; Tian, Jie

    2015-03-01

    Optical projection tomography (OPT) is a mesoscopic scale optical imaging technique for specimens between 1mm and 10mm. Although OPT is widely used for in vivo and ex vivo imaging, its applications in high intensity tissues such as bone and thick samples are limited due to the strong absorption of the light. In contrast, X-ray micro-CT is suitable for high intensity tissue imaging but its contrast of soft tissue is poor. Therefore, imaging tools with both strong penetration and high contrast are in great demand. To address this issue, we develop a dual-modality system integrating both OPT and micro-CT. In this paper, this dual-modality system is applied to dynamic imaging of a clearing process of a mouse paw. The clearing process is essential in OPT when imaging thick or intensity tissues since it can make high intensity tissues optically transparent. In our experiment, we scan the mouse paw with our system - before, during and after optical clearing. Each time we scan CT first and then the OPT. After acquisition, 3-dimentional volumes of OPT and CT are reconstructed separately. Then we use a rigid image registration algorithm to register these volumes. Finally, the volumes are merged together. The experimental results show our bimodal system performs better than single OPT or CT system when processing tissues with both high intensity and soft parts.

  6. Experimental assessment of CT-based thermometry during laser ablation of porcine pancreas

    NASA Astrophysics Data System (ADS)

    Schena, E.; Saccomandi, P.; Giurazza, F.; Caponero, M. A.; Mortato, L.; Di Matteo, F. M.; Panzera, F.; Del Vescovo, R.; Beomonte Zobel, B.; Silvestri, S.

    2013-08-01

    Laser interstitial thermotherapy (LITT) is employed to destroy tumors in organs, and its outcome strongly depends on the temperature distribution inside the treated tissue. The recent introduction of computed tomography (CT) scan thermometry, based on the CT number dependence of the tissue with temperature, overcomes the invasiveness of other techniques used to monitor temperature during LITT. The averaged CT number (ROI = 0.02 cm2) of an ex vivo swine pancreas is monitored during LITT (Nd:YAG laser power of 3 W, treatment time: 120 s) at different distances from the applicator (from 4 to 30 mm). The averaged CT number shows a clear decrease during treatment: it is highest at 4 mm from the applicator (mean variation in the whole treatment of -0.256 HU s-1) and negligible at 30 mm, since the highest temperature increase is present close to the applicator (i.e., 45 °C at 4 mm and 25 °C at 6 mm). To obtain the relationship between CT numbers and pancreas temperature, the reference temperature was measured by 12 fiber Bragg grating sensors. The CT number decreases as a function of temperature, showing a nonlinear trend with a mean thermal sensitivity of -0.50 HU °C-1. Results here reported are the first assessment of pancreatic CT number dependence on temperature, at the best of our knowledge. Findings can be useful to further investigate CT scan thermometry during LITT on the pancreas.

  7. A variational approach to bone segmentation in CT images

    NASA Astrophysics Data System (ADS)

    Calder, Jeff; Tahmasebi, Amir M.; Mansouri, Abdol-Reza

    2011-03-01

    We present a variational approach for segmenting bone structures in Computed Tomography (CT) images. We introduce a novel functional on the space of image segmentations, and subsequently minimize this functional through a gradient descent partial differential equation. The functional we propose provides a measure of similarity of the intensity characteristics of the bone and tissue regions through a comparison of their cumulative distribution functions; minimizing this similarity measure therefore yields the maximal separation between the two regions. We perform the minimization of our proposed functional using level set partial differential equations; in addition to numerical stability, this yields topology independence, which is especially useful in the context of CT bone segmentation where a bone region may consist of several disjoint pieces. Finally, we present an extensive validation of our method against expert manual segmentation on CT images of the wrist, ankle, foot, and pelvis.

  8. Multislice CT brain image registration for perfusion studies

    NASA Astrophysics Data System (ADS)

    Lin, Zhong Min; Pohlman, Scott; Chandra, Shalabh

    2002-04-01

    During the last several years perfusion CT techniques have been developed as an effective technique for clinically evaluating cerebral hemodynamics. Perfusion CT techniques are capable of measurings functional parameters such as tissue perfusion, blood flow, blood volume, and mean transit time and are commonly used to evaluate stroke patients. However, the quality of functional images of the brain frequently suffers from patient head motion. Because the time window for an effective treatment of stroke patient is narrow, a fast motion correction is required. The purpose of the paper is to present a fast and accurate registration technique for motion correction of multi-slice CT and to demonstrate the effects of the registration on perfusion calculation.

  9. Investigation of pathogen infiltration into produce using Xradia Bio MicroCT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...

  10. Automatic classification of lung tumour heterogeneity according to a visual-based score system in dynamic contrast enhanced CT sequences

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Alessandro; Baiocco, Serena

    2016-03-01

    Computed tomography (CT) technologies have been considered for a long time as one of the most effective medical imaging tools for morphological analysis of body parts. Contrast Enhanced CT (CE-CT) also allows emphasising details of tissue structures whose heterogeneity, inspected through visual analysis, conveys crucial information regarding diagnosis and prognosis in several clinical pathologies. Recently, Dynamic CE-CT (DCE-CT) has emerged as a promising technique to perform also functional hemodynamic studies, with wide applications in the oncologic field. DCE-CT is based on repeated scans over time performed after intravenous administration of contrast agent, in order to study the temporal evolution of the tracer in 3D tumour tissue. DCE-CT pushes towards an intensive use of computers to provide automatically quantitative information to be used directly in clinical practice. This requires that visual analysis, representing the gold-standard for CT image interpretation, gains objectivity. This work presents the first automatic approach to quantify and classify the lung tumour heterogeneities based on DCE-CT image sequences, so as it is performed through visual analysis by experts. The approach developed relies on the spatio-temporal indices we devised, which also allow exploiting temporal data that enrich the knowledge of the tissue heterogeneity by providing information regarding the lesion status.

  11. Tissue Microarrays.

    PubMed

    Dancau, Ana-Maria; Simon, Ronald; Mirlacher, Martina; Sauter, Guido

    2016-01-01

    Modern next-generation sequencing and microarray technologies allow for the simultaneous analysis of all human genes on the DNA, RNA, miRNA, and methylation RNA level. Studies using such techniques have lead to the identification of hundreds of genes with a potential role in cancer or other diseases. The validation of all of these candidate genes requires in situ analysis of high numbers of clinical tissues samples. The tissue microarray technology greatly facilitates such analysis. In this method minute tissue samples (typically 0.6 mm in diameter) from up to 1000 different tissues can be analyzed on one microscope glass slide. All in situ methods suitable for histological studies can be applied to TMAs without major changes of protocols, including immunohistochemistry, fluorescence in situ hybridization, or RNA in situ hybridization. Because all tissues are analyzed simultaneously with the same batch of reagents, TMA studies provide an unprecedented degree of standardization, speed, and cost efficiency.

  12. Tissue Tregs.

    PubMed

    Panduro, Marisella; Benoist, Christophe; Mathis, Diane

    2016-05-20

    The immune system is responsible for defending an organism against the myriad of microbial invaders it constantly confronts. It has become increasingly clear that the immune system has a second major function: the maintenance of organismal homeostasis. Foxp3(+)CD4(+) regulatory T cells (Tregs) are important contributors to both of these critical activities, defense being the primary purview of Tregs circulating through lymphoid organs, and homeostasis ensured mainly by their counterparts residing in parenchymal tissues. This review focuses on so-called tissue Tregs. We first survey existing information on the phenotype, function, sustaining factors, and human equivalents of the three best-characterized tissue-Treg populations-those operating in visceral adipose tissue, skeletal muscle, and the colonic lamina propria. We then attempt to distill general principles from this body of work-as concerns the provenance, local adaptation, molecular sustenance, and targets of action of tissue Tregs, in particular.

  13. Analysis of patient CT dose data using virtualdose

    NASA Astrophysics Data System (ADS)

    Bennett, Richard

    -Expo for organ dose difference versus age, male phantoms show percent difference of -19 % to 25 % for various organs minus bone surface and breast tissues results. Finally, for organ dose difference across all software for average adult phantom the results range from -45 % to 6 % in the comparison of ImPACT CT to VirtualDose and -27 % to 66 % for the comparison of CT-Expo to VirtualDose. In the comparison for increased BMI (done only in VirtualDose), results show that with all other parameters fixed, the organ dose goes down as BMI increases, which is due to the increase in adipose tissue and bulk of the patient model. The range of results when comparing all the three softwares have a wide range, in some cases greater than 150 %, it is evident that using a different anatomical basis for the human phantom and the theoretical basis for the dose estimation will cause fluctuation in the results. Therefore, choosing the software with the most accurate human phantom will provide a closer range to the true dose to the organ.

  14. In vivo small animal micro-CT using nanoparticle contrast agents

    PubMed Central

    Ashton, Jeffrey R.; West, Jennifer L.; Badea, Cristian T.

    2015-01-01

    Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research. PMID:26581654

  15. Dual-Energy Spectral CT: Various Clinical Vascular Applications.

    PubMed

    Machida, Haruhiko; Tanaka, Isao; Fukui, Rika; Shen, Yun; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko

    2016-01-01

    Single-source dual-energy (DE) computed tomography (CT) with fast switching of tube voltage allows projection-based image reconstruction, substantial reduction of beam-hardening effects, reconstruction of accurate monochromatic images and material decomposition images (MDIs), and detailing of material composition by using x-ray spectral information. In vascular applications, DE CT is expected to overcome limitations of standard single-energy CT angiography, including patient exposure to nephrotoxic contrast medium and carcinogenic radiation, insufficient contrast vascular enhancement, interference from metallic and beam-hardening artifacts and severe vessel calcification, and limited tissue characterization and perfusion assessment. Acquisition of low-energy monochromatic images and iodine/water MDIs can reasonably reduce contrast agent dose and improve vessel enhancement. Acquisition of virtual noncontrast images, such as water/iodine MDIs, can reduce overall radiation exposure by replacing true noncontrast CT in each examination. Acquisition of monochromatic images by using metal artifact reduction software or acquisition of iodine/water MDIs can reduce metal artifacts with preserved or increased vessel contrast, and subtraction of monochromatic images between two energy levels can subtract coils composed of dense metallic materials. Acquisition of iodine/calcium (ie, hydroxyapatite) MDIs permits subtraction of vessel calcification and improves vessel lumen delineation. Sensitive detection of lipid-rich plaque can be achieved by using fat/water MDIs, the spectral Hounsfield unit curve (energy level vs CT attenuation), and a histogram of effective atomic numbers included in an image. Various MDIs are useful for accurate differentiation among materials with high attenuation values, including contrast medium, calcification, and fresh hematoma. Iodine/water MDIs are used to assess organ perfusion, such as in the lungs and myocardium. Understanding these DE CT

  16. CT guided diffuse optical tomography for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Baikejiang, Reheman; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as blood, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer detection. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at wavelengths of 650 and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements, the width of measurement patch, have been investigated. Our results indicate that an EMCCD camera with air cooling is good enough for the transmission mode DOT imaging. We have also found that measurements at six projections are sufficient for DOT to reconstruct the optical targets with 4 times absorption contrast when the CT guidance is applied. Finally, we report our effort and progress on the integration of the multispectral DOT imaging system into a breast CT scanner.

  17. DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer.

    PubMed

    Zhang, Wa; Barger, Carter J; Link, Petra A; Mhawech-Fauceglia, Paulette; Miller, Austin; Akers, Stacey N; Odunsi, Kunle; Karpf, Adam R

    2015-01-01

    Epithelial ovarian cancer (EOC) is a highly lethal malignancy due to a lack of early detection approaches coupled with poor outcomes for patients with clinically advanced disease. Cancer-testis (CT) or cancer-germline genes encode antigens known to generate spontaneous anti-tumor immunity in cancer patients. CT45 genes are a recently discovered 6-member family of X-linked CT genes with oncogenic function. Here, we determined CT45 expression in EOC and fully defined its epigenetic regulation by DNA methylation. CT45 was silent and hypermethylated in normal control tissues, but a large subset of EOC samples showed increased CT45 expression in conjunction with promoter DNA hypomethylation. In contrast, copy number status did not correlate with CT45 expression in the TCGA database for EOC. CT45 promoter methylation inversely correlated with both CT45 mRNA and protein expression, the latter determined using IHC staining of an EOC TMA. CT45 expression was increased and CT45 promoter methylation was decreased in late-stage and high-grade EOC, and both measures were associated with poor survival. CT45 hypomethylation was directly associated with LINE-1 hypomethylation, and CT45 was frequently co-expressed with other CT antigen genes in EOC. Decitabine treatment induced CT45 mRNA and protein expression in EOC cells, and promoter transgene analyses indicated that DNA methylation directly represses CT45 promoter activity. These data verify CT45 expression and promoter hypomethylation as possible prognostic biomarkers, and suggest CT45 as an immunological or therapeutic target in EOC. Treatment with decitabine or other epigenetic modulators could provide a means for more effective immunological targeting of CT45.

  18. DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer.

    PubMed

    Zhang, Wa; Barger, Carter J; Link, Petra A; Mhawech-Fauceglia, Paulette; Miller, Austin; Akers, Stacey N; Odunsi, Kunle; Karpf, Adam R

    2015-01-01

    Epithelial ovarian cancer (EOC) is a highly lethal malignancy due to a lack of early detection approaches coupled with poor outcomes for patients with clinically advanced disease. Cancer-testis (CT) or cancer-germline genes encode antigens known to generate spontaneous anti-tumor immunity in cancer patients. CT45 genes are a recently discovered 6-member family of X-linked CT genes with oncogenic function. Here, we determined CT45 expression in EOC and fully defined its epigenetic regulation by DNA methylation. CT45 was silent and hypermethylated in normal control tissues, but a large subset of EOC samples showed increased CT45 expression in conjunction with promoter DNA hypomethylation. In contrast, copy number status did not correlate with CT45 expression in the TCGA database for EOC. CT45 promoter methylation inversely correlated with both CT45 mRNA and protein expression, the latter determined using IHC staining of an EOC TMA. CT45 expression was increased and CT45 promoter methylation was decreased in late-stage and high-grade EOC, and both measures were associated with poor survival. CT45 hypomethylation was directly associated with LINE-1 hypomethylation, and CT45 was frequently co-expressed with other CT antigen genes in EOC. Decitabine treatment induced CT45 mRNA and protein expression in EOC cells, and promoter transgene analyses indicated that DNA methylation directly represses CT45 promoter activity. These data verify CT45 expression and promoter hypomethylation as possible prognostic biomarkers, and suggest CT45 as an immunological or therapeutic target in EOC. Treatment with decitabine or other epigenetic modulators could provide a means for more effective immunological targeting of CT45. PMID:26098711

  19. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy

    SciTech Connect

    Paquin, Dana; Levy, Doron; Xing Lei

    2009-01-15

    Adaptive radiation therapy (ART) is the incorporation of daily images in the radiotherapy treatment process so that the treatment plan can be evaluated and modified to maximize the amount of radiation dose to the tumor while minimizing the amount of radiation delivered to healthy tissue. Registration of planning images with daily images is thus an important component of ART. In this article, the authors report their research on multiscale registration of planning computed tomography (CT) images with daily cone beam CT (CBCT) images. The multiscale algorithm is based on the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [Multiscale Model. Simul. 2(4), pp. 554-579 (2004)]. Registration is achieved by decomposing the images to be registered into a series of scales using the (BV, L{sup 2}) decomposition and initially registering the coarsest scales of the image using a landmark-based registration algorithm. The resulting transformation is then used as a starting point to deformably register the next coarse scales with one another. This procedure is iterated at each stage using the transformation computed by the previous scale registration as the starting point for the current registration. The authors present the results of studies of rectum, head-neck, and prostate CT-CBCT registration, and validate their registration method quantitatively using synthetic results in which the exact transformations our known, and qualitatively using clinical deformations in which the exact results are not known.

  20. Reducing CT dose in myocardial perfusion SPECT/CT.

    PubMed

    O'Shaughnessy, Emma; Dixon, Kat L

    2015-11-01

    The aim of this study was to reduce the radiation dose arising from computed tomography (CT) attenuation correction to single photon emission computed tomography myocardial perfusion imaging studies without adversely affecting its accuracy. Using the Perspex CTDI phantom with the Xi detector to measure dose, CT scans were acquired using the Siemens Symbia T over the full range of CT settings available. Using the default setting 'AECmean', the measured dose at the centre of the phantom was 1.68 mGy and the breast dose from the scout view was 0.30 mGy. The lowest dose was achieved using the dose modulation setting in which the doses were reduced to 1.21 mGy and undetectable (<0.01 mGy), respectively. To observe the effect of changing these settings, 30 patients received a stress scan with default CT settings and a rest scan utilizing single photon emission computed tomography-guided CT and the dose modulation CT settings. Results showed a mean effective dose reduction of 23.6%. The dose reduction was greatest for larger patients, with the largest dose reduction for one patient being 72%. There was no apparent difference in attenuation correction between the two sets of resultant images. These new lower-dose settings are now applied to all clinical myocardial perfusion imaging studies. PMID:26302461

  1. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    SciTech Connect

    Brady, Samuel L.; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  2. Limited Reliability of CT perfusion acute infarct volume measurements compared to DWI in anterior circulation stroke

    PubMed Central

    Schaefer, Pamela W.; Souza, Leticia; Kamalian, Shervin; Hirsch, Joshua A.; Yoo, Albert J.; Kamalian, Shahmir; Gonzalez, R. Gilberto; Lev, Michael H.

    2015-01-01

    Background and Purpose DWI can reliably identify critically ischemic tissue (CIT) shortly after stroke onset. We tested if thresholded CT-CBF and CT-CBV maps are sufficiently accurate to substitute for DWI for estimating CIT volume. Methods Ischemic volumes of 55 patients with acute anterior circulation stroke were assessed on DWI by visual segmentation, and CT-CBF and CT-CBV with segmentation using 15% and 30% thresholds, respectively. The contrast-to-noise ratios (CNR) of ischemic regions on the DWI and CTP images were measured. Correlation and Bland-Altman analyses were used to assess reliability of CTP. Results Mean CNRs for DWI, CT-CBF and CT-CBV were 4.3, 0.9 and 0.4, respectively. CTP and DWI lesion volumes were highly correlated (R2=0.87 for CT-CBF; R2=0.83 for CT-CBV; p<0.001). Bland-Altman analyses revealed little systemic bias (−2.6 ml) but high measurement variability (95% CI ±56.7 ml) between mean CT-CBF and DWI lesion volumes, and systemic bias (−26 ml) and high measurement variability (95% CI ±64.0 ml) between mean CT-CBV and DWI lesion volumes. A simulated treatment study demonstrated that using CTP-CBF instead of DWI for detecting a statistically significant effect would require at least twice as many patients. Conclusions The poor CNRs of CT-CBV and CT-CBF compared to DWI result in large measurement error making it problematic to substitute CTP for DWI in selecting individual acute stroke patients for treatment. CTP could be used for treatment studies of patient groups, but the number of patients needed to identify a significant effect is much higher than if DWI is used. PMID:25550366

  3. Machine-learning based comparison of CT-perfusion maps and dual energy CT for pancreatic tumor detection

    NASA Astrophysics Data System (ADS)

    Goetz, Michael; Skornitzke, Stephan; Weber, Christian; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Stiller, Wolfram; Maier-Hein, Klaus H.

    2016-03-01

    Perfusion CT is well-suited for diagnosis of pancreatic tumors but tends to be associated with a high radiation exposure. Dual-energy CT (DECT) might be an alternative to perfusion CT, offering correlating contrasts while being acquired at lower radiation doses. While previous studies compared intensities of Dual Energy iodine maps and CT-perfusion maps, no study has assessed the combined discriminative power of all information that can be generated from an acquisition of both functional imaging methods. We therefore propose the use of a machine learning algorithm for assessing the amount of information that becomes available by the combination of multiple images. For this, we train a classifier on both imaging methods, using a new approach that allows us to train only from small regions of interests (ROIs). This makes our study comparable to other - ROI-based analysis - and still allows comparing the ability of both classifiers to discriminate between healthy and tumorous tissue. We were able to train classifiers that yield DICE scores over 80% with both imaging methods. This indicates that Dual Energy Iodine maps might be used for diagnosis of pancreatic tumors instead of Perfusion CT, although the detection rate is lower. We also present tumor risk maps that visualize possible tumorous areas in an intuitive way and can be used during diagnosis as an additional information source.

  4. Accuracy of CT-Based Attenuation Correction in PET/CT Bone Imaging

    PubMed Central

    Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.

    2012-01-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well-tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9±0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers range from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important. PMID:22481547

  5. Accuracy of CT-based attenuation correction in PET/CT bone imaging.

    PubMed

    Abella, Monica; Alessio, Adam M; Mankoff, David A; MacDonald, Lawrence R; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E

    2012-05-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a (68)Ga/(68)Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.

  6. Multiple myeloma: evaluation by CT

    SciTech Connect

    Schreiman, J.S.; McLeod, R.A.; Kyle, R.A.; Beabout, J.W.

    1985-02-01

    Although patients who have multiple myeloma usually have straightforward clinical symptoms and corroborative radiographs, in some instances, these patients will present atypically, with symptoms suggesting active disease but radiographs that are normal or nonspecific. The authors reviewed the records of 32 patients who had documented multiple myeloma and had undergone CT examinations, assessing the value of those examinations. Although CT is not indicated in all patients who have multiple myeloma, it is especially useful in patients who have bone pain and normal or nonspecific radiographs. CT provided confirmatory information in all cases in which lesions were seen on radiographs. CT also frequently demonstrated a greater extent of disease than could be appreciated on the radiographs.

  7. Children, CT Scan and Radiation

    PubMed Central

    Bajoghli, Morteza; Bajoghli, Farshad; Tayari, Nazila; Rouzbahani, Reza

    2010-01-01

    Children are more sensitive to radiation than adults. Computerized tomography (CT) consists of 25 % of all medical imaging. It was estimated that more than 2% of all carcinomas in the USA are due to CT scans. There is an ongoing focus on the reduction of CT scan radiation dose. Awareness about risk-benefits of CT has increased. Reduction of radiological exam is an important issue because the accumulation effects of radiation can be hazardous. In addition, proper protocol should be followed for diagnostic procedures of ionization radiation and computerized tomography. Effective radiation dose should range from 0.8 to 10.5 millisievert. The same protocol should be followed in different hospitals as well. Basic principles of radiation protection should be monitored. As much as possible, both technician and radiologist must be present during computerized tomography for children, and MRI and ultrasound should be replaced if possible. PMID:21566776

  8. CT Demonstration of Caput Medusae

    ERIC Educational Resources Information Center

    Weber, Edward C.; Vilensky, Joel A.

    2009-01-01

    Maximum intensity and volume rendered CT displays of caput medusae are provided to demonstrate both the anatomy and physiology of this portosystemic shunt associated with portal hypertension. (Contains 2 figures.)

  9. Your Radiologist Explains CT Colonography

    MedlinePlus

    ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your Radiologist Explains CT Colonography (Virtual colonoscopy) ... time and for your attention! Spotlight Recently posted: Video: Ultrasound-guided Breast Biopsy Video: Breast MRI Video: ...

  10. Children's (Pediatric) CT (Computed Tomography)

    MedlinePlus

    ... like traditional x-rays, produces multiple images or pictures of the inside of the body. The cross- ... CT, it is possible to obtain very detailed pictures of the heart and blood vessels in children, ...

  11. Multiplanar CT of the spine

    SciTech Connect

    Rothman, S.L.G.; Glenn, W.V. Jr.

    1986-01-01

    This is an illustrated text on computed tomography (CT) of the lumbar spine with an emphasis on the role and value of multiplanar imaging for helping determine diagnoses. The book has adequate discussion of scanning techniques for the different regions, interpretations of various abnormalities, degenerative disk disease, and different diagnoses. There is a 50-page chapter on detailed sectional anatomy of the spine and useful chapters on the postoperative spine and the planning and performing of spinal surgery with CT multiplanar reconstruction. There are comprehensive chapters on spinal tumors and trauma. The final two chapters of the book are devoted to CT image processing using digital networks and CT applications of medical computer graphics.

  12. Adrenal cortex dysfunction: CT findings

    SciTech Connect

    Huebener, K.H.; Treugut, H.

    1984-01-01

    The computed tomographic appearance of the adrenal gland was studied in 302 patients with possible endocrinologic disease and 107 patients undergoing CT for nonendocrinologic reasons. Measurements of adrenal size were also made in 100 adults with no known adrenal pathology. CT proved to be a sensitive diagnostic tool in combination with clinical studies. When blood hormone levels are increased, CT can differentiate among homogeneous organic hyperplasia, nodular hyperplasia, benign adenoma, and malignant cortical adenoma. When blood hormone levels are decreased, CT can demonstrate hypoplasia or metastatic tumorous destruction. Calcifications can be demonstrated earlier than on plain radiographs. When hormone elimination is increased, the morphologic substrate can be identified; tumorous changes can be localized and infiltration of surrounding organs recognized.

  13. CT Perfusion of the Head

    MedlinePlus

    ... scanning combines special x-ray equipment with sophisticated computers to produce multiple images or pictures of the ... being studied can then be examined on a computer monitor, printed or transferred to a CD. CT ...

  14. CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong

    2016-03-01

    Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.

  15. Tissue Issues

    ERIC Educational Resources Information Center

    Metz, James

    2016-01-01

    Every day, 27,000 trees are used to make bathroom tissue. Americans use an average of 23.6 rolls per person per year, and more than 7 billion rolls of toilet paper are sold yearly in the United States alone. Perhaps the amount of bathroom tissue used can be reduced by changing the dimensions of the paper or the core. This brief article presents…

  16. Validation of new soft tissue software in orthognathic surgery planning.

    PubMed

    Marchetti, C; Bianchi, A; Muyldermans, L; Di Martino, M; Lancellotti, L; Sarti, A

    2011-01-01

    This study tests computer imaging software (SurgiCase-CMF(®), Materialise) that enables surgeons to perform virtual orthognathic surgical planning using a three dimensional (3D) utility that previews the final shape of hard and soft tissues. It includes a soft tissue simulation module that has created images of soft tissues altered through bimaxillary orthognathic surgery to correct facial deformities. Cephalometric radiographs and CT scans were taken of each patient before and after surgery. The surgical planning system consists of four stages: CT data reconstruction; 3D model generation of facial hard and soft tissue; different virtual surgical planning and simulation modes; and various preoperative previews of the soft tissues. Surgical planning and simulation is based on a 3D CT reconstructed bone model and soft tissue image generation is based on physical algorithms. The software rapidly follows clinical options to generate a series of simulations and soft tissue models; to avoid TMJ functional problems, pre-surgical plans were evaluated by an orthodontist. Comparing simulation results with postoperative CT data, the reliability of the soft tissues preview was >91%. SurgiCase(®) software can provide a realistic, accurate forecast of the patient's facial appearance after surgery.

  17. Microstructure analysis of the pulmonary acinus using a synchrotron radiation CT

    NASA Astrophysics Data System (ADS)

    Tokumoto, Y.; Minami, K.; Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Sakai, H.; Ohmatsu, H.; Itoh, H.

    2015-03-01

    Conversion of images at micro level of normal and with very early stage disease of the lung and quantitative analysis of morphology on CT image can contribute to the chest image diagnosis to the next generation. Previous, anatomy and pathology analysis of pulmonary lobule have been conducted to better understand the CT image of peripheral lung tissue disease. However, it is difficult to figure out three-dimensional (3D) conformation because of analyzing at the slice image. The purpose of this study is a 3D microstructual and quantitative analyses of pulmonary acinus with spatial resolution in the range of several micrometers by using a synchrotron radiation micro CT (SRμCT). In this paper, we present a semi-automatic method for segmenting the secondary pulmonary lobule into acinus or subacinus and extracting small vessel in human acinus imaged by the SRμCT.

  18. Metal artifacts reduction in x-ray CT based on segmentation and forward-projection.

    PubMed

    Nawaz, Shoukat; Fu, Jian; Fan, Dekai

    2014-01-01

    X-ray computed tomography (CT) is a powerful clinical diagnosis tool and has been used widely in many clinical and biological settings. Metal artifacts, caused by high density implants, are commonly encountered in clinical CT applications, thereby affecting the detection of abnormal structures and undermining CT's diagnostic value. In this paper, we developed a metal artifact reduction approach based on image segmentation and forward-projection. We further demonstrate the usefulness of our approach by using a biomedical specimen consisting of muscles, bones and metals. Our aim is to remove the inaccurate metal artifact pixels in the original CT slices and exactly reconstruct the soft-tissue using the forward projections with no metal information. During the reconstruction, artifacts are reduced by replacing the metal projection using the forward projection. The presented work is of interest for CT biomedical applications.

  19. Algorithm of pulmonary emphysema extraction using thoracic 3-D CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2008-03-01

    Emphysema patients have the tendency to increase due to aging and smoking. Emphysematous disease destroys alveolus and to repair is impossible, thus early detection is essential. CT value of lung tissue decreases due to the destruction of lung structure. This CT value becomes lower than the normal lung- low density absorption region or referred to as Low Attenuation Area (LAA). So far, the conventional way of extracting LAA by simple thresholding has been proposed. However, the CT value of CT image fluctuates due to the measurement conditions, with various bias components such as inspiration, expiration and congestion. It is therefore necessary to consider these bias components in the extraction of LAA. We removed these bias components and we proposed LAA extraction algorithm. This algorithm has been applied to the phantom image. Then, by using the low dose CT(normal: 30 cases, obstructive lung disease: 26 cases), we extracted early stage LAA and quantitatively analyzed lung lobes using lung structure.

  20. Computer aided breast calcification auto-detection in cone beam breast CT

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohua; Ning, Ruola; Liu, Jiangkun

    2010-03-01

    In Cone Beam Breast CT (CBBCT), breast calcifications have higher intensities than the surrounding tissues. Without the superposition of breast structures, the three-dimensional distribution of the calcifications can be revealed. In this research, based on the fact that calcifications have higher contrast, a local thresholding and a histogram thresholding were used to select candidate calcification areas. Six features were extracted from each candidate calcification: average foreground CT number value, foreground CT number standard deviation, average background CT number value, background CT number standard deviation, foreground-background contrast, and average edge gradient. To reduce the false positive candidate calcifications, a feed-forward back propagation artificial neural network was designed. The artificial neural network was trained with the radiologists confirmed calcifications and used as classifier in the calcification auto-detection task. In the preliminary experiments, 90% of the calcifications in the testing data sets were detected correctly with an average of 10 false positives per data set.

  1. Visualization and quantitative analysis of lung microstructure using micro CT images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuo; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Matsui, Eisuke; Ohamatsu, Hironobu; Moriyama, Noriyuki

    2004-04-01

    Micro CT system is developed for lung function analysis at a high resolution of the micrometer order (up to 5 μm in spatial resolution). This system reveals the lung distal structures such as interlobular septa, terminal bronchiole, respiratory bronchiole, alveolar duct, and alveolus. In order to visualize lung 3-D microstructures using micro CT images and to analyze them, this research presents a computerized approach. In this approach, the following things are performed: (1) extracting lung distal structures from micro CT images, (2) visualizing extracted lung microstructure in three dimensions, and (3) visualizing inside of lung distal area in three dimensions with fly-through. This approach is applied for to micro CT images of human lung tissue specimens that were obtained by surgical excision and were kept in the state of the inflated fixed lung. And this research succeeded in visualization of lung microstructures using micro CT images to reveal the lung distal structures from bronchiole up to alveolus.

  2. Visualization and quantitative analysis of lung microstructure using micro CT images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuo; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Fujii, Masashi; Nakaya, Yoshihiro; Matsui, Eisuke; Ohmatsu, Hironobu; Moriyama, Noriyuki

    2005-04-01

    Micro CT system is developed for lung function analysis at a high resolution of the micrometer order (up to 5μm in spatial resolution). This system reveals the lung distal structures such as interlobular septa, terminal bronchiole, respiratory bronchiole, alveolar duct, and alveolus. In order to visualize lung 3-D microstructures using micro CT images and to analyze them, this research presents a computerized approach. This approach is applied for to micro CT images of human lung tissue specimens that were obtained by surgical excision and were kept in the state of the inflated fixed lung. This report states a wall area such as bronchus wall and alveolus wall about the extraction technique by using the surface thinning process to analyze the lung microstructures from micro CT images measured by the new-model micro CT system.

  3. Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models.

    PubMed

    Rathnayaka, Kanchana; Momot, Konstantin I; Noser, Hansrudi; Volp, Andrew; Schuetz, Michael A; Sahama, Tony; Schmutz, Beat

    2012-04-01

    Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5 T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15 mm while the MRI-based models contained an average error of 0.23 mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.

  4. X-ray microscopy of soft and hard human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Deyhle, Hans; Stalder, Anja K.; Ilgenstein, Bernd; Holme, Margaret N.; Weitkamp, Timm; Beckmann, Felix; Hieber, Simone E.

    2016-01-01

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  5. Mass preserving registration for lung CT

    NASA Astrophysics Data System (ADS)

    Gorbunova, Vladlena; Lo, Pechin; Loeve, Martine; Tiddens, Harm A.; Sporring, Jon; Nielsen, Mads; de Bruijne, Marleen

    2009-02-01

    In this paper, we evaluate a novel image registration method on a set of expiratory-inspiratory pairs of computed tomography (CT) lung scans. A free-form multi resolution image registration technique is used to match two scans of the same subject. To account for the differences in the lung intensities due to differences in inspiration level, we propose to adjust the intensity of lung tissue according to the local expansion or compression. An image registration method without intensity adjustment is compared to the proposed method. Both approaches are evaluated on a set of 10 pairs of expiration and inspiration CT scans of children with cystic fibrosis lung disease. The proposed method with mass preserving adjustment results in significantly better alignment of the vessel trees. Analysis of local volume change for regions with trapped air compared to normally ventilated regions revealed larger differences between these regions in the case of mass preserving image registration, indicating that mass preserving registration is better at capturing localized differences in lung deformation.

  6. Unusual Presentation of Bladder Paraganglioma: Comparison of 131I MIBG SPECT/CT and 68Ga DOTANOC PET/CT

    PubMed Central

    Jain, Tarun Kumar; Basher, Rajender Kumar; Gupta, Nitin; Shukla, Jaya; Singh, Shrawan Kumar; Mittal, Bhagwant Rai

    2016-01-01

    Extraadrenal chromaffin cell-related tumors or paragangliomas are rare, especially in the bladder, accounting for less than 1% of cases. We report a 16-year-old boy who presented with hematuria and paroxysmal headache and was found to have a prostatic growth infiltrating the urinary bladder on anatomical imaging. Iodine-131 (131I) metaiodobenzylguanidine (MIBG) whole-body scanning and subsequently gallium-68 (68Ga) DOTANOC positron emission tomography/computed tomography (PET/CT) were performed. The MIBG scan revealed a non-tracer-avid soft-tissue mass, while DOTANOC PET/CT revealed a tracer-avid primary soft-tissue mass involving the urinary bladder and prostate with metastasis to the iliac lymph nodes. He underwent surgical management; histopathology of the surgical specimen revealed a bladder paraganglioma, whereas the prostate was found to be free of tumor. PMID:26912984

  7. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer

    PubMed Central

    Eriksen, Rie Ø.; Strauch, Louise S.; Sandgaard, Michael; Kristensen, Thomas S.; Nielsen, Michael B.; Lauridsen, Carsten A.

    2016-01-01

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors. PMID:27608045

  8. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer.

    PubMed

    Eriksen, Rie Ø; Strauch, Louise S; Sandgaard, Michael; Kristensen, Thomas S; Nielsen, Michael B; Lauridsen, Carsten A

    2016-01-01

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors. PMID:27608045

  9. Ct2 Bladder Cancer.

    PubMed

    Soloway, Mark S

    2016-09-01

    The patient is an 80-year-old man who presented with gross hematuria. His past medical history indicates he was a cigarette smoker with 50 pack/years. He was successfully treated for carcinoma of the lung 7 years ago. He received chemotherapy, radiation, and surgery. He has mild COPD but has a good performance status. His laboratory studies do not indicate any abnormalities in terms of renal function. He does not have any significant cardiac disease. He has a medium build. He had prostate cancer and underwent a successful radical prostatectomy 10 years ago. His PSA is undetectable. He has some urinary incontinence and wears two pads/day. He underwent the appropriate investigations for gross hematuria. A CT scan of the abdomen and pelvis was normal with the exception of a 4-cm posterior mass in the bladder. There was no hydronephrosis and no enlarged lymph nodes. He underwent a transurethral resection of a solitary bladder tumor performed by another urologist. The tumor was described as large and sessile. It was located on the posterior wall and was approximately 4 cm. The bimanual examination did not reveal a mass. The pathology report stated that the tumor was a high-grade urothelial carcinoma with invasion into the muscularis propria. There was no lymphovascular invasion. I performed a reTURBT, and at that procedure, I did not identify any obvious tumor but the prior resection site was evident. I resected the prior tumor site quite extensively both in depth and width. The pathology revealed only focal carcinoma in situ. There was ample muscle in the specimen and there was some fat as well. As stated, they were free of any cancer. The patient is receptive to any treatment approach.

  10. Ct2 Bladder Cancer.

    PubMed

    Soloway, Mark S

    2016-09-01

    The patient is an 80-year-old man who presented with gross hematuria. His past medical history indicates he was a cigarette smoker with 50 pack/years. He was successfully treated for carcinoma of the lung 7 years ago. He received chemotherapy, radiation, and surgery. He has mild COPD but has a good performance status. His laboratory studies do not indicate any abnormalities in terms of renal function. He does not have any significant cardiac disease. He has a medium build. He had prostate cancer and underwent a successful radical prostatectomy 10 years ago. His PSA is undetectable. He has some urinary incontinence and wears two pads/day. He underwent the appropriate investigations for gross hematuria. A CT scan of the abdomen and pelvis was normal with the exception of a 4-cm posterior mass in the bladder. There was no hydronephrosis and no enlarged lymph nodes. He underwent a transurethral resection of a solitary bladder tumor performed by another urologist. The tumor was described as large and sessile. It was located on the posterior wall and was approximately 4 cm. The bimanual examination did not reveal a mass. The pathology report stated that the tumor was a high-grade urothelial carcinoma with invasion into the muscularis propria. There was no lymphovascular invasion. I performed a reTURBT, and at that procedure, I did not identify any obvious tumor but the prior resection site was evident. I resected the prior tumor site quite extensively both in depth and width. The pathology revealed only focal carcinoma in situ. There was ample muscle in the specimen and there was some fat as well. As stated, they were free of any cancer. The patient is receptive to any treatment approach. PMID:27457483

  11. Acute Coronary Artery Air Embolism Following CT-Guided Lung Biopsy

    SciTech Connect

    Mansour, Asem AbdelRaouf, Salah; Qandeel, Monther; Swaidan, Maisa

    2005-01-15

    CT-guided needle biopsy is a common procedure for obtaining a tissue diagnosis and consequently correctly managing patients. This procedure has many potential complications, ranging from simple pneumothorax or self-limiting hemoptysis to life-threatening pulmonary hemorrhage and air embolism. Though the latter is a rare complication of CT-guided needle biopsy, it has attracted a lot of interest. We report a case of right coronary air embolism resulting in myocardial infarction after a CT-guided percutaneous needle biopsy of the lung.

  12. Computed tomography and X-ray fluorescence CT of biological samples

    NASA Astrophysics Data System (ADS)

    Pereira, G. R.; Anjos, M. J.; Rocha, H. S.; Faria, P.; Pérez, C. A.; Lopes, R. T.

    2007-10-01

    Transmission microtomography ( μCT) and X-ray fluorescence microtomography (XRF μCT) are complementary and noninvasive techniques used for sample characterization. μCT provide information on the attenuation coefficients, while XRF μCT can provide the distribution of all elements in a sample. XRF μCT is a noninvasive technique, based on the detection of X-ray fluorescence emitted by the elements in the sample, and it is used to complement other techniques for sample characterization. The experiments were performed at the X-Ray Fluorescence (XRF) beamline of the Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil. A monochromatic beam of 9.8 keV was used for excitation of the elements within samples and the fluorescence photons were detected by an HPGe detector. The incident beam was monitored by an ionization chamber and a fast scintillator detector was used to detect the transmitted radiation. In this work, several intestine and breast tissue samples were investigated in order to verify the concentration of some elements correlated with the characteristics and pathology of each tissue observed by transmission μCT. All XRF μCT were reconstructed using a filtered back-projection algorithm. In those samples the elements Zn, Cu, and Fe were observed.

  13. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    SciTech Connect

    Sarapata, A.; Stayman, J. W.; Siewerdsen, J. H.; Finkenthal, M.; Stutman, D.; Pfeiffer, F.

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  14. Registration of ultrasound to CT angiography of kidneys: a porcine phantom study

    NASA Astrophysics Data System (ADS)

    Xiang, Jing; Gill, Sean; Nguan, Christopher; Abolmaesumi, Purang; Rohling, Robert N.

    2010-02-01

    3D ultrasound (US) to computed tomography (CT) registration is a topic of significant interest because it can potentially improve many minimally invasive procedures such as laparoscopic partial nephrectomy. Partial nephrectomy patients often receive preoperative CT angiography, which helps define the important structures of the kidney such as the vasculature. Intraoperatively, dynamic real-time imaging information can be captured using ultrasound and compared with the preoperative data. Providing accurate registration between the two modalities would enhance navigation and guidance for the surgeon. However, one of the major problems of developing and evaluating registration techniques is obtaining sufficiently accurate and realistic phantom data especially for soft tissue. We present a detailed procedure for constructing tissue phantoms using porcine kidneys, which incorporates contrast agent into the tissue such that the kidneys appear representative of in vivo human CT angiography. These phantoms are also imaged with US and resemble US images from human patients. We then perform registration on corresponding CT and US datasets using a simulation-based algorithm. The method simulates an US image from the CT, generating an intermediate modality that resembles ultrasound. This simulated US is then registered to the original US dataset. Embedded fiducial markers provide a gold standard for registration. Being able to test our registration method on realistic datasets facilitates the development of novel CT to US registration techniques such that we can generate an effective method for human studies.

  15. Cardiac cone-beam CT

    SciTech Connect

    Manzke, Robert . E-mail: robert.manzke@philips.com

    2005-10-15

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net.

  16. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies

    PubMed Central

    Welch, D; Harken, A D; Randers-Pehrson, G; Brenner, D J

    2015-01-01

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions. PMID:25860401

  17. Weight preserving image registration for monitoring disease progression in lung CT.

    PubMed

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  18. Comparative analysis of antibodies to xCT (Slc7a11): Forewarned is forearmed.

    PubMed

    Van Liefferinge, Joeri; Bentea, Eduard; Demuyser, Thomas; Albertini, Giulia; Follin-Arbelet, Virginie; Holmseth, Silvia; Merckx, Ellen; Sato, Hideyo; Aerts, Joeri L; Smolders, Ilse; Arckens, Lutgarde; Danbolt, Niels C; Massie, Ann

    2016-04-01

    The cystine/glutamate antiporter or system Xc- exchanges cystine for glutamate, thereby supporting intracellular glutathione synthesis and nonvesicular glutamate release. The role of system Xc- in neurological disorders can be dual and remains a matter of debate. One important reason for the contradictory findings that have been reported to date is the use of nonspecific anti-xCT (the specific subunit of system Xc-) antibodies. Often studies rely on the predicted molecular weight of 55.5 kDa to identify xCT on Western blots. However, using brain extracts from xCT knockout (xCT(-/-)) mice as negative controls, we show that xCT migrates as a 35-kDa protein. Misinterpretation of immunoblots leads to incorrect assessment of antibody specificity and thereby to erroneous data interpretation. Here we have verified the specificity of most commonly used commercial and some in-house-developed anti-xCT antibodies by comparing their immunoreactivity in brain tissue of xCT(+/+) and xCT(-/-) mice by Western blotting and immunohistochemistry. The Western blot screening results demonstrate that antibody specificity not only differs between batches produced by immunizing different rabbits with the same antigen but also between bleedings of the same rabbit. Moreover, distinct immunohistochemical protocols have been tested for all the anti-xCT antibodies that were specific on Western blots in order to obtain a specific immunolabeling. Only one of our in-house-developed antibodies could reveal specific xCT labeling and exclusively on acetone-postfixed cryosections. Using this approach, we observed xCT protein expression throughout the mouse forebrain, including cortex, striatum, hippocampus, midbrain, thalamus, and amygdala, with greatest expression in regions facing the cerebrospinal fluid and meninges.

  19. Extracting Information From Previous Full-Dose CT Scan for Knowledge-Based Bayesian Reconstruction of Current Low-Dose CT Images.

    PubMed

    Zhang, Hao; Han, Hao; Liang, Zhengrong; Hu, Yifan; Liu, Yan; Moore, William; Ma, Jianhua; Lu, Hongbing

    2016-03-01

    Markov random field (MRF) model has been widely employed in edge-preserving regional noise smoothing penalty to reconstruct piece-wise smooth images in the presence of noise, such as in low-dose computed tomography (LdCT). While it preserves edge sharpness, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it may compromise clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodules or colon polyps. This study aims to shift the edge-preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF's neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of muscle, fat, bone, lung, etc. from previous full-dose CT (FdCT) scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of the proposed reconstruction framework, experiments using clinical patient scans were conducted. The experimental outcomes showed a dramatic gain by the a priori knowledge for LdCT image reconstruction using the commonly-used Haralick texture measures. Thus, it is conjectured that the texture-preserving LdCT reconstruction has advantages over the edge-preserving regional smoothing paradigm for texture-specific clinical applications.

  20. Filtered backprojection proton CT reconstruction along most likely paths

    SciTech Connect

    Rit, Simon; Dedes, George; Freud, Nicolas; Sarrut, David; Letang, Jean Michel

    2013-03-15

    Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not accounted for. The authors propose to account for an estimate of the most likely path of protons in a filtered backprojection (FBP) reconstruction algorithm. Methods: The energy loss of protons is first binned in several proton radiographs at different distances to the proton source to exploit the depth-dependency of the estimate of the most likely path. This process is named the distance-driven binning. A voxel-specific backprojection is then used to select the adequate radiograph in the distance-driven binning in order to propagate in the pCT image the best achievable spatial resolution in proton radiographs. The improvement in spatial resolution is demonstrated using Monte Carlo simulations of resolution phantoms. Results: The spatial resolution in the distance-driven binning depended on the distance of the objects from the source and was optimal in the binned radiograph corresponding to that distance. The spatial resolution in the reconstructed pCT images decreased with the depth in the scanned object but it was always better than previous FBP algorithms assuming straight line paths. In a water cylinder with 20 cm diameter, the observed range of spatial resolutions was 0.7 - 1.6 mm compared to 1.0 - 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in shorter 200 Degree-Sign scans. Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection reconstruction using most likely path estimates of protons. The improvement in spatial resolution combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms makes this new algorithm a candidate of choice for clinical pCT.

  1. Predicting stroke outcome using DCE-CT measured blood velocity

    NASA Astrophysics Data System (ADS)

    Oosterbroek, Jaap; Bennink, Edwin; Dankbaar, Jan Willem; Horsch, Alexander D.; Viergever, Max A.; Velthuis, Birgitta K.; de Jong, Hugo W. A. M.

    2015-03-01

    CT plays an important role in the diagnosis of acute stroke patients. Dynamic contrast enhanced CT (DCE-CT) can estimate local tissue perfusion and extent of ischemia. However, hemodynamic information of the large intracranial vessels may also be obtained from DCE-CT data and may contain valuable diagnostic information. We describe a novel method to estimate intravascular blood velocity (IBV) in large cerebral vessels using DCE-CT data, which may be useful to help predict stroke outcome. DCE-CT scans from 34 patients with isolated M1 occlusions were included from a large prospective multi-center cohort study of patients with acute ischemic stroke. Gaussians fitted to the intravascular data yielded the time-to-peak (TTP) and cerebral-blood-volume (CBV). IBV was computed by taking the inverse of the TTP gradient magnitude. Voxels with a CBV of at least 10% of the CBV found in the arterial input function were considered part of a vessel. Mid-sagittal planes were drawn manually and averages of the IBV over all vessel-voxels (arterial and venous) were computed for each hemisphere. Mean-hemisphere IBV differences, mean-hemisphere TTP differences, and hemisphere vessel volume differences were used to differentiate between patients with good and bad outcome (modified Rankin Scale score <3 versus ≥3 at 90 days) using ROC analysis. AUCs from the ROC for IBV, TTP, and vessel volume were 0.80, 0.67 and 0.62 respectively. In conclusion, IBV was found to be a better predictor of patient outcome than the parameters used to compute it and may be a promising new parameter for stroke outcome prediction.

  2. Spectral optimization for micro-CT

    SciTech Connect

    Hupfer, Martin; Nowak, Tristan; Brauweiler, Robert; Eisa, Fabian; Kalender, Willi A.

    2012-06-15

    Purpose: To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. Methods: Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. Results: The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of

  3. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams

    NASA Astrophysics Data System (ADS)

    Arbor, N.; Dauvergne, D.; Dedes, G.; Létang, J. M.; Parodi, K.; Quiñones, C. T.; Testa, E.; Rit, S.

    2015-10-01

    Proton computed tomography (CT) has been described as a solution for imaging the proton stopping power of patient tissues, therefore reducing the uncertainty of the conversion of x-ray CT images to relative stopping power (RSP) maps and its associated margins. This study aimed to investigate this assertion under the assumption of ideal detection systems. We have developed a Monte Carlo framework to assess proton CT performances for the main steps of a proton therapy treatment planning, i.e. proton or x-ray CT imaging, conversion to RSP maps based on the calibration of a tissue phantom, and proton dose simulations. Irradiations of a computational phantom with pencil beams were simulated on various anatomical sites and the proton range was assessed on the reference, the proton CT-based and the x-ray CT-based material maps. Errors on the tissue’s RSP reconstructed from proton CT were found to be significantly smaller and less dependent on the tissue distribution. The imaging dose was also found to be much more uniform and conformal to the primary beam. The mean absolute deviation for range calculations based on x-ray CT varies from 0.18 to 2.01 mm depending on the localization, while it is smaller than 0.1 mm for proton CT. Under the assumption of a perfect detection system, proton range predictions based on proton CT are therefore both more accurate and more uniform than those based on x-ray CT.

  4. New horizons in cardiac CT.

    PubMed

    den Harder, A M; Willemink, M J; de Jong, P A; Schilham, A M R; Rajiah, P; Takx, R A P; Leiner, T

    2016-08-01

    Until recently, cardiovascular computed tomography angiography (CCTA) was associated with considerable radiation doses. The introduction of tube current modulation and automatic tube potential selection as well as high-pitch prospective ECG-triggering and iterative reconstruction offer the ability to decrease dose with approximately one order of magnitude, often to sub-millisievert dose levels. In parallel, advancements in computational technology have enabled the measurement of fractional flow reserve (FFR) from CCTA data (FFRCT). This technique shows potential to replace invasively measured FFR to select patients in need of coronary intervention. Furthermore, developments in scanner hardware have led to the introduction of dual-energy and photon-counting CT, which offer the possibility of material decomposition imaging. Dual-energy CT reduces beam hardening, which enables CCTA in patients with a high calcium burden and more robust myocardial CT perfusion imaging. Future-generation CT systems will be capable of counting individual X-ray photons. Photon-counting CT is promising and may result in a substantial further radiation dose reduction, vastly increased spatial resolution, and the introduction of a whole new class of contrast agents. PMID:26932775

  5. Dosimetry in small-animal CT using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lee, C.-L.; Park, S.-J.; Jeon, P.-H.; Jo, B.-D.; Kim, H.-J.

    2016-01-01

    Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8-414.30 mGy) was the highest for the beams at 50-80 kVp, and that of the corpus callosum (11.2-26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled.

  6. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    SciTech Connect

    Juneja, Prabhjot; Harris, Emma J.; Kirby, Anna M.; Evans, Philip M.

    2012-11-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue segmentation

  7. Injectable tissue-engineered soft tissue for tissue augmentation.

    PubMed

    Rhee, Sung-Mi; You, Hi-Jin; Han, Seung-Kyu

    2014-11-01

    Soft tissue augmentation is a process of implanting tissues or materials to treat wrinkles or soft tissue defects in the body. Over the years, various materials have evolved to correct soft tissue defects, including a number of tissues and polymers. Autogenous dermis, autogenous fat, autogenous dermis-fat, allogenic dermis, synthetic implants, and fillers have been widely accepted for soft tissue augmentations. Tissue engineering technology has also been introduced and opened a new venue of opportunities in this field. In particular, a long-lasting filler consisting of hyaluronic acid filler and living human mesenchymal cells called "injectable tissue-engineered soft tissue" has been created and applied clinically, as this strategy has many advantages over conventional methods. Fibroblasts and adipose-derived stromal vascular fraction cells can be clinically used as injectable tissue-engineered soft tissue at present. In this review, information on the soft tissue augmentation method using the injectable tissue-engineered soft tissue is provided.

  8. Renal applications of dual-energy CT.

    PubMed

    Kaza, Ravi K; Platt, Joel F

    2016-06-01

    Dual-energy CT is being increasingly used for abdominal imaging due to its incremental benefit of material characterization without significant increase in radiation dose. Knowledge of the different dual-energy CT acquisition techniques and image processing algorithms is essential to optimize imaging protocols and understand potential limitations while using dual-energy CT renal imaging such as urinary calculi characterization, assessment of renal masses and in CT urography. This review article provides an overview of the current dual-energy CT techniques and use of dual-energy CT in renal imaging.

  9. CT effective dose per dose length product using ICRP 103 weighting factors

    SciTech Connect

    Huda, Walter; Magill, Dennise; He Wenjun

    2011-03-15

    Purpose: To generate effective dose per unit dose length product (E/DLP) conversion factors incorporating ICRP Publication 103 tissue weighting factors. Methods: Effective doses for CT examinations were obtained using the IMPACT Dosimetry Calculator using all 23 dose data sets that are offered by this spreadsheet. CT examinations were simulated for scans performed along the patient long axis for each dosimetry data set using a 4 cm beam width ranging from the upper thighs to top of the head. Five basic body regions (head, neck, chest, abdomen, and pelvis), as well as combinations of the regions (head/neck, chest/abdomen, abdomen/pelvis, and chest/abdomen/pelvis) and whole body CT scans were investigated. Correction factors were generated that can be applied to convert E/DLP conversion factors based on ICRP 60 data to conversion factors that are valid for ICRP 103 data (i.e., E{sub 103}/E{sub 60}). Results: Use of ICRP 103 weighting factors increase effective doses for head scans by {approx}11%, for chest scans by {approx}20%, and decrease effective doses for pelvis scans by {approx}25%. Current E/DLP conversion factors are estimated to be 2.4 {mu}Sv/mGy cm for head CT examinations and range between 14 and 20 {mu}Sv/mGy cm for body CT examinations. Conclusions: Factors that enable patient CT doses to be adjusted to account for ICRP 103 tissue weighting factors are provided, which result in E/DLP factors that were increased in head and chest CT, reduced in pelvis CT, and showed no marked change in neck and abdomen CT.

  10. Application of Polychromatic µCT for Mineral Density Determination

    PubMed Central

    Zou, W.; Hunter, N.; Swain, M.V.

    2011-01-01

    Accurate assessment of mineral density (MD) provides information critical to the understanding of mineralization processes of calcified tissues, including bones and teeth. High-resolution three-dimensional assessment of the MD of teeth has been demonstrated by relatively inaccessible synchrotron radiation microcomputed tomography (SRµCT). While conventional desktop µCT (CµCT) technology is widely available, polychromatic source and cone-shaped beam geometry confound MD assessment. Recently, considerable attention has been given to optimizing quantitative data from CµCT systems with polychromatic x-ray sources. In this review, we focus on the approaches that minimize inaccuracies arising from beam hardening, in particular, beam filtration during the scan, beam-hardening correction during reconstruction, and mineral density calibration. Filtration along with lowest possible source voltage results in a narrow and near-single-peak spectrum, favoring high contrast and minimal beam-hardening artifacts. More effective beam monochromatization approaches are described. We also examine the significance of beam-hardening correction in determining the accuracy of mineral density estimation. In addition, standards for the calibration of reconstructed grey-scale attenuation values against MD, including K2PHO4 liquid phantom, and polymer-hydroxyapatite (HA) and solid hydroxyapatite (HA) phantoms, are discussed. PMID:20858779

  11. CT imaging with a mobile C-arm prototype

    NASA Astrophysics Data System (ADS)

    Cheryauka, Arvi; Tubbs, David; Langille, Vinton; Kalya, Prabhanjana; Smith, Brady; Cherone, Rocco

    2008-03-01

    Mobile X-ray imagery is an omnipresent tool in conventional musculoskeletal and soft tissue applications. The next generation of mobile C-arm systems can provide clinicians of minimally-invasive surgery and pain management procedures with both real-time high-resolution fluoroscopy and intra-operative CT imaging modalities. In this study, we research two C-arm CT experimental system configurations and evaluate their imaging capabilities. In a non-destructive evaluation configuration, the X-ray Tube - Detector assembly is stationary while an imaging object is placed on a rotating table. In a medical imaging configuration, the C-arm gantry moves around the patient and the table. In our research setting, we connect the participating devices through a Mobile X-Ray Imaging Environment known as MOXIE. MOXIE is a set of software applications for internal research at GE Healthcare - Surgery and used to examine imaging performance of experimental systems. Anthropomorphic phantom volume renderings and orthogonal slices of reconstructed images are obtained and displayed. The experimental C-arm CT results show CT-like image quality that may be suitable for interventional procedures, real-time data management, and, therefore, have great potential for effective use on the clinical floor.

  12. A biological phantom for evaluation of CT image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.

    2014-03-01

    In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.

  13. Acute pancreatitis: clinical vs. CT findings

    SciTech Connect

    Hill, M.C.; Barkin, J.; Isikoff, M.B.; Silver stein, W.; Kalser, M.

    1982-08-01

    In a prospective study of 91 patients with acute pancreatitis, computed tomographic (CT) findings were correlated with the clinical type of acute pancreatitis. In acute edematous pancreatitis (63 patients; 16 with repeat CT), CT was normal (28%) or showed inflammation limited to the pancreas (61%). Phlegmonous changes were present in 11%, including one patient with focal pancreatic hemorrhage, indicating that clinically unsuspected hemorrhagic pancreatitis can occur. In acute necrotizing (hemorrhagic, suppurative) pancreatitis (nine patients; eight with repeat CT), no patient had a normal CT scan and 89% had phlegmonous changes. One patient had hemorrhagic pancreatitis and three had abscesses. In acute exacerbation of chronic pancreatitis (10 patients; three with repeat CT), there were pancreatic calcifications (70%), a focal mass (40%), and pancreatic ductal dilation (30%). On follow-up CT, the findings of acute pancreatitis did not always disappear with resolution of the clinical symptons. This was especialy true of phlegmonous pancreatitis, where the CT findings could persist for months.

  14. Cardiac Computed Tomography (Multidetector CT, or MDCT)

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Cardiac Computed Tomography (Multidetector CT, or MDCT) Updated:Sep 3,2015 ... facts MDCT is a very fast type of computed tomography (CT) scan. MDCT creates pictures of the healthy ...

  15. Pocket atlas of normal CT anatomy

    SciTech Connect

    Weinstein, J.B.; Lee, J.K.T.; Sagel, S.S.

    1985-01-01

    This book is a quick reference for interpreting CT scans of the extracranial organs. This collection of 41 CT scans covers all the major organs of the body: neck and larynx; chest; abdomen; male pelvis; and female pelvis.

  16. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    SciTech Connect

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-06-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose.

  17. The Use of Gated and 4D CT Imaging in Planning for Stereotactic Body Radiation Therapy

    SciTech Connect

    D'Souza, Warren D. . E-mail: wdsou001@umaryland.edu; Nazareth, Daryl P.; Zhang Bin; Deyoung, Chad; Suntharalingam, Mohan; Kwok, Young; Yu, Cedric X.; Regine, William F.

    2007-07-01

    The localization of treatment targets is of utmost importance for patients receiving stereotactic body radiation therapy (SBRT), where the dose per fraction is large. While both setup or respiration-induced motion components affect the localization of the treatment volume, the purpose of this work is to describe our management of the intrafraction localization uncertainty induced by normal respiration. At our institution, we have implemented gated computed tomography (CT) acquisition with an active breathing control system (ABC), and 4-dimensional (4D) CT using a skin-based marker and retrospective respiration phase-based image sorting. During gated simulation, 3D CT images were acquired corresponding to end-inhalation and end-exhalation. For 4D CT imaging, 3D CT images were acquired corresponding to 8 phases of the respiratory cycle. In addition to gated or 4D CT images, we acquired a conventional free-breathing CT (FB). For both gated and 4D CT images, the target contours were registered to the FB scan in the planning system. These contours were then combined in the FB image set to form the internal target volume (ITV). Dynamic conformal arc treatment plans were generated for the ITV using the FB scan and the gated or 4D scans with an additional 7-mm margin for patient setup uncertainty. We have described our results for a pancreas and a lung tumor case. Plans were normalized so that the PTV received 95% of the prescription dose. The dose distribution for all the critical structures in the pancreas and lung tumor cases resulted in increased sparing when the ITV was defined using gated or 4D CT images than when the FB scan was used. Our results show that patient-specific target definition using gated or 4D CT scans lead to improved normal tissue sparing.

  18. CT "halo sign" in pulmonary tuberculoma.

    PubMed

    Gaeta, M; Volta, S; Stroscio, S; Romeo, P; Pandolfo, I

    1992-01-01

    The CT halo sign has been described as the CT finding of a low-attenuation zone surrounding a pulmonary nodule. It is an early clue to the diagnosis of invasive pulmonary aspergillosis. We describe a case of CT halo sign associated with a pulmonary tuberculoma. Therefore, we think that a diagnosis other than invasive pulmonary aspergillosis should be considered in the presence of the CT halo sign in immunocompetent patients.

  19. CT Scans - Multiple Languages: MedlinePlus

    MedlinePlus

    ... الأشعة المقطعية الحاسوبية - العربية Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) CT (Computerized Tomography) Scan CT ( ... 扫描 - 简体中文 (Chinese - Simplified) Bilingual PDF Health Information Translations Chinese - Traditional (繁體中文) CT (Computerized Tomography) Scan CT ( ...

  20. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies.

    PubMed

    Wei, Jikun; Sandison, George A; Hsi, Wen-Chien; Ringor, Michael; Lu, Xiaoyi

    2006-10-21

    Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity.

  1. Micro-CT of rodents: state-of-the-art and future perspectives

    PubMed Central

    Clark, D. P.; Badea, C. T.

    2014-01-01

    Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176

  2. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.

    2011-02-01

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  3. CT Innovators Reunion: Where Are They Now?

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    Each year, "Campus Technology" ("CT") gazes across higher ed horizons to identify the most innovative IT programs at colleges and universities around the globe. The projects "CT" profiles are inspiring examples of technology making a difference on campus--at least at that moment. The question is, have they stood the test of time? "CT" followed up…

  4. Upright 3D Treatment Planning Using a Vertical CT

    SciTech Connect

    Shah, Anand P. Strauss, Jonathan B.; Kirk, Michael C.; Chen, Sea S.; Kroc, Thomas K.; Zusag, Thomas W.

    2009-04-01

    In this report, we describe a novel technique used to plan and administer external beam radiation therapy to a patient in the upright position. A patient required reirradiation for thymic carcinoma but was unable to tolerate the supine position due to bilateral phrenic nerve injury and paralysis of the diaphragm. Computed tomography (CT) images in the upright position were acquired at the Northern Illinois University Institute for Neutron Therapy at Fermilab. The CT data were imported into a standard 3-dimensional (3D) treatment planning system. Treatment was designed to deliver 24 Gy to the target volume while respecting normal tissue tolerances. A custom chair that locked into the treatment table indexing system was constructed for immobilization, and port films verified the reproducibility of setup. Radiation was administered using mixed photon and electron AP fields.

  5. Window classification of brain CT images in biomedical articles.

    PubMed

    Xue, Zhiyun; Antani, Sameer; Long, L Rodney; Demner-Fushman, Dina; Thoma, George R

    2012-01-01

    Effective capability to search biomedical articles based on visual properties of article images may significantly augment information retrieval in the future. In this paper, we present a new method to classify the window setting types of brain CT images. Windowing is a technique frequently used in the evaluation of CT scans, and is used to enhance contrast for the particular tissue or abnormality type being evaluated. In particular, it provides radiologists with an enhanced view of certain types of cranial abnormalities, such as the skull lesions and bone dysplasia which are usually examined using the " bone window" setting and illustrated in biomedical articles using "bone window images". Due to the inherent large variations of images among articles, it is important that the proposed method is robust. Our algorithm attained 90% accuracy in classifying images as bone window or non-bone window in a 210 image data set.

  6. Cerebral CT angiography and CT perfusion in acute stroke detection: a systematic review of diagnostic value

    PubMed Central

    Subramaniam, Cantiriga; Sun, Zhonghua

    2014-01-01

    The purpose of this study was to analyse the diagnostic value of cerebral CT angiography (CTA) and CT perfusion (CTP) examinations in the detection of acute stroke based on a systematic review of the current literature. The review was conducted based on searching of seven databases for articles published between 1993 and 2013. Diagnostic value in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy was analysed from 21 articles which were found to meet selection criteria. The mean sensitivity, specificity, PPV, NPV and accuracy for CTA were significantly higher than those for CTP with 83.2% (95% CI: 57.9-100.0%), 95.0% (95% CI: 74.4-100%), 84.1% (95% CI: 50.0-100%), 97.1 (95% CI: 94.0-100%) and 94.0% (95% CI: 83.0-99.0) versus 69.9% (95% CI: 20.0-97.0%), 87.4 (95% CI: 61.0-100.0%), 76.4% (95% CI: 48.0-95.4%), 78.2% (95% CI: 55.8-93.9%) and 89.8% (95% CI: 75.7-97.1%), respectively. This analysis shows that CTA has high diagnostic value in detecting high degree of cerebral arterial stenosis (>70%) whereas CTP provides high specificity in the detection of ischemia and infarct tissue of brain. PMID:25202664

  7. Patient-specific biomechanical model as whole-body CT image registration tool.

    PubMed

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-05-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and movements of body organs/tissues and skeletal structures for whole-body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the conventional biomechanical modelling, our approach for building the biomechanical models does not require time-consuming segmentation of CT scans to divide the whole body into non-overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) algorithm is used for tissue classification to assign the constitutive properties automatically at integration points of the computation grid. We use only very simple segmentation of the spine when determining vertebrae displacements to define loading for biomechanical models. We demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering from cancer and aortic disease. The results confirm that accurate whole-body CT image registration can be achieved using a patient-specific non-linear biomechanical model constructed without time-consuming segmentation of the whole-body images. PMID:25721296

  8. Texture-preserved penalized weighted least-squares reconstruction of low-dose CT image via image segmentation and high-order MRF modeling

    NASA Astrophysics Data System (ADS)

    Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong

    2016-03-01

    In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.

  9. Response of osteosarcoma to preoperative intravenous high-dose methotrexate chemotherapy: CT evaluation

    SciTech Connect

    Mail, J.T.; Cohen, M.D.; Mirkin, L.D.; Provisor, A.J.

    1985-01-01

    The histologic response of an osteosarcoma to preamputation high-dose methotrexate therapy can be used to determine the optimum maintenance chemotherapy regimen to be administered after amputation. This study evaluates computed tomography (CT) as a method of assessing the response of the tumor to the methotrexate therapy. Nine patients with nonmetastatic osteosarcoma of an extremity had a CT scan of the tumor at initial presentation. This was compared with a second CT scan after four courses of high-dose intravenous methotrexate. Each set of scans was evaluated for changes in bony destruction, soft-tissue mass, pattern of calcification, and extent of tumor involvement of the marrow cavity. These findings were correlated with the histologic response of the tumor as measured by the degree of tumor necrosis. The changes seen on CT correlated well with the degree of the histologic response in seven of the nine patients.

  10. Comparison of stroke infarction between CT perfusion and diffusion weighted imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Abd. Rahni, Ashrani Aizzuddin; Arka, Israna Hossain; Chellappan, Kalaivani; Mukari, Shahizon Azura; Law, Zhe Kang; Sahathevan, Ramesh

    2016-03-01

    In this paper we present preliminary results of comparison of automatic segmentations of the infarct core, between that obtained from CT perfusion (based on time to peak parameter) and diffusion weighted imaging (DWI). For each patient, the two imaging volumes were automatically co-registered to a common frame of reference based on an acquired CT angiography image. The accuracy of image registration is measured by the overlap of the segmented brain from both images (CT perfusion and DWI), measured within their common field of view. Due to the limitations of the study, DWI was acquired as a follow up scan up to a week after initial CT based imaging. However, we found significant overlap of the segmented brain (Jaccard indices of approximately 0.8) and the percentage of infarcted brain tissue from the two modalities were still fairly highly correlated (correlation coefficient of approximately 0.9). The results are promising with more data needed in future for clinical inference.

  11. [MRI and CT-scan in presumed benign ovarian tumors].

    PubMed

    Thomassin-Naggara, I; Bazot, M

    2013-12-01

    Radiological examinations are required for the assessment of complex or indeterminate ovarian masses, mainly using MRI and CT-scan. MRI provides better tissue characterization than Doppler ultrasound or CT-scan (LE2). Pelvic MRI is recommended in case of an indeterminate or complex ovarian ultrasonographic mass (grade B). The protocol of a pelvic MRI should include morphological T1 and T2 sequences (grade B). In case of solid portion, perfusion and diffusion sequences are recommended (grade C). In case of doubt about the diagnosis of ovarian origin, pelvic MRI is preferred over the CT-scan (grade C). MRI is the technique of choice for the difference between functional and organic ovarian lesion diagnosis (grade C). It can be useful in case of clinical diagnostic uncertainty between polycystic ovary syndrome and ovarian hyperstimulation and multilocular ovarian tumor syndrome (grade C). No MRI classification for ovarian masses is currently validated. The establishment of a presumption of risk of malignancy is required in a MRI report of adnexal mass with if possible a guidance on the histological diagnosis. In the absence of clinical or sonographic diagnosis, pelvic CT-scan is recommended in the context of acute painful pelvic mass in non-pregnant patients (grade C). It specifies the anomalies and allows the differential diagnosis with digestive and urinary diseases (LE4). Given the lack of data in the literature, the precautionary principle must be applied to the realization of a pelvic MRI in a pregnant patient. A risk-benefit balance should be evaluated case by case by the clinician and the radiologist and information should be given to the patient. In an emergency situation during pregnancy, pelvic MRI is an alternative to CT-scan for the exploration of acute pelvic pain in case of uncertain sonographic diagnosis (grade C).

  12. Dose calculation using megavoltage cone-beam CT

    SciTech Connect

    Morin, Olivier . E-mail: Morin@radonc17.ucsf.edu; Chen, Josephine; Aubin, Michele; Gillis, Amy; Aubry, Jean-Francois; Bose, Supratik; Chen Hong; Descovich, Martina; Xia Ping; Pouliot, Jean

    2007-03-15

    Purpose: To demonstrate the feasibility of performing dose calculation on megavoltage cone-beam CT (MVCBCT) of head-and-neck patients in order to track the dosimetric errors produced by anatomic changes. Methods and Materials: A simple geometric model was developed using a head-size water cylinder to correct an observed cupping artifact occurring with MVCBCT. The uniformity-corrected MVCBCT was calibrated for physical density. Beam arrangements and weights from the initial treatment plans defined using the conventional CT were applied to the MVCBCT image, and the dose distribution was recalculated. The dosimetric inaccuracies caused by the cupping artifact were evaluated on the water phantom images. An ideal test patient with no observable anatomic changes and a patient imaged with both CT and MVCBCT before and after considerable weight loss were used to clinically validate MVCBCT for dose calculation and to determine the dosimetric impact of large anatomic changes. Results: The nonuniformity of a head-size water phantom ({approx}30%) causes a dosimetric error of less than 5%. The uniformity correction method developed greatly reduces the cupping artifact, resulting in dosimetric inaccuracies of less than 1%. For the clinical cases, the agreement between the dose distributions calculated using MVCBCT and CT was better than 3% and 3 mm where all tissue was encompassed within the MVCBCT. Dose-volume histograms from the dose calculations on CT and MVCBCT were in excellent agreement. Conclusion: MVCBCT can be used to estimate the dosimetric impact of changing anatomy on several structures in the head-and-neck region.

  13. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  14. Overview of multisource CT systems and methods

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Lu, Yang; Zhuang, Tiange; Wang, Ge

    2010-09-01

    Multiple-source cone-beam scanning is a promising mode for dynamic volumetric CT/micro-CT. The first dynamic CT system is the Dynamic Spatial Reconstructor (DSR) built in 1979. The pursuance for higher temporal resolution has largely driven the development of CT technology, and recently led to the emergence of Siemens dual-source CT scanner. Given the impact and limitation of dual-source cardiac CT, triple-source cone-beam CT seems a natural extension for future cardiac CT. Our work shows that trinity (triple-source architecture) is superior to duality (dual-source architecture) for helical cone-beam CT in terms of exact reconstruction. In particular, a triple-source helical scan allows a perfect mosaic of longitudinally truncated cone-beam data to satisfy the Orlov condition and yields better noise performance than the dual-source counterpart. In the (2N+1)-source helical CT case, the more sources, the higher temporal resolution. In the N-source saddle CT case, a triple-source scan offers the best temporal resolution for continuous dynamic exact reconstruction of a central volume. The recently developed multi-source cone-beam algorithms include an exact backprojection-filtration (BPF) approach and a "slow" exact filtered-backprojection (FBP) algorithm for (2N+1)-source helical CT, two fast quasi-exact FBP algorithms for triple-source helical CT, as well as a fast exact FBP algorithm for triple-source saddle CT. Some latest ideas will be also discussed, such as multi-source interior tomography and multi-beam field-emission x-ray CT.

  15. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    SciTech Connect

    Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc; Fisher, John P.; Anastasio, Mark A.; Brey, Eric M.

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  16. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues.

    PubMed

    Appel, Alyssa A; Larson, Jeffery C; Garson, Alfred B; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc B; Fisher, John P; Anastasio, Mark A; Brey, Eric M

    2015-03-01

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. Techniques that allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. These results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  17. CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones.

    PubMed

    Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M

    2007-06-01

    The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex.

  18. CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones.

    PubMed

    Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M

    2007-06-01

    The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex. PMID:17420106

  19. Microcomputed Tomography Characterization of Neovascularization in Bone Tissue Engineering Applications

    PubMed Central

    Young, Simon; Kretlow, James D.; Nguyen, Charles; Bashoura, Alex G.; Baggett, L. Scott; Jansen, John A.; Wong, Mark

    2008-01-01

    Abstract Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs. PMID:18657028

  20. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  1. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-02-24

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures.

  2. Exploring miniature insect brains using micro-CT scanning techniques

    PubMed Central

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  3. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    SciTech Connect

    Chen, S; Le, Q; Mutaf, Y; Yi, B; D’Souza, W

    2015-06-15

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.

  4. Ultra-low dose CT attenuation correction for PET/CT.

    PubMed

    Xia, Ting; Alessio, Adam M; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E

    2012-01-21

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. PMID:22156174

  5. Ultra-low dose CT attenuation correction for PET/CT

    NASA Astrophysics Data System (ADS)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging.

  6. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  7. Acute intestinal anisakiasis: CT findings.

    PubMed

    Ozcan, H N; Avcu, S; Pauwels, W; Mortelé, K J; De Backer, A I

    2012-09-01

    Small bowel anisakiasis is a relatively uncommon disease that results from consumption of raw or insufficiently pickled, salted, smoked, or cooked wild marine fish infected with Anisakis larvae. We report a case of intestinal anisakiasis in a 63-year-old woman presenting with acute onset of abdominal complaints one day after ingestion of raw wild-caught herring from the Northsea. Computed tomography (CT) scanning demonstrated thickening of the distal small bowel wall, mucosa with hyperenhancement, mural stratification, fluid accumulation within dilated small-bowel loops and hyperemia of mesenteric vessels. In patients with a recent history of eating raw marine fish presenting with acute onset of abdominal complaints and CT features of acute small bowel inflammation the possibility of anisakiasis should be considered in the differential diagnosis of acute abdominal syndromes.

  8. New AIRS: The medical imaging software for segmentation and registration of elastic organs in SPECT/CT

    NASA Astrophysics Data System (ADS)

    Widita, R.; Kurniadi, R.; Darma, Y.; Perkasa, Y. S.; Trianti, N.

    2012-06-01

    We have been successfully improved our software, Automated Image Registration and Segmentation (AIRS), to fuse the CT and SPECT images of elastic organs. Segmentation and registration of elastic organs presents many challenges. Many artifacts can arise in SPECT/CT scans. Also, different organs and tissues have very similar gray levels, which consign thresholding to limited utility. We have been developed a new software to solve different registration and segmentation problems that arises in tomographic data sets. It will be demonstrated that the information obtained by SPECT/CT is more accurate in evaluating patients/objects than that obtained from either SPECT or CT alone. We used multi-modality registration which is amenable for images produced by different modalities and having unclear boundaries between tissues. The segmentation components used in this software is region growing algorithms which have proven to be an effective approach for image segmentation. Our method is designed to perform with clinically acceptable speed, using accelerated techniques (multiresolution).

  9. Postmortem pulmonary CT in hypothermia.

    PubMed

    Schweitzer, Wolf; Thali, Michael; Giugni, Giannina; Winklhofer, Sebastian

    2014-12-01

    Fatal hypothermia has been associated with pulmonary edema. With postmortem full body computed tomography scanning (PMCT), the lungs can also be examined for CT attenuation. In fatal hypothermia cases low CT attenuation appeared to prevail in the lungs. We compared 14 cases of fatal hypothermia with an age-sex matched control group. Additionally, 4 cases of carbon monoxide (CO) poisoning were examined. Furthermore, 10 test cases were examined to test predictability based on PMCT. Two readers measured CT attenuation on four different axial slices across the lungs (blinded to case group and other reader's results). Hypothermia was associated with statistically significantly lower lung PMCT attenuation and lower lung weights than controls, and there was a dose-effect relationship at an environmental temperature cutoff of 2 °C. CO poisoning yielded low pulmonary attenuation but higher lung weights. General model based prediction yielded a 94% probability for fatal hypothermia deaths and a 21% probability for non-hypothermia deaths in the test group. Increased breathing rate is known to accompany both CO poisoning and hypothermia, so this could partly explain the low PMCT lung attenuation due to an oxygen dissociation curve left shift. A more marked distension in fatal hypothermia, compared to CO poisoning, indicates that further, possibly different mechanisms, are involved in these cases. Increased dead space and increased stiffness to deflation (but not inflation) appear to be effects of inhaling cold air (but not CO) that may explain the difference in low PMCT attenuation seen in hypothermia cases. PMID:25326676

  10. CT-assisted agile manufacturing

    NASA Astrophysics Data System (ADS)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  11. Postmortem pulmonary CT in hypothermia.

    PubMed

    Schweitzer, Wolf; Thali, Michael; Giugni, Giannina; Winklhofer, Sebastian

    2014-12-01

    Fatal hypothermia has been associated with pulmonary edema. With postmortem full body computed tomography scanning (PMCT), the lungs can also be examined for CT attenuation. In fatal hypothermia cases low CT attenuation appeared to prevail in the lungs. We compared 14 cases of fatal hypothermia with an age-sex matched control group. Additionally, 4 cases of carbon monoxide (CO) poisoning were examined. Furthermore, 10 test cases were examined to test predictability based on PMCT. Two readers measured CT attenuation on four different axial slices across the lungs (blinded to case group and other reader's results). Hypothermia was associated with statistically significantly lower lung PMCT attenuation and lower lung weights than controls, and there was a dose-effect relationship at an environmental temperature cutoff of 2 °C. CO poisoning yielded low pulmonary attenuation but higher lung weights. General model based prediction yielded a 94% probability for fatal hypothermia deaths and a 21% probability for non-hypothermia deaths in the test group. Increased breathing rate is known to accompany both CO poisoning and hypothermia, so this could partly explain the low PMCT lung attenuation due to an oxygen dissociation curve left shift. A more marked distension in fatal hypothermia, compared to CO poisoning, indicates that further, possibly different mechanisms, are involved in these cases. Increased dead space and increased stiffness to deflation (but not inflation) appear to be effects of inhaling cold air (but not CO) that may explain the difference in low PMCT attenuation seen in hypothermia cases.

  12. The Place of FDG PET/CT in Renal Cell Carcinoma: Value and Limitations

    PubMed Central

    Liu, Yiyan

    2016-01-01

    Unlike for most other malignancies, application of FDG PET/CT is limited for renal cell carcinoma (RCC), mainly due to physiological excretion of 18F-fluoro-2-deoxy-2-d-glucose (FDG) from the kidneys, which decreases contrast between renal lesions and normal tissue, and may obscure or mask the lesions of the kidneys. Published clinical observations were discordant regarding the role of FDG PET/CT in diagnosing and staging RCC, and FDG PET/CT is not recommended for this purpose based on current national and international guidelines. However, quantitative FDG PET/CT imaging may facilitate the prediction of the degree of tumor differentiation and allows for prognosis of the disease. FDG PET/CT has potency as an imaging biomarker to provide useful information about patient’s survival. FDG PET/CT can be effectively used for postoperative surveillance and restaging with high sensitivity, specificity, and accuracy, as early diagnosis of recurrent/metastatic disease can drastically affect therapeutic decision and alter outcome of patients. FDG uptake is helpful for differentiating benign or bland emboli from tumor thrombosis in RCC patients. FDG PET/CT also has higher sensitivity and accuracy when compared with bone scan to detect RCC metastasis to the bone. FDG PET/CT can play a strong clinical role in the management of recurrent and metastatic RCC. In monitoring the efficacy of new target therapy such as tyrosine kinase inhibitors (TKIs) treatment for advanced RCC, FDG PET/CT has been increasingly used to assess the therapeutic efficacy, and change in FDG uptake is a strong indicator of biological response to TKI. PMID:27656421

  13. The Place of FDG PET/CT in Renal Cell Carcinoma: Value and Limitations

    PubMed Central

    Liu, Yiyan

    2016-01-01

    Unlike for most other malignancies, application of FDG PET/CT is limited for renal cell carcinoma (RCC), mainly due to physiological excretion of 18F-fluoro-2-deoxy-2-d-glucose (FDG) from the kidneys, which decreases contrast between renal lesions and normal tissue, and may obscure or mask the lesions of the kidneys. Published clinical observations were discordant regarding the role of FDG PET/CT in diagnosing and staging RCC, and FDG PET/CT is not recommended for this purpose based on current national and international guidelines. However, quantitative FDG PET/CT imaging may facilitate the prediction of the degree of tumor differentiation and allows for prognosis of the disease. FDG PET/CT has potency as an imaging biomarker to provide useful information about patient’s survival. FDG PET/CT can be effectively used for postoperative surveillance and restaging with high sensitivity, specificity, and accuracy, as early diagnosis of recurrent/metastatic disease can drastically affect therapeutic decision and alter outcome of patients. FDG uptake is helpful for differentiating benign or bland emboli from tumor thrombosis in RCC patients. FDG PET/CT also has higher sensitivity and accuracy when compared with bone scan to detect RCC metastasis to the bone. FDG PET/CT can play a strong clinical role in the management of recurrent and metastatic RCC. In monitoring the efficacy of new target therapy such as tyrosine kinase inhibitors (TKIs) treatment for advanced RCC, FDG PET/CT has been increasingly used to assess the therapeutic efficacy, and change in FDG uptake is a strong indicator of biological response to TKI.

  14. The Place of FDG PET/CT in Renal Cell Carcinoma: Value and Limitations.

    PubMed

    Liu, Yiyan

    2016-01-01

    Unlike for most other malignancies, application of FDG PET/CT is limited for renal cell carcinoma (RCC), mainly due to physiological excretion of 18F-fluoro-2-deoxy-2-d-glucose (FDG) from the kidneys, which decreases contrast between renal lesions and normal tissue, and may obscure or mask the lesions of the kidneys. Published clinical observations were discordant regarding the role of FDG PET/CT in diagnosing and staging RCC, and FDG PET/CT is not recommended for this purpose based on current national and international guidelines. However, quantitative FDG PET/CT imaging may facilitate the prediction of the degree of tumor differentiation and allows for prognosis of the disease. FDG PET/CT has potency as an imaging biomarker to provide useful information about patient's survival. FDG PET/CT can be effectively used for postoperative surveillance and restaging with high sensitivity, specificity, and accuracy, as early diagnosis of recurrent/metastatic disease can drastically affect therapeutic decision and alter outcome of patients. FDG uptake is helpful for differentiating benign or bland emboli from tumor thrombosis in RCC patients. FDG PET/CT also has higher sensitivity and accuracy when compared with bone scan to detect RCC metastasis to the bone. FDG PET/CT can play a strong clinical role in the management of recurrent and metastatic RCC. In monitoring the efficacy of new target therapy such as tyrosine kinase inhibitors (TKIs) treatment for advanced RCC, FDG PET/CT has been increasingly used to assess the therapeutic efficacy, and change in FDG uptake is a strong indicator of biological response to TKI. PMID:27656421

  15. Metastatic meningioma: positron emission tomography CT imaging findings

    PubMed Central

    Brennan, C; O'Connor, O J; O'Regan, K N; Keohane, C; Dineen, J; Hinchion, J; Sweeney, B; Maher, M M

    2010-01-01

    The imaging findings of a case of metastasing meningioma are described. The case illustrates a number of rare and interesting features. The patient presented with haemoptysis 22 years after the initial resection of an intracranial meningioma. CT demonstrated heterogeneous masses with avid peripheral enhancement without central enhancement. Blood supply to the larger lesion was partially from small feeding vessels from the inferior pulmonary vein. These findings correlate with a previously published case in which there was avid uptake of fluoro-18-deoxyglucose peripherally with lesser uptake centrally. The diagnosis of metastasing meningioma was confirmed on percutaneous lung tissue biopsy. PMID:21088084

  16. Hybrid SPECT/CT evaluation of Marine-Lenhart syndrome.

    PubMed

    Harisankar, Chidambaram Natrajan Balasubramanian; Preethi, Govindababu Rajalakshmi; Chungath, Biju Baby

    2013-02-01

    Marine-Lenhart syndrome has been described as a variant of Graves disease with the following criteria: (1) the thyroid scan shows an enlarged gland and 1 or 2 poorly functioning nodules; (2) the nodule is TSH dependent and the paranodular tissue is TSH independent; (3) after endogenous or exogenous TSH stimulation, the return of function in the nodule can be demonstrated; and (4) the nodule is histologically benign. We report a 57-year-old woman with Marine-Lenhart syndrome evaluated with technetium scanning and hybrid SPECT/CT. PMID:23334146

  17. Tissue Photolithography

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil; Shibata, Darryl; Taylor, Clive

    2011-01-01

    Tissue lithography will enable physicians and researchers to obtain macromolecules with high purity (greater than 90 percent) from desired cells in conventionally processed, clinical tissues by simply annotating the desired cells on a computer screen. After identifying the desired cells, a suitable lithography mask will be generated to protect the contents of the desired cells while allowing destruction of all undesired cells by irradiation with ultraviolet light. The DNA from the protected cells can be used in a number of downstream applications including DNA sequencing. The purity (i.e., macromolecules isolated form specific cell types) of such specimens will greatly enhance the value and information of downstream applications. In this method, the specific cells are isolated on a microscope slide using photolithography, which will be faster, more specific, and less expensive than current methods. It relies on the fact that many biological molecules such as DNA are photosensitive and can be destroyed by ultraviolet irradiation. Therefore, it is possible to protect the contents of desired cells, yet destroy undesired cells. This approach leverages the technologies of the microelectronics industry, which can make features smaller than 1 micrometer with photolithography. A variety of ways has been created to achieve identification of the desired cell, and also to designate the other cells for destruction. This can be accomplished through chrome masks, direct laser writing, and also active masking using dynamic arrays. Image recognition is envisioned as one method for identifying cell nuclei and cell membranes. The pathologist can identify the cells of interest using a microscopic computerized image of the slide, and appropriate custom software. In one of the approaches described in this work, the software converts the selection into a digital mask that can be fed into a direct laser writer, e.g. the Heidelberg DWL66. Such a machine uses a metalized glass plate (with

  18. A case of catastrophic antiphospholipid syndrome, which presented an acute interstitial pneumonia-like image on chest CT scan.

    PubMed

    Kameda, Tomohiro; Dobashi, Hiroaki; Susaki, Kentaro; Danjo, Junichi; Nakashima, Shusaku; Shimada, Hiromi; Izumikawa, Miharu; Takeuchi, Yohei; Mitsunaka, Hiroki; Bandoh, Shuji; Imataki, Osamu; Nose, Masato; Matsunaga, Takuya

    2015-01-01

    We report the case of catastrophic antiphospholipid syndrome (CAPS) complicated with mixed connective tissue disease (MCTD). A female patient was diagnosed with acute interstitial pneumonia (AIP) with MCTD by chest CT scan. Corticosteroid therapy was refractory for lung involvement, and she died due to acute respiratory failure. The autopsy revealed that AIP was compatible with lung involvement of CAPS. We therefore suggest that chest CT might reveal AIP-like findings in CAPS patients whose condition is complicated with pulmonary manifestations.

  19. A registration-based segmentation method with application to adiposity analysis of mice microCT images

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.

    2014-04-01

    Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.

  20. Ultra-filtration measurement using CT imaging technology

    NASA Astrophysics Data System (ADS)

    Lu, Junfeng; Lu, Wenqiang

    2009-02-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc …. Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  1. CT and radiographic appearance of extracranial Onyx(®) embolization.

    PubMed

    Jia, J B; Green, C S; Cohen, A J; Helmy, M

    2015-03-01

    Onyx(®) (ev3, Irvine, CA, USA) is a liquid embolic agent composed of ethylene vinyl alcohol copolymer dissolved in dimethyl sulphoxide used for the treatment of intracranial arteriovenous malformations. Onyx is a preferred embolizing agent due to its unique properties, non-adhesive nature, and durability. In addition to its approved intracranial application, Onyx is also being used successfully in extracranial embolization in areas including extracranial aneurisms and vascular malformations, trauma, gastrointestinal bleeding, and neoplasms. Because of its increasing utilization, it is important for reporting radiologists to be able to recognize its extracranial appearance across different imaging techniques and to be familiar with its uses. The goal of this review is to describe the extracranial uses of Onyx and its appearance in various extracranial locations at radiography and CT, while providing didactic examples. Onyx appears radiodense at CT and plain radiography and has a curvilinear pattern following the expected path of the vessel embolized. At CT, Onyx creates streak artefact that may obstruct the view of surrounding tissues consistent with descriptions of other tantalum devices.

  2. PIXSCAN: Pixel detector CT-scanner for small animal imaging

    NASA Astrophysics Data System (ADS)

    Delpierre, P.; Debarbieux, F.; Basolo, S.; Berar, J. F.; Bonissent, A.; Boudet, N.; Breugnon, P.; Caillot, B.; Cassol Brunner, F.; Chantepie, B.; Clemens, J. C.; Dinkespiler, B.; Khouri, R.; Koudobine, I.; Mararazzo, V.; Meessen, C.; Menouni, M.; Morel, C.; Mouget, C.; Pangaud, P.; Peyrin, F.; Rougon, G.; Sappey-Marinier, D.; Valton, S.; Vigeolas, E.

    2007-02-01

    The PIXSCAN is a small animal CT-scanner based on hybrid pixel detectors. These detectors provide very large dynamic range of photons counting at very low detector noise. They also provide high counting rates with fast image readout. Detection efficiency can be optimized by selecting the sensor medium according to the working energy range. Indeed, the use of CdTe allows a detection efficiency of 100% up to 50 keV. Altogether these characteristics are expected to improve the contrast of the CT-scanner, especially for soft tissues, and to reduce both the scan duration and the absorbed dose. A proof of principle has been performed by assembling into a PIXSCAN-XPAD2 prototype the photon counting pixel detector initially built for detection of X-ray synchrotron radiations. Despite the relatively large pixel size of this detector (330×330 μm 2), we can present three-dimensional tomographic reconstruction of mice at good contrast and spatial resolution. A new photon counting chip (XPAD3) is designed in sub-micronique technology to achieve 130×130 μm 2 pixels. This improved circuit has been equipped with an energy selection circuit to act as a band-pass emission filter. Furthermore, the PIXSCAN-XPAD3 hybrid pixel detectors will be combined with the Lausanne ClearPET scanner demonstrator. CT image reconstruction in this non-conventional geometry is under study for this purpose.

  3. [Comparison between CT and NMR images. Physical aspects].

    PubMed

    Poretti, G

    1984-10-27

    On the basis of simple physical considerations, parameters influencing the computer tomograph (CT) and nuclear magnetic resonance (NMR) pictures are compared. In the case of the CT, only X-ray tube voltage and radiation intensity (i.e. dose to the patient) can be altered. Changing the X-ray tube voltage alone produces no special diagnostic advantages, unless the method is supplemented, for a specific body region, by separate determination of the "Hounsfield number" in Compton or photoelectric numbers. However, the method is associated with relatively major measurement and evaluation problems. A survey of the principles of the NMR technique is followed by a brief explanation of the so-called "tissue parameters" and "measurement parameters" which influence picture quality in the NMR technique. Despite certain advantages it can scarcely be expected that the NMR technique will replace the CT technique in the next few years: it is very probable, however, that a shift to specific examinations will occur in the case of the latter.

  4. Preoperative staging of colorectal cancer: CT vs. integrated FDG PET/CT.

    PubMed

    Shin, Sang Soo; Jeong, Yong Yeon; Min, Jung Jun; Kim, Hyeong Rok; Chung, Tae Woong; Kang, Heoung Keun

    2008-01-01

    Accurate preoperative staging is essential in determining the optimal therapeutic planning for individual patients. The computed tomography (CT) in the preoperative staging of colorectal cancer, even if controversial, may be useful for planning surgery and/or neoadjuvant therapy, particularly when local tumor extension into adjacent organs or distant metastases are detected. There have been significant changes in the CT technology with the advent of multi-detector row CT (MDCT) scanner. Advances in CT technology have raised interest in the potential role of CT for detection and staging of colorectal cancer. In recent studies, MDCT with MPR images has shown promising accuracy in the evaluation of local extent and nodal involvement of colorectal cancer. Combined PET/CT images have significant advantages over either alone because it provides both functional and anatomical data. Therefore, it is natural to expect that PET/CT would improve the accuracy of preoperative staging of colorectal cancer. The most significant additional information provided by PET/CT relates to the accurate detection of distant metastases. For the evaluation of patients with colorectal cancer, CT has relative advantages over PET/CT in regard to the depth of tumor invasion through the wall, extramural extension, and regional lymph node metastases. PET/CT should be performed on selected patients with suggestive but inconclusive metastatic lesions with CT. In addition, PET/CT with dedicated CT protocols, such as contrast-enhanced PET/CT and PET/CT colonography, may replace the diagnostic CT for the preoperative staging of colorectal cancer.

  5. Improvement of the cine-CT based 4D-CT imaging

    SciTech Connect

    Pan Tinsu; Sun Xiaojun; Luo Dershan

    2007-11-15

    An improved 4D-CT utility has been developed on the GE LightSpeed multislice CT (MSCT) and Discovery PET/CT scanners, which have the cine CT scan capability. Two new features have been added in this 4D-CT over the commercial Advantage 4D-CT from GE. One feature was a new tool for disabling parts of the respiratory signal with irregular respiration and improving the accuracy of phase determination for the respiratory signal from the Varian real-time positioning and monitoring (RPM) system before sorting of the cine CT images into the 4D-CT images. The second feature was to allow generation of the maximum-intensity-projection (MIP), average (AVG) and minimum-intensity-projection (mip) CT images from the cine CT images without a respiratory signal. The implementation enables the assessment of tumor motion in treatment planning with the MIP, AVG, and mip CT images on the GE MSCT and PET/CT scanners without the RPM and the Advantage 4D-CT with a GE Advantage windows workstation. Several clinical examples are included to illustrate this new application.

  6. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning

    SciTech Connect

    Wu, Vincent; Podgorsak, Matthew B.; Tran, Tuan-Anh; Malhotra, Harish K.; Wang, Iris Z.

    2011-07-15

    Purpose: Traditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning. Methods: Testing phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU. Results: Results show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show

  7. 1975 Memorial Award Paper. Image generation and display techniques for CT scan data. Thin transverse and reconstructed coronal and sagittal planes.

    PubMed

    Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J

    1975-01-01

    The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.

  8. Differentiating tissue by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Woessner, Stefan; Huen, Julien; Malthan, Dirk

    2004-03-01

    A common problem in several surgical applications is the lack of navigational information. Most often, the only source of information about the location of crucial structures, in relation to the surgical instrument, is the visible and tactile sensory input of the surgeon. In some cases, this leads to time-consuming procedures and a high risk for the patient. Therefore, we developed a spectroscopic sensor system for automatic differentiation between several tissue types. For example in milling processes, a sensor that is able to detect bone in contrast to nerve or vein tissue can be used to control the milling process. We showed exemplarily for the cochlea implant, a typical ENT-surgery, that with the help of our sensor system, the milling of bone can be accelerated without increasing the risk for the patient. It is also possible to use this type of sensor system in the area of medical robotics in soft-tissue applications. With real-time information, a continuous registration can take place, in contrast to a registration that is done using static preoperatively acquired images. We showed that our sensor system can be used to dynamically update the location of the patient in relation to CT or MR-images. In conclusion, we have been able to show that well-known spectroscopy sensors can be used to open new possibilities in medical treatment with and without the use of robotics.

  9. CT assessment of silicosis in exposed workers.

    PubMed

    Bégin, R; Bergeron, D; Samson, L; Boctor, M; Cantin, A

    1987-03-01

    For evaluation of the clinical usefulness of CT of the thorax in workers exposed to silica, 58 workers with long-term exposure to silica in the granite and foundry industries of the Eastern Townships of Quebec were examined. CT scans were compared with standard posteroanterior chest radiographs by using the International Labour Office 1980 grading system for silicosis. Six areas of the lung in each patient were assessed by both techniques for profusion (number) of opacities (small nodules), coalescence, and the presence of large opacities. CT scans and chest radiographs yielded similar average scores for detection of opacities. CT identified significantly more coalescence and large opacities in patients with simple silicosis. In patients with complicated silicosis, CT results were comparable with those of chest radiographs. CT of the thorax in workers exposed to silica does not identify more patients with minimal parenchymal disease, but it does detect earlier changes of coalescence.

  10. Gastric interposition following transhiatal esophagectomy: CT evaluation

    SciTech Connect

    Gross, B.H.; Agha, F.P.; Glazer, G.M.; Orringer, M.B.

    1985-04-01

    Transhiatal esophagectomy without thoracotomy (THE) but with gastric interposition results in less morbidity and mortality than standard transpleural esophagectomy with thoracotomy. Barium examination has been the primary radiographic study following THE for detecting postoperative complications. The authors reviewed computed tomography (CT) scans of 21 patients who had undergone THE and correlated CT appearance with clinical status and with findings of the barium studies. Local mediastinal recurrent neoplasm was detected by CT in seven patients; barium study within 2 weeks of the CT scan failed to detect tumor recurrence in three of these patients. CT is the modality of choice for detecting locally recurrent neoplasm and distant metastases following THE and may also be helpful in patients with postoperative mediastinal abscess. Normal mediastinal CT anatomy after esophagectomy is reviewed in order to warn against pitfalls in scan interpretation.

  11. The assessment of industrial CT's probing error

    NASA Astrophysics Data System (ADS)

    Shi, Yushu; Gao, Sitian; Song, Xu; Li, Dongsheng; Li, Wei; Li, Qi; Li, Shi; Chen, Siwen

    2014-11-01

    Similar to traditional CMM, probing error of industrial CT is used for assessing the 3D measurement error of the machine in a very small measurement volume. A research on the assessment of probing error of industrial CT is conducted here. Lots of assessment tests are carried out on the industrial CT Metrotom1500 in the National institute of metrology, using standard balls with different size and materials. The test results demonstrate that probing error of industrial CT can be affected seriously by the measurement strategy and standard balls. According to some further analysis about the test results, the assessment strategy of industrial CT's probing error is concluded preliminary, which can ensure the comparability of the assessment results in different industrial CT system.

  12. Temporal subtraction contrast-enhanced dedicated breast CT.

    PubMed

    Gazi, Peymon M; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was

  13. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was

  14. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0–16%), NCC (0–6%), NMI (0–13%) and TRE (0–34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was

  15. Cortical Tremor (CT) with coincident orthostatic movements.

    PubMed

    Termsarasab, Pichet; Frucht, Steven J

    2015-01-01

    Cortical tremor (CT) is a form of cortical reflex myoclonus that can mimic essential tremor (ET). Clinical features that are helpful in distinguishing CT from ET are the irregular and jerky appearance of the movements. We report two patients with CT with coexisting orthostatic movements, either orthostatic tremor (OT) or myoclonus, who experienced functional improvement in both cortical myoclonus and orthostatic movements when treated with levetiracetam. PMID:26788343

  16. Normal conus medullaris: CT criteria for recognition

    SciTech Connect

    Grogan, J.P.; Daniels, D.L.; Williams, I.L.; Rauschning, W.; Haughton, V.M.

    1984-06-01

    The normal CT configuration and dimension of the conus medullaris and adjacent spinal cord were determined in 30 patients who had no clinical evidence of conus compression. CT studies were also correlated with anatomic sections in cadavers. The normal conus on CT has a distinctive oval configuration, an arterior sulcus, and a posterior promontory. The anteroposterior diameter ranged from 5 to 8 mm; the transverse diameter from 8 to 11 mm. Intramedullary processes altered both the dimensions and configuration of the conus.

  17. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  18. Laxative-free CT colonography

    PubMed Central

    Slater, A; Betts, M; D'Costa, H

    2012-01-01

    Objectives The aim of this study was to determine if the introduction of faecal tagging to CT colonography (CTC) made the examination easier to tolerate or reduced the number of false-positives. Methods Our department changed bowel preparation for CT colonography from Picolax (Ferring Pharmaceuticals Ltd, London, UK) to Gastrografin® (Bracco Diagnostics Inc, Princeton, NJ) only with a modified diet. Questionnaires were given to a subgroup of patients within these cohorts. The numbers of false-positives were compared between two cohorts before and after this change. false-positives were defined as lesions reported on CT that were not confirmed by subsequent endoscopic examination. Polyps were matched if they were in the same or adjacent segments, and were within 5 mm of the reported size. Results 412 patients were identified from the Picolax cohort, and 116 from the Gastrografin cohort. 62 patients in each group completed questionnaires. Gastrografin produced less diarrhoea; 34% had five or more bowel motions in the previous day and night, compared with 77% for Picolax (p<0.001), although more patients found drinking it unpleasant compared with Picolax (85% reported drinking Picolax as “easy” vs 61% for Gastrografin; p=0.002). Picolax produced more non-diagnostic examinations, although this difference was not statistically significant. There was not a significant reduction in the numbers of false-positives (2 out of 112 for Gastrografin group, 14 out of 389 for the Picolax group; p=0.54). Conclusion Switching from Picolax to Gastrografin as a CTC preparation technique produced less diarrhoea, but did not reduce the number of false-positives. PMID:22167512

  19. Hepatic perfusion in a tumor model using DCE-CT: an accuracy and precision study

    NASA Astrophysics Data System (ADS)

    Stewart, Errol E.; Chen, Xiaogang; Hadway, Jennifer; Lee, Ting-Yim

    2008-08-01

    In the current study we investigate the accuracy and precision of hepatic perfusion measurements based on the Johnson and Wilson model with the adiabatic approximation. VX2 carcinoma cells were implanted into the livers of New Zealand white rabbits. Simultaneous dynamic contrast-enhanced computed tomography (DCE-CT) and radiolabeled microsphere studies were performed under steady-state normo-, hyper- and hypo-capnia. The hepatic arterial blood flows (HABF) obtained using both techniques were compared with ANOVA. The precision was assessed by the coefficient of variation (CV). Under normo-capnia the microsphere HABF were 51.9 ± 4.2, 40.7 ± 4.9 and 99.7 ± 6.0 ml min-1 (100 g)-1 while DCE-CT HABF were 50.0 ± 5.7, 37.1 ± 4.5 and 99.8 ± 6.8 ml min-1 (100 g)-1 in normal tissue, tumor core and rim, respectively. There were no significant differences between HABF measurements obtained with both techniques (P > 0.05). Furthermore, a strong correlation was observed between HABF values from both techniques: slope of 0.92 ± 0.05, intercept of 4.62 ± 2.69 ml min-1 (100 g)-1 and R2 = 0.81 ± 0.05 (P < 0.05). The Bland-Altman plot comparing DCE-CT and microsphere HABF measurements gives a mean difference of -0.13 ml min-1 (100 g)-1, which is not significantly different from zero. DCE-CT HABF is precise, with CV of 5.7, 24.9 and 1.4% in the normal tissue, tumor core and rim, respectively. Non-invasive measurement of HABF with DCE-CT is accurate and precise. DCE-CT can be an important extension of CT to assess hepatic function besides morphology in liver diseases.

  20. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    blood flow estimation. In conclusion, quantitative model-based dynamic cardiac CT perfusion assessment is capable of accurately estimating MBF across a range of cardiac outputs and tissue perfusion states, outperforms comparable static perfusion estimates, and is relatively robust to noise and temporal subsampling.

  1. Fast pseudo-CT synthesis from MRI T1-weighted images using a patch-based approach

    NASA Astrophysics Data System (ADS)

    Torrado-Carvajal, A.; Alcain, E.; Montemayor, A. S.; Herraiz, J. L.; Rozenholc, Y.; Hernandez-Tamames, J. A.; Adalsteinsson, E.; Wald, L. L.; Malpica, N.

    2015-12-01

    MRI-based bone segmentation is a challenging task because bone tissue and air both present low signal intensity on MR images, making it difficult to accurately delimit the bone boundaries. However, estimating bone from MRI images may allow decreasing patient ionization by removing the need of patient-specific CT acquisition in several applications. In this work, we propose a fast GPU-based pseudo-CT generation from a patient-specific MRI T1-weighted image using a group-wise patch-based approach and a limited MRI and CT atlas dictionary. For every voxel in the input MR image, we compute the similarity of the patch containing that voxel with the patches of all MR images in the database, which lie in a certain anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear combination of the CT values of the corresponding patches. The algorithm was implemented in a GPU. The use of patch-based techniques allows a fast and accurate estimation of the pseudo-CT from MR T1-weighted images, with a similar accuracy as the patient-specific CT. The experimental normalized cross correlation reaches 0.9324±0.0048 for an atlas with 10 datasets. The high NCC values indicate how our method can accurately approximate the patient-specific CT. The GPU implementation led to a substantial decrease in computational time making the approach suitable for real applications.

  2. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT.

    PubMed

    Razi, Tahmineh; Niknami, Mahdi; Alavi Ghazani, Fakhri

    2014-01-01

    Background and aims. Cone-beam computed tomography (CBCT) is an imaging system which has many advantages over computed tomography (CT). In CT scan, Hounsfield Unit (HU) is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value). The aim of the present study was to investigate the relationship between gray scale in CBCT) and Hounsfield Unit (HU) in CT scan. Materials and methods. In this descriptive study, the head of a sheep was scanned with 3 CBCT and one medical CT scanner. Gray scales and HUs were detected on images. Reconstructed data were analyzed to investigate relationship between CBCT gray scales and HUs. Results. A strong correlation between gray scales of CBCT and HUs of CT scan was determined. Conclusion. Considering the fact that gray scale in CBCT is the criteria in measurement of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan.

  3. Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay.

    PubMed

    Paparo, Francesco; Piccazzo, Riccardo; Cevasco, Luca; Piccardo, Arnoldo; Pinna, Francesco; Belli, Fiorenza; Bacigalupo, Lorenzo; Biscaldi, Ennio; De Caro, Giovanni; Rollandi, Gian Andrea

    2014-10-01

    Positron emission tomography (PET) is a functional imaging technique that can investigate the metabolic characteristics of tissues. Currently, PET images are acquired and co-registered with a computed tomography (CT) scan (PET-CT), which is employed for correction of attenuation and anatomical localization. In spite of the high negative predictive value of PET, false-positive results may occur; indeed, Fluorine 18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) uptake is not specific to cancer. As (18)F-FDG uptake may also be seen in non-malignant infectious or inflammatory processes, FDG-avid lesions may necessitate biopsy to confirm or rule out malignancy. However, some PET-positive lesions may have little or no correlative ultrasound (US) and/or CT findings (i.e., low conspicuity on morphological imaging). Since it is not possible to perform biopsy under PET guidance alone, owing to intrinsic technical limitations, PET information has to be integrated into a CT- or US-guided biopsy procedure (multimodal US/PET-CT fusion imaging). The purpose of this pictorial essay is to describe the technique of multimodal imaging fusion between real-time US and PET/CT, and to provide an overview of the clinical settings in which this multimodal integration may be useful in guiding biopsy procedures in PET-positive abdominal lesions.

  4. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT

    PubMed Central

    Razi, Tahmineh; Niknami, Mahdi; Alavi Ghazani, Fakhri

    2014-01-01

    Background and aims. Cone-beam computed tomography (CBCT) is an imaging system which has many advantages over computed tomography (CT). In CT scan, Hounsfield Unit (HU) is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value). The aim of the present study was to investigate the relationship between gray scale in CBCT) and Hounsfield Unit (HU) in CT scan. Materials and methods. In this descriptive study, the head of a sheep was scanned with 3 CBCT and one medical CT scanner. Gray scales and HUs were detected on images. Reconstructed data were analyzed to investigate relationship between CBCT gray scales and HUs. Results. A strong correlation between gray scales of CBCT and HUs of CT scan was determined. Conclusion. Considering the fact that gray scale in CBCT is the criteria in measurement of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan. PMID:25093055

  5. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications

    PubMed Central

    Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.

    2015-01-01

    In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values on a CT image (ie, CT numbers), depending on the mass density of the material. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT, an additional attenuation measurement is obtained with a second x-ray spectrum (ie, a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this review, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches is described. In addition, current and evolving clinical applications are introduced. © RSNA, 2015 PMID:26302388

  6. Multirigid registration of MR and CT images of the cervical spine

    NASA Astrophysics Data System (ADS)

    Hu, Yangqiu; Haynor, David R.

    2004-05-01

    We present our work on fusion of MR and CT images of the cervical spine. To achieve the required registration accuracy of approximately 1mm, the spine is treated as a collection of rigid vertebrae, and a separate rigid body transformation applied to each (Hawkes). This in turn requires segmentation of the CT datasets into separate vertebral images, which is difficult because the narrow planes separating adjacent vertebrae are parallel to the axial plane of the CT scans. We solve this problem by evolving all the vertebral contours simultaneously using a level set method, and use contour competition to estimate the position of the vertebral edges when a clean separation between adjacent vertebrae is not seen. Contour competition is based in turn on the vertical scan principle: no part of a given vertebra is vertically below any part of an inferior vertebra. Once segmentation is complete, the individual rigid body transforms are then estimated using mutual information maximization, and the CT images of the vertebrae superimposed on the MR scans. The resultant fused images contain the bony detail of CT and the soft tissue discrimination of MR and appear to be diagnostically equivalent, or superior, to CT myelograms. A formal test of these conclusions is planned for the next phase of our work.

  7. Postmortem CT angiography: capabilities and limitations in traumatic and natural causes of death.

    PubMed

    Ross, Steffen G; Bolliger, Stephan A; Ampanozi, Garyfalia; Oesterhelweg, Lars; Thali, Michael J; Flach, Patricia M

    2014-01-01

    Whole-body postmortem computed tomographic (CT) angiography is a promising new development in forensic radiology that has the potential to improve vascular and soft-tissue imaging beyond levels currently achievable with unenhanced postmortem CT. Postmortem access to the vascular system and injection of contrast medium are different from those steps in clinical (antemortem) radiology. Because there is no circulation in a corpse that could transport or dilute a contrast medium, the injection must be performed by using a roller pump to fill the vasculature (arterial and venous) with a mixture of a water-soluble iodized contrast medium and polyethylene glycol. In contrast to a classic autopsy, postmortem CT angiography is a minimally invasive procedure. It allows the diagnosis of vascular lesions without the disruption or destruction of anatomic structures, which could result in a loss of evidence in a criminal investigation. Furthermore, postmortem CT angiography facilitates the display of vascular pathologic conditions in areas that are not typically covered with autopsy alone, such as the craniocervical junction and the small pelvis. Therefore, postmortem CT angiography adds substantial value to the classic forensic autopsy; cross-sectional data can be reevaluated objectively at any time and are fully reproducible as counterexpertise, which is as useful in the fields of forensic medicine and pathology as in clinical research. Familiarity with the capabilities of postmortem CT angiography may help radiologists working with forensic cases improve their diagnostic performance. PMID:24819799

  8. Multidetector CT investigation of the mummy of Rosalia Lombardo (1918-1920).

    PubMed

    Panzer, Stephanie; Gill-Frerking, Heather; Rosendahl, Wilfried; Zink, Albert R; Piombino-Mascali, Dario

    2013-10-01

    Whole-body multidetector computed tomography (CT) was performed on the mummified corpse of two-year-old Rosalia Lombardo, an anthropogenic mummy displayed in the Capuchin Catacombs of Palermo, Sicily, Italy. Rosalia Lombardo reportedly died of bronchopneumonia in 1920 and was preserved by the embalmer and taxidermist Alfredo Salafia with a formaldehyde-based fluid. Rosalia Lombardo's body is still exhibited in the Capuchin Catacombs inside the original glass-topped coffin in which she was placed. Only her head is visible: the rest of her body is covered by a sheet. CT images of Rosalia's body within her coffin were of reduced quality because of distinct metal artifacts caused by the coffin itself. Nevertheless, a detailed radiological analysis was possible for most of the body. Analysis of the data from the CT examination revealed indicators for the historically-reported endovasal and intracavity treatment. Rosalia's entire body was preserved in a remarkable state. The exceptional preservation of her internal organs made it possible to consider a radiological diagnosis of pneumonia. For this study, CT was determined to be the ultimate method for investigation, since Rosalia's body had to be kept untouched in her sealed coffin for conservation purposes. The CT examination offered new insights into the current preservation status of the body, and the superior contrast of CT allowed detailed assessment of different tissues. Post-processing methods provided reconstructions on any desired plane, as well as three-dimensional reconstruction, for the best possible visualization and interpretation of the body.

  9. Texture-preserving Bayesian image reconstruction for low-dose CT

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Han, Hao; Hu, Yifan; Liu, Yan; Ma, Jianhua; Li, Lihong; Moore, William; Liang, Zhengrong

    2016-03-01

    Markov random field (MRF) model has been widely used in Bayesian image reconstruction to reconstruct piecewise smooth images in the presence of noise, such as in low-dose X-ray computed tomography (LdCT). While it can preserve edge sharpness via edge-preserving potential function, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it compromises clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodule or colon polyp. This study aims to shift the edge preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF's neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of lung, bone, fat, muscle, etc. from previous full-dose CT scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of proposed reconstruction framework, experiments using clinical patient scans (with lung nodule or colon polyp) were conducted. The experimental outcomes showed noticeable gain by the a priori knowledge for LdCT image reconstruction with the well-known Haralick texture measures. Thus, it is conjectured that texture-preserving LdCT reconstruction has advantages over edge-preserving regional smoothing paradigm for texture-specific clinical applications.

  10. Helical 4D CT and Comparison with Cine 4D CT

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu

    4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.

  11. Functional Imaging: CT and MRI

    PubMed Central

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Synopsis Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advances in magnetic resonance imaging (MRI) of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized helium imaging, which can allow imaging of pulmonary ventilation and .measurement of the size of emphysematous spaces. PMID:18267192

  12. CT Colonography: Pitfalls in Interpretation

    PubMed Central

    Pickhardt, Perry J.; Kim, David H.

    2012-01-01

    Synopsis As with any radiologic imaging test, there are a number of potential interpretive pitfalls at CT colonography (CTC) that need to be recognized and handled appropriately. Perhaps the single most important step in learning to avoid most of these diagnostic traps is simply to be aware of their existence. With a little experience, most of these potential pitfalls will be easily recognized. This review will systematically cover the key pitfalls confronting the radiologist at CTC interpretation, primarily dividing them into those related to technique and those related to underlying anatomy. Tips and pointers for how to effectively handle these potential pitfalls are included. PMID:23182508

  13. Pediatric CT quality management and improvement program.

    PubMed

    Larson, David B; Molvin, Lior Z; Wang, Jia; Chan, Frandics P; Newman, Beverley; Fleischmann, Dominik

    2014-10-01

    Modern CT is a powerful yet increasingly complex technology that continues to rapidly evolve; optimal clinical implementation as well as appropriate quality management and improvement in CT are challenging but attainable. This article outlines the organizational structure on which a CT quality management and improvement program can be built, followed by a discussion of common as well as pediatric-specific challenges. Organizational elements of a CT quality management and improvement program include the formulation of clear objectives; definition of the roles and responsibilities of key personnel; implementation of a technologist training, coaching and feedback program; and use of an efficient and accurate monitoring system. Key personnel and roles include a radiologist as the CT director, a qualified CT medical physicist, as well as technologists with specific responsibilities and adequate time dedicated to operation management, CT protocol management and CT technologist education. Common challenges in managing a clinical CT operation are related to the complexity of newly introduced technology, of training and communication and of performance monitoring. Challenges specific to pediatric patients include the importance of including patient size in protocol and dose considerations, a lower tolerance for error in these patients, and a smaller sample size from which to learn and improve.

  14. [Development of real-time CT fluoroscopy].

    PubMed

    Katada, K; Anno, H; Takeshita, G; Ogura, Y; Koga, S; Ida, Y; Nonomura, K; Kanno, T; Ohashi, A; Sata, S

    1994-10-25

    A new CT system that permits real-time monitoring of CT images was developed. Phantom and volunteer studies revealed that the images were displayed at a rate of six per second with a delay time of 0.83 second with clinically sufficient resolution (256 x 256) using the newly developed fast image processor and partial-reconstruction algorithm. The clinical trial of stereotactic aspiration of intracerebral hematoma was successful. The initial trial with CT fluoroscopy revealed potential usefulness of the system in biopsy and other CT-guided interventions. PMID:9261196

  15. Imaging and PET-PET/CT imaging.

    PubMed

    Von Schulthess, Gustav K; Hany, Thomas F

    2008-03-01

    PET-CT has grown because the lack of anatomic landmarks in PET makes "hardware-fusion" to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. For this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several well-designed studies have demonstrated the benefits of PET-CT.

  16. CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4

    PubMed Central

    Wang, L; Zhou, H; Wang, Y; Cui, G; Di, L-j

    2015-01-01

    Cancer cells rely on glycolysis to maintain high levels of anabolism. However, the metabolism of glucose via glycolysis in cancer cells is frequently incomplete and results in the accumulation of acidic metabolites such as pyruvate and lactate. Thus, the cells have to develop strategies to alleviate the intracellular acidification and maintain the pH stability. We report here that glutamine consumption by cancer cells has an important role in releasing the acidification pressure associated with cancer cell growth. We found that the ammonia produced during glutaminolysis, a dominant glutamine metabolism pathway, is critical to resist the cytoplasmic acidification brought by the incomplete glycolysis. In addition, C-terminal-binding protein (CtBP) was found to have an essential role in promoting glutaminolysis by directly repressing the expression of SIRT4, a repressor of glutaminolysis by enzymatically modifying glutamate dehydrogenase in mitochondria, in cancer cells. The loss of CtBP in cancer cells resulted in the increased apoptosis due to intracellular acidification and the ablation of cancer cell metabolic homeostasis represented by decreased glutamine consumption, oxidative phosphorylation and ATP synthesis. Importantly, the immunohistochemistry staining showed that there was excessive expression of CtBP in tumor samples from breast cancer patients compared with surrounding non-tumor tissues, whereas SIRT4 expression in tumor tissues was abolished compared with the non-tumor tissues, suggesting CtBP-repressed SIRT4 expression contributes to the tumor growth. Therefore, our data suggest that the synergistically metabolism of glucose and glutamine in cancer cells contributes to both pH homeostasis and cell growth. At last, application of CtBP inhibitor induced the acidification and apoptosis of breast cancer cells and inhibited glutaminolysis in engrafted tumors, suggesting that CtBP can be potential therapeutic target of cancer treatment. PMID:25633289

  17. CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4.

    PubMed

    Wang, L; Zhou, H; Wang, Y; Cui, G; Di, L-J

    2015-01-29

    Cancer cells rely on glycolysis to maintain high levels of anabolism. However, the metabolism of glucose via glycolysis in cancer cells is frequently incomplete and results in the accumulation of acidic metabolites such as pyruvate and lactate. Thus, the cells have to develop strategies to alleviate the intracellular acidification and maintain the pH stability. We report here that glutamine consumption by cancer cells has an important role in releasing the acidification pressure associated with cancer cell growth. We found that the ammonia produced during glutaminolysis, a dominant glutamine metabolism pathway, is critical to resist the cytoplasmic acidification brought by the incomplete glycolysis. In addition, C-terminal-binding protein (CtBP) was found to have an essential role in promoting glutaminolysis by directly repressing the expression of SIRT4, a repressor of glutaminolysis by enzymatically modifying glutamate dehydrogenase in mitochondria, in cancer cells. The loss of CtBP in cancer cells resulted in the increased apoptosis due to intracellular acidification and the ablation of cancer cell metabolic homeostasis represented by decreased glutamine consumption, oxidative phosphorylation and ATP synthesis. Importantly, the immunohistochemistry staining showed that there was excessive expression of CtBP in tumor samples from breast cancer patients compared with surrounding non-tumor tissues, whereas SIRT4 expression in tumor tissues was abolished compared with the non-tumor tissues, suggesting CtBP-repressed SIRT4 expression contributes to the tumor growth. Therefore, our data suggest that the synergistically metabolism of glucose and glutamine in cancer cells contributes to both pH homeostasis and cell growth. At last, application of CtBP inhibitor induced the acidification and apoptosis of breast cancer cells and inhibited glutaminolysis in engrafted tumors, suggesting that CtBP can be potential therapeutic target of cancer treatment.

  18. Fat-forming variant of solitary fibrous tumour of the pleura: CT findings.

    PubMed

    Park, C Y; Rho, J Y; Yoo, S M; Jung, H K

    2011-11-01

    The fat-forming variant of solitary fibrous tumour (SFT) was previously called lipomatous haemangiopericytoma and is a rare variant of solitary fibrous tumour. It predominantly occurs in the deep soft tissues of the retroperitoneum and thigh. Only a handful of cases involving the perineum, spine, thoracic wall and pelvic cavity have been reported in the radiological literature and the fat-forming variant of SFT involving the pleura has not been previously reported. Herein, we report the CT findings of a case of the fat-forming variant of SFT involving the pleura that was treated by excision. Chest CT showed a large lobulated heterogeneous fatty mass with a multifocal enhancing soft-tissue component in the left lower hemithorax. Although rare, the fat-forming variant of SFT of the pleura should be added to the differential diagnosis of fat-containing pleural soft-tissue tumours.

  19. Micro-CT of Carotid Arteries: A Tool for Experimental Studies

    SciTech Connect

    Mohr, Andreas; Wenke, Ruediger; Roemer, Frank W.; Lynch, John A.; Gatzka, Christian; Priebe, Markus; Guermazi, Ali; Grigorian, Mikayel; Heller, Martin; Mueller-Huelsbeck, Stefan

    2004-11-15

    Micro-computed tomography (micro-CT) is a high-resolution, nondestructive tool for two- and three-dimensional imaging and quantification. The ability of this technique to assess atherosclerosis of the carotid artery was evaluated in three human cadaver samples based on the original axial acquisitions, multiplanar reconstructions and volume rendering techniques. Quantitative analysis included the calculation of: (1) the original lumen perimeter, original lumen area, plaque area, residual lumen area, calcified area and gross sectional area reduction of the vascular lumen from two-dimensional slices; (2) the total tissue volume, soft tissue volume and calcified tissue volume from the three-dimensional data set. This preliminary study demonstrates the potential of micro-CT as a supplementary method for the two- and three-dimensional ex vivo evaluation of carotid atherosclerosis.

  20. Incorporating detection tasks into the assessment of CT image quality

    NASA Astrophysics Data System (ADS)

    Scalzetti, E. M.; Huda, W.; Ogden, K. M.; Khan, M.; Roskopf, M. L.; Ogden, D.

    2006-03-01

    The purpose of this study was to compare traditional and task dependent assessments of CT image quality. Chest CT examinations were obtained with a standard protocol for subjects participating in a lung cancer-screening project. Images were selected for patients whose weight ranged from 45 kg to 159 kg. Six ABR certified radiologists subjectively ranked these images using a traditional six-point ranking scheme that ranged from 1 (inadequate) to 6 (excellent). Three subtle diagnostic tasks were identified: (1) a lung section containing a sub-centimeter nodule of ground-glass opacity in an upper lung (2) a mediastinal section with a lymph node of soft tissue density in the mediastinum; (3) a liver section with a rounded low attenuation lesion in the liver periphery. Each observer was asked to estimate the probability of detecting each type of lesion in the appropriate CT section using a six-point scale ranging from 1 (< 10%) to 6 (> 90%). Traditional and task dependent measures of image quality were plotted as a function of patient weight. For the lung section, task dependent evaluations were very similar to those obtained using the traditional scoring scheme, but with larger inter-observer differences. Task dependent evaluations for the mediastinal section showed no obvious trend with subject weight, whereas there the traditional score decreased from ~4.9 for smaller subjects to ~3.3 for the larger subjects. Task dependent evaluations for the liver section showed a decreasing trend from ~4.1 for the smaller subjects to ~1.9 for the larger subjects, whereas the traditional evaluation had a markedly narrower range of scores. A task-dependent method of assessing CT image quality can be implemented with relative ease, and is likely to be more meaningful in the clinical setting.

  1. An auxiliary CT tabletop for radiography at the time of CT.

    PubMed

    McCollough, C H; Daly, T R; King, B F; LeRoy, A J

    2001-01-01

    An auxiliary CT tabletop was designed and manufactured such that radiographic images might be acquired, with use of a ceiling-mounted X-ray tube, without removing the patient from the CT table. The tabletop required no modifications to the original CT table housing and did not produce artifacts in the CT images. Radiographs obtained with the overhead X-ray tube and auxiliary tabletop demonstrated image quality equivalent to traditional radiographs.

  2. A quantitative analysis of breast densities using cone beam CT images

    NASA Astrophysics Data System (ADS)

    Betancourt Benítez, Ricardo; Ning, Ruola; Conover, David; Liu, Shaohua

    2009-02-01

    Duct patterns are formed by desmoplastic reactions as most breast carcinomas are. Hence, it has been suggested that the denser a breast is, the higher the likelihood to develop breast cancer. Consequently, breast density has been one of the suggested parameters to estimate the risk to develop breast cancer. Currently, the main technique to evaluate breast densities is through mammograms. However, mammograms have the disadvantage of displaying overlapping structures within the breast. Although there are efficient techniques to obtain breast densities from mammograms, mammography can only provide a rough estimate because of the overlapping breast tissue. In this study, cone beam CT images were utilized to evaluate the breast density of sixteen breast images. First, a breast phantom with known volumes representing fatty, glandular and calcified tissues was designed to calibrate the system. Since cone beam CT provides 3D-isotropic resolution images throughout the field of view, the issue of overlapping structures disappears, allowing greater accuracy in evaluating the volumes of each different part of the phantom. Then, using cone beam CT breast images, the breast density of eight patients was evaluated using a semi-automatic segmentation algorithm that differentiates between fatty, glandular and calcified tissues. The results demonstrated that cone beam CT images provide a better tool to evaluate the breast density of the whole breast more accurately. The results also demonstrated that using this semi-automatic segmentation algorithm improves the efficiency of classifying the breast into the four classifications as recommended by the American College of Radiology.

  3. Ciliary tissue transplantation in the rabbit.

    PubMed

    Jovanovik-Pandova, L; Watson, P G; Liu, C; Chan, W Y; de Wolff-Rouendaal, D; Barthen, E R; Emmanouilidis-van der Spek, K; Jager, M J

    2006-02-01

    Irreversible damage of the ciliary body can be responsible for prolonged ocular hypotony and phthisis bulbi, which, currently, cannot be treated. The aim of this study was to achieve survival of morphologically normal ciliary tissue (CT) transplants in the anterior chamber of a rabbit's eye. Outbred female New Zealand albino rabbits received CT allografts, which were placed on to the surface of the host iris. We evaluated the influence of ciclosporin (CsA), VEGF and donor perfusion on graft survival. Operated eyes were assessed clinically and histologically, and revascularization of the grafts was determined by fluorescein angiography. All grafts became dark and ischemic during the first five to seven days after transplantation. Reperfusion of the grafted tissue was complete at approximately ten days after transplantation. In untreated animals, transplants became infiltrated by inflammatory cells, which led to destruction of the tissue. This was prevented by systemic use of CsA. Transplants treated with VEGF prior to transplantation had fewer ischemic areas but epithelial cell survival was not improved. Whole body donor perfusion prior to preparation of the grafts resulted in less inflammation and, histologically, in a better quantity and quality of the epithelial cells in the CT transplants. Ciliary tissue can be successfully transplanted but the ciliary epithelium suffers from ischemia and in untreated animals the whole transplant is rejected in the classical fashion. If the donor is perfused and the host immunosuppressed, histologically normal ciliary epithelium can be preserved together with rapid revascularization, minimal inflammation and good survival of the transplant, although fibrosis continued to occur during the two months after transplantation. PMID:16054623

  4. Analysis of the advantage of individual PTVs defined on axial 3D CT and 4D CT images for liver cancer.

    PubMed

    Li, Fengxiang; Li, Jianbin; Xing, Jun; Zhang, Yingjie; Fan, Tingyong; Xu, Min; Shang, Dongping; Liu, Tonghai; Song, Jinlong

    2012-11-08

    The purpose of this study was to compare positional and volumetric differences of planning target volumes (PTVs) defined on axial three dimensional CT (3D CT) and four dimensional CT (4D CT) for liver cancer. Fourteen patients with liver cancer underwent 3D CT and 4D CT simulation scans during free breathing. The tumor motion was measured by 4D CT. Three internal target volumes (ITVs) were produced based on the clinical target volume from 3DCT (CTV3D): i) A conventional ITV (ITVconv) was produced by adding 10 mm in CC direction and 5 mm in LR and and AP directions to CTV3D; ii) A specific ITV (ITVspec) was created using a specific margin in transaxial direction; iii) ITVvector was produced by adding an isotropic margin derived from the individual tumor motion vector. ITV4D was defined on the fusion of CTVs on all phases of 4D CT. PTVs were generated by adding a 5 mm setup margin to ITVs. The average centroid shifts between PTVs derived from 3DCT and PTV4D in left-right (LR), anterior-posterior (AP), and cranial-caudal (CC) directions were close to zero. Comparing PTV4D to PTVconv, PTVspec, and PTVvector resulted in a decrease in volume size by 33.18% ± 12.39%, 24.95% ± 13.01%, 48.08% ± 15.32%, respectively. The mean degree of inclusions (DI) of PTV4D in PTVconv, and PTV4D in PTVspec, and PTV4D in PTVvector was 0.98, 0.97, and 0.99, which showed no significant correlation to tumor motion vector (r = -0.470, 0.259, and 0.244; p = 0.090, 0.371, and 0.401). The mean DIs of PTVconv in PTV4D, PTVspec in PTV4D, and PTVvector in PTV4D was 0.66, 0.73, and 0.52. The size of individual PTV from 4D CT is significantly less than that of PTVs from 3DCT. The position of targets derived from axial 3DCT images scatters around the center of 4D targets randomly. Compared to conventional PTV, the use of 3D CT-based PTVs with individual margins cannot significantly reduce normal tissues being unnecessarily irradiated, but may contribute to reducing the risk of missing targets for

  5. Dual-phase CT findings of groove pancreatitis☆

    PubMed Central

    Zaheer, Atif; Haider, Maera; Kawamoto, Satomi; Hruban, Ralph H.; Fishman, Elliot K.

    2015-01-01

    Purpose Groove pancreatitis is a rare focal form of chronic pancreatitis that occurs in the pancreaticoduodenal groove between the major and minor papillae, duodenum and pancreatic head. Radiologic appearance and clinical presentation can result in suspicion of malignancy rendering pancreaticoduodenectomy inevitable. This study reports dual phase CT findings in a series of 12 patients with pathology proven groove pancreatitis. Materials and methods Retrospective review of preoperative CT findings in 12 patients with histologically proven groove pancreatitis after pancreaticoduodenectomy. Size, location, attenuation, presence of mass or cystic components in the pancreas, groove and duodenum, calcifications, duodenal stenosis and ductal changes were recorded. Clinical data, laboratory values, endoscopic ultrasonographic and histopathological findings were collected. Results Soft tissue thickening in the groove was seen in all patients. Pancreatic head, groove and duodenum were all involved in 75% patients. A discrete lesion in the pancreatic head was seen in half of the patients, most of which appeared hypodense on both arterial and venous phases. Cystic changes in pancreatic head were seen in 75% patients. Duodenal involvement was seen in 92% patients including wall thickening and cyst formation. The main pancreatic duct was dilated in 7 patients, with an abrupt cut off in 3 and a smooth tapering stricture in 4. Five patients had evidence of chronic pancreatitis with parenchymal calcifications. Conclusion Presence of mass or soft tissue thickening in the groove with cystic duodenal thickening is highly suggestive of groove pancreatitis. Recognizing common radiological features may help in diagnosis and reduce suspicion of malignancy. PMID:24935140

  6. FDG PET/CT imaging in canine cancer patients.

    PubMed

    Hansen, Anders E; McEvoy, Fintan; Engelholm, Svend A; Law, Ian; Kristensen, Annemarie T

    2011-01-01

    2-Deoxy-2-[¹⁸F]fluoro-D-glucose positron emission tomography/computed tomography (FDG PET/CT) is becoming increasingly available as an imaging modality in veterinary medicine. The purpose of this study was to report semiquantitative standard uptake values (SUV) of malignant and nonmalignant tissues and organs in canine cancer patients. FDG PET/CT was performed in 14 dogs including, nine mesenchymal tumors, four carcinomas, and one incompletely excised mast cell tumor. A generally higher FDG uptake was observed in carcinomas relative to sarcomas. Maximum SUV of carcinomas ranged from 7.6 to 27.0, and for sarcomas from 2.0 to 10.6. The FDG SUV of several organs and tissues, including regional brain uptake is reported, to serve as a reference for future FDG PET studies in canine cancer patients. Several potential pitfalls have been recognized in interpretation of FDG PET images of human patients, a number of these were also observed in this study.

  7. Lung imaging in rodents using dual energy micro-CT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Guo, X.; Clark, D.; Johnston, S. M.; Marshall, C.; Piantadosi, C.

    2012-03-01

    Dual energy CT imaging is expected to play a major role in the diagnostic arena as it provides material decomposition on an elemental basis. The purpose of this work is to investigate the use of dual energy micro-CT for the estimation of vascular, tissue, and air fractions in rodent lungs using a post-reconstruction three-material decomposition method. We have tested our method using both simulations and experimental work. Using simulations, we have estimated the accuracy limits of the decomposition for realistic micro-CT noise levels. Next, we performed experiments involving ex vivo lung imaging in which intact lungs were carefully removed from the thorax, were injected with an iodine-based contrast agent and inflated with air at different volume levels. Finally, we performed in vivo imaging studies in (n=5) C57BL/6 mice using fast prospective respiratory gating in endinspiration and end-expiration for three different levels of positive end-expiratory pressure (PEEP). Prior to imaging, mice were injected with a liposomal blood pool contrast agent. The mean accuracy values were for Air (95.5%), Blood (96%), and Tissue (92.4%). The absolute accuracy in determining all fraction materials was 94.6%. The minimum difference that we could detect in material fractions was 15%. As expected, an increase in PEEP levels for the living mouse resulted in statistically significant increases in air fractions at end-expiration, but no significant changes in end-inspiration. Our method has applicability in preclinical pulmonary studies where various physiological changes can occur as a result of genetic changes, lung disease, or drug effects.

  8. Projection models for stereo display of chest CT

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Hui; Good, Walter F.; Fuhrman, Carl R.; Sumkin, Jules H.; Britton, Cynthia A.; Warfel, Thomas E.; Gur, David

    2004-05-01

    The widespread adoption of chest CT for lung cancer screening will greatly increase the workload of chest radiologists. Contributing to this effort is the need for radiologists to differentiate between localized nodules and slices through linear structures such as blood vessels, in each of a large number of slices acquired for each subject. To increase efficiency and accuracy, thin slices can be combined to provide thicker slabs for presentation, but the resulting superposition of tissues can make it more difficult to detect and characterize smaller nodules. The stereo display of a stack of thin CT slices may be able to clarify three-dimensional structures, while avoiding the loss of resolution and ambiguities due to tissue superposition. The current work focuses on the development and evaluation of stereo projection models that are appropriate for chest CT. As slices are combined into a three dimensional structure, maximum image intensity, which is limited by the display, must be preserved. But, compositing methods that effectively average slices together typically reduce contrast of subtle nodules. For monoscopic viewing, orthographic maximum-intensity projection (MIP), of thick slabs, has been employed to overcome this effect, but this method provides no information of depth or of the geometrical relationships between structures. Our comparison of various rendering options indicates that a stereographic perspective transformation, used in conjunction with a compositing model that combines maximum-intensity projection with an appropriate brightness weighting function, shows promise for this application. The main drawback uncovered was that, for the images used in this study, the lung volume was undersampled in the z-direction, resulting in certain unavoidable image artifacts.

  9. Design of anthropomorphic textured phantoms for CT performance evaluation

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Bochud, François; Samei, Ehsan

    2014-03-01

    Commercially available computed tomography (CT) technologies such as iterative reconstruction (IR) have the potential to enable reduced patient doses while maintaining diagnostic image quality. However, systematically determining safe dose reduction levels for IR algorithms is a challenging task due to their nonlinear nature. Most attempts to evaluate IR algorithms rely on measurements made in uniform phantoms. Such measurements may overstate the dose reduction potential of IR because they don't account for the complex relationship between anatomical variability and image quality. The purpose of this study was to design anatomically informed textured phantoms for CT performance evaluation. Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom includes intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and imaged on a modern multi-slice clinical CT scanner to assess the noise performance of a commercial IR algorithm in the context of uniform and textured backgrounds. Fifty repeated acquisitions were acquired for each background type and noise was assessed by measuring pixel standard deviation, across the ensemble of repeated acquisitions. For pixels in uniform areas, the IR algorithm reduced noise magnitude (STD) by 60% (compared to FBP). However, for edge pixels, the noise magnitude in the IR images ranged from 20% higher to 40% lower compared to FBP. In all FBP images and in IR images of the uniform phantom, noise appeared to be globally non-stationary (i.e., spatially dependent) but locally stationary (within a reasonably small region of interest). In the IR images of the textured phantoms, the noise was globally and locally non-stationary.

  10. Pulmonary Aspergillosis: What CT can Offer Before it is too Late!

    PubMed

    Prasad, Akhila; Agarwal, Kshitij; Deepak, Desh; Atwal, Swapndeep Singh

    2016-04-01

    Aspergillus is a large genus of saprophytic fungi which are present everywhere in the environment. However, in persons with underlying weakened immune response this innocent bystander can cause fatal illness if timely diagnosis and management is not done. Chest infection is the most common infection caused by Aspergillus in human beings. Radiological investigations particularly Computed Tomography (CT) provides the easiest, rapid and decision making information where tissue diagnosis and culture may be difficult and time-consuming. This article explores the crucial role of CT and offers a bird's eye view of all the radiological patterns encountered in pulmonary aspergillosis viewed in the context of the immune derangement associated with it.

  11. Unenhanced CT in the evaluation of urinary calculi: application of advanced computer methods.

    PubMed

    Olcott, E W; Sommer, F G

    1999-04-01

    Recent advances in computer hardware and software technology enable radiologists to examine tissues and structures using three-dimensional figures constructed from the multiple planar images acquired during a spiral CT examination. Three-dimensional CT techniques permit the linear dimensions of renal calculi to be determined along all three coordinate axes with a high degree of accuracy and enable direct volumetric analysis of calculi, yielding information that is not available from any other diagnostic modality. Additionally, three-dimensional techniques can help to identify and localize calculi in patients with suspected urinary colic.

  12. Ethmoid sinus disease: CT evaluation in 400 cases. Part II: Postoperative findings

    SciTech Connect

    Som, P.M.; Lawson, W.; Biller, H.F.; Lanzieri, C.F.

    1986-06-01

    Clinical, pathological, and computed tomographic (CT) findings were reviewed in 400 patients with ethmoid sinus disease, including 272 who had undergone surgery. The postoperative appearance of ethmoid sinuses on CT scans is a highly neglected subject in radiologic literature. The unique ethmoid anatomy permits a variety of surgical approaches, and radiologists must be familiar with the postoperative appearances if they are to recognize the effects of prior surgery and detect, when possible, the recurrence of disease. It is often difficult to evaluate the clinical significance of soft-tissue disease, despite good clinical correlation.

  13. Adaptive segmentation of an x-ray CT image using vector quantization

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Qian, Wei; Clarke, Laurence P.

    1997-04-01

    This paper is part of a feasibility study of using an image segmentation method to automatically identify the tumor or target boundaries in each axial slice or to assist an expert physician to manually draw these boundaries.A two-stage segmentation method is proposed. In the first step, the outlying bone structure is removed from the raw CT data and the brain parenchymal area is extracted. Then a VQ-based method is applied for the segmentation of the soft tissue inside the brain area. Representative results for two sets of x-ray CT axial slice images from tow patients are presented. Problems and further modifications are discussed.

  14. Serendipitous Detection of Hodgkin Lymphoma by 18F-NaF PET/CT.

    PubMed

    Shao, Fuqiang; Wu, Jingbo; Huang, Zhanwen; Zhou, Fan; Chen, Yue

    2016-10-01

    A 17-year-old girl underwent F-NaF PET/CT to evaluate bone pain after an accident. The images did not identify any osseous lesion. However, there was a focally increased activity in the left upper chest, which corresponded to a partially calcified soft tissue mass in the mediastinum, suggestive of malignancy. The result led to subsequent F-FDG PET/CT imaging, which demonstrated intense activity in the mediastinal mass and in multiple cervical, supraclavicular, and mediastinal lymph nodes. Hodgkin lymphoma was diagnosed histopathologically following the biopsy. PMID:27556800

  15. Pulmonary Aspergillosis: What CT can Offer Before it is too Late!

    PubMed

    Prasad, Akhila; Agarwal, Kshitij; Deepak, Desh; Atwal, Swapndeep Singh

    2016-04-01

    Aspergillus is a large genus of saprophytic fungi which are present everywhere in the environment. However, in persons with underlying weakened immune response this innocent bystander can cause fatal illness if timely diagnosis and management is not done. Chest infection is the most common infection caused by Aspergillus in human beings. Radiological investigations particularly Computed Tomography (CT) provides the easiest, rapid and decision making information where tissue diagnosis and culture may be difficult and time-consuming. This article explores the crucial role of CT and offers a bird's eye view of all the radiological patterns encountered in pulmonary aspergillosis viewed in the context of the immune derangement associated with it. PMID:27190919

  16. Evaluation of the potential utility of flat panel CT for quantifying relative contrast enhancement

    SciTech Connect

    Jones, A. Kyle; Mahvash, Armeen

    2012-07-15

    Purpose: Certain directed oncologic therapies seek to take advantage of the fact that tumors are typically more susceptible to directed therapeutic agents than normal tissue owing to their extensive networks of poorly formed, leaky vasculature. If differences between the vascularity of normal and tumor tissues could be quantified, patients could be selected for or excluded from directed treatments on the basis of this difference. However, angiographic imaging techniques such as digital subtraction angiography (DSA) yield two-dimensional data that may be inadequate for this task. As a first step, the authors evaluated the feasibility of using a commercial implementation of flat panel computed tomography (FPCT) to quantify differences in enhancement of a simulated tumor compared with normal tissue based on differences in CT number measured in precontrast and postcontrast scans. Methods: To evaluate the FPCT scanner studied, the authors scanned several phantoms containing simulated normal and tumor tissues. In the first experiment, the authors used an anthropomorphic phantom containing inclusions representing normal, tumor, and bone tissue to evaluate the constancy of CT numbers in scans repeated at clinically relevant intervals of 1 and 3 min. The authors then scanned gelatin phantoms containing dilutions of iodinated contrast to evaluate the accuracy of relative contrast enhancement measurements for a clinical FPCT system. Data were analyzed using widely available software. Results: CT numbers measured in identical locations were constant over both scan intervals evaluated. Measured relative contrast enhancement values were accurate compared with known relative contrast enhancement values. Care must be taken to avoid artifacts in reconstructed images when placing regions of interest. Conclusions: Despite its limitations, FPCT in the interventional laboratory can be used to quantify relative contrast enhancement in phantoms. This is accomplished by measuring CT

  17. CT of hepatic schistosomiasis mansoni

    SciTech Connect

    Fataar, S.; Bassiony, H.; Satyanath, S.; Rudwan, M.A.; Khaffaji, S.; El Magdy, W.; Al-Ansari, A.G.; Hanna, R.

    1985-07-01

    Schistosomal periportal fibrosis produced a typical pattern on computed tomography in five patients. Low-density periportal tissue, present throughout the liver, enhanced strongly after the administration of contrast medium. While rounded in cross section, the thickened periportal tissue produced linear and branching patterns when imaged in longitudinal section. In all cases, the sonographic features were typical of schistosomal periportal fibrosis. A lack of awareness of the distinctive features of periportal fibrosis may result in a mistaken diagnosis of hepatic metastases.

  18. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT

    NASA Astrophysics Data System (ADS)

    Jansen, Jan T. M.; Shrimpton, Paul C.

    2016-07-01

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.

  19. Automatic detection and segmentation of liver metastatic lesions on serial CT examinations

    NASA Astrophysics Data System (ADS)

    Ben Cohen, Avi; Diamant, Idit; Klang, Eyal; Amitai, Michal; Greenspan, Hayit

    2014-03-01

    In this paper we present a fully automated method for detection and segmentation of liver metastases on serial CT examinations (portal phase) given a 2D baseline segmentation mask. Our database contains 27 CT scans, baselines and follow-ups, of 12 patients and includes 22 test cases. Our method is based on the information given in the baseline CT scan which contains the lesion's segmentation mask marked manually by a radiologist. We use the 2D baseline segmentation mask to identify the lesion location in the follow-up CT scan using non-rigid image registration. The baseline CT scan is also used to locate regions of tissues surrounding the lesion and to map them onto the follow-up CT scan, in order to reduce the search area on the follow-up CT scan. Adaptive region-growing and mean-shift segmentation are used to obtain the final lesion segmentation. The segmentation results are compared to those obtained by a human radiologist. Compared to the reference standard our method made a correct RECIST 1.1 assessment for 21 out of 22 test cases. The average Dice index was 0.83 +/- 0.07, average Hausdorff distance was 7.85+/- 4.84 mm, average sensitivity was 0.87 +/- 0.11 and positive predictive value was 0.81 +/- 0.10. The segmentation performance and the RECIST assessment results look promising. We are pursuing the methodology further with expansion to 3D segmentation while increasing the dataset we are collecting from the CT abdomen unit at Sheba medical center.

  20. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT.

    PubMed

    Jansen, Jan T M; Shrimpton, Paul C

    2016-07-21

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990's. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10's of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners. PMID:27362736

  1. SU-E-J-135: Feasibility of Using Quantitative Cone Beam CT for Proton Adaptive Planning

    SciTech Connect

    Jingqian, W; Wang, Q; Zhang, X; Wen, Z; Zhu, X; Frank, S; Li, H; Tsui, T; Zhu, L; Wei, J

    2015-06-15

    Purpose: To investigate the feasibility of using scatter corrected cone beam CT (CBCT) for proton adaptive planning. Methods: Phantom study was used to evaluate the CT number difference between the planning CT (pCT), quantitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units using adaptive scatter kernel superposition (ASKS) technique, and raw CBCT (rCBCT). After confirming the CT number accuracy, prostate patients, each with a pCT and several sets of weekly CBCT, were investigated for this study. Spot scanning proton treatment plans were independently generated on pCT, qCBCT and rCBCT. The treatment plans were then recalculated on all images. Dose-volume-histogram (DVH) parameters and gamma analysis were used to compare between dose distributions. Results: Phantom study suggested that Hounsfield unit accuracy for different materials are within 20 HU for qCBCT and over 250 HU for rCBCT. For prostate patients, proton dose could be calculated accurately on qCBCT but not on rCBCT. When the original plan was recalculated on qCBCT, tumor coverage was maintained when anatomy was consistent with pCT. However, large dose variance was observed when patient anatomy change. Adaptive plan using qCBCT was able to recover tumor coverage and reduce dose to normal tissue. Conclusion: It is feasible to use qu antitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units for proton dose calculation and adaptive planning in proton therapy. Partly supported by Varian Medical Systems.

  2. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT.

    PubMed

    Jansen, Jan T M; Shrimpton, Paul C

    2016-07-21

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990's. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10's of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.

  3. Intracranial CT angiography obtained from a cerebral CT perfusion examination

    SciTech Connect

    Gratama van Andel, H. A. F.; Venema, H. W.; Majoie, C. B.; Den Heeten, G. J.; Grimbergen, C. A.; Streekstra, G. J.

    2009-04-15

    CT perfusion (CTP) examinations of the brain are performed increasingly for the evaluation of cerebral blood flow in patients with stroke and vasospasm after subarachnoid hemorrhage. Of the same patient often also a CT angiography (CTA) examination is performed. This study investigates the possibility to obtain CTA images from the CTP examination, thereby possibly obviating the CTA examination. This would save the patient exposure to radiation, contrast, and time. Each CTP frame is a CTA image with a varying amount of contrast enhancement and with high noise. To improve the contrast-to-noise ratio (CNR) we combined all 3D images into one 3D image after registration to correct for patient motion between time frames. Image combination consists of weighted averaging in which the weighting factor of each frame is proportional to the arterial contrast. It can be shown that the arterial CNR is maximized in this procedure. An additional advantage of the use of the time series of CTP images is that automatic differentiation between arteries and veins is possible. This feature was used to mask veins in the resulting 3D images to enhance visibility of arteries in maximum intensity projection (MIP) images. With a Philips Brilliance 64 CT scanner (64x0.625 mm) CTP examinations of eight patients were performed on 80 mm of brain using the toggling table technique. The CTP examination consisted of a time series of 15 3D images (2x64x0.625 mm; 80 kV; 150 mAs each) with an interval of 4 s. The authors measured the CNR in images obtained with weighted averaging, images obtained with plain averaging, and images with maximal arterial enhancement. The authors also compared CNR and quality of the images with that of regular CTA examinations and examined the effectiveness of automatic vein masking in MIP images. The CNR of the weighted averaged images is, on the average, 1.73 times the CNR of an image at maximal arterial enhancement in the CTP series, where the use of plain averaging

  4. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study

    PubMed Central

    HONDA, Mitsuru; ICHIBAYASHI, Ryo; YOKOMURO, Hiroki; YOSHIHARA, Katsunori; MASUDA, Hiroyuki; HAGA, Daisuke; SEIKI, Yoshikatsu; KUDOH, Chiaki; KISHI, Taichi

    2016-01-01

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1–3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3–4, GCS5–6, and GCS7–8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients. PMID:27356957

  5. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study.

    PubMed

    Honda, Mitsuru; Ichibayashi, Ryo; Yokomuro, Hiroki; Yoshihara, Katsunori; Masuda, Hiroyuki; Haga, Daisuke; Seiki, Yoshikatsu; Kudoh, Chiaki; Kishi, Taichi

    2016-08-15

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1-3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3-4, GCS5-6, and GCS7-8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients. PMID:27356957

  6. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    SciTech Connect

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

  7. Esthetic Management of Gingival Lesions in Anterior Maxilla: The Role of VIP-CT Flap, a Technical Note

    PubMed Central

    Rahpeyma, Amin; Khajehahmadi, Saeedeh

    2014-01-01

    Purpose: Anterior maxilla is a high esthetic demand region. Reconstruction of the soft tissue loss after pathologic resection needs special techniques. Materials and Methods: This article describes the novel use of vascularized interpositional periosteal connective tissue flap of palate (VIP-CT) for reconstruction after resection of long-lasting pyogenic granuloma in anterior maxilla with underlying bone resorption in interdental region. Results: Good esthetic results both in labial gingiva and interdental region were obtained. Conclusion: VIP-CT flap is an ideal option for reconstruction of the pathologic lesions that affect the anterior maxilla and create pathologic space in interdental region. PMID:25013545

  8. MR image-based synthetic CT for IMRT prostate treatment planning and CBCT image-guided localization.

    PubMed

    Chen, Shupeng; Quan, Hong; Qin, An; Yee, Seonghwan; Yan, Di

    2016-01-01

    The purpose of this study was to propose and evaluate a method of creating a synthetic CT (S-CT) from MRI simulation for dose calculation and daily CBCT localization. A pair of MR and CT images was obtained in the same day from each of 10 prostate patients. The pair of MR and CT images was preregistered using the deformable image registration (DIR). Using the corresponding displacement vector field (atlas-DVF), the CT image was deformed to the MR image to create an atlas MR-CT pair. Regions of interest (ROI) on the atlas MR-CT pair were delineated and used to create atlas-ROI masks. 'Leave-one-out' test (one pair of MR and CT was used as subject-MR and subject-CT for evaluation, and the remaining 9 pairs were in the atlas library) was performed. For a subject-MR, autosegmentation and DVFs were generated using DIR between the subject-MR and the 9 atlas-MRs. An S-CT was then generated using the corresponding 9 paired atlas-CTs, the 9 atlas-DVFs and the corresponding atlas-ROI masks. The total 10 S-CTs were evaluated using the Hounsfield unit (HU), the calculated dose distribution, and the auto bony registration to daily CBCT images with respect to the 10 subject-CTs. HU differences (mean ± STD) were (2.4 ± 25.23), (1.18 ± 39.49), (32.46 ± 81.9), (0.23 ± 40.13), and (3.74 ± 144.76) for prostate, bladder, rectal wall, soft tissue outside all ROIs, and bone, respectively. The discrepancy of dose-volume param-eters calculated using the S-CT for treatment planning was small (≤ 0.22% with 95% confidence). Gamma pass rate (2% & 2 mm) was higher than 99.86% inside PTV and 98.45% inside normal structures. Using the 10 S-CTs as the reference CT for daily CBCT localization achieved the similar results compared to using the subject-CT. The translational vector differences were within 1.08 mm (0.37 ± 0.23 mm), and the rotational differences were within 1.1° in all three directions. S-CT created from a simulation MR image using the proposed approach with the

  9. Factors that predict the spontaneous passage of ureteric stones in children

    PubMed Central

    Mokhless, Ibrahim; Zahran, Abdel-Rahman; Youssif, Mohamed; Fouda, Khaled; Fahmy, Ahmed

    2012-01-01

    Objective To study the natural history of stone passage in children with ureterolithiasis and to define factors predictive of spontaneous passage. Patients and methods In all, 72 children with ureteric stones were evaluated; patients with ureteric calculi of >10 mm were excluded, as were those with absolute indications for surgical stone removal. Stone size, location, side, presence of hydronephrosis, perinephric stranding and degree of the tissue-rim sign were estimated by unenhanced helical computed tomography (UHCT). All patients were sent home with no administration of an α-blocker. The stone status was evaluated by a plain abdominal film or CT at ≈6 weeks after the initial diagnostic evaluation. The time from the initial complaint to the passage of the stone was recorded for each patient. Results In all, 54 (75%) children with ureteric stones of ⩽6 mm eventually passed their stones spontaneously. However, stones of <4 mm and those in the distal ureter had a significantly higher spontaneous passage rate and shorter time to stone passage (P < 0.05). The UHCT findings of a higher degree of the tissue-rim sign, hydronephrosis and perinephric fat stranding were associated with a lower likelihood of stone passage. Conclusions The rate of spontaneous passage of ureteric stones in children varies with stone location, and perinephric stranding on UHCT seems to be useful for predicting the possibility of spontaneous passage. In cases with unfavourable signs an early intervention might have better outcomes than conservative therapy. PMID:26558058

  10. State-of-the-art in CT hardware and scan modes for cardiovascular CT

    PubMed Central

    Halliburton, Sandra; Arbab-Zadeh, Armin; Dey, Damini; Einstein, Andrew J.; Gentry, Ralph; George, Richard T.; Gerber, Thomas; Mahesh, Mahadevappa; Weigold, Wm. Guy

    2013-01-01

    Multidetector row computed tomography (CT) allows noninvasive anatomic and functional imaging of the heart, great vessels, and the coronary arteries. In recent years, there have been several advances in CT hardware, which have expanded the clinical utility of CT for cardiovascular imaging; such advances are ongoing. This review article from the Society of Cardiovascular Computed Tomography (SCCT) Basic and Emerging Sciences and Technology (BEST) Working Group summarizes the technical aspects of current state-of-the-art CT hardware and describes the scan modes this hardware supports for cardiovascular CT imaging. PMID:22551595

  11. Pitfalls in CT recognition of mediastinal lymphadenopathy

    SciTech Connect

    Glazer, H.S.; Aronberg, D.J.; Sagel, S.S.

    1985-02-01

    Computed tomography (CT) has become the most accurate radiologic technique for the evaluation of mediastinal lymph nodes. Since the introduction of thoracic CT, a variety of anatomic structures, both normal and aberrant, have been described that can be confused with enlarged mediastinal lymph nodes; these represent potential diagnostic pitfalls. This essay illustrates many of these structures and distinguish them from abnormal lymph nodes.

  12. CT of schistosomal calcification of the intestine

    SciTech Connect

    Fataar, S.; Bassiony, H.; Satyanath, S.; Rudwan, M.; Hebbar, G.; Khalifa, A.; Cherian, M.J.

    1985-01-01

    The spectrum of schistosomal colonic calcification on abdominal radiographs has been described. The appearance on computed tomography (CT) is equally distinctive and occurs with varying degrees of genitourinary calcification. The authors have experience in three cases with the appearance on CT of intestinal calcification due to schistosomiasis.

  13. CT demonstration of bilateral adrenal hemorrhage

    SciTech Connect

    Ling, D.; Korobkin, M.; Silverman, P.M.; Dunnick, N.R.

    1983-08-01

    Bilateral adrenal hemorrhage with subsequent adrenal insufficiency is a recognized complication of anticoagulant therapy. Because the clinical manifestations are often nonspecific, the antemortem diagnosis of adrenal hemorrhage has been a difficult clinical problem. Computed tomography (CT) provides detailed images of the adrenal glands that are not possible with conventional imaging methods. The CT findings of bilateral adrenal hemorrhage in an anticoagulated patient are reported.

  14. The applicability of simultaneous TRUS-CT imaging for the evaluation of prostate seed implants

    SciTech Connect

    Steggerda, Marcel; Schneider, Christoph; Herk, Marcel van; Zijp, Lambert; Moonen, Luc; Poel, Henk van der

    2005-07-15

    To study dose-effect relations of prostate implants with I-125 seeds, accurate knowledge of the dose distribution in the prostate is essential. Commonly, a post-implant computed tomography (CT) scan is used to determine the geometry of the implant and to delineate the contours of the prostate. However, the delineation of the prostate on CT slices is very cumbersome due to poor contrast between the prostate capsule and surrounding tissues. Transrectal Ultrasound (TRUS) on the other hand offers good visualization of the prostate but poor visualization of the implanted seeds. The purpose of this study was to investigate the applicability of combining CT with 3D TRUS by means of image fusion. The advantage of fused TRUS-CT imaging is that both prostate contours and implanted seeds will be well visible. In our clinic, post-implant imaging was realized by simultaneously acquiring a TRUS scan and a CT scan. The TRUS transducer was inserted while the patient was on the CT couch and the CT scan was made directly after the TRUS scan, with the probe still in situ. With the TRUS transducer being visible on both TRUS and CT images, the geometrical relationship between both image sets could be defined by registration on the transducer. Having proven the applicability of simultaneous imaging, the accuracy of this registration method was investigated by additional registration on visible seeds, after preregistration on the transducer. In 4 out of 23 investigated cases an automatic grey value registration on seeds failed for each of the investigated cost functions, and in 2 cases for both cost functions, due to poor visibility of the seeds on the TRUS scan. The average deviations of the seed registration with respect to the transducer registration were negligible. However, in a few individual cases the deviations were significant and probably due to movement of the patient between TRUS and CT scan. In case of a registration on the transducer it is important to avoid patient

  15. The fibromatoses: CT-pathologic correlation.

    PubMed

    Francis, I R; Dorovini-Zis, K; Glazer, G M; Lloyd, R V; Amendola, M A; Martel, W

    1986-11-01

    Although CT has been used in the evaluation of benign fibroblastic tumors (fibromatoses), data are lacking on radiologic-histopathologic correlation. In an attempt to explain the variable CT appearance of these lesions, a retrospective analysis was carried out of CT findings and histopathologic features in nine patients with fibromatoses. In three of four patients who had precontrast CT scans, the tumors were hyperdense relative to muscle, whereas in one patient the lesion was hypodense. The postenhancement appearance was variable. The pathologic specimens were analyzed and graded for collagen content, cellular content, tumor necrosis, and tumor vascularity. No consistent relationship could be established between the CT appearance of these lesions and their histologic appearance.

  16. A Wiki Based CT Protocol Management System.

    PubMed

    Szczykutowicz, Timothy P; Rubert, Nicholas; Belden, Daryn; Ciano, Amanda; Duplissis, Andrew; Hermanns, Ashley; Monette, Stephen; Saldivar, Elliott Janssen

    2015-01-01

    At the University of Wisconsin Madison Department of Radiology, CT protocol management requires maintenance of thousands of parameters for each scanner. Managing CT protocols is further complicated by the unique configurability of each scanner. Due to recent Joint Commission requirements, now all CT protocol changes must be documented and reviewed by a site's CT protocol optimization team. The difficulty of managing the CT protocols was not in assembling the protocols, but in managing and implementing changes. This is why a wiki based solution for protocol management was implemented. A wiki inherently keeps track of all changes, logging who made the changes and when, allowing for editing and viewing permissions to be controlled, as well as allowing protocol changes to be instantly relayed to all scanner locations.

  17. Distinction of Internal Tissue of Raw Ginseng Root Using a Computed Tomography Scanner

    PubMed Central

    Jung, In-Chan; Jeong, In Soo; Kim, Cheon-Suk

    2012-01-01

    Raw ginseng root of Panax ginseng is graded according to its shape and the quality of its internal tissue. A variety of grades are sold with prices according to grade. If an inferior raw ginseng is purchased, the consumer experience an economic loss. This research was conducted in order to explore the possibility of developing a noninvasive method for investigating raw ginseng’s internal tissue. It has been determined that computed tomography (CT) scanner images agreed with actual cross-sections of raw ginseng. CT images were obtained to assess the internal portions of raw ginseng, and CT scans of raw ginseng were thoroughly measured using the Hounsfield unit (HU) system, since it allows for a more detailed analysis compared to nuclear magnetic resonance imaging. HU is a measure of attenuation used for CT images, with each pixel being assigned a value using a scale on which air is defined as -1000, water as 0 and compact bone as +1000. It takes about one second to process are slice and produce an image of the raw ginseng by a one channel CT scanner. An image good enough to discriminate the internal tissues can be obtained in 1/24 seconds with a one-channel CT scanner. Using this method, images of raw ginseng can be obtained and the characteristics of the internal tissues can be observed in a short time. PMID:23717151

  18. Limits of Ultra-Low Dose CT Attenuation Correction for PET/CT.

    PubMed

    Xia, Ting; Alessio, Adam M; Kinahan, Paul E

    2010-01-29

    We present an analysis of the effects of ultra-low dose X-ray computerized tomography (CT) based attenuation correction for positron emission tomography (PET). By ultra low dose we mean less than approximately 5 mAs or 0.5 mSv total effective whole body dose. The motivation is the increased interest in using respiratory motion information acquired during the CT scan for both phase-matched CT-based attenuation correction and for motion estimation. Since longer duration CT scans are desired, radiation dose to the patient can be a limiting factor. In this study we evaluate the impact of reducing photon flux rates in the CT data on the reconstructed PET image by using the CATSIM simulation tool for the CT component and the ASIM simulation tool for the PET component. The CT simulation includes effects of the x-ray tube spectra, beam conditioning, bowtie filter, detector noise, and bean hardening correction. The PET simulation includes the effect of attenuation and photon counting. Noise and bias in the PET image were evaluated from multiple realizations of test objects. We show that techniques can be used to significantly reduce the mAs needed for CT based attenuation correction if the CT is not used for diagnostic purposes. The limiting factor, however, is not the noise in the CT image but rather the bias introduced by CT sinogram elements with no detected flux. These results constrain the methods that can be used to lower CT dose in a manner suitable for attenuation correction of PET data. We conclude that ultra-low-dose CT for attenuation correction of PET data is feasible with current PET/CT scanners.

  19. Rodent brain imaging with SPECT/CT

    SciTech Connect

    Seo, Youngho; Gao, D.-W.; Hasegawa, Bruce H.; Dae, Michael W.; Franc, Benjamin L.

    2007-04-15

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT{sup TM}, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of {sup 99m}Tc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with {sup 99m}Tc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of {sup 99m}Tc-exametazime. Time activity curve of {sup 99m}Tc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  20. Rodent brain imaging with SPECT/CT.

    PubMed

    Seo, Youngho; Gao, Dong-Wei; Hasegawa, Bruce H; Dae, Michael W; Franc, Benjamin L

    2007-04-01

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of 99mTc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with 99mTc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of 99mTc-exametazime. Time activity curve of 99mTc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  1. Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy

    NASA Astrophysics Data System (ADS)

    Hsu, Shu-Hui; Cao, Yue; Huang, Ke; Feng, Mary; Balter, James M.

    2013-12-01

    Magnetic resonance (MR) images often provide superior anatomic and functional information over computed tomography (CT) images, but generally are not used alone without CT images for radiotherapy treatment planning and image guidance. This study aims to investigate the potential of probabilistic classification of voxels from multiple MRI contrasts to generate synthetic CT (‘MRCT’) images. The method consists of (1) acquiring multiple MRI volumes: T1-weighted, T2-weighted, two echoes from a ultra-short echo time (UTE) sequence, and calculated fat and water image volumes using a Dixon method, (2) classifying tissues using fuzzy c-means clustering with a spatial constraint, (3) assigning attenuation properties with weights based on the probability of individual tissue classes being present in each voxel, and (4) generating a MRCT image volume from the sum of attenuation properties in each voxel. The capability of each MRI contrast to differentiate tissues of interest was investigated based on a retrospective analysis of ten patients. For one prospective patient, the correlation of skull intensities between CT and MR was investigated, the discriminatory power of MRI in separating air from bone was evaluated, and the generated MRCT image volume was qualitatively evaluated. Our analyses showed that one MRI volume was not sufficient to separate all tissue types, and T2-weighted images was more sensitive to bone density variation compared to other MRI image types. The short echo UTE image showed significant improvement in contrasting air versus bone, but could not completely separate air from bone without false labeling. Generated MRCT and CT images showed similar contrast between bone and soft/solid tissues. These results demonstrate the potential of the presented method to generate synthetic CT images to support the workflow of radiation oncology treatment planning and image guidance.

  2. Nonrigid registration using regularization that accomodates local tissue rigidity

    NASA Astrophysics Data System (ADS)

    Ruan, Dan; Fessler, Jeffrey A.; Roberson, Michael; Balter, James; Kessler, Marc

    2006-03-01

    Regularized nonrigid medical image registration algorithms usually estimate the deformation by minimizing a cost function, consisting of a similarity measure and a penalty term that discourages "unreasonable" deformations. Conventional regularization methods enforce homogeneous smoothness properties of the deformation field; less work has been done to incorporate tissue-type-specific elasticity information. Yet ignoring the elasticity differences between tissue types can result in non-physical results, such as bone warping. Bone structures should move rigidly (locally), unlike the more elastic deformation of soft issues. Existing solutions for this problem either treat different regions of an image independently, which requires precise segmentation and incurs boundary issues; or use an empirical spatial varying "filter" to "correct" the deformation field, which requires the knowledge of a stiffness map and departs from the cost-function formulation. We propose a new approach to incorporate tissue rigidity information into the nonrigid registration problem, by developing a space variant regularization function that encourages the local Jacobian of the deformation to be a nearly orthogonal matrix in rigid image regions, while allowing more elastic deformations elsewhere. For the case of X-ray CT data, we use a simple monotonic increasing function of the CT numbers (in HU) as a "rigidity index" since bones typically have the highest CT numbers. Unlike segmentation-based methods, this approach is flexible enough to account for partial volume effects. Results using a B-spline deformation parameterization illustrate that the proposed approach improves registration accuracy in inhale-exhale CT scans with minimal computational penalty.

  3. In-patient to isocenter KERMA ratios in CT

    SciTech Connect

    Huda, Walter; Ogden, Kent M.; Lavallee, Robert L.; Roskopf, Marsha L.; Scalzetti, Ernest M.

    2011-10-15

    Purpose: To estimate in-patient KERMA for specific organs in computed tomography (CT) scanning using ratios to isocenter free-in-air KERMA obtained using a Rando phantom.Method: A CT scan of an anthropomorphic phantom results in an air KERMA K at a selected phantom location and air kerma K{sub CT} at the CT scanner isocenter when the scan is repeated in the absence of the phantom. The authors define the KERMA ratio (R{sub K}) as K/ K{sub CT}, which were experimentally determined in a Male Rando Phantom using lithium fluoride chips (TLD-100). R{sub K} values were obtained for a total of 400 individual point locations, as well as for 25 individual organs of interest in CT dosimetry. CT examinations of Rando were performed on a GE LightSpeed Ultra scanner operated at 80 kV, 120 kV, and 140 kV, as well as a Siemens Sensation 16 operated at 120 kV. Results: At 120 kV, median R{sub K} values for the GE and Siemens scanners were 0.60 and 0.64, respectively. The 10th percentile R{sub K} values ranged from 0.34 at 80 kV to 0.54 at 140 kV, and the 90th percentile R{sub K} values ranged from 0.64 at 80 kV to 0.78 at 140 kV. The average R{sub K} for the 25 Rando organs at 120 kV was 0.61 {+-} 0.08. Average R{sub K} values in the head, chest, and abdomen showed little variation. Relative to R{sub K} values in the head, chest, and abdomen obtained at 120 kV, R{sub K} values were about 12% lower in the pelvis and about 58% higher in the cervical spine region. Average R{sub K} values were about 6% higher on the Siemens Sensation 16 scanner than the GE LightSpeed Ultra. Reducing the x-ray tube voltage from 120 kV to 80 kV resulted in an average reduction in R{sub K} value of 34%, whereas increasing the x-ray tube voltage to 140 kV increased the average R{sub K} value by 9%. Conclusions: In-patient to isocenter relative KERMA values in Rando phantom can be used to estimate organ doses in similar sized adults undergoing CT examinations from easily measured air KERMA values at the

  4. CT brain findings in a patient with elevated brain cesium levels.

    PubMed

    Khangure, Simon R; Williams, Eric S; Welman, Christopher J

    2013-12-01

    We describe the CT findings in the brain of a woman with pathologically proven elevated levels of blood and tissue cesium. The 42-year-old woman had been receiving cesium chloride as a non-mainstream treatment for metastatic breast carcinoma. She presented to hospital following a seizure, and died 48 hours after admission. A brain CT performed on hospital admission showed a diffuse increase in attenuation of brain parenchyma. Autopsy revealed elevated levels of cesium in blood and solid organs including the brain. We hypothesize that the imaging findings are attributable to the abnormally elevated level of brain cesium at the time of the CT scan. To our knowledge, this is the first reported case of this imaging finding.

  5. Undifferentiated Connective Tissue Disease

    MedlinePlus

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... L. Goldstein, MD, MMSc (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  6. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  7. Energy and dose considerations for diffraction enhanced CT in small animal studies

    NASA Astrophysics Data System (ADS)

    Connor, Dean; Dilmanian, F. Avraham; Parham, Christopher; Kao, Teresa; Zhong, Zhong

    2007-03-01

    Diffraction enhanced imaging (DEI) uses monochromatic x-rays coupled to an analyzer crystal to extract information about the refraction of x-rays within the object. Studies of excised biological tissues show that DEI has significant contrast-to-noise ratio (CNR) advantages for soft tissue when compared to standard radiography. DEI differs from conventional CT in that its refraction contrast depends on x-ray energy as 1/E, thus the energy and dose considerations for conventional CT will be inappropriate. The goal of this study was to assess the optimal energy for in vivo CT imaging of a mouse head to obtain the largest soft tissue refraction CNR. Through a theoretical model, optimum refraction CNR for mouse brain imaging was found to be about 20 keV. The findings were tested experimentally using the DEI system at the X15A beamline of the National Synchrotron Light Source. Using the parameters for optimized refraction CNR (20 keV, silicon [333] reflection), large image artifacts were caused by DEI's scatter-rejection properties. By increasing the x-ray energy and using a lower order diffraction, silicon [111], soft tissue features within the brain, including the hippocampus, could be resolved.

  8. Human alpha 2-adrenergic receptor subtype distribution: widespread and subtype-selective expression of alpha 2C10, alpha 2C4, and alpha 2C2 mRNA in multiple tissues.

    PubMed

    Eason, M G; Liggett, S B

    1993-07-01

    At present, molecular cloning and pharmacological studies have delineated three human alpha 2-adrenergic receptor (alpha 2AR) subtypes, alpha 2C10, alpha 2C4, and alpha 2C2. Assignment of the alpha 2AR subtypes to specific functions has been limited by an unclear definition of tissue alpha 2AR expression outside of the central nervous system. It has been suggested that alpha 2C4 expression is confined to the brain, that alpha 2C2 expression is only in the liver and kidney, and that there is nearly ubiquitous expression of alpha 2C10. However, this is based on studies of a limited number of rat tissues or on studies using non-species-specific approaches. Therefore, to define alpha 2C10, alpha 2C4, and alpha 2C2 tissue expression, we used reverse transcription of total RNA isolated from 20 human tissues, followed by amplification of alpha 2AR cDNA using the polymerase chain reaction. This technique provided two advantages: high sensitivity and, with the use of subtype-specific oligonucleotide primers and probes, differentiation between the alpha 2AR subtypes. The tissues studied were aorta, vena cava, heart (epicardium and endocardium), lung, skeletal muscle, liver, pancreas (head and tail), fat (perinephric and subcutaneous), kidney (cortex and medulla), prostate, stomach, ileum, jejunum, colon, adrenal gland, and spleen. We found that the majority of these tissues expressed alpha 2C10, with the exceptions being the head of the pancreas, subcutaneous fat, colon, and spleen. In marked distinction to other studies, however, we found a prolific expression of the alpha 2C4 and alpha 2C2 subtypes. Expression of alpha 2C4 was found in all tissues with the exception of liver, fat, stomach, and colon, and a virtually ubiquitous expression of alpha 2C2 was found, with the exception of epicardium. Of all tissues studied, only colon and subcutaneous fat expressed a single alpha 2AR subtype, which was alpha 2C2. Thus, the alpha 2AR subtypes do not have a confined expression but

  9. Human alpha 2-adrenergic receptor subtype distribution: widespread and subtype-selective expression of alpha 2C10, alpha 2C4, and alpha 2C2 mRNA in multiple tissues.

    PubMed

    Eason, M G; Liggett, S B

    1993-07-01

    At present, molecular cloning and pharmacological studies have delineated three human alpha 2-adrenergic receptor (alpha 2AR) subtypes, alpha 2C10, alpha 2C4, and alpha 2C2. Assignment of the alpha 2AR subtypes to specific functions has been limited by an unclear definition of tissue alpha 2AR expression outside of the central nervous system. It has been suggested that alpha 2C4 expression is confined to the brain, that alpha 2C2 expression is only in the liver and kidney, and that there is nearly ubiquitous expression of alpha 2C10. However, this is based on studies of a limited number of rat tissues or on studies using non-species-specific approaches. Therefore, to define alpha 2C10, alpha 2C4, and alpha 2C2 tissue expression, we used reverse transcription of total RNA isolated from 20 human tissues, followed by amplification of alpha 2AR cDNA using the polymerase chain reaction. This technique provided two advantages: high sensitivity and, with the use of subtype-specific oligonucleotide primers and probes, differentiation between the alpha 2AR subtypes. The tissues studied were aorta, vena cava, heart (epicardium and endocardium), lung, skeletal muscle, liver, pancreas (head and tail), fat (perinephric and subcutaneous), kidney (cortex and medulla), prostate, stomach, ileum, jejunum, colon, adrenal gland, and spleen. We found that the majority of these tissues expressed alpha 2C10, with the exceptions being the head of the pancreas, subcutaneous fat, colon, and spleen. In marked distinction to other studies, however, we found a prolific expression of the alpha 2C4 and alpha 2C2 subtypes. Expression of alpha 2C4 was found in all tissues with the exception of liver, fat, stomach, and colon, and a virtually ubiquitous expression of alpha 2C2 was found, with the exception of epicardium. Of all tissues studied, only colon and subcutaneous fat expressed a single alpha 2AR subtype, which was alpha 2C2. Thus, the alpha 2AR subtypes do not have a confined expression but

  10. CT-Based Attenuation Correction in Brain SPECT/CT Can Improve the Lesion Detectability of Voxel-Based Statistical Analyses

    PubMed Central

    Kato, Hiroki; Shimosegawa, Eku; Fujino, Koichi; Hatazawa, Jun

    2016-01-01

    Background Integrated SPECT/CT enables non-uniform attenuation correction (AC) using built-in CT instead of the conventional uniform AC. The effect of CT-based AC on voxel-based statistical analyses of brain SPECT findings has not yet been clarified. Here, we assessed differences in the detectability of regional cerebral blood flow (CBF) reduction using SPECT voxel-based statistical analyses based on the two types of AC methods. Subjects and Methods N-isopropyl-p-[123I]iodoamphetamine (IMP) CBF SPECT images were acquired for all the subjects and were reconstructed using 3D-OSEM with two different AC methods: Chang’s method (Chang’s AC) and the CT-based AC method. A normal database was constructed for the analysis using SPECT findings obtained for 25 healthy normal volunteers. Voxel-based Z-statistics were also calculated for SPECT findings obtained for 15 patients with chronic cerebral infarctions and 10 normal subjects. We assumed that an analysis with a higher specificity would likely produce a lower mean absolute Z-score for normal brain tissue, and a more sensitive voxel-based statistical analysis would likely produce a higher absolute Z-score for in old infarct lesions, where the CBF was severely decreased. Results The inter-subject variation in the voxel values in the normal database was lower using CT-based AC, compared with Chang’s AC, for most of the brain regions. The absolute Z-score indicating a SPECT count reduction in infarct lesions was also significantly higher in the images reconstructed using CT-based AC, compared with Chang’s AC (P = 0.003). The mean absolute value of the Z-score in the 10 intact brains was significantly lower in the images reconstructed using CT-based AC than in those reconstructed using Chang’s AC (P = 0.005). Conclusions Non-uniform CT-based AC by integrated SPECT/CT significantly improved sensitivity and the specificity of the voxel-based statistical analyses for regional SPECT count reductions, compared with

  11. Computerized craniofacial reconstruction using CT-derived implicit surface representations.

    PubMed

    Vandermeulen, Dirk; Claes, Peter; Loeckx, Dirk; De Greef, Sven; Willems, Guy; Suetens, Paul

    2006-05-15

    In forensic craniofacial reconstruction, facial features of an unknown individual are estimated from an unidentified skull, based on a mixture of experimentally obtained guidelines on the relationship between soft tissues and the underlying skeleton. In this paper, we investigate the possibility of using full 3D cross-sectional CT images for establishing a reference database of densely sampled distances between the external surfaces of the skull and head for automated craniofacial reconstruction. For each CT image in the reference database, the hard tissue (skull) and soft tissue (head) volumes are automatically segmented and transformed into signed distance transform (sDT) images, representing for each voxel in this image the Euclidean distance to the closest point on the skull and head surface, respectively, distances being positive (negative) for voxels inside (outside) the skull/head. Multiple craniofacial reconstructions are obtained by first warping each reference skull sDT maps to the target skull sDT using a B-spline based free form deformation algorithm and subsequently applying these warps to the reference head sDT maps. A single reconstruction of the target head surface is defined as the zero level set of the arithmetic average of all warped reference head sDT maps, but other reconstructions are possible, biasing the result to subject specific attributes (age, BMI, gender). Both qualitative and quantitative tests (measuring the similarity between the 3D reconstructed and corresponding original head surface) on a small (N = 20) database are presented to proof the validity of the concept.

  12. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer

    SciTech Connect

    Hansen, Eric K.; Bucci, M. Kara; Quivey, Jeanne M.; Weinberg, Vivian; Xia Ping . E-mail: xia@radonc17.ucsf.edu

    2006-02-01

    Purpose: Many patients with head-and-neck (H and N) cancer have tumor shrinkage and/or weight loss during the course of radiotherapy. We conducted this retrospective study to determine the dosimetric effects of repeat computed tomography (CT) imaging and replanning during the course of intensity-modulated radiotherapy (IMRT) on both normal tissues and target volumes. Methods and Materials: A retrospective chart review identified 13 patients with H and N cancer treated with IMRT who had repeat CT imaging and replanning during the course of radiotherapy. The first IMRT plan for each patient was generated based on the original planning CT scan acquired before the start of treatment. Because of tumor shrinkage or weight loss during radiotherapy, a second CT scan was acquired, and a new plan was generated and used to complete the course of IMRT. CT-CT fusion was used to correct patient positioning differences between the scans. By using a commercial inverse IMRT planning system, a hybrid IMRT plan was generated for each patient by applying the beam configurations of the first IMRT plan (including the intensity profile of each beam) to the anatomy of the second CT scan. The dose-volume histograms of the actual and hybrid IMRT plans were compared using analysis of variance methods for repeated measures. Results: All patients had locally advanced, nonmetastatic Stage III or IV disease, including 6 nasopharynx, 6 oropharynx, and 1 unknown primary site. All patients were treated with concurrent platinum-based chemotherapy. When replanning vs. not replanning was compared, the hybrid IMRT plans (without replanning) demonstrated reduced doses to target volumes and increased doses to critical structures. The doses to 95% (D{sub 95}) of the planning target volumes of the gross tumor volume (PTV{sub GTV}) and the clinical target volume (PTV{sub CTV}) were reduced in 92% of patients, by 0.8-6.3 Gy (p = 0.02) and 0.2-7.4 Gy (p = 0.003), respectively. The maximum dose (D{sub max}) to

  13. MicroPET/CT Colonoscopy in long-lived Min mouse using NM404

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew B.; Halberg, Richard B.; Schutten, Melissa M.; Weichert, Jamey P.

    2009-02-01

    Colon cancer is a leading cause of death in the US, even though many cases are preventable if tumors are detected early. One technique to promote screening is Computed Tomography Colonography (CTC). NM404 is a second generation phospholipid ether analogue which has demonstrated selective uptake and prolonged retention in 43/43 types of malignant tumors but not inflammatory sites or premalignant lesions. The purpose of this experiment was to evaluate (SWR x B6 )F1.Min mice as a preclinical model to test MicroPET/CT dual modality virtual colonoscopy. Each animal was given an IV injection of 124I-NM404 (100 uCi) 24, 48 and 96 hours prior to scanning on a dedicated microPET/CT system. Forty million counts were histogrammed in 3D and reconstructed using an OSEM 2D algorithm. Immediately after PET acquisition, a 93 m volumetric CT was acquired at 80 kVp, 800 uA and 350 ms exposures. Following CT, the mouse was sacrificed. The entire intestinal tract was excised, washed, insufflated, and scanned ex vivo A total of eight tissue samples from the small intestine were harvested: 5 were benign adenomas, 2 were malignant adenocarcinomas, and 1 was a Peyer's patch (lymph tissue) . The sites of these samples were positioned on CT and PET images based on morphological cues and the distance from the anus. Only 1/8 samples showed tracer uptake. several hot spots in the microPET image were not chosen for histology. (SWR x B6)F1.Min mice develop benign and malignant tumors, making this animal model a strong candidate for future dual modality microPET/CT virtual colonography studies.

  14. [Potentialities of temporal bone CT in the diagnosis of chronic purulent otitis media and its complications].

    PubMed

    Zelikovich, E I

    2004-01-01

    Temporal bone CT was used to examine a group of 87 patients with chronic purulent otitis media (103 temporal bones). The patients' age ranged from 2 to 74 years. A scheme was developed and proposed to evaluate the temporal bone by CT. The CT signs of chronic purulent otitis media uncomplicated by cholesteatoma and those of cholesteatomic purulent otitis were identified. The CT symptomatology of chronic purulent otitis includes: sclerotic changes in the bone tissue of the mastoid process, impaired pneumatization of the cavities of the middle ear, including the tympanic cavity, destructive changes in auditory ossicles, carious changes in the walls of the cavities of the middle ear. The CT semiotics of cholesteatoma depends on its site and spread into the temporal bone and includes as follows: deformation of the epitympanum due to soft tissue mass-induced destruction of the lateral wall; the dilated entrance into the antrum; the presence of a cavity with the sclerosed walls in the antromastoid area; carious changes in the auditory ossicles; the displacement of a chain of ossicles medially or laterally in relation to the initial site of cholesteatoma. CT reflects carious changes in the walls of the cavities of the middle ear, including the roof and labyrinthine wall of the tympanum, which allows labyrinthine fistula and intracranial cholesteatomic complications. The study of the temporal bone by the proposed scheme may reveal anomalies and the specific features of its structure: the presentation of the sigmoid sinus, the high elevation of the bulb of the jugular vein, diverticulum of the latter, the low standing of the bottom of the ACH.

  15. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-15

    patients. However, the overall risk of cancer incidence attributable to the CT examination was much higher for the newborn (2.4 in 1000) than for the teenager (0.7 in 1000). For the two pediatric-aged patients in our study, CTDI{sub vol} underestimated dose to large organs in the scan coverage by 30%-48%. The effective dose derived from DLP using published conversion coefficients differed from that calculated using patient-specific organ dose values by -57% to 13%, when the tissue weighting factors of ICRP 60 were used, and by -63% to 28%, when the tissue weighting factors of ICRP 103 were used. Conclusions: It is possible to estimate patient-specific radiation dose and cancer risk from CT examinations by combining a validated Monte Carlo program with patient-specific anatomical models that are derived from the patients' clinical CT data and supplemented by transformed models of reference adults. With the construction of a large library of patient-specific computer models encompassing patients of all ages and weight percentiles, dose and risk can be estimated for any patient prior to or after a CT examination. Such information may aid in decisions for image utilization and can further guide the design and optimization of CT technologies and scan protocols.

  16. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    SciTech Connect

    Bernatowicz, K. Knopf, A.; Lomax, A.; Keall, P.; Kipritidis, J.; Mishra, P.

    2015-01-15

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results

  17. Many Is Better Than One: An Integration of Multiple Simple Strategies for Accurate Lung Segmentation in CT Images.

    PubMed

    Shi, Zhenghao; Ma, Jiejue; Zhao, Minghua; Liu, Yonghong; Feng, Yaning; Zhang, Ming; He, Lifeng; Suzuki, Kenji

    2016-01-01

    Accurate lung segmentation is an essential step in developing a computer-aided lung disease diagnosis system. However, because of the high variability of computerized tomography (CT) images, it remains a difficult task to accurately segment lung tissue in CT slices using a simple strategy. Motived by the aforementioned, a novel CT lung segmentation method based on the integration of multiple strategies was proposed in this paper. Firstly, in order to avoid noise, the input CT slice was smoothed using the guided filter. Then, the smoothed slice was transformed into a binary image using an optimized threshold. Next, a region growing strategy was employed to extract thorax regions. Then, lung regions were segmented from the thorax regions using a seed-based random walk algorithm. The segmented lung contour was then smoothed and corrected with a curvature-based correction method on each axis slice. Finally, with the lung masks, the lung region was automatically segmented from a CT slice. The proposed method was validated on a CT database consisting of 23 scans, including a number of 883 2D slices (the number of slices per scan is 38 slices), by comparing it to the commonly used lung segmentation method. Experimental results show that the proposed method accurately segmented lung regions in CT slices. PMID:27635395

  18. Many Is Better Than One: An Integration of Multiple Simple Strategies for Accurate Lung Segmentation in CT Images

    PubMed Central

    Zhao, Minghua; Liu, Yonghong; Feng, Yaning; Zhang, Ming; He, Lifeng; Suzuki, Kenji

    2016-01-01

    Accurate lung segmentation is an essential step in developing a computer-aided lung disease diagnosis system. However, because of the high variability of computerized tomography (CT) images, it remains a difficult task to accurately segment lung tissue in CT slices using a simple strategy. Motived by the aforementioned, a novel CT lung segmentation method based on the integration of multiple strategies was proposed in this paper. Firstly, in order to avoid noise, the input CT slice was smoothed using the guided filter. Then, the smoothed slice was transformed into a binary image using an optimized threshold. Next, a region growing strategy was employed to extract thorax regions. Then, lung regions were segmented from the thorax regions using a seed-based random walk algorithm. The segmented lung contour was then smoothed and corrected with a curvature-based correction method on each axis slice. Finally, with the lung masks, the lung region was automatically segmented from a CT slice. The proposed method was validated on a CT database consisting of 23 scans, including a number of 883 2D slices (the number of slices per scan is 38 slices), by comparing it to the commonly used lung segmentation method. Experimental results show that the proposed method accurately segmented lung regions in CT slices. PMID:27635395

  19. Dynamic FDG PET/CT imaging with diuresis demonstrates an enterovesical fistula in a lymphoma patient with repeated colon diverticulitis.

    PubMed

    Kao, Pan-Fu; Ting, Wen-Chien; Hsiao, Pei-Ching; Kao, Yu-Lin; Chang, Pai-Jung; Lee, Jong-Kang

    2013-04-01

    A 43-year-old male patient with follicular B-cell lymphoma was referred for a FDG PET/CT scan due to severe left lower abdominal pain to rule out recurrent cancer. These FDG PET/CT images and previous FDG PET/CT images 5 months ago both revealed an air bubble in the urinary bladder on the CT images. He had a recurrent urinary tract infection history for 6 months. A list-mode dynamic data acquisition with diuresis intravenous injection revealed linear FDG activity extending from the upper-left portion of the bladder to a soft tissue mass in the lower-left pelvic region. An enterovesical fistula was confirmed by surgery.

  20. Cytomegalovirus pneumonia in transplant patients: CT findings

    SciTech Connect

    Eun-Young Kang; Patz, E.F. Jr.; Mueller, N.L.

    1996-03-01

    Our goal was to assess the CT findings of cytomegalovirus (CMV) pneumonia in transplant patients. The study included 10 transplant patients who had chest CT scan and pathologically proven isolated pulmonary CMV infection. Five patients had bone marrow transplant and five had solid organ transplant. The CT scans were retrospectively reviewed for pattern and distribution of disease and the CT findings compared with the findings on open lung biopsy (n = 9) and autopsy (n = 1). Nine of 10 patients had parenchymal abnormalities apparent at CT and I had normal CT scans. The findings in the nine patients included small nodules (n = 6), consolidation (n = 4), ground-glass attenuation (n = 4), and irregular lines (n = 1). The nodules had a bilateral and symmetric distribution and involved all lung zones. The consolidation was most marked in the lower lung zones. The CT findings of CMV pneumonia in transplant patients are heterogeneous. The most common patterns include small nodules and areas of consolidation. 13 refs., 4 figs., 1 tab.

  1. [CT in preoperative assessment of renal tumors?].

    PubMed

    Lanng, C; Bowall, P; Egeblad, M; Meyhoff, H H

    1992-04-13

    The value of CT-scanning as part of the preoperative morphological investigation of patients with renal tumours was calculated in a material of 28 patients. In eight patients, operative treatment was not found to be indicated. In the 20 patients in whom operation was undertaken, the operative and histological findings were compared with the findings on CT-scanning. In cases of disagreement, the CT-scanning findings were reassessed. It was found that interpretation of the CT-scan was accurate in 40% of the cases while minor disagreements were present in 25% but these did not have any significance for the indications for operation. In the remaining 35% considerable disagreement was found between the CT-scan and the operative or histological findings such as invasion of neighbouring organs, cysts interpreted as solid tumours with necrosis and as regards interpretation of the retroperitoneal glands. The present authors consider that CT-scanning provides an important supplement to the conventional morphological investigation of renal tumours with intravenous urography and radiography of the thorax. CT-scanning appears to be preferable to ultrasonic scanning in cases which are difficult to review and where expert interpretation of ultrasonic findings is not available. In addition, routine preoperative biopsy of the tumour guided by ultrasound is recommended together with peroperative biopsy for freeze microscopic examination prior to nephrectomy.

  2. SU-E-J-219: A Dixon Based Pseudo-CT Generation Method for MR-Only Radiotherapy Treatment Planning of the Pelvis and Head and Neck

    SciTech Connect

    Maspero, M.; Meijer, G.J.; Lagendijk, J.J.W.; Berg, C.A.T. van den; Seevinck, P.R.; Viergever, M.A.

    2015-06-15

    Purpose: To develop an image processing method for MRI-based generation of electron density maps, known as pseudo-CT (pCT), without usage of model- or atlas-based segmentation, and to evaluate the method in the pelvic and head-neck region against CT. Methods: CT and MRI scans were obtained from the pelvic region of four patients in supine position using a flat table top only for CT. Stratified CT maps were generated by classifying each voxel based on HU ranges into one of four classes: air, adipose tissue, soft tissue or bone.A hierarchical region-selective algorithm, based on automatic thresholding and clustering, was used to classify tissues from MR Dixon reconstructed fat, In-Phase (IP) and Opposed-Phase (OP) images. First, a body mask was obtained by thresholding the IP image. Subsequently, an automatic threshold on the Dixon fat image differentiated soft and adipose tissue. K-means clustering on IP and OP images resulted in a mask that, via a connected neighborhood analysis, allowing the user to select the components corresponding to bone structures.The pCT was estimated through assignment of bulk HU to the tissue classes. Bone-only Digital Reconstructed Radiographs (DRR) were generated as well. The pCT images were rigidly registered to the stratified CT to allow a volumetric and voxelwise comparison. Moreover, pCTs were also calculated within the head-neck region in two volunteers using the same pipeline. Results: The volumetric comparison resulted in differences <1% for each tissue class. A voxelwise comparison showed a good classification, ranging from 64% to 98%. The primary misclassified classes were adipose/soft tissue and bone/soft tissue. As the patients have been imaged on different table tops, part of the misclassification error can be explained by misregistration. Conclusion: The proposed approach does not rely on an anatomy model providing the flexibility to successfully generate the pCT in two different body sites. This research is founded by Zon

  3. Use of a portable CT scanner during resection of subcortical supratentorial astrocytomas of childhood.

    PubMed

    Gwinn, R; Cleary, K; Medlock, M

    2000-01-01

    The development of intraoperative imaging has made it possible to visualize shifting brain structures during surgery, and may allow greater intraoperative discrimination of normal and abnormal tissue. This may provide greater confidence to the neurosurgeon to proceed with a more extensive resection while decreasing postoperative morbidity. We investigated the intraoperative use of a portable CT scanner in the resection of 4 cases of supratentorial, subcortical astrocytomas of childhood to assess its usefulness in determining the endpoint of the dissection. We operated on 4 patients, ages 3-17, with astrocytomas. Three were thalamic, and 1 was based primarily in the caudate nucleus. The approach to the basal ganglia was transcallosal in 3 and transtemporal in 1. Specific observations on the intraoperative use of the portable CT scanner included its overall facility, any additional operative time required, the overall quality of the images, intraoperative decisions made based on the images and problems associated with its use. These observations are presented with a review of intraoperative imaging as it pertains to deep pediatric brain tumors. The CT scanner was helpful in limiting the dissection of the hypothalamic and midbrain regions and in localizing remaining abnormal tissue. The scans allowed informed decisions about leaving margins of the tumor which were adjacent to vital structures, but dit not prove to be a decisive factor in providing a complete resection. The following observations are worth noting: (1) average imaging time was 20 min per scan; (2) the extent and location of residual enhancing tumor was easily identified despite other materials in the surgical bed; (3) air/tissue interfaces limit resolution; (4) tumors retain contrast long enough to obtain multiple scans without additional dye, and (5) the cost profile of a mobile CT scanner is superior to that of a fixed intraoperative CT scanner.

  4. Three-dimensional assessment of brain tissue morphology

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  5. Characterization of a prototype tabletop x-ray CT breast imaging system

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Glick, Stephen J.; Gong, Xing; Didier, Clay; Mah'd, Mufeed

    2007-03-01

    Planar X-ray mammography is the standard medical imaging modality for the early detection of breast cancer. Based on advancements in digital flat-panel detector technology, dedicated x-ray computed tomography (CT) mammography is a modality under investigation that offers the potential for improved breast tumor imaging. We have implemented a prototype half cone-beam CT breast imaging system that utilizes an indirect flat-panel detector. This prototype can be used to explore and evaluate the effect of varying acquisition and reconstruction parameters on image quality. This report describes our system and characterizes the performance of the system through the analysis of Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS). All CT reconstructions were made using Feldkamp's filtered backprojection algorithm. The 3D MTF was determined by the analysis of the plane spread function (PlSF) derived from the surface spread function (SSF) of reconstructed 6.3mm spheres. 3D NPS characterization was performed through the analysis of a 3D volume extracted from zero-mean CT noise of air reconstructions. The effect of varying locations on MTF and the effect of different Butterworth filter cutoff frequencies on NPS are reported. Finally, we present CT images of mastectomy excised breast tissue. Breast specimen images were acquired on our CTMS using an x-ray technique similar to the one used during performance characterization. Specimen images demonstrate the inherent CT capability to reduce the masking effect of anatomical noise. Both the quantitative system characterization and the breast specimen images continue to reinforce the hope that dedicated flat-panel detector, x-ray cone-beam CT will eventually provide enhanced breast cancer detection capability.

  6. Group-wise registration of ultrasound to CT images of human vertebrae

    NASA Astrophysics Data System (ADS)

    Gill, Sean; Mousavi, Parvin; Fichtinger, Gabor; Pichora, David; Abolmaesumi, Purang

    2009-02-01

    Automatic registration of ultrasound (US) to computed tomography (CT) datasets is a challenge of considerable interest, particularly in orthopaedic and percutaneous interventions. We propose an algorithm for group-wise volume-to-volume registration of US to CT images of the lumbar spine. Each vertebra in CT is treated as a sub-volume and transformed individually. The sub-volumes are then reconstructed into a single volume. The algorithm dynamically combines simulated US reflections from the vertebrae surfaces and surrounding soft tissue in the reconstructed CT, with scaled CT data to simulate US images of the spine anatomy. The simulated US data is used to register preoperative CT data to intra-operative US images. Covariance Matrix Adaption - Evolution Strategy (CMA-ES) is utilized as the optimization strategy. The registration is tested using a phantom of the lumbar spine (L3-L5). Initial misalignments of up to 8 mm were registered with a mean target registration error of 1.87+/-0.73 mm for L3, 2.79+/-0.93 mm for L4, 1.72+/-0.70 mm for L5, and 2.08+/-0.55 mm across the entire volume. To select an appropriate optimization strategy, we performed a volume-to- volume registration of US to CT of the lumbar spine, allowing no relative motion between vertebrae. We compare the results of this registration using three optimization strategies: simplex, gradient descent and CMA-ES. CMA-ES was found to converge slower than gradient descent and simplex, but was more robust for rigid volume-to-volume registration for initial misalignments up to 20 mm.

  7. Performance analysis of model based iterative reconstruction with dictionary learning in transportation security CT

    NASA Astrophysics Data System (ADS)

    Haneda, Eri; Luo, Jiajia; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno

    2016-05-01

    In this study, we implement and compare model based iterative reconstruction (MBIR) with dictionary learning (DL) over MBIR with pairwise pixel-difference regularization, in the context of transportation security. DL is a technique of sparse signal representation using an over complete dictionary which has provided promising results in image processing applications including denoising,1 as well as medical CT reconstruction.2 It has been previously reported that DL produces promising results in terms of noise reduction and preservation of structural details, especially for low dose and few-view CT acquisitions.2 A distinguishing feature of transportation security CT is that scanned baggage may contain items with a wide range of material densities. While medical CT typically scans soft tissues, blood with and without contrast agents, and bones, luggage typically contains more high density materials (i.e. metals and glass), which can produce severe distortions such as metal streaking artifacts. Important factors of security CT are the emphasis on image quality such as resolution, contrast, noise level, and CT number accuracy for target detection. While MBIR has shown exemplary performance in the trade-off of noise reduction and resolution preservation, we demonstrate that DL may further improve this trade-off. In this study, we used the KSVD-based DL3 combined with the MBIR cost-minimization framework and compared results to Filtered Back Projection (FBP) and MBIR with pairwise pixel-difference regularization. We performed a parameter analysis to show the image quality impact of each parameter. We also investigated few-view CT acquisitions where DL can show an additional advantage relative to pairwise pixel difference regularization.

  8. Lymph node detection in IASLC-defined zones on PET/CT images

    NASA Astrophysics Data System (ADS)

    Song, Yihua; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2016-03-01

    Lymph node detection is challenging due to the low contrast between lymph nodes as well as surrounding soft tissues and the variation in nodal size and shape. In this paper, we propose several novel ideas which are combined into a system to operate on positron emission tomography/ computed tomography (PET/CT) images to detect abnormal thoracic nodes. First, our previous Automatic Anatomy Recognition (AAR) approach is modified where lymph node zones predominantly following International Association for the Study of Lung Cancer (IASLC) specifications are modeled as objects arranged in a hierarchy along with key anatomic anchor objects. This fuzzy anatomy model built from diagnostic CT images is then deployed on PET/CT images for automatically recognizing the zones. A novel globular filter (g-filter) to detect blob-like objects over a specified range of sizes is designed to detect the most likely locations and sizes of diseased nodes. Abnormal nodes within each automatically localized zone are subsequently detected via combined use of different items of information at various scales: lymph node zone model poses found at recognition indicating the geographic layout at the global level of node clusters, g-filter response which hones in on and carefully selects node-like globular objects at the node level, and CT and PET gray value but within only the most plausible nodal regions for node presence at the voxel level. The models are built from 25 diagnostic CT scans and refined for an object hierarchy based on a separate set of 20 diagnostic CT scans. Node detection is tested on an additional set of 20 PET/CT scans. Our preliminary results indicate node detection sensitivity and specificity at around 90% and 85%, respectively.

  9. Fenestral otosclerosis: significance of preoperative CT evaluation

    SciTech Connect

    Swartz, J.D.; Faerber, E.N.; Wolfson, R.J.; Marlowe, F.I.

    1984-06-01

    Thirty-five consecutive patients with the clinical diagnosis of fenestral otosclerosis were evaluated with high-resolution computed tomography (CT). Twenty-six were diagnosed as having this disorder by CT evidence of abnormal bony excrescences at or adjacent to the oval window. Sections were also evaluated for evidence of plaque formation elsewhere in the lateral wall of the labyrinth and for surgical obstacles such as an abnormally wide cochlear aqueduct, a high jugular vein, and a dehiscent facial nerve. It is concluded that fenestral otosclerosis may be accurately diagnosed with proper CT techniques.

  10. [Helical CT of urinary tract: clinical applications].

    PubMed

    Roy, C; Tuchmann, C; Guth, S; Lang, H; Saussine, C; Jacqmin, D

    2000-09-01

    Helical CT is the most useful imaging modality to evaluate kidney diseases. Different imaging protocols are used to assess the correct diagnosis in each clinical situation. The nephrographic phase (between 90 and 100 s of delay after injection) is more accurate than the cortical phase (between 30 and 40 s of delay) to depict and characterise small renal masses. Multiplanar and 3D reconstruction are useful to plan partial kidney surgery or percutaneous surgery of lithiasis. In emergency, spiral CT, if available, is suitable to assess renal colic. Spiral CT is the best modality to evaluate traumatic kidney.

  11. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    PubMed

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  12. Magnetic resonance imaging of mediastinal and hilar masses: comparison with CT

    SciTech Connect

    Levitt, R.G.; Glazer, H.S.; Roper, C.L.; Lee, J.K.T.; Murphy, W.A.

    1985-07-01

    Magnetic resonance imaging (MRI) was compared to computed tomography (CT) of the mediastinum and/or hila in 37 patients with bronchogenic carcinoma (35 unresectable for cure) and 11 patients with other masses. Spin-echo pulse sequences using a short pulse repetition rate (TR) and short echo delay (TE) were most helpful for detection of abnormal soft-tissue mediastinal and hilar masses. The accuracy of MRI and CT in staging bronchogenic carcinoma for curative resectability/nonresectability was comparable. Several pitfalls in MRI evaluation of the mediastinum were identified. By MRI the esophagus may be misinterpreted as an enlarged retrotracheal lymph node unless serial scans are studied. Small adjacent lymph nodes shown individually by CT may appear as a single enlarged lymph node by MRI due to partial-volume averaging. Because of the requirement for patient selection and the identified pitfalls of MRI, CT remains the radiologic procedure of choice in the staging of patients with bronchogenic carcinoma and the evaluation of other mediastinal and hilar masses at present. However, because of the ability to show blood vessels without an intravascular contrast agent, MRI is useful in evaluating patients with potential contrast allergy and solving diagnostic problems not solved by CT.

  13. Simulation of mammograms and tomosynthesis imaging with cone beam breast CT images

    NASA Astrophysics Data System (ADS)

    Han, Tao; Shaw, Chris C.; Chen, Lingyun; Lai, Chao-jen; Liu, Xinming; Wang, Tianpeng

    2008-03-01

    The use of mammography techniques for the screening and diagnosis of breast cancers has been limited by the overlapping of cancer symptoms with normal tissue structures. To overcome this problem, two methods have been developed and actively investigated recently: digital tomosynthesis mammography and cone beam breast CT. Comparison study with these three techniques will be helpful to understand their difference and further might be supervise the direction of breast imaging. This paper describes and discusses about a technique using a general-purpose PC cluster to develop a parallel computer simulation model to simulate mammograms and tomosynthesis imaging with cone beam CT images of a mastectomy breast specimen. The breast model used in simulating mammography and tomosynthesis was developed by re-scaling the CT numbers of cone beam CT images from 80kVp to 20 kev. The compression of breast was simulated by deformation of the breast model. Re-projection software with parallel computation was developed and used to compute projection images of this simulated compressed breast for a stationary detector and a linearly shifted x-ray source. The resulting images were then used to reconstruct tomosynthesis mammograms using shift-and-add algorithms. It was found that MCs in cone beam CT images were not visible in regular mammograms but faintly visible in tomosynthesis images. The scatter signal and noise property needs to be simulated and incorporated in the future.

  14. Second Generation Gold Nanobeacons for Robust K-Edge Imaging with Multi-Energy CT

    PubMed Central

    Schirra, Carsten O.; Senpan, Angana; Roessl, Ewald; Thran, Axel; Stacy, Allen J.; Wu, Lina; Proska, Roland; Pan, Dipanjan

    2012-01-01

    Spectral CT is the newest advancement in CT imaging technology, which enhances traditional CT images with the capability to image and quantify certain elements based on their distinctive K-edge energies. K-edge imaging feature recognizes high accumulations of targeted elements and presents them as colorized voxels against the normal grayscale X-ray background offering promise to overcome the relatively low inherent contrast within soft tissue and distinguish the high attenuation of calcium from contrast enhanced targets. Towards this aim, second generation gold nanobeacons (GNB2), which incorporate at least five times more metal than the previous generation was developed. The particles were synthesized as lipid-encapsulated, vascularly constrained (>120 nm) nanoparticle incorporating tiny gold nanoparticles (2–4 nm) within a polysorbate core. The choice of core material dictated to achieve a higher metal loading. The particles were thoroughly characterized by physicochemical techniques. This study reports one of the earlier examples of spectral CT imaging with gold nanoparticles demonstrating the potential for targeted in vitro and in vivo imaging and eliminates calcium interference with CT. The use of statistical image reconstruction shows high SNR may allow dose reduction and/or faster scan times. PMID:23185109

  15. Low attenuation areas in normal costal cartilages on CT: clinical implication and correlation with histology.

    PubMed

    Lee, Seunghun; Choi, Yo Won; Jeon, Seok Chol

    2012-05-01

    While normal costal cartilages are known to be homogenous in attenuation on computed tomography (CT), they frequently show internal low attenuation. This study was performed to assess CT features of the low attenuation and to correlate them with histological features. Chest CT scans of 80 patients without chest wall abnormalities in the first eight decades of age with ten consecutive patients in each decade were reviewed. Histological examinations and CT of three costal cartilage specimens, one each from three cadavers, were done. Of the 80 patients, low attenuation areas were noted in 32% of the upper seven costal cartilages and in 64 patients (80%) without significant sexual difference (P = 0.503 and 0.786, respectively). The areas appeared more frequently in the lower costal cartilages than the upper ones, and were mostly symmetrical in distribution (82%). They were usually ill defined (74%) and similar in attenuation to the chest wall muscle (94%), located centrally (100%), and at most a half of the cartilage diameter. In all three cartilage specimens, central areas were grossly distinct from surrounding areas, and were corresponded to low attenuation areas on CT. At histological exam, the central areas showed multiple foci of vascularized loose connective tissue and fat on myxoid background, generally agreeing with the previous description of cartilage canals, a kind of nutrient channel. In conclusion, normal costal cartilages can show central low attenuation areas, which are typically symmetrical in distribution and at most a half of the cartilage diameter.

  16. Intraparenchymal hemorrhage segmentation from clinical head CT of patients with traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Wilkes, Sean; Diaz-Arrastia, Ramon; Butman, John A.; Pham, Dzung L.

    2015-03-01

    Quantification of hemorrhages in head computed tomography (CT) images from patients with traumatic brain injury (TBI) has potential applications in monitoring disease progression and better understanding of the patho-physiology of TBI. Although manual segmentations can provide accurate measures of hemorrhages, the processing time and inter-rater variability make it infeasible for large studies. In this paper, we propose a fully automatic novel pipeline for segmenting intraparenchymal hemorrhages (IPH) from clinical head CT images. Unlike previous methods of model based segmentation or active contour techniques, we rely on relevant and matching examples from already segmented images by trained raters. The CT images are first skull-stripped. Then example patches from an "atlas" CT and its manual segmentation are used to learn a two-class sparse dictionary for hemorrhage and normal tissue. Next, for a given "subject" CT, a subject patch is modeled as a sparse convex combination of a few atlas patches from the dictionary. The same convex combination is applied to the atlas segmentation patches to generate a membership for the hemorrhages at each voxel. Hemorrhages are segmented from 25 subjects with various degrees of TBI. Results are compared with segmentations obtained from an expert rater. A median Dice coefficient of 0.85 between automated and manual segmentations is achieved. A linear fit between automated and manual volumes show a slope of 1.0047, indicating a negligible bias in volume estimation.

  17. 3D elemental distribution images by XRFμCT at LNLS—Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, G. R.; Rocha, H. S.; Calza, C.; Anjos, M. J.; Lima, I.; Pérez, C. A.; Lopes, R. T.

    2011-10-01

    An X-ray Transmission Microtomography (CT) system combined with an X-ray Fluorescence Microtomography (XRFμCT) system was implemented in the Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil. The main objective of this work is to determine the elemental distribution in biological samples (breast, prostate and lung samples) in order to verify the concentration of some elements correlated with characteristics and pathology of each tissue observed by the transmission CT. The experiments were performed at the X-Ray Fluorescence beamline (D09B-XRF) of the Brazilian Synchrotron Light Laboratory, Campinas, Brazil. A quasi-monochromatic beam produced by a multilayer monochromator was used as an incident beam. The sample was placed on a high precision goniometer and translation stages that allow its rotation as well as translation perpendicular to the beam. The fluorescence photons were collected with an energy dispersive HPGe detector placed at 90° to the incident beam, while transmitted photons were detected with a fast Na(Tl) scintillation counter placed behind the sample on the beam direction. The CT images were reconstructed using a filtered back-projection algorithm and the XRFμCT were reconstructed using a filtered back-projection algorithm with absorption corrections. The 3D images were reconstructed using the 3D-DOCTOR software.

  18. Recent Advances in CT and MR Imaging for Evaluation of Hepatocellular Carcinoma

    PubMed Central

    Lee, Jeong Min; Yoon, Jeong-Hee; Joo, Ijin; Woo, Hyun Sik

    2012-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Accurate diagnosis and assessment of disease extent are crucial for proper management of patients with HCC. Imaging plays a crucial role in early detection, accurate staging, and the planning of management strategies. A variety of imaging modalities are currently used in evaluating patients with suspected HCC; these include ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine, and angiography. Among these modalities, dynamic MRI and CT are regarded as the best imaging techniques available for the noninvasive diagnosis of HCC. Recent improvements in CT and MRI technology have made noninvasive and reliable diagnostic assessment of hepatocellular nodules possible in the cirrhotic liver, and biopsy is frequently not required prior to treatment. Until now, the major challenge for radiologists in imaging cirrhosis has been the characterization of small cirrhotic nodules smaller than 2 cm in diameter. Further technological advancement will undoubtedly have a major impact on liver tumor imaging. The increased speed of data acquisition in CT and MRI has allowed improvements in both spatial and temporal resolution, which have made possible a more precise evaluation of the hemodynamics of liver nodules. Furthermore, the development of new, tissue-specific contrast agents such as gadoxetic acid has improved HCC detection on MRI. In this review, we discuss the role of CT and MRI in the diagnosis and staging of HCC, recent technological advances, and the strengths and limitations of these imaging modalities. PMID:24159569

  19. The impact of spectral filtration on image quality in micro-CT system.

    PubMed

    Ren, Liqiang; Ghani, Muhammad U; Wu, Di; Zheng, Bin; Chen, Yong; Yang, Kai; Wu, Xizeng; Liu, Hong

    2016-01-01

    This paper aims to evaluate the impact of spectral filtration on image quality in a microcomputed tomography (micro-CT) system. A mouse phantom comprising 11rods for modeling lung, muscle, adipose, and bones was scanned with 17 s and 2min, respectively. The current (μA) for each scan was adjusted to achieve identical entrance exposure to the phantom, providing a baseline for image quality evaluation. For each region of interest (ROI) within specific composition, CT number variations, noise levels, and contrast-to-noise ratios (CNRs) were evaluated from the reconstructed images. CT number variations and CNRs for bone with high density, muscle, and adipose were compared with theoretical predictions. The results show that the impact of spectral filtration on image quality indicators, such as CNR in a micro-CT system, is significantly associated with tissue characteristics. The findings may provide useful references for optimizing the scanning parameters of general micro-CT systems in future imaging applications. PMID:26894340

  20. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  1. Complementary tumor vascularity imaging in a single PET-CT routine using FDG early dynamic blood flow and contrast-enhanced CT texture analysis

    NASA Astrophysics Data System (ADS)

    Carmi, Raz; Yefremov, Nikolay; Bernstine, Hanna; Groshar, David

    2014-03-01

    A feasibility study of improved PET-CT tumor imaging approach is presented. A single PET-CT routine includes three different techniques: 18F-FDG early dynamic blood flow intended for perfusion assessment; standard late 18F-FDG uptake; and high-resolution contrast-enhanced CT enabling tissue texture analysis. Both PET protocols utilize the same single standard radiotracer dose administration. Quantitative volumetric arterial perfusion maps are derived from the reconstructed dynamic PET images corresponding to successive acquisition time intervals of 3 seconds only. For achieving high accuracy, the analysis algorithm differentiates the first-pass arterial flow from other interfering dynamic effects, and a noise reduction scheme based on adaptive total-variation minimization aims to provide appreciable quantitative map in physical conditions of high noise and low spatial resolution. The CT texture analysis comprises a practical and robust method for generating volumetric tissue irregularity maps. A local map value is represented by the entropy function which is derived from a weighted co-occurrence matrix histogram of the corresponding image voxel three-dimensional vicinity. Unique entropy scaling scheme and parameter optimization process, as well as appropriate scaling for varying image noise levels and contrast agent concentrations, improve the results toward quantitative absolute measure with respect to diverse scanning conditions and key analysis parameters. Representative imaging results are demonstrated on several clinical cases involving different organs and cancer types. In these cases, significant tumor characterization relative to the normal surrounding tissues is seen on the quantitative maps of all three imaging techniques. This proof of concept can lead the way to a new practical diagnostic imaging application.

  2. Photoacoustic characterization of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Gamelin, John; Guo, Puyun; Yan, Shikui; Sanders, Mary; Brewer, Molly; Zhu, Quing

    2009-02-01

    Ovarian cancer has the highest mortality of all gynecologic cancers with a five-year survival rate of only 30%. Because current imaging techniques (ultrasound, CT, MRI, PET) are not capable of detecting ovarian cancer early, most diagnoses occur in later stages (III/IV). Thus many women are not correctly diagnosed until the cancer becomes widely metastatic. On the other hand, while the majority of women with a detectable ultrasound abnormality do not harbor a cancer, they all undergo unnecessary oophorectomy. Hence, new imaging techniques that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. One such technique is photoacoustic imaging, which has great potential to reveal early tumor angiogenesis through intrinsic optical absorption contrast from hemoglobin or extrinsic contrast from conjugated agents binding to appropriate molecular receptors. To better understand the cancer disease process of ovarian tissue using photoacoustic imaging, it is necessary to first characterize the properties of normal ovarian tissue. We have imaged ex-vivo ovarian tissue using a 3D co-registered ultrasound and photoacoustic imaging system. The system is capable of volumetric imaging by means of electronic focusing. Detecting and visualizing small features from multiple viewing angles is possible without the need for any mechanical movement. The results show strong optical absorption from vasculature, especially highly vascularized corpora lutea, and low absorption from follicles. We will present correlation of photoacoustic images from animals with histology. Potential application of this technology would be the noninvasive imaging of the ovaries for screening or diagnostic purposes.

  3. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand; Ranouil, Julien; Morgand, Loïc; Raguin, Olivier; Walker, Paul; Brunotte, François

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optica