Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila.
Subramanian, Aswati; Siefert, Matthew; Banerjee, Soumya; Vishal, Kumar; Bergmann, Kayla A; Curts, Clay C M; Dorr, Meredith; Molina, Camillo; Fernandes, Joyce
2017-10-01
Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017. © 2017 Wiley Periodicals, Inc.
Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette
2015-01-01
Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308
Tanaka, Hiroshi; Okumura, Naoki; Koizumi, Noriko; Sotozono, Chie; Sumii, Yasuhiro; Kinoshita, Shigeru
2017-05-01
To observe the most peripheral region of the corneal endothelial cell (CEC) layer as long as optically recordable by use of a prototype slit-scanning wide-field contact specular microscope and produce a panoramic image to evaluate the variation of CEC density with ageing. Observational case series study. This study involved 15 eyes of 15 normal healthy subjects divided into three groups according to age: A (20-40 years), B (41-60 years) and C (>60 years). The corneal endothelial layer of each eye was recorded in a horizontal direction, from nasal to temporal, with a slit-scanning wide-field contact specular microscope (Konan) and endothelial cell density (ECD) in three specific regions (central, mid-peripheral, and peripheral) was automatically calculated via built-in analysis software. Corneal endothelial images from near the surgical limbus to limbus in all eyes were clearly recorded and panoramic images were made by combining still images. ECD in groups A, B and C were 2809±186, 2717±91 and 2580±129 cells/mm 2 at the centre, 2902±242, 2772±97 and 2604±187 cells/mm 2 at the mid-periphery and 2893±308, 2691±99 and 2533±112 cells/mm 2 at the periphery. Significance differences in ECD was found between groups A and C in all regions and groups between B and C at mid-peripheral region. A prototype slit-scanning wide-field contact specular microscope enabled us to record the endothelial layer from the surgical limbus to limbus of the cornea and compare specific areas among subjects, and showed that ECD in each region of the cornea decreases with ageing. UMIN000021264, Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Hatta, Yukiko; Yokogawa, Hideaki; Kobayashi, Akira; Torisaki, Makoto; Sugiyama, Kazuhisa
2013-01-01
To report the in vivo laser confocal microscopy findings from a patient with Descemet's membrane and subepithelial opacity OU. A healthy 41-year-old male with Descemet's membrane and subepithelial opacity OU was studied. Routine ophthalmic examination, standard slit-lamp biomicroscopy, and in vivo laser confocal microscopic analysis of the entire corneal layer were performed. Slit-lamp biomicroscopy revealed subepithelial opacity in the mid-peripheral to peripheral cornea and numerous opacities located at the level of Descemet's membrane. It was difficult to distinguish the precise histological location of the opacity. In vivo laser confocal microscopy showed numerous hyperreflective particles in the subepithelium to superficial stroma and hyperreflectivity of Descemet's membrane. No abnormalities could be detected in the epithelial cell layer, midstromal layer, deep stromal layer, or endothelial cell layer. Although the origin of the corneal opacities was unclear, in vivo laser confocal microscopy was useful for observing microstructural abnormalities in a case of Descemet's membrane and subepithelial opacity.
Hatta, Yukiko; Yokogawa, Hideaki; Kobayashi, Akira; Torisaki, Makoto; Sugiyama, Kazuhisa
2013-01-01
Purpose To report the in vivo laser confocal microscopy findings from a patient with Descemet's membrane and subepithelial opacity OU. Case Report A healthy 41-year-old male with Descemet's membrane and subepithelial opacity OU was studied. Routine ophthalmic examination, standard slit-lamp biomicroscopy, and in vivo laser confocal microscopic analysis of the entire corneal layer were performed. Slit-lamp biomicroscopy revealed subepithelial opacity in the mid-peripheral to peripheral cornea and numerous opacities located at the level of Descemet's membrane. It was difficult to distinguish the precise histological location of the opacity. In vivo laser confocal microscopy showed numerous hyperreflective particles in the subepithelium to superficial stroma and hyperreflectivity of Descemet's membrane. No abnormalities could be detected in the epithelial cell layer, midstromal layer, deep stromal layer, or endothelial cell layer. Conclusion Although the origin of the corneal opacities was unclear, in vivo laser confocal microscopy was useful for observing microstructural abnormalities in a case of Descemet's membrane and subepithelial opacity. PMID:23626574
Komatsu, F; Ishida, Y
1997-04-01
For chronic myelocytic leukemia patients with very high numbers of platelets, we describe an efficient method for the collection of peripheral blood stem cells (PBSC) using the Fresenius AS104 cell separator. In these patients, it is difficult to collect a sufficient number of PBSC, due to the platelet band interfering with the machine's red cell interface sensor. We, therefore, tried a manual adjustment of the device. The collection phase was set automatically. When the whole blood began to separate into the red cell layer and plasma (plus mononuclear cell) layer, the red cell interface setting of "7:1" was changed to "OFF," and the plasma pump flow rate was controlled manually in order to locate the interface position 1 cm from the outside wall of the centrifuge chamber. After the collection phase, the procedure was returned to the automatic setting. By repeating this procedure, we were able to collect large numbers of PBSC.
Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)
1994-01-01
A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.
Qiu, Huiling; Nadaud, Isabelle; Ledoigt, Gérard; Piquet-Pissaloux, Agnès; Branlard, Gérard
2016-06-30
Magnesium (Mg), an indispensable mineral for plant growth, is concentrated in the peripheral layers (PLs) of the mature grain of wheat. The supply of Mg was interrupted from plant heading to maturity and a proteomic approach was used to investigate the PLs at three stages of development. Two genotypes with contrasting concentrations of Mg in the grain were studied: Apache (low Mg) and MgHL (high Mg). The concentration of Mg was significantly reduced in the roots (10-21%), straw (18-50%) and grain (24-10%), respectively. Mg deficiency altered enzymes involved in photosynthesis, glycolysis, respiration, amino acid synthesis, cell division, protein degradation and folding at early stages, especially in MgHL. This latter had smaller grain by reducing grain potential size and dry matter accumulation. By contrast in Apache, few proteins were affected at early stages and proteins related to stress/defense and arginine/proline metabolism were up accumulated resulting in lower number of grains per ear (24.9%). This study showed that Mg in PLs plays an important role in cell division, ATP generation, carbohydrate and amino acid metabolism, and hence may influence grain potential size and assimilates in grain, which determines grain weight. These results should help wheat breeders improve Mg content and hence grain yield. Magnesium (Mg) is an abundant cation and is involved in many cell activities. Its role in determining wheat productivity remains unclear. This study is the first to investigate how Mg deficiency influences the physiological characters of wheat and dry matter in the grain in two genotypes with contrasting Mg content. Moreover, Mg is concentrated in peripheral layers of grain, which are known to play a critical role in grain development. In this study, we investigated proteins in the peripheral layers expressed differentially in three development stages to identify the mechanism by which Mg influences grain development. This study revealed that the supply of Mg influences grain yield and that Mg regulates proteins related to cell metabolism and stress defense in grain. Copyright © 2016 Elsevier B.V. All rights reserved.
Richards, K S; Arme, C; Bridges, J F
1983-06-01
Peritoneal hydatids of Echinococcus granulosus equinus of 9 months standing in BALB/c mice occurred as free cysts or cysts within cyst masses. Both showed wide variation in size and in host tissue response, and all had a well-developed laminated layer separating the host tissue response from the germinal layer. In the smallest cyst-mass cysts the host tissue response was present as remnants of the initial cellular attack involving eosinophils. Slightly larger cyst-mass cysts possessed a primary macrophage invasion which phagocytosed the remnants of the initial attack and also, though to little effect, the laminated layer material. In the largest cyst-mass cysts a second macrophage invasion, of monocyte origin, had commenced and transformation stages of these cells to macrophages were observed. No fibroblasts surrounded individual cyst-mass cysts but they were present around the cyst mass, encapsulating it and possibly preventing further host cell invasion. Thus, the host tissue response around individual cyst-mass cysts remained 'preserved' at an early stage such as existed at the time of encapsulation. Small free cysts showed a primary macrophage invasion and transformation stages of cells of a secondary infiltration of peritoneal origin. Peripheral to the macrophages were fibroblasts demonstrating limited fibrinogenesis, and each cyst was surrounded by a layer of mesothelial cells. Large free cysts, also delimited by a mesothelial layer, possessed peripheral connective tissue, a deep fibrous layer and a monolayer of very compressed macrophages lying adjacent to the laminated layer. It is emphasized that an understanding of the host tissue response in cysts of different sizes and from different locations is an essential pre-requisite for the design of experimental studies.
Engineering Bi-Layer Nanofibrous Conduits for Peripheral Nerve Regeneration
Zhu, Yiqian; Wang, Aijun; Patel, Shyam; Kurpinski, Kyle; Diao, Edward; Bao, Xuan; Kwong, George; Young, William L.
2011-01-01
Trauma injuries often cause peripheral nerve damage and disability. A goal in neural tissue engineering is to develop synthetic nerve conduits for peripheral nerve regeneration having therapeutic efficacy comparable to that of autografts. Nanofibrous conduits with aligned nanofibers have been shown to promote nerve regeneration, but current fabrication methods rely on rolling a fibrous sheet into the shape of a conduit, which results in a graft with inconsistent size and a discontinuous joint or seam. In addition, the long-term effects of nanofibrous nerve conduits, in comparison with autografts, are still unknown. Here we developed a novel one-step electrospinning process and, for the first time, fabricated a seamless bi-layer nanofibrous nerve conduit: the luminal layer having longitudinally aligned nanofibers to promote nerve regeneration, and the outer layer having randomly organized nanofibers for mechanical support. Long-term in vivo studies demonstrated that bi-layer aligned nanofibrous nerve conduits were superior to random nanofibrous conduits and had comparable therapeutic effects to autografts for nerve regeneration. In summary, we showed that the engineered nanostructure had a significant impact on neural tissue regeneration in situ. The results from this study will also lead to the scalable fabrication of engineered nanofibrous nerve conduits with designed nanostructure. This technology platform can be combined with drug delivery and cell therapies for tissue engineering. PMID:21501089
Roque, Katharine; Shin, Kyung-Min; Jo, Ji-Hoon; Kim, Hyoung-Ah
2015-01-01
Hazardous biochemical agents in animal husbandry indoor environments are known to promote the occurrence of various illnesses among workers and animals. The relationship between endotoxin levels in dust collected from chicken farms and various immunological markers was investigated. Peripheral blood was obtained from 20 broiler chickens and 20 laying hens from four different chicken farms in Korea. Concentrations of total or respirable dust in the inside the chicken farm buildings were measured using a polyvinyl chloride membrane filter and mini volume sampler. Endotoxin levels in the dust were determined by the Limulus Amebocyte Lysate Kinetic method. Interferon-γ production by peripheral blood mononuclear cells stimulated with concanavalin A was significantly lower in broilers or layers from the farms with higher endotoxin concentrations than the chickens from the farms with lower endotoxin levels. An opposite pattern was observed for plasma cortisol concentrations with higher cortisol levels found in chickens from the farms with higher endotoxin levels. When peripheral lymphocytes were examined, the percentage of CD3-Ia+ B cells was lower in layers from farms with higher endotoxin levels than those from locations with lower endotoxin levels. Overall, these results suggest a probable negative association between dust endotoxin levels and cell-mediated immunity in chickens. PMID:25549222
Harn, Horng-Jyh; Huang, Mao-Hsuan; Huang, Chi-Ting; Lin, Po-Cheng; Yen, Ssu-Yin; Chou, Yi-Wen; Ho, Tsung-Jung; Chu, Hen-Yi; Chiou, Tzyy-Wen; Lin, Shinn-Zong
2013-01-01
Following a stroke, the administration of stem cells that have been treated with granulocyte colony-stimulating factor (GCSF) can ameliorate functional deficits in both rats and humans. It is not known, however, whether the application of GCSF-mobilized peripheral blood stem cells (PBSCs) to human skin can function as an antiaging treatment. We used a Lanyu pig (Sus scrofa) model, since compared with rodents, the structure of a pig's skin is very similar to human skin, to provide preliminary data on whether these cells can exert antiaging effects over a short time frame. GCSF-mobilized PBSCs from a young male Lanyu pig (5 months) were injected intradermally into the cheek skin of aged female Lanyu pigs, and tissues before and after the cell injections were compared to determine whether this treatment caused skin rejuvenation. Increased levels of collagen, elastin, hyaluronic acid, and the hyaluronic acid receptor CD44 were observed in both dermal and subcutaneous layers following the injection of PBSCs. In addition, the treated skin tissue was tighter and more elastic than adjacent control regions of aged skin tissue. In the epidermal layer, PBSC injection altered the levels of both involucrin and integrin, indicating an increased rate of epidermal cell renewal as evidenced by reductions in both cornified cells and cells of the spinous layers and increases in the number of dividing cells within the basal layer. We found that the exogenous PBSCs, visualized using fluorescence in situ hybridization, were located primarily in hair follicles and adjacent tissues. In summary, PBSC injection restored young skin properties in the skin of aged (90 months) pigs. On the basis of our preliminary data, we conclude that intradermal injection of GCSF-mobilized PBSCs from a young pig can rejuvenate the skin in aged pigs.
Use of real-time PCR to rule out Marek's disease in the diagnosis of peripheral neuropathy.
Gall, Sesny; Kőrösi, László; Cortes, Aneg L; Delvecchio, Andrea; Prandini, Francesco; Mitsch, Peter; Gimeno, Isabel M
2018-08-01
This article reports nine cases of neurological disease in brown layer pullets that occured in various European countries between 2015 and 2018. In all cases, the onset of neurological clinical signs was at 4-8 weeks of age and they lasted up to 22 weeks of age. Enlargement of peripheral nerves was the main lesion observed in all cases. Histopathological evaluation of nerves revealed oedema with moderate to severe infiltration of plasma cells. Marek's disease (MD) was ruled out by real-time PCR as none of the evaluated tissues had a high load of oncogenic MD virus (MDV) DNA, characteristics of MD. Based on the epidemiological data (layers with clinical signs starting at 5-8 weeks of age), gross lesions (peripheral nerve enlargement with a lack of tumours in other organs), histopathological lesions (oedema and infiltration of plasma cells), and no evidence of high load of MDV DNA, we concluded that those cases were due to peripheral neuropathy (PN). PN is an autoimmune disease easily misdiagnosed as MD, leading to a costly enforcement of the vaccination protocol. Additional vaccination against MD does not protect against PN and could worsen the clinical signs by over-stimulating the immune system. Differential diagnosis between PN and MD should always be considered in cases of neurological disease with enlargement of peripheral nerves as the only gross lesion. This case report shows for the first time how real-time PCR to detect oncogenic MDV is a very valuable tool in the differential diagnosis of PN and MD.
Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens
2016-01-01
Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376
Reevaluation of the Beam and Radial Hypotheses of Parallel Fiber Action in the Cerebellar Cortex
Cramer, Samuel W.; Gao, Wangcai; Chen, Gang
2013-01-01
The role of parallel fibers (PFs) in cerebellar physiology remains controversial. Early studies inspired the “beam” hypothesis whereby granule cell (GC) activation results in PF-driven, postsynaptic excitation of beams of Purkinje cells (PCs). However, the “radial” hypothesis postulates that the ascending limb of the GC axon provides the dominant input to PCs and generates patch-like responses. Using optical imaging and single-cell recordings in the mouse cerebellar cortex in vivo, this study reexamines the beam versus radial controversy. Electrical stimulation of mossy fibers (MFs) as well as microinjection of NMDA in the granular layer generates beam-like responses with a centrally located patch-like response. Remarkably, ipsilateral forepaw stimulation evokes a beam-like response in Crus I. Discrete molecular layer lesions demonstrate that PFs contribute to the peripherally generated responses in Crus I. In contrast, vibrissal stimulation induces patch-like activation of Crus II and GABAA antagonists fail to convert this patch-like activity into a beam-like response, implying that molecular layer inhibition does not prevent beam-like responses. However, blocking excitatory amino acid transporters (EAATs) generates beam-like responses in Crus II. These beam-like responses are suppressed by focal inhibition of MF-GC synaptic transmission. Using EAAT4 reporter transgenic mice, we show that peripherally evoked patch-like responses in Crus II are aligned between parasagittal bands of EAAT4. This is the first study to demonstrate beam-like responses in the cerebellar cortex to peripheral, MF, and GC stimulation in vivo. Furthermore, the spatial pattern of the responses depends on extracellular glutamate and its local regulation by EAATs. PMID:23843513
Anderson, C W
2001-09-01
Using injections of small molecular weight fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101 (SR101), brainstem circuits presumed to be involved in feeding motor output were investigated. As has been shown previously in other studies, projections to the cerebellar nuclei were identified from the cerebellar cortex, the trigeminal motor nucleus, and the vestibular nuclei. Results presented here suggest an additional pathway from the hypoglossal motor nuclei to the cerebellar nucleus as well as an afferent projection from the peripheral hypoglossal nerve to the Purkinje cell layer of the cerebellar cortex. Injections in the cerebellar cortex combined with retrograde labeling of the peripheral hypoglossal nerve demonstrate anatomical convergence at the level of the medial reticular formation. This suggests a possible integrative region for afferent feedback from the hypoglossal nerve and information through the Purkinje cell layer of the cerebellar cortex. The activity-dependent uptake of SR101 additionally suggests a reciprocal, polysynaptic pathway between this same area of the medial reticular formation and the trigeminal motor nuclei. The trigeminal motor neurons innervate the m adductor mandibulae, the primary mouth-closing muscle. The SR101 uptake clearly labeled the ventrolateral hypoglossal nuclei, the medial reticular formation, and the Purkinje cell layer of the cerebellar cortex. Unlike retrograde labeling of the peripheral hypoglossal nerve, stimulating the hypoglossal nerve while SR101 was bath-applied labeled trigeminal motor neurons. This, combined with the dextran labeling, suggests a reciprocal connection between the trigeminal motor nuclei and the cerebellar nuclei, as well as the medulla. Taken together, these data are important for understanding the neurophysiological pathways used to coordinate the proper timing of an extremely rapid, goal-directed movement and may prove useful for elucidating some of the first principles of sensorimotor integration.
Retinal profile and structural differences between myopes and emmetropes
NASA Astrophysics Data System (ADS)
Clark, Christopher Anderson
Refractive development has been shown to be influenced by optical defocus in the eye and the interpretation of this signal appears to be localized in the retina. Optical defocus is not uniform across the retina and has been suggested as a potential cause of myopia development. Specifically hyperopic focus, i.e. focusing light behind the retina, may signal the eye to elongate, causing myopia. This non-uniform hyperopic signal appears to be due to the retinal shape. Ultimately, these signals are detected by the retina in an as yet undetermined manner. The purpose of this thesis is to examine the retinal profile using a novel method developed at Indiana University and then to examine retinal structural changes across the retina associated with myopia. Myopes exhibited more prolate retinas than hyperopes/emmetropes using the SD OCT. Using the SD OCT, this profile difference was detectable starting at 5 degrees from the fovea, which was closer than previously reported in the literature. These results agreed significantly with results found from peripheral refraction and peripheral axial length at 10 degrees. Overall, the total retina was thinner for myopes than hyperopes/emmetropes. It was also statistically significantly thinner for the Outer Nuclear Layer (ONL), Inner Nuclear Layer (INL) and Outer Plexiform Layer (OPL) but not for other retinal layers such as the Ganglion Layer. Thinning generally occurred outside of 5 degrees. The SD OCT method provided a nearly 10 fold increase in sensitivity which allowed for detection of profile changes closer to the fovea. The location of the retinal changes may be interesting as the layers that showed significant differences in thickness are also layers that contain cells believed to be associated with refractive development (amacrine, bipolar, and photoreceptor cells.) The reason for the retinal changes cannot be determined with this study, but possible theories include stretch due to axial elongation, neural remodeling due to blur, and/or direct influence on refractive development due to neural cell densities.
Collin, S P
1988-01-01
A light microscopy study of the retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae) has revealed a duplex retina with a rod to cone ratio between 4:1 and 6:1. The inner nuclear layer consists of three layers of large horizontal cells, tightly packed, stellate bipolar cells, and up to three substrata of amacrine cells. The collaterals of the many supporting Müller cells project from the inner to the outer limiting membrane and divide the retina into many subunits. The cells of the ganglion cell layer are distributed into two layers, although a large proportion of ganglion cells are also displaced into the inner plexiform and inner nuclear layers. Topographic analysis of the cells in the ganglion cell layer, inner plexiform and inner nuclear layers reveals a number of regional specializations or "areae centrales". Ganglion cells were retrogradely-labelled with cobalt-lysine from the optic nerve, and three sub-populations of neurons characterized on their soma size and position. Small (20-50 microns2), large (80-300 microns2) and giant (greater than 300 microns2) sub-populations of ganglion cells each revealed distinct retinal specializations with peak densities of 3 x 10(3), 1.25 x 10(3) and 1.57 x 10(3) cells per mm2, respectively. Topographical comparison between Nissl-stained and retrogradely-labelled ganglion cell populations have established that a maximum of 20% in the "area centralis", and 75% in unspecialized, peripheral regions of the retina are non-ganglion cells. Out of a total of 210,566 cells in the ganglion cell layer, 49% were found to be non-ganglion cells. Iso-density contour maps of amacrine and bipolar cell distributions also reveal some specializations. These cell concentrations lie in corresponding regions to areas of increased density in the large and giant ganglion cell populations, suggesting some functional association.
NASA Astrophysics Data System (ADS)
Smith, Elizabeth Myhra
The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.
A novel method for measuring hydraulic conductivity at the human blood-nerve barrier in vitro.
Helton, E Scott; Palladino, Steven; Ubogu, Eroboghene E
2017-01-01
Microvascular barrier permeability to water is an essential biophysical property required for the homeostatic maintenance of unique tissue microenvironments. This is of particular importance in peripheral nerves where strict control of ionic concentrations is needed for axonal signal transduction. Previous studies have associated inflammation, trauma, toxin exposure and metabolic disease with increases in water influx and hydrostatic pressure in peripheral nerves with resultant endoneurial edema that may impair axonal function. The regulation of water permeability across endoneurial microvessels that form the blood-nerve barrier (BNB) is poorly understood. Variations exist in apparatus and methods used to measure hydraulic conductivity. The objective of the study was to develop a simplified hydraulic conductivity system using commercially available components to evaluate the BNB. We determined the mean hydraulic conductivity of cultured confluent primary and immortalized human endoneurial endothelial cell layers as 2.00×10 -7 and 2.17×10 -7 cm/s/cm H₂O respectively, consistent with restrictive microvascular endothelial cells in vitro. We also determined the mean hydraulic conductivity of immortalized human brain microvascular endothelial cell layers, a commonly used blood-brain barrier (BBB) cell line, as 0.20×10 -7 cm/s/cm H₂O, implying a mean 10-fold higher resistance to transendothelial water flux in the brain compared to peripheral nerves. To our knowledge, this is the first reported measurement of human BNB and BBB hydraulic conductivities. This model represents an important tool to further characterize the human BNB and deduce the molecular determinants and signaling mechanisms responsible for BNB hydraulic conductivity in normal and disease states in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Marek's disease (MD) is a herpesvirus-induced lymphoma in chickens with a significant economic impact to the poultry industry, costing the industry over $1 billion annually worldwide. MD is controllable by vaccination and improving genetic resistance in the host. Two inbred layer lines, matched at...
Msx1 and Msx2 are expressed in sub-populations of vascular smooth muscle cells.
Goupille, Olivier; Saint Cloment, Cécile; Lopes, Miguel; Montarras, Didier; Robert, Benoît
2008-08-01
Using an nlacZ reporter gene inserted at the Msx1 and Msx2 loci, we could analyze the expression of these homeogenes in the adult mouse. We observed that Msx genes are prominently expressed in a subset of blood vessels. The Msx2nlacZ allele is mainly expressed in a restricted population of mural cells in peripheral arteries and veins. Msx1nlacZ is expressed to a lesser extent by vascular smooth muscle cells of peripheral arteries, but is highly expressed in arterioles and capillaries, making Msx1 a novel marker for a subpopulation of pericytes. Expression is set up early in developing vessels and maintained throughout life. In addition, expression of both genes is observed in a few endothelial cells of the aorta at fetal stages, and only Msx2 continues to be expressed in this layer at the adult stage. These results suggest major functions for Msx genes in vascular mural cell formation and remodeling. Copyright (c) 2008 Wiley-Liss, Inc.
Mantle Cell Hyperplasia of Peripheral Lymph Nodes as Initial Manifestation of Sickle Cell Disease.
Monabbati, Ahmad; Noori, Sadat; Safaei, Akbar; Ramzi, Mani; Eghbali, Seyedsajjad; Adib, Ali
2016-01-01
Sickle cell disease (SCD) is a well known hemoglobinopathy with usual manifestations including anemia, hyperbilirubinemia, and vasoocclusive complications. Despite presence of mild splenomegaly in early phase of the disease, lymphadenopathy is not an often finding of SCD. We introduce an undiagnosed case of SCD who presented in third decade of his life with multiple cervical lymphadenopathies and mild splenomegaly persistent for about five years. Histopathologic examination of the resected lymph nodes showed expansion of the mantle cell layers of secondary follicles as well as several monomorphic mantle cell nodules. To rule out possibility of a malignant process involving lymph nodes, an immunohistochemical panel was ordered which was in favor of benign mantle cell hyperplasia. Immunoglobulin gene rearrangement study showed no clonal bands and confirmed benign nature of the process. Respecting mild abnormalities on Complete Blood Count, peripheral blood smear was reviewed revealing some typical sickle red blood cells as well as rare nucleated red blood cells. Solubility test for hemoglobin (HB) S was positive. Hemoglobin electrophoresis confirmed diagnosis of homozygous HbS disease.
Sovalat, Hanna; Scrofani, Maurice; Eidenschenk, Antoinette; Pasquet, Stéphanie; Rimelen, Valérie; Hénon, Philippe
2011-04-01
Recently, we demonstrated that normal human bone marrow (hBM)-derived CD34(+) cells, released into the peripheral blood after granulocyte colony-stimulating factor mobilization, contain cell subpopulations committed along endothelial and cardiac differentiation pathways. These subpopulations could play a key role in the regeneration of post-ischemic myocardial lesion after their direct intracardiac delivery. We hypothesized that these relevant cells might be issued from very small embryonic-like stem cells deposited in the BM during ontogenesis and reside lifelong in the adult BM, and that they could be mobilized into peripheral blood by granulocyte colony-stimulating factor. Samples of normal hBM and leukapheresis products harvested from cancer patients after granulocyte colony-stimulating factor mobilization were analyzed and sorted by multiparameter flow cytometry strategy. Immunofluorescence and reverse transcription quantitative polymerase chain reaction assays were performed to analyze the expression of typical pluripotent stem cells markers. A population of CD34(+)/CD133(+)/CXCR4(+)/Lin(-) CD45(-) immature cells was first isolated from the hBM or from leukapheresis products. Among this population, very small (2-5 μm) cells expressing Oct-4, Nanog, and stage-specific embryonic antigen-4 at protein and messenger RNA levels were identified. Our study supports the hypothesis that very small embryonic-like stem cells constitute a "mobile" pool of primitive/pluripotent stem cells that could be released from the BM into the peripheral blood under the influence of various physiological or pathological stimuli. In order to fully support that hBM- and leukapheresis product-derived very small embryonic-like stem cells are actually pluripotent, we are currently testing their ability to differentiate in vitro into cells from all three germ layers. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Immunohistochemical Analysis of P63 Expression in Odontogenic Lesions
Atarbashi Moghadam, Saede; Atarbashi Moghadam, Fazele; Eini, Ebrahim
2013-01-01
P63 may have a role in tumorigenesis and cytodifferentiation of odontogenic lesions. We investigated the immunohistochemical expression of P63 in a total of 30 cases of odontogenic cysts and tumors. The percentage of positive cells was calculated in the lining of odontogenic cysts and islands of ameloblastoma. P63 expression was evident in all types of odontogenic lesions. P63 was expressed throughout the lining epithelium of odontogenic keratocyst except surface parakeratinized layer. In addition, calcifying odontogenic cyst showed P63 expression in all layers. In almost all radicular and dentigerous cysts, the basal and parabasal layers were immunoreactive. Peripheral cells of ameloblastoma expressed P63; however, stellate reticulum had weaker immunostaining. No significant difference in P63 expression was observed between studied lesions (P = 0.86). Expression of P63 in odontogenic lesions suggests that this protein is important in differentiation and proliferation of odontogenic epithelial cells. However, it seems that it could not be a useful marker to differentiate between aggressive and nonaggressive lesions. P63 also represents a progenitor or basal cell marker, and it is not expressed in mature differentiated cells. PMID:24350278
Changes in corneal epithelial layer inflammatory cells in aqueous tear-deficient dry eye.
Lin, Hui; Li, Wei; Dong, Nuo; Chen, Wensheng; Liu, Jing; Chen, Lelei; Yuan, Hongxia; Geng, Zhixin; Liu, Zuguo
2010-01-01
To investigate the morphology, distribution, and density of inflammatory cells in the corneal epithelium of aqueous tear-deficient dry eye. Thirty-two patients with non-Sjögren's syndrome (NSS) dry eye, 14 patients with Sjögren's syndrome (SS) dry eye, and 33 healthy volunteers were studied. In vivo laser scanning confocal microscopy was used to investigate both Langerhans cell (LCs) and leukocyte distribution and density in the peripheral and central corneal epithelium. LC morphology was also evaluated. Multifactor regression analysis assessed whether there is a correlation between clinical manifestations and inflammatory cell densities. LCs were present in both central (34.9 +/- 5.7 cells/mm(2)) and peripheral (90.7 +/- 8.2 cells/mm(2)) parts of the normal corneal epithelium. Moreover, LC density increased dramatically in the central corneal epithelium in patients with NSS (89.8 +/- 10.8 cells/mm(2)) and SS (127.9 +/- 23.7 cells/mm(2)). The ratio of LCs with obvious processes was much higher in patients with dry eye than in healthy volunteers. LC density also increased in peripheral corneal epithelium in patients with SS, but not in those with NSS. Leukocyte density in normal corneal epithelium was very low, whereas it increased in the central corneal epithelium (4.6 +/- 1.0 cells/mm(2)) in NSS and in both central (49.0 +/- 12.9 cells/mm(2)) and peripheral (84.2 +/- 36.8 cells/mm(2)) corneal epithelium in SS. Densities of LCs and leukocytes showed significant correlation with the severity found in clinical evaluation. The LC and leukocyte changes in the corneal epithelium suggest their involvement in aqueous tear-deficient dry eye pathophysiology. In vivo dynamic assessment of central corneal inflammatory cell density may serve as an indicator of dry eye severity and provide new insight for dry eye treatment.
Histologic development of the human fovea from midgestation to maturity.
Hendrickson, Anita; Possin, Daniel; Vajzovic, Lejla; Toth, Cynthia A
2012-11-01
To describe the histologic development of the human central retina from fetal week (Fwk) 22 to 13 years. Retrospective observational case series. Retinal layers and neuronal substructures were delineated on foveal sections of fixed tissue stained in azure II-methylene blue and on frozen sections immunolabeled for cone, rod, or glial proteins. Postmortem tissue was from 11 eyes at Fwk 20-27; 8 eyes at Fwk 28-37; 6 eyes at postnatal 1 day to 6 weeks; 3 eyes at 9 to 15 months; and 5 eyes at 28 months to 13 years. At Fwk 20-22 the fovea could be identified by the presence of a single layer of cones in the outer nuclear layer. Immunolabeling detected synaptic proteins, cone and rod opsins, and Müller glial processes separating the photoreceptors. The foveal pit appeared at Fwk 25, involving progressive peripheral displacement of ganglion cell, inner plexiform, and inner nuclear layers. The pit became wider and shallower after birth, and appeared mature by 15 months. Between Fwk 25 and Fwk 38, all photoreceptors developed more distinct inner and outer segments, but these were longer on peripheral than foveal cones. After birth the foveal outer nuclear layer became much thicker as cone packing occurred. Cone packing and neuronal migration during pit formation combined to form long central photoreceptor axons, which changed the outer plexiform layer from a thin sheet of synaptic pedicles into the thickest layer in the central retina by 15 months. Foveal inner and outer segment length matched peripheral cones by 15 months and was 4 times longer by 13 years. These data are necessary to understand the marked changes in human retina from late gestation to early adulthood. They provide qualitative and quantitative morphologic information required to interpret the changes in hyper- and hyporeflexive bands in pediatric spectral-domain optical coherence tomography images at the same ages. Copyright © 2012 Elsevier Inc. All rights reserved.
Generation of induced pluripotent stem cells from a patient with X-linked juvenile retinoschisis.
Peng, Chi-Hsien; Huang, Kang-Chieh; Lu, Huai-En; Syu, Shih-Han; Yarmishyn, Aliaksandr A; Lu, Jyh-Feng; Buddhakosai, Waradee; Lin, Tai-Chi; Hsu, Chih-Chien; Hwang, De-Kuang; Shen, Chia-Ning; Chen, Shih-Jen; Chiou, Shih-Hwa
2018-05-01
X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy manifested as splitting of anatomical layers of retina. In this report, we generated a patient-specific induced pluripotent stem cell (iPSC) line, TVGH-iPSC-013-05, from the peripheral blood mononuclear cells of a male patient with XLRS by using the Sendai-virus delivery system. We believe that XLRS patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease. Copyright © 2018. Published by Elsevier B.V.
Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues
NASA Astrophysics Data System (ADS)
Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.
1991-09-01
NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.
Motor neuron differentiation of iPSCs obtained from peripheral blood of a mutant TARDBP ALS patient.
Bossolasco, Patrizia; Sassone, Francesca; Gumina, Valentina; Peverelli, Silvia; Garzo, Maria; Silani, Vincenzo
2018-05-17
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease, mainly affecting the motor neurons (MNs) and without effective therapy. Drug screening is hampered by the lack of satisfactory experimental and pre-clinical models. Induced pluripotent stem cells (iPSCs) could help to define disease mechanisms and therapeutic strategies as they could be differentiated into MNs, otherwise inaccessible from living humans. In this study, given the seminal role of TDP-43 in ALS pathophysiology, MNs were obtained from peripheral blood mononuclear cells-derived iPSCs of an ALS patient carrying a p.A382T TARDBP mutation and a healthy donor. Venous samples were preferred to fibroblasts for their ease of collection and no requirement for time consuming extended cultures before experimentation. iPSCs were characterized for expression of specific markers, spontaneously differentiated into primary germ layers and, finally, into MNs. No differences were observed between the mutated ALS patient and the control MNs with most of the cells displaying a nuclear localization of the TDP-43 protein. In conclusion, we here demonstrated for the first time that human TARDBP mutated MNs can be successfully obtained exploiting the reprogramming and differentiation ability of peripheral blood cells, an easily accessible source from any patient. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Yoon, Chang Ki; Yu, Hyeong Gon
2018-03-01
To investigate how macular ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) thicknesses within the macula change with retinitis pigmentosa (RP) severity. Spectral domain optical coherence tomography (SD-OCT) was used to examine 177 patients with RP and 177 normal controls. An optical coherence tomography (OCT) line scan was used to grade RP severity. Retinitis pigmentosa (RP) was categorized as more advanced if there was no identifiable inner segment ellipsoid (ISe) band (NISE) and as less advanced if an ISe band could be identified and peripheral loss of ISe was apparent (IISE). Ganglion cell-inner plexiform layer (GCIPL) and RNFL thicknesses were manually measured on OCT images and analysed. Pearson's correlation analyses were used to examine correlations between GCIPL thickness, RNFL thickness, visual acuity (VA) and visual field extent in patients and controls. Ganglion cell-inner plexiform layer (GCIPL) was significantly thicker in IISE than in control eyes (p < 0.001), but significantly thinner in NISE than in IISE eyes (p < 0.001) in both horizontal and vertical OCT scans. Retinal nerve fibre layer (RNFL) was significantly thicker in eyes with IISE and NISE than in control eyes in both horizontal and vertical meridians (all p < 0.001). Ganglion cell-inner plexiform layer (GCIPL) thickness showed a weak positive correlation with vision, and RNFL thickness showed a weak negative correlation with vision and visual field extent. Based on these results, the inner retina, including the GCIPL and RNFL, maintains its gross integrity longer than the photoreceptor layer in RP. Additionally, thickening of the inner retina may have some functional implications in patients with RP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Value of peripheral nodes in controlling multilayer scale-free networks
NASA Astrophysics Data System (ADS)
Zhang, Yan; Garas, Antonios; Schweitzer, Frank
2016-01-01
We analyze the controllability of a two-layer network, where driver nodes can be chosen randomly only from one layer. Each layer contains a scale-free network with directed links and the node dynamics depends on the incoming links from other nodes. We combine the in-degree and out-degree values to assign an importance value w to each node, and distinguish between peripheral nodes with low w and central nodes with high w . Based on numerical simulations, we find that the controllable part of the network is larger when choosing low w nodes to connect the two layers. The control is as efficient when peripheral nodes are driver nodes as it is for the case of more central nodes. However, if we assume a cost to utilize nodes that is proportional to their overall degree, utilizing peripheral nodes to connect the two layers or to act as driver nodes is not only the most cost-efficient solution, it is also the one that performs best in controlling the two-layer network among the different interconnecting strategies we have tested.
Ontogenetic expression of the vanilloid receptors TRPV1 and TRPV2 in the rat retina.
Leonelli, Mauro; Martins, Daniel O; Kihara, Alexandre H; Britto, Luiz R G
2009-11-01
The present study aimed to analyze the gene and protein expression and the pattern of distribution of the vanilloid receptors TRPV1 and TRPV2 in the developing rat retina. During the early phases of development, TRPV1 was found mainly in the neuroblastic layer of the retina and in the pigmented epithelium. In the adult, TRPV1 was found in microglial cells, blood vessels, astrocytes and in neuronal structures, namely synaptic boutons of both retinal plexiform layers, as well as in cell bodies of the inner nuclear layer and the ganglion cell layer. The pattern of distribution of TRPV1 was mainly punctate, and there was higher TRPV1 labeling in the peripheral retina than in central regions. TRPV2 expression was quite distinct. Its expression was virtually undetectable by immunoblotting before P1, and that receptor was found by immunohistochemistry only by postnatal day 15 (P15). RNA and protein analysis showed that the adult levels are only reached by P60, which includes small processes in the retinal plexiform layers, and labeled cellular bodies in the inner nuclear layer and the ganglion cell layer. There was no overlapping between the signal observed for both receptors. In conclusion, our results showed that the patterns of distribution of TRPV1 and TRPV2 are different during the development of the rat retina, suggesting that they have specific roles in both visual processing and in providing specific cues to neural development.
Ahmed, Daniel; Stattin, Martin; Glittenberg, Carl; Krebs, Ilse; Ansari-Shahrezaei, Siamak
2017-01-16
To present a patient with stellate nonhereditary idiopathic foveomacular retinoschisis on one eye and peripheral retinoschisis without foveal affection on the other eye. A case report with complete workup of family history and clinical examination, including multimodal imaging with optical coherence tomography and angiography, fluorescein angiography, and infrared fundus imaging. Genetic testing for gene mutation XRLS1 was performed. A white woman with unremarkable medical history presented with stellate foveal splitting of the outer plexiform layer on the right eye and peripheral splitting of the outer plexiform layer on both eyes. All known allegeable trigger factors for the existence of a hereditary or acquired foveomacular retinoschisis were ruled out either by clinical presentation or genetic testing. This led to the diagnosis of stellate nonhereditary idiopathic foveomacular retinoschisis with central involvement only present on one eye. Although peripheral schisis of the outer plexiform layer is often concomitant with central splitting in X-linked juvenile retinoschisis, this is the first known report of nonhereditary cleavage of the outer plexiform layer of the peripheral retina without central affection in a patient with documented stellate nonhereditary idiopathic foveomacular retinoschisis on the other eye. These findings suggest an accurate bilateral examination of the peripheral retina while confirming the diagnose of stellate nonhereditary idiopathic foveomacular retinoschisis.
NASA Technical Reports Server (NTRS)
Zheng, H. Q.; Staehelin, L. A.
2001-01-01
The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.
Hayashi, Tetsuya; Tachibana, Syuichi; Nakao, Keiichi; Tokitsu, Kosuke; Morita, Takuya; Kishima, Genichi
2017-04-01
The patient was a 79-year-old woman who had received enucleation of right pulmonary papilloma 7 years earlier. She experienced bloody sputum and was therefore referred to our hospital. Chest computed tomography revealed a mass shadow(21 mm) in the right upper lobe (S2). By bronchoscopy, there was no bulging lesion in the visible range. SCC and CEA increased to 6.4 ng/ml and 6.42 ng/ml, respectively. Whole-body 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) showed increased FDG uptake in the region of the right-lung mass shadow (maximum standardized uptake value 12.95). Since malignancy could not be ruled out, a wedge resection was performed. The post-operative histopathologic diagnosis was squamous cell papilloma. Our literature review showed 12 out of 14 cases with solitary papilloma of the peripheral lung to have increased FDG uptake. Ki-67 positive cells were confirmed in the basal layers of the epithelium, and active cell proliferation of the papilloma is likely to be a cause of increased FDG uptake.
NASA Astrophysics Data System (ADS)
Schmid, Gernot; Cecil, Stefan; Überbacher, Richard
2013-07-01
Based on numerical computations using commercially available finite difference time domain code and a state-of-the art anatomical model of a 5-year old child, the influence of skin conductivity on the induced electric field strength inside the tissue for homogeneous front-to-back magnetic field exposure and homogeneous vertical electric field exposure was computed. Both ungrounded as well as grounded conditions of the body model were considered. For electric field strengths induced inside CNS tissue the impact of skin conductivity was found to be less than 15%. However, the results demonstrated that the use of skin conductivity values as obtainable from the most widely used data base of dielectric tissue properties and recommended by safety standards are not suitable for exposure assessment with respect to peripheral nerve tissue according to the ICNIRP 2010 guidelines in which the use of the induced electric field strengths inside the skin is suggested as a conservative surrogate for peripheral nerve exposure. This is due to the fact that the skin conductivity values derived from these data bases refer to the stratum corneum, the uppermost layer of the skin, which does not contain any nerve or receptor cells to be protected from stimulation effects. Using these skin conductivity values which are approximately a factor 250-500 lower than skin conductivity values used in studies on which the ICNIRP 2010 guidelines are based on, may lead to overestimations of the induced electric field strengths inside the skin by substantially more than a factor of 10. However, reliable conductivity data of deeper skin layers where nerve and preceptor cells are located is very limited. It is therefore recommended to include appropriate background information in the ICNIRP guidelines and the dielectric tissue property databases, and to put some emphasis on a detailed layer-specific characterization of skin conductivity in near future.
Fine structure of the tapetum lucidum of the paca Cuniculus paca.
Braekevelt, C R
1993-01-01
The tapetum lucidum of the paca or spotted cavy (Cuniculus paca) has been studied by light and electron microscopy. The reflective layer in this species is a tapetum cellulosum situated in the choroid of the superior fundus. Posteriorly, the tapetum is composed of several layers of ovoid to flattened cells while peripherally the tapetum gradually thins down and disappears. Within the tapetal cells most cell organelles are located near the nucleus. The dominant feature of these cells is, however, a large accumulation of electron-dense rodlets which show a variety of sizes, shapes and orientations. These rodlets are the reflective material of the tapetum, and energy dispersive studies indicate that they are rich in sulphur. The diameter and spacing of these irregular rodlets is too varied to be consistent with the principles of constructive interference, and the tapetum in the paca is probably capable of only diffuse reflectance. The retinal epithelium over the tapetum is nonpigmented while in non-tapetal locations it is normally pigmented.
NASA Astrophysics Data System (ADS)
Jenkins, J. Logan; Kao, Chris C.; Cayce, Jonathan M.; Mahadevan-Jansen, Anita; Jansen, E. Duco
2017-02-01
Infrared neural modulation (INM) is a label-free method for eliciting neural activity with high spatial selectivity in mammalian models. While there has been an emphasis on INM research towards applications in the peripheral nervous system and the central nervous system (CNS), the biophysical mechanisms by which INM occurs remains largely unresolved. In the rat CNS, INM has been shown to elicit and inhibit neural activity, evoke calcium signals that are dependent on glutamate transients and astrocytes, and modulate inhibitory GABA currents. So far, in vivo experiments have been restricted to layers I and II of the rat cortex which consists mainly of astrocytes, inhibitory neurons, and dendrites from deeper excitatory neurons owing to strong absorption of light in these layers. Deeper cortical layers (III-VI) have vastly different cell type composition, consisting predominantly of excitatory neurons which can be targeted for therapies such as deep brain stimulation. The neural responses to infrared light of deeper cortical cells have not been well defined. Acute thalamocortical brain slices will allow us to analyze the effects of INS on various components of the cortex, including different cortical layers and cell populations. In this study, we present the use of photoablation with an erbium:YAG laser to reduce the thickness of the dead cell zone near the cutting surface of brain slices. This technique will allow for more optical energy to reach living cells, which should contribute the successful transduction of pulsed infrared light to neural activity. In the future, INM-induced neural responses will lead to a finer characterization of the parameter space for the neuromodulation of different cortical cell types and may contribute to understanding the cell populations that are important for allowing optical stimulation of neurons in the CNS.
Cardano, Marina; Marsoner, Fabio; Marcatili, Matteo; Karnavas, Thodoris; Zasso, Jacopo; Lanterna, Luigi Andrea; Conti, Luciano
2016-11-01
Peripheral blood mononuclear cells (PBMCs) were collected from 55-year old male patient with a confirmed diagnosis of hemorrhagic Moyamoya disease (MMD). PBMCs were reprogrammed using Sendai virus particles delivering the four Yamanaka factors. A footprint-free hiPSC line was characterized by the expression of pluripotency markers and a normal karyotype. These cells were able to give rise to Embryoid Bodies and to a progeny of differentiated cells belonging to the 3 germ layers. This hiPSC line represents a suitable tool for modelling in vitro MMD disease to investigate the cellular mechanisms underlying the occurrence of this pathology. Copyright © 2016. Published by Elsevier B.V.
Okamoto, Haru; Umeda, Shinsuke; Nozawa, Takehiro; Suzuki, Michihiro T; Yoshikawa, Yasuhiro; Matsuura, Etsuko T; Iwata, Takeshi
2010-01-01
The central region of the primate retina is called the macula. The fovea is located at the center of the macula, where the photoreceptors are concentrated to create a neural network adapted for high visual acuity. Damage to the fovea, e.g., by macular dystrophies and age-related macular degeneration, can reduce central visual acuity. The molecular mechanisms leading to these diseases are most likely dependent on the proteins in the macula which differ from those in the peripheral retina in expression level. To investigate whether the distribution of proteins in the macula is different from the peripheral retina, proteomic analyses of tissues from these two regions of cynomolgus monkeys were compared. Two-dimensional gel electrophoresis and mass spectrometry identified 26 proteins that were present only in the macular gel spots. The expression levels of five proteins, cone photoreceptor specific arrestin-C, gamma-synuclein, epidermal fatty acid binding protein, tropomyosin 1alpha chain, and heterogeneous nuclear ribonucleoproteins A2/B1, were significantly higher in the macula than in the peripheral retina. Immunostaining of macula sections by antibodies to each identified protein revealed unique localization in the retina, retinal pigment epithelial cells and the choroidal layer. Some of these proteins were located in cells with higher densities in the macula. We suggest that it will be important to study these proteins to determine their contribution to the pathogenesis and progression of macula diseases.
Kaufman, Arthur; Werth, John
1986-01-01
A bipolar gas reactant distribution assembly for use in a fuel cell is disclosed, the assembly having a solid edge seal to prevent leakage of gaseous reactants wherein a pair of porous plates are provided with peripheral slits generally parallel to, and spaced apart from two edges of the plate, the slit being filled with a solid, fusible, gas impervious edge sealing compound. The plates are assembled with opposite faces adjacent one another with a layer of a fusible sealant material therebetween the slits in the individual plates being approximately perpendicular to one another. The plates are bonded to each other by the simultaneous application of heat and pressure to cause a redistribution of the sealant into the pores of the adjacent plate surfaces and to cause the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the sealant layer material to form a continuous layer of sealant along the edges of the assembled plates.
Nakamura, Kenta; Tsonis, Panagiotis A.
2014-01-01
Adult newts (Notophthalmus viridescens) are capable of complete lens regeneration that is mediated through dorsal iris pigment epithelial (IPE) cells transdifferentiation. In contrast, higher vertebrates such as mice demonstrate only limited lens regeneration in the presence of an intact lens capsule with remaining lens epithelial cells. To compare the intrinsic lens regeneration potential of newt IPE versus mouse lens epithelial cells (MLE), we have established a novel culture method that uses cell aggregation before culture in growth factor-reduced Matrigel™. Dorsal newt IPE aggregates demonstrated complete lens formation within 1 to 2 weeks of Matrigel culture without basic fibroblast growth factor (bFGF) supplementation, including the establishment of a peripheral cuboidal epithelial cell layer, and the appearance of central lens fibers that were positive for αA-crystallin. In contrast, the lens-forming potential of MLE cell aggregates cultured in Matrigel was incomplete and resulted in the formation of defined-size lentoids with partial optical transparency. While the peripheral cell layers of MLE aggregates were nucleated, cells in the center of aggregates demonstrated a nonapoptotic nuclear loss over a time period of 3 weeks that was representative of lens fiber formation. Matrigel culture supplementation with bFGF resulted in higher transparent bigger-size MLE aggregates that demonstrated increased appearance of βB1-crystallin expression. Our study demonstrates that bFGF is not required for induction of newt IPE aggregate-dependent lens formation in Matrigel, while the addition of bFGF seems to be beneficial for the formation of MLE aggregate-derived lens-like structures. In conclusion, the three-dimensional aggregate culture of IPE and MLE in Matrigel allows to a higher extent than older models the indepth study of the intrinsic lens-forming potential and the corresponding identification of lentogenic factors. PMID:23672748
In vivo laser confocal microscopy of Bowman's layer of the cornea.
Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa
2006-12-01
To investigate in vivo microstructures of Bowman's layer in normal human subjects using a cornea-specific in vivo laser scanning confocal microscope (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT2-RCM). Single-center, prospective, observational case series. Nineteen normal volunteers (10 male, 9 female; mean age, 46.2+/-21.7 years [range, 18-77]). The central and peripheral cornea, specifically the epithelium, Bowman's layer, and its subjacent stroma, were examined using the HRT2-RCM. Selected images of the corneal layers were evaluated qualitatively for the shape and degree of light reflection of the microstructures. In all subjects, normal epithelial (superficial, wing, basal) cells, subbasal nerve plexus, Bowman's layer, and its subjacent stoma were observed clearly. However, in all subjects, polymorphic structures composed of fibrillar materials with less reflectivity than corneal nerves were observed beneath Bowman's layer. After application of pressure by a Tomo-cap, we observed numerous ridges that protruded into the epithelial basal and wing cell layers. Superficial stromal striae were also observed. These ridges and striae corresponded exactly to the orientation of the fibrous structures located beneath the epithelial cells. We report for the first time, the presence of polymorphic structures composed of fibrillar materials (K-structures) beneath Bowman's layer in normal human subjects, detected by HRT2-RCM. We surmise that these microstructures may correspond to the modified and condensed anterior stromal collagen fibers/lamellae that merge into Bowman's layer and that these fibrillar materials may be responsible for the formation of the anterior corneal mosaic. Further investigation of these microstructures in diseased eyes may provide insights into their pathophysiologic role in Bowman's layer.
Effects of the holmium laser on the human cornea: a preliminary study
NASA Astrophysics Data System (ADS)
Mueller, Linda J.; Tassignon, Marie J.; Trau, Rene; Pels, Liesbeth; Vrensen, Gijs F.
1996-12-01
Treatment of peripheral post-mortem human corneas with the Holmium laser in a ring pattern resulted in opaque spots. One pair of treated eyes was immediately processed for light and electron microscopy and three other treated eyes were preserved for 4 days in medium in order to compare direct and short-term effects of the Holmium laser. Cross as well as frontal light microscopical sections of all eyes revealed interconnecting bands between the spots. At the ultrastructural level the anterior corneal tissue within these spots was characterized by coagulation of cells and collagen and shoed either a dramatic distorting effect on the epithelium in the eyes processed immediately or a single layer of flattened multi-nucleolated epithelial cells having more than one nucleolus per nucleus in the eyes stored in medium. Furthermore, the spots showed disturbed Bowman's layer, destroyed keratocytes and collagen fibrils which were either coagulated or organized chaotically. The interconnecting bands contained alternating normal and coagulated collagen fibers. The rest of the cornea outside the spots had a normal appearance. In corneas stored in medium, both keratocytes and epithelial cells over the entire cornea exhibited accumulations of cytoplasmic fibrils and glycogen particles. These phenomena were not observed in non-preserved corneas, suggesting that the differences are due to preservation and not due to the laser treatment. It is concluded that morphological changes occur mainly in the treated peripheral cornea whereas the central untreated cornea remains unaffected,indicating that the Holmium laser is a reliable instrument to treat hypermetropic patients.
Choi, Jongsik; Bogdanski, Denise; Köller, Manfred; Esenwein, Stefan A; Müller, Dietmar; Muhr, Gert; Epple, Matthias
2003-09-01
Nickel-titanium shape-memory alloys (NiTi-SMA) were coated with calcium phosphate by dipping in oversaturated calcium phosphate solution. The layer thickness (typically 5-20 micrometer) can be varied by choice of the immersion time. The porous nature of the layer of microcrystals makes it mechanically stable enough to withstand both the shape-memory transition upon cooling and heating and also strong bending of the material (superelastic effect). This layer may improve the biocompatibility of NiTi-SMA, particulary for osteosynthetic devices by creating a more physiological surface and by restricting a potential nickel release. The adherence of human leukocytes (peripheral blood mononuclear cells and polymorphonuclear neutrophil granulocytes) and platelets to the calcium phosphate layer was analyzed in vitro. In comparison to non-coated NiTi-SMA, leukocytes and platelets showed a significantly increased adhesion to the coated NiTi-SMA.
Ahmed, Zubair; Briden, Anita; Hall, Susan; Brown, Robert A
2004-02-01
We have previously described the production of large cables of fibronectin, a large extracellular matrix cell adhesion glycoprotein, which has a potential application in tissue engineering. Here we have stabilised these cables for longer survival and looked at their ultrastructural cell-substrate behaviour in vitro. Dissolution experiments showed that low concentrations of copper not only caused significant material stabilisation but left pores which could promote cell ingrowth, as we have previously reported with Fn-mats. Indeed, the greatest amount of cell ingrowth was observed for copper treated cables. Immunostaining showed S-100(+) multi-layers of cells around the edge of cables while ultrastructural analysis confirmed the presence of a mixture of fibroblasts and bipolar cells associated with fragments of basal lamina, which is a Schwann cell phenotype. Interestingly, the outermost layers of cells consisted of S-100(-) cells, presumed fibroblasts, apparently 'capping' the Schwann cells. Toxicity tests revealed that Schwann cells were only able to grow at the lowest concentration of copper used (1microM) while fibroblasts grew at all concentrations tested. These results could be used to design biomaterials with optimum properties for promoting cellular ingrowth and survival in tissue engineered grafts which may be used to improve peripheral nerve repair.
Synthesis and Characterization of Functional Nanofilm-Coated Live Immune Cells.
Hwang, Jangsun; Choi, Daheui; Choi, Moonhyun; Seo, Youngmin; Son, Jaewoo; Hong, Jinkee; Choi, Jonghoon
2018-05-30
Layer-by-layer (LbL) assembly techniques have been extensively studied in cell biology because of their simplicity of preparation and versatility. The applications of the LbL platform technology using polysaccharides, silicon, and graphene have been investigated. However, the applications of the above-mentioned technology using living cells remain to be fully understood. This study demonstrates a living cell-based LbL platform using various types of living cells. In addition, it confirms that the surplus charge on the outer surface of the coated cells can be used to bind the target protein. We develop a living cell-based LbL platform technology by stacking layers of hyaluronic acid (HA) and poly-l-lysine (PLL). The HA/PLL stacking results in three bilayers with a thickness of 4 ± 1 nm on the cell surface. Furthermore, the multilayer nanofilms on the cells are completely degraded after 3 days of the application of the LbL method. We also evaluate and visualize three bilayers of the nanofilm on adherent (AML-12 cells)-, nonadherent (trypsin-treated AML-12 cells)-, and circulation type [peripheral blood mononuclear cells (PBMCs)] cells by analyzing the zeta potential, cell viability, and imaging via scanning electron microscopy and confocal microscopy. Finally, we study the cytotoxicity of the nanofilm and characteristic functions of the immune cells after the nanofilm coating. The multilayer nanofilms are not acutely cytotoxic and did not inhibit the immune response of the PBMCs against stimulant. We conclude that a two bilayer nanofilm would be ideal for further study in any cell type. The living cell-based LbL platform is expected to be useful for a variety of applications in cell biology.
Lange, Jason; Hadziahmetovic, Majda; Zhang, Jingfa; Li, Weiye
2018-02-07
Region-specific pathology in proliferative diabetic retinopathy enhances our understanding and management of this disease. To investigate non-perfusion, neovascularization and macular oedema. A cross-sectional, observational, non-randomized study. Consecutive 43 eyes of 27 treatment-naïve patients. Ultra-widefield fluorescein angiography for studying specific zones, that is, far-peripheral zone, mid-peripheral zone and central retina (cr), and spectral-domain optical coherence tomography for analysing thickness of macular layers. Non-perfusion index (NPI) and neovascularization index (NVI) in different zones, thickness of cr, retinal nerve fibre layer, ganglion cell layer (GCL), inner nuclear layer (INL) and outer plexiform layer in parafoveal regions. The NPI of far-periphery and NVI of mid-periphery were the highest by one-way analysis of variance testing. Ischemic retina defined as high NPI in far-periphery was significantly related to macular oedema via a binary classification approach (P < 0.05). The ischemic retina was correlated with a decreased thickness of both retinal nerve fibre and GCL (P < 0.05); macular oedema was correlated with increased INL thickness (P < 0.0001). The region-specific correlation of NPI of far-periphery and NVI of mid-periphery, but not with central retinal thickness, suggests different pathogeneses of neovascularization and macular oedema. Retinal nerve fibre layer and GCL, both biomarkers of diabetic retinal neuronopathy, are associated with retinal ischemia, but not with macular oedema, suggesting that diabetic microangiopathy and neuronopathy possess distinct pathogenic pathways. The strong correlation between macular oedema and INL indicates that intracellular oedema is a determining factor of diabetic macular oedema. © 2018 Royal Australian and New Zealand College of Ophthalmologists.
Two cases of seborrheic keratosis with basal clear cells.
Anan, Takashi; Fukumoto, Takaya; Kimura, Tetsunori
2017-03-01
Seborrheic keratosis with basal clear cells (SKBCC) is an extremely rare histopathological variant of seborrheic keratosis that has histological similarities to melanoma in situ. We herein report two cases of SKBCC and provide the first description of the dermoscopic features of this condition, in addition to the histopathological findings. Both of the two lesions showed typical histological architectures of seborrheic keratosis with rows or focal clusters of monomorphic clear cells with abundant pale cytoplasm and small round nucleus in the basal layer. Immunohistochemical examination revealed that most clear cells were positive for high molecular weight cytokeratin (34βE12) in a peripheral pattern but were negative tor Melan-A. Dermoscopy revealed typical features of ordinary seborrheic keratosis, while unfortunately did not reflect the presence of basal clear cells. © 2016 Japanese Dermatological Association.
Ultrastructural findings in lung biopsy material from children with congenital heart defects.
Meyrick, B.; Reid, L.
1980-01-01
The ultrastructural features of pulmonary arteries are described in lung biopsy material from 6 children with congenital heart defects. Right ventricular hypertrophy was found in all 6 children and increased pulmonary artery pressure in all but one. The presence of muscle in smaller and more peripheral arteries than expected for the age of the child was detected in all cases. Ultrastructural examination of the peripheral arteries revealed, for the first time, in the nonmuscular regions of human arterial walls, pericytes and intermediate cells (previously shown to be precursor smooth-muscle cells); in addition, new arterial muscle was found in the normally nonmuscular region. In the 4 cases where medial thickness of the normally muscular arteries was increased, the smooth-muscle cells were hypertrophied and the extracellular connective tissue increased. In all cases, junctions between endothelial cells and smooth-muscle cells, intermediate cells, or pericytes were found. These changes are similar to those described in the rat with hypoxia-induced pulmonary hypertension. In addition, in 2 of the 6 cases, bundles of nerve axons in Schwann cell sheaths were found in adventitial layer of small, intraacinar muscular arteries (not previously demonstrated ultrastructurally at this site in the human lung); varicosities with agranular and granular vesicles, probably adrenergic, were also identified. Images Figure 4 Figure 5 Figure 1 Figure 2 Figure 3 PMID:7446706
Escobar, C; Grindem, C; Neel, J A; Suter, S E
2012-03-01
Dogs with and without lymphoma have undergone hematopoietic cell transplantation in a research setting for decades. North Carolina State University is currently treating dogs with B- and T-cell lymphoma in a clinical setting with autologous peripheral blood progenitor cell transplants, using peripheral blood CD34+ progenitor cells harvested using an apheresis machine. Complete blood counts were performed daily for 15 to 19 days posttransplantation to monitor peripheral blood cell nadirs and subsequent CD34+ cell engraftment. This study documents the hematologic toxicities of total body irradiation in 10 dogs and the subsequent recovery of the affected cell lines after peripheral blood progenitor cell transplant, indicating successful CD34+ engraftment. All peripheral blood cell lines, excluding red blood cells, experienced grade 4 toxicities. All dogs had ≥ 500 neutrophils/μl by day 12, while thrombocytopenia persisted for many weeks. All dogs were clinically normal at discharge.
Visualization of newt aragonitic otoconial matrices using transmission electron microscopy
NASA Technical Reports Server (NTRS)
Steyger, P. S.; Wiederhold, M. L.
1995-01-01
Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. These protein matrices are thought to originate from the supporting or hair cells in the macula during development. Previous studies of mammalian calcitic, barrel-shaped otoconia revealed an organized protein matrix consisting of a thin peripheral layer, a well-defined organic core and a flocculent matrix inbetween. No studies have reported the microscopic organization of the aragonitic otoconial matrix, despite its protein characterization. Pote et al. (1993b) used densitometric methods and inferred that prismatic (aragonitic) otoconia have a peripheral protein distribution, compared to that described for the barrel-shaped, calcitic otoconia of birds, mammals, and the amphibian utricle. By using tannic acid as a negative stain, we observed three kinds of organic matrices in preparations of fixed, decalcified saccular otoconia from the adult newt: (1) fusiform shapes with a homogenous electron-dense matrix; (2) singular and multiple strands of matrix; and (3) more significantly, prismatic shapes outlined by a peripheral organic matrix. These prismatic shapes remain following removal of the gelatinous matrix, revealing an internal array of organic matter. We conclude that prismatic otoconia have a largely peripheral otoconial matrix, as inferred by densitometry.
Mainou-Fowler, T; Copplestone, J A; Prentice, A G
1995-01-01
AIMS--To investigate the effects of interleukin (IL) 1, 2, 4, and 5 on the proliferation and survival of peripheral blood B cells from patients with B chronic lymphocytic leukaemia (B-CLL) and compare them with the effects on normal peripheral blood B cells. METHODS--The proliferation and survival of pokeweed mitogen (PWM) activated B cells from B-CLL (n = 12) and normal peripheral blood (n = 5) were studied in vitro in response to IL-1, IL-2 IL-4, and IL-5. Survival of cells in cultures with or without added interleukins was studied by microscopic examination of cells and DNA agarose gel electrophoresis. RESULTS--Proliferation was observed in both B-CLL and normal peripheral blood cells on culture with IL-2 alone and also in some, but not all, B-CLL and normal peripheral blood cells with IL-1 and IL-4. However, there was greater variability in B-CLL cell responses than in normal peripheral blood cells. Il-5 did not affect normal peripheral blood cell proliferation but it increased proliferation in two B-CLL cases. Synergistic effects of these cytokines were not detected. IL-4 inhibited normal peripheral blood and B-CLL cell proliferation after the addition of IL-2. Inhibition of B-CLL cell responses to IL-2 was also observed with IL-5 and Il-1. Survival of B-CLL cells in cultures was enhanced with IL-4 not by an increase in proliferation but by reduced apoptosis. No such effect was seen in normal peripheral blood cells. IL-2 had a less noticeable antiapoptotic effect; IL-5 enhanced apoptosis in B-CLL cells. CONCLUSIONS--B-CLL and normal peripheral blood cells proliferated equally well in response to IL-2. IL-4 had a much lower effect on B-CLL cell proliferation, but had noticeable antiapoptotic activity. IL-5 enhanced cell death by apoptosis. Images PMID:7629299
Jacobson, Samuel G; Matsui, Rodrigo; Sumaroka, Alexander; Cideciyan, Artur V
2016-04-01
We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy.
Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.
Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong
2009-03-01
A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.
Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels
Hyun, Young-Min; Sumagin, Ronen; Sarangi, Pranita P.; Lomakina, Elena; Overstreet, Michael G.; Baker, Christina M.; Fowell, Deborah J.; Waugh, Richard E.; Sarelius, Ingrid H.
2012-01-01
The efficient trafficking of immune cells into peripheral nonlymphoid tissues is key to enact their protective functions. Despite considerable advances in our understanding of cell migration in secondary lymphoid organs, real-time leukocyte recruitment into inflamed tissues is not well characterized. The conventional multistep paradigm of leukocyte extravasation depends on CD18 integrin–mediated events such as rapid arrest and crawling on the surface of the endothelium and transmigration through the endothelial layer. Using enhanced three-dimensional detection of fluorescent CD18 fusion proteins in a newly developed knockin mouse, we report that extravasating leukocytes (neutrophils, monocytes, and T cells) show delayed uropod detachment and become extremely elongated before complete transmigration across the endothelium. Additionally, these cells deposit CD18+ microparticles at the subendothelial layer before retracting the stretched uropod. Experiments with knockout mice and blocking antibodies reveal that the uropod elongation and microparticle formation are the result of LFA-1–mediated adhesion and VLA-3–mediated cell migration through the vascular basement membrane. These findings suggest that uropod elongation is a final step in the leukocyte extravasation cascade, which may be important for precise regulation of leukocyte recruitment into inflamed tissues. PMID:22711877
Wang, Wei; Itoh, Soichiro; Konno, Katsumi; Kikkawa, Takeshi; Ichinose, Shizuko; Sakai, Katsuyoshi; Ohkuma, Tsuneo; Watabe, Kazuhiko
2009-12-15
We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were characterized. Then, immortalized Schwann cells were cultured on these sheets. Furthermore, the chitosan nanofiber mesh tubes with or without orientation, and bilayered chitosan mesh tube with an inner layer of oriented nanofibers and an outer layer of randomized nanofibers were bridgegrafted into rat sciatic nerve defect. As a result of fiber orientation, the tensile strength along the axis of the sheet increased. Because Schwann cells aligned along the nanofibers, oriented fibrous sheets could exhibit a Schwann cell column. Functional recovery and electrophysiological recovery occurred in time in the oriented group as well as in the bilayered group, and approximately matched those in the isograft. Furthermore, histological analysis revealed that the sprouting of myelinated axons occurred vigorously followed by axonal maturation in the isograft, oriented, and bilayered group in the order. The oriented chitosan nanofiber mesh tube may be a promising substitute for autogenous nerve graft.
Cardano, Marina; Marsoner, Fabio; Zasso, Jacopo; Marcatili, Matteo; Karnavas, Thodoris; Lanterna, Luigi Andrea; Conti, Luciano
2016-11-01
Peripheral blood mononuclear cells (PBMCs) were collected from an 8-year old female patient affected by ischemic Moyamoya disease (MMD). Patient's PBMCs were reprogrammed using Sendai virus particles delivering the four Yamanaka factors. The footprint free hiPSC line expressed the major pluripotency markers and exhibited a normal karyotype. Cells were competent to give rise to progeny of differentiated cells belonging to the 3 germ layers. This hiPSC line represents a good tool to in vitro model MMD in order to shed light on the cellular and molecular mechanisms responsible for the occurrence of this syndrome. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.
Roles of neural stem cells in the repair of peripheral nerve injury.
Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu
2017-12-01
Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.
Rag Deletion in Peripheral T Cells Blocks TCR Revision
Hale, J. Scott; Ames, Kristina T.; Boursalian, Tamar E.; Fink, Pamela J.
2010-01-01
Mature CD4+Vβ5+ T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or T cell receptor (TCR) revision. In Vβ5 transgenic mice, this latter tolerance pathway results in the appearance of CD4+Vβ5−TCRβ+ T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of Vβ-DJβ recombination intermediates in peripheral CD4+ T cells. Because post-thymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We now show that Rag deletion in post-positive selection T cells in Vβ5 transgenic mice blocks TCR revision in vivo, and that mature peripheral T cells sorted to remove cells bearing endogenous TCRβ chains can express newly generated TCRβ molecules in adoptive hosts. These findings unambiguously demonstrate post-thymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4+ T cells. PMID:20435935
Hsu, Chih-Chien; Lu, Huai-En; Chuang, Jen-Hua; Ko, Yu-Ling; Tsai, Yi-Ching; Tai, Hsiao-Yun; Yarmishyn, Aliaksandr A; Hwang, De-Kuang; Wang, Mong-Lien; Yang, Yi-Ping; Chen, Shih-Jen; Peng, Chi-Hsien; Chiou, Shih-Hwa; Lin, Tai-Chi
2018-04-03
Best disease (BD), also termed Best vitelliform macular dystrophy (BVMD), is a juvenile-onset form of macular degeneration and central visual loss. In this report, we generated an induced pluripotent stem cell (iPSC) line, TVGH-iPSC-012-04, from the peripheral blood mononuclear cells of a female patient with BD by using the Sendai virus delivery system. The resulting iPSCs retained the disease-causing DNA mutation, expressed pluripotent markers and could differentiate into three germ layers. We believe that BD patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease. Copyright © 2018. Published by Elsevier B.V.
Múnera, A; Cuestas, D M; Troncoso, J
2012-10-25
Facial nerve lesions elicit long-lasting changes in vibrissal primary motor cortex (M1) muscular representation in rodents. Reorganization of cortical representation has been attributed to potentiation of preexisting horizontal connections coming from neighboring muscle representation. However, changes in layer 5 pyramidal neuron activity induced by facial nerve lesion have not yet been explored. To do so, the effect of irreversible facial nerve injury on electrophysiological properties of layer 5 pyramidal neurons was characterized. Twenty-four adult male Wistar rats were randomly subjected to two experimental treatments: either surgical transection of mandibular and buccal branches of the facial nerve (n=18) or sham surgery (n=6). Unitary and population activity of vibrissal M1 layer 5 pyramidal neurons recorded in vivo under general anesthesia was compared between sham-operated and facial nerve-injured animals. Injured animals were allowed either one (n=6), three (n=6), or five (n=6) weeks recovery before recording in order to characterize the evolution of changes in electrophysiological activity. As compared to control, facial nerve-injured animals displayed the following sustained and significant changes in spontaneous activity: increased basal firing frequency, decreased spike-associated local field oscillation amplitude, and decreased spontaneous theta burst firing frequency. Significant changes in evoked-activity with whisker pad stimulation included: increased short latency population spike amplitude, decreased long latency population oscillations amplitude and frequency, and decreased peak frequency during evoked single-unit burst firing. Taken together, such changes demonstrate that peripheral facial nerve lesions induce robust and sustained changes of layer 5 pyramidal neurons in vibrissal motor cortex. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Cutting Edge: Rag deletion in peripheral T cells blocks TCR revision.
Hale, J Scott; Ames, Kristina T; Boursalian, Tamar E; Fink, Pamela J
2010-06-01
Mature CD4(+)Vbeta5(+) T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or TCR revision. In Vbeta5 transgenic mice, this latter tolerance pathway results in the appearance of CD4(+)Vbeta5(-)TCRbeta(+) T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of V(beta)-DJ(beta) recombination intermediates in peripheral CD4(+) T cells. Because postthymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We show in this study that Rag deletion in post-positive selection T cells in Vbeta5 transgenic mice blocks TCR revision in vivo and that mature peripheral T cells sorted to remove cells bearing endogenous TCRbeta-chains can express newly generated TCRbeta molecules in adoptive hosts. These findings unambiguously demonstrate postthymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4(+) T cells.
Retinal Tissue Thickness is Reduced in Diabetic Peripheral Neuropathy.
Srinivasan, Sangeetha; Pritchard, Nicola; Vagenas, Dimitrios; Edwards, Katie; Sampson, Geoff P; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan
2016-10-01
To investigate the relationship between diabetic peripheral neuropathy (DPN) and retinal tissue thickness. Full retinal thickness in the central retinal, parafoveal, and perifoveal zones and thickness of the ganglion cell complex and retinal nerve fiber layer (RNFL) were assessed in 193 individuals (84 with type 1 diabetes, 67 with type 2 diabetes, and 42 healthy controls) using spectral domain optical coherence tomography. Among those with diabetes, 44 had neuropathy defined using a modified neuropathy disability score recorded on a 0-10 scale. Multiple regression analysis was performed to investigate the relationship between diabetic neuropathy and retinal tissue thickness, adjusted for the presence of diabetic retinopathy (DR), age, sex, duration of diabetes, and HbA 1c levels. In individuals with diabetes, perifoveal thickness was inversely related to the severity of neuropathy (p < 0.05), when adjusted for age, sex, duration of diabetes, and HbA 1c levels. DR was associated with reduced thickness in parafovea (p < 0.01). The RNFL was thinner in individuals with greater degrees of neuropathy (p < 0.04). DPN is associated with structural compromise involving several retinal layers. This compromise may represent a threat to visual integrity and therefore warrants examination of functional correlates.
Ayala-Caminero, Radamés; Pinzón-Herrera, Luis; Martinez, Carol A. Rivera; Almodovar, Jorge
2018-01-01
Understanding peripheral nerve repair requires the evaluation of 3D structures that serve as platforms for 3D cell culture. Multiple platforms for 3D cell culture have been developed, mimicking peripheral nerve growth and function, in order to study tissue repair or diseases. To recreate an appropriate 3D environment for peripheral nerve cells, key factors are to be considered including: selection of cells, polymeric biomaterials to be used, and fabrication techniques to shape and form the 3D scaffolds for cellular culture. This review focuses on polymeric 3D platforms used for the development of 3D peripheral nerve cell cultures. PMID:29515936
Peripheral Frequency of CD4+ CD28− Cells in Acute Ischemic Stroke
Tuttolomondo, Antonino; Pecoraro, Rosaria; Casuccio, Alessandra; Di Raimondo, Domenico; Buttà, Carmelo; Clemente, Giuseppe; Corte, Vittoriano della; Guggino, Giuliana; Arnao, Valentina; Maida, Carlo; Simonetta, Irene; Maugeri, Rosario; Squatrito, Rosario; Pinto, Antonio
2015-01-01
Abstract CD4+ CD28− T cells also called CD28 null cells have been reported as increased in the clinical setting of acute coronary syndrome. Only 2 studies previously analyzed peripheral frequency of CD28 null cells in subjects with acute ischemic stroke but, to our knowledge, peripheral frequency of CD28 null cells in each TOAST subtype of ischemic stroke has never been evaluated. We hypothesized that CD4+ cells and, in particular, the CD28 null cell subset could show a different degree of peripheral percentage in subjects with acute ischemic stroke in relation to clinical subtype and severity of ischemic stroke. The aim of our study was to analyze peripheral frequency of CD28 null cells in subjects with acute ischemic stroke in relation to TOAST diagnostic subtype, and to evaluate their relationship with scores of clinical severity of acute ischemic stroke, and their predictive role in the diagnosis of acute ischemic stroke and diagnostic subtype We enrolled 98 consecutive subjects admitted to our recruitment wards with a diagnosis of ischemic stroke. As controls we enrolled 66 hospitalized patients without a diagnosis of acute ischemic stroke. Peripheral frequency of CD4+ and CD28 null cells has been evaluated with a FACS Calibur flow cytometer. Subjects with acute ischemic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to control subjects without acute ischemic stroke. Subjects with cardioembolic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to subjects with other TOAST subtypes. We observed a significant relationship between CD28 null cells peripheral percentage and Scandinavian Stroke Scale and NIHSS scores. ROC curve analysis showed that CD28 null cell percentage may be useful to differentiate between stroke subtypes. These findings seem suggest a possible role for a T-cell component also in acute ischemic stroke clinical setting showing a different peripheral frequency of CD28 null cells in relation of each TOAST subtype of stroke. PMID:25997053
Grau-Monge, Cristina; Delcroix, Gaëtan J-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F; Armour, Maxime R; Montero, Ramon B; Schiller, Paul C; Andreopoulos, Fotios M; D'Ippolito, Gianluca
2017-02-17
Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of two layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration.
Grau-Monge, Cristina; Delcroix, Gaëtan J.-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F.; Armour, Maxime R.; Montero, Ramon B.; Schiller, Paul C.; Andreopoulos, Fotios M.; D’Ippolito, Gianluca
2017-01-01
Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of 2 layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration. PMID:28211362
Localization of organ-specific antigens in the nervous system of the rat.
Weinrauder, H; Lach, B
1977-08-16
Localization of organ-specific brain antigens in the central nervous system of the rat has been studied by means of indirect immunofluorescence. Rabbit antiserum against homogenate of rat brain, previously absorbed with normal serum and homogenates of rat organs (kidney, liver, spleen), reacted with the water-soluble antigens of rat brain prepared by extraction with phosphate buffer (pH 7.3) and ultracentrifugation at 50 000 X g to give one band in the immunodiffusion test and 2--3 precipitation arcs in immunoelectrophoresis. There was also a positive reaction with peripheral nerve. The antigen was detectable in all regions of the CNS. Cells with distinct cytoplasmic immunofluorescence were most frequently observed in cerebellar white matter, pons, cerebellar pedunculi, longitudinal tracts of the brain stem. Positive immunofluorecence reaction has appeared in the outer plexiform layer and granular layer of the retina, satelite cells of the spinal root ganglia and Schwann cells. A similar reaction was observed in human, mouse and guinea pig brain slices. Both the morphological and immunochemical reactions are indicative of glial localization of this antigen.
Hua, Susan; Cabot, Peter J
2010-09-01
Peripheral mechanisms of endogenous pain control are significant. In peripheral inflamed tissue, an interaction between immune-cell-derived opioids and opioid receptors localized on sensory nerve terminals results in potent, clinically measurable analgesia. Opioid peptides and the mRNA encoding their precursor proteins are present in immune cells. These cells 'home' preferentially to injured tissue, where they secrete opioids to reduce pain. Investigation of the mechanisms underlying the migration of opioid-containing immune cells to inflamed tissue is an active area of research, with recent data demonstrating the importance of cell adhesion molecules in leukocyte adhesion to both the endothelium in vascular transmigration and to neurons within peripheral inflamed tissue. This review summarizes the physiological mechanisms and clinical significance of this unique endogenous peripheral analgesic pathway and discusses therapeutic implications for the development of novel targeted peripheral analgesics. Copyright 2010 Elsevier Ltd. All rights reserved.
T cell chronic lymphocytic leukaemia with suppressor phenotype.
Hofman, F M; Smith, D; Hocking, W
1982-01-01
The peripheral blood cells from a patient with T cell chronic lymphocytic leukaemia were examined for surface marker and functional characteristics. Eighty-91% of the peripheral blood cells formed SRBC rosettes and 22-49% possessed Fc receptors; 73% of the peripheral blood cells were reactive with the OKT8 antiserum and 61% expressed DR antigens. Response to PHA stimulation was markedly reduced, whereas allogeneic responsiveness in mixed leucocyte culture was intact. The ability of Con A-stimulated peripheral blood cells to generate suppressor activity in a mixed leucocyte reaction was deficient, whereas suppression of in vitro immunoglobulin synthesis was greater than normal. The leukaemic peripheral blood cell population expressed a T suppressor phenotype. Functional studies suggest that these cells were derived from the subset of T lymphocytes with regulatory activity for immunoglobulin synthesis as opposed to mitogenic responsiveness. PMID:6215199
A Phase 1/2 Study To Evaluate ASN002 In Relapsed/Refractory Lymphoma And Advanced Solid Tumors
2018-04-30
Lymphoma, Large B-Cell, Diffuse; Lymphoma, Mantle-Cell; Lymphoma, Follicular; Cancer; Neoplasm; Tumor; Lymphoma, Malignant; Lymphoma, B-cell; Lymphoma, Non-Hodgkin; B-Cell Chronic Lymphocytic Leukemia; B-Cell Leukemia, Chronic; B-Lymphocytic Leukemia, Chronic; Chronic Lymphocytic Leukemia; Leukemia, Lymphocytic, Chronic; Leukemia, Lymphocytic, Chronic, B Cell; Myelofibrosis; Chronic Idiopathic Myelofibrosis; Idiopathic Myelofibrosis; Lymphoma, T Cell, Peripheral; Peripheral T-Cell Lymphoma; T-Cell Lymphoma, Peripheral
Belgorosky, Alicia; Baquedano, María Sonia; Guercio, Gabriela; Rivarola, Marco A
2009-03-01
Adrenarche is a process of postnatal sexual maturation occurring in higher primates, in which there is an increase in the secretion of adrenal androgens. It is the consequence of a process of postnatal organogenesis characterized by the development of a new zone in the adrenal cortex, the zona reticularis (ZR). The mechanism of this phenomenon remains poorly understood, suggesting that it might be a multifactorial event. A relationship between circulating IGF-I, insulin sensitivity, and adrenal androgens has been postulated. Boys and girls have different patterns of changes in insulin sensitivity at puberty, perhaps secondary to differences in the estrogen milieu. Estrogen effects may also play a role in premature adrenarche. Peripheral or local IGF-1 actions could regulate adrenal progenitor cell proliferation and migration. Since adrenal progenitor cells as well as IGF-I and the IGF-R1 are located in the outer zone of the adrenal cortex during childhood and adolescence, this peripheral cell layer, below the capsule, may contain undifferentiated progenitor cells. Therefore, the IGF-R1 signaling pathway might positively modulate the proliferation and migration of adrenal progenitor cell to stimulate the development of adrenal zones, including ZR. However, no evidence of a direct action of IGF-I on ZR was found. In addition, a role for estrogens in the ontogenesis of ZR is suggested by the presence of aromatase (CYP19) in the subcapsular zona glomerulosa and in the adrenal medulla. Estrogens produced locally could act on ZR by interacting with estrogen receptor beta (ERbeta), but not alpha, and membrane estrogen receptor GPR-30. An estradiol-induced increase in DHEA/cortisol ratio was indeed seen in cultures of adrenocortical cells from post-adrenarche adrenals. In summary, several lines of evidence point to the action of multiple factors, such as local adrenal maturational changes and peripheral metabolic signals, on postnatal human adrenal gland ZR formation.
2017-08-01
Award Number: W81XWH-15-1-0328 TITLE: Targeting Peripheral-Derived Regulatory T Cells as a Means of Enhancing Immune Responses Directed against...1 August 2016 - 31 July 2017 4. TITLE AND SUBTITLE Targeting Peripheral-Derived Regulatory T Cells as a Means of Enhancing Immune Responses Directed...discovered that a subset of regulatory T cells (Tregs), termed peripheral-derived Tregs (pTregs), impair immune responses directed against tumor
POWASSAN VIRUS: MORPHOLOGY AND CYTOPATHOLOGY.
ABDELWAHAB, K S; ALMEIDA, J D; DOANE, F W; MCLEAN, D M
1964-05-02
Powassan virus, a North American tickborne group B arbovirus, multiplied after simultaneous inoculation into bottles or tubes of virus and trypsinized suspension of continuous-line cultures of rhesus monkey kidney cells, strain LLC-MK2. Cytopathic effects comprising cell rounding and cytoplasmic vacuolation were first observed five days after inoculation. Mixture of Powassan antiserum with virus before inoculation into tissue cultures inhibited the appearance of cytopathic effects. Hemagglutinins for rooster erythrocytes, optimally at pH 6.4 and 22 degrees C., first appeared in tissue culture supernatant fluids four days after inoculation.Electron microscopic observation of thin sections of infected tissue culture cells showed virus particles 360-380 A.U. along outer cell membranes and edges of cytoplasmic vacuoles. In phosphotungstic acid negatively stained preparations, intact virus particles, 400-450 A.U. total diameter, were observed inside infected cells. In particles in which the peripheral layer became discontinuous, geometrically arranged subunits compatible with cubic symmetry were observed.
Mandibular pseudocarcinomatous hyperplasia.
Warter, A; Walter, P; Meyer, C; Barrière, P; Galatir, L; Wilk, A
2000-08-01
Three unusual cases of pseudocarcinomatous (pseudoepitheliomatous) hyperplasia (PH) affecting chronic osteomyelitic mandibular sequestra are reported to highlight the differences with the various squamous neoplasms which occur in that site. In two patients carrying a mandibular graft following the excision of an ameloblastoma, mucosal ulcers resulted in chronic osteomyelitis. In a third patient, an apical dental infection was associated with fistulated osteomyelitis. Histology of the three sequestra showed an intraosseous squamous proliferation. It was characterized by a peripheral involvement of medullary spaces, the more mature epithelial layer covering the bone trabeculae without intervening stroma, and the basal type epithelial layer surrounding a central fibrovascular core. There were no histological or cytological signs of malignancy. PH shows an inverted pattern when compared with the centro-medullary tumoural islands seen in the various oral or odontogenic squamous neoplasms which occur in the jaws. The lack of signs of malignancy distinguish PH from common squamous cell carcinomas. A short clinical course is an important feature in the distinction of PH from the well differentiated squamous cell carcinomas which may develop in fistulated chronic osteomyelitis.
Dogu, Mehmet Hilmi; Kaya, Ali Hakan; Berber, Ilhami; Sari, İsmail; Tekgündüz, Emre; Erkurt, Mehmet Ali; Iskender, Dicle; Kayıkçı, Ömur; Kuku, Irfan; Kaya, Emin; Keskin, Ali; Altuntaş, Fevzi
2016-02-01
Central venous access is often used during apheresis procedure in stem cell collection. The aim of the present study was to evaluate whether central or peripheral venous access has an effect on stem cell yield and the kinetics of the procedure and the product in patients undergoing ASCT after high dose therapy. A total of 327 patients were retrospectively reviewed. The use of peripheral venous access for stem cell yield was significantly more frequent in males compared to females (p = 0.005). Total volume of the product was significantly lower in central venous access group (p = 0.046). As being a less invasive procedure, peripheral venous access can be used for stem cell yield in eligible selected patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Generation of induced pluripotent stem cells from a patient with spinocerebellar ataxia type 3.
Soong, Bing-Wen; Syu, Shih-Han; Wen, Cheng-Hao; Ko, Hui-Wen; Wu, Mei-Ling; Hsieh, Patrick C H; Hwang, Shiaw-Min; Lu, Huai-En
2017-01-01
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by a trinucleotide repeat (CAG) expansion in the coding region of ATXN3 gene resulting in production of ataxin-3 with an elongated polyglutamine tract. Here, we generated induced pluripotent stem cells (iPSCs) from the peripheral blood mononuclear cells of a male patient with SCA3 by using the Sendai-virus delivery system. The resulting iPSCs had a normal karyotype, retained the disease-causing ATXN3 mutation, expressed pluripotent markers and could differentiate into the three germ layers. Potentially, the iPSCs could be a useful tool for the investigation of disease mechanisms of SCA3. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Gu, Haihui; Huang, Xia; Xu, Jing; Song, Lili; Liu, Shuping; Zhang, Xiao-Bing; Yuan, Weiping; Li, Yanxin
2018-06-15
Generation of induced pluripotent stem cells (iPSCs) from human peripheral blood provides a convenient and low-invasive way to obtain patient-specific iPSCs. The episomal vector is one of the best approaches for reprogramming somatic cells to pluripotent status because of its simplicity and affordability. However, the efficiency of episomal vector reprogramming of adult peripheral blood cells is relatively low compared with cord blood and bone marrow cells. In the present study, integration-free human iPSCs derived from peripheral blood were established via episomal technology. We optimized mononuclear cell isolation and cultivation, episomal vector promoters, and a combination of transcriptional factors to improve reprogramming efficiency. Here, we improved the generation efficiency of integration-free iPSCs from human peripheral blood mononuclear cells by optimizing the method of isolating mononuclear cells from peripheral blood, by modifying the integration of culture medium, and by adjusting the duration of culture time and the combination of different episomal vectors. With this optimized protocol, a valuable asset for banking patient-specific iPSCs has been established.
Li, Yueying; Liu, Tie; Van Halm-Lutterodt, Nicholas; Chen, JiaYu; Su, Qingjun; Hai, Yong
2016-02-17
An attempt was made to reprogram peripheral blood cells into human induced pluripotent stem cell (hiPSCs) as a new cell source for cartilage repair. We generated chondrogenic lineage from human peripheral blood via hiPSCs using an integration-free method. Peripheral blood cells were either obtained from a human blood bank or freshly collected from volunteers. After transforming peripheral blood cells into iPSCs, the newly derived iPSCs were further characterized through karyotype analysis, pluripotency gene expression and cell differentiation ability. iPSCs were differentiated through multiple steps, including embryoid body formation, hiPSC-mesenchymal stem cell (MSC)-like cell expansion, and chondrogenic induction for 21 days. Chondrocyte phenotype was then assessed by morphological, histological and biochemical analysis, as well as the chondrogenic expression. hiPSCs derived from peripheral blood cells were successfully generated, and were characterized by fluorescent immunostaining of pluripotent markers and teratoma formation in vivo. Flow cytometric analysis showed that MSC markers CD73 and CD105 were present in monolayer cultured hiPSC-MSC-like cells. Both alcian blue and toluidine blue staining of hiPSC-MSC-chondrogenic pellets showed as positive. Immunohistochemistry of collagen II and X staining of the pellets were also positive. The sulfated glycosaminoglycan content was significantly increased, and the expression levels of the chondrogenic markers COL2, COL10, COL9 and AGGRECAN were significantly higher in chondrogenic pellets than in undifferentiated cells. These results indicated that peripheral blood cells could be a potential source for differentiation into chondrogenic lineage in vitro via generation of mesenchymal progenitor cells. This study supports the potential applications of utilizing peripheral blood cells in generating seed cells for cartilage regenerative medicine in a patient-specific and cost-effective approach.
Kim, Minjoo; Kim, Minkyung; Han, Ji Yun; Lee, Sang-Hyun; Jee, Sun Ha; Lee, Jong Ho
2017-03-01
To determine differences between peripheral blood mononuclear cells and the plasma metabolites in patients with impaired fasting glucose or type 2 diabetes and healthy controls. In all, 65 nononobese patients (aged 30-70 years) with impaired fasting glucose or type 2 diabetes and 65 nonobese sex-matched healthy controls were included, and fasting peripheral blood mononuclear cell and plasma metabolomes were profiled. The diabetic or impaired fasting glucose patients showed higher circulating and peripheral blood mononuclear cell lipoprotein phospholipase A 2 activities, high-sensitivity C-reactive protein and tumour necrosis factor-α than controls. Compared with controls, impaired fasting glucose or diabetic subjects showed increases in 11 peripheral blood mononuclear cell metabolites: six amino acids (valine, leucine, methionine, phenylalanine, tyrosine and tryptophan), l-pyroglutamic acid, two fatty acid amides containing palmitic amide and oleamide and two lysophosphatidylcholines. In impaired fasting glucose or diabetic patients, peripheral blood mononuclear cell lipoprotein phospholipase A 2 positively associated with peripheral blood mononuclear cell lysophosphatidylcholines and circulating inflammatory markers, including tumour necrosis factor-α, high-sensitivity C-reactive protein and lipoprotein phospholipase A 2 activities. In plasma metabolites between patients and healthy controls, we observed significant increases in only three amino acids (proline, valine and leucine) and decreases in only five lysophosphatidylcholines. This study demonstrates significant differences in the peripheral blood mononuclear cell metabolome in patients with impaired fasting glucose or diabetes compared with healthy controls. These differences were greater than those observed in the plasma metabolome. These data suggest peripheral blood mononuclear cells as a useful tool to better understand the inflammatory pathophysiology of diabetes.
McCully, Margaret E; Miller, Celia; Sprague, Susan J; Huang, Cheng X; Kirkegaard, John A
2008-01-01
To investigate the role played by the distribution pattern of glucosinolates (GSLs) in root systems in the release of biocides to the rhizosphere, GSLs have been localized, for the first time, to specific regions and cells in field-grown roots. GSL concentrations in separated tissues of canola (Brassica napus) were determined by chemical analysis, and cell-specific concentrations by extrapolation from sulphur concentrations obtained by quantitative cryo-analytical scanning electron microscopy (SEM). In roots with secondary growth, GSL concentrations in the outer secondary tissues were up to 5x those of the inner core. The highest GSL concentrations (from sulphur measurements) were in two cell layers just under the outermost periderm layer, with up to 100x published concentrations for whole roots. Primary tissues had negligible GSL. Release and renewal of the peripheral GSLs is probably a normal developmental process as secondary thickening continues and surface cells senesce, accounting for published observations that intact roots release GSLs and their biocide hydrolosates to the rhizosphere. Absence of myrosin idioblasts close to the root surface suggests that GSLs released developmentally are hydrolysed by myrosinase in the rhizosphere, ensuring a continuous localized source of biotoxic hydrolysates which can deter soil-borne pests, and influence microbial populations associated with long-lived components of the root system.
Vk, Varsha; Hallikeri, Kaveri; Girish, H C; Murgod, Sanjay
2014-01-01
Central and Peripheral giant cell granulomas of jaws are uncommon, benign, reactive disorders that are characterized by the presence of numerous multinucleated giant cells and mononuclear cells within a stroma. The origin of the multinucleated giant cells is controversial; probably originating from fusion of histiocytes, endothelial cells and fibroblasts. To assess the expression of CD34 and CD68 in central and peripheral giant cell granulomas to understand the origin of these multinucleated giant cells. Twenty cases of Central and Peripheral giant cell granulomas were evaluated immunohistochemically for CD34 and CD68 proteins expression. Immunopositivity for CD34 was seen only in cytoplasm of endothelial cells of blood vessels; whereas, consistent cytoplasmic immunopositivity for CD68 was seen in few stromal cells. Statistical significance was seen in mean number of multinucleated giant cells, mean number of nuclei in multinucleated giant cells, CD68 expression and ratio of macrophages to multinucleated giant cells among two lesions. Although the central giant cell granulomas share some clinical and histopathological similarities with peripheral giant cell granulomas, differences in mean number of nuclei in multinucleated giant cells and CD68 immunoreactivity may underlie the distinct clinical behavior.
Suwiwat, Supaporn; Pradutkanchana, Jintana; Ishida, Takafumi; Mitarnun, Winyou
2007-12-01
The level of circulating EBV DNA is a prognostic marker in patients with some EBV-associated malignant diseases. To investigate the presence and nature of Epstein-Barr virus (EBV) DNA in the plasma and to evaluate the correlation of plasma concentrations of EBV DNA with the EBV genomic status in peripheral blood T-cells and neoplastic cells and with the clinical outcome of patients with peripheral T-cell and NK-cell lymphomas (PTCL) and peripheral T-cell proliferative diseases (PTPD). EBV DNA in the plasma of 45 patients and 45 controls was measured using real-time PCR. The presence of the EBV genome in the isolated peripheral blood lymphocytes (CD3+ and CD3- cells) was analysed by PCR. Detection of EBV-encoded early RNA (EBER) in corresponding tumor tissues was carried out using in situ hybridization. DNase I digestion was applied to plasma samples to detect naked EBV DNA. Cell-free EBV DNA was detected in 32/38 (84%) of PTCL patients and 5/7 (71%) of PTPD patients, but not in the controls. Patients with EBV genome in peripheral blood CD3+ cells and EBV genome (EBER) in the tumor cells, compared to those without these findings, had significantly higher plasma EBV DNA levels. The majority of circulating EBV DNA molecules was naked form. The plasma EBV DNA levels were not related to survival. The concentration of EBV DNA in the plasma was not a prognostic marker in PTCL and PTPD patients.
The development of self-expanding peripheral stent with ion-modified surface layer
NASA Astrophysics Data System (ADS)
Lotkov, Alexander I.; Kashin, Oleg A.; Kudryashov, Andrey N.; Krukovskii, Konstantin V.; Kuznetsov, Vladimir M.; Borisov, Dmitry P.; Kretov, Evgenii I.
2016-11-01
In work researches of chemical composition of surface layers of self-expanding stents of nickel-titanium (NiTi) and their functional and mechanical properties after plasma immersion processing by ions of silicon (Si). It is established that in the treatment in the inner and outer surfaces of stents formed doped silicon layer with a thickness of 80 nm. The formation of the doped layer does not impair the functional properties of the stent. At human body temperature, the stent is fully restore its shape after removing the deforming load. The resulting graph of loading of stents during their compression between parallel plates. The research results allow the conclusion that Si-doped stents are promising for treatment of peripheral vascular disease. However, related studies on laboratory animals are required.
Tien, Yu-Wen; Lee, Po-Huang; Wang, Shih-Ming; Hsu, Su-Ming; Chang, King-Jen
2002-01-01
This study was designed to show, in certain patients, that colonic epithelial cells can be present in peripheral blood while absent in portal venous blood. The circulating colorectal epithelial cells were detected by a reverse transcriptase-polymerase chain reaction assay, which involved amplifying guanylyl cyclase C transcripts. Portal venous and peripheral blood samples were obtained at intervals from 58 patients undergoing colorectal cancer surgery. Circulating colonic epithelial cells were more frequently detected in portal venous blood than in peripheral blood only before mobilization of the tumor-bearing colon segment in patients with tumors of Stage B. In five other patients, before mobilization of their tumor-bearing colon segments, and in another three patients, during the mobilization, colorectal epithelial cells were detected in peripheral blood but not in portal venous blood. These eight patients had Stage C or D tumors. In 8 of 58 patients, colorectal epithelial cells were detected in peripheral but not in portal venous blood. Metastatic deposits in lymphatic vessels or liver might be the source of these cells.
Alikhan, Mir; Song, Joo Y; Sohani, Aliyah R; Moroch, Julien; Plonquet, Anne; Duffield, Amy S; Borowitz, Michael J; Jiang, Liuyan; Bueso-Ramos, Carlos; Inamdar, Kedar; Menon, Madhu P; Gurbuxani, Sandeep; Chan, Ernest; Smith, Sonali M; Nicolae, Alina; Jaffe, Elaine S; Gaulard, Philippe; Venkataraman, Girish
2016-10-01
Nodal follicular helper T-cell-derived lymphoproliferations (specifically the less common peripheral T-cell lymphomas of follicular type) exhibit a spectrum of histologic features that may mimic reactive hyperplasia or Hodgkin lymphoma. Even though angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma of follicular type share a common biologic origin from follicular helper T-cells and their morphology has been well characterized, flow cytometry of peripheral T-cell lymphomas of follicular type has not been widely discussed as a tool for identifying this reactive hyperplasia/Hodgkin lymphoma mimic. We identified 10 peripheral T-cell lymphomas of follicular type with available flow cytometry data from five different institutions, including two cases with peripheral blood evaluation. For comparison, we examined flow cytometry data for 8 classical Hodgkin lymphomas (including 1 lymphocyte-rich classical Hodgkin lymphoma), 15 nodular lymphocyte predominant Hodgkin lymphomas, 15 angioimmunoblastic T-cell lymphomas, and 26 reactive nodes. Lymph node histology and flow cytometry data were reviewed, specifically for the presence of a CD3(-/dim)CD4(+) aberrant T-cell population (described in angioimmunoblastic T-cell lymphomas), besides other T-cell aberrancies. Nine of 10 (90%) peripheral T-cell lymphomas of follicular type showed a CD3(-/dim)CD4(+) T-cell population constituting 29.3% (range 7.9-62%) of all lymphocytes. Five of 10 (50%) had nodular lymphocyte predominant Hodgkin lymphoma or lymphocyte-rich classical Hodgkin lymphoma-like morphology with scattered Hodgkin-like cells that expressed CD20, CD30, CD15, and MUM1. Three cases had a nodular growth pattern and three others exhibited a perifollicular growth pattern without Hodgkin-like cells. Epstein-Barr virus was positive in 1 of 10 cases (10%). PCR analysis showed clonal T-cell receptor gamma gene rearrangement in all 10 peripheral T-cell lymphomas of follicular type. By flow cytometry, 11 of 15 (73.3%) angioimmunoblastic T-cell lymphomas showed the CD3(-/dim)CD4(+) population (mean: 19.5%, range: 3-71.8%). Using a threshold of 3% for CD3(-/dim)CD4(+) T cells, all 15 nodular lymphocyte predominant Hodgkin lymphoma controls and 8 classical Hodgkin lymphomas were negative (Mann-Whitney P=0.01, F-PTCL vs Hodgkin lymphomas), as were 25 of 26 reactive lymph nodes. The high frequency of CD3(-/dim)CD4(+) aberrant T cells is similar in angioimmunoblastic T-cell lymphomas and peripheral T-cell lymphomas of follicular type, and is a useful feature in distinguishing peripheral T-cell lymphomas of follicular type from morphologic mimics such as reactive hyperplasia or Hodgkin lymphoma.
EndoU is a novel regulator of AICD during peripheral B cell selection
Poe, Jonathan C.; Kountikov, Evgueni I.; Lykken, Jacquelyn M.; Natarajan, Abirami; Marchuk, Douglas A.
2014-01-01
Balanced transmembrane signals maintain a competent peripheral B cell pool limited in self-reactive B cells that may produce pathogenic autoantibodies. To identify molecules regulating peripheral B cell survival and tolerance to self-antigens (Ags), a gene modifier screen was performed with B cells from CD22-deficient C57BL/6 (CD22−/−[B6]) mice that undergo activation-induced cell death (AICD) and fail to up-regulate c-Myc expression after B cell Ag receptor ligation. Likewise, lysozyme auto-Ag–specific B cells in IgTg hen egg lysozyme (HEL) transgenic mice inhabit the spleen but undergo AICD after auto-Ag encounter. This gene modifier screen identified EndoU, a single-stranded RNA-binding protein of ancient origin, as a major regulator of B cell survival in both models. EndoU gene disruption prevents AICD and normalizes c-Myc expression. These findings reveal that EndoU is a critical regulator of an unexpected and novel RNA-dependent pathway controlling peripheral B cell survival and Ag responsiveness that may contribute to peripheral B cell tolerance. PMID:24344237
EndoU is a novel regulator of AICD during peripheral B cell selection.
Poe, Jonathan C; Kountikov, Evgueni I; Lykken, Jacquelyn M; Natarajan, Abirami; Marchuk, Douglas A; Tedder, Thomas F
2014-01-13
Balanced transmembrane signals maintain a competent peripheral B cell pool limited in self-reactive B cells that may produce pathogenic autoantibodies. To identify molecules regulating peripheral B cell survival and tolerance to self-antigens (Ags), a gene modifier screen was performed with B cells from CD22-deficient C57BL/6 (CD22(-/-[B6])) mice that undergo activation-induced cell death (AICD) and fail to up-regulate c-Myc expression after B cell Ag receptor ligation. Likewise, lysozyme auto-Ag-specific B cells in Ig(Tg) hen egg lysozyme (HEL) transgenic mice inhabit the spleen but undergo AICD after auto-Ag encounter. This gene modifier screen identified EndoU, a single-stranded RNA-binding protein of ancient origin, as a major regulator of B cell survival in both models. EndoU gene disruption prevents AICD and normalizes c-Myc expression. These findings reveal that EndoU is a critical regulator of an unexpected and novel RNA-dependent pathway controlling peripheral B cell survival and Ag responsiveness that may contribute to peripheral B cell tolerance.
Li, Wei; Wang, Guanjun; Cui, Jiuwei; Xue, Lu; Cai, Lu
2004-11-01
The aim of this study was to investigate the stimulating effect of low-dose radiation (LDR) on bone marrow hematopoietic progenitor cell (HPC) proliferation and peripheral blood mobilization. Mice were exposed to 25- to 100-mGy x-rays. Bone marrow and peripheral blood HPCs (BFU-E, CFU-GM, and c-kit+ cells) were measured, and GM-CSF, G-CSF, and IL-3 protein and mRNA expression were detected using ELISA, slot blot hybridization, and Northern blot methods. To functionally evaluate LDR-stimulated and -mobilized HPCs, repopulation of peripheral blood cells in lethally irradiated recipients after transplantation of LDR-treated donor HPCs was examined by WBC counts, animal survival, and colony-forming units in the recipient spleens (CFUs-S). 75-mGy x-rays induced a maximal stimulation for bone marrow HPC proliferation (CFU-GM and BFU-E formation) 48 hours postirradiation, along with a significant increase in HPC mobilization into peripheral blood 48 to 72 hours postradiation, as shown by increases in CFU-GM formation and proportion of c-kit+ cells in the peripheral mononuclear cells. 75-mGy x-rays also maximally induced increases in G-CSF and GM-CSF mRNA expression in splenocytes and levels of serum GM-CSF. To define the critical role of these hematopoietic-stimulating factors in HPC peripheral mobilization, direct administration of G-CSF at a dose of 300 microg/kg/day or 150 microg/kg/day was applied and found to significantly stimulate GM-CFU formation and increase c-kit+ cells in the peripheral mononuclear cells. More importantly, 75-mGy x-rays plus 150 microg/kg/day G-CSF (LDR/150-G-CSF) produced a similar effect to that of 300 microg/kg/day G-CSF alone. Furthermore, the capability of LDR-mobilized donor HPCs to repopulate blood cells was confirmed in lethally irradiated recipient mice by counting peripheral WBC and CFUs-S. These results suggest that LDR induces hematopoietic hormesis, as demonstrated by HPC proliferation and peripheral mobilization, providing a potential approach to clinical application for HPC peripheral mobilization.
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) are multifunctional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets...
Yang, Mu; Peyret, Corentin; Shi, Xiang Qun; Siron, Nicolas; Jang, Jeong Ho; Wu, Sonia; Fournier, Sylvie; Zhang, Ji
2015-01-01
Autoimmune peripheral neuropathies such as Guillain-Barre Syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) affect millions of people worldwide. Despite significant advances in understanding the pathology, the molecular and cellular mechanisms of immune-mediated neuropathies remain elusive. T lymphocytes definitely play an important role in disease pathogenesis and CD4+ T cells have been the main area of research for decades. This is partly due to the fact that the most frequent animal model to study autoimmune peripheral neuropathy is experimental allergic neuritis (EAN). As it is induced commonly by immunization with peripheral nerve proteins, EAN is driven mainly by CD4+ T cells. However, similarly to what has been reported for patients suffering from multiple sclerosis, a significant body of evidence indicates that CD8+ T cells may play a pathogenic role in GBS and CIDP disease development and/or progression. Here, we summarize clinical studies pertaining to the presence and potential role of CD8+ T cells in autoimmune peripheral neuropathies. We also discuss the findings from our most recent studies using a transgenic mouse line (L31 mice) in which the T cell co-stimulator molecule B7.2 (CD86) is constitutively expressed in antigen presenting cells of the nervous tissues. L31 mice spontaneously develop peripheral neuropathy, and CD8+ T cells are found accumulating in peripheral nerves of symptomatic animals. Interestingly, depletion of CD4+ T cells accelerates disease onset and increases disease prevalence. Finally, we point out some unanswered questions for future research to dissect the critical roles of CD8+ T cells in autoimmune peripheral neuropathies. PMID:26528293
Yang, Mu; Peyret, Corentin; Shi, Xiang Qun; Siron, Nicolas; Jang, Jeong Ho; Wu, Sonia; Fournier, Sylvie; Zhang, Ji
2015-01-01
Autoimmune peripheral neuropathies such as Guillain-Barre Syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) affect millions of people worldwide. Despite significant advances in understanding the pathology, the molecular and cellular mechanisms of immune-mediated neuropathies remain elusive. T lymphocytes definitely play an important role in disease pathogenesis and CD4(+) T cells have been the main area of research for decades. This is partly due to the fact that the most frequent animal model to study autoimmune peripheral neuropathy is experimental allergic neuritis (EAN). As it is induced commonly by immunization with peripheral nerve proteins, EAN is driven mainly by CD4(+) T cells. However, similarly to what has been reported for patients suffering from multiple sclerosis, a significant body of evidence indicates that CD8(+) T cells may play a pathogenic role in GBS and CIDP disease development and/or progression. Here, we summarize clinical studies pertaining to the presence and potential role of CD8(+) T cells in autoimmune peripheral neuropathies. We also discuss the findings from our most recent studies using a transgenic mouse line (L31 mice) in which the T cell co-stimulator molecule B7.2 (CD86) is constitutively expressed in antigen presenting cells of the nervous tissues. L31 mice spontaneously develop peripheral neuropathy, and CD8(+) T cells are found accumulating in peripheral nerves of symptomatic animals. Interestingly, depletion of CD4(+) T cells accelerates disease onset and increases disease prevalence. Finally, we point out some unanswered questions for future research to dissect the critical roles of CD8(+) T cells in autoimmune peripheral neuropathies.
Increased oxidative stress and apoptosis in peripheral blood mononuclear cells of fructose-fed rats.
Porto, Marcella L; Lírio, Layla M; Dias, Ananda T; Batista, Alan T; Campagnaro, Bianca P; Mill, José G; Meyrelles, Silvana S; Baldo, Marcelo P
2015-12-01
Measuring of oxidative stress in peripheral blood mononuclear cells is a suitable model of dietary induced systemic oxidative stress. Thus, we aimed to evaluate whether a chronic high fructose intake could induce oxidative damage in peripheral blood and bone marrow mononuclear cells of rats. Animals were randomly assigned to the following groups: Control group (standard rat chow and tap water n=8), and Fructose group (standard rat chow and a 10% fructose solution in the drinking water n=8). Reactive oxygen species and cytokines were measure using flow cytometry in peripheral blood and bone-marrow mononuclear cells. Apoptotic cell death and the advanced oxidation protein products (AOPP) were also determined. We observed a significant increase in ROS production in peripheral blood mononuclear cells of fructose group as compared to control rats. Apoptosis and the AOPP were higher in those animals underwent high fructose intake. Serum levels of IL-6 and IL-12 were also increased after 12 weeks of high fructose intake. We concluded that fructose intake leads to systemic oxidative stress and pro-inflammatory condition which affect peripheral blood mononuclear cells and bone-marrow mononuclear cells viability. Copyright © 2015 Elsevier B.V. All rights reserved.
miR-155 Is Essential for Inflammation-Induced Hippocampal Neurogenic Dysfunction
Woodbury, Maya E.; Freilich, Robert W.; Cheng, Christopher J.; Asai, Hirohide; Ikezu, Seiko; Boucher, Jonathan D.; Slack, Frank
2015-01-01
Peripheral and CNS inflammation leads to aberrations in developmental and postnatal neurogenesis, yet little is known about the mechanism linking inflammation to neurogenic abnormalities. Specific miRs regulate peripheral and CNS inflammatory responses. miR-155 is the most significantly upregulated miR in primary murine microglia stimulated with lipopolysaccharide (LPS), a proinflammatory Toll-Like Receptor 4 ligand. Here, we demonstrate that miR-155 is essential for robust IL6 gene induction in microglia under LPS stimulation in vitro. LPS-stimulated microglia enhance astrogliogenesis of cocultured neural stem cells (NSCs), whereas blockade of IL6 or genetic ablation of microglial miR-155 restores neural differentiation. miR-155 knock-out mice show reversal of LPS-induced neurogenic deficits and microglial activation in vivo. Moreover, mice with transgenic elevated expression of miR-155 in nestin-positive neural and hematopoietic stem cells, including microglia, show increased cell proliferation and ectopically localized doublecortin-positive immature neurons and radial glia-like cells in the hippocampal dentate gyrus (DG) granular cell layer. Microglia have proliferative and neurogenic effects on NSCs, which are significantly altered by microglial miR-155 overexpression. In addition, miR-155 elevation leads to increased microglial numbers and amoeboid morphology in the DG. Our study demonstrates that miR-155 is essential for inflammation-induced neurogenic deficits via microglial activation and induction of IL6 and is sufficient for disrupting normal hippocampal development. PMID:26134658
Ma, Xiao-Xin; Zhu, Jun-Quan; Zhou, Hong; Yang, Wan-Xi
2012-02-01
The egg envelope is an essential structure occurring during oogenesis. It plays an important role during the process of fertilization in the large yellow croaker Pseudosciaena crocea. Elucidation of egg envelope formation helps us to understand fertilization mechanisms in teleosts. In the present work, we studied the formation of egg envelope in P. crocea by light microscopy, as well as by transmission and scanning electron microscopy. Four layers exist outside the oocyte plasmalemma, i.e., theca cell layer, basal membrane, granulosa cell layer and zona radiata. According to our observation, zona radiata is a multilaminar structure just like the same structure reported in teleosts, but the origin of this structure is a little different. Before it is formed, a peripheral space filled with different density of vesicles is the place where zona radiata is formed. Zona radiata (Z1) is secreted only by oocyte itself, it belongs to the primary envelope; zona radiata 2 (Z2) and zona radiata 3 (Z3) belong to the secondary envelope, because the two layers are formed after granulosa cells appear, and microvilli participate this process. It is very interesting that Z2 and Z3 are situated between Z1 and the granulosa cell first, but they translocate to the other side of Z1. This microanatomy difference may due to the participation of microvilli. The new finding about egg envelope formation in P. crocea will help us to do further investigation on fertilization mechanisms and will make artificial breeding possible which may contribute to the resource recovery of this species. Copyright © 2011 Elsevier Ltd. All rights reserved.
VK, Varsha; Hallikeri, Kaveri; Girish, HC; Murgod, Sanjay
2014-01-01
Background: Central and Peripheral giant cell granulomas of jaws are uncommon, benign, reactive disorders that are characterized by the presence of numerous multinucleated giant cells and mononuclear cells within a stroma. The origin of the multinucleated giant cells is controversial; probably originating from fusion of histiocytes, endothelial cells and fibroblasts. Objective: To assess the expression of CD34 and CD68 in central and peripheral giant cell granulomas to understand the origin of these multinucleated giant cells. Materials and Methods: Twenty cases of Central and Peripheral giant cell granulomas were evaluated immunohistochemically for CD34 and CD68 proteins expression. Results: Immunopositivity for CD34 was seen only in cytoplasm of endothelial cells of blood vessels; whereas, consistent cytoplasmic immunopositivity for CD68 was seen in few stromal cells. Statistical significance was seen in mean number of multinucleated giant cells, mean number of nuclei in multinucleated giant cells, CD68 expression and ratio of macrophages to multinucleated giant cells among two lesions. Conclusion: Although the central giant cell granulomas share some clinical and histopathological similarities with peripheral giant cell granulomas, differences in mean number of nuclei in multinucleated giant cells and CD68 immunoreactivity may underlie the distinct clinical behavior. PMID:25948986
Resilient protein co-expression network in male orbitofrontal cortex layer 2/3 during human aging.
Pabba, Mohan; Scifo, Enzo; Kapadia, Fenika; Nikolova, Yuliya S; Ma, Tianzhou; Mechawar, Naguib; Tseng, George C; Sibille, Etienne
2017-10-01
The orbitofrontal cortex (OFC) is vulnerable to normal and pathologic aging. Currently, layer resolution large-scale proteomic studies describing "normal" age-related alterations at OFC are not available. Here, we performed a large-scale exploratory high-throughput mass spectrometry-based protein analysis on OFC layer 2/3 from 15 "young" (15-43 years) and 18 "old" (62-88 years) human male subjects. We detected 4193 proteins and identified 127 differentially expressed (DE) proteins (p-value ≤0.05; effect size >20%), including 65 up- and 62 downregulated proteins (e.g., GFAP, CALB1). Using a previously described categorization of biological aging based on somatic tissues, that is, peripheral "hallmarks of aging," and considering overlap in protein function, we show the highest representation of altered cell-cell communication (54%), deregulated nutrient sensing (39%), and loss of proteostasis (35%) in the set of OFC layer 2/3 DE proteins. DE proteins also showed a significant association with several neurologic disorders; for example, Alzheimer's disease and schizophrenia. Notably, despite age-related changes in individual protein levels, protein co-expression modules were remarkably conserved across age groups, suggesting robust functional homeostasis. Collectively, these results provide biological insight into aging and associated homeostatic mechanisms that maintain normal brain function with advancing age. Copyright © 2017 Elsevier Inc. All rights reserved.
Nakatani, Yusuke; Higashide, Tomomi; Ohkubo, Shinji; Sugiyama, Kazuhisa
2014-10-23
We investigated the influences of the inner retinal sublayers and analytical areas in macular scans by spectral-domain optical coherence tomography (OCT) on the diagnostic ability of early glaucoma. A total of 64 early (including 24 preperimetric) glaucomatous and 40 normal eyes underwent macular and peripapillary retinal nerve fiber layer (pRNFL) scans (3D-OCT-2000). The area under the receiver operating characteristics (AUC) for glaucoma diagnosis was determined from the average thickness of the total 100 grids (6 × 6 mm), central 44 grids (3.6 × 4.8 mm), and peripheral 56 grids (outside of the 44 grids), and for each macular sublayer: macular RNFL (mRNFL), ganglion cell layer plus inner plexiform layer (GCL/IPL), and mRNFL plus GCL/IPL (ganglion cell complex [GCC]). Correlation of OCT parameters with visual field parameters was evaluated by Spearman's rank correlation coefficients (rs). The GCC-related parameters had a significantly larger AUC (0.82-0.97) than GCL/IPL (0.81-0.91), mRNFL-related parameters (0.72-0.94), or average pRNFL (0.88) in more than half of all comparisons. The central 44 grids had a significantly lower AUC than other analytical areas in GCC and mRNFL thickness. Conversely, the peripheral 56 grids had a significantly lower AUC than the 100 grids in GCL/IPL inferior thickness. Inferior thickness of GCC (rs, 0.45-0.49) and mRNFL (rs, 0.43-0.51) showed comparably high correlations with central visual field parameters to average pRNFL thickness (rs, 0.41, 0.47) even in the central 44 grids. The diagnostic ability of macular OCT parameters for early glaucoma differed by inner retinal sublayers and also by the analytical areas studied. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Neuroactive substances in the human vestibular end organs.
Usami, S; Matsubara, A; Shinkawa, H; Matsunaga, T; Kanzaki, J
1995-01-01
In order to evaluate the involvement of neuroactive substances in the human vestibular periphery, the immunocytochemical distribution of substance P (SP), calcitonin gene-related peptide (CGRP), and choline acetyltransferase (ChAT) was examined. SP-like immunoreactivity (LI) was present around and beneath sensory hair cells, probably corresponding to their afferent nerve endings. SP-LI was found predominantly in subpopulations of the primary afferents distributed in the peripheral region of the end organs. ChAT-LI and CGRP-LI were found throughout as small puncta below the hair cell layer, probably corresponding to efferent endings. The present results indicate that these neuroactive substances, previously described in animals, are also distributed in the human vestibular periphery, and almost certainly contribute to human vestibular function.
Peitz, Michael; Bechler, Tamara; Thiele, Catrin Cornelia; Veltel, Monika; Bloschies, Melanie; Fliessbach, Klaus; Ramirez, Alfredo; Brüstle, Oliver
2018-04-23
Alzheimer's disease (AD) is most the frequent neurodegenerative disease, and the APOE ε4 allele is the most prominent risk factor for late-onset AD. Here, we present an iPSC line generated from peripheral blood cells of a male AD patient employing Sendai virus vectors encoding the transcription factors OCT4, SOX2, KLF4 and c-MYC. The characterized iPSC line expresses typical human pluripotency markers and shows differentiation into all three germ layers, complete reprogramming vector clearance, a normal SNP genotype and maintenance of the APOE ε4/ε4 allele. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Collection and use of circulating hematopoietic progenitor cells.
Lee, J H; Klein, H G
1995-02-01
Although lymphocytes and monocytes are becoming increasingly important in transfusion therapy, peripheral stem cells have been responsible for the recent explosive interest in harvesting mononuclear cells from the peripheral circulation. Despite their low concentration in peripheral blood and the consequent difficulty in cell collection, circulating hematopoietic progenitor cells are collected and used almost routinely. These mononuclear cells, possessing the capacity for hematopoietic reconstitution and the potential for definitive therapy of a variety of disorders, have been the focus of recent intense interest in transfusion medicine.
Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic
2016-01-01
This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.
Liu, Senquan; Ye, Zhaohui; Gao, Yongxing; He, Chaoxia; Williams, Donna W; Moliterno, Alison; Spivak, Jerry; Huang, He; Cheng, Linzhao
2017-01-01
Activating point mutations in the MPL gene encoding the thrombopoietin receptor are found in 3%-10% of essential thrombocythemia (ET) and myelofibrosis patients. Here, we report the derivation of induced pluripotent stem cells (iPSCs) from an ET patient with a heterozygous MPL V501L mutation. Peripheral blood CD34 + progenitor cells were reprogrammed by transient plasmid expression of OCT4, SOX2, KLF4, c-MYC plus BCL2L1 (BCL-xL) genes. The derived line M494 carries a MPL V501L mutation, displays typical iPSC morphology and characteristics, are pluripotent and karyotypically normal. Upon differentiation, the iPSCs are able to differentiate into cells derived from three germ layers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
An inhomogeneous thermal block model of man for the electromagnetic environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, I.; Gandhi, O.P.
An inhomogeneous four layer block thermal model of a human body, composed of 476 electromagnetic-sensitive cubical cells has been developed to study the effects of electromagnetic radiation. Varying tissue properties defined by thermal conductivity, specific heat, blood flow rate and metabolic heat production are accounted for by equations. Peripheral cell temperature is weight-averaged for total cell volume and is thereby higher than actual skin temperature. During electromagnetic field exposure, additional factors considered are increased blood flow rate caused by vasodilation and sweat-induced heat loss. Hot spots have been located in the model and numerical results are presented. Subjected to planemore » wave iradiation, the model's sweating and insensible perspiration cease and all temperatures converge. Testing during electromagnetic hyperthemia shows all temperature body parts to increase approximately at the same rate.« less
Cytogenetic biomonitoring of peripheral blood and oral mucosa cells from car painters.
Pereira da Silva, Victor Hugo; Gomes de Moura, Carolina Foot; Spadari-Bratfisch, Regina Célia; Araki Ribeiro, Daniel
2012-09-01
The aim of the present study was to comparatively evaluate genomic damage and cellular death in exfoliated oral mucosa cells and peripheral blood from car painters. A total of 24 car painters and 19 healthy controls (non-exposed individuals) were included in this setting. Individuals had epithelial cells from cheek mucosa (left and right side) mechanically exfoliated, placed in fixative and dropped in clean slides which were checked for the specific nuclear phenotypes. A total of 5 μL from peripheral blood was collected for the single cell gel (comet) assay. The results pointed out statistically significant differences (p < 0.05) of micronucleated oral mucosa cells from car painters. In addition, DNA damage was detected in peripheral blood cells by single cell gel (comet) assay. Nevertheless, exposure to car paints did not cause increases other nuclear alterations closely related to cytotoxicity such as karrhyorexis, pyknosis and karyolysis in buccal mucosa cells. In summary, the results of the present study suggest that car painters comprise a high risk group since paints can induce genotoxic and mutagenic effects in peripheral blood and oral mucosa cells, respectively.
Paclitaxel-induced peripheral neuropathy increases substance P release in rat spinal cord.
Chiba, Terumasa; Oka, Yusuke; Kambe, Toshie; Koizumi, Naoya; Abe, Kenji; Kawakami, Kazuyoshi; Utsunomiya, Iku; Taguchi, Kyoji
2016-01-05
Peripheral neuropathy is a common adverse effect of paclitaxel treatment. The major dose-limiting side effect of paclitaxel is peripheral sensory neuropathy, which is characterized by painful paresthesia of the hands and feet. To analyze the contribution of substance P to the development of paclitaxel-induced mechanical hyperalgesia, substance P expression in the superficial layers of the rat spinal dorsal horn was analyzed after paclitaxel treatment. Behavioral assessment using the von Frey test and the paw thermal test showed that intraperitoneal administration of 2 and 4mg/kg paclitaxel induced mechanical allodynia/hyperalgesia and thermal hyperalgesia 7 and 14 days after treatment. Immunohistochemistry showed that paclitaxel (4mg/kg) treatment significantly increased substance P expression (37.6±3.7% on day 7, 43.6±4.6% on day 14) in the superficial layers of the spinal dorsal horn, whereas calcitonin gene-related peptide (CGRP) expression was unchanged. Moreover, paclitaxel (2 and 4mg/kg) treatment significantly increased substance P release in the spinal cord on day 14. These results suggest that paclitaxel treatment increases release of substance P, but not CGRP in the superficial layers of the spinal dorsal horn and may contribute to paclitaxel-induced painful peripheral neuropathy. Copyright © 2015 Elsevier B.V. All rights reserved.
Sakaue, Yuko; Bellier, Jean-Pierre; Kimura, Shin; D'Este, Loredana; Takeuchi, Yoshihiro; Kimura, Hiroshi
2014-01-01
Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm.
Jadalannagari, Sushma; Aljitawi, Omar S
2015-06-01
Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doi, Keiko; Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka; Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka
Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in themore » immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.« less
Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing
2013-01-01
Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and endocrine metabolic disorders in PCOS. PMID:24260211
Sun, Jie; Jin, Chunlan; Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing
2013-01-01
Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg(-1) of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and endocrine metabolic disorders in PCOS.
Tubby, Carolyn; Negm, Ola H; Harrison, Timothy; Tighe, Patrick J; Todd, Ian; Fairclough, Lucy C
2017-06-01
The three main types of killer cells - CD8 + T cells, NK cells and NKT cells - have been linked to asthma and chronic obstructive pulmonary disease (COPD). However, their role in a small subset of asthma patients displaying fixed airway obstruction (FAO), similar to that seen in COPD, has not been explored. The objective of the present study was to investigate killer cell numbers, phenotype and function in peripheral blood from asthma patients with FAO, asthma patients without FAO, and healthy individuals. Peripheral CD8 + T cells (CD8 + CD3 + CD56 - ), NK cells (CD56 + CD3 - ) and NKT-like cells (CD56 + CD3 + ) of 14 asthma patients with FAO (post-bronchodilator FEV/FVC <0.7, despite clinician-optimised treatment), 7 asthma patients without FAO (post-bronchodilator FEV/FVC ≥ 0.7), and 9 healthy individuals were studied. No significant differences were seen between the number, receptor expression, MAPK signalling molecule expression, cytotoxic mediator expression, and functional cytotoxicity of peripheral killer cells from asthma patients with FAO, asthma patients without FAO and healthy individuals. Peripheral killer cell numbers or functions do not differentiate between asthma patients with or without fixed airway obstruction.
Liu, Lin
2013-03-01
Dynamics of lipid bodies and plastids in chili pepper fruits during ripening were investigated by means of transmission electron microscopy. Mesocarp of chili pepper fruits consists of collenchyma, normal parenchyma, and huge celled parenchyma. In mature green fruits, plastids contain numerous thylakoids that are well organized into grana in collenchyma, a strikingly huge amount of starch and irregularly organized thylakoids in normal parenchyma, and simple tubes rather than thylakoids in huge celled parenchyma. These morphological features suggest that plastids are chloroplasts in collenchyma, chloroamyloplasts in normal parenchyma, proplastids in huge celled parenchyma. As fruits ripen to red, plastids in all cell types convert to chromoplasts and, concomitantly, lipid bodies accumulate in both cytoplasm and chromoplasts. Cytosolic lipid bodies are lined up in a regular layer adjacent to plasma membrane. The cytosolic lipid body consists of a core surrounded by a membrane. The core is comprised of a more electron-dense central part enclosed by a slightly less electron-dense peripheral layer. Plastidial lipid bodies in collenchyma, normal parenchyma, and endodermis initiate as plastoglobuli, which in turn convert to rod-like structures. Therefore, plastidial lipid bodies are more dynamic than cytosolic lipid bodies. Both cytosolic and plastidial lipid bodies contain rich unsaturated lipids. Copyright © 2012 Elsevier Ltd. All rights reserved.
Brown, H A; Allison, J D; Samonds, J M; Bonds, A B
2003-01-01
A stimulus located outside the classic receptive field (CRF) of a striate cortical neuron can markedly influence its behavior. To study this phenomenon, we recorded from two cortical sites, recorded and peripheral, with separate electrodes in cats anesthetized with Propofol and nitrous oxide. The receptive fields of each site were discrete (2-7.3 deg between centers). A control orientation tuning (OT) curve was measured for a single recorded cell with a drifting grating. The OT curve was then remeasured while stimulating simultaneously the cell's CRF as well as the peripheral site with a stimulus optimized for that location. For 22/60 cells, the peripheral stimulus suppressed the peak response and/or shifted the center of mass of the OT curve. For 19 of these 22 cells, we then reversibly blocked stimulus-driven activity at the peripheral site by iontophoretic application of GABA (0.5 M). For 6/19 cells, the response returned to control levels, implying that for these cells the inhibitory influence arose from the blocked site. The responses of nine cells remained reduced during inactivation of the peripheral site, suggesting that influence was generated outside the region of local block in area 17. This is consistent with earlier findings suggesting that modulatory influences can originate from higher cortical areas. Three cells had mixed results, suggesting multiple origins of influence. The response of each cell returned to suppressed levels after dissipation of the GABA and returned to baseline values when the peripheral stimulus was removed. These findings support a cortical model in which a cell's response is modulated by an inhibitory network originating from beyond the receptive field that supplants convergence of excitatory lateral geniculate neurons. The existence of cells that exhibit no change in peripherally inhibited responses during the GABA application suggests that peripheral influences may arise from outside area 17, presumably from other cortical areas (e.g. area 18).
XU, SHI-MIN; LIANG, TING
2016-01-01
The aim of the present study was to investigate the optimal mobilization plan in autologous peripheral blood stem cell transplantation for the treatment of diabetic foot and to observe its clinical curative effect. A total of 127 patients with diabetic foot were treated with different doses of granulocyte colony stimulating factor (G-CSF) to mobilize their hematopoietic stem cells. Subsequently, the extracted stem cell suspension was injected into the ischemic lower extremities along the blood vessels in the areas presenting with pathological changes. Following the treatment, the intermittent claudication distance, skin temperature, ankle brachial index and pain scores of the patients were evaluated. In addition, the associations among the mobilization time, doses and peripheral blood CD34+ level were analyzed. The collection efficiency of the stem cells was associated with the dose of G-CSF and the mobilization time. Following the injection of the autologous peripheral blood stem cell suspension, the ischemic area of the patients was improved significantly. In conclusion, autologous peripheral blood stem cell transplantation can promote the establishment of collateral circulation in patients with diabetic foot, and the optimal time for gathering stem cells is closely correlated with the peripheral blood CD34+ level. PMID:26889255
Sarmento, Dmitry José de Santana; Carvalho, Sérgio Henrique Gonçalves de; Araújo, José Cadmo Wanderley Peregrino de; Carvalho, Marianne de Vasconcelos; Silveira, Éricka Janine Dantas da
2017-01-01
We report a 35-year-old mulatto female patient with neurofibromatosis Type 1 who presented with facial asymmetry. The patient had two lesions: florid cemento-osseous dysplasia associated with peripheral giant cell granuloma. She was referred for surgical treatment of the peripheral giant cell granuloma and the florid cemento-osseous dysplasia was treated conservatively by a multidisciplinary team. So far, no changes have been observed in the patient's clinical status. We observed no recurrence of peripheral giant cell granuloma. To the best of our knowledge, the present case is the first report of a patient with neurofibromatosis Type 1 associated with a giant cell lesion and florid cemento-osseous dysplasia.
Sarmento, Dmitry José de Santana; de Carvalho, Sérgio Henrique Gonçalves; de Araújo Filho, José Cadmo Wanderley Peregrino; Carvalho, Marianne de Vasconcelos; da Silveira, Éricka Janine Dantas
2017-01-01
We report a 35-year-old mulatto female patient with neurofibromatosis Type 1 who presented with facial asymmetry. The patient had two lesions: florid cemento-osseous dysplasia associated with peripheral giant cell granuloma. She was referred for surgical treatment of the peripheral giant cell granuloma and the florid cemento-osseous dysplasia was treated conservatively by a multidisciplinary team. So far, no changes have been observed in the patient's clinical status. We observed no recurrence of peripheral giant cell granuloma. To the best of our knowledge, the present case is the first report of a patient with neurofibromatosis Type 1 associated with a giant cell lesion and florid cemento-osseous dysplasia. PMID:28538890
[Primary peripheral T-cell lymphoma of the penis: a case report and review of the literature].
Shi, Yan-Lin; Yin, Hong-Lin; Zhou, Xiao-Jun; Zhou, Hang-Bo; Lu, Zhen-Feng
2008-11-01
To report a case of primary peripheral T-cell lymphoma of the penis. We analyzed the clinicopathological characteristics of the case of primary peripheral T-cell lymphoma using histological, cytochemical and immunohistochemical methods and by review of the literature. The patient was a 65 years old man and presented with a diffuse enlargement of the penis as the initial sign, followed by erosive ulcer in the caput penis and inguinal lymphadenectasis. The tumor was pathohistologically manifested as an epidermal ulcer, with tumorous necrosis around the capillary, infiltrative growth and atypical changes of the neoplastic cells and proliferation of capillaries. Immunohistochemically, the tumor cells were positive for CD43 and CD3, but negative for CD20, CD79a, CD34, CD30, CD56 and CD34. Clinically it responded to the chemotherapy designed for peripheral T-cell lymphoma. Primary peripheral T-cell lymphoma of the penis is an extremely rare malignant tumor, the diagnosis of which relies on histopathological examination, immunohistochemical staining and differentiation between squamous cell carcinoma and other types of lymphoma.
Souza, Tatyana A.; Stollar, B. David; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.
2005-01-01
Epstein–Barr virus (EBV) establishes a lifelong persistent infection within peripheral blood B cells with the surface phenotype of memory cells. To date there is no proof that these cells have the genotype of true germinal-center-derived memory B cells. It is critical to understand the relative contribution of viral mimicry versus antigen signaling to the production of these cells because EBV encodes proteins that can affect the surface phenotype of infected cells and provide both T cell help and B cell receptor signals in the absence of cognate antigen. To address these questions we have developed a technique to identify single EBV-infected cells in the peripheral blood and examine their expressed Ig genes. The genes were all isotype-switched and somatically mutated. Furthermore, the mutations do not cause stop codons and display the pattern expected for antigen-selected memory cells based on their frequency, type, and location within the Ig gene. We conclude that latently infected peripheral blood B cells display the molecular hallmarks of classical antigen-selected memory B cells. Therefore, EBV does not disrupt the normal processing of latently infected cells into memory, and deviations from normal B cell biology are not tolerated in the infected cells. This article provides definitive evidence that EBV in the peripheral blood persists in true memory B cells. PMID:16330748
Stem cell and peripheral nerve injury and repair.
Dong, Ming-min; Yi, Tian-hua
2010-10-01
Peripheral motor nerve injuries are a significant source of morbidity. Neural stem cells (NSCs), a group of relatively primitive cells, possess self-renewal ability and multidifferentiation potential. NSCs may be successfully separated from the human embryo and central nervous system (CNS) and differentiated into mature neurons and gliacytes by in vitro induction or transplantation into the body and may be differentiated into Schwann-like cells under specific conditions. It has been demonstrated that the ability of peripheral nerves to regenerate is mainly attributable to Schwann cells. NSC transplantation can promote peripheral nerve regeneration and provide a new means for treatment of peripheral nerve injury. In recent years, the study of NSCs has become a focus of many laboratories, but the biological characteristics and differentiation regulation mechanisms are not fully clear. In this article, we provide a brief review of NSC characteristics, cultivation, oriented differentiation, and clinical application. © Thieme Medical Publishers.
Advances and Future Applications of Augmented Peripheral Nerve Regeneration
Jones, Salazar; Eisenberg, Howard M.; Jia, Xiaofeng
2016-01-01
Peripheral nerve injuries remain a significant source of long lasting morbidity, disability, and economic costs. Much research continues to be performed in areas related to improving the surgical outcomes of peripheral nerve repair. In this review, the physiology of peripheral nerve regeneration and the multitude of efforts to improve surgical outcomes are discussed. Improvements in tissue engineering that have allowed for the use of synthetic conduits seeded with neurotrophic factors are highlighted. Selected pre-clinical and available clinical data using cell based methods such as Schwann cell, undifferentiated, and differentiated stem cell transplantation to guide and enhance peripheral nerve regeneration are presented. The limitations that still exist in the utility of neurotrophic factors and cell-based therapies are outlined. Strategies that are most promising for translation into the clinical arena are suggested. PMID:27618010
Li, Hao; Li, Songyan; Hu, Shidong; Zou, Guijun; Hu, Zilong; Wei, Huahua; Wang, Yufeng; Du, Xiaohui
2017-01-01
Objective To detect the frequencies of peripheral programmed death-1 + (PD-1 + ) lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in patients with gastric adenocarcinoma. Methods The study enrolled 29 patients with gastric adenocarcinoma and 29 age- and sex-matched healthy controls. Frequencies of PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells were detected using flow cytometry. Results The number of PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in peripheral blood was higher in patients with gastric adenocarcinoma than that in the control group. Moreover, linear correlation analysis indicated a positive correlation between PD-1 expression and frequency of CD4 + CD25 + FOXP3 + regulatory T cells in peripheral blood of the patients. Conclusion Gastric adenocarcinoma patients present with increased PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in the peripheral blood.
Baron, Frédéric; Mohty, Mohamad; Blaise, Didier; Socié, Gérard; Labopin, Myriam; Esteve, Jordi; Ciceri, Fabio; Giebel, Sebastian; Gorin, Norbert Claude; Savani, Bipin N; Schmid, Christoph; Nagler, Arnon
2017-01-01
Allogeneic hematopoietic stem cell transplantation is increasingly used as treatment for patients with life-threatening blood diseases. Its curative potential is largely based on immune-mediated graft-versus-leukemia effects caused by donor T cells contained in the graft. Unfortunately, donor T cells are also the cause of graft-versus-host disease. The vast majority of human leukocyte antigen-matched allogeneic hematopoietic stem cell transplants are nowadays carried out with peripheral blood stem cells as the stem cell source. In comparison with bone marrows, peripheral blood stem cells contain more hematopoietic stem/progenitor cells but also one log more T cells. Consequently, the use of peripheral blood stem cells instead of bone marrow has been associated with faster hematologic recovery and a lower risk of relapse in patients with advanced disease, but also with a higher incidence of chronic graft-versus-host disease. These observations have been the basis for several studies aimed at assessing the impact of immunoregulation with anti-thymocyte globulin on transplantation outcomes in patients given human leukocyte antigen-matched peripheral blood stem cells from related or unrelated donors. After a brief introduction on anti-thymocyte globulin, this article reviews recent studies assessing the impact of anti-thymocyte globulin on transplantation outcomes in patients given peripheral blood stem cells from human leukocyte antigen-matched related or unrelated donors as well as in recipients of grafts from human leukocyte antigen haploidentical donors. PMID:27927772
Circulating hematopoietic progenitor cells in patients affected by Chornobyl accident.
Bilko, N M; Dyagil, I S; Russu, I Z; Bilko, D I
2016-12-01
High radiation sensitivity of stem cells and their ability to accumulate sublethal radiation damage provides the basis for investigation of hematopoietic progenitors using in vivo culture methodology. Unique samples of peripheral blood and bone marrow were derived from the patients affected by Chornobyl accident during liquidation campaign. To investigate functional activity of circulating hematopoietic progenitor cells from peripheral blood and bone marrow of cleanup workers in early and remote periods after the accident at Chornobyl nuclear power plant (CNPP). The assessment of the functional activity of circulating hematopoietic progenitor cells was performed in samples of peripheral blood and bone marrow of 46 cleanup workers, who were treated in the National Scientific Center for Radiation Medicine of the Academy of Medical Sciences of Ukraine alongside with 35 non radiated patients, who served as a control. Work was performed by culturing peripheral blood and bone marrow mononuclear cells in the original gel diffusion capsules, implanted into the peritoneal cavity of CBA mice. It was shown that hematopoietic progenitor cells could be identified in the peripheral blood of liquidators of CNPP accident. At the same time the number of functionally active progenitor cells of the bone marrow was significantly decreased and during the next 10 years after the accident, counts of circulating progenitor cells in the peripheral blood as well as functionally active hematopoietic cells in bone marrow returned to normal levels. It was shown that hematopoietic progenitor cells are detected not only in the bone marrow but also in the peripheral blood of liquidators as a consequence of radiation exposure associated with CNPP accident. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".
2014-06-26
Peripheral T-cell Lymphoma (Not Otherwise Specified); Angioimmunoblastic T-cell Lymphoma; Extranodal NK/T-cell Lymphoma Nasal Type; Enteropathy- Type T-cell Lymphoma; Hepatosplenic T-cell Lymphoma; Anaplastic Large Cell Lymphoma (ALCL) (ALK-1 Negative); Relapsed ALCL (ALK-1 Positive) Post Autologous Transplant
Powassan Virus: Morphology and Cytopathology
Abdelwahab, K. S. E.; Almeida, J. D.; Doane, F. W.; McLean, D. M.
1964-01-01
Powassan virus, a North American tickborne group B arbovirus, multiplied after simultaneous inoculation into bottles or tubes of virus and trypsinized suspension of continuous-line cultures of rhesus monkey kidney cells, strain LLC-MK2. Cytopathic effects comprising cell rounding and cytoplasmic vacuolation were first observed five days after inoculation. Mixture of Powassan antiserum with virus before inoculation into tissue cultures inhibited the appearance of cytopathic effects. Hemagglutinins for rooster erythrocytes, optimally at pH 6.4 and 22° C., first appeared in tissue culture supernatant fluids four days after inoculation. Electron microscopic observation of thin sections of infected tissue culture cells showed virus particles 360-380 A.U. along outer cell membranes and edges of cytoplasmic vacuoles. In phosphotungstic acid negatively stained preparations, intact virus particles, 400-450 A.U. total diameter, were observed inside infected cells. In particles in which the peripheral layer became discontinuous, geometrically arranged subunits compatible with cubic symmetry were observed. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5 PMID:14146854
An affinity/avidity model of peripheral T cell regulation
Jiang, Hong; Wu, Yilun; Liang, Bitao; Zheng, Zongyu; Tang, Guomei; Kanellopoulos, Jean; Soloski, Mark; Winchester, Robert; Goldstein, Itamar; Chess, Leonard
2005-01-01
We show in these studies that Qa-1–dependent CD8+ T cells are involved in the establishment and maintenance of peripheral self tolerance as well as facilitating affinity maturation of CD4+ T cells responding to foreign antigen. We provide experimental evidence that the strategy used by the Qa-1–dependent CD8+ T cells to accomplish both these tasks in vivo is to selectively downregulate T cell clones that respond to both self and foreign antigens with intermediate, not high or low, affinity/avidity. Thus, the immune system evolved to regulate peripheral immunity using a unified mechanism that efficiently and effectively permits the system to safeguard peripheral self tolerance yet promote the capacity to deal with foreign invaders. PMID:15668735
Singleterry, Will L; Henderson, Harold; Cruse, Julius M
2012-02-01
In this present investigation, flow cytometry was utilized to evaluate 13 healthy controls and 31 HIV-1 infected patients who had advanced to the AIDS stage of infection (CD4 count below 200 cells/mm(3)), for the expression of CD161 on CD3(+) double negative (DN) (CD3(+)CD4(-)CD8(-)) T cells, CD4(+) T cells, CD8(+) T cells and γδ T cells. The observed depletion of CD161(+) T cells from peripheral circulation was due primarily to the loss of CD4(+)CD161(+) T cells; as these cells represented 8.67±0.74% of the total healthy control peripheral T cell population, while the CD4(+)CD161(+) T cells of the AIDS group represented only 3.35±0.41% (p=<0.0001) of the total peripheral T cell population. We have also shown here that the DN T cell population was more than doubled in the AIDS group, with the DN T cell population expanding from 3.29±0.45% of the healthy control peripheral T cell population to 8.64±1.16% (p=0.0001) of the AIDS group peripheral T cell population. By evaluating the expression of CD161 on the surface of the DN T cells we showed that within the healthy control group, 47.4±4.99% of the DN T cells were positive for the expression of CD161, while only 26.4±3.54% (p=0.002) of the AIDS group's DN T cells expressed CD161. Despite CD161 expression being halved on the DN T cells of the AIDS group, when we compared the total peripheral T cell percentage of CD161(+) DN T cells between the healthy control group and the AIDS group, there was no statistical difference. Even though only 26.4% DN T cells within the AIDS group were positive for CD161(+), the overall DN T cell population had expanded to such an extent that there was no statistical difference between the groups with regard to CD161(+) DN T cells as a percentage of the total peripheral T cell population. Furthermore, we showed that within the DN T cell population, there was an approximate 2:1 ratio of γδ to αβ T cells, and this ratio was maintained in both the healthy control group and the AIDS group. While evaluating γδ T cells we also discovered that CD8(+) γδ T cells were expanded from 0.62±.09% of the healthy control peripheral T cell population to 5.01±.88% (p=<0.0001) of the peripheral T cell population of the AIDS group; and that this population of CD8(+) γδ T cells underwent the same reduction in percentage of cells expressing CD161(+), further demonstrated that the phenomenon of CD161(+) percentage reduction and compensatory increase in total cell population was affecting the entire circulating γδ T cell population. Copyright © 2011 Elsevier Inc. All rights reserved.
Fracture mechanics modeling of popping event during daughter cell separation.
Jiang, Yuxuan; Liang, Xudong; Guo, Ming; Cao, Yanping; Cai, Shengqiang
2018-05-10
Most bacteria cells divide by binary fission which is part of a bacteria cell cycle and requires tight regulations and precise coordination. Fast separation of Staphylococcus Aureus (S. Aureus) daughter cells, named as popping event, has been observed in recent experiments. The popping event was proposed to be driven by mechanical crack propagation in the peripheral ring which connected two daughter cells before their separation. It has also been shown that after the fast separation, a small portion of the peripheral ring was left as a hinge. In the article, we develop a fracture mechanics model for the crack growth in the peripheral ring during S. Aureus daughter cell separation. In particular, using finite element analysis, we calculate the energy release rate associated with the crack growth in the peripheral ring, when daughter cells are inflated by a uniform turgor pressure inside. Our results show that with a fixed inflation of daughter cells, the energy release rate depends on the crack length non-monotonically. The energy release rate reaches a maximum value for a crack of an intermediate length. The non-monotonic relationship between the energy release rate and crack length clearly indicates that the crack propagation in the peripheral ring can be unstable. The computed energy release rate as a function of crack length can also be used to explain the existence of a small portion of peripheral ring remained as hinge after the popping event.
Hayashi-Takagi, Akiko; Vawter, Marquis P; Iwamoto, Kazuya
2014-06-15
Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
NASA Astrophysics Data System (ADS)
Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji
2014-07-01
We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 composisting of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer.
TOYABE, S; HARADA, W; UCHIYAMA, M
2003-01-01
Recent studies have suggested that a high percentage of Epstein–Barr virus (EBV)-infected lymphocytes in peripheral blood of patients with chronic, active EBV infection (CAEBV) is of T cell origin. Although T cells are expanded oligoclonally in CAEBV, it is not clear whether the restricted diversity of T cells arise from immune reaction against EBV-related antigens or from proliferation of EBV-infected cells. We experienced a patient with CAEBV who had biclonal expansion of peripheral blood T cells. We identified clonotypes of these two T cell clones in detail and purified the T cell clones. EBV infected mainly the two T cell clones, whereas the viral loads in peripheral blood cells other than these T cell clones were low or undetectable. The EBV strains infecting the two T cells clones were indistinguishable from each other by a series of genotype analyses of the virus. These results suggest that the two T cell clones infected with the same monoclonal EBV proliferated in peripheral blood of the patient. PMID:12974760
A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles.
Fleming, Michael S; Li, Jian J; Ramos, Daniel; Li, Tong; Talmage, David A; Abe, Shin-Ichi; Arber, Silvia; Luo, Wenqin
2016-10-05
Axon-Schwann cell interactions are crucial for the development, function, and repair of the peripheral nervous system, but mechanisms underlying communication between axons and nonmyelinating Schwann cells are unclear. Here, we show that ER81 is functionally required in a subset of mouse RET + mechanosensory neurons for formation of Pacinian corpuscles, which are composed of a single myelinated axon and multiple layers of nonmyelinating Schwann cells, and Ret is required for the maintenance of Er81 expression. Interestingly, Er81 mutants have normal myelination but exhibit deficient interactions between axons and corpuscle-forming nonmyelinating Schwann cells. Finally, ablating Neuregulin-1 (Nrg1) in mechanosensory neurons results in no Pacinian corpuscles, and an Nrg1 isoform not required for communication with myelinating Schwann cells is specifically decreased in Er81-null somatosensory neurons. Collectively, our results suggest that a RET-ER81-NRG1 signaling pathway promotes axon communication with nonmyelinating Schwann cells, and that neurons use distinct mechanisms to interact with different types of Schwann cells. Communication between neurons and Schwann cells is critical for development, normal function, and regeneration of the peripheral nervous system. Despite many studies about axonal communication with myelinating Schwann cells, mostly via a specific isoform of Neuregulin1, the molecular nature of axonal communication with nonmyelinating Schwann cells is poorly understood. Here, we described a RET-ER81-Neuregulin1 signaling pathway in neurons innervating Pacinian corpuscle somatosensory end organs, which is essential for communication between the innervating axon and the end organ nonmyelinating Schwann cells. We also showed that this signaling pathway uses isoforms of Neuregulin1 that are not involved in myelination, providing evidence that neurons use different isoforms of Neuregulin1 to interact with different types of Schwann cells. Copyright © 2016 the authors 0270-6474/16/3610337-19$15.00/0.
Cheng, Wen-Hsing; Holmstrom, Alexandra; Li, Xiangdong; Wu, Ryan T Y; Zeng, Huawei; Xiao, Zhengguo
2012-05-01
Selenium (Se) is known to regulate tumorigenesis and immunity at the nutritional and supranutritional levels. Because the immune system provides critical defenses against cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop CD8(+) and CD4(+) T cells, we investigated whether B and T cell maturation could be modulated by dietary Se and by tumorigenesis in nude mice. Fifteen homozygous nude mice were fed a Se-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se+) or 1.0 (Se++) mg Se/kg (as Na(2)SeO(4)) for 6 months, followed by a 7-week time course of PC-3 prostate cancer cell xenograft (2 × 10(6) cells/site, 2 sites/mouse). Here, we show that peripheral B cell levels decreased in nude mice fed the Se - or Se++ diet and the CD4(+) T cell levels increased in mice fed the Se++ diet. During the PC-3 cell tumorigenesis, dietary Se status did not affect peripheral CD4(+) or CD8(+) T cells in nude mice whereas mice fed with the Se++ diet appeared to exhibit greater peripheral CD25(+)CD4(+) T cells on day 9. Dietary Se status did not affect spleen weight in nude mice 7 weeks after the xenograft. Spleen weight was associated with frequency of peripheral CD4(+), but not CD8(+) T cells. Taken together, dietary Se at the nutritional and supranutritional levels regulates peripheral B and T cells in adult nude mice before and after xenograft with PC-3 prostate cancer cells.
Cunnick, J E; Lysle, D T; Kucinski, B J; Rabin, B S
1990-07-01
Our previous work has demonstrated that presentations of mild foot-shock to Lewis rats induces a suppression of splenic and peripheral blood lymphocyte responses to nonspecific T-cell mitogens. The present study demonstrated that adrenalectomy prevented the shock-induced suppression of the mitogenic response of peripheral blood T-cells but did not attenuate the suppression of splenic T-cells. Conversely, the beta-adrenergic receptor antagonists, propranolol and nadolol, attenuated the shock-induced suppression of splenic T-cells in a dose-dependent manner but did not attenuate suppression of the blood mitogen response. These data indicate that distinct mechanisms mediate the shock-induced suppression of T-cell responsiveness to mitogens in the spleen and the peripheral blood. The results indicate that the peripheral release of catecholamines is responsible for splenic immune suppression and that adrenal hormones, which do not interact with beta-adrenergic receptors, are responsible for shock-induced suppression of blood mitogenic responses.
Peripheral-blood stem cells versus bone marrow from unrelated donors.
Anasetti, Claudio; Logan, Brent R; Lee, Stephanie J; Waller, Edmund K; Weisdorf, Daniel J; Wingard, John R; Cutler, Corey S; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T; Pulsipher, Michael A; Porter, David L; Mineishi, Shin; McCarty, John M; Khan, Shakila P; Anderlini, Paolo; Bensinger, William I; Leitman, Susan F; Rowley, Scott D; Bredeson, Christopher; Carter, Shelly L; Horowitz, Mary M; Confer, Dennis L
2012-10-18
Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, -3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute-National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiden, R.A.; Locko, R.C.; Stent, T.R.
1991-03-01
A 25-year-old gravid woman, homozygous for sickle cell anemia, with a history of recent deep venous thrombosis, was examined using Tc-99m labeled red blood cell venography for recurrent thrombosis. Although negative for thrombus, the study presented an unusual incidental finding: the patient's peripheral bone marrow was hyperemic in a distribution consistent with peripheral red bone marrow expansion. Such a pattern has not been documented before using this technique. This report supports other literature that has demonstrated hyperemia of peripheral red bone marrow in other hemolytic anemias. This finding may ultimately define an additional role of scintigraphy in assessing the pathophysiologicmore » status of the sickle cell patient.« less
Multicenter reliability of semiautomatic retinal layer segmentation using OCT
Oberwahrenbrock, Timm; Traber, Ghislaine L.; Lukas, Sebastian; Gabilondo, Iñigo; Nolan, Rachel; Songster, Christopher; Balk, Lisanne; Petzold, Axel; Paul, Friedemann; Villoslada, Pablo; Brandt, Alexander U.; Green, Ari J.
2018-01-01
Objective To evaluate the inter-rater reliability of semiautomated segmentation of spectral domain optical coherence tomography (OCT) macular volume scans. Methods Macular OCT volume scans of left eyes from 17 subjects (8 patients with MS and 9 healthy controls) were automatically segmented by Heidelberg Eye Explorer (v1.9.3.0) beta-software (Spectralis Viewing Module v6.0.0.7), followed by manual correction by 5 experienced operators from 5 different academic centers. The mean thicknesses within a 6-mm area around the fovea were computed for the retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL). Intraclass correlation coefficients (ICCs) were calculated for mean layer thickness values. Spatial distribution of ICC values for the segmented volume scans was investigated using heat maps. Results Agreement between raters was good (ICC > 0.84) for all retinal layers, particularly inner retinal layers showed excellent agreement across raters (ICC > 0.96). Spatial distribution of ICC showed highest values in the perimacular area, whereas the ICCs were poorer for the foveola and the more peripheral macular area. The automated segmentation of the OPL and ONL required the most correction and showed the least agreement, whereas differences were less prominent for the remaining layers. Conclusions Automated segmentation with manual correction of macular OCT scans is highly reliable when performed by experienced raters and can thus be applied in multicenter settings. Reliability can be improved by restricting analysis to the perimacular area and compound segmentation of GCL and IPL. PMID:29552598
The Impact of Stress on Tumor Growth; the Significance of Peripheral Corticotropin Releasing Factor
2009-05-01
peripheral CRF on breast cancer . Aim of our studies was to determine the impact of peripheral CRF on breast tumor growth and propose a novel potential... breast cancer growth and metastasis. 15. SUBJECT TERMS Stress, Corticotropin Releasing Factor, Wnt, 4T1 mammary epithelial cells 16. SECURITY...13 4 Introduction Aim of the grant proposal was to investigate the role of peripheral CRF on breast cancer cell growth and
[Blood-nerve barrier: structure and function].
Kanda, Takashi
2011-06-01
The blood-nerve barrier (BNB) is a dynamic interface between the endoneurial microenvironment and surrounding extracellular space or blood contents, and is localized the innermost layer of multilayered ensheathing perineurium and endoneurial microvessels. Since the BNB is a key structure controlling the internal milieu of the peripheral nerve parenchyma, adequate understanding of the BNB is crucial for developing treatment strategies for human peripheral nervous system disorders, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, and diabetic and various metabolic/toxic neuropathies. However, fewer studies have been conducted on the BNB, if we compare against the number of studies on the blood-brain barrier. This is because of the lack of adequate human cell lines originating from the BNB. In our laboratory, human immortal cell lines from the BNB, namely, the endothelial cell line and pericyte cell line, have recently been established and vigorous investigations of their biological and physiological properties are now underway. Pericytes constituting the BNB were found to possess robust ability of controlling BNB integrity via secretion of various cytokines and growth factors including bFGF, VEGF, GDNF, BDNF, and angiopoietin-1. Unknown soluble factors secreted by pericytes also contribute to the upregulation of claudin-5 in endothelial cells in the BNB and thus, strengthen the barrier function of the BNB. In diabetic neuropathy, pericytes were shown to regulate the vascular basement membrane, while AGEs were shown to induce basement membrane hypertrophy and disrupt the BNB by increasing the autocrine secretion of VEGF and TGF-beta from pericytes. In this review article, we discuss the macroscopic and microscopic anatomy of the human BNB as well as the molecular mechanisms of mononuclear cell infiltration across the BNB.
Lyubchenko, Taras; Zerbe, Gary O.
2014-01-01
This study examines the loss of peripherally induced B cell immune tolerance in Rheumatoid arthritis (RA) and establishes a novel signaling-based measure of activation in a subset of autoreactive B cells - the Induced tolerance status index (ITSI). Naturally occurring naïve autoreactive B cells can escape the “classical” tolerogenic mechanisms of clonal deletion and receptor editing, but remain peripherally tolerized through B cell receptor (BCR) signaling inhibition (postdevelopmental “receptor tuning” or anergy). ITSI is a statistical index that numerically determines the level of homology between activation patterns of BCR signaling intermediaries in B cells that are either tolerized or activated by auto antigen exposure, and thus quantifies the level of peripheral immune tolerance. The index is based on the logistic regression analysis of phosphorylation levels in a panel of BCR signaling proteins. Our results demonstrate a new approach to identifying autoreactive B cells based on their BCR signaling features. PMID:25057856
Involvement of cell proliferation in the process of follicular atresia in the guinea pig.
Wang, Wei; Liu, Honglin; Ding, Wei; Gong, Yan; Chen, Jingwei; Hutz, Reinhold J; Mao, Dagan; Shi, Fangxiong
2010-08-01
Cell morphology and proliferation was investigated in the atretic follicles during estrous cycles in the guinea pig. Ovarian samples on days 1, 4, 8, 12 and 16 of the estrous cycle in the guinea pig were taken in the morning for histologic staining with hematoxylin and eosin (HE), and immunohistochemical staining of the protein proliferating cell nuclear antigen (PCNA). The results indicated that the granulosa cells degenerated and eliminated first in atretic follicles, while the fibroblast-like cells appeared in the innermost layer of theca interna cells. When the fibroblast-like cells migrated to the antrum, they proliferated and formed a new tissue in peripheral to the zona pellucida of the oocyte. Our results also revealed that the orientation of the theca interna cell arrangement changed twice during the process of atresia, and the loose connective tissue in the antrum was critical for follicular atresia. Therefore, follicular atresia was not a simple process of cell death and elimination, but coexisted with cell proliferation. To our knowledge, we have for the first time confirmed cell proliferation and the presence of new tissue in atretic follicles in guinea pigs. Copyright 2010 Elsevier Ltd. All rights reserved.
Tang, Jie; Chen, Ce; Zha, Cheng; Wang, Zhaohua; Zhang, Chen; Zeng, Linli; Li, Baiqing
2016-11-01
Objective To investigate the differences of proportions of tumor necrosis factor α (TNF-α)-producing cells in peripheral blood γδ T cells stimulated with Mycobacterium tuberculosis heat resistant antigen (MTB-HAg) among patients with pulmonary tuberculosis (PTB), latent tuberculosis infection (LTBI) and healthy subjects (HC). Methods The peripheral blood specimens were collected from 15 normal adults, which were divided into HC group (n=9) and LTBI group (n=6), by enzyme-linked immunospot (ELISPOT) kit for diagnosis of Mycobacterium tuberculosis infection, and 12 patients with active PTB. The peripheral blood mononuclear cells (PBMCs) were separated by density gradient centrifugation and simulated with MTB-HAg for 20 hours. Then the cells were collected, and the proportions of TNF-α-producing cells in TCRαβ + T cells, TCRγδ + T cells, CD4 + αβ T cells, CD8 + αβ T cells, and TCR-Vδ2 + T cells were measured with flow cytometry. Results The proportion of TNF-α-producing cells in γδ T cells in patients with PTB was obviously lower than that in LTBI group and HC group; the proportion of TNF-α-producing cells in Vδ2 T cells in PTB patients was apparently lower than that in LTBI and HC; the proportion of Vδ2 T cells in TNF-α + γδ T cells in the peripheral blood of PTB patients was remarkably lower than that in LTBI and HC groups. The proportions of TNF-α-producing cells in peripheral αβ T cells, CD4 + and CD8 + αβ T cells were dramatically lower than those in γδ T cells of the three according groups. Moreover, there were no statistical differences in regard with the proportions of TNF-α-producing cells in αβ T cells, and CD4 + and CD8 + αβ T cells among the three groups. Conclusion The TNF-α production capacity of MTB-HAg specific γδ T cells and Vδ2 T cell subsets in patients with tuberculosis is obviously lower than that of LTBI and HC.
Tartakovsky, B; Segal, S; Shani, A; Hellerstein, S; Weinstein, Y; Bentwich, Z
1979-01-01
An attempt was made to investigate the possible existence of differences in the composition of peripheral blood lymphocytes between males and females. Using affinity chromatography of human peripheral mononuclear cells on insolubilized histamine together with staining by fluoresceinated histamine-rabbit serum albumin (HRSA) we revealed that males possess a significantly higher proportion of mononuclear cells which bind to HRSA. These results are also reflected in sex-related differences in proliferative responses of the HRSA-non-adherent mononuclear cell population to T cell-dependent mitogens antigens and allogeneic mononuclear cells. PMID:160849
2018-05-23
Adult T-Cell Leukemia/Lymphoma; Anaplastic Large Cell Lymphoma, ALK-Negative; Anaplastic Large Cell Lymphoma, ALK-Positive; Angioimmunoblastic T-Cell Lymphoma; CD30-Positive Neoplastic Cells Present; Enteropathy-Associated T-Cell Lymphoma; Hepatosplenic T-Cell Lymphoma; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Peripheral T-Cell Lymphoma, Not Otherwise Specified; Stage III Anaplastic Large Cell Lymphoma; Stage IV Anaplastic Large Cell Lymphoma
Debey-Pascher, Svenja; Hofmann, Andrea; Kreusch, Fatima; Schuler, Gerold; Schuler-Thurner, Beatrice; Schultze, Joachim L.; Staratschek-Jox, Andrea
2011-01-01
Microarray-based transcriptome analysis of peripheral blood as surrogate tissue has become an important approach in clinical implementations. However, application of gene expression profiling in routine clinical settings requires careful consideration of the influence of sample handling and RNA isolation methods on gene expression profile outcome. We evaluated the effect of different sample preservation strategies (eg, cryopreservation of peripheral blood mononuclear cells or freezing of PAXgene-stabilized whole blood samples) on gene expression profiles. Expression profiles obtained from cryopreserved peripheral blood mononuclear cells differed substantially from those of their nonfrozen counterpart samples. Furthermore, expression profiles in cryopreserved peripheral blood mononuclear cell samples were found to undergo significant alterations with increasing storage period, whereas long-term freezing of PAXgene RNA stabilized whole blood samples did not significantly affect stability of gene expression profiles. This report describes important technical aspects contributing toward the establishment of robust and reliable guidance for gene expression studies using peripheral blood and provides a promising strategy for reliable implementation in routine handling for diagnostic purposes. PMID:21704280
Lower percentage of CD8+ T cells in peripheral blood of patients with sporotrichosis.
Zhu, Mingji; Xu, Yaqin; An, Lin; Jiang, Jinlan; Zhang, Xu; Jiang, Rihua
2016-07-01
To characterize the peripheral immunity and immunity response of patients with sporotrichosis, in this study we determined the lymphocyte subsets in the peripheral blood of Chinese patients with sporotrichosis. In this retrospective study, peripheral blood was collected from 69 sporotrichosis patients (37, fixed cutaneous form; 32 lymphocutaneous) and 66 healthy controls. Lymphocyte subsets were analyzed using flow cytometry. Compared to controls, the percentage of CD8+ T cells was lower in sporotrichosis patients. The percentage of CD8+ T cells in peripheral blood tended to become lower with disease duration and disease severity, although the difference was not statistically significant for either acute, subacute and chronic patients or fixed cutaneous and lymphocutaneous patients. Our data indicate that the decrease of CD8+ T cells in peripheral blood of patients with sporotrichosis is associated with disease severity, although the difference was not statistically significant for either duration or clinical forms of the disease. Combining antifungal agents and immunomodulators in patients with long disease duration and lymphocutaneous may be more beneficial than antifungal monotherapy. Copyright © 2016. Published by Elsevier Inc.
The role of spatial dynamics in modulating metabolic interactions in biofilm development
NASA Astrophysics Data System (ADS)
Bocci, Federico; Lu, Mingyang; Suzuki, Yoko; Onuchic, Jose
Cell phenotypic expression is substantially affected by the presence of environmental stresses and cell-cell communication mechanisms. We study the metabolic interactions of the glutamate synthesis pathway to explain the oscillation of growth rate observed in a B. Subtilis colony. Previous modelling schemes had failed in fully reproducing quantitative experimental observations as they did not explicitly address neither the diffusion of small metabolites nor the spatial distribution of phenotypically distinct bacteria inside the colony. We introduce a continuous space-temporal framework to explain how biofilm development dynamics is influenced by the metabolic interplay between two bacterial phenotypes composing the interior and the peripheral layer of the biofilm. Growth oscillations endorse the preservation of a high level of nutrients in the interior through diffusion and colony expansion in the periphery altogether. Our findings point out that perturbations of environmental conditions can result in the interruption of the interplay between cell populations and advocate alternative approaches to biofilm control strategies.
2018-04-06
Folliculotropic Mycosis Fungoides; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides; Refractory Cutaneous T-Cell Non-Hodgkin Lymphoma; Refractory Mycosis Fungoides; Refractory Peripheral T-Cell Lymphoma, Not Otherwise Specified; Sezary Syndrome; Recurrent Mature T- and NK-Cell Non-Hodgkin Lymphoma
Coronary veins determine the pattern of sympathetic innervation in the developing heart
Nam, Joseph; Onitsuka, Izumi; Hatch, John; Uchida, Yutaka; Ray, Saugata; Huang, Siyi; Li, Wenling; Zang, Heesuk; Ruiz-Lozano, Pilar; Mukouyama, Yoh-suke
2013-01-01
Anatomical congruence of peripheral nerves and blood vessels is well recognized in a variety of tissues. Their physical proximity and similar branching patterns suggest that the development of these networks might be a coordinated process. Here we show that large diameter coronary veins serve as an intermediate template for distal sympathetic axon extension in the subepicardial layer of the dorsal ventricular wall of the developing mouse heart. Vascular smooth muscle cells (VSMCs) associate with large diameter veins during angiogenesis. In vivo and in vitro experiments demonstrate that these cells mediate extension of sympathetic axons via nerve growth factor (NGF). This association enables topological targeting of axons to final targets such as large diameter coronary arteries in the deeper myocardial layer. As axons extend along veins, arterial VSMCs begin to secrete NGF, which allows axons to reach target cells. We propose a sequential mechanism in which initial axon extension in the subepicardium is governed by transient NGF expression by VSMCs as they are recruited to coronary veins; subsequently, VSMCs in the myocardium begin to express NGF as they are recruited by remodeling arteries, attracting axons toward their final targets. The proposed mechanism underlies a distinct, stereotypical pattern of autonomic innervation that is adapted to the complex tissue structure and physiology of the heart. PMID:23462468
In Vitro Evaluation of Cell-Seeded Chitosan Films for Peripheral Nerve Tissue Engineering
Wrobel, Sandra; Serra, Sofia Cristina; Ribeiro-Samy, Silvina; Sousa, Nuno; Heimann, Claudia; Barwig, Christina; Grothe, Claudia; Haastert-Talini, Kirsten
2014-01-01
Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)—immortalized, neonatal, and adult—as well as rat bone-marrow-derived mesenchymal stromal cells (BMSCs) were analyzed with regard to their cell metabolic activity, proliferation profiles, and cell morphology after different time points of mono- and cocultures on the chitosan films. Overall the results demonstrate a good cytocompatibility of the chitosan substrate. Both cell types were viable on the biomaterial and showed different metabolic activities and proliferation behavior, indicating cell-type-specific cell–biomaterial interaction. Moreover, the cell types also displayed their typical morphology. In cocultures adult SCs used the BMSCs as a feeder layer and no negative interactions between both cell types were detected. Further, the chitosan films allow neurite outgrowth from dissociated sensory neurons, which is additionally supported on film preseeded with SC-BMSC cocultures. The presented chitosan films therefore demonstrate high potential for their use in tissue-engineered nerve grafts. PMID:24606318
2017-07-07
Anaplastic Large Cell Lymphoma, ALK-Negative; Anaplastic Large Cell Lymphoma, ALK-Positive; Hepatosplenic T-Cell Lymphoma; Peripheral T-Cell Lymphoma, Not Otherwise Specified; Stage II Angioimmunoblastic T-cell Lymphoma; Stage II Enteropathy-Associated T-Cell Lymphoma; Stage III Angioimmunoblastic T-cell Lymphoma; Stage III Enteropathy-Associated T-Cell Lymphoma; Stage IV Angioimmunoblastic T-cell Lymphoma; Stage IV Enteropathy-Associated T-Cell Lymphoma
Chen, Xiaojun; Li, Wei; Zhang, Yang; Song, Xian; Xu, Lei; Xu, Zhipeng; Zhou, Sha; Zhu, Jifeng; Jin, Xin; Liu, Feng; Chen, Gengxin; Su, Chuan
2015-01-01
Background Schistosomiasis is a helminthic disease that affects more than 200 million people. An effective vaccine would be a major step towards eliminating the disease. Studies suggest that T follicular helper (Tfh) cells provide help to B cells to generate the long-term humoral immunity, which would be a crucial component of successful vaccines. Thus, understanding the biological characteristics of Tfh cells in patients with schistosomiasis, which has never been explored, is essential for vaccine design. Methodology/Principal Findings In this study, we investigated the biological characteristics of peripheral memory Tfh cells in schistosomiasis patients by flow cytometry. Our data showed that the frequencies of total and activated peripheral memory Tfh cells in patients were significantly increased during Schistosoma japonicum infection. Moreover, Tfh2 cells, which were reported to be a specific subpopulation to facilitate the generation of protective antibodies, were increased more greatly than other subpopulations of total peripheral memory Tfh cells in patients with schistosomiasis japonica. More importantly, our result showed significant correlations of the percentage of Tfh2 cells with both the frequency of plasma cells and the level of IgG antibody. In addition, our results showed that the percentage of T follicular regulatory (Tfr) cells was also increased in patients with schistosomiasis. Conclusions/Significance Our report is the first characterization of peripheral memory Tfh cells in schistosomasis patients, which not only provides potential targets to improve immune response to vaccination, but also is important for the development of vaccination strategies to control schistosomiasis. PMID:26284362
Negative regulators in homeostasis of naïve peripheral T cells.
Modiano, Jaime F; Johnson, Lisa D S; Bellgrau, Donald
2008-01-01
It is now apparent that naïve peripheral T cells are a dynamic population where active processes prevent inappropriate activation while supporting survival. The process of thymic education makes naïve peripheral T cells dependent on interactions with self-MHC for survival. However, as these signals can potentially result in inappropriate activation, various non-redundant, intrinsic negative regulatory molecules including Tob, Nfatc2, and Smad3 actively enforce T cell quiescence. Interactions among these pathways are only now coming to light and may include positive or negative crosstalk. In the case of positive crosstalk, self-MHC initiated signals and intrinsic negative regulatory factors may cooperate to dampen T cell activation and sustain peripheral tolerance in a binary fashion (on-off). In the case of negative crosstalk, self-MHC signals may promote survival through partial activation while intrinsic negative regulatory factors act as rheostats to restrain cell cycle entry and prevent T cells from crossing a threshold that would break tolerance.
Shuhaibar, Leia C; Egbert, Jeremy R; Norris, Rachael P; Lampe, Paul D; Nikolaev, Viacheslav O; Thunemann, Martin; Wen, Lai; Feil, Robert; Jaffe, Laurinda A
2015-04-28
Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2-4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes.
Shin, Hye-Young; Park, Hae-Young Lopilly; Jung, Kyoung-In; Choi, Jin-A; Park, Chan Kee
2014-01-01
To determine whether the ganglion cell-inner plexiform layer (GCIPL) or circumpapillary retinal nerve fiber layer (cpRNFL) is better at distinguishing eyes with early glaucoma from normal eyes on the basis of the the initial location of the visual field (VF) damage. Retrospective, observational study. Eighty-four patients with early glaucoma and 43 normal subjects were enrolled. The patients with glaucoma were subdivided into 2 groups according to the location of VF damage: (1) an isolated parafoveal scotoma (PFS, N = 42) within 12 points of a central 10 degrees in 1 hemifield or (2) an isolated peripheral nasal step (PNS, N = 42) within the nasal periphery outside 10 degrees of fixation in 1 hemifield. All patients underwent macular and optic disc scanning using Cirrus high-definition optical coherence tomography (Carl Zeiss Meditec, Dublin, CA). The GCIPL and cpRNFL thicknesses were compared between groups. Areas under the receiver operating characteristic curves (AUCs) were calculated. Comparison of diagnostic ability using AUCs. The average and minimum GCIPL of the PFS group were significantly thinner than those of the PNS group, whereas there was no significant difference in the average retinal nerve fiber layer (RNFL) thickness between the 2 groups. The AUCs of the average (0.962) and minimum GCIPL (0.973) thicknesses did not differ from that of the average RNFL thickness (0.972) for discriminating glaucomatous changes between normal and all glaucoma eyes (P =0.566 and 0.974, respectively). In the PFS group, the AUCs of the average (0.988) and minimum GCIPL (0.999) thicknesses were greater than that of the average RNFL thickness (0.961, P =0.307 and 0.125, respectively). However, the AUCs of the average (0.936) and minimum GCIPL (0.947) thicknesses were lower than that of the average RNFL thickness (0.984) in the PNS group (P =0.032 and 0.069, respectively). The GCIPL parameters were more valuable than the cpRNFL parameters for detecting glaucoma in eyes with parafoveal VF loss, and the cpRNFL parameters were better than the GCIPL parameters for detecting glaucoma in eyes with peripheral VF loss. Clinicians should know that the diagnostic capability of macular GCIPL parameters depends largely on the location of the VF loss. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Reversal of Multidrug Resistance in Breast Cancer
1994-08-23
peripherally derived stem cells (72). Antman and others showed increased numbers of CFU-GM and BFU-E in peripheral blood in the majority of patients treated...original regimen as reported by Antman (45). Peripheral stem cells are not washed before reinfusion and the osmolality of the cell suspension requires the...dosE combination alkylating agents with autologous bone marrow support. A phase I trial. J Clin Oncol 4:646-654, 1986. 63. Eder JP, Antman K, Peters W
Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki
2017-01-01
Abstract Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC‐specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin‐forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207–1216 PMID:28186702
Method for sealing an ultracapacitor, and related articles
Day, James; Shapiro, Andrew Philip; Jerabek, Elihu Calvin
2000-08-29
An improved process for sealing at least one ultracapacitor which includes a multi-layer structure is disclosed. The process includes the step of applying a substantial vacuum to press together an uppermost layer of the structure and a lowermost layer of the structure and to evacuate ambient gasses, wherein a sealant situated in a peripheral area between the facing surfaces of the layers forms a liquid-impermeable seal for the structure under the vacuum. In some embodiments, a press is used to apply pressure to the peripheral area on which the sealant is disposed. Usually, the ultracapacitor would be situated within an enclosable region of the press, and a collapsible membrane would be fastened over the ultracapacitor to fully enclose the region and transmit the vacuum force to the multi-layer structure. The force applied by the press itself causes the sealant to flow, thereby ensuring a complete seal upon curing of the sealant. This process can be employed to seal one ultracapacitor or a stack of at least two ultracapacitors. Another embodiment of this invention is directed to an apparatus for sealing a multi-layer ultracapacitor, comprising the elements described above.
COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice
Vardeh, Daniel; Wang, Dairong; Costigan, Michael; Lazarus, Michael; Saper, Clifford B.; Woolf, Clifford J.; FitzGerald, Garret A.; Samad, Tarek A.
2009-01-01
A cardinal feature of peripheral inflammation is pain. The most common way of managing inflammatory pain is to use nonsteroidal antiinflammatory agents (NSAIDs) that reduce prostanoid production, for example, selective inhibitors of COX2. Prostaglandins produced after induction of COX2 in immune cells in inflamed tissue contribute both to the inflammation itself and to pain hypersensitivity, acting on peripheral terminals of nociceptors. COX2 is also induced after peripheral inflammation in neurons in the CNS, where it aids in developing a central component of inflammatory pain hypersensitivity by increasing neuronal excitation and reducing inhibition. We engineered mice with conditional deletion of Cox2 in neurons and glial cells to determine the relative contribution of peripheral and central COX2 to inflammatory pain hypersensitivity. In these mice, basal nociceptive pain was unchanged, as was the extent of peripheral inflammation, inflammatory thermal pain hypersensitivity, and fever induced by lipopolysaccharide. By contrast, peripheral inflammation–induced COX2 expression in the spinal cord was reduced, and mechanical hypersensitivity after both peripheral soft tissue and periarticular inflammation was abolished. Mechanical pain is a major symptom of most inflammatory conditions, such as postoperative pain and arthritis, and induction of COX2 in neural cells in the CNS seems to contribute to this. PMID:19127021
Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam
2017-04-01
Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Martin, Bruno; Bécourt, Chantal; Bienvenu, Boris; Lucas, Bruno
2006-07-01
The role of self-recognition in the maintenance of the peripheral CD4+ T-cell pool has been extensively studied, but no clear answer has so far emerged. Indeed, in studies of the role of self-major histocompatibility complex (MHC) molecules in CD4+ T-cell survival, several parameters must be taken into account when interpreting the results: (1) in a lymphopenic environment, observations are biased by concomitant proliferation of T cells arising in MHC-expressing mice; (2) the peripheral T-cell compartment is qualitatively and quantitatively different in nonlymphopenic, normal, and MHC class II-deficient mice; and (3) in C57BL/6 Abeta(-/-) mice (traditionally considered MHC class II-deficient), the Aalpha chain and the Ebeta chain associate to form a hybrid AalphaEbeta MHC class II molecule. In light of these considerations, we revisited the role of interactions with MHC class II molecules in the survival of peripheral CD4+ T cells. We found that the answer to the question "is self-recognition required for CD4+ T cells to survive?" is not a simple yes or no. Indeed, although long-term survival of CD4+ T cells does not depend on self-recognition in lymphopenic mice, interactions with MHC class II molecules are required for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment.
Schwinger, W; Mache, C; Urban, C; Beaufort, F; Töglhofer, W
1993-06-01
Hematopoietic progenitor cell levels were monitored in the peripheral blood of ten healthy adults receiving a single dose of recombinant human granulocyte colony-stimulating factor (rhG-CSF). The objective was to determine the time and number of progenitor cells released into the peripheral blood, induced by a single dose of 15 micrograms/kg rhG-CSF administered intravenously. In all cases the absolute number of circulating progenitor cells including granulocyte-macrophage and erythroid lineages increased up to 12-fold (median 9.4-fold) 4 days after treatment. These findings were based on flow cytometric quantification of CD34+ cells and on progenitor assays. The relative distribution of granulocyte/macrophage and erythroid progenitors remained unchanged. rhG-CSF was well tolerated; mild to moderate bone pain was the most common side-effect and was noted in 6 of 10 subjects. Thus a single dose of rhG-CSF is effective in mobilizing progenitor cells into the peripheral blood in healthy adults. If these progenitors are capable of reconstituting bone marrow, peripheral progenitor cell separation following rhG-CSF administration could be a reasonable alternative to conventional bone marrow harvest in healthy adults.
Shao, Qingliang; Zhao, Xiaxia; Yao Li, M D
2013-12-01
We aimed to investigate the role of peripheral blood mononuclear cell transportation from mother to baby in hepatitis B virus (HBV) intrauterine infection. Thirty HBsAg-positive pregnant women in the second trimester and their aborted fetuses were included in this study. Enzyme-linked-immunosorbent-assay was utilized to detect HBsAg in the peripheral blood of pregnant women and the femoral vein blood of their aborted fetuses. HBV-DNA in serum and peripheral blood mononuclear cells (PBMC) and GSTM1 alleles of pregnant women and their aborted fetuses were detected by nested polymerase chain reaction (PCR) and seminested PCR, respectively. We also examined the location of placenta HBsAg and HBcAb using immunohistochemical staining. The expression of placenta HBV-DNA was detected by in situ hybridization. For the 30 aborted fetuses, the HBV intrauterine infection rate was 43.33%. The HBV-positive rates of HBsAg in peripheral blood, serum, and PBMC were 10% (3/30), 23.33% (7/30), and 33.33% (10/30), respectively. Maternal-fetal PBMC transport was significantly positively correlated with fetal PBMC HBV-DNA (P = 0.004). Meanwhile, the rates of HBV infection gradually decreased from the maternal side to the fetus side of placenta (decidual cells > trophoblastic cells > villous mesenchymal cells > villous capillary endothelial cells). However, no significant correlation between placenta HBV infection and HBV intrauterine infection was observed (P = 0.410). HBV intrauterine infection was primarily due to peripheral blood mononuclear cell maternal-fetal transportation in the second trimester in pregnant women.
Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors
Anasetti, Claudio; Logan, Brent R.; Lee, Stephanie J.; Waller, Edmund K.; Weisdorf, Daniel J.; Wingard, John R.; Cutler, Corey S.; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T.; Pulsipher, Michael A.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Khan, Shakila P.; Anderlini, Paolo; Bensinger, William I.; Leitman, Susan F.; Rowley, Scott D.; Bredeson, Christopher; Carter, Shelly L.; Horowitz, Mary M.; Confer, Dennis L.
2012-01-01
BACKGROUND Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. METHODS We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). RESULTS The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P = 0.29), with an absolute difference of 5 percentage points (95% CI, −3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P = 0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P = 0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. CONCLUSIONS We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute–National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.) PMID:23075175
Induction and identification of rabbit peripheral blood derived dendritic cells
NASA Astrophysics Data System (ADS)
Zhou, Jing; Yang, FuYuan; Chen, WenLi
2012-03-01
Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.
Tumour related inhibition of macrophage chemotaxis in patients with colon cancer.
Hermanowicz, A; Gibson, P R; Jewell, D P
1987-01-01
The chemotactic migration in vitro of peripheral blood, intestinal mucosal, and mesenteric lymph node mononuclear cells has been assessed in patients with colorectal carcinoma. Peripheral blood mononuclear cells of patients exhibited normal chemotaxis. For control patients with non-malignant, non-inflammatory intestinal disease, the chemotaxis of mucosal mononuclear cells was similar to that of autologous peripheral blood mononuclear cells. The chemotactic migration of mucosal mononuclear cells, however, isolated distant from a colon cancer was less than that of autologous peripheral blood mononuclear cells. Chemotactic migration was progressively impaired with increasing closeness to the tumour itself. Chemotaxis of mucosal mononuclear cell was independent of the site of tumour and the Dukes' grading. Mononuclear cells from mesenteric lymph nodes, however, exhibited impaired migration only in patients with Dukes' C tumours. Supernatants of the collagenase digestion of either tumour or adjacent mucosa contained macrophage directed inhibitors of chemotaxis and these inhibitors were not produced by tumour mononuclear cells. The presence of such inhibitors in the digestion supernatants and the demonstration that proximity to the tumour was associated with impaired mononuclear cell motility suggest that the production of macrophage directed chemotactic inhibitors is by colon cancer cells and that this may be occurring in vivo. PMID:3583069
Zhou, Nan; Hao, Shuang; Huang, Zongqiang; Wang, Weiwei; Yan, Penghui; Zhou, Wei; Zhu, Qihang; Liu, Xiaokang
2018-01-01
Objective Neural stem cells play an important role in the recovery and regeneration of peripheral nerve injury, and the microRNA-7 (miR-7) regulates differentiation of neural stem cells. This study aimed to explore the role of miR-7 in neural stem cells homing and proliferation and its influence on peripheral nerve injury repair. Methods The mice model of peripheral nerve injury was created by segmental sciatic nerve defect (sciatic nerve injury), and neural stem cells treatment was performed with a gelatin hydrogel conduit containing neural stem cells inserted into the sciatic nerve injury mice. The Sciatic Function Index was used to quantify sciatic nerve functional recovery in the mice. The messenger RNA and protein expression were detected by reverse transcription polymerase chain reaction and Western blot, respectively. Luciferase reporter assay was used to confirm the binding between miR-7 and the 3'UTR of cell division cycle protein 42 (cdc42). The neural stem cells migration and proliferation were analyzed by transwell assay and a Cell-LightTM EdU DNA Cell Proliferation kit, respectively. Results Neural stem cells treatment significantly promoted nerve repair in sciatic nerve injury mice. MiR-7 expression was decreased in sciatic nerve injury mice with neural stem cells treatment, and miR-7 mimic transfected into neural stem cells suppressed migration and proliferation, while miR-7 inhibitor promoted migration and proliferation. The expression level and effect of cdc42 on neural stem cells migration and proliferation were opposite to miR-7, and the luciferase reporter assay proved that cdc42 was a target of miR-7. Using co-transfection into neural stem cells, we found pcDNA3.1-cdc42 and si-cdc42 could reverse respectively the role of miR-7 mimic and miR-7 inhibitor on neural stem cells migration and proliferation. In addition, miR-7 mimic-transfected neural stem cells could abolish the protective role of neural stem cells on peripheral nerve injury. Conclusion MiR-7 inhibited peripheral nerve injury repair by affecting neural stem cells migration and proliferation through cdc42.
Development of a cell microarray chip for detection of circulating tumor cells
NASA Astrophysics Data System (ADS)
Yamamura, S.; Yatsushiro, S.; Abe, K.; Baba, Y.; Kataoka, M.
2012-03-01
Detection of circulating tumor cells (CTCs) in the peripheral blood of metastatic cancer patients has clinical significance in earlier diagnosis of metastases. In this study, a novel cell microarray chip for accurate and rapid detection of tumor cells from human leukocytes was developed. The chip with 20,944 microchambers (105 μm diameter and 50 μm depth) was made from polystyrene, and the surface was rendered to hydrophilic by means of reactive-ion etching, which led to the formation of mono-layers of leukocytes on the microchambers. As the model of CTCs detection, we spiked human bronchioalveolar carcinoma (H1650) cells into human T lymphoblastoid leukemia (CEM) cells suspension and detected H1650 cells using the chip. A CEM suspension contained with H1650 cells was dispersed on the chip surface, followed by 10 min standing to allow the cells to settle down into the microchambers. About 30 CEM cells were accommodated in each microchamber, over 600,000 CEM cells in total being on a chip. We could detect 1 H1650 cell per 106 CEM cells on the microarray by staining with fluorescence-conjugated antibody (Anti-Cytokeratin) and cell membrane marker (DiD). Thus, this cell microarray chip has highly potential to be a novel tool of accurate and rapid detection of CTCs.
Al-Amrah, Hadba Jar-Allah; Aboznada, Osama Abdullah; Alam, Mohammad Zubair; ElAssouli, M-Zaki Mustafa; Mujallid, Mohammad Ibrahim; ElAssouli, Sufian Mohamad
2014-12-01
Waterpipe smoke causes DNA damage in peripheral blood leukocytes and in buccal cells of smokers. To determine the exposure effect of waterpipe smoke on buccal cells and peripheral blood leukocytes in regard to DNA damage using comet assay. The waterpipe smoke condensates were analyzed by gas chromatography-mass spectrometry (GC-MS). The study was performed on 20 waterpipe smokers. To perform comet assay on bucaal cells of smokers, 10 µl of cell suspension was mixed with 85 µl of pre-warmed 1% low melting agarose, applied to comet slide and electrophoresed. To analyze the effect of smoke condensate in vitro, 1 ml of peripheral blood was mixed with 10 µl of smoke condensate and subjected for comet assay. The GC-MS analysis revealed the presence of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4on, nicotine, hydroxymethyl furancarboxaldehyde and 3-ethoxy-4-hydroxybenzaldehyde in the smoke condensates. Waterpipe smoking caused DNA damage in vivo in buccal cells of smokers. The tail moment and tail length in buccal cells of smokers were 186 ± 26 and 456 ± 71, respectively, which are higher than control. The jurak and moassel smoke condensates were found to cause DNA damage in peripheral blood leukocytes. The moassel smoke condensate was more damaging. There is wide misconception that waterpipe smoking is not as harmful as cigarette smoking. This study demonstrated that waterpipe smoke induced DNA damage in exposed cells. Waterpipe smokes cause DNA damage in buccal cells. The smoke condensate of both jurak and moassel caused comet formation suggesting DNA damage in peripheral blood leukocytes.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
...; formerly Docket No. 2007D-0290] Draft Guidance for Industry: Cell Selection Devices for Point of Care Production of Minimally Manipulated Autologous Peripheral Blood Stem Cells; Withdrawal of Draft Guidance...: Cell Selection Devices for Point of Care Production of Minimally Manipulated Autologous Peripheral...
USDA-ARS?s Scientific Manuscript database
Many cellular immune assays are impractical because they require labor-intensive isolation of cells from their natural environment. The objectives of this study were to determine the relationship between cell culture supernatant TNF-alpha from isolated peripheral blood mononuclear cells (PBMC) and w...
2017-07-01
AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve...of Decellularized Nerve Allograft with 5a. CONTRACT NUMBER Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve 5b. GRANT NUMBER W81XWH...commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with autologous bone marrow
The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays
NASA Technical Reports Server (NTRS)
Moore, R.; McClelen, C. E.
1985-01-01
In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.
Ji, Lanlan; Geng, Yan; Zhou, Wei; Zhang, Zhuoli
2016-02-01
Rheumatoid arthritis is characterized by type 17 helper T cell (Th17)/regulatory T cell (Treg) imbalance. The objective of this article is to study whether insufficient apoptosis contributes to the imbalance of Th17/Treg in rheumatoid arthritis. Twenty-one rheumatoid arthritis patients and eight healthy volunteers were involved in this study. The percentage of CD4(+) interleukin (IL)-17(+) T cells and CD4(+) transcription factor-forkhead box protein 3 (Foxp3)(+) T cells were measured by flow cytometry, and active caspase-3 labeling was used to detect early apoptosis. The number of T cell subtypes in peripheral blood between the two groups was compared, as well as the apoptotic ratio. Neither the number of Th17 nor Treg cells was significantly different between rheumatoid arthritis patients and healthy controls. However, the number of regulatory T cells positively correlated with erythrocyte sedimentation rate, Disease Activity Score of 28 joints and rheumatoid factor. For the apoptosis of T cell subtypes, the percentage of apoptotic Th17 cells was higher in peripheral blood of rheumatoid arthritis patients compared to controls. Furthermore, peripheral Th17 cells were more sensitive to apoptosis than Treg cells, but there was no difference between rheumatoid arthritis patients and controls. It seemed that there was no relationship between the number and apoptosis ratio of peripheral Th17/Treg cells. But the number of Treg cells positively correlated with disease activity. Furthermore, Th17 cells are more sensitive to apoptosis after freezing, especially in RA patients. This serendipitous finding may provide new areas for the further study of these two cell populations. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Tan, Daryl; Phipps, Colin; Hwang, William Y K; Tan, Soo Yong; Yeap, Chun Hsien; Chan, Yiong Huak; Tay, Kevin; Lim, Soon Thye; Lee, Yuh Shan; Kumar, Sathish Gopalakrishnan; Ng, Soo Chin; Fadilah, S; Kim, Won Seog; Goh, Yeow Tee
2015-08-01
Patients with relapsed or refractory peripheral T-cell lymphoma have a poor prognosis after conventional chemotherapy. Approved novel agents have only modest single-agent activity in most subtypes of peripheral T-cell lymphoma. Panobinostat is a potent oral pan-deacetylase inhibitor. Findings of many preclinical studies have shown synergistic antilymphoma activity when panobinostat is combined with the proteasome inhibitor bortezomib. We aimed to study the effect of panobinostat and bortezomib in patients with relapsed or refractory peripheral T-cell lymphoma. In this open-label, multicentre phase 2 trial, we recruited patients aged 21 years or older with relapsed or refractory peripheral T-cell lymphoma who had received at least one previous line of systemic therapy from five tertiary hospitals in Singapore, Malaysia, and South Korea. Patients received 20 mg oral panobinostat three times a week and 1·3 mg/m(2) intravenous bortezomib two times a week, both for 2 of 3 weeks for up to eight cycles. The primary endpoint was the proportion of patients who achieved an objective response in accordance with the International Working Group revised response criteria; analyses were by intention to treat. The study is completed and is registered with ClinicalTrials.gov, number NCT00901147. Between Nov 9, 2009, and Nov 26, 2013, we enrolled 25 patients with various histological subtypes of peripheral T-cell lymphoma. Of 23 patients assessable for responses, ten (43%, 95% CI 23-63) patients had an objective response, of which five were complete responses. Serious adverse events were reported in ten (40%) of 25 patients. Common treatment-related grade 3-4 adverse events included thrombocytopenia (17 [68%]), neutropenia (ten [40%]), diarrhoea (five [20%]), and asthenia or fatigue (two [8%]). We recorded peripheral neuropathy of any grade in ten (40%) patients. Combined proteasome and histone deacetylase inhibition is safe and feasible and shows encouraging activity for patients with peripheral T-cell lymphoma. Our findings validate those of preclinical studies showing synergism in the combination and represent a rational way forward in harnessing the full potential of novel agents in peripheral T-cell lymphoma. Novartis Pharmaceuticals, Janssen Pharmaceuticals, and Singhealth Foundation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of hydrocortisone on cell morphology in C6 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berliner, J.A.; Bennett, K.; de Vellis, J.
Hydrocortisone has been found to induce cell spreading in rat glial C6 cells by 24 hours after its addition. This spreading phenomenon is correlated with an increase in the fraction of the peripheral cytoplasm occupied by microfilaments. Cytochalasin B causes disorganization of microfilaments in the peripheral cytoplasm of the cells. Additionally, it also prevents cell spreading in response to hormonal stimulation. High levels of calcium prevent recovery of normal microfilament organization and cell spreading following removal of cytochalasin B, but have no effect on normal microfilament organization alone. Additionally both the hydrocortisone induced spreading of C6 cells and increases inmore » peripheral microfilaments are shown to be dependent on RNA and protein synthesis. The levels of protein co-electrophorescing with actin are not affected by hydrocortisone.« less
Caglayan, A Okay; Dundar, Munis; Tanriverdi, Fatih; Baysal, Nuran A; Unluhizarci, Kursad; Ozkul, Yusuf; Borlu, Murat; Batukan, Cem; Kelestimur, Fahrettin
2011-08-01
To evaluate idiopathic hirsutism etiology via molecular studies testing peripheral and local aromatase and 5α-reductase expression. Assessment of the expression of messenger RNA (mRNA) for type 1 and 2,5α-reductase isoenzyme gene (SDR5A1, SDR5A2) and aromatase (CYP19A) in dermal papillae cells and peripheral blood mononuclear cells. University hospital. 28 untreated idiopathic hirsute patients and 20 healthy women (controls). Human skin biopsies and peripheral venous blood. SDR5A1, SDR5A2, CYP19A gene expression in skin biopsies and peripheral blood. A statistically significant reduction of SRD5A1, SRD5A2, and CYP19A gene expression was found in the dermal papillae cells and peripheral blood mononuclear cell between the study and control group. Further study, including protein expression and enzyme activity assays, are warranted to characterize the paradoxically low gene expression levels of local 5α-reductase and aromatase in women with idiopathic hirsutism. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Pennington, Shaun H; Ferreira, Daniela M; Reiné, Jesús; Nyirenda, Tonney S; Thompson, Ameeka L; Hancock, Carole A; Wright, Angela D; Gordon, Stephen B; Gordon, Melita A
2018-06-26
We have previously demonstrated that polyfunctional Ty21a-responsive CD4 + and CD8 + T cells are generated at the duodenal mucosa 18 days following vaccination with live-attenuated S. Typhi (Ty21a). The longevity of cellular responses has been assessed in peripheral blood, but persistence of duodenal responses is unknown. We vaccinated eight healthy adults with Ty21a. Peripheral blood and duodenal samples were acquired after a median of 1.5 years (ranging from 1.1 to 3.7 years) following vaccination. Cellular responses were assessed in peripheral blood and at the duodenal mucosa by flow cytometry. Levels of IgG and IgA were also assessed in peripheral blood by enzyme-linked immunosorbent assay. No T-cell responses were observed at the duodenal mucosa, but CD4 + T-cell responses to Ty21a and FliC were observed in peripheral blood. Peripheral anti-lipopolysaccharide IgG and IgA responses were also observed. Early immunoglobulin responses were not associated with the persistence of long-term cellular immune responses. Early T-cell responses which we have previously observed at the duodenal mucosa 18 days following oral vaccination with Ty21a could not be detected at a median of 1.5 years. Peripheral responses were observed at this time. Immunoglobulin responses observed shortly after vaccination were not associated with cellular immune responses at 1.5 years, suggesting that the persistence of cellular immunity is not associated with the strength of the initial humoral response to vaccination. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ratajczak, Mariusz Z.; Zuba-Surma, Ewa K.; Shin, Dong-Myung; Ratajczak, Janina; Kucia, Magda
2011-01-01
Recently, we purified rare CXC chemokine receptor 4 expressing (CXCR4+) small stem cells (SCs) from the murine bone marrow (BM) that express markers characteristic for embryonic (E)SCs, epiblast (EP)SCs, and primordial germ cells (PGCs). We named these primitive cells very small embryonic-like (VSEL) SCs (VSELs). Our data indicate that VSELs are also present in many other organs in mice and that they may differentiate into cells from all three germ layers. Similar SCs were also isolated from human cord blood (CB) and mobilized peripheral blood (mPB). We hypothesize that VSELs are deposited during gastrulation and organogenesis in developing organs/tissues of mammals as a population of pluripotent stem cells (PSCs) that give rise to tissue committed monopotent SCs and that their number decreases with age. Therefore VSELs could play a pivotal role in normal rejuvenation of adult tissues as well as involvement in regeneration of damaged organs. Thus, these cells are potential SCs candidates for regenerative medicine and we envision that the regenerative potential of these cells could be harnessed to decelerate the aging processes. PMID:18601995
Ickrath, Pascal; Kleinsasser, Norbert; Ding, Xin; Ginzkey, Christian; Beyersdorf, Niklas; Hagen, Rudolf; Kerkau, Thomas; Hackenberg, Stephan
2018-08-01
In patients with chronic rhinosinusitis with nasal polyps (CRSwNP), a relative accumulation of cluster of differentiation (CD)8+ T cells over CD4+ T cells occurs in nasal polyps compared with the peripheral blood. Nasal CD8+ T cells and CD4+ T cells predominantly present an effector memory phenotype. Immunological studies have reported that memory T cells recirculate from the tissues to the peripheral blood and a high percentage of these T cells persist within the tissue. The aim of the present study was to characterize CD69+ sphingosine‑1‑phosphate receptor 1 (S1PR1)‑ tissue resident memory T cells (Trm) in the polyps of patients with CRSwNP. Tissue and blood samples were collected from 10 patients undergoing nasal sinus surgery. Expression of specific extra‑ and intracellular molecules were analyzed using multicolor flow cytometry. A significantly higher level of CD8+ T cells than CD4+ T cells was present in nasal polyps, while significantly more CD4+ T cells than CD8+ T cells were detected in the peripheral blood of patients with CRSwNP. The frequency of CD69+ T cells was significantly higher in CD8+ and CD4+ T cells in nasal polyps compared with the peripheral blood. The frequency of CD69+ S1PR1‑ Trm was also significantly higher in CD4+ and CD8+ T cells from nasal polyps compared with the peripheral blood. Within polyps, the frequency of CD69+ S1PR1‑ Trm was again significantly higher in CD8+ compared with CD4+ T cells. In summary, a significantly higher frequency of CD69+ S1PR1‑ T cells was observed in the nasal polyps compared with the peripheral blood in patients with CRSwNP. The results of the present study suggest that local regulation of the immune response occurs within nasal polyps. As such, Trm should be considered a potential stimulus in the pathogenesis of nasal polyps. However, the role of Trm in nasal polyps as a pathogenic trigger of the local inflammatory reaction requires further investigation.
IL‐12 and IL‐15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells
Hydes, Theresa; Noll, Angela; Salinas‐Riester, Gabriela; Abuhilal, Mohammed; Armstrong, Thomas; Hamady, Zaed; Primrose, John; Takhar, Arjun; Walter, Lutz
2017-01-01
Abstract Introduction Murine hepatic NK cells exhibit adaptive features, with liver‐specific adhesion molecules CXCR6 and CD49a acting as surface markers. Methods We investigated human liver‐resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. Results Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver‐resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver‐resident double‐positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single‐positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL‐12 and IL‐15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver‐resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. Conclusion IL‐12 and IL‐15 may be key for generating NK cells with a tissue‐homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue‐homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease. PMID:28952190
IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells.
Hydes, Theresa; Noll, Angela; Salinas-Riester, Gabriela; Abuhilal, Mohammed; Armstrong, Thomas; Hamady, Zaed; Primrose, John; Takhar, Arjun; Walter, Lutz; Khakoo, Salim I
2018-03-01
Murine hepatic NK cells exhibit adaptive features, with liver-specific adhesion molecules CXCR6 and CD49a acting as surface markers. We investigated human liver-resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver-resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver-resident double-positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single-positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL-12 and IL-15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver-resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. IL-12 and IL-15 may be key for generating NK cells with a tissue-homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue-homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.
Pajak, B.; De Smedt, T.; Moulin, V.; De Trez, C.; Maldonado-Lopez, R.; Vansanten, G.; Briend, E.; Urbain, J.; Leo, O.; Moser, M.
2000-01-01
Aims—To describe a new fixation and embedding method for tissue samples, immunohistowax processing, which preserves both morphology and antigen immunoreactivity, and to use this technique to investigate the role of dendritic cells in the immune response in peripheral tissues. Methods—This technique was used to stain a population of specialised antigen presenting cells (dendritic cells) that have the unique capacity to sensitise naive T cells, and therefore to induce primary immune responses. The numbers of dendritic cells in peripheral organs of mice either untreated or injected with live Escherichia coli were compared. Results—Numbers of dendritic cells were greatly decreased in heart, kidney, and intestine after the inoculation of bacteria. The numbers of dendritic cells in the lung did not seem to be affected by the injection of E coli. However, staining of lung sections revealed that some monocyte like cells acquired morphological and phenotypic features of dendritic cells, and migrated into blood vessels. Conclusions—These observations suggest that the injection of bacteria induces the activation of dendritic cells in peripheral organs, where they play the role of sentinels, and/or their movement into lymphoid organs, where T cell priming is likely to occur. Key Words: dendritic cell • Escherichia coli • immunohistochemistry PMID:10961175
Zou, Wenjun; Wu, Zhifeng; Xiang, Xiaoli; Sun, Song; Zhang, Jie
2014-04-01
Human leukocyte antigen B27 (HLA-B27)-associated uveitis is the most common reason for non-infectious uveitis. This purpose of the research was to study the expression and significance of T lymphocyte subsets and CD₄⁺ CD₂₅⁺ T regulatory (Treg) cells in peripheral blood of patients with Human leukocyte antigen B27-positive acute anterior uveitis (HLA-B27-positive AAU). The concentrations of Th1, Th2, Th17, CD₄⁺ CD₂₅⁺and CD₄⁺ CD₂₅⁺FOXP3⁺ Treg cells in peripheral blood were tested by flow cytometry. C-reactive protein (CRP) in peripheral blood was detected by immunoturbidimetry (ITM). Spearman's rank correlation was used to analyze the relationships between the concentration of Th1, Th2, Th17, CD₄⁺ CD₂₅⁺, and CD₄⁺ CD₂₅⁺ FOXP3(+) Treg cells in peripheral blood and disease activity score and CRP content. The ratio of both γ [interferon (IFN)-γ] (+)CD4⁺Th1 cells and CD4⁺IL-17⁺Th17 cells in peripheral blood of patients with HLA-B27-positive AAU (P = 0.041) was higher than that of the control group (P = 0.002). The concentration of CD₄⁺ CD₂₅⁺ FOXP3(+) T cells in peripheral blood of patients with AAU was lower than that of the control group (P = 0.026). The concentration of Th1 cells in peripheral blood of the patients had no correlation with disease activity score (P = 0.50) or CRP content (P = 0.383). This was also true of the concentration of Th2 cells (Disease activity score: R = 0.068, P = 0.817; CRP content: R = 0.439, P = 0.116). Th17 cell concentration positively correlated with disease activity score (R = 0.805, P = 0.001). The concentration of CD₄⁺ CD₂₅⁺ T cells showed no correlation with disease activity score (R =-0.209, P = 0.472) or CRP content (R =-0.169, P = 0.563), whereas the concentration of CD4⁺ CD25⁺ FOXP3⁺ T cells negatively correlated with disease activity score but did not correlate with CRP (R =-0.248, P = 0.392). The peripheral blood of patients with HLA-B27-positive AAU showed a higher expression of interferon-γ and interleukin-17 cells in CD4⁺T cells, whereas CD4⁺CD25⁺FOXP3⁺ T cells displayed a lower expression of the cytokines. The balance between Th17 cells and CD4⁺ CD25⁺ FOXP3⁺ T cells may contribute to the activity of HLA-B27-positive AAU.
Richards, K S; Arme, C; Bridges, J F
1984-08-01
The germinal layer of sterile 9-month-old murine peritoneal cysts of Echinococcus granulosus equinus shows interrelated variation in depth, tissue integrity, metabolic reserves and the number of autophagic lamellar bodies present. These features are similar in large and medium-sized cysts from the same host, whether occurring singly or within cyst masses. Deep germinal layers (greater than 16 micron) are lipid- and glycogen-rich and possess numerous autophagic vacuoles with 6 nm period lamellar stacks asymmetrically disposed peripherally; shallow layers (less than 12 micron), with indications of degeneration, have depleted metabolic reserves and fewer lamellar bodies. These bodies are formed by smooth endoplasmic reticulum encirclement of small glycogen masses followed by further sequestration, and eventually definition of glycogen particles may be lost. Autophagy of mitochondria and cytoplasmic vesicles also occurs. The presence of lysosomal enzymes within the layer suggests autolysosomal compartmentalization of excess substrate and effete material. Mucopolysaccharide bodies, containing material similar to that exocytosed to form the laminated layer matrix, occur and are formed from fusion and autophagy of Golgi-derived vesicles. These bodies may also develop peripheral 6 nm period lamellar stacks, but of limited depth. Mucopolysaccharide bodies are the dominant feature of the germinal layer of very small cyst-mass cysts in which laminated layer production is considered to be arrested. They thus represent a repository for the unreleased mucopolysaccharide material.
2018-01-22
Acute Myelogenous Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Chronic Lymphocytic Leukemia; Myelodysplastic Syndromes; Multiple Myeloma; Non-Hodgkins Lymphoma; Hodgkins Disease; Peripheral T-cell Lymphoma
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2010 CFR
2010-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2011 CFR
2011-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2014 CFR
2014-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2013 CFR
2013-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
21 CFR 1271.420 - HCT/Ps offered for import.
Code of Federal Regulations, 2012 CFR
2012-04-01
... recipient for reproductive use. (d) This section does not apply to peripheral blood stem/progenitor cells... peripheral blood stem/progenitor cells may present an unreasonable risk of communicable disease transmission...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN CELLS, TISSUES...
Current progress in use of adipose derived stem cells in peripheral nerve regeneration
Zack-Williams, Shomari DL; Butler, Peter E; Kalaskar, Deepak M
2015-01-01
Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair. PMID:25621105
Jones, Iwan; Novikova, Liudmila N; Novikov, Lev N; Renardy, Monika; Ullrich, Andreas; Wiberg, Mikael; Carlsson, Leif; Kingham, Paul J
2018-04-01
Surgical intervention is the current gold standard treatment following peripheral nerve injury. However, this approach has limitations, and full recovery of both motor and sensory modalities often remains incomplete. The development of artificial nerve grafts that either complement or replace current surgical procedures is therefore of paramount importance. An essential component of artificial grafts is biodegradable conduits and transplanted cells that provide trophic support during the regenerative process. Neural crest cells are promising support cell candidates because they are the parent population to many peripheral nervous system lineages. In this study, neural crest cells were differentiated from human embryonic stem cells. The differentiated cells exhibited typical stellate morphology and protein expression signatures that were comparable with native neural crest. Conditioned media harvested from the differentiated cells contained a range of biologically active trophic factors and was able to stimulate in vitro neurite outgrowth. Differentiated neural crest cells were seeded into a biodegradable nerve conduit, and their regeneration potential was assessed in a rat sciatic nerve injury model. A robust regeneration front was observed across the entire width of the conduit seeded with the differentiated neural crest cells. Moreover, the up-regulation of several regeneration-related genes was observed within the dorsal root ganglion and spinal cord segments harvested from transplanted animals. Our results demonstrate that the differentiated neural crest cells are biologically active and provide trophic support to stimulate peripheral nerve regeneration. Differentiated neural crest cells are therefore promising supporting cell candidates to aid in peripheral nerve repair. © 2018 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.
Nivolumab in Treating Patients With Relapsed or Refractory Peripheral T-cell Lymphoma
2018-04-27
Blastic Plasmacytoid Dendritic Cell Neoplasm; Hepatosplenic T-Cell Lymphoma; HTLV-1 Infection; NK-Cell Lymphoma, Unclassifiable; Primary Systemic Anaplastic Large Cell Lymphoma, ALK-Negative; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Anaplastic Large Cell Lymphoma; Recurrent Angioimmunoblastic T-cell Lymphoma; Recurrent Enteropathy-Associated T-Cell Lymphoma; Recurrent Mycosis Fungoides; Refractory Adult T-Cell Leukemia/Lymphoma; Refractory Anaplastic Large Cell Lymphoma; Refractory Angioimmunoblastic T-cell Lymphoma; Refractory Enteropathy-Associated T-Cell Lymphoma; Refractory Mycosis Fungoides; Refractory Nasal Type Extranodal NK/T-Cell Lymphoma; Refractory Peripheral T-Cell Lymphoma, Not Otherwise Specified
Taraskina, A E; Nasyrova, R F; Grunina, M N; Zabotina, A M; Ivashchenko, D V; Ershov, E E; Sosin, D N; Kirnichnaya, K A; Ivanov, M V; Krupitsky, E M
2015-01-01
Current literature on a role of dopamine in the development of mental and neurological disorders suggests that the discovery of endogenous dopamine in peripheral blood lymphocytes gave rise to a new line of research. Dopamine receptors are not only found on cells of the innate immune response (nonspecific), but also on cells of adaptive immune response (specific): T and B lymphocytes. These facts bring a new evidence of interrelationships between the peripheral immune system, neuroinflammation and neurodegeneration and suggest new ways for investigation of the pathogenesis of different mental and neurological disorders, in particular Parkinson's disease, Alzheimer's disease and schizophrenia. There is strong evidence that ligands of dopamine receptors can change the expression of coding genes both in central neurons and in peripheral cells. Thus, peripheral blood lymphocytes may prove a cellular tool to identify dopamine transmission disturbances in neuropsychiatric diseases, as well as to monitor the effects of pharmacological treatment.
Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis
Meyer-Bahlburg, Almut; Becker-Herman, Shirly; Humblet-Baron, Stephanie; Khim, Socheath; Weber, Michele; Bouma, Gerben; Thrasher, Adrian J.; Batista, Facundo D.
2008-01-01
To more precisely identify the B-cell phenotype in Wiskott-Aldrich syndrome (WAS), we used 3 distinct murine in vivo models to define the cell intrinsic requirements for WAS protein (WASp) in central versus peripheral B-cell development. Whereas WASp is dispensable for early bone marrow B-cell development, WASp deficiency results in a marked reduction in each of the major mature peripheral B-cell subsets, exerting the greatest impact on marginal zone and B1a B cells. Using in vivo bromodeoxyuridine labeling and in vitro functional assays, we show that these deficits reflect altered peripheral homeostasis, partially resulting from an impairment in integrin function, rather than a developmental defect. Consistent with these observations, we also show that: (1) WASp expression levels increase with cell maturity, peaking in those subsets exhibiting the greatest sensitivity to WASp deficiency; (2) WASp+ murine B cells exhibit a marked selective advantage beginning at the late transitional B-cell stage; and (3) a similar in vivo selective advantage is manifest by mature WASp+ human B cells. Together, our data provide a better understanding of the clinical phenotype of WAS and suggest that gene therapy might be a useful approach to rescue altered B-cell homeostasis in this disease. PMID:18687984
Mislocalization of SLP-76 leads to aberrant inflammatory cytokine and autoantibody production.
Sonnenberg, Gregory F; Mangan, Paul R; Bezman, Natalie A; Sekiguchi, Debora R; Luning Prak, Eline T; Erikson, Jan; Maltzman, Jonathan S; Jordan, Martha S; Koretzky, Gary A
2010-03-18
Central and peripheral tolerance is required to prevent immune responses to self-antigens. We now present a mouse model in which wild-type (WT) SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) has been constitutively targeted to the membrane, where CD4+ T cells become spontaneously dysregulated and develop an inflammatory phenotype. Mice bearing membrane-targeted SLP-76 (MTS) have a partial T-cell lymphopenia and impaired signaling though the mature T-cell receptor. The CD4+ T cells that develop in these mice possess an activated-like phenotype and are skewed toward the inflammatory T(H)1 and T(H)17 lineages. MTS mice also spontaneously develop autoantibodies at an early age. To rule out abnormal thymic selection as the sole cause of the MTS phenotype, we expressed WT SLP-76 along with the MTS followed by deletion of the WT allele in peripheral T cells. The peripheral MTS-expressing T cells demonstrate skewed cytokine responses when transferred into lymphopenic hosts. Thus, the abnormal effector T-cell phenotype still occurs in the presence of preserved central and peripheral tolerance, suggesting that diminished T-cell receptor signaling can promote skewed T-cell responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruskamo, Salla; University of Oulu, Oulu; Yadav, Ravi P.
2014-01-01
The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structuralmore » analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.« less
2017-09-18
Desmoplastic Small Round Cell Tumor; Ewing Sarcoma of Bone or Soft Tissue; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor
Meller, D; Pires, R T F; Tseng, S C G
2002-04-01
Amniotic membrane (AM) transplantation effectively expands the remaining limbal epithelial stem cells in patients with partial limbal stem cell deficiency. The authors investigated whether this action could be produced ex vivo. The outgrowth rate on AM was compared among explants derived from human limbus, peripheral cornea, and central cornea. For outgrowth of human limbal epithelial cells (HLEC), cell cycle kinetics were measured by BrdU labelling for 1 or 7 days, of which the latter was also chased in primary cultures, secondary 3T3 fibroblast cultures, and in athymic Balb/c mice following a brief treatment with a phorbol ester. Epithelial morphology was studied by histology and transmission electron microscopy, and phenotype was defined by immunostaining with monoclonal antibodies to keratins and mucins. Outgrowth rate was 0/22 (0%) and 2/24 (8.3%) for central and peripheral corneal explants, respectively, but was 77/80 (96.2%) for limbal explants (p <0.0001). 24 hour BrdU labelling showed a uniformly low (that is, less than 5%) labelling index in 65% of the limbal explants, but a mixed pattern with areas showing a high (that is, more than 40%) labelling index in 35% of limbal explants, and in all (100%) peripheral corneal explants. Continuous BrdU labelling for 7 days detected a high labelling index in 61.5% of the limbal explants with the remainder still retaining a low labelling index. A number of label retaining cells were noted after 7 day labelling followed by 14 days of chase in primary culture or by 21 days of chase after transplantation to 3T3 fibroblast feeder layers. After exposure to phorbol 12-myristate 13-acetate for 24 hours and 7 day labelling, HLEC transplanted in athymic mice still showed a number of label retaining basal cells after 9 days of chase. HLEC cultured on AM were strongly positive for K14 keratin and MUC4 and slightly positive in suprabasal cells for K3 keratin but negative for K12 keratin, AMEM2, and MUC5AC. After subcutaneous implantation in athymic mice, the resultant epithelium was markedly stratified and the basal epithelial cells were strongly positive for K14 keratin, while the suprabasal epithelial cells were strongly positive for K3 keratin and MUC4, and the entire epithelium was negative for K12 keratin and MUC5A/C. These data support the notion that AM cultures preferentially preserve and expand limbal epithelial stem cells that retain their in vivo properties of slow cycling, label retaining, and undifferentiation. This finding supports the feasibility of ex vivo expansion of limbal epithelial stem cells for treating patients with total limbal stem cell deficiency using a small amount of donor limbal tissue.
Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics.
Warkiani, Majid Ebrahimi; Khoo, Bee Luan; Wu, Lidan; Tay, Andy Kah Ping; Bhagat, Ali Asgar S; Han, Jongyoon; Lim, Chwee Teck
2016-01-01
Circulating tumor cells (CTCs) are rare cancer cells that are shed from primary or metastatic tumors into the peripheral blood circulation. Phenotypic and genetic characterization of these rare cells can provide important information to guide cancer staging and treatment, and thus further research into their characteristics and properties is an area of considerable interest. In this protocol, we describe detailed procedures for the production and use of a label-free spiral microfluidic device to allow size-based isolation of viable CTCs using hydrodynamic forces that are present in curvilinear microchannels. This spiral system enables us to achieve ≥ 85% recovery of spiked cells across multiple cancer cell lines and 99.99% depletion of white blood cells in whole blood. The described spiral microfluidic devices can be produced at an extremely low cost using standard microfabrication and soft lithography techniques (2-3 d), and they can be operated using two syringe pumps for lysed blood samples (7.5 ml in 12.5 min for a three-layered multiplexed chip). The fast processing time and the ability to collect CTCs from a large patient blood volume allows this technique to be used experimentally in a broad range of potential genomic and transcriptomic applications.
Usefulness of sural nerve biopsy in the genomic era.
Kanda, Takashi
2009-08-01
The value of peripheral nerve biopsy is now sometimes questioned due to the high complication rate and the recent development of noninvasive molecular techniques for diagnosis of hereditary neuropathy. However, the disorders that can be diagnosed by genetic analysis are limited and sural nerve biopsy is still a powerful tool for making a correct diagnosis of peripheral neuropathy. Histological evaluation of the sural nerve has long focused on changes of the two major components of peripheral nerves, axons and myelin, as well as on the detection of diagnostic changes such as amyloid deposits, sarcoid tubercles, and vasculitis. In addition to these components, the sural nerve biopsy specimen contains various important cells, including perineurial cells, mast cells, endothelial cells, pericytes, and lymphocytes. Among these cells, the endothelial cells and pericytes form the blood-nerve barrier (BNB) and investigation of these cells can reveal important information, especially in inflammatory neuropathies. To better understand the biological basis of BNB, we established rat and human immortal cell lines from the endothelial cells and pericytes of endoneurial microvessels. Characterization of these cell lines is now underway at our laboratory. These BNB cell lines should provide useful information concerning the pathophysiology of peripheral neuropathy, and we should obtain a new perspective for the investigation of nerve biopsy specimens after understanding the molecular background of the BNB.
Wang, L; Chang, S; Guan, J; Shangguan, S; Lu, X; Wang, Z; Wu, L; Zou, J; Zhao, H; Bao, Y; Qiu, Z; Niu, B; Zhang, T
2015-01-01
Epigenetic regulation of long interspersed nucleotide element-1 (LINE-1) retrotransposition events plays crucial roles during early development. Previously we showed that LINE-1 hypomethylation in neuronal tissues is associated with pathogenesis of neural tube defect (NTD). Herein, we further evaluated LINE-1 Homo sapiens (L1Hs) methylation in tissues derived from three germ layers of stillborn NTD fetuses, to define patterns of tissue specific methylation and site-specific hypomethylation at CpG sites within an L1Hs promoter region. Stable, tissue-specific L1Hs methylation patterns throughout three germ layer lineages of the fetus, placenta, and maternal peripheral blood were observed. Samples from maternal peripheral blood exhibited the highest level of L1Hs methylation (64.95%) and that from placenta showed the lowest (26.82%). Between samples from NTDs and controls, decrease in L1Hs methylation was only significant in NTD-affected brain tissue at 7.35%, especially in females (8.98%). L1Hs hypomethylation in NTDs was also associated with a significant increase in expression level of an L1Hs-encoded transcript in females (r = -0.846, p = 0.004). This could be due to genomic DNA instability and alternation in chromatins accessibility resulted from abnormal L1Hs hypomethylation, as showed in this study with HCT-15 cells treated with methylation inhibitor 5-Aza.
Label-free photoacoustic microscopy of peripheral nerves
NASA Astrophysics Data System (ADS)
Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.
2014-01-01
Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies.
Kader, M; Bixler, S; Piatak, M; Lifson, J; Mattapallil, J J
2009-10-01
Human immuno deficiency virus and simian immunodeficiency virus infections are characterized by a severe loss of Th-17 cells (IL-17(+)CD4(+) T cells) that has been associated with disease progression and systemic dissemination of bacterial infections. Anti-retroviral therapy (ART) has led to repopulation of CD4(+) T cells in peripheral tissues with little sustainable repopulation in mucosal tissues. Given the central importance of Th-17 cells in mucosal homeostasis, it is not known if the failure of ART to permanently repopulate mucosal tissues is associated with a failure to restore Th-17 cells that are lost during infection. Dynamics of alpha4(+)beta7(hi) CD4(+) T cells in peripheral blood of SIV infected rhesus macaques were evaluated and compared to animals that were treated with ART. The frequency of Th-17 and Tc-17 cells was determined following infection and after therapy. Relative expression of IL-21, IL-23, and TGFbeta was determined using Taqman PCR. Treatment of SIV infected rhesus macaques with anti-retroviral therapy was associated with a substantial repopulation of mucosal homing alpha4(+)beta7(hi)CD4(+) T cells in peripheral blood. This repopulation, however, was not accompanied by a restoration of Th-17 responses. Interestingly, SIV infection was associated with an increase in Tc-17 responses (IL-17(+)CD8(+) T cells) suggesting to a skewing in the ratio of Th-17: Tc-17 cells from a predominantly Th-17 phenotype to a predominantly Tc-17 phenotype. Surprisingly, Tc-17 responses remained high during the course of therapy suggesting that ART failed to correct the imbalance in Th-17 : Tc-17 responses induced following SIV infection. ART was associated with substantial repopulation of alpha4(+)beta7(hi) CD4(+) T cells in peripheral blood with little or no rebound of Th-17 cells. On the other hand, repopulation of alpha4(+)beta7(hi) CD4(+) T cells was accompanied by persistence of high levels of Tc-17 cells in peripheral blood. The dysregulation of Th-17 and Tc-17 responses likely plays a role in disease progression.
Blood cell lineage in the sea lamprey, Petromyzon marinus (Pisces: Petromyzontidae)
Piavis, George W.; Hiatt, James L.
1971-01-01
Blood cell types of the sea lamprey, Petromyzon marinus, are described and identified and the lineage of mature circulating cells in peripheral blood is traced to blast cells in the hematopoietic fat body. The fat body appears to be the phylogenetic precursor of bone marrow in higher forms, since blood cells originate and begin maturation in this tissue. Experimental animals were injected first with a hematopoietic stimulant and then (at an experimentally determined time) with pertussis vaccine to release proliferated blood cells into peripheral blood. Peripheral blood for smears was collected by cardiac exsanguination; hematopoietic tissue was extirpated for imprints; and leucocyte preparations were made by a special technique. Blood cells of the sea lamprey are apparently products of at least four distinct blast cells, each of which has a 'one end' maturation process. Results of this investigation support the polyphyletic theory of blood cell formation.
Wu, Kunlun; Zhao, Jun; Wu, Qiongli; Wu, Changyou
2017-11-01
Objective To study the inhibitory effect of tofacitinib on the production of cytokines by T cells in human peripheral blood and its mechanism. Methods Peripheral blood mononuclear cells (PBMCs) and purified T cells were cultured and stimulated with anti-CD3 plus anti-CD28 antibodies in the presence or absence of tofacitinib (0.5 μmol/L). The levels of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α) and interleukin 2 (IL-2) in the culture supernatants were detected by ELISA, and the expressions of activated molecules CD69 and CD25 on the surface of CD4 + and CD8 + T cells, the production of cytokines and the phosphorylation of signal transducers and transcriptional activators STAT1, STAT3, STAT4 in T cells were examined by flow cytometry. At the same time, the proliferation and apoptosis of T cells were observed by 5- (and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) staining and the flow cy tometry with annexin V-FITC/PI, respectively. Results Tofacitinib inhibited the production of IFN-γ, TNF-α and the expression of CD25 on T cells from the peripheral blood. In addition, the proliferation and the phosphorylation of STAT1, STAT3, STAT4 by T cells were also depressed. However, tofacitinib had no effect on the secretion of IL-2, the expression of CD69 and the apoptosis of T cells. Conclusion Tofacitinib can inhibit the secretion of IFN-γ and TNF-α by T cells in the peripheral blood, and its mechanism might be related to the inhibitory effect of tofacitinib on the activation, proliferation and signal transduction in T cells.
Sarcoidosis Th17 Cells are ESAT-6 Antigen Specific but Demonstrate Reduced IFN-γ Expression
Richmond, Bradley W.; Ploetze, Kristen; Isom, Joan; Chambers-Harris, Isfahan; Braun, Nicole A.; Taylor, Thyneice; Abraham, Susamma; Mageto, Yolanda; Culver, Dan A.; Oswald-Richter, Kyra A.; Drake, Wonder P.
2013-01-01
Rationale Sarcoidosis is a granulomatous disease of unknown etiology. Many patients with sarcoidosis demonstrate antigen-specific immunity to mycobacterial virulence factors. Th-17 cells are crucial to the immune response in granulomatous inflammation, and have recently been shown to be present in greater numbers in the peripheral blood and bronchoalveolar lavage (BAL) fluid (BALF) of sarcoidosis patients than healthy controls. It is unclear whether Th-17 cells in sarcoidosis are specific for mycobacterial antigens, or whether they have similar functionality to control Th-17 cells. Methods Flow cytometry was used to determine the numbers of Th-17 cells present in the peripheral blood and BALF of patients with sarcoidosis, the percentage of Th-17 cells that were specific to the mycobacterial virulence factor ESAT-6, and as well as to assess IFN-γ expression in Th-17 cells following polyclonal stimulation. Results Patients with sarcoidosis had greater numbers of Th-17 cells in the peripheral blood and BALF than controls and produced significantly more extracellular IL-17A (p=0.03 and p=0.02, respectively). ESAT-6 specific Th-17 cells were present in both peripheral blood and BALF of sarcoidosis patients (p<0.001 and p=0.03, respectively). After polyclonal stimulation, Th-17 cells from sarcoidosis patients produced less IFN-γ than healthy controls. Conclusions Patients with sarcoidosis have mycobacterial antigen-specific Th-17 cells peripherally and in sites of active sarcoidosis involvement. Despite the Th1 immunophenotype of sarcoidosis immunology, the Th-17 cells have reduced IFN-γ expression, compared to healthy controls. This reduction in immunity may contribute to sarcoidosis pathogenesis. PMID:23073617
Identification of early B cell precursors (stage 1 and 2 hematogones) in the peripheral blood.
Kurzer, Jason H; Weinberg, Olga K
2018-05-25
Differentiating malignant B-lymphoblasts from early benign B cell precursors (hematogones) is a vital component of the diagnosis of B-lymphoblastic leukaemia. It has been previously reported that only late-stage B cell precursors circulate in the peripheral blood. Consequently, flow cytometric detection of cells with immunophenotypic findings similar to earlier stage precursors in the peripheral blood justifiably raises concern for involvement by B-lymphoblastic leukaemia. We report here, however, that benign early B cell precursors can indeed be detected in the peripheral blood, thus complicating the interpretation of flow cytometric findings derived from these sample types. A retrospective search of our collective databases identified 13 cases containing circulating early stage B cell precursors. The patients ranged in age from 15 days to 85 years old. All positive cases demonstrated that the earlier B cell precursors were associated with later stage precursors, a finding that could help differentiate these cells from B-lymphoblastic leukaemia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Liu, Mo; Zhao, Yu; Sun, Jing-Fen; Zhao, Wei; Wang, Li-Li; Yu, Li
2015-02-01
This study was to identify the efficacy of -80°C cryopreservated peripheral blood hemato-poietic stem cell (PBHSC) transplantation for hematopoietic reanstitution in patients. The efficacy of 104 patients underwent autologous peripheral blood hematopoietic stem cell transplantation using uncontrolled-rate freezing and storage at -80°C was evaluated. This cryopreservation method could effectively cryopreserve peripheral blood stem cells. Out of 104 patients only 2 patients died, other patients got hematologic reconstition satisfactorily, the median engrafement times of neutrophils and platelet were 12 and 14 days respectively, the activity of cells after rehabilitation was 94%, the mean recovery rates of CD34(+) cells and mononuclear cells (MNC) were 86% and 80.3% respectively. There were no significant influences on engrafement time in sex, chemotherapy circles and radiotherapy. The engrafement of leukocytes associated with amount of CD34(+) cells. This simple uncontrolled-rate freezing PBHSC at -80°C is safe, effective and economic, and can meet clinical needs. As compared with the classical cryopreservation, there were no significant differences in hematopoietic reconstitution. Therefore, this method worth to popularize and apply in clinic.
Roberts, Sheridan L.; Onaitis, Mark W.; Florio, Francesca; Quattrini, Angelo; Lloyd, Alison C.; D'Antonio, Maurizio
2017-01-01
Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system. PMID:28743796
Degroote, Roxane L; Hauck, Stefanie M; Kremmer, Elisabeth; Amann, Barbara; Ueffing, Marius; Deeg, Cornelia A
2012-07-19
The molecular mechanism which enables activated immune cells to cross the blood-retinal barrier in spontaneous autoimmune uveitis is yet to be unraveled. Equine recurrent uveitis is the only spontaneous animal model allowing us to investigate the autoimmune mediated transformation of leukocytes in the course of this sight threatening disease. Hypothesizing that peripheral blood immune cells change their protein expression pattern in spontaneous autoimmune uveitis, we used DIGE to detect proteins with altered abundance comparing peripheral immune cells of healthy and ERU diseased horses. Among others, we found a significant downregulation of talin 1 in peripheral blood granulocytes of ERU specimen, pointing to changes in β integrin activation and indicating a significant role of the innate immune system in spontaneous autoimmune diseases. Copyright © 2012. Published by Elsevier B.V.
Osteopontin expression in reactive lesions of gingiva
ELANAGAI, Rathinam; VEERAVARMAL, Veeran; NIRMAL, Ramdas Madhavan
2015-01-01
Reactive proliferations of the gingiva comprise lesions such as pyogenic granuloma (PG), inflammatory fibroepithelial hyperplasia (IFH), peripheral ossifying fibroma (POF), and peripheral giant cell lesion. Osteopontin (OPN) has a dual role, it promotes mineralization when it is bound to solid substrate, and on the other hand, it inhibits mineralization when it is seen in association with solution. Objectives The study aimed to evaluate the expression of osteopontin in normal gingival tissue and different types of focal reactive proliferations of gingival tissue, and its role in the development of calcification within it. Material and Methods The presence and distribution of osteopontin was assessed using immunohistochemistry in five cases of normal gingival tissue and 30 cases of focal reactive proliferations of gingiva. Results There was no expression of osteopontin in normal subjects. Few cases of pyogenic granuloma, inflammatory fibroepithelial hyperplasia, and all the cases of peripheral ossifying fibroma showed positivity for osteopontin in the inflammatory cells, stromal cells, extracellular matrix, and in the calcifications. Conclusion The expression of osteopontin in all the cases of peripheral ossifying fibroma speculates that the majority of the cases of peripheral ossifying fibroma originate from the periodontal ligament cells. The treatment modalities for peripheral ossifying fibroma should differ from other focal reactive proliferations of gingiva. PMID:25760265
Smith, Veronica R.; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra
2014-01-01
Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin’s and non-Hodgkin’s) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but 1 patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 106/kilogram of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 106/kilogram of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 106/kilogram of body weight. Plerixafor was well tolerated; no grade 2 or higher non- hematologic toxic effects were observed. PMID:23749720
Combining Gene and Stem Cell Therapy for Peripheral Nerve Tissue Engineering.
Busuttil, Francesca; Rahim, Ahad A; Phillips, James B
2017-02-15
Despite a substantially increased understanding of neuropathophysiology, insufficient functional recovery after peripheral nerve injury remains a significant clinical challenge. Nerve regeneration following injury is dependent on Schwann cells, the supporting cells in the peripheral nervous system. Following nerve injury, Schwann cells adopt a proregenerative phenotype, which supports and guides regenerating nerves. However, this phenotype may not persist long enough to ensure functional recovery. Tissue-engineered nerve repair devices containing therapeutic cells that maintain the appropriate phenotype may help enhance nerve regeneration. The combination of gene and cell therapy is an emerging experimental strategy that seeks to provide the optimal environment for axonal regeneration and reestablishment of functional circuits. This review aims to summarize current preclinical evidence with potential for future translation from bench to bedside.
Clinical Response of 277 Patients with Spinal Cord Injury to Stem Cell Therapy in Iraq
Hammadi, Abdulmajeed Alwan; Marino, Andolina; Farhan, Saad
2012-01-01
Background and Objectives: Spinal cord injury is a common neurological problem secondary to car accidents, war injuries and other causes, it may lead to varying degrees of neurological disablement, and apart from physiotherapy there is no available treatment to regain neurological function loss. Our aim is to find a new method using autologous hematopoietic stem cells to gain some of the neurologic functions lost after spinal cord injury. Methods and Results: 277 patients suffering from spinal cord injury were submitted to an intrathecally treatment with peripheral stem cells. The cells were harvested from the peripheral blood after a treatment with G-CSF and then concentrated to 4∼ 6 ml. 43% of the patients improved; ASIA score shifted from A to B in 88 and from A to C in 32. The best results were achieved in patients treated within one year from the injury. Conclusions: Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cell cultivation prior to injection. It seems reasonable treatment for spinal cord injury. PMID:24298358
Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.
Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu
2015-11-15
Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.
NASA Astrophysics Data System (ADS)
Blackbourn, David J.; Mackewicz, Carl E.; Barker, Edward; Hunt, Thomas K.; Herndier, Brian; Haase, Ashley T.; Levy, Jay A.
1996-11-01
Lymphoid tissues from asymptomatic HIV-infected individuals, as compared with symptomatic HIV-infected subjects, show limited histopathological changes and lower levels of HIV expression. In this report we correlate the control of HIV replication in lymph nodes to the non-cytolytic anti-HIV activity of lymphoid tissue CD8+ cells. Five subjects at different stages of HIV-related disease were studied and the ability of their CD8+ cells, isolated from both lymphoid tissue and peripheral blood, to inhibit HIV replication was compared. CD8+ cells from lymphoid tissue and peripheral blood of two HIV-infected long-term survivors suppressed HIV replication at a low CD8+:CD4+ cell ratio of 0.1. The CD8+ cells from the lymphoid tissue of a third asymptomatic subject suppressed HIV replication at a CD8+:CD4+ cell ratio of 0.25; the subject's peripheral blood CD8+ cells showed this antiviral response at a lower ratio of 0.05. The lymphoid tissue CD8+ cells from two AIDS patients were not able to suppress HIV replication, and the peripheral blood CD8+ cells of only one of them suppressed HIV replication. The plasma viremia, cellular HIV load as well as the extent of pathology and virus expression in the lymphoid tissue of the two long-term survivors, were reduced compared with these parameters in the three other subjects. The data suggest that the extent of anti-HIV activity by CD8+ cells from lymphoid tissue relative to peripheral blood correlates best with the clinical state measured by lymphoid tissue pathology and HIV burden in lymphoid tissues and blood. The results and further emphasis to the importance of this cellular immune response in controlling HIV pathogenesis.
Engert, Larissa C; Weiler, Ulrike; Stefanski, Volker; Schmucker, Sonja S
2018-02-01
This data article is related to the original research article "Diurnal rhythms in peripheral blood immune cell numbers of domestic pigs" of Engert et al. [1] and describes diurnal rhythms in the number of CD8α - and CD8α + γδ T cells in peripheral blood of domestic pigs. Blood samples were taken from 18 animals over periods of up to 50 h and immune cell subtypes were determined by flow cytometry. Diurnal rhythmicity of cell numbers of γδ T cell subtypes was analyzed with cosinor analysis and different properties of rhythmicity (mesor, amplitude, and peak time) were calculated. In addition, associations between cell numbers of the investigated cell types in porcine blood with plasma cortisol concentration, hematocrit, and experimental conditions were identified with linear mixed model analysis.
Le, Qi-hua; Hong, Jia-xu; Zhu, Wen-qing; Sun, Xing-huai; Xu, Jian-jiang
2011-05-01
To explore the morphological characteristics on cornea in patients with vernal keratoconjunctivitis (VKC) by the application of in vivo laser scanning confocal microscopy (LSCM). The experimental design was retrospective observation case series (case control study). Twenty-six patients, each diagnosed as bilateral VKC, were enrolled in the study, among which 13 were tarsal form, 5 were bulbar form and the rest were mixed form. Nine patients had the clinical course less than one year, eight subjects longer than three years, and the rest between them. Another twenty-six healthy volunteers with matching age and gender were selected as normal control. All participants had their right eyes examined with the in vivo confocal microscopy (HRT II/RCM). Central cornea and superior peripheral cornea were chosen as the examination points. The images were recorded automatically and cellular density of each layer was analyzed by installed software. Software ImageJ was utilized to analyze the density, diameter, branch number and tortuosity of subbasal nerve fiber in VKC patients. Independent t test was performed to assess the differences on cellular density between VKC patients and normal control, as well as those between central and peripheral cornea in VKC patients. Fisher chi-square test was used to compare the infiltration rate of Langerhans cells in corneal epithelium between VKC patients and controls. ANOVA was applied to assess the differences in cellular density among three subtypes, as well as among different duration of VKC. Independent t-test and chi-square test were applied to analyze the parameters of subbasal nerve fiber. The morphological changes in cornea included the absence of superficial hyperreflective polygonal epithelial cells, infiltration of Langerhans cells in and(or) underneath corneal epithelium and activation of keratocytes in anterior stroma. Corneal epithelium conjunctivalization and stromal neovascularization could be identified in patients with corneal neovascular epithelium. Longitudinal or oblique dark striae could be found in the posterior stroma in patients with complicated keratoconus. The density of epithelial cells at central and peripheral cornea in healthy controls were (6033.1 ± 998.7) cells/mm(2) and (6098.4 ± 298.3) cells/mm(2), while that in VKC patients were (5972.2 ± 1148.2) cells/mm(2) and (6178.5 ± 318.9) cells/mm(2) respectively, the differences being no statistical significant between them (t = 1.191, 1.011; P = 0.238, 0.318). However, it's found in VKC patients that cellular density at peripheral cornea was significantly higher than that at central area (t = 2.249, P = 0.03). The density of anterior stromal cells at central and peripheral cornea in healthy controls was (1001.4 ± 125.3) cells/mm(2) and (924.6 ± 201.4) cells/mm(2), while that in VKC patients was (1184.5 ± 115.3) cells/mm(2) and (1101.4 ± 151.1) cells/mm(2), the difference bearing no statistical significance (t = 6.617, 3.439; P = 0.001). The density of posterior stromal cells in normal subjects and VKC patients was (537.7 ± 42.6) cells/mm(2) and (548.7 ± 79.8) cells/mm(2), that of endothelial cells was (2985.7 ± 401.2) cells/mm(2) and (3021.5 ± 383.3) cells/mm(2), respectively, neither difference had statistical significance (t = 0.174, 1.112; P = 0.864, 0.282). Langerhans cell infiltration could be identified in 61.5% (16 cases) VKC patients, which was significantly higher than normal control (2 cases, 7.7%) (χ(2) = 12.49, P = 0.001). Furthermore, much intense Langerhans cells infiltration was found in bulbar form and mix form than tarsal form. (t = 6.617, P = 0.001). The density and diameter of subbasal nerve fiber in VKC patients decreased significantly than those in normal subjects, whereas the tortuosity increased significantly. The morphological changes of cornea in VKC patients mainly involve corneal epithelium, subbasal nerve fiber and anterior stroma. In vivo LSCM is helpful in discriminating the subtypes of VKC.
Damasceno, Eduardo Medeiros; Monteiro, Juliana Castro; Duboc, Luiz Fernando; Dolder, Heidi; Mancini, Karina
2012-01-01
The epidermis of Ostariophysi fish is composed of 4 main cell types: epidermal cells (or filament containing cells), mucous cells, granular cells and club cells. The morphological analysis of the epidermis of the catfish Pimelodella lateristriga revealed the presence of only two types of cells: epidermal and club cells. The latter were evident in the middle layer of the epidermis, being the largest cells within the epithelium. Few organelles were located in the perinuclear region, while the rest of the cytoplasm was filled with a non-vesicular fibrillar substance. Club cells contained two irregular nuclei with evident nucleoli and high compacted peripheral chromatin. Histochemical analysis detected prevalence of protein within the cytoplasm other than carbohydrates, which were absent. These characteristics are similar to those described to most Ostariophysi studied so far. On the other hand, the epidermal cells differ from what is found in the literature. The present study described three distinct types, as follows: superficial, abundant and dense cells. Differences among them were restricted to their cytoplasm and nucleus morphology. Mucous cells were found in all Ostariophysi studied so far, although they were absent in P. lateristriga, along with granular cells, also typical of other catfish epidermis. The preset study corroborates the observations on club cells' morphology in Siluriformes specimens, and shows important differences in epidermis composition and cell structure of P. lateristriga regarding the literature data. PMID:23226253
Arosa, F A; Oliveira, L; Porto, G; da Silva, B M; Kruijer, W; Veltman, J; de Sousa, M
1997-03-01
The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28- T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population 'to expand', coinciding with an 'expansion' of CD8+ CD28- T cells in peripheral blood of HLA-A3+ but not HLA-A3- HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28- T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH.
Anomalies of the CD8+ T cell pool in haemochromatosis: HLA-A3-linked expansions of CD8+CD28− T cells
AROSA, F A; OLIVEIRA, L; PORTO, G; DA SILVA, B M; KRUIJER, W; VELTMAN, J; DE SOUSA, M
1997-01-01
The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28− T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population ‘to expand’, coinciding with an ‘expansion’ of CD8+ CD28− T cells in peripheral blood of HLA-A3+ but not HLA-A3− HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28− T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH. PMID:9067531
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.
2018-01-01
One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.
THE FINE STRUCTURE OF THE NUCLEOLUS DURING MITOSIS IN THE GRASSHOPPER NEUROBLAST CELL
Stevens, Barbara J.
1965-01-01
The behavior of the nucleolus during mitosis was studied by electron microscopy in neuroblast cells of the grasshopper embryo, Chortophaga viridifasciata. Living neuroblast cells were observed in the light microscope, and their mitotic stages were identified and recorded. The cells were fixed and embedded; alternate thick and thin sections were made for light and electron microscopy. The interphase nucleolus consists of two fine structural components arranged in separate zones. Concentrations of 150 A granules form a dense peripheral zone, while the central regions are composed of a homogeneous background substance. Observations show that nucleolar dissolution in prophase occurs in two steps with a preliminary loss of the background substance followed by a dispersal of the granules. Nucleolar material reappears at anaphase as small clumps or layers at the chromosome surfaces. These later form into definite bodies, which disappear as the nucleolus grows in telophase. Evidence suggests both a collecting and a synthesizing role for the nucleolus-associated chromatin. The final, mature nucleolar form is produced by a rearrangement of the fine structural components and an increase in their mass. PMID:14326121
Distribution and time course of hair cell regeneration in the pigeon utricle
NASA Technical Reports Server (NTRS)
Dye, B. J.; Frank, T. C.; Newlands, S. D.; Dickman, J. D.
1999-01-01
Vestibular and cochlear regeneration following ototoxic insult from aminoglycoside antibiotics has been well documented, particularly in birds. In the present study, intraotic application of a 2 mg streptomycin paste was used to achieve complete vestibular hair cell destruction in pigeons (Columba livia) while preserving regenerative ability. Scanning electron microscopy was used to quantify hair cell density longitudinally during regeneration in three different utricular macula locations, including the striola, central and peripheral regions. The utricular epithelium was void of stereocilia (indicating hair cell loss) at 4 days after intraotic treatment with streptomycin. At 2 weeks the stereocilia began to appear randomly and mostly in an immature form. However, when present most kinocilia were polarized toward the developing striola. Initially, regeneration occurred more rapidly in the central and peripheral regions of the utricle as compared to the striola. As regeneration proceeded from 2 to 12 weeks, hair cell density in the striola region equaled the density noted in the central and peripheral regions. At 24 weeks, hair cell density of the central and peripheral regions was equal to normal values, however the striola region had a slightly greater hair cell density than that observed for normal animals.
An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun
2014-01-01
Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228
Jia, Longfei; Chopp, Michael; Wang, Lei; Lu, Xuerong; Szalad, Alexandra; Zhang, Zheng Gang
2018-06-22
Schwann cells actively interact with axons of dorsal root ganglia (DRG) neurons. Exosomes mediate intercellular communication by transferring their biomaterials, including microRNAs (miRs) into recipient cells. We hypothesized that exosomes derived from Schwann cells stimulated by high glucose (HG) exosomes accelerate development of diabetic peripheral neuropathy and that exosomal cargo miRs contribute to this process. We found that HG exosomes contained high levels of miR-28, -31a, and -130a compared to exosomes derived from non-HG-stimulated Schwann cells. In vitro, treatment of distal axons with HG exosomes resulted in reduction of axonal growth, which was associated with elevation of miR-28, -31a, and -130a and reduction of their target proteins of DNA methyltransferase-3α, NUMB (an endocytic adaptor protein), synaptosome associated protein 25, and growth-associated protein-43 in axons. In vivo, administration of HG exosomes to sciatic nerves of diabetic db/db mice at 7 wk of age promoted occurrence of peripheral neuropathy characterized by impairment of nerve conduction velocity and induction of mechanic and thermal hypoesthesia, which was associated with substantial decreases in intraepidermal nerve fibers. Our findings demonstrate a functional role of exosomes derived from HG-stimulated Schwann cells in mediating development of diabetic peripheral neuropathy.-Jia, L., Chopp, M., Wang, L., Lu, X., Szalad, A., Zhang, Z. G. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy.
Li, Qiuling; Weng, Kaizhi; Zhu, Ling; Mei, Xuqiao; Xu, Liping; Lin, Jiehua
2014-10-01
To detect the percentage of total natural killer (NK) cells and its different populations in the peripheral blood from neonates with bacterial pneumonia and discuss the clinical significance of NK cells in the pathogenesis of bacterial pneumonia. Flow cytometry was performed to detect the percentages of NK cells and its subsets in peripheral blood lymphocytes from 38 cases of neonatal bacterial pneumonias and 18 cases of normal neonates. Patients recruited were divided into two groups according to hospitalization days and numbers of peripheral leukocytes: hospitalization days within 10 days (including 10 days) as group A, and more than 10 days as group B; the number of peripheral blood leukocytes <5.0×10(9)/L or >20.0×10(9)/L as severe infection group, and 5.0×10(9)/L< number of peripheral blood leukocytes <20.0×10(9)/L as mild infection group. The percentages of peripheral blood NK cells and CD3(-)CD56(neg)CD16(bright) subset in the neonates with bacterial pneumonia were significantly lower than those of the normal newborns (P<0.01), but there were no statistically significant differences in CD3(-)CD56(bright)CD16(neg/dim) and CD3(-)CD56(dim)CD16(bright) subsets. The percentage of CD3(-)CD56(neg)CD16(bright) subset in group A was significantly lower than that of the normal newborns (P<0.01), while the percentages of the total NK cells and other subsets had no statistical significance. The neonates with bacterial pneumonia had significantly lower percentages of the total NK cells and CD3(-)CD56(neg)CD16(bright) subset in group B as compared with the normal neonates (P<0.01). And the percentages of the total NK cells and its subsets in group B were also lower than those in group A (P<0.05). The percentages of NK cells and each subset in severe infection group were significantly lower than those in mild infection group (P<0.05). To the neonates who suffer from bacterial pneumonia, the more serious and the longer hospital stay, the lower the percentages of NK cells and its subsets are.
Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi
2015-01-01
Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. PMID:25998127
Park, Jung-Won; Jung, Hyun-Ho; Heo, Hwan; Park, Sang-Woo
2015-08-01
To evaluate the diagnostic validity of temporal-to-nasal macular ganglion cell-inner plexiform layer thickness (TNM) ratio using Cirrus high definition-optical coherence tomography (HD-OCT) in patients with early glaucomatous damage. Enrolled participants included 130 normal controls, 50 patients with preperimetric glaucoma and 106 patients with early glaucoma. The patients with early glaucoma were classified into two subgroups according to the pattern of the visual field (VF) defects: the paracentral scotoma (PCS, n = 54) and the peripheral scotoma (PPS, n = 52). The thickness of the macular ganglion cell-inner plexiform layer (mGCIPL) and circumpapillary retinal nerve fibre layer (cpRNFL) was measured by Cirrus HD-OCT, and the average, superior and inferior TNM ratio was calculated. The average TNM ratio is a sum of superotemporal and inferotemporal mGCIPL thicknesses divided by the sum of superonasal and inferonasal mGCIPL thicknesses. Area under the receiver operating characteristic curve (AROC) of each parameter was compared between the groups. The parameter with the best AROC was the average TNM ratio and inferotemporal mGCIPL thickness in the PCS group and average cpRNFL thickness in the PPS group. The AROCs of the average, superior and inferior TNM ratio (p < 0.001, p = 0.007 and p < 0.001, respectively), minimum, average, inferotemporal and inferior mGCIPL thickness (p = 0.004, p = 0.003, p = 0.002 and p = 0.001, respectively) of the PCS were significantly higher than those of the PPS. However, the AROCs of the all cpRNFL thickness parameters did not show statistically significant differences between two subgroups. Asymmetry of temporal-to-nasal mGCIPL thickness could be an important parameter in the diagnosis of early glaucoma with paracentral VF defects. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Zhang, Kuihua; Huang, Dianwu; Yan, Zhiyong; Wang, Chunyang
2017-07-01
Biomimicing topological structure of natural nerve tissue to direct axon growth and controlling sustained release of moderate neurotrophic factors are extremely propitious to the functional recovery of damaged nervous systems. In this study, the heparin/collagen encapsulating nerve growth factor (NGF) multilayers were coated onto the aligned poly-L-lactide (PLLA) nanofibrous scaffolds via a layer-by-layer (LbL) self-assembly technique to combine biomolecular signals, and physical guidance cues for peripheral nerve regeneration. Scanning electronic microscopy (SEM) revealed that the surface of aligned PLLA nanofibrous scaffolds coated with heparin/collagen multilayers became rougher and appeared some net-like filaments and protuberances in comparison with PLLA nanofibrous scaffolds. The heparin/collagen multilayers did not destroy the alignment of nanofibers. X-ray photoelectron spectroscopy and water contact angles displayed that heparin and collagen were successfully coated onto the aligned PLLA nanofibrous scaffolds and improved its hydrophilicity. Three-dimensional (3 D) confocal microscopy images further demonstrated that collagen, heparin, and NGF were not only coated onto the surface of aligned PLLA nanofibrous scaffolds but also permeated into the inner of scaffolds. Moreover, NGF presented a sustained release for 2 weeks from aligned nanofibrous scaffolds coated with 5.5 bilayers or above and remained good bioactivity. The heparin/collagen encapsulating NGF multilayers coated aligned nanofibrous scaffolds, in particular 5.5 bilayers or above, was more beneficial to Schwann cells (SCs) proliferation and PC12 cells differentiation as well as the SC cytoskeleton and neurite growth along the direction of nanofibrous alignment compared to the aligned PLLA nanofibrous scaffolds. This novel scaffolds combining sustained release of bioactive NGF and aligned nanofibrous topography presented an excellent potential in peripheral nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1900-1910, 2017. © 2017 Wiley Periodicals, Inc.
Gualde, N; Rigaud, M; Goodwin, J S
1985-11-01
15-hydroperoxyeicosetetraenoic acid (15-HPETE), a lipoxygenase metabolite of arachidonic acid, inhibited polyclonal IgG and IgM production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood mononuclear cells, whereas 15-hydroxyeicosetetraenoic acid (15-HETE) had little effect in this system. T cells preincubated for 18 hr with 15-HPETE caused substantial inhibition of IgG and IgM production of fresh, autologous B and T cells stimulated by PWM. The suppressive effect of the 15-HPETE-treated cells was lost if the cells were irradiated before the PWM culture, but not by treatment with mitomycin C. The suppressive effect was also lost if OKT8+ T cells were removed after, but not before, preincubation of the T cells with 15-HPETE. OKT8- T cells incubated with 15-HPETE for 18 hr showed a large increase in the percentage of cells staining with directly fluoresceinated Leu-2, another marker for suppressor cells. Thus, 15-HPETE induces functional and phenotypic suppressor cells from resting human peripheral blood T cells.
Mousa, Shaaban A; Straub, Rainer H; Schäfer, Michael; Stein, Christoph
2007-01-01
Objective Intra‐articularly applied opioid agonists or antagonists modulate pain after knee surgery and in chronic arthritis. Therefore, the expression of β‐endorphin (END), Met‐enkephalin (ENK), and μ and δ opioid receptors (ORs) within synovium of patients with joint trauma (JT), osteoarthritis (OA) and rheumatoid arthritis (RA) were examined. Methods Synovial samples were subjected to double immunohistochemical analysis of opioid peptides with immune cell markers, and of ORs with the neuronal markers calcitonin gene‐related peptide (CGRP) and tyrosine hydroxylase (TH). Results END and ENK were expressed by macrophage‐like (CD68+) and fibroblast‐like (CD68−) cells within synovial lining layers of all disorders. In the sublining layers, END and ENK were mostly expressed by granulocytes in patients with JT, and by macrophages/monocytes, lymphocytes and plasma cells in those with OA and RA. Overall, END‐ and ENK‐immunoreactive (IR) cells were more abundant in patients with RA than in those with OA and JT. ORs were found on nerve fibres and immune cells in all patients. OR‐IR nerve fibres were significantly more abundant in patients with RA than in those with OA and JT. μORs and δORs were coexpressed with CGRP but not with TH. Conclusions Parallel to the severity of inflammation, END and ENK in immune cells and their receptors on sensory nerve terminals are more abundant in patients with RA than in those with JT and OA. These findings are consistent with the notion that, with prolonged and enhanced inflammation, the immune and peripheral nervous systems upregulate sensory nerves expressing ORs and their ligands to counterbalance pain and inflammation. PMID:17324971
Gap junction disorders of myelinating cells.
Kleopa, Kleopas A; Orthmann-Murphy, Jennifer; Sargiannidou, Irene
2010-01-01
Gap junctions (GJs) are channels that allow the diffusion of ions and small molecules across apposed cell membranes. In peripheral nerves, Schwann cells express the GJ proteins connexin32 (Cx32) and Cx29, which have distinct localizations. Cx32 forms GJs through non-compact myelin areas, whereas Cx29 forms hemichannels in the innermost layers of myelin apposing axonal Shaker-type K+ channels. In the CNS, rodent oligodendrocytes express Cx47, Cx32 and Cx29. Cx47 is expressed by all types of oligodendrocytes both in the white and grey matter and forms GJs on cell bodies and proximal processes, as well as most of the intercellular channels with astrocytes. Cx32 is expressed mostly by white matter oligodendrocytes and is localized in the myelin sheath of large diameter fibers. Cx29, and its human ortholog Cx31.3, appear to be restricted to oligodendrocytes that myelinate small caliber fibers, likely forming hemichannels. The importance of intercellular and intracellular GJs in myelinating cells are demonstrated by human disorders resulting from mutations affecting GJ proteins. The X-linked Charcot Marie Tooth disease (CMT1X) is caused by hundreds of mutations affecting Cx32. Patients with CMT1X present mainly with a progressive peripheral neuropathy, which may be accompanied by CNS myelin dysfunction. Mutations in Cx47 may cause a devastating leukodystrophy called Pelizaeus-Merzbacher-like disease or a milder spastic paraplegia. In addition, CNS demyelination may be caused by defects in genes expressing astrocytic GJ proteins, which are essential for oligodendrocytes. Findings from in vitro and in vivo models of these disorders developed over the last decade indicate that most mutations cause loss of function and an inability of the mutant connexins to form functional GJs. Here we review the clinical, genetic, and neurobiological aspects of GJ disorders affecting the PNS and CNS myelinating cells.
Roberts, Sheridan L; Dun, Xin-Peng; Doddrell, Robin D S; Mindos, Thomas; Drake, Louisa K; Onaitis, Mark W; Florio, Francesca; Quattrini, Angelo; Lloyd, Alison C; D'Antonio, Maurizio; Parkinson, David B
2017-09-01
Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system. © 2017. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Hyung Joon; Seo, Ha-Rim; Jeong, Hyo Eun
Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelialmore » cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.« less
Altin, John A.; Daley, Stephen R.; Howitt, Jason; Rickards, Helen J.; Batkin, Alison K.; Horikawa, Keisuke; Prasad, Simon J.; Nelms, Keats A.; Kumar, Sharad; Wu, Lawren C.; Tan, Seong-Seng; Cook, Matthew C.; Goodnow, Christopher C.
2014-01-01
The NDFIP1 (neural precursor cell expressed, developmentally down-regulated protein 4 family-interacting protein 1) adapter for the ubiquitin ligase ITCH is genetically linked to human allergic and autoimmune disease, but the cellular mechanism by which these proteins enable foreign and self-antigens to be tolerated is unresolved. Here, we use two unique mouse strains—an Ndfip1-YFP reporter and an Ndfip1-deficient strain—to show that Ndfip1 is progressively induced during T-cell differentiation and activation in vivo and that its deficiency causes a cell-autonomous, Forkhead box P3-independent failure of peripheral CD4+ T-cell tolerance to self and exogenous antigen. In small cohorts of antigen-specific CD4+ cells responding in vivo, Ndfip1 was necessary for tolerogen-reactive T cells to exit cell cycle after one to five divisions and to abort Th2 effector differentiation, defining a step in peripheral tolerance that provides insights into the phenomenon of T-cell anergy in vivo and is distinct from the better understood process of Bcl2-interacting mediator of cell death-mediated apoptosis. Ndfip1 deficiency precipitated autoimmune pancreatic destruction and diabetes; however, this depended on a further accumulation of nontolerant anti-self T cells from strong stimulation by exogenous tolerogen. These findings illuminate a peripheral tolerance checkpoint that aborts T-cell clonal expansion against allergens and autoantigens and demonstrate how hypersensitive responses to environmental antigens may trigger autoimmunity. PMID:24520172
Matsui, Shinichiro; Takeda, Yusuke; Isshiki, Yusuke; Yamazaki, Atsuko; Nakao, Sanshiro; Takaishi, Koji; Nagao, Yuhei; Hasegawa, Nagisa; Togasaki, Emi; Shimizu, Ryoh; Kawajiri, Chika; Sakai, Shio; Mimura, Naoya; Takeuchi, Masahiro; Ohwada, Chikako; Sakaida, Emiko; Iseki, Tohru; Imadome, Ken-Ichi; Nakaseko, Chiaki
2016-05-01
A 23-year-old woman presented with a persistent fever and shortness of breath. Computed tomography showed marked pericardial effusion, hepatosplenomegaly, and cervical and mediastinal lymph node swelling. Epstein-Barr virus (EBV) antibody titers were abnormally elevated, and the copy number of EBV-DNA was increased in peripheral blood. Based on these observations, she was diagnosed with chronic active EBV infection (CAEBV). The EBV-infected cells in her peripheral blood were CD4(+)T lymphocytes. Fever and pericardial effusion improved following treatment with a combination of prednisolone, etoposide, and cyclosporine; however, peripheral blood EBV-DNA levels remained high. The patient underwent allogeneic peripheral blood stem cell transplantation from an EBV-seronegative, HLA-matched sibling donor, with fludarabine and melphalan conditioning. The post-transplantation course was uneventful, except for mild skin acute graft-versus-host disease (grade 2). EBV-DNA became undetectable in peripheral blood 98 days post transplantation. She has since been in good health without disease recurrence. CAEBV is a potentially fatal disease caused by persistent EBV infection of T lymphocytes or natural killer cells, thus requiring prompt treatment and allogeneic transplantation. Pericardial effusion is rarely observed in CAEBV and can impede its diagnosis. Therefore, we should be aware that patients may present with marked pericardial effusion as an initial manifestation of CAEBV.
Smith, Veronica R; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra
2013-09-01
Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin's and non-Hodgkin's) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but one patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 10(6) /kg of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 10(6) /kg of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 10(6) /kg of body weight. Plerixafor was well tolerated; no grade 2 or higher non-hematologic toxic effects were observed. Copyright © 2013 Wiley Periodicals, Inc.
Role of Schwann cells in the regeneration of penile and peripheral nerves
Wang, Lin; Sanford, Melissa T; Xin, Zhongcheng; Lin, Guiting; Lue, Tom F
2015-01-01
Schwann cells (SCs) are the principal glia of the peripheral nervous system. The end point of SC development is the formation of myelinating and nonmyelinating cells which ensheath large and small diameter axons, respectively. They play an important role in axon regeneration after injury, including cavernous nerve injury that leads to erectile dysfunction (ED). Despite improvement in radical prostatectomy surgical techniques, many patients still suffer from ED postoperatively as surgical trauma causes traction injuries and local inflammatory changes in the neuronal microenvironment of the autonomic fibers innervating the penis resulting in pathophysiological alterations in the end organ. The aim of this review is to summarize contemporary evidence regarding: (1) the origin and development of SCs in the peripheral and penile nerve system; (2) Wallerian degeneration and SC plastic change following peripheral and penile nerve injury; (3) how SCs promote peripheral and penile nerve regeneration by secreting neurotrophic factors; (4) and strategies targeting SCs to accelerate peripheral nerve regeneration. We searched PubMed for articles related to these topics in both animal models and human research and found numerous studies suggesting that SCs could be a novel target for treatment of nerve injury-induced ED. PMID:25999359
γδ T Cells Shape Pre-Immune Peripheral B Cell Populations
Huang, Yafei; Getahun, Andrew; Heiser, Ryan A.; Detanico, Thiago O.; Aviszus, Katja; Kirchenbaum, Greg A.; Casper, Tamara L.; Huang, Chunjian; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J.; Cambier, John C.; O’Brien, Rebecca L.; Born, Willi K.
2015-01-01
We previously reported that selective ablation of certain γδ T cell subsets rather than removal of all γδ T cells, strongly affects serum antibody levels in non-immunized mice. This type of manipulation also changed T cells including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4+ and Vγ6+ γδ T cells (B6.TCR-Vγ4−/−/6−/−), we observed expanded Vγ1+ cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4−/−/6−/− mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of antibody-producing cells, and serum levels of antibodies, IL-4 and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain, and their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Together, these data demonstrate the capability of γδ T cells of modulating size and productivity of pre-immune peripheral B cell populations. PMID:26582947
γδ T Cells Shape Preimmune Peripheral B Cell Populations.
Huang, Yafei; Getahun, Andrew; Heiser, Ryan A; Detanico, Thiago O; Aviszus, Katja; Kirchenbaum, Greg A; Casper, Tamara L; Huang, Chunjian; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J; Cambier, John C; O'Brien, Rebecca L; Born, Willi K
2016-01-01
We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations. Copyright © 2015 by The American Association of Immunologists, Inc.
Zehn, Dietmar; Bevan, Michael J.
2009-01-01
Summary T cells causing autoimmunity must escape tolerance. We observed that CD8+ T cells with high avidity for an antigen expressed in the pancreas, kidney, and thymic medulla were efficiently removed from a polyclonal repertoire by central and peripheral tolerance mechanisms. However, both mechanisms spared low-avidity T cells from elimination. Neither the introduction of activated, self-antigen-specific CD4+ helper T cells nor a global inflammatory stimulus were sufficient to activate the low-avidity CD8+ T cells and did not break tolerance. In contrast, challenge with a recombinant bacterium expressing the self antigen primed the low-avidity T cells, and the animals rapidly developed autoimmune diabetes. We suggest that whereas thymic and peripheral tolerance mechanisms remove cells that can be primed by endogenous amounts of self antigen, they do not guard against tissue destruction by low-avidity effector T cells, which have been primed by higher amounts of self antigen or by crossreactive antigens. PMID:16879996
Montoya, Carlos J; Cataño, Juan C; Ramirez, Zoraida; Rugeles, Maria T; Wilson, S Brian; Landay, Alan L
2008-04-01
The frequency, subsets and activation status of peripheral blood invariant NKT (iNKT) cells were evaluated in pulmonary tuberculosis (TB) patients and in chronically HIV-1-infected subjects. The absolute numbers of iNKT cells were significantly decreased in TB patients and in HIV-1+ individuals who were antiretroviral therapy naive or had detectable viremia despite receiving HAART. iNKT cell subset analysis demonstrated a decreased percentage of CD4(+) iNKT cells in HIV-1+ subjects, and a decreased percentage of double negative iNKT cells in TB patients. Peripheral blood iNKT cells from HIV-1+ and TB patients had significantly increased expression of CD69, CD38, HLA-DR, CD16, CD56, and CD62L. The expression of CD25 was significantly increased only on iNKT cells from TB patients. These findings indicate that peripheral blood iNKT cells in these two chronic infections show an up-regulated expression of activation markers, suggesting their role in the immune response to infection.
Wang, Yu-Tong; Zhao, Xiang-Yu; Zhao, Xiao-Su; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Liu, Kai-Yan; Chang, Ying-Jun; Huang, Xiao-Jun
2015-12-01
The association of donor characteristics with immune cell composition in allografts remains poorly understood. In this retrospective study, the effects of donor characteristics on immune cell composition in allografts were investigated. The correlations of donor characteristics with the immune cell composition in mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests of 390 healthy donors (male, 240; female, 150; median age, 40 years old) were analyzed. The median doses of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD3+CD4-CD8- T cells, and monocytes in mixture allografts were 160.57 × 10(6), 89.29 × 10(6), 56.16 × 10(6), 10.87 × 10(6), and 137.94 × 10(6)/kg, respectively. Multivariate analysis showed that younger donor age was associated with a higher dose of CD3+ T cells (p = 0.006), CD3+CD8+ T cells (p < 0.001), CD3+CD4-CD8- T cells (p = 0.004), and monocytes (p = 0.014), as well as a higher ratio of CD3+CD4-CD8- T cells/CD3+ T cells (p < 0.001) in the mixture allografts. A negative association of donor weight with CD3+ T cells (p < 0.001), CD4+ T cells (p = 0.002), CD8+ T cells (p < 0.001), and CD3+CD4-CD8- T cells (p = 0.044) was observed. The count of peripheral blood lymphocyte pre-peripheral blood apheresis was correlated with the yield of CD3+ T cells (p < 0.001) and CD4+ T cells (p = 0.001). The peripheral blood monocyte count before marrow harvest predicted the monocyte dose (p = 0.002). The results suggested that older and overweight donors should not be chosen. The monocyte and lymphocyte counts before harvest could predict the yield of immune cells in allografts. © 2015 AABB.
Martín-Sánchez, Esperanza; Rodríguez-Pinilla, Socorro M; Sánchez-Beato, Margarita; Lombardía, Luis; Domínguez-González, Beatriz; Romero, Diana; Odqvist, Lina; García-Sanz, Pablo; Wozniak, Magdalena B; Kurz, Guido; Blanco-Aparicio, Carmen; Mollejo, Manuela; Alves, F Javier; Menárguez, Javier; González-Palacios, Fernando; Rodríguez-Peralto, José Luis; Ortiz-Romero, Pablo L; García, Juan F; Bischoff, James R; Piris, Miguel A
2013-01-01
Peripheral T-cell lymphomas are very aggressive hematologic malignancies for which there is no targeted therapy. New, rational approaches are necessary to improve the very poor outcome in these patients. Phosphatidylinositol-3-kinase is one of the most important pathways in cell survival and proliferation. We hypothesized that phosphatidylinositol-3-kinase inhibitors could be rationally selected drugs for treating peripheral T-cell lymphomas. Several phosphatidylinositol-3-kinase isoforms were inhibited genetically (using small interfering RNA) and pharmacologically (with CAL-101 and GDC-0941 compounds) in a panel of six peripheral and cutaneous T-cell lymphoma cell lines. Cell viability was measured by intracellular ATP content; apoptosis and cell cycle changes were checked by flow cytometry. Pharmacodynamic biomarkers were assessed by western blot. The PIK3CD gene, which encodes the δ isoform of phosphatidylinositol-3-kinase, was overexpressed in cell lines and primary samples, and correlated with survival pathways. However, neither genetic nor specific pharmacological inhibition of phosphatidylinositol-3-kinase δ affected cell survival. In contrast, the pan-phosphatidylinositol-3-kinase inhibitor GDC-0941 arrested all T-cell lymphoma cell lines in the G1 phase and induced apoptosis in a subset of them. We identified phospho-GSK3β and phospho-p70S6K as potential biomarkers of phosphatidylinositol-3-kinase inhibitors. Interestingly, an increase in ERK phosphorylation was observed in some GDC -0941-treated T-cell lymphoma cell lines, suggesting the presence of a combination of phosphatidylinositol-3-kinase and MEK inhibitors. A highly synergistic effect was found between the two inhibitors, with the combination enhancing cell cycle arrest at G0/G1 in all T-cell lymphoma cell lines, and reducing cell viability in primary tumor T cells ex vivo. These results suggest that the combined treatment of pan-phosphatidylinositol-3-kinase + MEK inhibitors could be more effective than single phosphatidylinositol-3-kinase inhibitor treatment, and therefore, that this combination could be of therapeutic value for treating peripheral and cutaneous T-cell lymphomas.
Katayama, Y; Kawamata, T
2003-01-01
The early massive edema caused by severe cerebral contusion results in progressive intracranial pressure (ICP) elevation and clinical deterioration within 24-72 hours post-trauma. Surgical excision of the necrotic brain tissue represents the only therapy, which can provide satisfactory control of the elevated ICP and clinical deterioration. In order to elucidate the mechanisms underlying the early massive edema, we have carried out a series of detailed clinical studies. Diffusion magnetic resonance (MR) imaging and apparent diffusion co-efficient (ADC) mapping suggest that cells in the central area of contusion undergo shrinkage, disintegration and homogenization, whereas cellular swelling is predominant in the peripheral area during the period of 24-72 hours post-trauma. The ADC values in the central and peripheral areas are maximally dissociated during this period. A large amount of edema fluid accumulates within the necrotic brain tissue of the central area beginning at approximately 24 hours post-trauma. We have found that fluid-blood interface formation within the central area does not represent an uncommon finding in various neuroimaging examinations of cerebral contusions, indicating layering of red blood cells within the necrotic brain tissue accumulating voluminous edema fluid. Intravenous slow infusion of gadolinium-DTPA and delayed MR imaging revealed that the central area of contusion can be enhanced at 24-48 hours post-trauma. implying that water supply from the blood vessels is not completely interrupted. Necrotic brain tissue sampled from the central area of contusion during surgery demonstrates a very high osmolality. It appears that the capacitance for edema fluid accumulation increases in the central area, whereas cellular swelling in the peripheral area elevates the resistance for edema fluid propagation. Combination of these circumstances may facilitate edema fluid accumulation in the central area. We also suggest that the dissociation of ADC values and high osmolality within the necrotic brain tissue may generate an osmotic potential across the central and peripheral areas and contribute to the early massive edema caused by cerebral contusion.
Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified.
Ji, Meng-Meng; Huang, Yao-Hui; Huang, Jin-Yan; Wang, Zhao-Fu; Fu, Di; Liu, Han; Liu, Feng; Leboeuf, Christophe; Wang, Li; Ye, Jing; Lu, Yi-Ming; Janin, Anne; Cheng, Shu; Zhao, Wei-Li
2018-04-01
Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies. Epigenetic alterations play a crucial role in tumor progression. Histone modifications, particularly methylation and acetylation, are generally involved in chromatin state regulation. Here we screened the core set of genes related to histone methylation ( KMT2D , SETD2 , KMT2A , KDM6A ) and acetylation ( EP300 , CREBBP ) and identified 59 somatic mutations in 45 of 125 (36.0%) patients with peripheral T-cell lymphomas, not otherwise specified. Histone modifier gene mutations were associated with inferior progression-free survival time of the patients, irrespective of chemotherapy regimens, but an increased response to the histone deacetylase inhibitor chidamide. In vitro , chidamide significantly inhibited the growth of EP300-mutated T-lymphoma cells and KMT2D-mutated T-lymphoma cells when combined with the hypomethylating agent decitabine. Mechanistically, decitabine acted synergistically with chidamide to enhance the interaction of KMT2D with transcription factor PU.1, regulated H3K4me-associated signaling pathways, and sensitized T-lymphoma cells to chidamide. In a xenograft KMT2D-mutated T-lymphoma model, dual treatment with chidamide and decitabine significantly retarded tumor growth and induced cell apoptosis through modulation of the KMT2D/H3K4me axis. Our work thus contributes to the understanding of aberrant histone modification in peripheral T-cell lymphomas, not otherwise specified and the stratification of a biological subset that can benefit from epigenetic treatment. Copyright© 2018 Ferrata Storti Foundation.
Cannioto, Rikki A; Sucheston-Campbell, Lara E; Hampras, Shalaka; Goode, Ellen L; Knutson, Keith; Ness, Roberta; Modugno, Francesmary; Wallace, Paul; Szender, J Brian; Mayor, Paul; Hong, Chi-Chen; Joseph, Janine M; Friel, Grace; Davis, Warren; Nesline, Mary; Eng, Kevin H; Edwards, Robert P; Kruszka, Bridget; Schmitt, Kristina; Odunsi, Kunle; Moysich, Kirsten B
2017-01-01
There is a mounting body of evidence demonstrating higher percentages of regulatory T (Treg) cells in the peripheral blood of patients with cancer in comparison to healthy controls, but there is a paucity of epidemiological literature characterizing circulating Treg cells among patients with epithelial ovarian cancer (EOC). To investigate the role of peripheral Treg cells in ovarian neoplasms, we conducted a case-control study to characterize circulating concentrations of Treg cells among patients with EOC, women with benign ovarian conditions, and healthy controls without a history of cancer. Participants were identified for inclusion due to their participation in the Data Bank and BioRepository program at Roswell Park Cancer Institute in Buffalo, NY. Patients included 71 women with a primary diagnosis of EOC and 195 women with a diagnosis of benign ovarian conditions. Controls included 101 age- and race-matched women without a history of cancer. Nonfasting, pretreatment peripheral blood levels of CD3+CD4+CD25+FOXP3+ Treg cells were measured using flow cytometric analyses and expressed as a percentage of total CD3+ cells and as a percentage of total CD3+CD4+ cells. Compared to healthy controls and women with benign ovarian conditions, patients with EOC had significantly higher frequency of Treg cells (P < 0.04). In multivariable logistic regression analyses using Treg frequency expressed as a percentage of CD+3 cells, we observed a significant positive association between Treg cell percentage and EOC risk, with each 1% increase associated with a 37% increased risk of EOC (odds ratio, 1.37; 95% confidence interval, 1.04-1.80). We observed a similar trend when Treg frequency was expressed as a percentage of CD3+CD+4 cells (odds ratio, 1.22; 95% confidence interval, 0.99-1.49). The current study provides support that peripheral Treg cell frequency is elevated in patients with EOC in comparison to women with benign ovarian conditions and healthy controls.
Hampras, Shalaka; Goode, Ellen L.; Knutson, Keith; Ness, Roberta; Modugno, Francesmary; Wallace, Paul; Szender, J. Brian; Mayor, Paul; Hong, Chi-Chen; Joseph, Janine M.; Friel, Grace; Davis, Warren; Nesline, Mary; Eng, Kevin H.; Edwards, Robert P.; Kruszka, Bridget; Schmitt, Kristina; Odunsi, Kunle; Moysich, Kirsten B.
2016-01-01
Objective There is a mounting body of evidence demonstrating higher percentages of regulatory T (Treg) cells in the peripheral blood of cancer patients in comparison to healthy controls, but there is a paucity of epidemiological literature characterizing circulating Treg cells among epithelial ovarian cancer (EOC) patients. To investigate the role of peripheral Treg cells in ovarian neoplasms, we conducted a case-control study to characterize circulating concentrations of Treg cells among EOC patients, women with benign ovarian conditions, and healthy controls without a history of cancer. Materials and Methods Participants were identified for inclusion due to their participation in the Data Bank and BioRepository program at Roswell Park Cancer Institute in Buffalo, NY. Patients included 71 women with a primary diagnosis of EOC and 195 women with a diagnosis of benign ovarian conditions. Controls included 101 age- and race-matched women without a history of cancer. Non-fasting, pre-treatment peripheral blood levels of CD3+CD4+CD25+FOXP3+ Treg cells were measured using flow cytometric analyses and expressed as a percentage of total CD3+ cells and as a percentage of total CD3+CD4+ cells. Results Compared to healthy controls and women with benign ovarian conditions, EOC patients had significantly higher frequency of Treg cells (p<0.04). In multivariable logistic regression analyses utilizing Treg frequency expressed as a percentage of CD+3 cells, we observed a significant positive association between Treg cell percentage and EOC risk, with each one percent increase associated with a 37% increased risk of EOC (OR=1.37, 95% CI: 1.04-1.80). We observed a similar trend when Treg frequency was expressed as a percentage of CD3+CD+4 cells (OR=1.22, 95% CI: 0.99-1.49). Conclusions The current study provides support that peripheral Treg cell frequency is elevated in EOC patients in comparison to women with benign ovarian conditions and healthy controls. PMID:27759594
Wagner, H J; Hornef, M; Middeldorp, J; Kirchner, H
1995-11-01
The frequency of Epstein-Barr virus (EBV) antigen-positive B cells in the peripheral blood of patients with infectious mononucleosis compared with that for latently EBV-infected individuals was examined by immunocytochemistry. B cells positive for Epstein-Barr nuclear antigen (EBNA) 1, EBNA2, and latent membrane protein were frequently found in all peripheral B lymphocyte preparations from 25 patients suffering for 3 to 28 days from infectious mononucleosis by using monoclonal antibodies and the alkaline phosphatase anti-alkaline technique. There was a significant decrease in the number of positive B cells during the course of disease. EBNA1-positive B cells were detected in 0.01 to 2.5% of total B cells (median, 0.8%), EBNA2-positive B cells were detected in 0.01 to 4.5% of total B cells (median, 0.9%), and latent membrane protein-positive B cells were detected in 0.01 to 1.8% of total B cells (median, 0.5%), depending on the duration of clinical signs. In contrast, we did not find any EBNA1- or EBNA2-positive B cells in 2 x 10(6) peripheral blood B lymphocytes of 10 latently EBV-infected individuals, whereas aliquots of the same cell preparations were EBV DNA positive by a PCR assay. Therefore, it appears to be possible to detect infectious mononucleosis by immunocytochemical determination of latent EBV products, which might be of relevance for the diagnosis of EBV reactivations in immunosuppressed patients.
MicroRNA Gene Regulatory Networks in Peripheral Nerve Sheath Tumors
2012-09-01
chondrosarcoma are identified based on the unique histology, cell of origin, clinical features and site distribution. The following are the major... Chondrosarcoma Chondrosarcoma is a cancer composed of cells derived from transformed cells that produce cartilage. Peripheral chondrosarcoma is a malignant...biosynthesis. This is in line with gene expression analyses previously performed in osteochondroma and chondrosarcoma samples showing modulation of
Novembre, F J; de Rosayro, J; Nidtha, S; O'Neil, S P; Gibson, T R; Evans-Strickfaden, T; Hart, C E; McClure, H M
2001-02-01
To investigate the pathogenicity of a virus originating in a chimpanzee with AIDS (C499), two chimpanzees were inoculated with a plasma-derived isolate termed human immunodeficiency virus type 1(NC) (HIV-1(NC)). A previously uninfected chimpanzee, C534, experienced rapid peripheral CD4(+) T-cell loss to fewer than 26 cells/microl by 14 weeks after infection. CD4(+) T-cell depletion was associated with high plasma HIV-1 loads but a low virus burden in the peripheral lymph node. The second chimpanzee, C459, infected 13 years previously with HIV-1(LAV), experienced a more protracted course of peripheral CD4(+) T-cell loss after HIV-1(NC) inoculation, resulting in fewer than 200 cells/microl by 96 weeks postinoculation. The quantities of viral RNA in the plasma and peripheral lymph node from C459 were below the lower limits of detection prior to inoculation with HIV-1(NC) but were significantly and persistently increased after superinfection, with HIV-1(NC) representing the predominant viral genotype. These results show that viruses derived from C499 are more pathogenic for chimpanzees than any other HIV-1 isolates described to date.
New Details of the Human Corneal Limbus Revealed With Second Harmonic Generation Imaging.
Park, Choul Yong; Lee, Jimmy K; Zhang, Cheng; Chuck, Roy S
2015-09-01
To report novel findings of the human corneal limbus by using second harmonic generation (SHG) imaging. Corneal limbus was imaged by using an inverted two-photon excitation fluorescence microscope. Laser (Ti:Sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of SHG and autofluorescence (AF) were collected through a 425/30-nm emission filter and a 525/45-emission filter, respectively. Multiple, consecutive, and overlapping image stacks (z-stack) were acquired for the corneal limbal area. Two novel collagen structures were revealed by SHG imaging at the limbus: an anterior limbal cribriform layer and presumed anchoring fibers. Anterior limbal cribriform layer is an intertwined reticular collagen architecture just beneath the limbal epithelial niche and is located between the peripheral cornea and Tenon's/scleral tissue. Autofluorescence imaging revealed high vascularity in this structure. Central to the anterior limbal cribriform layer, radial strands of collagen were found to connect the peripheral cornea to the limbus. These presumed anchoring fibers have both collagen and elastin and were found more extensively in the superficial layers than deep layer and were absent in very deep limbus near Schlemm's canal. By using SHG imaging, new details of the collagen architecture of human corneal limbal area were elucidated. High resolution images with volumetric analysis revealed two novel collagen structures.
Cornetta, K; Croop, J; Dropcho, E; Abonour, R; Kieran, M W; Kreissman, S; Reeves, L; Erickson, L C; Williams, D A
2006-09-01
Administration of chemotherapy is often limited by myelosuppression. Expression of drug-resistance genes in hematopoietic cells has been proposed as a means to decrease the toxicity of cytotoxic agents. In this pilot study, we utilized a retroviral vector expressing methylguanine DNA methyltransferase (MGMT) to transduce hematopoietic progenitors, which were subsequently used in the setting of alkylator therapy (procarbazine, CCNU, vincristine (PCV)) for poor prognosis brain tumors. Granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood progenitor cells were collected by apheresis and enriched for CD34+ expression. Nine subjects were infused with CD34+-enriched cells treated in a transduction procedure involving a 4-day exposure to cytokines with vector exposure on days 3 and 4. No major adverse event was related to the gene therapy procedure. Importantly, the engraftment kinetics of the treated product was similar to unmanipulated peripheral blood stem cells, suggesting that the ex vivo manipulation did not significantly reduce engrafting progenitor cell function. Gene-transduced cells were detected in all subjects. Although the level and duration was limited, patients receiving cells transduced using fibronectin 'preloaded' with virus supernatant appeared to show improved in vivo marking frequency. These findings demonstrate the feasibility and safety of utilizing MGMT-transduced CD34+ peripheral blood progenitor cells in the setting of chemotherapy.
B7-H4 as a Target for Breast Cancer Immunotherapy
2013-06-01
T cell proliferation isolated from peripheral blood of health donors. Surprisingly, however, our data could not reproduce the in vitro suppression...peripheral blood using magnetic cell sorting and incubated with anti-CD3/CD28 Dynabeads (Invitrogen) for 3 days. Cells were stained with B7-H4-Fc-APC... blood using magnetic isolation kits from Miltenyi Biotec and stained with CFSE. Cells are treated accordingly and measured for proliferation by
1996-09-01
bone marrow (BM) or peripheral blood (PB) as sources of hematopoietic stem cells is being used as a treatment option for patients with breast cancer 1...peripheral blood (PB) may affect the outcome of patients receiving high dose chemotherapy with autologous transplantation of hematopoietic stem cell ...cancer cell contamination to relapse remains unclear, tumor-free hematopoietic stem cell products for autologous transplantation are nonetheless desirable
In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.
Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K
2006-03-01
Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.
The peripheral action of hexamethonium and of pentolinium
Mantegazza, P.; Tyler, Christine; Zaimis, Eleanor
1958-01-01
The influence of hexamethonium and pentolinium on the responses of certain peripheral effector cells to adrenaline, noradrenaline or postganglionic stimulation was studied in the cat. The actions of adrenaline and noradrenaline on the blood vessels of a limb and of adrenaline and postganglionic stimulation on the nictitating membrane were increased after the administration of hexamethonium and pentolinium. This effect was considered to be due to sensitization of the peripheral effector cells. The possible significance of these findings is discussed. PMID:13618555
Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially.
Schall, J D; Perry, V H; Leventhal, A G
1986-03-12
We analyzed the dendritic field morphology of 297 ganglion cells from peripheral regions of monkey retina. Most of the dendritic fields were elongated, and there was a significant tendency for the dendritic fields to be oriented radially, i.e., like the spokes of a wheel with the fovea at the hub. An overrepresentation of radial orientations in the peripheral retina of primates might explain why humans are best able to detect stimuli which are oriented radially using peripheral vision.
Quantitative analysis of circadian single cell oscillations in response to temperature
Kramer, Achim; Herzel, Hanspeter
2018-01-01
Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell’s ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation. PMID:29293562
Li, Xiao-yan; Liang, Zhan-hua; Han, Chao; Wei, Wen-juan; Song, Chun-li; Zhou, Li-na; Liu, Yang; Li, Ying; Ji, Xiao-fei; Liu, Jing
2017-01-01
There is a small amount of clinical data regarding the safety and feasibility of autologous peripheral blood mononuclear cell transplantation into the subarachnoid space for the treatment of amyotrophic lateral sclerosis. The objectives of this retrospective study were to assess the safety and efficacy of peripheral blood mononuclear cell transplantation in 14 amyotrophic lateral sclerosis patients to provide more objective data for future clinical trials. After stem cell mobilization and collection, autologous peripheral blood mononuclear cells (1 × 109) were isolated and directly transplanted into the subarachnoid space of amyotrophic lateral sclerosis patients. The primary outcome measure was incidence of adverse events. Secondary outcome measures were electromyography 1 week before operation and 4 weeks after operation, Functional Independence Measurement, Berg Balance Scale, and Dysarthria Assessment Scale 1 week preoperatively and 1, 2, 4 and 12 weeks postoperatively. There was no immediate or delayed transplant-related cytotoxicity. The number of leukocytes, serum alanine aminotransferase and creatinine levels, and body temperature were within the normal ranges. Radiographic evaluation showed no serious transplant-related adverse events. Muscle strength grade, results of Functional Independence Measurement, Berg Balance Scale, and Dysarthria Assessment Scale were not significantly different before and after treatment. These findings suggest that peripheral blood mononuclear cell transplantation into the subarachnoid space for the treatment of amyotrophic lateral sclerosis is safe, but its therapeutic effect is not remarkable. Thus, a large-sample investigation is needed to assess its efficacy further. PMID:28469667
Pasztoi, Maria; Pezoldt, Joern; Beckstette, Michael; Lipps, Christoph; Wirth, Dagmar; Rohde, Manfred; Paloczi, Krisztina; Buzas, Edit Iren
2017-01-01
Abstract Intestinal regulatory T cells (Tregs) are fundamental in peripheral tolerance toward commensals and food‐borne antigens. Accordingly, gut‐draining mesenteric lymph nodes (mLNs) represent a site of efficient peripheral de novo Treg induction when compared to skin‐draining peripheral LNs (pLNs), and we had recently shown that LN stromal cells substantially contribute to this process. Here, we aimed to unravel the underlying molecular mechanisms and generated immortalized fibroblastic reticular cell lines (iFRCs) from mLNs and pLNs, allowing unlimited investigation of this rare stromal cell subset. In line with our previous findings, mLN‐iFRCs showed a higher Treg‐inducing capacity when compared to pLN‐iFRCs. RNA‐seq analysis focusing on secreted molecules revealed a more tolerogenic phenotype of mLN‐ as compared to pLN‐iFRCs. Remarkably, mLN‐iFRCs produced substantial numbers of microvesicles (MVs) that carried elevated levels of TGF‐β when compared to pLN‐iFRC‐derived MVs, and these novel players of intercellular communication were shown to be responsible for the tolerogenic properties of mLN‐iFRCs. Thus, stromal cells originating from mLNs contribute to peripheral tolerance by fostering de novo Treg induction using TGF‐β‐carrying MVs. This finding provides novel insights into the subcellular/molecular mechanisms of de novo Treg induction and might serve as promising tool for future therapeutic applications to treat inflammatory disorders. PMID:28833065
An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A; Leak, Rehana K; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun
2014-04-01
Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke. Published by Elsevier Ltd.
Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector
2012-01-01
Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930
Ohtsuka, Hiromichi; Kobayashi, Hiroki; Kinouchi, Kumi; Kiyono, Miki; Maeda, Yousuke
2014-05-01
Japanese Black (JB) calves are more susceptible to infectious diseases compared to Holstein (Hol) calves. To clarify the immunological differences between JB and Hol calves, expression of cytokine messenger RNA (mRNA) was examined using peripheral CD4(+) , CD8(+) and γδ T cells. Healthy calves, 24 from each species, were examined. Blood samples were obtained from calves at 1 week, 1 month and 3 months old, eight calves for each age of each species. Peripheral blood mononuclear cells were stimulated with phytohemagglutin (PHA), and T cell subsets were isolated by positive selection using magnetic cell sorting (MACS). Levels of interlekin (IL)-2, IL-4, IL-10 and interferon (IFN)-γ mRNA in three T cell subsets were analyzed. WC1-N1(+) γδ T cell percentages were significantly lower in JB calves at 1 week and 1 month of age compared to Hol calves. In addition JB calves had significantly lower IL-2, IL-10 and IFN-γ mRNA in WC1-N1(+) γδ T cells at 1 and 3 months of age, whereas there were no significant differences in cytokine mRNA of CD4(+) and CD8(+) cells between the two groups. Decreased cytokine mRNA and cell number of peripheral γδ T cells may affect negatively on the immune system of JB calves. © 2014 Japanese Society of Animal Science.
Bauer, Mario; Linsel, Gunter; Fink, Beate; Offenberg, Kirsten; Hahn, Anne Maria; Sack, Ulrich; Knaack, Heike; Eszlinger, Markus; Herberth, Gunda
2015-01-01
Many recent epigenetic studies report that cigarette smoking reduces DNA methylation in whole blood at the single CpG site cg19859270 within the GPR15 gene. Within two independent cohorts, we confirmed the differentially expression of the GPR15 gene when smokers and non-smokers subjects are compared. By validating the GPR15 protein expression at the cellular level, we found that the observed decreased methylation at this site in white blood cells (WBC) of smokers is mainly caused by the high proportion of CD3+GPR15+ expressing T cells in peripheral blood. In current smokers, the percentage of GPR15+ cells among CD3+ T cells in peripheral blood is significantly higher (15.5 ± 7.2 %, mean ± standard deviation) compared to non-smokers (3.7 ± 1.6 %). Treatment of peripheral blood mononuclear cell (PBMC) cultures with aqueous cigarette smoke extract did not induce a higher proportion of this T cell subtype. Our results underline that DNA hypomethylation at cg19859270 site, observed in WBCs of smokers, did not arise by direct effect of tobacco smoking compounds on methylation of DNA but rather by the enrichment of a tobacco-smoking-induced lymphocyte population in the peripheral blood.
Galtseva, I V; Davydova, Yu O; Gaponova, T V; Kapranov, N M; Kuzmina, L A; Troitskaya, V V; Gribanova, E O; Kravchenko, S K; Mangasarova, Ya K; Zvonkov, E E; Parovichnikova, E N; Mendeleeva, L P; Savchenko, V G
To identify a parameter predicting a collection of at least 2·106 CD34+ hematopoietic stem cells (HSC)/kg body weight per leukapheresis (LA) procedure. The investigation included 189 patients with hematological malignancies and 3 HSC donors, who underwent mobilization of stem cells with their subsequent collection by LA. Absolute numbers of peripheral blood leukocytes and CD34+ cells before a LA procedure, as well as a number of CD34+ cells/kg body weight (BW) in the LA product stored on the same day were determined in each patient (donor). There was no correlation between the number of leukocytes and that of stored CD34+ cells/kg BW. There was a close correlation between the count of peripheral blood CD34+ cells prior to LA and that of collected CD34+ cells calculated with reference to kg BW. The optimal absolute blood CD34+ cell count was estimated to 20 per µl, at which a LA procedure makes it possible to collect 2·106 or more CD34+ cells/kg BW.
Kusumi, Maki; Yamashita, Takahiro; Fujii, Tomoyuki; Nagamatsu, Takeshi; Kozuma, Shiro; Taketani, Yuji
2006-06-01
The balance of inhibitory and activating natural killer (NK) receptors on maternal decidual NK cells, most of which are CD56bright, is thought to be crucial for the proper growth of trophoblasts in placenta. A lectin-like NK receptor, CD94/NKG2, is the receptor for human leukocyte antigen (HLA)-E, which is expressed on trophoblasts. To clarify the mechanism regulating the activity of decidual NK cells during pregnancy, we investigated the expression patterns of inhibitory NK receptor, CD94/NKG2A, and activating receptor, CD94/NKG2C, on decidual NK cells in an early stage of normal pregnancy and compared them with those on peripheral NK cells, most of which are CD56dim. The rate of NKG2A-positive cells was significantly higher for decidual CD56bright NK cells than for peripheral CD56dim NK cells, but the rates of NKG2C-positive cells were comparable between the two cell types. Interestingly, peripheral CD56dim NK cells reciprocally expressed inhibitory NKG2A and activating NKG2C, but decidual CD56bright NK cells that expressed activating NKG2C simultaneously expressed inhibitory NKG2A. The co-expression of inhibitory and activating NKG2 receptors may fine-tune the immunoregulatory functions of the decidual NK cells to control the trophoblast invasion in constructing placenta.
[Th17 and Treg cell levels in patients with sarcoidosis and their relation to disease activation].
Weng, Yue-song; Wang, Hua-ying; Lv, Ding-feng; Fu, Zhong-ming; Yu, Wan-jun
2015-03-01
To investigate the Th17 cell and Treg cell levels in patients with sarcoidosis, and their relation to disease activation and glucocorticoids treatment. Twenty-three sarcoidosis patients admitted in Yinzhou People's Hospital from January 2009 to December 2013 and 25 healthy subjects (controls) were included in this study. The blood samples and bronchoalveolar lavage fluid (BALF) samples were collected in all patients before and after glucocorticoids treatment. The serum angiotensin converting enzyme (SACE) levels were detected. The percentages of Th17 cells and Treg cells in peripheral blood and BALF were determined by flow cytometry, the concentrations of cytokines in serum and supernatants of BALF were measured by enzyme-linked immunosorbent assay (ELISA). The levels of ROR-γt and Foxp3 mRNA transcripts in peripheral blood mononuclear cells (PBMC) were determined by real-time quantitative PCR. The potential correlation between the percentages of Th17 or Treg cells and SACE levels was evaluated. Compared with healthy controls, significantly higher frequencies of Th17 cells (4.34%±0.89% vs 1.60% ± 0.42%), lower frequencies of Treg cells (1.28% ± 0.37% vs 3.39% ± 0.50%) in peripheral blood were observed. Higher level of ROR-γt mRNA (21.31 ± 3.55 vs 3.63 ± 1.00) and lower level of Foxp3 mRNA (1.60 ± 0.24 vs 3.12 ± 0.76) in peripheral blood were detected in sarcoidosis patients in active stage (before glucocorticoids treatment) (all P<0.01). After the treatment of glucocorticoids, these index in peripheral blood were significantly improved (Th17 cells 2.16% ± 0.68%,Treg cells 2.21% ± 0.42%, ROR-γt mRNA 10.15 ± 1.93, Foxp3 mRNA 2.44 ± 0.38) ( all P<0.05). The changing trends of Th17 and Treg cell cytokines levels in serum were consistent with two type cells. Meanwhile, the changing trends of above index in BALF of patients treated by glucocorticoids were consistent with those in sarcoidosis patients in active stage. The increased ratios of Th17 cells to Treg cells were positively correlated with the level of serum SACE (r= 0.781). The imbalance of Th17 cells and Treg cells in peripheral blood and airway may be involved in the pathogenesis of sarcoidosis, which was associated with the activity of disease, and the treatment of glucocorticoids may achieve a therapeutic effect by correcting the immune imbalance.
Kwon, Junki; Choi, Jaewan; Shin, Joong Won; Lee, Jiyun; Kook, Michael S
2017-12-01
To assess the diagnostic ability of foveal avascular zone (FAZ) parameters to discriminate glaucomatous eyes with visual field defects (VFDs) in different locations (central vs. peripheral) from normal eyes. Totally, 125 participants were separated into 3 groups: normal (n=45), glaucoma with peripheral VFD (PVFD, n=45), and glaucoma with central VFD (CVFD, n=35). The FAZ area, perimeter, and circularity and parafoveal vessel density were calculated from optical coherence tomography angiography images. The diagnostic ability of the FAZ parameters and other structural parameters was determined according to glaucomatous VFD location. Associations between the FAZ parameters and central visual function were evaluated. A larger FAZ area and longer FAZ perimeter were observed in the CVFD group than in the PVFD and normal groups. The FAZ area, perimeter, and circularity were better in differentiating glaucomatous eyes with CVFDs from normal eyes [areas under the receiver operating characteristic curves (AUC), 0.78 to 0.88] than in differentiating PVFDs from normal eyes (AUC, 0.51 to 0.64). The FAZ perimeter had a similar AUC value to the circumpapillary retinal nerve fiber layer and macular ganglion cell-inner plexiform layer thickness for differentiating eyes with CVFDs from normal eyes (all P>0.05, the DeLong test). The FAZ area was significantly correlated with central visual function (β=-112.7, P=0.035, multivariate linear regression). The FAZ perimeter had good diagnostic capability in differentiating glaucomatous eyes with CVFDs from normal eyes, and may be a potential diagnostic biomarker for detecting glaucomatous patients with CVFDs.
Peripheral calcifying cystic odontogenic tumour of the maxillary gingiva.
de Lima, Ana Paula; Kitakawa, Dárcio; Almeida, Janete Dias; Brandão, Adriana Aigotti Haberbeck; Anbinder, Ana Lia
2012-08-23
Odontogenic tumors are lesions that are derived from remnants of the components of the developing tooth germ. The calcifying cystic odontogenic tumor or calcifying odontogenic cyst is a benign cystic neoplasm of odontogenic origin that is characterized by an ameloblastoma-like epithelium and ghost cells. Calcifying cystic odontogenic tumor may be centrally or peripherally located, and its ghost cells may exhibit calcification, as first described by Gorlin in 1962. Most peripheral calcifying cystic odontogenic tumors are located in the anterior gingiva of the mandible or maxilla. Authors report a rare case of a peripheral calcifying cystic odontogenic tumor of the maxillary gingiva. A 39-year-old male patient presented with a fibrous mass on the attached buccal gingiva of the upper left cuspid teeth. It was 0.7-cm-diameter, painless and it was clinically diagnosed as a peripheral ossifying fibroma. After an excisional biopsy, the diagnosis was peripheric calcifying cystic odontogenic tumor. The patient was monitored for five years following the excision, and no recurrence was detected. All biopsy material must be sent for histological examination. If the histological examination of gingival lesions with innocuous appearance is not performed, the frequency of peripheral calcifying cystic odontogenic tumor and other peripheral odontogenic tumors may be underestimated.
Greten, T F; Slansky, J E; Kubota, R; Soldan, S S; Jaffee, E M; Leist, T P; Pardoll, D M; Jacobson, S; Schneck, J P
1998-06-23
Human T lymphotropic virus type 1 (HTLV-1) -associated myelopathy/tropic spastic paraparesis is a demyelinating inflammatory neurologic disease associated with HTLV-1 infection. HTLV-1 Tax11-19-specific cytotoxic T cells have been isolated from HLA-A2-positive patients. We have used a peptide-loaded soluble HLA-A2-Ig complex to directly visualize HTLV-1 Tax11-19-specific T cells from peripheral blood and cerebrospinal fluid without in vitro stimulation. Five of six HTLV-1-associated myelopathy/tropic spastic paraparesis patients carried a significant number (up to 13.87%) of CD8(+) lymphocytes specific for the HTLV-1 Tax11-19 peptide in their peripheral blood, which were not found in healthy controls. Simultaneous comparison of peripheral blood and cerebrospinal fluid from one patient revealed 2.5-fold more Tax11-19-specific T cells in the cerebrospinal fluid (23.7% vs. 9.4% in peripheral blood lymphocyte). Tax11-19-specific T cells were seen consistently over a 9-yr time course in one patient as far as 19 yrs after the onset of clinical symptoms. Further analysis of HTLV-1 Tax11-19-specific CD8(+) T lymphocytes in HAM/TSP patients showed different expression patterns of activation markers, intracellular TNF-alpha and gamma-interferon depending on the severity of the disease. Thus, visualization of antigen-specific T cells demonstrates that HTLV-1 Tax11-19-specific CD8(+) T cells are activated, persist during the chronic phase of the disease, and accumulate in cerebrospinal fluid, showing their pivotal role in the pathogenesis of this neurologic disease.
Iwamoto, Ushio; Hori, Hideo; Takami, Yoshihiro; Tokushima, Yasuo; Shinzato, Masanori; Yasutake, Mikitomo; Kitaguchi, Nobuya
2015-12-01
The efficacy of skin regeneration devices consisting of nonwoven filters and peripheral blood cells was investigated for wound healing. We previously found that human peripheral blood cells enhanced their production of growth factors, such as transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor, when they were captured on nonwoven filters. Cells on biodegradable filters were expected to serve as a local supply of growth factors and cell sources when they were placed in wounded skin. Nonwoven filters made of biodegradable polylactic acid (PLA) were cut out as 13-mm disks and placed into cell-capturing devices. Mouse peripheral blood was filtered, resulting in PLA filters with mouse peripheral blood cells (m-PBCs) at capture rates of 65.8 ± 5.2%. Then, the filters were attached to full-thickness surgical wounds in a diabetic db/db mouse skin for 14 days as a model of severe chronic wounds. The wound area treated with PLA nonwoven filters with m-PBCs (PLA/B+) was reduced to 8.5 ± 12.2% when compared with day 0, although the non-treated control wounds showed reduction only to 60.6 ± 27.8%. However, the PLA filters without m-PBCs increased the wound area to 162.9 ± 118.7%. By histopathological study, the PLA/B+ groups more effectively accelerated formation of epithelium. The m-PBCs captured on the PLA filters enhanced keratinocyte growth factor (FGF-7) and TGF-β1 productions in vitro, which may be related to wound healing. This device is useful for regeneration of wounded skin and may be adaptable for another application.
Homma, Sachiko; Beermann, Mary Lou; Miller, Jeffrey Boone
2011-01-01
The most common form of childhood congenital muscular dystrophy, Type 1A (MDC1A), is caused by mutations in the human LAMA2 gene that encodes the laminin-α2 subunit. In addition to skeletal muscle deficits, MDC1A patients typically show a loss of peripheral nerve function. To identify the mechanisms underlying this loss of nerve function, we have examined pathology and cell differentiation in sciatic nerves and ventral roots of the laminin-α2-deficient (Lama2−/−) mice, which are models for MDC1A. We found that, compared with wild-type, sciatic nerves of Lama2−/− mice had a significant increase in both proliferating (Ki67+) cells and premyelinating (Oct6+) Schwann cells, but also had a significant decrease in both immature/non-myelinating [glial fibrillary acidic protein (GFAP)+] and myelinating (Krox20+) Schwann cells. To extend our previous work in which we found that doxycycline, which has multiple effects on mammalian cells, improves motor behavior and more than doubles the median life-span of Lama2−/− mice, we also determined how nerve pathology was affected by doxycycline treatment. We found that myelinating (Krox20+) Schwann cells were significantly increased in doxycycline-treated compared with untreated sciatic nerves. In addition, doxycycline-treated peripheral nerves had significantly less pathology as measured by assays such as amount of unmyelinated or disorganized axons. This study thus identified aberrant proliferation and differentiation of Schwann cells as key components of pathogenesis in peripheral nerves and provided proof-of-concept that pharmaceutical therapy can be of potential benefit for peripheral nerve dysfunction in MDC1A. PMID:21505075
Relationship between zinc malnutrition and alterations in murine peripheral blood leukocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.E.; Morford, L.A.; Fraker, P.J.
1991-03-15
Studies using a murine model have shown that the immune system responds rapidly and adversely to zinc deficiency. The extent of alteration of peripheral blood leukocytes (PBL) and immunoglobulin levels were investigated in four zinc dietary groups: zinc adequate (ZA); restricted fed zinc adequate (RZA); marginal zinc deficient (MZD, 72-76% of ZA mouse weight); and severely zinc deficient. The peripheral white blood cell count was 3.66 {plus minus} 1.08 {times} 10{sup 6} cells/ml for ZA mice decreasing by 21%, 28% and 54% for RZA, MZD and SZD mice respectively. An equally dramatic change in the flow cytometric light scatter profilemore » was found. ZA mice had 66% lymphocytes and 21% polymorphonuclear granulocytes (PMN) in their peripheral blood while MZD and SZD mice contained 43% and 30% lymphocytes and 40% and 60% PMNs respectively. Analysis of the phenotypic distribution of specific classes of lymphocytes revealed ZA blood contained 25% B-cells and 40% T-cells (CD5{sup +}). B-cells decreased 40-50% for RZA and MZD mice and 60-70% for SZD mice. The decline in CD5{sup +} T-cells was more modest at 30% and 45% for MZD and SZD mice. A nearly 40% decline in both T{sub h} and T{sub c/s} cells was noted for both MZD and SZD mice. Radioimmunoassay of serum for changes in IgM and IgG content revealed no change among dietary groups while serum zinc decreased 10% for RZA mice and 50% for both MZD and SZD mice. The authors conclude that peripheral blood differential counts in concert with total B and T-cell phenotype may serve as indicators of zinc status while serum zinc and Ig will not.« less
IL-9 expression by human eosinophils: regulation by IL-1beta and TNF-alpha.
Gounni, A S; Nutku, E; Koussih, L; Aris, F; Louahed, J; Levitt, R C; Nicolaides, N C; Hamid, Q
2000-09-01
IL-9 is a pleiotropic cytokine that exhibits biologic activity on cells of diverse hemopoietic lineage. IL-9 stimulates the proliferation of activated T cells, enhances the production of IgE from B cells, and promotes the proliferation and differentiation of mast cells and hematopoietic progenitors. In this study we evaluated the expression of IL-9 messenger (m)RNA and protein by human peripheral blood eosinophils. We also investigated the role of IL-1beta and TNF-alpha in the release of IL-9 from human peripheral blood eosinophils. RT-PCR, in situ hybridization, and immunocytochemistry were used to investigate the presence of IL-9 mRNA and protein in human peripheral blood eosinophils from asthmatic patients and normal control subjects. Furthermore, biologic assay was used to investigate the release of IL-9 protein from IL-1beta- or TNF-alpha-stimulated eosinophils in vitro. RT-PCR analysis showed the presence of IL-9 mRNA in human peripheral blood eosinophil RNA preparations from subjects with atopic asthma, as well as in the eosinophil-differentiated HL-60 cell line. By using in situ hybridization, a significant difference (P <.01) in IL-9 mRNA expression was detected in human peripheral blood eosinophils freshly isolated from asthmatic subjects compared with those isolated from normal control subjects. Furthermore, the percentage of IL-9 immunoreactive eosinophils from asthmatic patients was increased compared with that found in normal control subjects (P <.01). We also demonstrate that cultured human peripheral blood eosinophils from asthmatic subjects synthesize and release IL-9 protein, which is upregulated on stimulation with TNF-alpha and IL-1beta. Human eosinophils express biologically active IL-9, which suggests that these cells may influence the recruitment and activation of effector cells linked to the pathogenesis of allergic disease. These observations provide further evidence for the role of eosinophils in regulating airway immune responses.
Manetti, Mirko; Pratesi, Sara; Romano, Eloisa; Bellando-Randone, Silvia; Rosa, Irene; Guiducci, Serena; Fioretto, Bianca Saveria; Ibba-Manneschi, Lidia; Maggi, Enrico; Matucci-Cerinic, Marco
2017-01-01
The mechanisms underlying endothelial cell injury and defective vascular repair in systemic sclerosis (SSc) remain unclear. Since the recently discovered angiogenic T cells (Tang) may have an important role in the repair of damaged endothelium, this study aimed to analyze the Tang population in relation to disease-related peripheral vascular features in SSc patients. Tang (CD3+CD31+CXCR4+) were quantified by flow cytometry in peripheral blood samples from 39 SSc patients and 18 healthy controls (HC). Circulating levels of the CXCR4 ligand stromal cell-derived factor (SDF)-1α and proangiogenic factors were assessed in paired serum samples by immunoassay. Serial skin sections from SSc patients and HC were subjected to CD3/CD31 and CD3/CXCR4 double immunofluorescence. Circulating Tang were significantly increased in SSc patients with digital ulcers (DU) compared either with SSc patients without DU or with HC. Tang levels were significantly higher in SSc patients with late nailfold videocapillaroscopy (NVC) pattern than in those with early/active NVC patterns and in HC. No difference in circulating Tang was found when comparing either SSc patients without DU or patients with early/active NVC patterns and HC. In SSc peripheral blood, Tang percentage was inversely correlated to levels of SDF-1α and CD34+CD133+VEGFR-2+ endothelial progenitor cells (EPC), and positively correlated to levels of vascular endothelial growth factor and matrix metalloproteinase-9. Tang were frequently detected in SSc dermal perivascular inflammatory infiltrates. In summary, our findings demonstrate for the first time that Tang cells are selectively expanded in the circulation of SSc patients displaying severe peripheral vascular complications like DU. In SSc, Tang may represent a potentially useful biomarker reflecting peripheral vascular damage severity. Tang expansion may be an ineffective attempt to compensate the need for increased angiogenesis and EPC function. Further studies are required to clarify the function of Tang cells and investigate the mechanisms responsible for their change in SSc.
2018-01-05
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Hepatosplenic T-cell Lymphoma; Peripheral T-cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome
Simara, Pavel; Tesarova, Lenka; Rehakova, Daniela; Farkas, Simon; Salingova, Barbara; Kutalkova, Katerina; Vavreckova, Eva; Matula, Pavel; Matula, Petr; Veverkova, Lenka; Koutna, Irena
2018-01-01
New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood. In this study, we reprogrammed peripheral blood mononuclear cells, human umbilical vein endothelial cells (HUVECs), and human saphenous vein endothelial cells (HSVECs) into hiPSCs and differentiated them into ECs. The phenotype profiles, functionality, and genome stability of all hiPSC-derived ECs were assessed and compared with HUVECs and HSVECs. hiPSC-derived ECs resembled their natural EC counterparts, as shown by the expression of the endothelial surface markers CD31 and CD144 and the results of the functional analysis. Higher expression of endothelial progenitor markers CD34 and kinase insert domain receptor (KDR) was measured in hiPSC-derived ECs. An analysis of phosphorylated histone H2AX (γH2AX) foci revealed that an increased number of DNA double-strand breaks upon reprogramming into pluripotent cells. However, differentiation into ECs restored a normal number of γH2AX foci. Our hiPSCs retained a normal karyotype, with the exception of the HSVEC-derived hiPSC line, which displayed mosaicism due to a gain of chromosome 1. Peripheral blood from adult donors is a suitable source for the unlimited production of patient-specific ECs through the hiPSC interstage. hiPSC-derived ECs are fully functional and comparable to natural ECs. The protocol is eligible for clinical applications in regenerative medicine, if the genomic stability of the pluripotent cell stage is closely monitored.
Circulating tumor cells in patients with testicular germ cell tumors.
Nastały, Paulina; Ruf, Christian; Becker, Pascal; Bednarz-Knoll, Natalia; Stoupiec, Małgorzata; Kavsur, Refik; Isbarn, Hendrik; Matthies, Cord; Wagner, Walter; Höppner, Dirk; Fisch, Margit; Bokemeyer, Carsten; Ahyai, Sascha; Honecker, Friedemann; Riethdorf, Sabine; Pantel, Klaus
2014-07-15
Germ cell tumors (GCTs) represent the most frequent malignancies among young men, but little is known about circulating tumor cells (CTCs) in these tumors. Considering their heterogeneity, CTCs were investigated using two independent assays targeting germ cell tumor and epithelial cell-specific markers, and results were correlated with disease stage, histology, and serum tumor markers. CTCs were enriched from peripheral blood (n = 143 patients) and testicular vein blood (TVB, n = 19 patients) using Ficoll density gradient centrifugation. For CTC detection, a combination of germ cell tumor (anti-SALL4, anti-OCT3/4) and epithelial cell-specific (anti-keratin, anti-EpCAM) antibodies was used. In parallel, 122 corresponding peripheral blood samples were analyzed using the CellSearch system. In total, CTCs were detected in 25 of 143 (17.5%) peripheral blood samples, whereas only 11.5% of patients were CTC-positive when considering exclusively the CellSearch assay. The presence of CTCs in peripheral blood correlated with clinical stage (P < 0.001) with 41% of CTC positivity in patients with metastasized tumors and 100% in patients with relapsed and chemotherapy-refractory disease. Histologically, CTC-positive patients suffered more frequently from nonseminomatous primary tumors (P < 0.001), with higher percentage of yolk sac (P < 0.001) and teratoma (P = 0.004) components. Furthermore, CTC detection was associated with elevated serum levels of α-fetoprotein (AFP; P = 0.025), β-human chorionic gonadotropin (βHCG; P = 0.002), and lactate dehydrogenase (LDH; P = 0.002). Incidence and numbers of CTCs in TVB were much higher than in peripheral blood. The inclusion of germ cell tumor-specific markers improves CTC detection in GCTs. CTCs occur frequently in patients with more aggressive disease, and there is a gradient of CTCs with decreasing numbers from the tumor-draining vein to the periphery. ©2014 American Association for Cancer Research.
Su, Dinglei; Shen, Minning; Gu, Bingjie; Wang, Xiaoqin; Wang, Dandan; Li, Xia; Sun, Lingyun
2016-06-01
γδ T cells exhibit important functions in the pathogenesis of rheumatoid arthritis (RA). In recent years, numerous studies harnessed the γδ T cell-activating capacity of aminobiphosphonates for the treatment of malignant tumors. As (99) Tc-methylene diphosphonate ((99) Tc-MDP) has long been widely used for the treatment of RA in China with good efficacy, we are interested in whether this drug exerts its therapeutic effect on RA by modulating peripheral γδ T cells of RA patients. To investigate the effect of (99) Tc-MDP on the frequency of γδ T cells and CD4(+) CD25(+) Foxp3(+) Tregs in the peripheral blood of patients with active RA. Nineteen patients with active RA were treated with (99) Tc-MDP intravenously at a dose of 20 μg/day consecutively for 10-14 days. Before and after treatment, the main clinical and laboratory parameters for each patient were evaluated. The frequency of CD3(+) γδ(+) T cells and CD4(+) CD25(+) Foxp3(+) Tregs was detected by flow cytometry. Serum levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10 and transforming growth factor (TGF)-β were measured with enzyme-linked immunosorbent assay. After intravenous (99) Tc-MDP therapy, the frequency of peripheral CD3(+) γδ(+) T cells and CD4(+) CD25(+) Foxp3(+) Tregs were significantly elevated, paralleled with decreased serum levels of TNF-α and IL-6 and increased level of serum TGF-β. The elevation of peripheral CD3(+) γδ(+) T cells was positively correlated with increased serum TGF-β and decreased disease activity. (99) Tc-MDP may improve the activity of RA through upregulating the frequency of peripheral γδ T cells and CD4(+) CD25(+) Foxp3(+) Tregs as well as affecting the serum cytokine environment by increasing TGF-β and decreasing TNF-α and IL-6. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Fornari, Thais A.; Donate, Paula B.; Macedo, Claudia; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.
2011-01-01
As early as one month of age, nonobese diabetic (NOD) mice feature pancreatic infiltration of autoreactive T lymphocytes, which destruct insulin-producing beta cells, producing autoimmune diabetes mellitus (T1D) within eight months. Thus, we hypothesized that during the development of T1D, the transcriptional modulation of immune reactivity genes may occur as thymocytes mature into peripheral T lymphocytes. The transcriptome of thymocytes and peripheral CD3+ T lymphocytes from prediabetic or diabetic mice analyzed through microarray hybridizations identified 2,771 differentially expressed genes. Hierarchical clustering grouped mice according to age/T1D onset and genes according to their transcription profiling. The transcriptional activity of thymocytes developing into peripheral T lymphocytes revealed sequential participation of genes involved with CD4+/CD8+ T-cell differentiation (Themis), tolerance induction by Tregs (Foxp3), and apoptosis (Fasl) soon after T-cell activation (IL4), while the emergence of T1D coincided with the expression of cytotoxicity (Crtam) and inflammatory response genes (Tlr) by peripheral T lymphocytes. PMID:21765850
The peripheral nervous system supports blood cell homing and survival in the Drosophila larva
Makhijani, Kalpana; Alexander, Brandy; Tanaka, Tsubasa; Rulifson, Eric; Brückner, Katja
2011-01-01
Interactions of hematopoietic cells with their microenvironment control blood cell colonization, homing and hematopoiesis. Here, we introduce larval hematopoiesis as the first Drosophila model for hematopoietic colonization and the role of the peripheral nervous system (PNS) as a microenvironment in hematopoiesis. The Drosophila larval hematopoietic system is founded by differentiated hemocytes of the embryo, which colonize segmentally repeated epidermal-muscular pockets and proliferate in these locations. Importantly, we show that these resident hemocytes tightly colocalize with peripheral neurons and we demonstrate that larval hemocytes depend on the PNS as an attractive and trophic microenvironment. atonal (ato) mutant or genetically ablated larvae, which are deficient for subsets of peripheral neurons, show a progressive apoptotic decline in hemocytes and an incomplete resident hemocyte pattern, whereas supernumerary peripheral neurons induced by ectopic expression of the proneural gene scute (sc) misdirect hemocytes to these ectopic locations. This PNS-hematopoietic connection in Drosophila parallels the emerging role of the PNS in hematopoiesis and immune functions in vertebrates, and provides the basis for the systematic genetic dissection of the PNS-hematopoietic axis in the future. PMID:22071105
Global DNA hypomethylation in peripheral blood mononuclear cells as a biomarker of cancer risk
USDA-ARS?s Scientific Manuscript database
Global DNA hypomethylation is an early molecular event in carcinogenesis. Whether methylation measured in peripheral blood mononuclear cells (PBMCs) DNA is a clinically reliable biomarker for early detection or cancer risk assessment is to be established. From an original sample-set of 753 male and...
MEGACARYOCYTES IN THE PERIPHERAL CIRCULATION
Minot, George R.
1922-01-01
A megacaryocyte is seen commonly as an occasional cell in the peripheral blood of patients with myelogenous leucemia. Less commonly they appear in relatively large numbers. These giant cells also may occur in the blood under other conditions. Their presence is indicative of a bone marrow under intense strain. PMID:19868650
Preininger, Bernd; Duda, Georg; Gerigk, Hinnerk; Bruckner, Jonas; Ellinghaus, Agnes; Sass, F. Andrea; Perka, Carsten; Schmidt-Bleek, Katharina; Dienelt, Anke
2013-01-01
Sufficient angiogenesis is crucial during tissue regeneration and therefore also pivotal in bone defect healing. Recently, peripheral blood derived progenitor cells have been identified to have in addition to their angiogenic potential also osteogenic characteristics, leading to the hypothesis that bone regeneration could be stimulated by local administration of these cells. The aim of this study was to evaluate the angiogenic potential of locally administered progenitor cells to improve bone defect healing. Cells were separated from the peripheral blood of donor animals using the markers CD34 and CD133. Results of the in vitro experiments confirmed high angiogenic potential in the CD133(+) cell group. CD34(+) and CD133(+) cells were tested in an in vivo rat femoral defect model of delayed healing for their positive effect on the healing outcome. An increased callus formation and higher bone mineral density of callus tissue was found after the CD133(+) cell treatment compared to the group treated with CD34(+) cells and the control group without cells. Histological findings confirmed an increase in vessel formation and mineralization at day 42 in the osteotomy gap after CD133(+) cell transplantation. The higher angiogenic potential of CD133(+) cells from the in vitro experients therefore correlates with the in vivo data. This study demonstrates the suitability of angiogenic precursors to further bone healing and gives an indication that peripheral blood is a promising source for progenitor cells circumventing the problems associated with bone marrow extraction. PMID:23457441
Oliveira, A L; Sousa, E C; Silva, N A; Sousa, N; Salgado, A J; Reis, R L
2012-11-01
Spinal cord injuries (SCI) present a major challenge to therapeutic development due to its complexity. Combinatorial approaches using biodegradable polymers that can simultaneously provide a tissue scaffold, a cell vehicle, and a reservoir for sustained drug delivery have shown very promising results. In our previous studies we have developed a novel hybrid system consisting of starch/poly-e-caprolactone (SPCL) semi-rigid tubular porous structure, based on a rapid prototyping technology, filled by a gellan gum hydrogel concentric core for the regeneration within spinal-cord injury sites. In the present work we intend to promote enhanced osteointegration on these systems by pre-mineralizing specifically the external surfaces of the SPCL tubular structures, though a biomimetic strategy, using a sodium silicate gel as nucleating agent. The idea is to create two different cell environments to promote axonal regeneration in the interior of the constructs while inducing osteogenic activity on its external surface. By using a Teflon cylinder to isolate the interior of the scaffold, it was possible to observe the formation of a bone-like poorly crystalline carbonated apatite layer continuously formed only in the external side of the tubular structure. This biomimetic layer was able to support the adhesion of Bone Marrow Mesenchymal Stem Cells, which have gone under cytoskeleton reorganization in the first hours of culture when compared to cells cultured on uncoated scaffolds. This strategy can be a useful route for locally stimulate bone tissue regeneration and facilitating early bone ingrowth.
Li, Xiao; Wan, Xiaoyun; Mao, Yuyan; Lu, Weiguo; Xie, Xing
2010-09-01
The increase of CD4+CD25+ regulatory T cells in patients with ovarian carcinoma has been verified. Here we investigated the effects of supernatant derived from ovarian carcinoma cell SKOV3 on peripheral regulatory T cells. Supernatant from SKOV3 was collected and fractionated into three different molecular weight fractions (MWFs). The proliferation of the CD4+CD25+ regulatory T cells cultured in complete RPMI 1640 medium with the different stimulators was detected. The phenotype (GITR and CTLA-4) of natural and expanded CD4+CD25+ T cells was detected by flow cytometry. Foxp3 mRNA expression of low MWF-expanded CD4+CD25+ T cells was detected by RT-PCR. Those expanded CD4+CD25+ regulatory T cells showed enhanced capacity to suppress CD4+CD25- T proliferation and increased expression of GITR and CTLA-4. In brief, low molecular weight fraction of supernatant secreted by SKOV3 could expand peripheral CD4+CD25+ regulatory T cells and enhance their suppressive function.
Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi
2015-07-10
Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Bell, Harold J; Inoue, Takuya; Shum, Kelly; Luk, Collin; Syed, Naweed I
2007-06-01
Breathing is an essential homeostatic behavior regulated by central neuronal networks, often called central pattern generators (CPGs). Despite ongoing advances in our understanding of the neural control of breathing, the basic mechanisms by which peripheral input modulates the activities of the central respiratory CPG remain elusive. This lack of fundamental knowledge vis-à-vis the role of peripheral influences in the control of the respiratory CPG is due in large part to the complexity of mammalian respiratory control centres. We have therefore developed a simpler invertebrate model to study the basic cellular and synaptic mechanisms by which a peripheral chemosensory input affects the central respiratory CPG. Here we report on the identification and characterization of peripheral chemoreceptor cells (PCRCs) that relay hypoxia-sensitive chemosensory information to the known respiratory CPG neuron right pedal dorsal 1 in the mollusk Lymnaea stagnalis. Selective perfusion of these PCRCs with hypoxic saline triggered bursting activity in these neurons and when isolated in cell culture these cells also demonstrated hypoxic sensitivity that resulted in membrane depolarization and spiking activity. When cocultured with right pedal dorsal 1, the PCRCs developed synapses that exhibited a form of short-term synaptic plasticity in response to hypoxia. Finally, osphradial denervation in intact animals significantly perturbed respiratory activity compared with their sham counterparts. This study provides evidence for direct synaptic connectivity between a peripheral regulatory element and a central respiratory CPG neuron, revealing a potential locus for hypoxia-induced synaptic plasticity underlying breathing behavior.
Franck, Emilie; Bonneau, Carole; Jean, Laetitia; Henry, Jean-Paul; Lacoume, Yann; Salvetti, Anna; Boyer, Olivier; Adriouch, Sahil
2012-01-01
Muscle potentially represents the most abundant source of autoantigens of the body and can be targeted by a variety of severe autoimmune diseases. Yet, the mechanisms of immunological tolerance toward muscle autoantigens remain mostly unknown. We investigated this issue in transgenic SM-Ova mice that express an ovalbumin (Ova) neo-autoantigen specifically in skeletal muscle. We previously reported that antigen specific CD4+ T cell are immunologically ignorant to endogenous Ova in this model but can be stimulated upon immunization. In contrast, Ova-specific CD8+ T cells were suspected to be either unresponsive to Ova challenge or functionally defective. We now extend our investigations on the mechanisms governing CD8+ tolerance in SM-Ova mice. We show herein that Ova-specific CD8+ T cells are not detected upon challenge with strongly immunogenic Ova vaccines even after depletion of regulatory T cells. Ova-specific CD8+ T cells from OT-I mice adoptively transferred to SM-Ova mice started to proliferate in vivo, acquired CD69 and PD-1 but subsequently down-regulated Bcl-2 and disappeared from the periphery, suggesting a mechanism of peripheral deletion. Peripheral deletion of endogenous Ova-specific cells was formally demonstrated in chimeric SM-Ova mice engrafted with bone marrow cells containing T cell precursors from OT-I TCR-transgenic mice. Thus, the present findings demonstrate that immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8+ T cells. PMID:22570714
Wang, Qiushi; Gao, Xinghua; Yuan, Zhe; Wang, Zhe; Meng, Yiming; Cao, Yan; Plotnikoff, Nicolas P; Griffin, Noreen; Shan, Fengping
2014-01-01
MENK, a penta-peptide is considered as being involved in the regulatory feedback loop between the immune and neuroendocrine systems, with marked modulation of various functions of human immune cells. The aim of the present work was to investigate change of lymphocyte subpopulations in peripheral blood of 50 cancer patients before and after treatment with MENK. Peripheral blood mononuclear cells (PBMCs) of peripheral blood from 50 cancer patients were isolated by density gradient centrifugation using Ficoll-Paque solution and cultured with MENK. We measured proliferation of total nucleated cells, subpopulations of individual CD4+T cells, CD8+T cells, CD4+CD25+ regulatory T cells (Treg), natural killer cells (NK) before and after treatment with 10-12M MENK in cell culture by flow cytometry (FCM). Our results indicated that MENK showed a strong inhibiting effect on Treg cells while it stimulated marked proliferation of other lymphocyte subpopulations. All data obtained were of significance statistically. It was therefore concluded that MENK could work as a strong immune booster with great potential in restoring damaged human immune system and we could consider MENK as a drug to treat cancer patients, whose immune systems are damaged by chemotherapy or radiotherapy. Furthermore we could consider MENK as a chemotherapy additive, which would sustain immune system of cancer patients during the process of chemotherapy to get maximized efficacy with minimized side effect. PMID:25424790
Buckman, Laura B; Hasty, Alyssa H; Flaherty, David K; Buckman, Christopher T; Thompson, Misty M; Matlock, Brittany K; Weller, Kevin; Ellacott, Kate L J
2014-01-01
Obesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS. To do this we used a bone marrow chimerism model to track the entry of green-fluorescent protein (GFP) labeled peripheral immune cells into the CNS. Flow cytometry was used to quantify the number of GFP(+) immune cells recruited into the CNS of mice fed a high-fat diet compared to standard chow fed controls. High-fat feeding resulted in obesity associated with a 30% increase in the number of GFP(+) cells in the CNS compared to control mice. Greater than 80% of the GFP(+) cells recruited to the CNS were also CD45(+) CD11b(+) indicating that the GFP(+) cells displayed characteristics of microglia/macrophages. Immunohistochemistry further confirmed the increase in GFP(+) cells in the CNS of the high-fat fed group and also indicated that 93% of the recruited cells were found in the parenchyma and had a stellate morphology. These findings indicate that peripheral immune cells can be recruited to the CNS in obesity and may contribute to the inflammatory response. Copyright © 2013 Elsevier Inc. All rights reserved.
Peripheral Glial Cells in the Development of Diabetic Neuropathy.
Gonçalves, Nádia Pereira; Vægter, Christian Bjerggaard; Pallesen, Lone Tjener
2018-01-01
The global prevalence of diabetes is rapidly increasing, affecting more than half a billion individuals within the next few years. As diabetes negatively affects several physiological systems, this dramatic increase represents not only impaired quality of life on the individual level but also a huge socioeconomic challenge. One of the physiological consequences affecting up to half of diabetic patients is the progressive deterioration of the peripheral nervous system, resulting in spontaneous pain and eventually loss of sensory function, motor weakness, and organ dysfunctions. Despite intense research on the consequences of hyperglycemia on nerve functions, the biological mechanisms underlying diabetic neuropathy are still largely unknown, and treatment options lacking. Research has mainly focused directly on the neuronal component, presumably from the perspective that this is the functional signal-transmitting unit of the nerve. However, it is noteworthy that each single peripheral sensory neuron is intimately associated with numerous glial cells; the neuronal soma is completely enclosed by satellite glial cells and the length of the longest axons covered by at least 1,000 Schwann cells. The glial cells are vital for the neuron, but very little is still known about these cells in general and especially how they respond to diabetes in terms of altered neuronal support. We will discuss current knowledge of peripheral glial cells and argue that increased research in these cells is imperative for a better understanding of the mechanisms underlying diabetic neuropathy.
Peripheral Glial Cells in the Development of Diabetic Neuropathy
Gonçalves, Nádia Pereira; Vægter, Christian Bjerggaard; Pallesen, Lone Tjener
2018-01-01
The global prevalence of diabetes is rapidly increasing, affecting more than half a billion individuals within the next few years. As diabetes negatively affects several physiological systems, this dramatic increase represents not only impaired quality of life on the individual level but also a huge socioeconomic challenge. One of the physiological consequences affecting up to half of diabetic patients is the progressive deterioration of the peripheral nervous system, resulting in spontaneous pain and eventually loss of sensory function, motor weakness, and organ dysfunctions. Despite intense research on the consequences of hyperglycemia on nerve functions, the biological mechanisms underlying diabetic neuropathy are still largely unknown, and treatment options lacking. Research has mainly focused directly on the neuronal component, presumably from the perspective that this is the functional signal-transmitting unit of the nerve. However, it is noteworthy that each single peripheral sensory neuron is intimately associated with numerous glial cells; the neuronal soma is completely enclosed by satellite glial cells and the length of the longest axons covered by at least 1,000 Schwann cells. The glial cells are vital for the neuron, but very little is still known about these cells in general and especially how they respond to diabetes in terms of altered neuronal support. We will discuss current knowledge of peripheral glial cells and argue that increased research in these cells is imperative for a better understanding of the mechanisms underlying diabetic neuropathy. PMID:29770116
Berrón-Ruíz, L; López-Herrera, G; Ávalos-Martínez, C E; Valenzuela-Ponce, C; Ramírez-SanJuan, E; Santoyo-Sánchez, G; Mújica Guzmán, F; Espinosa-Rosales, F J; Santos-Argumedo, L
Peripheral blood B cells include lymphocytes at various stages of differentiation, each with a specific function in the immune response. All these stages show variations in percentage and absolute number throughout human life. The numbers and proportions of B subpopulation are influenced by factors such as gender, age, ethnicity, and lifestyle. This study establishes reference values according to age of peripheral blood B cell subtypes in healthy Mexican population. Peripheral blood from healthy new-borns and adults were analysed for total B cell subpopulations, using surface markers such as CD19, IgM, IgD, CD21, CD24, CD27, and CD38, to identify naïve, memory with and without isotype switch, double-negative, transitional, and plasmablast cells. We observed a significant variation in terms of frequency and absolute counts between all groups analysed. Values from each B cell subpopulation show variations according to age. In order to attempt to elucidate reference values for B cell subpopulation, the present study evaluated a population sample of healthy blood donors from this region. Values reported here can also be used as a tool for diagnosis of diseases in which B cell maturation is affected. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.
A role for autophagic protein beclin 1 early in lymphocyte development.
Arsov, Ivica; Adebayo, Adeola; Kucerova-Levisohn, Martina; Haye, Joanna; MacNeil, Margaret; Papavasiliou, F Nina; Yue, Zhenyu; Ortiz, Benjamin D
2011-02-15
Autophagy is a highly regulated and evolutionarily conserved process of cellular self-digestion. Recent evidence suggests that this process plays an important role in regulating T cell homeostasis. In this study, we used Rag1(-/-) (recombination activating gene 1(-/-)) blastocyst complementation and in vitro embryonic stem cell differentiation to address the role of Beclin 1, one of the key autophagic proteins, in lymphocyte development. Beclin 1-deficient Rag1(-/-) chimeras displayed a dramatic reduction in thymic cellularity compared with control mice. Using embryonic stem cell differentiation in vitro, we found that the inability to maintain normal thymic cellularity is likely caused by impaired maintenance of thymocyte progenitors. Interestingly, despite drastically reduced thymocyte numbers, the peripheral T cell compartment of Beclin 1-deficient Rag1(-/-) chimeras is largely normal. Peripheral T cells displayed normal in vitro proliferation despite significantly reduced numbers of autophagosomes. In addition, these chimeras had greatly reduced numbers of early B cells in the bone marrow compared with controls. However, the peripheral B cell compartment was not dramatically impacted by Beclin 1 deficiency. Collectively, our results suggest that Beclin 1 is required for maintenance of undifferentiated/early lymphocyte progenitor populations. In contrast, Beclin 1 is largely dispensable for the initial generation and function of the peripheral T and B cell compartments. This indicates that normal lymphocyte development involves Beclin 1-dependent, early-stage and distinct, Beclin 1-independent, late-stage processes.
Nogueira, Jeane de Souza; Canto, Fábio Barrozo do; Nunes, Caroline Fraga Cabral Gomes; Vianna, Pedro Henrique Oliveira; Paiva, Luciana de Souza; Nóbrega, Alberto; Bellio, Maria; Fucs, Rita
2016-02-01
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment. © 2015 John Wiley & Sons Ltd.
Shamji, M H; Bellido, V; Scadding, G W; Layhadi, J A; Cheung, D K M; Calderon, M A; Asare, A; Gao, Z; Turka, L A; Tchao, N; Togias, A; Phippard, D; Durham, S R
2015-02-01
Several studies have demonstrated the time course of inflammatory mediators in nasal fluids following nasal allergen challenge (NAC), whereas the effects of NAC on cells in the periphery are unknown. We examined the time course of effector cell markers (for basophils, dendritic cells and T cells) in peripheral blood after nasal grass pollen allergen challenge. Twelve participants with seasonal allergic rhinitis underwent a control (diluent) challenge followed by NAC after an interval of 14 days. Nasal symptoms and peak nasal inspiratory flow (PNIF) were recorded along with peripheral basophil, T-cell and dendritic cell responses (flow cytometry), T-cell proliferative responses (thymidine incorporation), and cytokine expression (FluoroSpot assay). Robust increases in nasal symptoms and decreases in PNIF were observed during the early (0-1 h) response and modest significant changes during the late (1-24 h) response. Sequential peaks in peripheral blood basophil activation markers were observed (CD107a at 3 h, CD63 at 6 h, and CD203c(bright) at 24 h). T effector/memory cells (CD4(+) CD25(lo) ) were increased at 6 h and accompanied by increases in CD80(+) and CD86(+) plasmacytoid dendritic cells (pDCs). Ex vivo grass antigen-driven T-cell proliferative responses and the frequency of IL-4(+) CD4(+) T cells were significantly increased at 6 h after NAC when compared to the control day. Basophil, T-cell, and dendritic cell activation increased the frequency of allergen-driven IL-4(+) CD4(+) T cells, and T-cell proliferative responses are detectable in the periphery after NAC. These data confirm systemic cellular activation following a local nasal provocation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals.
Schibler, Ueli; Gotic, Ivana; Saini, Camille; Gos, Pascal; Curie, Thomas; Emmenegger, Yann; Sinturel, Flore; Gosselin, Pauline; Gerber, Alan; Fleury-Olela, Fabienne; Rando, Gianpaolo; Demarque, Maud; Franken, Paul
2015-01-01
In mammals, including humans, nearly all physiological processes are subject to daily oscillations that are governed by a circadian timing system with a complex hierarchical structure. The central pacemaker, residing in the suprachiasmatic nucleus (SCN) of the ventral hypothalamus, is synchronized daily by photic cues transmitted from the retina to SCN neurons via the retinohypothalamic tract. In turn, the SCN must establish phase coherence between self-sustained and cell-autonomous oscillators present in most peripheral cell types. The synchronization signals (Zeitgebers) can be controlled more or less directly by the SCN. In mice and rats, feeding-fasting rhythms, which are driven by the SCN through rest-activity cycles, are the most potent Zeitgebers for the circadian oscillators of peripheral organs. Signaling through the glucocorticoid receptor and the serum response factor also participate in the phase entrainment of peripheral clocks, and these two pathways are controlled by the SCN independently of feeding-fasting rhythms. Body temperature rhythms, governed by the SCN directly and indirectly through rest-activity cycles, are perhaps the most surprising cues for peripheral oscillators. Although the molecular makeup of circadian oscillators is nearly identical in all cells, these oscillators are used for different purposes in the SCN and in peripheral organs. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi
2016-01-01
Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that allogeneic PDL-MSC sheets promoted periodontal tissue regeneration without side effects. Therefore, allogeneic transplantation of PDL-MSC sheets has a potential to become an alternative strategy for periodontal regeneration.
Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi
2016-01-01
Abstract Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that allogeneic PDL-MSC sheets promoted periodontal tissue regeneration without side effects. Therefore, allogeneic transplantation of PDL-MSC sheets has a potential to become an alternative strategy for periodontal regeneration. PMID:26862470
Peripheral T cell lymphomas: an immunological study of seven unusual cases.
Raziuddin, S; Latif, A B; Arif, S; Ahad, A; Zaidi, A Z
1988-05-01
A multiparameter study of malignant lymph node cells and peripheral blood lymphocytes of seven patients with peripheral T cell lymphoma is presented. The results of monoclonal marker studies showed three cases of helper-suppressor T cell lymphoma (OKT4+, OKT8+), one case of suppressor T cell lymphoma (OKT8+), and three cases of helper T cell lymphoma (OKT4+). Immunophenotypic heterogeneity of neoplastic T cells with expression of pan-T antigens, OKT3+, and OKT11+ (erythrocyte rosetting+) was observed in most patients. Six of the seven cases tested showed Ia and DR antigens. No relationship was detected between patterns of reactivity with T cell reagents and histological types. When tested, the in-vitro malignant T cells of five patients proliferated in response to concanavalin A (Con A), but had poor response to phytohaemagglutinin. The interleukin 2 receptors showed maximum expression on Con A-activated T cells of five patients, and phytohaemagglutinin-activated T cells of one patient. The neoplastic T cells (OKT4+, OKT8+) of one patient studied had suppressor activity for IgG and IgA, and helper activity for IgM synthesis on pokeweed mitogen-induced normal B cell differentiations.
Zanussi, S; Simonelli, C; Bortolin, M T; D'Andrea, M; Crepaldi, C; Vaccher, E; Nasti, G; Politi, D; Barzan, L; Tirelli, U; De Paoli, P
1999-01-01
This study presents the immunophenotypic and functional analysis of lymphocyte subsets obtained from peripheral blood and lymphoid tissue from HIV+ individuals treated with highly active anti-retroviral therapy (HAART) alone or in combination with 6 million units international (MUI) s.c. IL-2. Before treatment, the HIV+ patients had reduced CD4 and increased CD8 values in the peripheral blood and lymphoid tissue and impaired cytokine production by peripheral blood mononuclear cells (PBMC). After 24 weeks of treatment, all the HIV+ patients demonstrated increased CD4 values in peripheral blood and lymphoid tissue. The use of IL-2 did not promote an additional CD4 expansion compared with HAART alone; increased ‘naive’ and CD26+ CD4 cells and reduced CD8 cells were found in the peripheral blood and lymphoid tissue of the IL-2-treated, but not of the HAART-treated patients. Both types of treatment induced a significant reduction of the CD8/CD38+ cells. While HAART alone had negligible effects on cytokine production by PBMC, the combined use of HAART + IL-2 was unable to increase the endogenous production of IL-2, but caused an increase of IL-4, IL-13 and interferon-gamma (IFN-γ) and a reduction of monocyte chemoattractant protein-1 (MCP-1) production. These data suggest that, although in this schedule IL-2 has minimal efficacy on CD4 recovery when compared with HAART alone, it produces an increase of ‘naive’ and CD26+CD4 cells and a partial restoration of cytokine production. These data may be used to better define clinical trials aiming to improve the IL-2-dependent immunological reconstitution of HIV-infected subjects. PMID:10361239
Modelling catheter-vein biomechanical interactions during an intravenous procedure.
Weiss, Dar; Gefen, Amit; Einav, Shmuel
2016-02-01
A reliable intravenous (IV) access into the upper extremity veins requires the insertion of a temporary short peripheral catheter (SPC). This so common procedure is, however, associated with a risk of developing short peripheral catheter thrombophlebitis (SPCT) which causes distress and potentially prolongs patient hospitalization. We have developed and studied a biomechanical SPC-vein computational model during an IV procedure, and explored the biomechanical effects of repeated IV episodes on onset and reoccurrences of SPCT. The model was used to determine the effects of different insertion techniques as well as inter-patient biological variability on the catheter-vein wall contact pressures and wall deformations. We found that the maximal pressure exerted upon the vein wall was inhomogeneously distributed, and that the bending region was exposed to significantly greater pressures and deformations. The maximal exerted contact pressure on the inner vein's wall was 2938 Pa. The maximal extent of the SPC penetration into the vein wall reached 3.6 μm, which corresponds to approximately 100% of the average height of the inner layer, suggesting local squashing of endothelial cells at the contact site. The modelling describes a potential biomechanical damage pathway that can explain the reoccurrence of SPCT.
Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model
Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; de Lourdes Mora-García, María
2015-01-01
Background Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. Material/Methods Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. Results We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (p<0.05). This effect is similar to that of Plerixafor, and cells transplanted into lethally irradiated mice can restore hematopoiesis at higher percentages than mononuclear cells mobilized by Plerixafor (40% vs. 20%, respectively). Further, a secondary transplant rescued a separate group of irradiated mice from death, proving definitive evidence of hematopoietic reconstitution after hematopoietic stem cells transplantation. Data are presented as mean ± standard deviation. To determine significant differences between the data, one-way ANOVA and the Tukey test were used. Conclusions Collectively these results show the utility of sodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings. PMID:26409928
Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model.
Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; Mora-García, María de Lourdes
2015-09-25
BACKGROUND Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. MATERIAL AND METHODS Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. RESULTS We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (p<0.05). This effect is similar to that of Plerixafor, and cells transplanted into lethally irradiated mice can restore hematopoiesis at higher percentages than mononuclear cells mobilized by Plerixafor (40% vs. 20%, respectively). Further, a secondary transplant rescued a separate group of irradiated mice from death, proving definitive evidence of hematopoietic reconstitution after hematopoietic stem cells transplantation. Data are presented as mean ± standard deviation. To determine significant differences between the data, one-way ANOVA and the Tukey test were used. CONCLUSIONS Collectively these results show the utility of sodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings.
Litwin, S. D.; Ochs, H.; Pollara, B.
1973-01-01
Surface immunoglobulins on human peripheral blood lymphocytes were investigated by the mixed antiglobulin technique—using the single layer mixed antiglobulin method as originally described (SLMA), and a modification employing a double layer of antibody (DLMA). Lymphocytes isolated from the blood of normal individuals had a mean of 7.8 and 18.4 per cent Ig + cells by the SLMA and DLMA techniques respectively. The DLMA data are similar to results obtained by other methods of detecting membrane Igs indicating that the mixed antiglobulin method is comparable in sensitivity. When the total numbers of Ig + cells, obtained by separate κ and λ testing, were compared with results obtained using single anti-light chain antisera, there was no significant difference, suggesting that most positive lymphocytes carry a single variety of light chain. Lymphocytes from the blood of seventeen patients with primary immunodeficiency were analysed. Four patients with variable immunodeficiency and four others with absent serum IgA all had normal surface Igs including α chains. All members of a family having an X-linked immunodeficiency had normal surface Igs including the affected members and a presumed carrier. Four cases of immunodeficiency associated with thymoma proved to have disparate findings. One patient exhibited a selective absence of μ antigens on the membranes of blood lymphocytes of over 2800 tested cells. Two other cases had normal surface Igs while a fourth patient, previously reported, lacked all surface Igs. PMID:4796276
Wicherek, Lukasz; Jozwicki, Wojciech; Windorbska, Wieslawa; Roszkowski, Krzysztof; Lukaszewska, Ewelina; Wisniewski, Michal; Brozyna, Anna Aneta; Basta, Pawel; Skret-Magierlo, Joanna; Koper, Krzysztof; Rokita, Wojciech; Dutsch-Wicherek, Magdalena
2011-11-01
Treg cells constitute the main cell population that enables cancer cells to evade immune surveillance. An alteration in the Treg cell population might correspond to the diminishment of the tumour mass in patients with cancer and could therefore be a useful marker of the intensity of the selective suppression of the host immune system and also of the degree of radicalism of a procedure. Certainly, it is well known that in order for anti-cancer therapy to succeed the proper immune response against cancer cells must be restored. Furthermore, monitoring the level of selective immune system suppression during cancer therapy might yield information that would support a decision to supplement standard therapy by immunotherapy or to increase the degree of radicalism of the applied therapy. We examined the Treg cell populations in the peripheral blood of a group of patients treated surgically for ovarian cancer. In each patient, the peripheral blood samples were collected both prior to and 1 day after the surgical procedure, and then again 5 days after the procedure. The presence of regulatory T cells in the samples was analyzed by means of flow cytometry. In our study, the percentages of FOXP3(+) cells in the subpopulation of CD4(+) T lymphocytes found in the peripheral blood of the patients before the surgical intervention were statistically significantly higher than those observed in the peripheral blood of these same patients after the surgical procedure. It would seem that the alteration in the Treg cell subpopulation could be a key factor in determining the status of the tumour microenvironment. Most likely, it could provide information about whether the proper level of anti-cancer immune response could be restored. The possibility of restoring the immune response may directly correspond to the degree of radicalism of the surgical intervention. © 2011 John Wiley & Sons A/S.
Muri, Jonathan; Heer, Sebastian; Matsushita, Mai; Pohlmeier, Lea; Tortola, Luigi; Fuhrer, Tobias; Conrad, Marcus; Zamboni, Nicola; Kisielow, Jan; Kopf, Manfred
2018-05-10
The thioredoxin-1 (Trx1) system is an important contributor to cellular redox balance and is a sensor of energy and glucose metabolism. Here we show critical c-Myc-dependent activation of the Trx1 system during thymocyte and peripheral T-cell proliferation, but repression during T-cell quiescence. Deletion of thioredoxin reductase-1 (Txnrd1) prevents expansion the CD4 - CD8 - thymocyte population, whereas Txnrd1 deletion in CD4 + CD8 + thymocytes does not affect further maturation and peripheral homeostasis of αβT cells. However, Txnrd1 is critical for expansion of the activated T-cell population during viral and parasite infection. Metabolomics show that TrxR1 is essential for the last step of nucleotide biosynthesis by donating reducing equivalents to ribonucleotide reductase. Impaired availability of 2'-deoxyribonucleotides induces the DNA damage response and cell cycle arrest of Txnrd1-deficient T cells. These results uncover a pivotal function of the Trx1 system in metabolic reprogramming of thymic and peripheral T cells and provide a rationale for targeting Txnrd1 in T-cell leukemia.
Palomino-Schätzlein, Martina; García, Hermenegildo; Gutiérrez-Carcedo, Patricia; Pineda-Lucena, Antonio; Herance, José Raul
2017-01-01
Human peripheral blood cells are relevant ex vivo models for characterizing diseases and evaluating the pharmacological effects of therapeutic interventions, as they provide a close reflection of an individual pathophysiological state. In this work, a new approach to evaluate the impact of nanoparticles on the three main fractions of human peripheral blood cells by nuclear magnetic resonance spectroscopy is shown. Thus, a comprehensive protocol has been set-up including the separation of blood cells, their in vitro treatment with nanoparticles and the extraction and characterization of metabolites by nuclear magnetic resonance. This method was applied to assess the effect of gold nanoparticles, either coated with chitosan or supported on ceria, on peripheral blood cells from healthy individuals. A clear antioxidant effect was observed for chitosan-coated gold nanoparticles by a significant increase in reduced glutathione, that was much less pronounced for gold-cerium nanoparticles. In addition, the analysis revealed significant alterations of several other pathways, which were stronger for gold-cerium nanoparticles. These results are in accordance with the toxicological data previously reported for these materials, confirming the value of the current methodology.
Carbon Ion Irradiated Neural Injury Induced the Peripheral Immune Effects in Vitro or in Vivo
Lei, Runhong; Zhao, Tuo; Li, Qiang; Wang, Xiao; Ma, Hong; Deng, Yulin
2015-01-01
Carbon ion radiation is a promising treatment for brain cancer; however, the immune system involved long-term systemic effects evoke a concern of complementary and alternative therapies in clinical treatment. To clarify radiotherapy caused fundamental changes in peripheral immune system, examinations were performed based on established models in vitro and in vivo. We found that brain-localized carbon ion radiation of neural cells induced complex changes in the peripheral blood, thymus, and spleen at one, two, and three months after its application. Atrophy, apoptosis, and abnormal T-cell distributions were observed in rats receiving a single high dose of radiation. Radiation downregulated the expression of proteins involved in T-cell development at the transcriptional level and increased the proportion of CD3+CD4−CD8+ T-cells in the thymus and the proportion of CD3+CD4+CD8− T-cells in the spleen. These data show that brain irradiation severely affects the peripheral immune system, even at relatively long times after irradiation. In addition, they provide valuable information that will implement the design of biological-based strategies that will aid brain cancer patients suffering from the long-term side effects of radiation. PMID:26633364
Novembre, Francis J.; de Rosayro, Juliette; Nidtha, Soumya; O'Neil, Shawn P.; Gibson, Terri R.; Evans-Strickfaden, Tammy; Hart, Clyde E.; McClure, Harold M.
2001-01-01
To investigate the pathogenicity of a virus originating in a chimpanzee with AIDS (C499), two chimpanzees were inoculated with a plasma-derived isolate termed human immunodeficiency virus type 1NC (HIV-1NC). A previously uninfected chimpanzee, C534, experienced rapid peripheral CD4+ T-cell loss to fewer than 26 cells/μl by 14 weeks after infection. CD4+ T-cell depletion was associated with high plasma HIV-1 loads but a low virus burden in the peripheral lymph node. The second chimpanzee, C459, infected 13 years previously with HIV-1LAV, experienced a more protracted course of peripheral CD4+ T-cell loss after HIV-1NC inoculation, resulting in fewer than 200 cells/μl by 96 weeks postinoculation. The quantities of viral RNA in the plasma and peripheral lymph node from C459 were below the lower limits of detection prior to inoculation with HIV-1NC but were significantly and persistently increased after superinfection, with HIV-1NC representing the predominant viral genotype. These results show that viruses derived from C499 are more pathogenic for chimpanzees than any other HIV-1 isolates described to date. PMID:11152525
Jasiulewicz, Aleksandra; Lisowska, Katarzyna A; Pietruczuk, Krzysztof; Frąckowiak, Joanna; Fulop, Tamas; Witkowski, Jacek M
2015-11-01
The mechanisms of maintenance of adequate numbers of B lymphocytes and of protective levels of immunoglobulins in the absence of antigenic (re)stimulation remain not fully understood. Meanwhile, our results presented here show that both peripheral blood naive and memory B cells can be activated strongly and non-specifically (in a mitogen-like fashion) in 5-day in vitro cultures of anti-CD3- or concanavalin A (Con A)-stimulated peripheral blood mononuclear cells of healthy people. This polyclonal, bystander activation of the B cells includes multiple divisions of most of them (assessed here by the flow cytometric technique of dividing cell tracking) and significant antibody [immunoglobulin M (IgM) and IgG] secretion. Observed proliferation of the CD19(+) B cells depends on contact with stimulated T helper (Th) cells (via CD40-CD40L interaction) and on the response of B cells to secreted interleukins IL-5, IL-10 and IL-4, and is correlated with the levels of these Th-derived molecules, while it does not involve the ligation of the BCR/CD19 complex. We suggest that the effect might reflect the situation occurring in vivo as the homeostatic proliferation of otherwise non-stimulated, peripheral B lymphocytes, providing an always ready pool for efficient antibody production to any new (or cognate) antigen challenge. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Findeisen, Peter; Röckel, Matthias; Nees, Matthias; Röder, Christian; Kienle, Peter; Von Knebel Doeberitz, Magnus; Kalthoff, Holger; Neumaier, Michael
2008-11-01
The presence of tumor cells in peripheral blood is being regarded increasingly as a clinically relevant prognostic factor for colorectal cancer patients. Current molecular methods are very sensitive but due to low specificity their diagnostic value is limited. This study was undertaken in order to systematically identify and validate new colorectal cancer (CRC) marker genes for improved detection of minimal residual disease in peripheral blood mononuclear cells of colorectal cancer patients. Marker genes with upregulated gene expression in colorectal cancer tissue and cell lines were identified using microarray experiments and publicly available gene expression data. A systematic iterative approach was used to reduce a set of 346 candidate genes, reportedly associated with CRC to a selection of candidate genes that were then further validated by relative quantitative real-time RT-PCR. Analytical sensitivity of RT-PCR assays was determined by spiking experiments with CRC cells. Diagnostic sensitivity as well as specificity was tested on a control group consisting of 18 CRC patients compared to 12 individuals without malignant disease. From a total of 346-screened genes only serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 5 (SERPINB5) showed significantly elevated transcript levels in peripheral venous blood specimens of tumor patients when compared to the nonmalignant control group. These results were confirmed by analysis of an enlarged collective consisting of 63 CRC patients and 36 control individuals without malignant disease. In conclusion SERPINB5 seems to be a promising marker for detection of circulating tumor cells in peripheral blood of colorectal cancer patients.
Yang, Mu; Shi, Xiang Qun; Peyret, Corentin; Oladiran, Oladayo; Wu, Sonia; Chambon, Julien; Fournier, Sylvie; Zhang, Ji
2018-04-05
Autoimmune peripheral neuropathy (APN) such as Guillain Barre Syndrome (GBS) is a debilitating illness and sometimes life threatening. The molecular and cellular mechanisms remain elusive but exposure to environmental factors including viral/bacterial infection and injury is highly associated with disease incidence. We demonstrated previously that both male and female B7.2 (CD86) transgenic L31 and L31/CD4KO mice develop spontaneous APN. Here we further reveal that CD8 + T cells in these mice exhibit an effector/memory phenotype, which bears a resemblance to the CD8 + T cell response following persistent cytomegalovirus (CMV) infection in humans and mice, whilst CMV has been considered as one of the most relevant pathogens in APN development. These activated, peripheral myelin Ag specific CD8 + T cells are required for the disease initiation. While an injury to a peripheral nerve results in Wallerian degeneration in control littermates, the same injury accelerates the development of APN in other non-injured nerves of L31 mice which have a predisposed inflammatory background consisting of effector/memory CD8 + T (CD8 + T EM ) cells. However, CD8 + T EM cells alone are not sufficient. A certain threshold of B7.2 expression on nerve macrophages is an additional requisite. Our findings reveal that indeed, the synergism between CD8 + T EM cells and co-stimulation competent macrophages is crucial in inducing autoimmune-mediated peripheral neuropathy. The identification of decisive molecular/cellular players connecting environmental triggers and the occurrence of APN provides opportunities to prevent disease onset, reduce relapses and develop new therapeutic strategies. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
PHOX2B reliably distinguishes neuroblastoma among small round blue cell tumours.
Hung, Yin P; Lee, John P; Bellizzi, Andrew M; Hornick, Jason L
2017-11-01
Neuroblastoma shows considerable histological overlap with other small round blue cell tumours. PHOX2B, a transcription factor that is essential for autonomic nervous system development, has been reported as an immunohistochemical marker for neuroblastoma. The aim of this study was to validate the specificity and diagnostic utility of PHOX2B for peripheral neuroblastic tumours. We evaluated 240 cases (133 in whole-tissue sections; 107 in tissue microarrays), including 76 peripheral neuroblastic tumours (median age 2 years; including four adults) and 164 other tumours: 44 Wilms tumours; 20 Ewing sarcomas; 10 each of CIC-rearranged round cell sarcomas, poorly differentiated synovial sarcomas, lymphoblastic lymphomas, alveolar rhabdomyosarcomas, embryonal rhabdomyosarcomas, mesenchymal chondrosarcomas, Merkel cell carcinomas, olfactory neuroblastomas, and melanomas; and five each of NUT midline carcinomas and desmoplastic small round cell tumours. Immunohistochemistry for PHOX2B was performed with a rabbit monoclonal antibody. PHOX2B positivity was defined as the presence of nuclear immunoreactivity in ≥5% of cells. PHOX2B was positive in 70 (92%) peripheral neuroblastic tumours, including 68 of 72 (94%) paediatric and two of four (50%) adult cases. Furthermore, PHOX2B was consistently negative in all non-peripheral neuroblastic tumours, with staining being absent in 160 cases and limited in four cases. PHOX2B is a highly sensitive and specific immunohistochemical marker for peripheral neuroblastic tumours, including neuroblastoma. PHOX2B reliably distinguishes neuroblastoma from histological mimics such as Wilms tumour, Ewing sarcoma, and CIC-rearranged round cell sarcoma. PHOX2B negativity in two of four adult neuroblastoma cases raises the possibility that some adult neuroblastomas are of a different lineage than paediatric cases. © 2017 John Wiley & Sons Ltd.
Bretscher, P A
2014-01-01
The establishment of central tolerance to most self-antigens results in a repertoire of mature peripheral lymphocytes specific for foreign and peripheral self-antigens. The framework that single, mature lymphocytes are inactivated by antigen, whereas their activation requires lymphocyte cooperation, accounts for diverse observations and incorporates a mechanism of peripheral tolerance. This framework accounts for the generalizations that the sustained activation by antigen of most B cells and CD8 T cells requires CD4 T helper cells; in the absence of CD4 T cells, antigen can inactivate these B cells and CD8 T cells. In this sense, CD4 T cells are the guardians of the fate of most B cells and CD8 T cells when they encounter antigen. I argue here that the single-lymphocyte/multiple-lymphocyte framework for the inactivation/activation of lymphocytes also applies to CD4 T cells. I consider within this framework a model for the activation/inactivation of CD4 T cells that is consistent with the large majority of contemporary observations, including significant clinical observations. I outline the grounds why I feel this model is more plausible than the contemporary and predominant pathogen-associated molecular pattern (PAMP) and Danger Models for CD4 T cell activation. These models are based upon what I consider the radical premise that self–nonself discrimination does not exist at the level of mature CD4 T cells. I explain why I feel this feature renders the PAMP and Danger Models somewhat implausible. The model I propose, in contrast, is conservative in that it embodies such a process of self–nonself discrimination. PMID:24684567
Hagymasi, Adam T.; Slaiby, Aaron M.; Mihalyo, Marianne A.; Qui, Harry Z.; Zammit, David J.; Lefrançois, Leo; Adler, Adam J.
2010-01-01
Bone marrow-derived APC are critical for both priming effector/memory T cell responses to pathogens and inducing peripheral tolerance in self-reactive T cells. In particular, dendritic cells (DC) can acquire peripheral self-Ags under steady state conditions and are thought to present them to cognate T cells in a default tolerogenic manner, whereas exposure to pathogen-associated inflammatory mediators during the acquisition of pathogen-derived Ags appears to reprogram DCs to prime effector and memory T cell function. Recent studies have confirmed the critical role of DCs in priming CD8 cell effector responses to certain pathogens, although the necessity of steady state DCs in programming T cell tolerance to peripheral self-Ags has not been directly tested. In the current study, the role of steady state DCs in programming self-reactive CD4 cell peripheral tolerance was assessed by combining the CD11c-diphtheria toxin receptor transgenic system, in which DC can be depleted via treatment with diphtheria toxin, with a TCR-transgenic adoptive transfer system in which either naive or Th1 effector CD4 cells are induced to undergo tolerization after exposure to cognate parenchymally derived self-Ag. Although steady state DCs present parenchymal self-Ag and contribute to the tolerization of cognate naive and Th1 effector CD4 cells, they are not essential, indicating the involvement of a non-DC tolerogenic APC population(s). Tolerogenic APCs, however, do not require the cooperation of CD4+CD25+ regulatory T cells. Similarly, DC were required for maximal priming of naive CD4 cells to vaccinia viral-Ag, but priming could still occur in the absence of DC. PMID:17641018
2016-09-01
AWARD NUMBER: W81XWH-13-1-0309 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Thomas L. Smith, PhD RECIPIENT: Wake Forest University Health Sciences
USDA-ARS?s Scientific Manuscript database
This study uses a systems biology approach, integrating global gene expression information and knowledge of the regulatory events in cells to identify transcription networks controlling peripheral blood mononuclear cells’ (PBMCs) immune response to lipopolysaccharide (LPS) and to identify the molecu...
USDA-ARS?s Scientific Manuscript database
Objective: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (...
Kuroda, Naoto; Furuya, Mitsuko; Nagashima, Yoji; Gotohda, Hiroko; Moritani, Suzuko; Kawakami, Fumi; Imamura, Yoshiaki; Bando, Yoshimi; Takahashi, Masayuki; Kanayama, Hiro-omi; Ota, Satoshi; Michal, Michal; Hes, Ondrej; Nakatani, Yukio
2014-06-01
In this article, we searched for the common histologic characteristic of renal tumors in patients with Birt-Hogg-Dubé syndrome (BHDS). We selected 6 patients with histologically confirmed renal tumor in BHDS. Germline FLCN gene mutation has been identified in 5 patients. Multifocality and bilaterality of the renal tumors were pathologically or radiologically confirmed in 5 and 2 cases, respectively. Histologic subtypes of the dominant tumor included 3 previously described hybrid oncocytic tumors, one composite chromophobe/papillary/clear cell renal cell carcinoma (RCC) and one unclassified RCC resembling hybrid chromophobe/clear cell RCC. In one case, chromophobe RCC and clear cell RCC were separately observed. Small papillary lesions located in the peripheral area of the tumor, which we designated as intratumoral peripheral small papillary tufts, were identified in all patients. In conclusion, multifocality/bilaterality of renal tumors, discordance of histologic subtypes, and the presence of intratumoral peripheral small papillary tufts may be important clues to identify BHDS-associated renal tumors. Copyright © 2014 Elsevier Inc. All rights reserved.
Andrade, C U B; Perazzo, F F; Maistro, E L
2008-01-01
Plants are a source of many biologically active products and nowadays they are of great interest to the pharmaceutical industry. In the present study, the mutagenic potential of the Musa paradisiaca fruit peel extract was assessed by the single-cell gel electrophoresis (SCGE) and micronucleus assays. Animals were treated orally with three different concentrations of the extract (1000, 1500, and 2000 mg/kg body weight). Peripheral blood cells of Swiss mice were collected 24 h after treatment for the SCGE assay and 48 and 72 h for the micronucleus test. The results showed that the two higher doses of the extract of M. paradisiaca induced statistically significant increases in the average numbers of DNA damage in peripheral blood leukocytes for the two higher doses and a significant increase in the mean of micronucleated polychromatic erythrocytes in the three doses tested. The polychromatic/normochromatic erythrocyte ratio scored in the treated groups was not statistically different from the negative control. The data obtained indicate that fruit peel extract from M. paradisiaca showed mutagenic effect in the peripheral blood cells of Swiss albino mice.
Suetsugu, Shiro; Yamazaki, Daisuke; Kurisu, Shusaku; Takenawa, Tadaomi
2003-10-01
Cell migration is driven by actin polymerization at the leading edge of lamellipodia, where WASP family verprolin-homologous proteins (WAVEs) activate Arp2/3 complex. When fibroblasts are stimulated with PDGF, formation of peripheral ruffles precedes that of dorsal ruffles in lamellipodia. Here, we show that WAVE2 deficiency impairs peripheral ruffle formation and WAVE1 deficiency impairs dorsal ruffle formation. During directed cell migration in the absence of extracellular matrix (ECM), cells migrate with peripheral ruffles at the leading edge and WAVE2, but not WAVE1, is essential. In contrast, both WAVE1 and WAVE2 are essential for invading migration into ECM, suggesting that the leading edge in ECM has characteristics of both ruffles. WAVE1 is colocalized with ECM-degrading enzyme MMP-2 in dorsal ruffles, and WAVE1-, but not WAVE2-, dependent migration requires MMP activity. Thus, WAVE2 is essential for leading edge extension for directed migration in general and WAVE1 is essential in MMP-dependent migration in ECM.
Tsilingaridis, G; Yucel-Lindberg, T; Concha Quezada, H; Modéer, T
2014-12-01
Altered immune response may be a major contributor to periodontal disease in Down syndrome. This study investigated the relationship between peripheral lymphocytes and matrix metalloproteinases (MMPs) in serum in Down syndrome children with gingivitis. Children with Down syndrome (n = 10) and healthy controls (n = 10) were clinically and radiographically examined during dental treatment under general anaesthesia. Peripheral blood and gingival crevicular fluid were collected from each subject and concentrations were determined: serum MMP-2, -3, -8 and -9; serum tissue inhibitors of metalloproteinases (TIMP) -1, -2 and -3; and gingival crevicular fluid. Leukocytes were isolated from peripheral blood and the relative amounts (%) of the various cell phenotypes were analysed using flow cytometry. In addition, peripheral blood cells were treated with Porphyromonas gingivalis lipopolysaccharide and levels of MMPs and TIMPs measured. Concentrations of MMP-3, MMP-8 and TIMP-1 in serum were significantly higher (p < 0.05) in the Down syndrome group compared to the controls. When peripheral blood leukocytes were cultured in the presence or absence of P. gingivalis lipopolysaccharide, MMP-8 levels were significantly (p < 0.05) higher in the Down syndrome group compared to controls. Children with Down syndrome exhibited significant positive correlations between CD8(+) T cells and MMP-8 (r = 0.630; p = 0.050), between CD8(+) T cells and MMP-9 (r = 0.648; p = 0.043), and between CD56(+) NK cells and MMP-3 (r = 0.828; p = 0.003) compared to controls. The positive relationship of serum MMP-3, -8 and -9 with immune cells in children with Down syndrome may facilitate migration of CD8(+) T cells and CD56(+) NK cells into the periodontal tissue, which may contribute to the increased degradation of periodontal tissue in individuals with Down syndrome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Uemura, Yu; Isobe, Yasushi; Uchida, Akiko; Asano, Junko; Nishio, Yuji; Sakai, Hirotaka; Hoshikawa, Masahiro; Takagi, Masayuki; Nakamura, Naoya; Miura, Ikuo
2018-04-01
Peripheral T- or natural killer (NK)-cell lymphomas are rare and difficult-to-recognize diseases. It remains arduous to distinguish between NK cell- and cytotoxic T-lymphocyte-derived lymphomas through routine histological evaluation. To clarify the cells of origin, we focused on NK-cell receptors and examined the expression using immunohistochemistry in 22 cases with T- and NK-cell neoplasms comprising angioimmunoblastic T-cell lymphoma, anaplastic lymphoma kinase (ALK)-positive and -negative anaplastic large-cell lymphomas, extranodal NK/T-cell lymphoma, nasal type, monomorphic epitheliotropic intestinal T-cell lymphoma, aggressive NK-cell leukemia, and other peripheral T-cell lymphomas. Inhibitory receptor leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) was detected in 14 (64%) cases, whereas activating receptors DNAM1, NKp46, and NKG2D were expressed in 7 (32%), 9 (41%), and 5 (23%) cases, respectively. Although LILRB1 was detected regardless of the disease entity, the activating NK-cell receptors were expressed predominantly in TIA-1-positive neoplasms (DNAM1, 49%; NKp46, 69%; and NKG2D, 38%). In addition, NKp46 and NKG2D were detected only in NK-cell neoplasms and cytotoxic T-lymphocyte-derived lymphomas including monomorphic epitheliotropic intestinal T-cell lymphoma. One Epstein-Barr virus-harboring cytotoxic T-lymphocyte-derived lymphoma mimicking extranodal NK/T-cell lymphoma, nasal type lacked these NK-cell receptors, indicating different cell origin from NK and innate-like T cells. Furthermore, NKG2D expression showed a negative impact on survival among the 22 examined cases, which mainly received the standard chemotherapy regimen (log-rank test, P = .024). We propose that the presence of activating NK-cell receptors may provide new insights into understanding peripheral T-cell lymphomas and characterizing them as innate-like T-cell neoplasm. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Hadden, Coedy; Fahmi, Tariq; Cooper, Anthonya; Savenka, Alena V; Lupashin, Vladimir V; Roberts, Drucilla J; Maroteaux, Luc; Hauguel-de Mouzon, Sylvie; Kilic, Fusun
2017-12-01
Serotonin (5-HT) and its specific transporter, SERT play important roles in pregnancy. Using placentas dissected from 18d gestational SERT-knock out (KO), peripheral 5-HT (TPH1)-KO, and wild-type (WT) mice, we explored the role of 5-HT and SERT in placental functions in detail. An abnormal thick band of fibrosis and necrosis under the giant cell layer in SERT-KO placentas appeared only moderately in TPH1-KO and minimally present in WT placentas. The majority of the changes were located at the junctional zone of the placentas in SERT. The etiology of these findings was tested with TUNEL assays. The placentas from SERT-KO and TPH1-KO showed 49- and 8-fold increase in TUNEL-positive cells without a concurrent change in the DNA repair or cell proliferation compared to WT placentas. While the proliferation rate in the embryos of TPH1-KO mice was 16-fold lower than the rate in gestational age matched embryos of WT or SERT-KO mice. These findings highlight an important role of continuous 5-HT signaling on trophoblast cell viability. SERT may contribute to protecting trophoblast cells against cell death via terminating the 5-HT signaling which changes cell death ratio in trophoblast as well as proliferation rate in embryos. However, the cell death in SERT-KO placentas is in caspase 3-independent pathway. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
McMasters, James F.
Inflammation is the underlying cause of several severe diseases including cardiovascular disease and osteoarthritis. Peripheral artery disease (PAD) is characterized by atherosclerotic occlusions within the peripheral vasculature. Current treatment for severe PAD involves mechanical widening of the artery via percutaneous transluminal angioplasty. Unfortunately, deployment of the balloon damages the endothelial layer, exposing the underlying collagenous matrix. Circulating platelets can bind to this collagen and become activated, releasing proinflammatory cytokines that promote proliferation of local smooth muscle cells. These proliferating cells eventually reocclude the vessel, resulting in restenosis and necessitating the need for a second procedure to reopen the vessel. Current treatments for moderate osteoarthritis include local injection of anti-inflammatory compounds such as glucocorticoids. Unfortunately, prolonged treatment carries with it significant side effects including osteoporosis, and cardiovascular complications. Our lab has developed an anti-inflammatory cell-penetrating peptide that inhibits mitogen-activated protein kinase activated protein kinase 2 (MK2). MK2 is implicated in the inflammatory cascade of atherosclerosis and osteoarthritis, making it a potentially effective strategy for reducing inflammation in both disease states. Unfortunately, these peptides are untargeted and quickly degraded in the presence of serum proteases, making the development of an effective delivery system of paramount importance. The overall goal of the research presented here is to detail the development of a poly(N-isopropylacrylamide) nanoparticle that is able to effectively load and release anti-inflammatory peptides for the treatment of these inflammatory diseases. In this dissertation, I will discuss the development of a collagen-binding nanoparticle that is able to inhibit platelet binding following angioplasty, thereby halting the initial inflammatory cascade. Additionally, these particles demonstrate the ability to reduce inflammation by through the loading and release of MK2-inhibiting cell-penetrating peptides. Additionally, I will cover the development of a hollow nanoparticle system that is designed to load increased quantities of these anti-inflammatory peptides for the treatment of osteoarthritis. This particle demonstrated increased macrophage uptake and prolonged drug release, resulting in a progressive inhibition of osteoarthritic inflammation over 8 days. The results presented here advance our understanding of these nanoparticle platforms, and suggest that they may serve at effective platforms for the treatment of restenosis following angioplasty, as well as osteoarthritis.
Parasa, Venkata Ramanarao; Forsslund, Helena; Enger, Tobias; Lorenz, Daniel; Kullberg, Susanna; Eklund, Anders; Sköld, Magnus; Wahlström, Jan; Grunewald, Johan; Brighenti, Susanna
2018-05-01
The role of CD4 + T cells in the immunopathogenesis of pulmonary sarcoidosis is well-established, while less is known about the phenotype and function of CD8 + cytolytic T cells (CTLs). CD8 + CTLs were explored in peripheral blood and bronchoalveolar lavage (BAL) samples obtained from up to 25 patients with sarcoidosis and 25 healthy controls. The proportion of CTLs was assessed by the expression of cytolytic effector molecules perforin, granzyme B and granulysin in CD8 + T cells, using flow cytometry. Cytolytic function in blood lymphocytes was assessed using a standard 51 Cr-release assay. Patients with Löfgren´s syndrome (LS) and an acute disease onset, were compared to non-LS patients with an insidious onset. Higher proportions of peripheral CD8 + CTLs expressing perforin and granzyme B were observed in sarcoidosis compared to healthy controls. Blood CTLs from non-LS patients had significantly higher expression of perforin, granzyme B and granulysin compared to matched BAL, while LS patients maintained lower levels of effector molecules in both compartments. Mitogen-stimulated peripheral lymphocytes from sarcoidosis patients, particularly from the non-LS group, showed a higher target cell lysis compared to controls. These results demonstrated enhanced peripheral CD8 + CTL responses in sarcoidosis, especially in non-LS patients who have an increased risk of chronic disease. Further comprehensive clinical studies are warranted to increase our understanding of CD8 + CTL responses in sarcoidosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Anup Dutt
Peripheral nerve regeneration is a complex biological process responsible for regrowth of neural tissue following a nerve injury. The main objective of this project was to enhance peripheral nerve regeneration using interdisciplinary approaches involving polymeric scaffolds, stem cell therapy, drug delivery and high content screening. Biocompatible and biodegradable polymeric materials such as poly (lactic acid) were used for engineering conduits with micropatterns capable of providing mechanical support and orientation to the regenerating axons and polyanhydrides for fabricating nano/microparticles for localized delivery of neurotrophic growth factors and cytokines at the site of injury. Transdifferentiated bone marrow stromal cells or mesenchymal stem cells (MSCs) were used as cellular replacements for lost native Schwann cells (SCs) at the injured nerve tissue. MSCs that have been transdifferentiated into an SC-like phenotype were tested as a substitute for the myelinating SCs. Also, genetically modified MSCs were engineered to hypersecrete brain- derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) to secrete therapeutic factors which Schwann cell secrete. To further enhance the regeneration, nerve growth factor (NGF) and interleukin-4 (IL4) releasing polyanhydrides nano/microparticles were fabricated and characterized in vitro for their efficacy. Synergistic use of these proposed techniques was used for fabricating a multifunctional nerve regeneration conduit which can be used as an efficient tool for enhancing peripheral nerve regeneration.
Mouse cloning using a drop of peripheral blood.
Kamimura, Satoshi; Inoue, Kimiko; Ogonuki, Narumi; Hirose, Michiko; Oikawa, Mami; Yo, Masahiro; Ohara, Osamu; Miyoshi, Hiroyuki; Ogura, Atsuo
2013-08-01
Somatic cell nuclear transfer (SCNT) is a unique technology that produces cloned animals from single cells. It is desirable from a practical viewpoint that donor cells can be collected noninvasively and used readily for nuclear transfer. The present study was undertaken to determine whether peripheral blood cells freshly collected from living mice could be used for SCNT. We collected a drop of peripheral blood (15-45 μl) from the tail of a donor. A nucleated cell (leukocyte) suspension was prepared by lysing the red blood cells. Following SCNT using randomly selected leukocyte nuclei, cloned offspring were born at a 2.8% birth rate. Fluorescence-activated cell sorting revealed that granulocytes/monocytes and lymphocytes could be roughly distinguished by their sizes, the former being significantly larger. We then cloned putative granulocytes/monocytes and lymphocytes separately and obtained 2.1% and 1.7% birth rates, respectively (P > 0.05). Because the use of lymphocyte nuclei inevitably results in the birth of offspring with DNA rearrangements, we applied granulocyte/monocyte cloning to two genetically modified strains and two recombinant inbred strains. Normal-looking offspring were obtained from all four strains tested. The present study clearly indicated that genetic copies of mice could be produced using a drop of peripheral blood from living donors. This strategy will be applied to the rescue of infertile founder animals or a "last-of-line" animal possessing invaluable genetic resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P., E-mail: ciavarrp@evms.ed
2009-04-25
Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45{sup high}CD11b{sup +}) and CD8{supmore » +} T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8{sup +} T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-gamma) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.« less
A Clinical and Histological Analysis of Mesenchymal Stem Cells in Amputation
2017-08-08
Ischemia; Peripheral Arterial Disease; Peripheral Vascular Disease; Vascular Disease; Arterial Occlusive Disease; Arteriosclerosis; Atherosclerosis; Cardiovascular Disease; Pathologic Processes; Orthopedic Procedures; Amputation
Nanda, S K; Han, D P
1995-07-01
To study the feasibility of inducing a chorioretinal lesion under a previously placed scleral buckle by experimental transconjunctival diode laser photocoagulation. We performed transconjunctival diode laser photocoagulation in the peripheral retinas of seven pigmented rabbit eyes with a silicone exoplant (No. 42 band or No. 276 tire) and seven eyes without an exoplant. Each eye received burns with an intensity of grades 1 to 3 in different quadrants at varying power levels, with a 0.5-second duration and 650-micron spot size. Eyes were enucleated for histopathologic studies 1 day and 1 week after treatment. Although the irradiance emitted through the No. 42 band and the No. 276 tire was attenuated by 17% and 23%, respectively, the range of threshold powers needed to produce grades 1 to 3 burns was similar between eyes with and without a silicone exoplant. At 1 day, full-thickness coagulative necrosis was observed in all lesions, except that the ganglion cell layer and inner nuclear layer were preserved in two of four grade 1 burns and the ganglion cell layer was intact in one of six grade 2 burns. Inner scleral changes were noted acutely in three of five grade 3 lesions. At 1 week, burns of all intensity grades showed a full-thickness atrophic chorioretinal lesion with inner scleral changes. Experimental transconjunctival diode laser photocoagulation through hard silicone elements reproducibly created a chorioretinal lesion with histopathologic findings similar to those of lesions obtained without these elements. Although retinal photocoagulative effects were prominent, inner scleral abnormalities were also observed histologically.
Min, Hong-Ki; Kim, Jae-Kyung; Lee, Seon-Yeong; Kim, Eun-Kyung; Lee, Seung Hoon; Lee, Jennifer; Kwok, Seung-Ki; Cho, Mi-La; Park, Sung-Hwan
2016-06-27
Spondyloarthritis (SpA) usually manifests as arthritis of the axial and peripheral joints but can also result in extra-articular manifestations such as inflammatory bowel disease. Proinflammatory cytokine interleukin-17 (IL-17) plays a crucial role in the pathogenesis of SpA. Rebamipide inhibits signal transducer and activator of transcription 3 that controls IL-17 production and Th17 cell differentiation. This study examined the effect of rebamipide on SpA development. SKG ZAP-70(W163C) mice were immunized with curdlan to induce SpA features. The mice were then intraperitoneally injected with rebamipide or vehicle 3 times a week for 14 weeks and their clinical scores were evaluated. Histological scores of the paw and spine and the length of the gut were measured at sacrifice. Immunohistochemical staining of IL-17 and tumor necrosis factor-α (TNF-α) was performed using tissue samples isolated from the axial joints, peripheral joints, and gut. Spleen tissue samples were isolated from both rebamipide- or vehicle-treated mice with SpA at 14 weeks after curdlan injection to determine the effect of rebamipide on Th17 and regulatory T (Treg) cell differentiation. Rebamipide decreased the clinical and histological scores of the peripheral joints. The total length of the gut was preserved in rebamipide-treated mice. IL-17 and TNF-α expression in the spine, peripheral joints, and gut was lower in rebamipide-treated mice than in control mice. Th17 cell differentiation was suppressed whereas Treg cell differentiation was upregulated in the spleen of rebamipide-treated mice. Rebamipide exerted beneficial effects in mice with SpA by preventing peripheral arthritis and intestinal inflammation and by regulating Th17/Treg cell imbalance, suggesting that it can be used as a potential therapeutic agent for treating arthritis to SpA patients.
Peripheral calcifying cystic odontogenic tumour of the maxillary gingiva
2012-01-01
Background Odontogenic tumors are lesions that are derived from remnants of the components of the developing tooth germ. The calcifying cystic odontogenic tumor or calcifying odontogenic cyst is a benign cystic neoplasm of odontogenic origin that is characterized by an ameloblastoma-like epithelium and ghost cells. Calcifying cystic odontogenic tumor may be centrally or peripherally located, and its ghost cells may exhibit calcification, as first described by Gorlin in 1962. Most peripheral calcifying cystic odontogenic tumors are located in the anterior gingiva of the mandible or maxilla. Case presentation Authors report a rare case of a peripheral calcifying cystic odontogenic tumor of the maxillary gingiva. A 39-year-old male patient presented with a fibrous mass on the attached buccal gingiva of the upper left cuspid teeth. It was 0.7-cm-diameter, painless and it was clinically diagnosed as a peripheral ossifying fibroma. After an excisional biopsy, the diagnosis was peripheric calcifying cystic odontogenic tumor. The patient was monitored for five years following the excision, and no recurrence was detected. Conclusions All biopsy material must be sent for histological examination. If the histological examination of gingival lesions with innocuous appearance is not performed, the frequency of peripheral calcifying cystic odontogenic tumor and other peripheral odontogenic tumors may be underestimated. PMID:22917449
Terakawa, Maki; Muneoka, Satoshi; Nagahira, Kazuhiro; Nagane, Yuriko; Yamate, Jyoji; Motomura, Masakatsu; Utsugisawa, Kimiaki
2017-01-01
The majority of patients with myasthenia gravis (MG), an organ-specific autoimmune disease, harbor autoantibodies that attack the nicotinic acetylcholine receptor (nAChR-Abs) at the neuromuscular junction of skeletal muscles, resulting in muscle weakness. Single cell manipulation technologies coupled with genetic engineering are very powerful tools to examine T cell and B cell repertoires and the dynamics of adaptive immunity. These tools have been utilized to develop mAbs in parallel with hybridomas, phage display technologies and B-cell immortalization. By applying a single cell technology and novel high-throughput cell-based binding assays, we identified peripheral B cells that produce pathogenic nAChR-Abs in patients with MG. Although anti-nAChR antibodies produced by individual peripheral B cells generally exhibited low binding affinity for the α-subunit of the nAChR and great sequence diversity, a small fraction of these antibodies bound with high affinity to native-structured nAChRs on cell surfaces. B12L, one such Ab isolated here, competed with a rat Ab (mAb35) for binding to the human nAChR and thus considered to recognize the main immunogenic region (MIR). By evaluating the Ab in in vitro cell-based assays and an in vivo rat passive transfer model, B12L was found to act as a pathogenic Ab in rodents and presumably in humans.These findings suggest that B cells in peripheral blood may impact MG pathogenicity. Our methodology can be applied not only to validate pathogenic Abs as molecular target of MG treatment, but also to discover and analyze Ab production systems in other human diseases. PMID:29040265
Fischer, Anika; Zundler, Sebastian; Atreya, Raja; Rath, Timo; Voskens, Caroline; Hirschmann, Simon; López-Posadas, Rocío; Watson, Alastair; Becker, Christoph; Schuler, Gerold; Neufert, Clemens; Atreya, Imke; Neurath, Markus F
2016-01-01
Objective Gut homing of lymphocytes via adhesion molecules has recently emerged as new target for therapy in IBDs. We aimed to analyse the in vivo homing of effector (Teff) and regulatory (Treg) T cells to the inflamed gut via α4β7 and G protein receptor GPR15. Design We assessed the expression of homing receptors on T cells in peripheral blood and inflamed mucosa. We studied the migration pattern and homing of Teff and Treg cells to the inflamed gut using intravital confocal microscopy and FACS in a humanised mouse model in dextran sodium sulfate-treated NSG (NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ) mice. Results Expression of GPR15 and α4β7 was significantly increased on Treg rather than Teff cells in peripheral blood of patients with UC as compared with Crohn’s disease and controls. In vivo analysis in a humanised mouse model showed augmented gut homing of UC Treg cells as compared with controls. Moreover, suppression of UC (but not control) Teff and Treg cell homing was noted upon treatment with the α4β7 antibody vedolizumab. In contrast, siRNA blockade of GPR15 had only effects on homing of Teff cells but did not affect Treg homing in UC. Clinical vedolizumab treatment was associated with marked expansion of UC Treg cells in peripheral blood. Conclusions α4β7 rather than GPR15 is crucial for increased colonic homing of UC Treg cells in vivo, while both receptors control UC Teff cell homing. Vedolizumab treatment impairs homing of UC Treg cells leading to their accumulation in peripheral blood with subsequent suppression of systemic Teff cell expansion. PMID:26209553
Makino, Tomohiro; Nakamura, Ryuichi; Terakawa, Maki; Muneoka, Satoshi; Nagahira, Kazuhiro; Nagane, Yuriko; Yamate, Jyoji; Motomura, Masakatsu; Utsugisawa, Kimiaki
2017-01-01
The majority of patients with myasthenia gravis (MG), an organ-specific autoimmune disease, harbor autoantibodies that attack the nicotinic acetylcholine receptor (nAChR-Abs) at the neuromuscular junction of skeletal muscles, resulting in muscle weakness. Single cell manipulation technologies coupled with genetic engineering are very powerful tools to examine T cell and B cell repertoires and the dynamics of adaptive immunity. These tools have been utilized to develop mAbs in parallel with hybridomas, phage display technologies and B-cell immortalization. By applying a single cell technology and novel high-throughput cell-based binding assays, we identified peripheral B cells that produce pathogenic nAChR-Abs in patients with MG. Although anti-nAChR antibodies produced by individual peripheral B cells generally exhibited low binding affinity for the α-subunit of the nAChR and great sequence diversity, a small fraction of these antibodies bound with high affinity to native-structured nAChRs on cell surfaces. B12L, one such Ab isolated here, competed with a rat Ab (mAb35) for binding to the human nAChR and thus considered to recognize the main immunogenic region (MIR). By evaluating the Ab in in vitro cell-based assays and an in vivo rat passive transfer model, B12L was found to act as a pathogenic Ab in rodents and presumably in humans.These findings suggest that B cells in peripheral blood may impact MG pathogenicity. Our methodology can be applied not only to validate pathogenic Abs as molecular target of MG treatment, but also to discover and analyze Ab production systems in other human diseases.
Characteristics of splenic CD8+ T cell exhaustion in patients with hepatitis C.
Sumida, K; Shimoda, S; Iwasaka, S; Hisamoto, S; Kawanaka, H; Akahoshi, T; Ikegami, T; Shirabe, K; Shimono, N; Maehara, Y; Selmi, C; Gershwin, M E; Akashi, K
2013-10-01
There is increasing interest in the role of T cell exhaustion and it is well known that the natural history of chronic hepatitis C virus infection (HCV) is modulated by CD8(+) T cell immunobiology. There are many pathways that alter the presence of exhaustive T cells and, in particular, they are functionally impaired by inhibitory receptors, such as programmed death-1 (PD-1) and T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3). We obtained spleen, liver and peripheral blood (before and after splenectomy) lymphoid cells from 25 patients with HCV-related cirrhosis undergoing liver transplantation for end-stage disease or splenectomy for portal hypertension. In all samples we performed an extensive phenotypic study of exhaustion markers [PD-1, Tim-3, interferon (IFN)-γ) and their ligands (PD-L1, PD-L2, galectin-9] in CD8(+) T cell subpopulations (both total and HCV-specific) and in antigen-presenting cells (APC; monocytes and dendritic cells). In the spleen, total and HCV-specific CD8(+) T cells demonstrated enhanced markers of exhaustion, predominantly in the effector memory subpopulation. Similarly, splenic APC over-expressed inhibitory receptor ligands when compared to peripheral blood. Finally, when peripheral blood CD8(+) T cells were compared before and after splenectomy, markers of exhaustion were reduced in splenic CD8(+) T cells and APC. Our data in HCV-related cirrhosis suggest that CD8(+) T cells in the spleen manifest a significantly higher exhaustion compared to peripheral blood and may thus contribute to the failure to control HCV. Counteracting this process may contribute to inducing an effective immune response to HCV. © 2013 British Society for Immunology.
Akin, C; Kirshenbaum, A S; Semere, T; Worobec, A S; Scott, L M; Metcalfe, D D
2000-02-01
The Asp816Val c-kit activating mutation is detectable in the peripheral blood cells of some patients with mastocytosis and in lesional skin biopsies obtained from adult patients with urticaria pigmentosa. These observations led to the conclusion that this mutation is present in mast cells and mast cell precursors that express c-kit. However, the distribution of the Asp816Val mutation among hematopoietic lineages is unknown. To determine the distribution of the Asp816Val mutation among hematopoietic lineages and to explore its relationship to clinical disease, we examined cells bearing differentiation markers for myelomonocytic cells as well as T and B lymphocytes, in both peripheral blood and bone marrow obtained from patients with mastocytosis. The presence of Asp816Val c-kit mutation in cells magnetically sorted from peripheral blood or bone marrow according to surface differentiation markers was studied by reverse transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) analysis. The surface expression of c-kit was determined by flow cytometry. The mutation was detectable by RT-PCR in at least one cell lineage in the bone marrow in 7 of 7 patients examined and in the peripheral blood of 11 of 11 adult patients with urticaria pigmentosa and indolent disease. The mutation was identified most frequently in B cells and myeloid cells. Flow cytometric analysis demonstrated that the differentiated cells expressing mutated c-kit were negative for surface KIT. These results are consistent with the conclusion that the c-kit Asp816Val mutation occurs in an early progenitor cell and is carried by myelomonocytic cells, T cells, and B cells in addition to mast cells. However, unlike mast cells, these myelomonocytic cells, T cells, and B cells do not concomitantly express surface c-kit and thus may be less susceptible to the effects of this mutation.
Huang, Tzu-Lun; Huang, Shun-Ping; Chang, Chung-Hsing; Lin, Kung-Hung; Chang, Shu-Wen; Tsai, Rong-Kung
2015-02-01
This study investigated the protective effects of the administration of steroids on optic nerves (ON) and retinal ganglion cells (RGCs) in a rodent model of non-arteritic anterior ischemic optic neuropathy (rAION). We induced rAION using rose bengal and argon laser irradiation in a photodynamic procedure on the optic discs of rats. The treated groups received methylprednisolone (MP) via peritoneal injection for 2 weeks. The control group received intraperitoneal injections of phosphate-buffered saline (PBS) post-rAION. At the 4th week post-infarct, MP treatments significantly rescued the RGCs (mm(2)) in the central retinas (1920 ± 210, p < 0.001) and mid-peripheral retinas (950 ± 240, respectively, p = 0.018) compared with those of the PBS-treated rats (central: 900 ± 210 and mid-peripheral: 440 ± 180). Functional assessment with flash visual-evoked potentials demonstrated that P1 latency (ms) was shortened in the MP group compared to the PBS group (108 ± 14 and 147 ± 9, respectively, p < 0.001). In addition, the P1 amplitude (uV) was enhanced in the MP group compared to the PBS group (55 ± 12 and 41 ± 13, respectively, p < 0.05). TUNEL assays showed a decrease in the number of apoptotic cells in the RGC layers of MP-treated retinas compared to the PBS-treated group (p < 0.05). ED1 positive cells (/HPF) were significantly decreased in the ONs of the MP group compared to the PBS group (p < 0.001). In conclusion, systemic administration of MP had neuroprotective effects on RGC survival and ON function in the rAION animal model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Imaging Stem Cell Therapy for the Treatment of Peripheral Arterial Disease
Ransohoff, Julia D.; Wu, Joseph C.
2013-01-01
Arteriosclerotic cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Therapeutic angiogenesis aims to treat ischemic myocardial and peripheral tissues by delivery of recombinant proteins, genes, or cells to promote neoangiogenesis. Concerns regarding the safety, side effects, and efficacy of protein and gene transfer studies have led to the development of cell-based therapies as alternative approaches to induce vascular regeneration and to improve function of damaged tissue. Cell-based therapies may be improved by the application of imaging technologies that allow investigators to track the location, engraftment, and survival of the administered cell population. The past decade of investigations has produced promising clinical data regarding cell therapy, but design of trials and evaluation of treatments stand to be improved by emerging insight from imaging studies. Here, we provide an overview of pre-clinical and clinical experience using cell-based therapies to promote vascular regeneration in the treatment of peripheral arterial disease. We also review four major imaging modalities and underscore the importance of in vivo analysis of cell fate for a full understanding of functional outcomes. PMID:22239638
Mast Cells Condition Dendritic Cells to Mediate Allograft Tolerance
de Vries, Victor C.; Pino-Lagos, Karina; Nowak, Elizabeth C.; Bennett, Kathy A.; Oliva, Carla; Noelle, Randolph J.
2013-01-01
SUMMARY Peripheral tolerance orchestrated by regulatory T cells, dendritic cells (DCs), and mast cells (MCs) has been studied in several models including skin allograft tolerance. We now define a role for MCs in controlling DC behavior (“conditioning”) to facilitate tolerance. Under tolerant conditions, we show that MCs mediated a marked increase in tumor necrosis factor (TNFα)-dependent accumulation of graft-derived DCs in the dLN compared to nontolerant conditions. This increase of DCs in the dLN is due to the local production of granulocyte macrophage colony-stimulating factor (GM-CSF) by MCs that induces a survival advantage of graft-derived DCs. DCs that migrated to the dLN from the tolerant allograft were tolerogenic; i.e., they dominantly suppress T cell responses and control regional immunity. This study underscores the importance of MCs in conditioning DCs to mediate peripheral tolerance and shows a functional impact of peripherally produced TNFα and GM-CSF on the migration and function of tolerogenic DCs. PMID:22035846
Egido, J M; Viñuelas, J
1997-01-01
We report a rapid method for the flow cytometric quantitation of phagocytosis in heparinized complete peripheral blood (HCPB), using commercially available phycoerythrin-conjugated latex particles of 1 micron diameter. The method is faster and shows greater reproducibility than Bjerknes' (1984) standard technique using propidium iodide-stained Candida albicans, conventionally applied to the leukocytic layer of peripheral blood but here modified for HCPB. We also report a modification of Bjerknes' Intracellular Killing Test to allow its application to HCPB.
Bilateral foveal retinoschisis accompanying unilateral peripheral retinoschisis.
Kocak, Nilufer; Ozturk, Taylan A; Kaynak, Suleyman
2014-04-01
X-linked juvenile retinoschisis is a rare hereditary retinal disease characterized by a tangential splitting of the neurosensory retina which may cause early-onset visual impairment. Existence of the retinal neurosensory layer splitting on cross-sectional images of optical coherance tomography (OCT) and the absence of leakage on fluorescein angiography (FA) help confirming the diagnosis. Such diagnostic tests are also helpful in determining the management of the disease. However, most of the retinoschisis cavities remain stable and rarely extend to the posterior pole, many authors suggest laser prophylaxis to avoid the potential risk of retinal detachment due to holes in the outer retinal layer. Herein, we report a case with bilateral foveal retinoschisis accompanying unilateral peripheral retinoschisis who was evaluated with detailed ophthalmologic examination. Visual acuity, fundoscopy, OCT, and FA remained stable in the second year of follow-up after prophylactic argon laser treatment.
2015-05-06
Adult Nasal Type Extranodal NK/T-cell Lymphoma; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I AIDS-related Lymphoma; Stage II AIDS-related Lymphoma; Stage III AIDS-related Lymphoma; Stage IV AIDS-related Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
Hall, S G; Bieber, A J
1997-03-01
We have identified and characterized three embryonic lethal mutations that alter or abolish expression of Drosophila Neuroglian and have used these mutations to analyze Neuroglian function during development. Neuroglian is a member of the immunoglobulin superfamily. It is expressed by a variety of cell types during embryonic development, including expression on motoneurons and the muscle cells that they innervate. Examination of the nervous systems of neuroglian mutant embryos reveals that motoneurons have altered pathfinding trajectories. Additionally, the sensory cell bodies of the peripheral nervous system display altered morphology and patterning. Using a temperature-sensitive mutation, the phenocritical period for Neuroglian function was determined to occur during late embryogenesis, an interval which coincides with the period during which neuromuscular connections and the peripheral nervous system pattern are established.
Fujii, N; Takenaka, K; Hiraki, A; Maeda, Y; Ikeda, K; Shinagawa, K; Ashiba, A; Munemasa, M; Sunami, K; Hiramatsu, Y; Ishimaru, F; Niiya, K; Yoshino, T; Harada, M
2000-10-01
The prognosis of chronic active Epstein-Barr virus infection (CAEBV) is very poor. We describe a 24-year-old male with severe CAEBV who was treated with allogeneic peripheral blood stem cell transplantation (allo-PBSCT). On admission, EBER-1 in lymphocytes infiltrating the liver, EBV-DNA in peripheral blood mononuclear cells (PBMC) and monoclonal NK cell proliferation were confirmed. After unsuccessful chemotherapy, he received an allo-PBSCT from his HLA-identical sister. Although he died of pulmonary hemorrhage on day +19, EBV-DNA was undetectable by PCR in PBMC, and the post-mortem liver showed no EBER-1-positive lymphocytes. This experience suggests that EBV-positive lymphocytes in CAEBV may be eradicated by allo-PBSCT, thereby raising the possibility of a new treatment modality. Bone Marrow Transplantation (2000) 26, 805-808.
Advances in vascular tissue engineering.
Thomas, Anita C; Campbell, Gordon R; Campbell, Julie H
2003-01-01
Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the supply of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. "Tissue-engineered blood vessels" may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. "Artificial arteries" may be also be derived from peritoneal granulation tissue in body "bioreactors" by adapting the body's natural wound healing response to produce a hollow tube.
Burlingham, W J; Jankowska-Gan, E
2007-02-01
Chemokine-driven accumulation of lymphocytes, mononuclear and polymorphonuclear proinflammatory cells in antigenic tissue sites is a key feature of several types of T-cell-dependent autoimmunity and transplant rejection pathology. It is now clear that the immune system expends considerable energy to control this process, exemplified by the sequential layers of regulatory cell input, both innate and adaptive, designed to prevent a classical Type IV or 'delayed-type' hypersensitivity (DTH) reaction from occurring in the visual field of the eye. Yet, despite an abundance of in vitro assays currently available to the human T-cell immunologist, none of them adequately models the human DTH response and its various control features. The theme of this article is that it is relatively easy to model the effector side of the human DTH response with xenogeneic adoptive transfer models. However, we show that in order to detect inhibition of a recall DTH in response to colocalized donor antigen (linked suppression)--a characteristic feature of peripheral tolerance to an organ transplant--both the challenge site and the immunocompetence of the mouse adoptive host are critical factors limiting the sensitivity of the trans-vivo DTH test.
Effective data compaction algorithm for vector scan EB writing system
NASA Astrophysics Data System (ADS)
Ueki, Shinichi; Ashida, Isao; Kawahira, Hiroichi
2001-01-01
We have developed a new mask data compaction algorithm dedicated to vector scan electron beam (EB) writing systems for 0.13 μm device generation. Large mask data size has become a significant problem at mask data processing for which data compaction is an important technique. In our new mask data compaction, 'array' representation and 'cell' representation are used. The mask data format for the EB writing system with vector scan supports these representations. The array representation has a pitch and a number of repetitions in both X and Y direction. The cell representation has a definition of figure group and its reference. The new data compaction method has the following three steps. (1) Search arrays of figures by selecting pitches of array so that a number of figures are included. (2) Find out same arrays that have same repetitive pitch and number of figures. (3) Search cells of figures, where the figures in each cell take identical positional relationship. By this new method for the mask data of a 4M-DRAM block gate layer with peripheral circuits, 202 Mbytes without compaction was highly compacted to 6.7 Mbytes in 20 minutes on a 500 MHz PC.
Baumann, Otto; Dames, Petra; Kühnel, Dana; Walz, Bernd
2002-01-01
Background The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. Results The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Conclusion Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin. PMID:12095424
Baumann, Otto; Dames, Petra; Kühnel, Dana; Walz, Bernd
2002-06-24
The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controlled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin.
O'Sullivan, J M; McCready, V R; Flux, G; Norman, A R; Buffa, F M; Chittenden, S; Guy, M; Pomeroy, K; Cook, G; Gadd, J; Treleaven, J; Al-Deen, A; Horwich, A; Huddart, R A; Dearnaley, D P
2002-01-01
We tested the feasibility and toxicity of high activities Rhenium-186 hydroxyethylidene diphosphonate, with peripheral blood stem cell rescue in patients with progressive hormone refractory prostate cancer metastatic to bone. Twenty-five patients received between 2500 and 5000 MBq of Rhenium-186 hydroxyethylidene diphosphonate followed 14 days later by the return of peripheral blood peripheral blood stem cells. Activity limiting toxicity was defined as grade III haematological toxicity, lasting at least 7 days, or grade IV haematological toxicity of any duration or any serious unexpected toxicity. Activity limiting toxicity occurred in two of six who received activities of 5000 MBq and maximum tolerated activity was defined at this activity level. Prostate specific antigen reductions of 50% or more lasting at least 4 weeks were seen in five of the 25 patients (20%) all of whom received more than 3500 MBq of Rhenium-186 hydroxyethylidene diphosphonate. The actuarial survival at 1 year is 54%. Administered activities of 5000 MBq of Rhenium-186 hydroxyethylidene diphosphonate are feasible using autologous peripheral blood peripheral blood stem cell rescue in patients with progressive hormone refractory prostate cancer metastatic to bone. The main toxicity is thrombocytopaenia, which is short lasting. A statistically significant activity/prostate specific antigen response was seen. We have now commenced a Phase II trial to further evaluate response rates. British Journal of Cancer (2002) 86, 1715–1720. doi:10.1038/sj.bjc.6600348 www.bjcancer.com © 2002 Cancer Research UK PMID:12087455
Integral edge seals for phosphoric acid fuel cells
Granata, Jr., Samuel J.; Woodle, Boyd M.; Dunyak, Thomas J.
1992-01-01
A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.
Jara-Acevedo, Maria; Teodosio, Cristina; Sanchez-Muñoz, Laura; Álvarez-Twose, Ivan; Mayado, Andrea; Caldas, Carolina; Matito, Almudena; Morgado, José M; Muñoz-González, Javier I; Escribano, Luis; Garcia-Montero, Andrés C; Orfao, Alberto
2015-08-01
Recent studies have found the KIT D816V mutation in peripheral blood of virtually all adult systemic mastocytosis patients once highly sensitive PCR techniques were used; thus, detection of the KIT D816V mutation in peripheral blood has been proposed to be included in the diagnostic work-up of systemic mastocytosis algorithms. However, the precise frequency of the mutation, the biological significance of peripheral blood-mutated cells and their potential association with involvement of bone marrow hematopoietic cells other than mast cells still remain to be investigated. Here, we determined the frequency of peripheral blood involvement by the KIT D816V mutation, as assessed by two highly sensitive PCR methods, and investigated its relationship with multilineage involvement of bone marrow hematopoiesis. Overall, our results confirmed the presence of the KIT D816V mutation in peripheral blood of most systemic mastocytosis cases (161/190; 85%)--with an increasing frequency from indolent systemic mastocytosis without skin lesions (29/44; 66%) to indolent systemic mastocytosis with skin involvement (124/135; 92%), and more aggressive disease subtypes (11/11; 100%)--as assessed by the allele-specific oligonucleotide-qPCR method, which was more sensitive (P<.0001) than the peptide nucleic acid-mediated PCR approach (84/190; 44%). Although the presence of the KIT mutation in peripheral blood, as assessed by the allele-specific oligonucleotide-qPCR technique, did not accurately predict for multilineage bone marrow involvement of hematopoiesis, the allele-specific oligonucleotide-qPCR allele burden and the peptide nucleic acid-mediated-PCR approach did. These results suggest that both methods provide clinically useful and complementary information through the identification and/or quantification of the KIT D816V mutation in peripheral blood of patients suspected of systemic mastocytosis.
Oral warfarin affects peripheral blood leukocyte IL-6 and TNFα production in rats.
Popov, Aleksandra; Belij, Sandra; Subota, Vesna; Zolotarevski, Lidija; Mirkov, Ivana; Kataranovski, Dragan; Kataranovski, Milena
2013-01-01
Warfarin is a Vitamin K (VK) antagonist that affects Vitamin K-dependent (VKD) processes, including blood coagulation, as well as processes unrelated to hemostasis such as bone growth, calcification, and growth of some cell types. In addition, warfarin exerts influence on some non-VKD-related activities, including anti-tumor and immunomodulating activity. With respect to the latter, both immune stimulating and suppressive effects have been noted in different experimental systems. To explore the in vivo immunomodulatory potential of warfarin on one type of activity (i.e., cytokine production) in two different immune cell populations (i.e., mononuclear or polymorphonuclear cells), effects of subchronic oral warfarin intake in rats on pro-inflammatory cytokine (i.e., TNFα, IL-6) production by peripheral blood mononuclear and polymorphonuclear cells (granulocytes) was examined. Differential effects of warfarin intake on TNFα and IL-6 were noted, depending on the type of peripheral blood leukocytes and on the cytokine examined. Specifically, a lack of effect on TNFα and a priming of IL-6 production by mononuclear cells along with a decrease in TNFα and a lack of effect on IL-6 in polymorphonuclear cells were seen in warfarin-exposed hosts. The cell- and cytokine-dependent effects from subchronic oral warfarin intake on peripheral blood leukocytes demonstrated in this study could, possibly, differentially affect reactions mediated by these cells. Ultimately, the observed effects in rats might have implications for those humans who are on long-term/prolonged warfarin therapy.
Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration.
Cunha, Carla; Panseri, Silvia; Antonini, Stefania
2011-02-01
Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achieved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair. Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. Copyright © 2011 Elsevier Inc. All rights reserved.
Improved priming for mobilization of and optimal timing for harvest of peripheral blood stem cells.
Knudsen, L M; Gaarsdal, E; Jensen, L; Nielsen, K J; Nikolaisen, K; Johnsen, H E
1996-08-01
The time of stem cell harvest and the mobilization regimen may play important roles in terms of achieving adequate numbers of stem cells by leukapheresis. To optimize the timing of leukapheresis, we have determined simultaneously the number of CD34+ cells in the peripheral blood as well as in the leukapheresis product of 214 apheresis procedures performed in 66 unselected patients with malignant hematologic diseases and solid tumors. A significant correlation between the number of CD34+ cells in peripheral blood and the leukapheresis product (R = 0.8) was found. The presence of more than 20 x 10(3)/ml blood CD34+ cells gave a sufficient yield (> or = 1.0 x 10(6) CD34+ cells/kg) in 81% of the cases. In an attempt to compare two priming regimens, we performed leukapheresis twice in 12 patients with stable disease. In the first sequence, stem cells were mobilized with rhG-CSF (10 micrograms/kg/day) alone and, in the second sequence, with cyclophosphamide (4 g/m2) plus rhG-CSF. A significantly higher yield of CD34+ cells and a better correlation between CD34+ cells in the peripheral blood and the leukapheresis product were found after priming with high-dose cyclophosphamide plus rhG-CSF, compared with priming with rhG-CSF alone. In a multivariate analysis, three factors were found to correlate with the yield of CD34+ cells, namely prior chemotherapy, bone marrow function, and the mobilization regimen. The use of cyclophosphamide priming improves CD34+ mobilization, and the introduction of blood CD34+ level optimizes the timing for harvest of stem cells, which should be performed early during treatment of malignancies.
Atanackovic, Djordje; Reinhard, Henrike; Meyer, Sabrina; Spöck, Stefanie; Grob, Tobias; Luetkens, Tim; Yousef, Sara; Cao, Yanran; Hildebrandt, York; Templin, Julia; Bartels, Katrin; Lajmi, Nesrine; Stoiber, Heribert; Kröger, Nicolaus; Atz, Judith; Seimetz, Diane; Izbicki, Jakob R; Bokemeyer, Carsten
2013-01-01
Background: Patients with gastric cancer benefit from perioperative chemotherapy, however, treatment is toxic and many patients will relapse. The trifunctional antibody catumaxomab targets EpCAM on tumor cells, CD3 on T cells, and the Fcγ-receptor of antigen-presenting cells. While in Europe catumaxomab is approved for treating malignant ascites, it has not been investigated in the perioperative setting and its exact immunological mode of action is unclear. Methods: In our study, gastric cancer patients received neoadjuvant platinum-based chemotherapy, one intraoperative application of catumaxomab, and 4 postoperative doses of intraperitoneal catumaxomab. Immunomonitoring was performed in 6 patients before surgery, after completion of catumaxomab treatment, and one month later. Results: Intraperitoneal application of catumaxomab caused an increased expression of activation markers on the patients’ T cells. This was accompanied by a transient decrease in numbers of CXCR3+ effector T cells with a T-helper (Th)-1 phenotype in the peripheral blood. All patients evidenced pre-existing EpCAM-specific CD4+ and/or CD8+ T cells. While these cells transiently disappeared from the blood stream after intraperitoneal application of catumaxomab, we detected increased numbers of peripheral EpCAM-specific cells and a modified EpCAM-specific T-cell repertoire 4 weeks after completion of treatment. Finally, catumaxomab also amplified humoral immunity to tumor antigens other than EpCAM. Conclusions: Our findings suggest that catumaxomab exerts its clinical effects by (1) activating peripheral T cells, (2) redistributing effector T cells from the blood into peripheral tissues, (3) expanding and shaping of the pre-existing EpCAM-specific T-cell repertoire, and (4) spreading of anti-tumor immunity to different tumor antigens. PMID:23955093
2004-01-01
of RNA From Peripheral Blood Cells: A Validation Study for Molecular Diagnostics by Microarray and Kinetic RT-PCR Assays Application in...VALIDATION STUDY FOR MOLECULAR DIAGNOSTICS BY MICROARRAY AND KINETIC RT-PCR ASSAYS APPLICATION IN AEROSPACE MEDICINE INTRODUCTION Extraction of cellular
Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Genini, Sem; Goldstein, Orly; O'Brien, Paul J.; Szél, Ágoston; Acland, Gregory M.; Beltran, William A.; Aguirre, Gustavo D.
2011-01-01
A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene. PMID:21980341
Lagaye, S.; Derrien, M.; Menu, E.; Coïto, C.; Tresoldi, E.; Mauclère, P.; Scarlatti, G.; Chaouat, G.; Barré-Sinoussi, F.; Bomsel, M.
2001-01-01
Mother-to-child transmission can occur in utero, mainly intrapartum and postpartum in case of breastfeeding. In utero transmission is highly restricted and results in selection of viral variant from the mother to the child. We have developed an in vitro system that mimics the interaction between viruses, infected cells present in maternal blood, and the trophoblast, the first barrier protecting the fetus. Trophoblastic BeWo cells were grown as a tight polarized monolayer in a two-chamber system. Cell-free virions applied to the apical pole neither crossed the barrier nor productively infected BeWo cells. In contrast, apical contact with human immunodeficiency virus (HIV)-infected peripheral blood mononuclear cells (PBMCs) resulted in transcytosis of infectious virus across the trophoblastic monolayer and in productive infection correlating with the fusion of HIV-infected PBMCs with trophoblasts. We showed that viral variants are selected during these two steps and that in one case of in utero transmission, the predominant maternal viral variant characterized after transcytosis was phylogenetically indistinguishable from the predominant child's virus. Hence, the first steps of transmission of HIV-1 in utero appear to involve the interaction between HIV type 1-infected cells and the trophoblastic layer, resulting in the passage of infectious HIV by transcytosis and by fusion/infection, both leading to a selection of virus quasispecies. PMID:11312350
Handschel, Jörg; Naujoks, Christian; Depprich, Rita; Lammers, Lydia; Kübler, Norbert; Meyer, Ulrich; Wiesmann, Hans-Peter
2011-07-14
Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs) in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and ß-glycerolphosphate (DAG). After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin. © 2011 Handschel et al; licensee BioMed Central Ltd.
Ito, Akira; Nosrat, Christopher A
2009-09-01
Taste buds and the peripheral nerves innervating them are two important components of the peripheral gustatory system. They require appropriate connections for the taste system to function. Neurotrophic factors play crucial roles in the innervation of peripheral sensory organs and tissues. Both brain-derived neurotrophic factor (BDNF) null-mutated and neurotrophin-4 (NT-4) null-mutated mice exhibit peripheral gustatory deficits. BDNF and NT-4 bind to a common high affinity tyrosine kinase receptor, TrkB (NTRK-2), and a common p75 neurotrophin receptor (NGFR). We are currently using a transgenic mouse model to study peripheral taste system development and innervation in the absence of both TrkB ligands. We show that taste cell progenitors express taste cell markers during early stages of taste bud development in both BDNF(-/-)xNT-4(-/-) and wild-type mice. At early embryonic stages, taste bud progenitors express Troma-1, Shh, and Sox2 in all mice. At later stages, lack of innervation becomes a prominent feature in BDNF(-/-)xNT-4(-/-) mice leading to a decreasing number of fungiform papillae and morphologically degenerating taste cells. A total loss of vallate taste cells also occurs in postnatal transgenic mice. Our data indicate an initial independence but a later permissive and essential role for innervation in taste bud development and maintenance.
The assessment of macular electrophysiology and macular morphology in patients with vitiligo.
Aydin, Rukiye; Ozsutcu, Mustafa; Erdur, Sevil Karaman; Dikkaya, Funda; Balevi, Ali; Ozbek, Merve; Senturk, Fevzi
2018-02-01
We aimed to analyze the electrophysiologic function and morphology of macula in vitiligo patients. Seventeen patients with vitiligo and 11 healthy subjects were studied. All participants underwent multifocal electroretinography (mfERG) and spectral domain optical coherence tomography (SD-OCT) evaluations. The mfERG (P1 mfERG responses central and peripheral) and retinal layer segmentation parameters (nine ETDRS subfields) were compared in vitiligo and control groups. The mean P1 response amplitudes were significantly decreased in central and peripheral rings of the fovea in patients with vitiligo compared with controls (p = 0.002 and p = 0.006, respectively). There was a tendency toward a prolonged mean implicit time for both central and peripheral in patients with vitiligo compared to controls, however, with no statistical significance (p = 0.453 and p = 0.05, respectively). There was no statistically significant difference in all retinal layers thickness between two groups. In patients with vitiligo, while photoreceptor segment preserved in SD-OCT, mfERG reduced showing potential decline in central retinal function. This study showed a potential decline in central retinal function in patients with vitiligo even if they have normal fundus appearance and SD-OCT findings.
Yusa, Akiko; Toneri, Makoto; Masuda, Taisuke; Ito, Seiji; Yamamoto, Shuhei; Okochi, Mina; Kondo, Naoto; Iwata, Hiroji; Yatabe, Yasushi; Ichinosawa, Yoshiyuki; Kinuta, Seichin; Kondo, Eisaku; Honda, Hiroyuki; Arai, Fumihito; Nakanishi, Hayao
2014-01-01
Circulating tumor cells (CTCs) in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D) palladium (Pd) filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings. PMID:24523941
Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi
2016-01-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by the destruction of articular cartilage and bone with elevated levels of proinflammatory cytokines. It has been reported that IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. It remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we tried to identify Th17 cells, Th1 cells, and Th17 cell-derived Th1 cells (CD161(+)Th1 cells) in the peripheral blood of early-onset RA patients. We also evaluated the effect of methotrexate on the ratio of Th17 cells in early-onset RA patients. The ratio of Th17 cell-derived Th1 cells to CD161(+)Th17 cells was elevated in the peripheral blood of early-onset RA patients. In addition, MTX reduced the ratio of Th17 cells but not Th1 cells. These findings suggest that IL-17 and Th17 play important roles in the early phase of RA; thus, anti-IL-17 antibodies should be administered to patients with RA in the early phase.
Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi
2016-01-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by the destruction of articular cartilage and bone with elevated levels of proinflammatory cytokines. It has been reported that IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. It remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we tried to identify Th17 cells, Th1 cells, and Th17 cell-derived Th1 cells (CD161+Th1 cells) in the peripheral blood of early-onset RA patients. We also evaluated the effect of methotrexate on the ratio of Th17 cells in early-onset RA patients. The ratio of Th17 cell-derived Th1 cells to CD161+Th17 cells was elevated in the peripheral blood of early-onset RA patients. In addition, MTX reduced the ratio of Th17 cells but not Th1 cells. These findings suggest that IL-17 and Th17 play important roles in the early phase of RA; thus, anti-IL-17 antibodies should be administered to patients with RA in the early phase. PMID:27123445
Deterministic Migration-Based Separation of White Blood Cells.
Kim, Byeongyeon; Choi, Young Joon; Seo, Hyekyung; Shin, Eui-Cheol; Choi, Sungyoung
2016-10-01
Functional and phenotypic analyses of peripheral white blood cells provide useful clinical information. However, separation of white blood cells from peripheral blood requires a time-consuming, inconvenient process and thus analyses of separated white blood cells are limited in clinical settings. To overcome this limitation, a microfluidic separation platform is developed to enable deterministic migration of white blood cells, directing the cells into designated positions according to a ridge pattern. The platform uses slant ridge structures on the channel top to induce the deterministic migration, which allows efficient and high-throughput separation of white blood cells from unprocessed whole blood. The extent of the deterministic migration under various rheological conditions is explored, enabling highly efficient migration of white blood cells in whole blood and achieving high-throughput separation of the cells (processing 1 mL of whole blood less than 7 min). In the separated cell population, the composition of lymphocyte subpopulations is well preserved, and T cells secrete cytokines without any functional impairment. On the basis of the results, this microfluidic platform is a promising tool for the rapid enrichment of white blood cells, and it is useful for functional and phenotypic analyses of peripheral white blood cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael
2015-03-01
Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10-40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies.
Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael
2015-01-01
Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10–40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies. PMID:25582709
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomousmore » growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a valuable model for arsenic-induced lung cancer.« less
Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles
2012-09-01
Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
'Agglutination and flocculation' of stem cells collected by apheresis due to cryofibrinogen.
Siegenthaler, M A; Vu, D-H; Ebnöther, M; Ketterer, N; Luthi, F; Schmid, P; Bargetzi, M; Gasparini, D; Tissot, J-D
2004-04-01
Collection of peripheral stem cells by apheresis is a well-described process. Here, investigations concerning 'agglutination and flocculation' of stem cells collected from two patients are described. In both cases, cryoproteins were observed and cryofibrinogen was identified using high-resolution two-dimensional electrophoresis. In one case, peripheral stem cells were collected after a second course of mobilization, and the cells were immediately washed at 37 degrees C before being frozen, allowing their use, despite the presence of cryofibrinogen. In the other case, 'agglutination' was reversed by warming the bag, and plasma was removed before freezing.
Fonseca-Camarillo, Gabriela; Furuzawa-Carballeda, Janette; Yamamoto-Furusho, Jesús K
2015-10-01
The aim of the study was to characterize and to quantify peripheral and tissue. IL-35- and IL-37-producing cells in Inflammatory Bowel Disease (IBD) patients. We studied a total of 38 active UC, 31 inactive UC, 17 active CD, and 13 inactive CD and 50 non-inflamed tissues as control group. Gene expression was measured by real time polymerase chain reaction (RT-PCR) and protein expression was evaluated in tissue by immunohistochemistry and in peripheral blood mononuclear cells by flow cytometry. Higher levels of IL-35 was produced by intestinal regulatory B cells and circulating regulatory CD4(+) and CD8(+) T cells in active vs. inactive disease or healthy donors (P<0.05). The IL-37 was conspicuously synthesized by circulating B cells, active natural killer cells and monocytes. These results suggest that down-regulation of inflammation in active IBD patients might be based on the increased expression of IL-35 and IL-37. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E
2015-01-01
Sos-1 and Sos-2 are ubiquitously expressed Ras-Guanine Exchange Factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4+ T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4+ T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4+ T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. PMID:25973715
Aberrant phenotypes in peripheral T cell lymphomas.
Hastrup, N; Ralfkiaer, E; Pallesen, G
1989-01-01
Seventy six peripheral T cell lymphomas were examined immunohistologically to test their reactivity with a panel of monoclonal antibodies against 11 T cell associated antigens (CD1-8, CD27, UCHL1, and the T cell antigen receptor). Sixty two (82%) lymphomas showed aberrant phenotypes, and four main categories were distinguished as follows: (i) lack of one or several pan-T cell antigens (49, 64% of the cases); (ii) loss of both the CD4 and CD8 antigens (11, 15% of the cases); (iii) coexpression of the CD4 and CD8 antigens (13, 17% of the cases); and (iv) expression of the CD1 antigen (eight, 11% of the cases). No correlation was seen between the occurrence of aberrant phenotypes and the histological subtype. It is concluded that the demonstration of an aberrant phenotype is a valuable supplement to histological assessment in the diagnosis of peripheral T cell lymphomas. It is recommended that the panel of monoclonal antibodies against T cell differentiation antigens should be fairly large, as apparently any antigen may be lost in the process of malignant transformation. Images Figure PMID:2469701
Increased numbers of peripheral blood CD34+ cells in dogs with canine atopic dermatitis.
Bruet, Vincent; Lieubeau, Blandine; Herve, Julie; Roussel, Anne; Imparato, Laëtitia; Desfontis, Jean-Claude; Bourdeau, Patrick
2015-06-01
The bone marrow may be involved in human atopic diseases, as shown by the release of CD34+ cells into the peripheral blood. The aim was to determine the numbers of CD34+ cells in atopic dogs. The following three groups of dogs were studied: 27 dogs with nonfood-induced atopic dermatitis (NFICAD); 16 dogs with nonallergic inflammatory diseases; and 13 healthy control dogs. Dogs with NFICAD were selected after fulfilment of Favrot's criteria and exclusion of other pruritic dermatoses, including flea infestation and adverse reaction to foods. The Canine Atopic Dermatitis Extent and Severity Index (CADESI)-03 and a Visual Analog Scale (VAS) score for pruritus were used to quantify clinical signs. A phycoerythrin-conjugated anticanine CD34 antibody was used to stain peripheral blood CD34+ cells, and these were enumerated using a flow cytometer. The CD34+ cell counts were compared between groups and tested (in the NFICAD group) for correlation with the severity of clinical signs. The numbers of peripheral CD34+ cells in dogs with NFICAD (median 1.7) were statistically higher than in dogs with other nonallergic inflammatory diseases (median 1.0; P = 0.01) and healthy control dogs (median 0.9; P = 0.009). In dogs with NFICAD, there was no correlation between CD34+ cell numbers and CADESI-03 scores or owner-assessed pruritus (VAS score). The results of this study suggest the possible involvement of CD34+ cells in dogs with NFICAD. The role of CD34+ cells in the aetiopathogenesis of canine atopic dermatitis remains to be determined. © 2014 ESVD and ACVD.
Chen, Jeng-Chang; Chang, Ming-Ling; Huang, Shiu-Feng; Chang, Pei-Yeh; Muench, Marcus O; Fu, Ren-Huei; Ou, Liang-Shiou; Kuo, Ming-Ling
2008-01-01
It was reported that the dose of self-antigens can determine the consequence of deletional tolerance and donor T cells are critical for tolerance induction in mixed chimeras. This study aimed at assessing the effect of cell doses and marrow T cells on engraftment and tolerance induction after prenatal bone marrow transplantation. Intraperitoneal cell transplantation was performed in FVB/N (H-2K(q)) mice at gestational day 14 with escalating doses of adult C57BL/6 (H-2K(b)) marrows. Peripheral chimerism was examined postnatally by flow cytometry and tolerance was tested by skin transplantation. Transplantation of light-density marrow cells showed a dose response. High-level chimerism emerged with a threshold dose of 5.0 x 10(6) and host leukocytes could be nearly replaced at a dose of 7.5-10.0 x 10(6). High-dose transplants conferred a steady long-lasting donor-specific tolerance but were accompanied by >50% incidence of graft-versus-host disease. Depletion of marrow T cells lessened graft-versus-host disease to the detriment of engraftment. With low-level chimerism, tolerance was a graded phenomenon dependent upon the level of chimerism. Durable chimerism within 6 months required a threshold of > or = 2% chimerism at 1 month of age and predicted a 50% chance of long-term tolerance, whereas transient chimerism (<2%) only caused hyporesponsiveness to the donor. Tolerance induction did not succeed without peripheral chimerism even if a large amount of injected donor cells persisted in the peritoneum. Neither did an increase in cell doses or donor T-cell contents benefit skin graft survivals unless it had substantially improved peripheral chimerism. Thus, peripheral chimerism level can be a simple and straightforward test to predict the degree of prenatal immune tolerance.
White, David T; Sengupta, Sumitra; Saxena, Meera T; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai; Mumm, Jeff S
2017-05-02
Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration-i.e., selective cell-loss paradigms akin to degenerative disease-are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of ( i ) rod cell clearance, ( ii ) MG/progenitor cell proliferation, and ( iii ) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions.
White, David T.; Sengupta, Sumitra; Saxena, Meera T.; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai
2017-01-01
Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration—i.e., selective cell-loss paradigms akin to degenerative disease—are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of (i) rod cell clearance, (ii) MG/progenitor cell proliferation, and (iii) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions. PMID:28416692
Yu, Xin-Min; Wu, Yi-Chen; Liu, Xiang; Huang, Xian-Cong; Hou, Xiu-Xiu; Wang, Jiu-Li; Cheng, Xiang-Liu; Mao, Wei-Min; Ling, Zhi-Qiang
2016-01-01
Circulating tumor cells (CTCs) have been implicated in tumor progression and prognosis. Techniques detecting CTCs in the peripheral blood of patients with non-small cell lung carcinoma (NSCLC) may help to identify individuals likely to benefit from early systemic treatment. However, the detection of CTCs with a single marker is challenging, owing to low specificity and sensitivity and due to the heterogeneity and rareness of CTCs. Herein, the probability of cell-free RNA content in the peripheral blood as a potential biomarker for detecting CTCs in cancer patients was investigated. An immunomagnetic enrichment of real-time reverse-transcription PCR (RT-PCR) technology for analysis of CTCs in NSCLC patients was also developed. The mRNA levels of four candidate genes, cytokeratin 7 (CK7), E74-like factor 3 (ELF3), epidermal growth factor receptor (EGFR), and erythropoietin-producing hepatocellular carcinoma receptor B4 (EphB4) that were significantly elevated in tumor tissues and peripheral blood mononuclear cells (PBMCs) were determined. The expression of CK7 and ELF3 in tumor tissues and EGFR in PBMCs was associated with lymph node metastasis (all p < 0.05). The expression of CK7 in PBMCs was correlated with age and EphB4 in PBMCs correlated with histopathological type, respectively (all p < 0.05). The expression of all four genes in tumor tissues and PBMCs was significantly correlated with the clinical stage (all p < 0.01). Survival analysis showed that the patients with enhanced expression of CK7, ELF3, EGFR, and EphB4 mRNA in PBMCs had poorer disease-free survival (DFS) and overall survival (OS) than those without (all p < 0.0001). The present study showed that this alteration of cell-free RNA content in peripheral blood might have clinical ramifications in the diagnosis and treatment of NSCLC patients. PMID:27827952
Modeled Microgravity Inhibits Apoptosis in Peripheral Blood Lymphocytes
NASA Technical Reports Server (NTRS)
Risin, Diana; Pellis, Neal R.
2000-01-01
Microgravity interferes with numerous lymphocyte functions (expression of cell surface molecules, locomotion, polyclonal and antigen-specific activation, and the protein kinase C activity in signal transduction). The latter suggests that gravity may also affect programmed cell death (PCD) in lymphocyte populations. To test this hypothesis, we investigated spontaneous, activation- and radiation-induced PCD in peripheral blood mononuclear cells (PBMC) exposed to modeled microgravity using a rotating cell culture system. The results showed significant inhibition of radiation- and activation-induced apoptosis in modeled microgravity and provide insights into the potential mechanisms of this phenomenon.
Chandler, J P; Yang, T J
1981-08-01
A time course study of the peripheral blood leukocytes of dogs vaccinated with canine distemper live virus (a paramyxovirus) vaccines showed that autorosette-forming leukocytes appeared from day 3 to day 10 after vaccination. The number of these cells peaked at day 7 when as many as 35% of mononuclear cells formed rosettes with autologous erythrocytes. In contrast, in nonvaccinated dogs, only 0.6 +/- 0.3% (standard error of the mean) of mononuclear cells formed rosettes throughout the 2-week period.
Modeled microgravity inhibits apoptosis in peripheral blood lymphocytes
NASA Technical Reports Server (NTRS)
Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)
2001-01-01
Microgravity interferes with numerous lymphocyte functions (expression of cell surface molecules, locomotion, polyclonal and antigen-specific activation, and the protein kinase C activity in signal transduction). The latter suggests that gravity may also affect programmed cell death (PCD) in lymphocyte populations. To test this hypothesis, we investigated spontaneous, activation- and radiation-induced PCD in peripheral blood mononuclear cells exposed to modeled microgravity (MMG) using a rotating cell culture system. The results showed significant inhibition of radiation- and activation-induced apoptosis in MMG and provide insights into the potential mechanisms of this phenomenon.
Sowing the Seeds of a Fruitful Harvest: Hematopoietic Stem Cell Mobilization
Hoggatt, Jonathan; Speth, Jennifer M.; Pelus, Louis M.
2014-01-01
Hematopoietic stem cell transplantation is the only curative option for a number of malignant and non-malignant diseases. As the use of hematopoietic transplant has expanded, so too has the source of stem and progenitor cells. The predominate source of stem and progenitors today, particularly in settings of autologous transplantation, is mobilized peripheral blood. This review will highlight the historical advances which lead to the widespread use of peripheral blood stem cells for transplantation, with a look towards future enhancements to mobilization strategies. PMID:24123398
Role of Netrin-1 Signaling in Nerve Regeneration
Dun, Xin-Peng; Parkinson, David B.
2017-01-01
Netrin-1 was the first axon guidance molecule to be discovered in vertebrates and has a strong chemotropic function for axonal guidance, cell migration, morphogenesis and angiogenesis. It is a secreted axon guidance cue that can trigger attraction by binding to its canonical receptors Deleted in Colorectal Cancer (DCC) and Neogenin or repulsion through binding the DCC/Uncoordinated (Unc5) A–D receptor complex. The crystal structures of Netrin-1/receptor complexes have recently been revealed. These studies have provided a structure based explanation of Netrin-1 bi-functionality. Netrin-1 and its receptor are continuously expressed in the adult nervous system and are differentially regulated after nerve injury. In the adult spinal cord and optic nerve, Netrin-1 has been considered as an inhibitor that contributes to axon regeneration failure after injury. In the peripheral nervous system, Netrin-1 receptors are expressed in Schwann cells, the cell bodies of sensory neurons and the axons of both motor and sensory neurons. Netrin-1 is expressed in Schwann cells and its expression is up-regulated after peripheral nerve transection injury. Recent studies indicated that Netrin-1 plays a positive role in promoting peripheral nerve regeneration, Schwann cell proliferation and migration. Targeting of the Netrin-1 signaling pathway could develop novel therapeutic strategies to promote peripheral nerve regeneration and functional recovery. PMID:28245592
Weisenburger, Dennis D; Savage, Kerry J; Harris, Nancy Lee; Gascoyne, Randy D; Jaffe, Elaine S; MacLennan, Kenneth A; Rüdiger, Thomas; Pileri, Stefano; Nakamura, Shigeo; Nathwani, Bharat; Campo, Elias; Berger, Francoise; Coiffier, Bertrand; Kim, Won-Seog; Holte, Harald; Federico, Massimo; Au, Wing Y; Tobinai, Kensei; Armitage, James O; Vose, Julie M
2011-03-24
The International Peripheral T-cell Lymphoma Project is a collaborative effort to better understand peripheral T-cell lymphoma (PTCL). A total of 22 institutions submitted clinical and pathologic material on 1314 cases. One objective was to analyze the clinical and pathologic features of 340 cases of PTCL, not otherwise specified. The median age of the patients was 60 years, and the majority (69%) presented with advanced stage disease. Most patients (87%) presented with nodal disease, but extranodal disease was present in 62%. The 5-year overall survival was 32%, and the 5-year failure-free survival was only 20%. The majority of patients (80%) were treated with combination chemotherapy that included an anthracycline, but there was no survival advantage. The International Prognostic Index (IPI) was predictive of both overall survival and failure-free survival (P < .001). Multivariate analysis of clinical and pathologic prognostic factors, respectively, when controlling for the IPI, identified bulky disease (≥ 10 cm), thrombocytopenia (< 150 × 10(9)/L), and a high number of transformed tumor cells (> 70%) as adverse predictors of survival, but only the latter was significant in final analysis. Thus, the IPI and a single pathologic feature could be used to stratify patients with PTCL-not otherwise specified for novel and risk-adapted therapies.
The structure and function of the macula in patients with advanced retinitis pigmentosa.
Vámos, Rita; Tátrai, Erika; Németh, János; Holder, Graham E; DeBuc, Delia Cabrera; Somfai, Gábor Márk
2011-10-28
To assess the structure and function of the macula in advanced retinitis pigmentosa (RP). Twenty-nine eyes of 22 patients with RP were compared against 17 control eyes. Time-domain optical coherence tomography (OCT) data were processed using OCTRIMA (optical coherence tomography retinal image analysis) as a means of quantifying commercial OCT system images. The thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer and outer plexiform layer complex (INL+OPL), and the outer nuclear layer (ONL) were measured. Multifocal electroretinography (mfERG) was performed; two groups were formed based on the mfERG findings. Fourteen eyes had no detectable central retinal function (NCRF) on mfERG; detectable but abnormal retinal function (DRF) was present in the mfERG of the other 15 eyes. The thickness of the ONL in the central macular region was significantly less in the NCRF eyes compared with that in both DRF eyes and controls. The ONL was significantly thinner in the pericentral region in both patient groups compared with that in controls, whereas the thickness of the GCL+IPL and INL+OPL was significantly decreased only in the NCRF eyes. The RNFL in the peripheral region was significantly thicker, whereas the thickness of the GCL+IPL and ONL was significantly thinner in both patient groups compared with that in controls. The results are consistent with degeneration of the outer retina preceding inner retinal changes in RP. OCT image segmentation enables objective evaluation of retinal structural changes in RP, with potential use in the planning of therapeutic interventions and conceivably as an outcome measure.
The Structure and Function of the Macula in Patients with Advanced Retinitis Pigmentosa
Vámos, Rita; Tátrai, Erika; Németh, János; Holder, Graham E.; DeBuc, Delia Cabrera
2011-01-01
Purpose. To assess the structure and function of the macula in advanced retinitis pigmentosa (RP). Methods. Twenty-nine eyes of 22 patients with RP were compared against 17 control eyes. Time-domain optical coherence tomography (OCT) data were processed using OCTRIMA (optical coherence tomography retinal image analysis) as a means of quantifying commercial OCT system images. The thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer and outer plexiform layer complex (INL+OPL), and the outer nuclear layer (ONL) were measured. Multifocal electroretinography (mfERG) was performed; two groups were formed based on the mfERG findings. Fourteen eyes had no detectable central retinal function (NCRF) on mfERG; detectable but abnormal retinal function (DRF) was present in the mfERG of the other 15 eyes. Results. The thickness of the ONL in the central macular region was significantly less in the NCRF eyes compared with that in both DRF eyes and controls. The ONL was significantly thinner in the pericentral region in both patient groups compared with that in controls, whereas the thickness of the GCL+IPL and INL+OPL was significantly decreased only in the NCRF eyes. The RNFL in the peripheral region was significantly thicker, whereas the thickness of the GCL+IPL and ONL was significantly thinner in both patient groups compared with that in controls. Conclusions. The results are consistent with degeneration of the outer retina preceding inner retinal changes in RP. OCT image segmentation enables objective evaluation of retinal structural changes in RP, with potential use in the planning of therapeutic interventions and conceivably as an outcome measure. PMID:21948552
Arango, Marcos; Combariza, Juan F
2017-06-01
Noninfection-related fever can occur after peripheral blood stem cell infusion in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide. The objective of this study was to analyze the incidence of fever and characterize some clinical features of affected patients. A retrospective case-series study with 40 patients who received haploidentical hematopoietic stem cell transplantation was carried out. Thirty-three patients (82.5%) developed fever; no baseline characteristic was associated with its development. Median time to fever onset was 25.5h (range, 9.5-100h) and median peak temperature was 39.0°C (range, 38.1-40.5°C). Not a single patient developed hemodynamic or respiratory compromise that required admission to the intensive care unit. Fever was not explained by infection in any case. Ninety-one percent of the febrile episodes resolved within 96h of cyclophosphamide administration. No significant difference in overall survival, event-free survival, or graft versus host disease-free/relapse-free survival was found in the group of febrile individuals after peripheral blood stem cell infusion. Fever after peripheral blood stem cell infusion in this clinical setting was common; it usually subsides with cyclophosphamide administration. The development of fever was not associated with an adverse prognosis. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.
Hochberg, Donna; Souza, Tatyana; Catalina, Michelle; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.
2004-01-01
In this paper we demonstrate that during acute infection with Epstein-Barr virus (EBV), the peripheral blood fills up with latently infected, resting memory B cells to the point where up to 50% of all the memory cells may carry EBV. Despite this massive invasion of the memory compartment, the virus remains tightly restricted to memory cells, such that, in one donor, fewer than 1 in 104 infected cells were found in the naive compartment. We conclude that, even during acute infection, EBV persistence is tightly regulated. This result confirms the prediction that during the early phase of infection, before cellular immunity is effective, there is nothing to prevent amplification of the viral cycle of infection, differentiation, and reactivation, causing the peripheral memory compartment to fill up with latently infected cells. Subsequently, there is a rapid decline in infected cells for the first few weeks that approximates the decay in the cytotoxic-T-cell responses to viral replicative antigens. This phase is followed by a slower decline that, even by 1 year, had not reached a steady state. Therefore, EBV may approach but never reach a stable equilibrium. PMID:15113901
Recent thymic emigrants are preferentially incorporated only into the depleted T-cell pool.
Houston, Evan G; Higdon, Lauren E; Fink, Pamela J
2011-03-29
Recent thymic emigrants (RTEs) are the youngest subset of peripheral T cells, and they differ functionally and phenotypically from the rest of the naïve T-cell pool. RTEs are present in the peripheral T-cell pool throughout life but are the most common subset of T cells in neonates and adults recovering from lymphoablation. Using a murine model to study the homeostasis of RTEs, we show that under lymphoreplete conditions, RTEs are at a competitive disadvantage to already established mature naïve (MN) T cells. This disadvantage may be caused by a defect in survival, because RTEs may transduce homeostatic signals inefficiently, and their ability to survive is enhanced with increased expression of IL-7 receptor or B-cell lymphoma 2 (Bcl-2). Conversely, under lymphopenic conditions, enhanced proliferation by RTEs allows them to out-compete their MN T-cell counterparts. These results suggest that in times of need, such as in neonates or lymphopenic adults, RTEs perform well to fill the gaps in the peripheral T-cell pool, but when the periphery already is full, many RTEs are not incorporated into the pool of recirculating lymphocytes.
Brain-peripheral cell crosstalk in white matter damage and repair.
Hayakawa, Kazuhide; Lo, Eng H
2016-05-01
White matter damage is an important part of cerebrovascular disease and may be a significant contributing factor in vascular mechanisms of cognitive dysfunction and dementia. It is well accepted that white matter homeostasis involves multifactorial interactions between all cells in the axon-glia-vascular unit. But more recently, it has been proposed that beyond cell-cell signaling within the brain per se, dynamic crosstalk between brain and systemic responses such as circulating immune cells and stem/progenitor cells may also be important. In this review, we explore the hypothesis that peripheral cells contribute to damage and repair after white matter damage. Depending on timing, phenotype and context, monocyte/macrophage can possess both detrimental and beneficial effects on oligodendrogenesis and white matter remodeling. Endothelial progenitor cells (EPCs) can be activated after CNS injury and the response may also influence white matter repair process. These emerging findings support the hypothesis that peripheral-derived cells can be both detrimental or beneficial in white matter pathology in cerebrovascular disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.
Immune Tolerance in Multiple Sclerosis
Goverman, Joan M.
2011-01-01
Summary Multiple sclerosis is believed to be mediated by T cells specific for myelin antigens that circulate harmlessly in the periphery of healthy individuals until they are erroneously by an environmental stimulus. Upon activation, the T cells enter the central nervous system and orchestrate an immune response against myelin. To understand the initial steps in the pathogenesis of multiple sclerosis, it is important to identify the mechanisms that maintain T-cell tolerance to myelin antigens and to understand how some myelin-specific T cells escape tolerance and what conditions lead to their activation. Central tolerance strongly shapes the peripheral repertoire of myelin-specific T cells, as most myelin-specific T cells are eliminated by clonal deletion in the thymus. Self-reactive T cells that escape central tolerance are generally capable only of low-avidity interactions with antigen-presenting cells. Despite the low avidity of these interactions, peripheral tolerance mechanisms are required to prevent spontaneous autoimmunity. Multiple peripheral tolerance mechanisms for myelin-specific T cells have been indentified, the most important of which appears to be regulatory T cells. While most studies have focused on CD4+ myelin-specific T cells, interesting differences in tolerance mechanisms and the conditions that abrogate these mechanisms have recently been described for CD8+ myelin-specific T cells. PMID:21488900
Eckstrand, C D; Sparger, E E; Pitt, K A; Murphy, B G
2017-01-01
Feline immunodeficiency virus (FIV) infection in cats results in life-long viral persistence and progressive immunopathology. We have previously described a cohort of experimentally infected cats demonstrating a progressive decline of peripheral blood CD4+ T-cell over six years in the face of apparent peripheral viral latency. More recently we reported findings from this same cohort that revealed popliteal lymph node tissue as sites for ongoing viral replication suggesting that tissue reservoirs are important in FIV immunopathogenesis during the late asymptomatic phase of infection. Results reported herein characterize important tissue reservoirs of active viral replication during the late asymptomatic phase by examining biopsied specimens of spleen, mesenteric lymph node (MLN), and intestine from FIV-infected and uninfected control cats. Peripheral blood collected coincident with harvest of tissues demonstrated severe CD4+ T-cell depletion, undetectable plasma viral gag RNA and rarely detectable peripheral blood mononuclear cell (PBMC)-associated viral RNA (vRNA) by real-time PCR. However, vRNA was detectable in all three tissue sites from three of four FIV-infected cats despite the absence of detectable vRNA in plasma. A novel in situ hybridization assay identified B cell lymphoid follicular domains as microanatomical foci of ongoing FIV replication. Additionally, we demonstrated that CD4+ leukocyte depletion in tissues, and CD4+ and CD21+ leukocytes as important cellular reservoirs of ongoing replication. These findings revealed that tissue reservoirs support foci of ongoing viral replication, in spite of highly restricted viral replication in blood. Lentiviral eradication strategies will need address tissue viral reservoirs.
NASA Astrophysics Data System (ADS)
Alemany Server, R.; Martens, D.; Jans, K.; Bienstman, P.; Hill, D.
2016-03-01
Through further development, integration and validation of micro-nano-bio and biophotonics systems FP7 CanDo is developing an instrument that will permit highly reproducible and reliable identification and concentration determination of rare cells in peripheral blood for two key societal challenges, early and low cost anti-cancer drug efficacy determination and cancer diagnosis/monitoring. A cellular link between the primary malignant tumour and the peripheral metastases, responsible for 90% of cancerrelated deaths, has been established in the form of circulating tumour cells (CTCs) in peripheral blood. Furthermore, the relatively short survival time of CTCs in peripheral blood means that their detection is indicative of tumour progression thereby providing in addition to a prognostic value an evaluation of therapeutic efficacy and early recognition of tumour progression in theranostics. In cancer patients however blood concentrations are very low (=1 CTC/1E9 cells) and current detection strategies are too insensitive, limiting use to prognosis of only those with advanced metastatic cancer. Similarly, problems occur in therapeutics with anti-cancer drug development leading to lengthy and costly trials often preventing access to market. The novel cell separation/Raman analysis technologies plus nucleic acid based molecular characterization of the CanDo platform will provide an accurate CTC count with high throughput and high yield meeting both key societal challenges. Being beyond the state of art it will lead to substantial share gains not just in the high end markets of drug discovery and cancer diagnostics but due to modular technologies also in others. Here we present preliminary DNA hybridization sensing results.
Sparger, E. E.; Pitt, K. A.
2017-01-01
Feline immunodeficiency virus (FIV) infection in cats results in life-long viral persistence and progressive immunopathology. We have previously described a cohort of experimentally infected cats demonstrating a progressive decline of peripheral blood CD4+ T-cell over six years in the face of apparent peripheral viral latency. More recently we reported findings from this same cohort that revealed popliteal lymph node tissue as sites for ongoing viral replication suggesting that tissue reservoirs are important in FIV immunopathogenesis during the late asymptomatic phase of infection. Results reported herein characterize important tissue reservoirs of active viral replication during the late asymptomatic phase by examining biopsied specimens of spleen, mesenteric lymph node (MLN), and intestine from FIV-infected and uninfected control cats. Peripheral blood collected coincident with harvest of tissues demonstrated severe CD4+ T-cell depletion, undetectable plasma viral gag RNA and rarely detectable peripheral blood mononuclear cell (PBMC)-associated viral RNA (vRNA) by real-time PCR. However, vRNA was detectable in all three tissue sites from three of four FIV-infected cats despite the absence of detectable vRNA in plasma. A novel in situ hybridization assay identified B cell lymphoid follicular domains as microanatomical foci of ongoing FIV replication. Additionally, we demonstrated that CD4+ leukocyte depletion in tissues, and CD4+ and CD21+ leukocytes as important cellular reservoirs of ongoing replication. These findings revealed that tissue reservoirs support foci of ongoing viral replication, in spite of highly restricted viral replication in blood. Lentiviral eradication strategies will need address tissue viral reservoirs. PMID:28384338
[Human herpesvirus-6 pneumonitis following autologous peripheral blood stem cell transplantation].
Saitoh, Yuu; Gotoh, Moritaka; Yoshizawa, Seiichiro; Akahane, Daigo; Fujimoto, Hiroaki; Ito, Yoshikazu; Ohyashiki, Kazuma
2018-01-01
A-46-year-old man was diagnosed with peripheral T cell lymphoma, not otherwise specified. He achieved a complete remission after pirarubicin, cyclophosphamide, vincristine, and prednisolone (THP-COP) therapy and successful autologous peripheral blood stem-cell transplantation (AutoSCT). However, 6 months post AutoSCT, he complained of fever. Chest computed tomography of the patient displayed bilateral interstitial pneumonitis. Human herpesvirus-6 (HHV-6) DNA was detected in his bronchoalveolar lavage fluid. Therefore, the patient was confirmed for HHV-6 pneumonitis. The treatment with foscarnet was effective, and no relapse was noticed in the patient. Besides, we have experienced pneumonitis of unknown origin in some patients after autologous or allogeneic stem-cell transplantations. Moreover, most of the above patients were clinically diagnosed using serum or plasma markers. Therefore, examining respiratory symptoms after AutoSCT would enable a more accurate diagnosis as well as treatment of patients with HHV-6 pneumonitis.
AlphaB-crystallin regulates remyelination after peripheral nerve injury
Lim, Erin-Mai F.; Nakanishi, Stan T.; Hoghooghi, Vahid; Eaton, Shane E. A.; Palmer, Alexandra L.; Frederick, Ariana; Stratton, Jo A.; Stykel, Morgan G.; Zochodne, Douglas W.; Biernaskie, Jeffrey; Ousman, Shalina S.
2017-01-01
AlphaB-crystallin (αBC) is a small heat shock protein that is constitutively expressed by peripheral nervous system (PNS) axons and Schwann cells. To determine what role this crystallin plays after peripheral nerve damage, we found that loss of αBC impaired remyelination, which correlated with a reduced presence of myelinating Schwann cells and increased numbers of nonmyelinating Schwann cells. The heat shock protein also seems to regulate the cross-talk between Schwann cells and axons, because expected changes in neuregulin levels and ErbB2 receptor expression after PNS injury were disrupted in the absence of αBC. Such dysregulations led to defects in conduction velocity and motor and sensory functions that could be rescued with therapeutic application of the heat shock protein in vivo. Altogether, these findings show that αBC plays an important role in regulating Wallerian degeneration and remyelination after PNS injury. PMID:28137843
[Peripheral neuropathy and blood-nerve barrier].
Kanda, Takashi
2009-11-01
It is important to know the cellular properties of endoneurial microvascular endothelial cells (PnMECs) and microvascular pericytes which constitute blood-nerve barrier (BNB), since this barrier structure in the peripheral nervous system (PNS) may play pivotal pathophysiological roles in various disorders of the PNS including inflammatory neuropathies (i.e. Guillain-Barré syndrome), vasculitic neuropathies, hereditary neuropathies and diabetic neuropathy. However, in contrast to blood-brain barrier (BBB), very few studies have been directed to BNB and no adequate cell lines originating from BNB had been launched. In our laboratory, we successfully established human immortalized cell lines originating from BNB using temperature-sensitive SV40 large T antigen and the cellular properties of human cell lines are presented in this paper. Human PnMEC cell line showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Human pericyte cell line also possessed tight junction proteins except claudin-5 and secrete various cytokines and growth factors including bFGF, VEGF, GDNF, NGF, BDNF and angiopoietin-1. Co-culture with pericytes or pericyte-conditioned media strengthend barrier properties of PnMEC, suggesting that in the PNS, peripheral nerve pericytes support the BNB function and play the same role of astrocytes in the BBB. Future accumulation of the knowledge concerning the cellular properties of BNB-forming cells will open the door to novel therapeutic strategies for intractable peripheral neuropathies.
Horie, Takashi; Yamazaki, Seiji; Hanada, Sayaka; Kobayashi, Shuzo; Tsukamoto, Tatsuo; Haruna, Tetsuya; Sakaguchi, Katsuhiko; Sakai, Ken; Obara, Hideaki; Morishita, Kiyofumi; Saigo, Kenichi; Shintani, Yoshiaki; Kubo, Kohmei; Hoshino, Junichi; Oda, Teiji; Kaneko, Eiji; Nishikido, Masaharu; Ioji, Tetsuya; Kaneda, Hideaki; Fukushima, Masanori
2018-06-07
The clinical usefulness of peripheral blood (PB) mononuclear cell (MNC) transplantation in patients with peripheral arterial disease (PAD), especially in those with mild-to-moderate severity, has not been fully clarified.Methods and Results:A randomized clinical trial was conducted to evaluate the efficacy and safety of granulocyte colony-stimulating factor (G-CSF)-mobilized PBMNC transplantation in patients with PAD (Fontaine stage II-IV and Rutherford category 1-5) caused by arteriosclerosis obliterans or Buerger's disease. The primary endpoint was progression-free survival (PFS). In total, 107 subjects were enrolled. At baseline, Fontaine stage was II/III in 82 patients and IV in 21, and 54 patients were on hemodialysis. A total of 50 patients had intramuscular transplantation of PBMNC combined with standard of care (SOC) (cell therapy group), and 53 received SOC only (control group). PFS tended to be improved in the cell therapy group than in the control group (P=0.07). PFS in Fontaine stage II/III subgroup was significantly better in the cell therapy group than in the control group. Cell therapy-related adverse events were transient and not serious. In this first randomized, large-scale clinical trial of G-CSF-mobilized PBMNC transplantation, the cell therapy was tolerated by a variety of PAD patients. The PBMNC therapy was significantly effective for inhibiting disease progression in mild-to-moderate PAD.
Savage, Kerry J; Harris, Nancy Lee; Vose, Julie M; Ullrich, Fred; Jaffe, Elaine S; Connors, Joseph M; Rimsza, Lisa; Pileri, Stefano A; Chhanabhai, Mukesh; Gascoyne, Randy D; Armitage, James O; Weisenburger, Dennis D
2008-06-15
The International Peripheral T-Cell Lymphoma Project is a collaborative effort designed to gain better understanding of peripheral T-cell and natural killer (NK)/T-cell lymphomas (PTCLs). A total of 22 institutions in North America, Europe, and Asia submitted clinical and pathologic information on PTCLs diagnosed and treated at their respective centers. Of the 1314 eligible patients, 181 had anaplastic large-cell lymphoma (ALCL; 13.8%) on consensus review: One hundred fifty-nine had systemic ALCL (12.1%) and 22 had primary cutaneous ALCL (1.7%). Patients with anaplastic lymphoma kinase-positive (ALK(+)) ALCL had a superior outcome compared with those with ALK(-) ALCL (5-year failure-free survival [FFS], 60% vs 36%; P = .015; 5-year overall survival [OS], 70% vs 49%; P = .016). However, contrary to prior reports, the 5-year FFS (36% vs 20%; P = .012) and OS (49% vs 32%; P = .032) were superior for ALK(-) ALCL compared with PTCL, not otherwise specified (PTCL-NOS). Patients with primary cutaneous ALCL had a very favorable 5-year OS (90%), but with a propensity to relapse (5-year FFS, 55%). In summary, ALK(-) ALCL should continue to be separated from both ALK(+) ALCL and PTCL-NOS. Although the prognosis of ALK(-) ALCL appears to be better than that for PTCL-NOS, it is still unsatisfactory and better therapies are needed. Primary cutaneous ALCL is associated with an indolent course.
Factors influencing platelet clumping during peripheral blood hematopoietic stem cell collection
Mathur, Gagan; Bell, Sarah L.; Collins, Laura; Nelson, Gail A.; Knudson, C. Michael; Schlueter, Annette J.
2018-01-01
BACKGROUND Platelet clumping is a common occurrence during peripheral blood hematopoietic stem cell (HSC) collection using the Spectra Optia mononuclear cell (MNC) protocol. If clumping persists, it may prevent continuation of the collection and interfere with proper MNC separation. This study is the first to report the incidence of clumping, identify precollection factors associated with platelet clumping, and describe the degree to which platelet clumping interferes with HSC product yield. STUDY DESIGN AND METHODS In total, 258 HSC collections performed on 116 patients using the Optia MNC protocol were reviewed. Collections utilized heparin in anticoagulant citrate dextrose to facilitate large-volume leukapheresis. Linear and logistic regression models were utilized to determine which precollection factors were predictive of platelet clumping and whether clumping was associated with product yield or collection efficiency. RESULTS Platelet clumping was observed in 63% of collections. Multivariable analysis revealed that a lower white blood cell count was an independent predictor of clumping occurrence. Chemotherapy mobilization and a lower peripheral blood CD34+ cell count were predictors of the degree of clumping. Procedures with clumping had higher collection efficiency but lower blood volume processed on average, resulting in no difference in collection yields. Citrate toxicity did not correlate with clumping. CONCLUSION Although platelet clumping is a common technical problem seen during HSC collection, the total CD34+ cell-collection yields were not affected by clumping. WBC count, mobilization approach, and peripheral blood CD34+ cell count can help predict clumping and potentially drive interventions to proactively manage clumping. PMID:28150319
Fadini, Gian Paolo; Coracina, Anna; Baesso, Ilenia; Agostini, Carlo; Tiengo, Antonio; Avogaro, Angelo; de Kreutzenberg, Saula Vigili
2006-09-01
Disruption of the endothelial layer is the first step in the atherogenic process. Experimental studies have shown that endothelial progenitor cells (EPCs) are involved in endothelial homeostasis and repair. Conversely, EPC depletion has been demonstrated in the setting of established atherosclerotic diseases. With this background, we evaluated whether variations in the number of EPCs are associated with subclinical atherosclerosis in healthy subjects. Carotid intima-media thickness (IMT), high-sensitive C-reactive protein (hsCRP), levels of circulating EPCs, and cardiovascular risk were compared in 137 healthy subjects. Six subpopulations of progenitor cells were determined by flow cytometry on the basis of the surface expression of CD34, CD133, and KDR antigens: CD34(+), CD133(+), CD34(+)CD133(+), CD34(+)KDR(+), CD133(+)KDR(+), and CD34(+)CD133(+)KDR(+). Among different antigenic profiles of EPCs, only CD34(+)KDR(+) cells were significantly reduced in subjects with increased IMT. Specifically, CD34(+)KDR(+) cells were inversely correlated with IMT, even after adjustment for hsCRP and 10-year Framingham risk and independently of other cardiovascular parameters. Depletion of CD34(+)KDR(+) EPCs is an independent predictor of early subclinical atherosclerosis in healthy subjects and may provide additional information beyond classic risk factors and inflammatory markers.
Pelus, Louis M; Fukuda, Seiji
2006-08-01
Chemokines direct the movement of leukocytes, including hematopoietic stem and progenitor cells, and can mobilize hematopoietic cells from marrow to peripheral blood where they can be used for transplantation. In this review, we will discuss the stem cell mobilizing activities and mechanisms of action of GRObeta, a CXC chemokine ligand for the CXCR2 receptor. GRObeta rapidly mobilizes short- and long-term repopulating cells in mice and/or monkeys and synergistically enhances mobilization responses when combined with the widely used clinical mobilizer, granulocyte colony-stimulating factor (G-CSF). The hematopoietic graft mobilized by GRObeta contains significantly more CD34(neg), Sca-1+, c-kit+, lineage(neg) (SKL) cells than the graft mobilized by G-CSF. In mice, stem cells mobilized by GRObeta demonstrate a competitive advantage upon long-term repopulation analysis and restore neutrophil and platelet counts significantly faster than cells mobilized by G-CSF. Even greater advantage in repopulation and restoration of hematopoiesis are observed with stem cells mobilized by the combination of GRObeta and G-CSF. GRObeta-mobilized SKL cells demonstrate enhanced adherence to vascular cell adhesion molecule-1 and VCAM(pos) endothelial cells and home more efficiently to bone marrow in vivo. The marrow homing ability of GRObeta-mobilized cells is less dependent on the CXCR4/SDF-1 axis than cells mobilized by G-CSF. The mechanism of mobilization by GRObeta requires active matrix metalloproteinase-9 (MMP-9), which results from release of pro-MMP-9 from peripheral blood, and marrow neutrophils, which alters the stoichiometry between pro-MMP-9 and its inhibitor tissue inhibitor of metalloproteinase-1, resulting in MMP-9 activation. The efficacy and rapid action of GRObeta and lack of proinflammatory activity make it an attractive agent to supplement mobilization by G-CSF. In addition, GRObeta may also have clinical mobilizing efficacy on its own, reducing the overall time and costs associated with peripheral blood stem cell transplantation.
Naive and effector B-cell subtypes are increased in chronic rhinosinusitis with polyps.
Miljkovic, Dijana; Psaltis, Alkis; Wormald, Peter-John; Vreugde, Sarah
2018-01-01
Recent studies demonstrated that B cells and their chemoattractants are elevated in the nasal mucosa of patients with chronic rhinosinusitis (CRS) with nasal polyposis (CRSwNP). However, the presence of naive B cells and of plasmablasts and memory B-cell subsets in the mucosa and periphery of the same patient with CRS is yet to be characterized. Here we sought to quantify naive, plasmablasts, and memory B cells in mucosal tissue and peripheral blood of patients with CRSwNP, patients with CRS without nasal polyps (CRSsNP), and control patients. Polyps, mucosa, and peripheral blood samples were prospectively collected from the patients with CRS and from the non-CRS controls. We used flow cytometry to distinguish among naive, plasmablast, and memory B cells in sinus tissue and peripheral blood. A total of 45 patients were recruited for the study. The patients with CRSwNP had significantly increased mucosal B-cell numbers versus the controls (3.39 ± 4.05% versus 0.39 ± 1.05% of live cells; p < 0.01, Kruskal-Wallis test), which included naive B cells (0.61 ± 0.94 versus 0.11 ± 0.24% of live cells; p < 0.03, Kruskal-Wallis test), plasmablasts (0.06 ± 0.26 versus 0.00 ± 0.00% of live cells; p < 0.055, Kruskal-Wallis test), and memory B cells (0.62 ± 1.26 versus 0.05 ± 0.15% of live cells; p < 0.02, Kruskal-Wallis test). Our study identified increased frequencies of different B-cell subtypes in the mucosa of patients with CRSwNP but not in the peripheral blood. We also found that patients with CRSwNP had significantly increased B-cell subtypes compared with the patients with CRSsNP and the controls. These results implied a potential role for mucosal B cells in the ongoing inflammation in patients with CRSwNP.
Naive and effector B-cell subtypes are increased in chronic rhinosinusitis with polyps
Miljkovic, Dijana; Psaltis, Alkis; Wormald, Peter-John
2018-01-01
Background: Recent studies demonstrated that B cells and their chemoattractants are elevated in the nasal mucosa of patients with chronic rhinosinusitis (CRS) with nasal polyposis (CRSwNP). However, the presence of naive B cells and of plasmablasts and memory B-cell subsets in the mucosa and periphery of the same patient with CRS is yet to be characterized. Objective: Here we sought to quantify naive, plasmablasts, and memory B cells in mucosal tissue and peripheral blood of patients with CRSwNP, patients with CRS without nasal polyps (CRSsNP), and control patients. Methods: Polyps, mucosa, and peripheral blood samples were prospectively collected from the patients with CRS and from the non-CRS controls. We used flow cytometry to distinguish among naive, plasmablast, and memory B cells in sinus tissue and peripheral blood. Results: A total of 45 patients were recruited for the study. The patients with CRSwNP had significantly increased mucosal B-cell numbers versus the controls (3.39 ± 4.05% versus 0.39 ± 1.05% of live cells; p < 0.01, Kruskal-Wallis test), which included naive B cells (0.61 ± 0.94 versus 0.11 ± 0.24% of live cells; p < 0.03, Kruskal-Wallis test), plasmablasts (0.06 ± 0.26 versus 0.00 ± 0.00% of live cells; p < 0.055, Kruskal-Wallis test), and memory B cells (0.62 ± 1.26 versus 0.05 ± 0.15% of live cells; p < 0.02, Kruskal-Wallis test). Conclusion: Our study identified increased frequencies of different B-cell subtypes in the mucosa of patients with CRSwNP but not in the peripheral blood. We also found that patients with CRSwNP had significantly increased B-cell subtypes compared with the patients with CRSsNP and the controls. These results implied a potential role for mucosal B cells in the ongoing inflammation in patients with CRSwNP. PMID:29336281
Sztarker, Julieta; Strausfeld, Nicholas; Andrew, David; Tomsic, Daniel
2014-01-01
Crustaceans are among the most extensively distributed arthropods, occupying many ecologies and manifesting a great variety of compound eye optics; but in comparison with insects, relatively little is known about the organization and neuronal morphologies of their underlying optic neuropils. Most studies, which have been limited to descriptions of the first neuropil - the lamina - suggest that different species have approximately comparable cell types. However, such studies have been limited with regard to the types of neurons they identify and most omit their topographic relationships. It is also uncertain whether similarities, such as they are, are independent of visual ecologies. The present account describes and compares the morphologies and dispositions of monopolar and other efferent neurons as well as the organization of tangential and smaller centrifugal neurons in two grapsoid crabs, one from the S. Atlantic, the other from the N. Pacific. Because these species occupy significantly disparate ecologies we ask whether this might be reflected in differences of cell arrangements within the most peripheral levels of the visual system. The present study identifies such differences with respect to the organization of centrifugal neurons to the lamina. We also identify in both species neurons in the lamina that have hitherto not been identified in crustaceans and we draw specific comparisons between the layered organization of the grapsoid lamina and layered laminas of insects. PMID:19123235
A Novel Growing Device Inspired by Plant Root Soil Penetration Behaviors
Sadeghi, Ali; Tonazzini, Alice; Popova, Liyana; Mazzolai, Barbara
2014-01-01
Moving in an unstructured environment such as soil requires approaches that are constrained by the physics of this complex medium and can ensure energy efficiency and minimize friction while exploring and searching. Among living organisms, plants are the most efficient at soil exploration, and their roots show remarkable abilities that can be exploited in artificial systems. Energy efficiency and friction reduction are assured by a growth process wherein new cells are added at the root apex by mitosis while mature cells of the root remain stationary and in contact with the soil. We propose a new concept of root-like growing robots that is inspired by these plant root features. The device penetrates soil and develops its own structure using an additive layering technique: each layer of new material is deposited adjacent to the tip of the device. This deposition produces both a motive force at the tip and a hollow tubular structure that extends to the surface of the soil and is strongly anchored to the soil. The addition of material at the tip area facilitates soil penetration by omitting peripheral friction and thus decreasing the energy consumption down to 70% comparing with penetration by pushing into the soil from the base of the penetration system. The tubular structure provides a path for delivering materials and energy to the tip of the system and for collecting information for exploratory tasks. PMID:24587244
Sztarker, Julieta; Strausfeld, Nicholas; Andrew, David; Tomsic, Daniel
2009-03-10
Crustaceans are among the most extensively distributed arthropods, occupying many ecologies and manifesting a great variety of compound eye optics; but in comparison with insects, relatively little is known about the organization and neuronal morphologies of their underlying optic neuropils. Most studies, which have been limited to descriptions of the first neuropil--the lamina--suggest that different species have approximately comparable cell types. However, such studies have been limited with regard to the types of neurons they identify and most omit their topographic relationships. It is also uncertain whether similarities, such as they are, are independent of visual ecologies. The present account describes and compares the morphologies and dispositions of monopolar and other efferent neurons as well as the organization of tangential and smaller centrifugal neurons in two grapsoid crabs, one from the South Atlantic, the other from the North Pacific. Because these species occupy significantly disparate ecologies we ask whether this might be reflected in differences of cell arrangements within the most peripheral levels of the visual system. The present study identifies such differences with respect to the organization of centrifugal neurons to the lamina. We also identify in both species neurons in the lamina that have hitherto not been identified in crustaceans and we draw specific comparisons between the layered organization of the grapsoid lamina and layered laminas of insects.
Zhang, Sui; Wang, Dachun; Estrov, Zeev; Raj, Sean; Willerson, James T; Yeh, Edward T H
2004-12-21
Adult human peripheral blood CD34-positive (CD34+) cells appear to transform into cardiomyocytes in the injured hearts of severe combined immunodeficient mice. It remains unclear, however, whether the apparent transformation is the result of transdifferentiation of the donor stem cells or of fusion of the donor cell with the cardiomyocyte of the recipients. We performed flow cytometry analyses of cells isolated from the hearts of mice that received human CD34+ cells. Human HLA-ABC antigen and cardiac troponin T or Nkx2.5 were used as markers for cardiomyocytes derived from human CD34+ cells, and HLA-ABC and VE-cadherin were used to identify the transformed endothelial cells. The double-positive cells were collected and interphase fluorescence in situ hybridization was used to detect the expression of human and mouse X chromosomes in these cells. We found that 73.3% of nuclei derived from HLA+ and troponin T+ or Nkx2.5+ cardiomyocytes contain both human and mouse X chromosomes and 23.7% contain only human X chromosome. In contrast, the nuclei of HLA-, troponin T+ cells contain only mouse X chromosomes. Furthermore, 97.3% of endothelial cells derived from CD34+ cells contained human X chromosome only. Thus, both cell fusion and transdifferentiation may account for the transformation of peripheral blood CD34+ cells into cardiomyocytes in vivo.
NASA Technical Reports Server (NTRS)
Purcell, I. M.; Perachio, A. A.
1997-01-01
Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation areas of efferent terminal fields display a trend from smallest to largest for the central, peripheral, and planum types, respectively. Neurons that innervate the central zone of the crista do not extend into the peripheral or planum regions. Conversely, those neurons with terminal fields in the peripheral or planum regions do not innervate the central zone of the sensory neuroepithelium. The central zone of the crista is innervated preferentially by efferent neurons with cell bodies located in the ipsilateral group e. The peripheral and planum zones of the crista are innervated preferentially by efferent neurons with cell bodies located in the contralateral group e. A model incorporating our anatomic observations is presented describing an ipsilateral closed-loop feedback between ipsilateral efferent neurons and the periphery and an open-loop feed-forward innervation from contralateral efferent neurons. A possible role for the vestibular efferent neurons in the modulation of semicircular canal afferent response dynamics is proposed.
Huang, Liangliang; Sun, Zhen; Zeng, Wen; Huang, Jinghui; Luo, Zhuojing
2017-01-01
Peripheral nerve repair is still challenging for surgeons. Autologous nerve transplantation is the acknowledged therapy; however, its application is limited by the scarcity of available donor nerves, donor area morbidity, and neuroma formation. Biomaterials for engineering artificial nerves, particularly materials combined with supportive cells, display remarkable promising prospects. Schwann cells (SCs) are the absorbing seeding cells in peripheral nerve engineering repair; however, the attenuated biologic activity restricts their application. In this study, a magnetic nanocomposite scaffold fabricated from magnetic nanoparticles and a biodegradable chitosan–glycerophosphate polymer was made. Its structure was evaluated and characterized. The combined effects of magnetic scaffold (MG) with an applied magnetic field (MF) on the viability of SCs and peripheral nerve injury repair were investigated. The magnetic nanocomposite scaffold showed tunable magnetization and degradation rate. The MGs synergized with the applied MF to enhance the viability of SCs after transplantation. Furthermore, nerve regeneration and functional recovery were promoted by the synergism of SCs-loaded MGs and MF. Based on the current findings, the combined application of MGs and SCs with applied MF is a promising therapy for the engineering of peripheral nerve regeneration. PMID:29123395
Multiloculated solitary (unicameral) bone cyst in a young dog.
Roode, Sarah C; Shive, Heather R; Hoorntje, Willemijn; Bernard, Jennifer; Stowe, Devorah M; Pool, Roy R; Grindem, Carol B
2018-05-21
A 20-month-old female spayed Staffordshire Terrier (22.3 kg) presented to the Orthopedic Surgery Service at North Carolina State University Veterinary Teaching Hospital for evaluation of a 6-week history of toe-touching to nonweight-bearing lameness in the right hind limb. Radiographs of the right stifle revealed a multiloculated lytic lesion of the distal femur, with a large open lytic zone centrally, numerous osseous septations peripherally, and focal areas of cortical thinning and loss. An aspirate of the right distal femoral lesion yielded mildly cloudy serosanguineous fluid. Cytologic examination of the fluid revealed a pleomorphic population of discrete cells that exhibited marked anisocytosis and anisokaryosis and a variable nucleus to cytoplasm (N:C) ratio, which were interpreted as probable neoplastic cells, with few macrophages, and evidence of hemorrhage. Given the clinical signs of pain, lesion size, and concern for malignant neoplasia, amputation of the right hind limb was performed. Histologically, the lesion had undulating walls 1-3 mm thick with a continuous outer layer of dense fibrous tissue and an inner layer composed of reactive cancellous bone with no cortical compacta remaining. Remnants of thin fibrous or fibro-osseous septa projected from the bony wall into the cyst lumen. The final histologic diagnosis was a benign multiloculated solitary (unicameral) bone cyst of the distal right femur. Based on the histopathologic findings, it was speculated that the cells identified on cytology were a mixture of developing osteoclasts, osteoblasts, endothelial, and stromal cells. This is the first report describing the cytologic examination of a solitary bone cyst in veterinary medicine. © 2018 American Society for Veterinary Clinical Pathology.
Hwang, Ji-Young; Cha, Eun Suk; Lee, Jee Eun; Sung, Sun Hee
2013-01-01
Post-transplantation lymphoproliferative disorders (PTLDs) are a heterogeneous group of diseases that represent serious complications following immunosuppressive therapy for solid organ or hematopoietic-cell recipients. In contrast to B-cell PTLD, T-cell PTLD is less frequent and is not usually associated with Epstein Barr Virus infection. Moreover, to our knowledge, isolated T-cell PTLD involving the breast is extremely rare and this condition has never been reported previously in the literature. Herein, we report a rare case of isolated T-cell PTLD of the breast that occurred after a patient had been treated for allogeneic peripheral blood stem cell transplantation due to acute myeloblastic leukemia.
Different effects of astrocytes and Schwann cells on regenerating retinal axons.
Campbell, Gregor; Kitching, Juliet; Anderson, Patrick N; Lieberman, A Robert
2003-11-14
Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.
Rodd, Annabelle L.; Ververis, Katherine; Karagiannis, Tom C.
2012-01-01
Peripheral T-cell lymphoma (PTCL) represents a relatively rare group of heterogeneous non-Hodgkin lymphomas, with generally poor prognosis. Historically, there has been a lack of consensus regarding appropriate therapeutic measures for the disease, with conventional frontline chemotherapies being utilized in most cases. Following promising results obtained in 2009, the methotrexate analogue, pralatrexate, became the first drug to gain US FDA approval for the treatment of refractory PTCL. This antimetabolite was designed to have a higher affinity for reduced folate carrier (RFC) and folylpolyglutamate synthetase (FPGS). RFC is the principal transporter for cell entrance of folates and antifolates. Once inside the cell, pralatrexate is efficiently polyglutamated by FPGS. Pralatrexate has demonstrated varying degrees of efficacy in peripheral T-cell lymphoma, with response rates differing between the multiple subtypes of the disease. While phase III studies are still to be completed, early clinical trials indicate that pralatrexate is promising new therapeutic for PTCL. PMID:23032692
Rodd, Annabelle L; Ververis, Katherine; Karagiannis, Tom C
2012-01-01
Peripheral T-cell lymphoma (PTCL) represents a relatively rare group of heterogeneous non-Hodgkin lymphomas, with generally poor prognosis. Historically, there has been a lack of consensus regarding appropriate therapeutic measures for the disease, with conventional frontline chemotherapies being utilized in most cases. Following promising results obtained in 2009, the methotrexate analogue, pralatrexate, became the first drug to gain US FDA approval for the treatment of refractory PTCL. This antimetabolite was designed to have a higher affinity for reduced folate carrier (RFC) and folylpolyglutamate synthetase (FPGS). RFC is the principal transporter for cell entrance of folates and antifolates. Once inside the cell, pralatrexate is efficiently polyglutamated by FPGS. Pralatrexate has demonstrated varying degrees of efficacy in peripheral T-cell lymphoma, with response rates differing between the multiple subtypes of the disease. While phase III studies are still to be completed, early clinical trials indicate that pralatrexate is promising new therapeutic for PTCL.
Sippel, Trisha R; White, Jason; Nag, Kamalika; Tsvankin, Vadim; Klaassen, Marci; Kleinschmidt-DeMasters, B K; Waziri, Allen
2011-11-15
The source of glioblastoma (GBM)-associated immunosuppression remains multifactorial. We sought to clarify and therapeutically target myeloid cell-derived peripheral immunosuppression in patients with GBM. Direct ex vivo T-cell function, serum Arginase I (ArgI) levels, and circulating myeloid lineage populations were compared between patients with GBM and normal donors or patients with other intracranial tumors. Immunofunctional assays were conducted using bulk and sorted cell populations to explore the potential transfer of myeloid cell-mediated immunosuppression and to identify a potential mechanism for these effects. ArgI-mediated immunosuppression was therapeutically targeted in vitro through pharmacologic inhibition or arginine supplementation. We identified a significantly expanded population of circulating, degranulated neutrophils associated with elevated levels of serum ArgI and decreased T-cell CD3ζ expression within peripheral blood from patients with GBM. Sorted CD11b(+) cells from patients with GBM were found to markedly suppress normal donor T-cell function in coculture, and media harvested from mitogen-stimulated GBM peripheral blood mononuclear cell (PBMC) or GBM-associated mixed lymphoid reactions showed ArgI levels that were significantly higher than controls. Critically, T-cell suppression in both settings could be completely reversed through pharmacologic ArgI inhibition or with arginine supplementation. These data indicate that peripheral cellular immunosuppression in patients with GBM is associated with neutrophil degranulation and elevated levels of circulating ArgI, and that T-cell function can be restored in these individuals by targeting ArgI. These data identify a novel pathway of GBM-mediated suppression of cellular immunity and offer a potential therapeutic window for improving antitumor immunity in affected patients.
Malignant and Tuberculous Pleural Effusions: Immunophenotypic Cellular Characterization
de Aguiar, Lucia Maria Zanatta; Antonangelo, Leila; Vargas, Francisco S.; Zerbini, Maria Cláudia Nogueira; Sales, Maria Mirtes; Uip, David E.; Saldiva, Paulo Hilário Nascimento
2008-01-01
INTRODUCTION AND OBJECTIVES Tuberculosis and cancer are the main causes of pleural effusion. Pleural involvement is associated with migration of immune cells to the pleural cavity. We sought to characterize the immunophenotype of leukocytes in the pleural effusion and peripheral blood of patients with tuberculosis or malignancy. METHODS Thirty patients with tuberculosis (14) or malignancy (16) were studied. A control group included 20 healthy blood donors. RESULTS Malignant phycoerythrin pleural effusions showed higher percentages of CD3, CD4, CD3CD45RO, and CD20CD25 lymphocytes and lower percentages of CD3CD25 and CD20HLA-DR when compared to PB lymphocytes. Compared to PB, tuberculous effusions had a higher percentage of lymphocytes that co-expressed CD3, CD4, CD3CD45RO, CD3TCRαβ, CD3CD28, and CD20 and a lower percentage of CD14, CD8 and CD3TCRγδ-positive lymphocytes. Malignant effusions presented higher expression of CD14 whereas tuberculous effusions had higher expression of CD3 and CD3CD95L. Peripheral blood cells from tuberculosis patients showed higher expression of CD14, CD20CD25 and CD3CD95L. Compared with the control cells, tuberculosis and cancer peripheral blood cells presented a lower percentage of CD3CD4 and CD3CD28-positive cells as well as a higher percentage of CD3CD8, CD3CD25 and CD3CD80-positive cells. CONCLUSIONS Tuberculous and malignant peripheral blood is enriched with lymphocytes with a helper/inducer T cell phenotype, which are mainly of memory cells. CD14-positive cells were more frequently found in malignant effusions, while CD3-positive cells expressing Fas ligand were more frequently found in tuberculous effusions. PMID:18925324
Assessment of Normal Variability in Peripheral Blood Gene Expression
Campbell, Catherine; Vernon, Suzanne D.; Karem, Kevin L.; ...
2002-01-01
Peripheral blood is representative of many systemic processes and is an ideal sample for expression profiling of diseases that have no known or accessible lesion. Peripheral blood is a complex mixture of cell types and some differences in peripheral blood gene expression may reflect the timing of sample collection rather than an underlying disease process. For this reason, it is important to assess study design factors that may cause variability in gene expression not related to what is being analyzed. Variation in the gene expression of circulating peripheral blood mononuclear cells (PBMCs) from three healthy volunteers sampled three times onemore » day each week for one month was examined for 1,176 genes printed on filter arrays. Less than 1% of the genes showed any variation in expression that was related to the time of collection, and none of the changes were noted in more than one individual. These results suggest that observed variation was due to experimental variability.« less
Restrepo, B I; Aguilar, M I; Melby, P C; Teale, J M
2001-10-01
In neurocysticercosis (NCC), it is thought that the long-term survival of the parasite within the human brain is due in part to the ability of the cestode to suppress the local immune response. When the parasite dies, the immunosuppression is apparently lost and a strong local inflammatory response then develops. In contrast, little is known about the immunologic response that may occur in the peripheral immune system of these patients. In this study, the status of the peripheral (extracerebral) cellular and humoral response was evaluated in patients with a history of NCC. The in vitro proliferation of peripheral blood mononuclear cells to mitogens and foreign antigens was similar in patients and controls. Importantly, a substantive response was elicited by two Taenia solium metacestode antigens. In addition, 8 of 10 patients had a detectable humoral response to the antigenic glycoproteins of the cestode. Considering both the cellular and humoral response, all of the patients with NCC presented an active peripheral immunity.
Bilateral foveal retinoschisis accompanying unilateral peripheral retinoschisis
Kocak, Nilufer; Ozturk, Taylan A; Kaynak, Suleyman
2014-01-01
X-linked juvenile retinoschisis is a rare hereditary retinal disease characterized by a tangential splitting of the neurosensory retina which may cause early-onset visual impairment. Existence of the retinal neurosensory layer splitting on cross-sectional images of optical coherance tomography (OCT) and the absence of leakage on fluorescein angiography (FA) help confirming the diagnosis. Such diagnostic tests are also helpful in determining the management of the disease. However, most of the retinoschisis cavities remain stable and rarely extend to the posterior pole, many authors suggest laser prophylaxis to avoid the potential risk of retinal detachment due to holes in the outer retinal layer. Herein, we report a case with bilateral foveal retinoschisis accompanying unilateral peripheral retinoschisis who was evaluated with detailed ophthalmologic examination. Visual acuity, fundoscopy, OCT, and FA remained stable in the second year of follow-up after prophylactic argon laser treatment. PMID:23571248
Multipotent progenitor cells are present in human peripheral blood.
Cesselli, Daniela; Beltrami, Antonio Paolo; Rigo, Silvia; Bergamin, Natascha; D'Aurizio, Federica; Verardo, Roberto; Piazza, Silvano; Klaric, Enio; Fanin, Renato; Toffoletto, Barbara; Marzinotto, Stefania; Mariuzzi, Laura; Finato, Nicoletta; Pandolfi, Maura; Leri, Annarosa; Schneider, Claudio; Beltrami, Carlo Alberto; Anversa, Piero
2009-05-22
To determine whether the peripheral blood in humans contains a population of multipotent progenitor cells (MPCs), products of leukapheresis were obtained from healthy donor volunteers following the administration of granulocyte colony-stimulating factor. Small clusters of adherent proliferating cells were collected, and these cells continued to divide up to 40 population doublings without reaching replicative senescence and growth arrest. MPCs were positive for the transcription factors Nanog, Oct3/4, Sox2, c-Myc, and Klf4 and expressed several antigens characteristic of mesenchymal stem cells. However, they were negative for markers of hematopoietic stem/progenitor cells and bone marrow cell lineages. MPCs had a cloning efficiency of approximately 3%, and following their expansion, retained a highly immature phenotype. Under permissive culture conditions, MPCs differentiated into neurons, glial cells, hepatocytes, cardiomyocytes, endothelial cells, and osteoblasts. Moreover, the gene expression profile of MPCs partially overlapped with that of neural and embryonic stem cells, further demonstrating their primitive, uncommitted phenotype. Following subcutaneous transplantation in nonimmunosuppressed mice, MPCs migrated to distant organs and integrated structurally and functionally within the new tissue, acquiring the identity of resident parenchymal cells. In conclusion, undifferentiated cells with properties of embryonic stem cells can be isolated and expanded from human peripheral blood after granulocyte colony-stimulating factor administration. This cell pool may constitute a unique source of autologous cells with critical clinical import.
Uptake of Fluorescent Gentamicin by Peripheral Vestibular Cells after Systemic Administration
Liu, Jianping; Kachelmeier, Allan; Dai, Chunfu; Li, Hongzhe; Steyger, Peter S.
2015-01-01
Objective In addition to cochleotoxicity, systemic aminoglycoside pharmacotherapy causes vestibulotoxicity resulting in imbalance and visual dysfunction. The underlying trafficking routes of systemically-administered aminoglycosides from the vasculature to the vestibular sensory hair cells are largely unknown. We investigated the trafficking of systemically-administered gentamicin into the peripheral vestibular system in C56Bl/6 mice using fluorescence-tagged gentamicin (gentamicin-Texas-Red, GTTR) imaged by scanning laser confocal microscopy to determine the cellular distribution and intensity of GTTR fluorescence in the three semicircular canal cristae, utricular, and saccular maculae at 5 time points over 4 hours. Results Low intensity GTTR fluorescence was detected at 0.5 hours as both discrete puncta and diffuse cytoplasmic fluorescence. The intensity of cytoplasmic fluorescence peaked at 3 hours, while punctate fluorescence was plateaued after 3 hours. At 0.5 and 1 hour, higher levels of diffuse GTTR fluorescence were present in transitional cells compared to hair cells and supporting cells. Sensory hair cells typically exhibited only diffuse cytoplasmic fluorescence at all time-points up to 4 hours in this study. In contrast, non-sensory cells rapidly exhibited both intense fluorescent puncta and weaker, diffuse fluorescence throughout the cytosol. The numbers and size of fluorescent puncta in dark cells and transitional cells increased over time. There is no preferential GTTR uptake by the five peripheral vestibular organs’ sensory cells. Control vestibular tissues exposed to Dulbecco’s phosphate-buffered saline or hydrolyzed Texas Red had negligible fluorescence. Conclusions All peripheral vestibular cells rapidly take up systemically-administered GTTR, reaching peak intensity 3 hours after injection. Sensory hair cells exhibited only diffuse fluorescence, while non-sensory cells displayed both diffuse and punctate fluorescence. Transitional cells may act as a primary pathway for trafficking of systemic GTTR from the vasculature to endolymph prior to entering hair cells. PMID:25793391
Effects of long-term cryopreservation on peripheral blood progenitor cells.
Vosganian, Gregory S; Waalen, Jill; Kim, Kevin; Jhatakia, Sejal; Schram, Ethan; Lee, Tracey; Riddell, Dan; Mason, James R
2012-11-01
The long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA). We randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture. An age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity. Cryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34(+) cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers.
Mobilization of Hematopoietic Stem and Progenitor Cells Using Inhibitors of CXCR4 and VLA-4
Rettig, Michael P.; Ansstas, George; DiPersio, John F.
2012-01-01
Successful hematopoietic stem cell transplant (HSCT) requires the infusion of a sufficient number of hematopoietic stem/progenitor cells (HSPCs) that are capable of homing to the bone marrow cavity and regenerating durable trilineage hematopoiesis in a timely fashion. Stem cells harvested from peripheral blood are the most commonly used graft source in HSCT. While granulocyte colony-stimulating factor (G-CSF) is the most frequently used agent for stem cell mobilization, the use of G-CSF alone results in suboptimal stem cell yields in a significant proportion of patients. Both the chemokine receptor CXCR4 and the integrin α4β1 (VLA-4) play important roles in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of CXCR4 or VLA-4 with their ligands results in the rapid and reversible mobilization of hematopoietic stem cells into the peripheral circulation and is synergistic when combined with G-CSF. In this review we discuss the development of small molecule CXCR4 and VLA-4 inhibitors and how they may improve the utility and convenience of peripheral blood stem cell transplantation. PMID:21886173
Thymus function in drug-induced lupus.
Rubin, R L; Salomon, D R; Guerrero, R S
2001-01-01
Autoimmunity develops when a lupus-inducing drug is introduced into the thymus of normal mice, but the relevance of this model to the human disorder is unclear in part because it is widely assumed that the thymus is non-functional in the adult. We compared thymus function in 10 patients with symptomatic procainamide-induced lupus to that in 13 asymptomatic patients who only developed drug-induced autoantibodies. T cell output from the thymus was quantified using a competitive polymerase chain reaction that detects T cell receptor DNA excision circles in peripheral blood lymphocytes. Despite the advanced age of the patient population under study, newly generated T cells were detected in all subjects. Although there was no overall quantitative difference between the symptomatic and asymptomatic patients, we found a positive correlation between the level of T cell receptor excision circles in peripheral lymphocytes and serum IgG anti-chromatin antibody activity in patients with drug-induced lupus. The association between autoantibodies and nascent peripheral T cells supports the requirement for T cells in autoantibody production. Our observations are consistent with findings in mice in which autoreactive T cells derived from drug-induced abnormalities in T cell development in the thymus.
A crucial role for B cells in neuroinvasive scrapie.
Brandner, S; Klein, M A; Aguzzi, A
1999-02-01
Although prions are most efficiently propagated via intracerebral inoculation, peripheral administration has caused kuru [Gajdusek et al, 1966], iatrogenic Creutzfeldt-Jakob disease (CJD) [Gibbs et al, 1997], bovine spongiform encephalitis (BSE), and new variant CJD [Hill et al, 1997; Bruce et al, 1997]. Neurological disease after peripheral inoculation depends on prion expansion within cells of the lymphoreticular system (LRS) [Lasmezas et al. 1996; Wilesmith et al, 1992]. In order to identify the nature of the latter cells, we inoculated a panel of immune deficient mice with prions intraperitoneally. While defects affecting only T lymphocytes had no apparent effect, all mutations affecting differentiation and responses of B lymphocytes prevented development of clinical scrapie. Since absence of B cells and of antibodies correlates with severe defects in follicular dendritic cells (FDCs), the lack of any of these three components may prevent clinical scrapie. Yet, mice expressing immunoglobulins exclusively of the M subclass without detectable specificity for PrPc, and mice with differentiated B cells but lacking functional FDCs, developed scrapie after peripheral inoculation: therefore, differentiated B cells appear to play a crucial role in neuroinvasion of scrapie regardless of B-cell receptor specificity.
Maddox, A M; Freireich, E J; Keating, M J; Haddox, M K
1988-03-01
Nine patients with hematological malignancies were treated with difluoromethylornithine and methylglyoxal bis(guanylhydrazone). The number of circulating blast cells decreased in all of the patients treated with DFMO and MGBG for longer than 1 wk. Morphological evidence of myeloid maturation was evident in four patients with leukemia and the circulating M Protein decreased in one patient with multiple myeloma. The polyamine content of the mononuclear cells in both the peripheral blood and bone marrow was transiently increased after the initial MGBG dose. During administration of DFMO decreases were achieved in the peripheral blood mononuclear cell putrescine levels in 7 patients, spermidine levels in 5 patients, and spermine levels in 4 patients. Alterations in bone marrow mononuclear cell polyamine levels were similar to those which occurred in the peripheral cells. An average of 9 days of DFMO treatment was required to lower mononuclear cell polyamine levels. Three of the 4 evaluable patients receiving multiple MGBG doses had an increased mononuclear cell content of MGBG after DFMO pretreatment. Enhancement of cellular MGBG levels was not directly correlated to the degree of cellular polyamine depletion.
Hayashi, Tomayoshi; Sano, Hisao; Egashira, Ryoko; Tabata, Kazuhiro; Tanaka, Tomonori; Kashima, Yukio; Nunomura, Sayuri
2013-01-01
Background. Recent agents, that is, pemetrexed and bevacizumab, have shown reproductive negative association between squamous histology. According to these agents' effectiveness, ruling out of the squamous histology is a significant issue for surgical pathologists. Several articles have proposed the distinction of peripheral type from central type of squamous cell carcinoma (SqCC) due to its similarity to adenocarcinoma, although little evidence to support the difference between these two types was published. In this study, we compared the clinicopathologic findings of central and peripheral pulmonary SqCCs. Material and Methods. 15 central and 35 peripheral types of SqCC from 2005 to 2010 were examined. Twelve morphological features were scored based on their intensity in the original H&E slides, and then, tissue microarray holding triplicated cores from 43 cases was immunohistochemically examined for cytokeratin (CK)7, CK14, TTF-1, Napsin A, p63, CK34βE12, CK5/6, and p53. Result. Most of the histological findings did not separate central and peripheral SqCCs; only the presence of emphysema, interstitial fibrosis, and entrapped pneumocytes inside the tumor showed statistic predominance in peripheral SqCC. This is the first immunophenotypic research in the central and peripheral types of SqCC. PMID:24069587
Vascular wall progenitor cells in health and disease.
Psaltis, Peter J; Simari, Robert D
2015-04-10
The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease. © 2015 American Heart Association, Inc.
2016-07-01
AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft With Autologous Bone Marrow Stem Cells To Improve...5b. GRANT NUMBER W81XWH-15-2-0026 CClinical Evaluation of Decellularized Nerve Allograft With Autologous Bone Marrow Stem Cells To Improve...co- treatments of a commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with
Kaminsky, Lauren W; Sei, Janet J; Parekh, Nikhil J; Davies, Michael L; Reider, Irene E; Krouse, Tracy E; Norbury, Christopher C
2015-10-01
Viruses that spread systemically from a peripheral site of infection cause morbidity and mortality in the human population. Innate myeloid cells, including monocytes, macrophages, monocyte-derived dendritic cells (mo-DC), and dendritic cells (DC), respond early during viral infection to control viral replication, reducing virus spread from the peripheral site. Ectromelia virus (ECTV), an orthopoxvirus that naturally infects the mouse, spreads systemically from the peripheral site of infection and results in death of susceptible mice. While phagocytic cells have a requisite role in the response to ECTV, the requirement for individual myeloid cell populations during acute immune responses to peripheral viral infection is unclear. In this study, a variety of myeloid-specific depletion methods were used to dissect the roles of individual myeloid cell subsets in the survival of ECTV infection. We showed that DC are the primary producers of type I interferons (T1-IFN), requisite cytokines for survival, following ECTV infection. DC, but not macrophages, monocytes, or granulocytes, were required for control of the virus and survival of mice following ECTV infection. Depletion of either plasmacytoid DC (pDC) alone or the lymphoid-resident DC subset (CD8α(+) DC) alone did not confer lethal susceptibility to ECTV. However, the function of at least one of the pDC or CD8α(+) DC subsets is required for survival of ECTV infection, as mice depleted of both populations were susceptible to ECTV challenge. The presence of at least one of these DC subsets is sufficient for cytokine production that reduces ECTV replication and virus spread, facilitating survival following infection. Prior to the eradication of variola virus, the orthopoxvirus that causes smallpox, one-third of infected people succumbed to the disease. Following successful eradication of smallpox, vaccination rates with the smallpox vaccine have significantly dropped. There is now an increasing incidence of zoonotic orthopoxvirus infections for which there are no effective treatments. Moreover, the safety of the smallpox vaccine is of great concern, as complications may arise, resulting in morbidity. Like many viruses that cause significant human diseases, orthopoxviruses spread from a peripheral site of infection to become systemic. This study elucidates the early requirement for innate immune cells in controlling a peripheral infection with ECTV, the causative agent of mousepox. We report that there is redundancy in the function of two innate immune cell subsets in controlling virus spread early during infection. The viral control mediated by these cell subsets presents a potential target for therapies and rational vaccine design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage
Thomas, Susan N.; Rutkowski, Joseph M.; Pasquier, Miriella; Kuan, Emma L.; Alitalo, Kari; Randolph, Gwendalyn J.; Swartz, Melody A.
2012-01-01
Lymphatic vessels transport interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs), yet the contribution of peripheral lymphatic drainage to adaptive immunity remains poorly understood. We examined immune responses to dermal vaccination and contact hypersensitivity (CHS) challenge in K14-VEGFR-3-Ig mice, which lack dermal lymphatic capillaries and experience markedly depressed transport of solutes and dendritic cells from the skin to draining LNs. In response to dermal immunization, K14-VEGFR-3-Ig mice produced lower antibody titers. In contrast, although delayed, T cell responses were robust after 21 days, including high levels of antigen-specific CD8+ T cells and production of IFN-γ, IL-4 and IL-10 upon restimulation. T cell-mediated CHS responses were strong in K14-VEGFR-3-Ig mice, but importantly, their ability to induce CHS tolerance in the skin was impaired. Additionally, one-year-old mice displayed multiple signs of autoimmunity. These data suggest that lymphatic drainage plays more important roles in regulating humoral immunity and peripheral tolerance than in effector T cell immunity. PMID:22844119
Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke
2018-03-29
Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.
Lotti, L V; Lanfrancone, L; Migliaccio, E; Zompetta, C; Pelicci, G; Salcini, A E; Falini, B; Pelicci, P G; Torrisi, M R
1996-01-01
The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein. PMID:8628261
Karahan, G E; de Vaal, Y J H; Krop, J; Wehmeier, C; Roelen, D L; Claas, F H J; Heidt, S
2017-10-01
Humoral responses against mismatched donor HLA are routinely measured as serum HLA antibodies, which are mainly produced by bone marrow-residing plasma cells. Individuals with a history of alloimmunization but lacking serum antibodies may harbor circulating dormant memory B cells, which may rapidly become plasma cells on antigen reencounter. Currently available methods to detect HLA-specific memory B cells are scarce and insufficient in quantifying the complete donor-specific memory B cell response due to their dependence on synthetic HLA molecules. We present a highly sensitive and specific tool for quantifying donor-specific memory B cells in peripheral blood of individuals using cell lysates covering the complete HLA class I and class II repertoire of an individual. Using this enzyme-linked immunospot (ELISpot) assay, we found a median frequency of 31 HLA class I and 89 HLA class II-specific memory B cells per million IgG-producing cells directed at paternal HLA in peripheral blood samples from women (n = 22) with a history of pregnancy, using cell lysates from spouses. The donor-specific memory B cell ELISpot can be used in HLA diagnostic laboratories as a cross-match assay to quantify donor-specific memory B cells in patients with a history of sensitizing events. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Zhang, Qiu Hua; Wu, Chun Fu; Duan, Lian; Yang, Jing Yu
2008-01-01
Cyclophosphamide (CP), commonly used anti-cancer, induces oxidative stress and is cytotoxic to normal cells. It is very important to choice the protective agent combined CP to reduce the side effects in cancer treatment. Ginsenosides are biological active constituents of Panax ginseng C.A. Meyer that acts as the tonic agent for the cancer patients to reduce the side effects in the clinic application. Because CP is a pro-oxidant agent and induces oxidative stress by the generation of free radicals to decrease the activities of anti-oxidant enzymes, the protective effects of the total saponins from stem and leaf of P. ginseng C.A. Meyer (TSPG) act as an anti-oxidant agent against the decreased anti-oxidant enzymes, the genotoxicity and apoptosis induced by CP was carried out. The alkaline single cell gel electrophoresis was employed to detect DNA damage; flow cytometry assay and AO/EB staining assay were employed to measure cell apoptosis; the enzymatic anti-oxidants (T-SOD, CAT and GPx) and non-enzymatic anti-oxidant (GSH) were measured by the various colorimetric methods. CP induced the significant DNA damage in mouse peripheral lymphocytes in time- and dose-dependent manners, inhibited the activities of T-SOD, GPx and CAT, and decreased the contents of GSH in mouse blood, triggered bone marrow cell apoptosis at 6 and 12h. TSPG significantly reduced CP-induced DNA damages in bone marrow cells and peripheral lymphocyte cells, antagonized CP-induced reduction of T-SOD, GPx, CAT activities and the GSH contents, decreased the bone marrow cell apoptosis induced by CP. TSPG, significantly reduced the genotoxicity of CP in bone marrow cells and peripheral lymphocyte cells, and decreased the apoptotic cell number induced by CP in bone marrow cells. The effects of TSPG on T-SOD, GPx, CAT activities and GSH contents might partially contribute to its protective effects on CP-induced cell toxicities.
Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila.
Banerjee, Swati; Pillai, Anilkumar M; Paik, Raehum; Li, Jingjun; Bhat, Manzoor A
2006-03-22
Axonal insulation is critical for efficient action potential propagation and normal functioning of the nervous system. In Drosophila, the underlying basis of nerve ensheathment is the axonal insulation by glial cells and the establishment of septate junctions (SJs) between glial cell membranes. However, the details of the cellular and molecular mechanisms underlying axonal insulation and SJ formation are still obscure. Here, we report the characterization of axonal insulation in the Drosophila peripheral nervous system (PNS). Targeted expression of tau-green fluorescent protein in the glial cells and ultrastructural analysis of the peripheral nerves allowed us to visualize the glial ensheathment of axons. We show that individual or a group of axons are ensheathed by inner glial processes, which in turn are ensheathed by the outer perineurial glial cells. SJs are formed between the inner and outer glial membranes. We also show that Neurexin IV, Contactin, and Neuroglian are coexpressed in the peripheral glial membranes and that these proteins exist as a complex in the Drosophila nervous system. Mutations in neurexin IV, contactin, and neuroglian result in the disruption of blood-nerve barrier function in the PNS, and ultrastructural analyses of the mutant embryonic peripheral nerves show loss of glial SJs. Interestingly, the murine homologs of Neurexin IV, Contactin, and Neuroglian are expressed at the paranodal SJs and play a key role in axon-glial interactions of myelinated axons. Together, our data suggest that the molecular machinery underlying axonal insulation and axon-glial interactions may be conserved across species.
Perineurial Glial Plasticity and the Role of TGF-β in the Development of the Blood-Nerve Barrier.
Morris, Angela D; Lewis, Gwendolyn M; Kucenas, Sarah
2017-05-03
Precisely orchestrated interactions between spinal motor axons and their ensheathing glia are vital for forming and maintaining functional spinal motor nerves. Following perturbations to peripheral myelinating glial cells, centrally derived oligodendrocyte progenitor cells (OPCs) ectopically exit the spinal cord and myelinate peripheral nerves in myelin with CNS characteristics. However, whether remaining peripheral ensheathing glia, such as perineurial glia, properly encase the motor nerve despite this change in glial cell and myelin composition, remains unknown. Using zebrafish mutants in which OPCs migrate out of the spinal cord and myelinate peripheral motor axons, we assayed perineurial glial development, maturation, and response to injury. Surprisingly, in the presence of OPCs, perineurial glia exited the CNS normally. However, aspects of their development, response to injury, and function were altered compared with wildtype larvae. In an effort to better understand the plasticity of perineurial glia in response to myelin perturbations, we identified transforming growth factor-β1 as a partial mediator of perineurial glial development. Together, these results demonstrate the incredible plasticity of perineurial glia in the presence of myelin perturbations. SIGNIFICANCE STATEMENT Peripheral neuropathies can result from damage or dysregulation of the insulating myelin sheath surrounding spinal motor axons, causing pain, inefficient nerve conduction, and the ectopic migration of oligodendrocyte progenitor cells (OPCs), the resident myelinating glial cell of the CNS, into the periphery. How perineurial glia, the ensheathing cells that form the protective blood-nerve barrier, are impacted by this myelin composition change is unknown. Here, we report that certain aspects of perineurial glial development and injury responses are mostly unaffected in the presence of ectopic OPCs. However, perineurial glial function is disrupted along nerves containing centrally derived myelin, demonstrating that, although perineurial glial cells display plasticity despite myelin perturbations, the blood-nerve barrier is compromised in the presence of ectopic OPCs. Copyright © 2017 the authors 0270-6474/17/374790-18$15.00/0.
Akbaba, Giray B; Turkez, Hasan; Sönmez, Erdal; Tatar, Abdulgani; Yilmaz, Mehmet
2016-08-01
Lithium titanate (Li 2 TiO 3 ) nanoparticles (LTT NPs; <100 nm) are widely used in battery technology, porcelain enamels, and ceramic insulating bodies. With the increased applications of LTT NPs, the concerns about their potential human toxicity effects and their environmental impact were also increased. However, toxicity data for LTT NPs relating to human health are very limited. Therefore, the purpose of this study was to evaluate whether LTT NPs are able to induce genetic damage in human peripheral lymphocytes in vitro when taking into consideration that DNA damage plays an important role in carcinogenesis. With this aim, the chromosome aberrations (CA), sister chromatid exchanges (SCE), and micronucleus (MN) assays were used as genotoxicity end points. Human peripheral lymphocytes obtained from five healthy male volunteers were exposed to LTT NPs at final dispersed concentrations ranging from 0 to 1000 μg/mL for 72 h at 37°C. The obtained results indicated that LTT NPs compound did not induce DNA damage in human peripheral lymphocytes as depicted by CA/cell, SCE/cell, and MN/1000 cell values in all concentrations tested. In summary, our results revealed that exposure to LTT NPs is not capable of inducing DNA lesions in human peripheral lymphocytes for the first time. © The Author(s) 2014.
Liu, Chang; Duffy, Brian; Bednarski, Jeffrey J; Calhoun, Cecelia; Lay, Lindsay; Rundblad, Barrett; Payton, Jacqueline E; Mohanakumar, Thalachallour
2016-02-01
To report the laboratory investigation of a case of severe combined immunodeficiency (SCID) with maternal T-cell engraftment, focusing on the interference of human leukocyte antigen (HLA) typing by blood chimerism. HLA typing was performed with three different methods, including sequence-specific primer (SSP), sequence-specific oligonucleotide, and Sanger sequencing on peripheral blood leukocytes and buccal cells, from a 3-month-old boy and peripheral blood leukocytes from his parents. Short tandem repeat (STR) testing was performed in parallel. HLA typing of the patient's peripheral blood leukocytes using the SSP method demonstrated three different alleles for each of the HLA-B and HLA-C loci, with both maternal alleles present at each locus. Typing results from the patient's buccal cells showed a normal pattern of inheritance for paternal and maternal haplotypes. STR enrichment testing of the patient's CD3+ T lymphocytes and CD15+ myeloid cells confirmed maternal T-cell engraftment, while the myeloid cell profile matched the patient's buccal cells. Maternal T-cell engraftment may interfere with HLA typing in patients with SCID. Selection of the appropriate typing methods and specimens is critical for accurate HLA typing and immunologic assessment before allogeneic hematopoietic stem cell transplantation. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bcl-2-interacting mediator of cell death influences autoantigen-driven deletion and TCR revision
Hale, J. Scott; Nelson, Lisa T.; Simmons, Kalynn B.; Fink, Pamela J.
2010-01-01
Peripheral CD4+Vβ5+ T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of post-revision CD4+Vβ5− T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the post-revision population. Here, we investigate the role of Bim-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4+ T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR expressing cells are TCR revision intermediates, and that the population of RAG-expressing, revising CD4+ T cells is increased in Bim deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the post-revision repertoire. PMID:21148799
Autologous peripheral blood hematopoietic cell transplantation in dogs with T-cell lymphoma.
Warry, E E; Willcox, J L; Suter, S E
2014-01-01
Peripheral blood hematopoietic cell transplantation (PBHCT) is a feasible treatment option for dogs with B-cell lymphoma. To examine apheresis and PBHCT outcomes in dogs diagnosed with T-cell lymphoma (TCL). Fifteen client-owned dogs diagnosed with high-grade TCL. After high-dose cyclophosphamide and rhG-colony-stimulating (rhG-CSF) factor treatment, peripheral blood mononuclear cells were collected using cell separators. The harvested cells then were infused after varying doses of total body irradiation (TBI). Postirradiation adverse effects were managed symptomatically and dogs were discharged upon evidence of hematopoietic engraftment. More than 2 × 10(6) CD34+ cells/kg were harvested from 15/15 dogs. Thirteen of 15 (87%) dogs engrafted appropriately, whereas 2 (13%) of the dogs died in the hospital. One dog developed cutaneous B-cell lymphoma 120 days post-PBHCT. The median disease-free interval and overall survival (OS) of the 13 dogs transplanted in first remission from the time of PBHCT were 184 and 240 days, respectively. Stage and substage of disease at diagnosis had no effect on OS. Two of 13 (15%) dogs were alive 741 and 772 days post-PBHCT. PBHCT may be considered as a treatment option for dogs with TCL. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Developmentally arrested structures preceding cerebellar tumors in von Hippel–Lindau disease
Shively, Sharon B; Falke, Eric A; Li, Jie; Tran, Maxine G B; Thompson, Eli R; Maxwell, Patrick H; Roessler, Erich; Oldfield, Edward H; Lonser, Russell R; Vortmeyer, Alexander O
2011-01-01
There is increasing evidence that suggests that knockout of tumor-suppressor gene function causes developmental arrest and protraction of cellular differentiation. In the peripheral nervous system of patients with the tumor-suppressor gene disorder, von Hippel–Lindau disease, we have demonstrated developmentally arrested structural elements composed of hemangioblast progenitor cells. Some developmentally arrested structural elements progress to a frank tumor, hemangioblastoma. However, in von Hippel–Lindau disease, hemangioblastomas are frequently observed in the cerebellum, suggesting an origin in the central nervous system. We performed a structural and topographic analysis of cerebellar tissues obtained from von Hippel–Lindau disease patients to identify and characterize developmentally arrested structural elements in the central nervous system. We examined the entire cerebella of five tumor-free von Hippel–Lindau disease patients and of three non-von Hippel–Lindau disease controls. In all, 9 cerebellar developmentally arrested structural elements were detected and topographically mapped in 385 blocks of von Hippel–Lindau disease cerebella. No developmentally arrested structural elements were seen in 214 blocks from control cerebella. Developmentally arrested structural elements are composed of poorly differentiated cells that express hypoxia-inducible factor (HIF)2α, but not HIF1α or brachyury, and preferentially involve the molecular layer of the dorsum cerebelli. For the first time, we identify and characterize developmentally arrested structural elements in the central nervous system of von Hippel–Lindau patients. We provide evidence that developmentally arrested structural elements in the cerebellum are composed of developmentally arrested hemangioblast progenitor cells in the molecular layer of the dorsum cerebelli. PMID:21499240
Preparation of Horizontal Slices of Adult Mouse Retina for Electrophysiological Studies.
Feigenspan, Andreas; Babai, Norbert Zsolt
2017-01-27
Vertical slice preparations are well established to study circuitry and signal transmission in the adult mammalian retina. The plane of sectioning in these preparations is perpendicular to the retinal surface, making it ideal for the study of radially oriented neurons like photoreceptors and bipolar cells. However, the large dendritic arbors of horizontal cells, wide-field amacrine cells, and ganglion cells are mostly truncated, leaving markedly reduced synaptic activity in these cells. Whereas ganglion cells and displaced amacrine cells can be studied in a whole-mounted preparation of the retina, horizontal cells and amacrine cells located in the inner nuclear layer are only poorly accessible for electrodes in whole retina tissue. To achieve maximum accessibility and synaptic integrity, we developed a horizontal slice preparation of the mouse retina, and studied signal transmission at the synapse between photoreceptors and horizontal cells. Horizontal sectioning allows (1) easy and unambiguous visual identification of horizontal cell bodies for electrode targeting, and (2) preservation of the extended horizontal cell dendritic fields, as a prerequisite for intact and functional cone synaptic input to horizontal cell dendrites. Horizontal cells from horizontal slices exhibited tonic synaptic activity in the dark, and they responded to brief flashes of light with a reduction of inward current and diminished synaptic activity. Immunocytochemical evidence indicates that almost all cones within the dendritic field of a horizontal cell establish synapses with its peripheral dendrites. The horizontal slice preparation is therefore well suited to study the physiological properties of horizontally extended retinal neurons as well as sensory signal transmission and integration across selected synapses.
[Bilateral macular retinoschisis associated with unilateral peripheral retinoschisis].
Oummad, Hanane; Elkaddoumi, Maryama; Maré, Josiane; Lezrek, Mounir; Cherkaoui, Ouafae
2017-01-01
X-linked juvenile retinoschisis is a hereditary disorder which usually occurs in boys rather than in girls, who are rarely affected. First clinical manifestations usually appear during the first decade. It is responsible for variable severity and slowly progressive vision loss. This progression can be characterized by vitreous hemorrhages and recurrent retinal detachments. We report the case of a 17-year old patient with stellar bilateral microcistic macular rearrangement of the eye-ground, centered on the foveola, associated with peripheral schisis with retinal detachment and unilateral tearing of internal and external layers.
Anatomic evidence for peripheral neural processing in mammalian graviceptors
NASA Technical Reports Server (NTRS)
Ross, M. D.
1985-01-01
Ultrastructural study of utricular and saccular maculas demonstrates that their innervation patterns are complex. There is a clustering of type I and type II hair cells based upon a sharing of afferents, a system of efferent-type beaded fibers that is of intramacular (mostly calyceal) origin, and a plexus-like arrangement of afferents and efferents at many sites in the neuroepithelium. Results suggest that information concerning linear acceleration is processed peripherally, beginning at the hair cell level, before being sent to the central nervous system. The findings may supply a structural basis for peripheral adaptation to a constant stimulus, and for lateral inhibition to improve signal relative to noise.
Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N; Hodge, Sandra
2013-06-03
Pro-inflammatory/cytotoxic T cells (IFNγ, TNFα, granzyme B+) are increased in the peripheral circulation in COPD. NKT-like and NK cells are effector lymphocytes that we have also shown to be major sources of pro-inflammatory cytokines and granzymes. P-glycoprotein 1 (Pgp1) is a transmembrane efflux pump well characterised in drug resistant cancer cells. We hypothesized that Pgp1 would be increased in peripheral blood T, NKT-like and NK cells in patients with COPD, and that this would be accompanied by increased expression of IFNγ, TNFα and granzyme B. We further hypothesized that treatment with cyclosporine A, a Pgp1 inhibitor, would render cells more sensitive to treatment with corticosteroids. Pgp1, granzyme B, IFNγ and TNFα expression were measured in peripheral blood T, NK and NKT-like cells from COPD patients and control subjects (± cyclosporine A and prednisolone) following in vitro stimulation and results correlated with uptake of efflux dye Calcein-AM using flow cytometry. There was increased Pgp1 expression by peripheral blood T, NKT-like and NK cells co-expressing IFNγ, TNFα and granzyme B in COPD patients compared with controls (e.g. %IFNγ/Pgp1 T, NKT-like, NK for COPD (Control): 25(6), 54(27), 39(23)). There was an inverse correlation between Pgp1 expression and Calcein-AM uptake. Treatment with 2.5 ng/ml cylosporin A and10-6 M prednisolone resulted in synergistic inhibition of pro-inflammatory cytokines in Pgp1 + cells (p < 0.05 for all). Treatment strategies that target Pgp1 in T, NKT-like and NK cells may reduce systemic inflammatory mediators in COPD and improve patient morbidity.
Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Liang; Zhao, Fang; Shen, Xuefeng
Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague–Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood bymore » 4.2-fold (p < 0.05) as compared to those in the control rats. In Pb-exposed rats, the amount of thymic CD4{sup +}CD8{sup −} and peripheral CD4{sup +} T cells was significantly reduced, whereas, CD8{sup +} population was not affected. In contrast to conventional CD4{sup +} T cells, Foxp3{sup +} regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4{sup +} T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression. -- Highlights: ► Pb exposure impaired CD4{sup +} thymic T cell development. ► Peripheral T lymphocytes were reduced following Pb exposure. ► Pb exposure increases thymic and peripheral Treg cells in rats. ► Tregs played a critical role in Pb-exposure-induced immune suppression.« less
Low Volume Resuscitation with Cell Impermeants
2016-04-01
to rise) and a fall in peripheral vascular resistance . In this model, hemorrhage and blood loss was controlled so any changes in hemoglobin...appealing. The increase in capillary filling together with reduced resistance to flow in these peripheral beds leads to increased blood flow and oxygen...delivery. The low resistance , compared to saline controls, likely represents a physical decompression of the capillary beds by controlling cell and
ERIC Educational Resources Information Center
Gordon, Tessa; Gordon, Karen
2010-01-01
Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…
Fu, Weili; Chen, Gang; Tang, Xin; Li, Qi; Ll, Jian
2015-04-01
To research the effect of recombinant adenovirus-bone morphogenetic protein 12 (Ad-BMP-12) transfection on the differentiation of peripheral blood mesenchymal stem cells (MSCs) into tendon/ligament cells. Peripheral blood MSCs were isolated from New Zealand rabbits (3-4 months old) and cultured in vitro until passage 3. The recombinant adenoviral vector system was prepared using AdEasy system, then transfected into MSCs at passage 3 (transfected group); untransfected MSCs served as control (untransfected group). The morphological characteristics and growth of transfected cells were observed under inverted phase contrast microscope. The transfection efficiency and green fluorescent protein (GFP) expression were detected by flow cytometry (FCM) and fluorescence microscopy. After cultured for 14 days in vitro, the expressions of tendon/ligament-specific markers were determined by immunohistochemistry and real-time fluorescent quantitative PCR. GFP expression could be observed in peripheral blood MSCs at 8 hours after transfection. At 24 hours after transfection, the cells had clear morphology and grew slowly under inverted phase contrast microscope and almost all expressed GFP at the same field under fluorescence microscopy. FCM analysis showed that the transfection efficiency of the transfected group was 99.57%, while it was 2.46% in the untransfected group. The immunohistochemistry showed that the expression of collagen type I gradually increased with culture time in vitro. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of the tendon/ligament-specific genes (Tenomodulin, Tenascin-C, and Decorin) in the transfected group were significantly higher than those in untransfected group (0.061+/- 0.013 vs. 0.004 +/- 0.002, t = -7.700, P=0.031; 0.029 +/- 0.008 vs. 0.003 +/- 0.001, t = -5.741, P=0.020; 0.679 +/- 0.067 vs. 0.142 +/- 0.024, t = -12.998, P=0.000). Ad-BMP-12 can significantly promote differentiation of peripheral blood MSCs into tendon/ligament fibroblasts and enhance the expressions of tendon/ligament-specific phenotypic differentiation, which would provide the evidence for peripheral blood MSCs applied for tendon/ligament regeneration.
Hematopoietic stem cell transplantation for non-Hodgkin lymphoma.
Bhatt, Vijaya Raj; Vose, Julie M
2014-12-01
Up-front rituximab-based chemotherapy has improved outcomes in non-Hodgkin lymphoma (NHL); refractory or relapsed NHL still accounts for approximately 18,000 deaths in the United States. Autologous hematopoietic stem cell transplantation (SCT) can improve survival in primary refractory or relapsed aggressive NHL and mantle cell lymphoma and in relapsed follicular or peripheral T-cell lymphoma. Autologous SCT as a consolidation therapy after first complete or partial remission in high-risk aggressive NHL, mantle cell lymphoma, and peripheral T-cell lymphoma may improve progression-free survival. Allogeneic SCT offers a lower relapse rate but a higher nonrelapse mortality resulting in overall survival similar to autologous SCT. Copyright © 2014 Elsevier Inc. All rights reserved.
Ruven, Carolin; Li, Wen; Li, Heng; Wong, Wai-Man; Wu, Wutian
2017-01-01
Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy. PMID:28264437
ProBDNF inhibits collective migration and chemotaxis of rat Schwann cells.
Ding, You-Quan; Li, Xuan-Yang; Xia, Guan-Nan; Ren, Hong-Yi; Zhou, Xin-Fu; Su, Bing-Yin; Qi, Jian-Guo
2016-10-01
Schwann cell migration, including collective migration and chemotaxis, is essential for the formation of coordinate interactions between Schwann cells and axons during peripheral nerve development and regeneration. Moreover, limited migration of Schwann cells imposed a serious obstacle on Schwann cell-astrocytes intermingling and spinal cord repair after Schwann cell transplantation into injured spinal cords. Recent studies have shown that mature brain-derived neurotrophic factor, a member of the neurotrophin family, inhibits Schwann cell migration. The precursor form of brain-derived neurotrophic factor, proBDNF, was expressed in the developing or degenerating peripheral nerves and the injured spinal cords. Since "the yin and yang of neurotrophin action" has been established as a common sense, proBDNF would be expected to promote Schwann cell migration. However, we found, in the present study, that exogenous proBDNF also inhibited in vitro collective migration and chemotaxis of RSC 96 cells, a spontaneously immortalized rat Schwann cell line. Moreover, proBDNF suppressed adhesion and spreading of those cells. At molecular level, proBDNF inhibits F-actin polymerization and focal adhesion dynamics in cultured RSC 96 cells. Therefore, our results suggested a special case against the classical opinion of "the yin and yang of neurotrophin action" and implied that proBDNF might modulate peripheral nerve development or regeneration and spinal cord repair through perturbing native or transplanted Schwann cell migration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of Peripheral Substitution on the Performance of Subphthalocyanines in DSSCs.
Urbani, Maxence; Sarı, Fatma Aslıhan; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Torres, Tomás; Ince, Mine
2016-04-20
A series of six new subphthalocyanines (SubPcs) bearing an ethynylcarboxyphenyl anchoring unit and decorated with a variety of substituents at the peripheral position of the macrocycle have been synthesized in order to investigate the effect of the peripheral substituent on the performance of dye-sensitized solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chronic peripheral inflammation, hippocampal neurogenesis, and behavior.
Chesnokova, Vera; Pechnick, Robert N; Wawrowsky, Kolja
2016-11-01
Adult hippocampal neurogenesis is involved in memory and learning, and disrupted neurogenesis is implicated in cognitive impairment and mood disorders, including anxiety and depression. Some long-term peripheral illnesses and metabolic disorders, as well as normal aging, create a state of chronic peripheral inflammation. These conditions are associated with behavioral disturbances linked to disrupted adult hippocampal neurogenesis, such as cognitive impairment, deficits in learning and memory, and depression and anxiety. Pro-inflammatory cytokines released in the periphery are involved in peripheral immune system-to-brain communication by activating resident microglia in the brain. Activated microglia reduce neurogenesis by suppressing neuronal stem cell proliferation, increasing apoptosis of neuronal progenitor cells, and decreasing survival of newly developing neurons and their integration into existing neuronal circuits. In this review, we summarize evolving evidence that the state of chronic peripheral inflammation reduces adult hippocampal neurogenesis, which, in turn, produces the behavioral disturbances observed in chronic inflammatory disorders. As there are no data available on neurogenesis in humans with chronic peripheral inflammatory disease, we focus on animal models and, in parallel, consider the evidence of cognitive disturbance and mood disorders in human patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Fischer, Anika; Zundler, Sebastian; Atreya, Raja; Rath, Timo; Voskens, Caroline; Hirschmann, Simon; López-Posadas, Rocío; Watson, Alastair; Becker, Christoph; Schuler, Gerold; Neufert, Clemens; Atreya, Imke; Neurath, Markus F
2016-10-01
Gut homing of lymphocytes via adhesion molecules has recently emerged as new target for therapy in IBDs. We aimed to analyse the in vivo homing of effector (Teff) and regulatory (Treg) T cells to the inflamed gut via α4β7 and G protein receptor GPR15. We assessed the expression of homing receptors on T cells in peripheral blood and inflamed mucosa. We studied the migration pattern and homing of Teff and Treg cells to the inflamed gut using intravital confocal microscopy and FACS in a humanised mouse model in dextran sodium sulfate-treated NSG (NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ) mice. Expression of GPR15 and α4β7 was significantly increased on Treg rather than Teff cells in peripheral blood of patients with UC as compared with Crohn's disease and controls. In vivo analysis in a humanised mouse model showed augmented gut homing of UC Treg cells as compared with controls. Moreover, suppression of UC (but not control) Teff and Treg cell homing was noted upon treatment with the α4β7 antibody vedolizumab. In contrast, siRNA blockade of GPR15 had only effects on homing of Teff cells but did not affect Treg homing in UC. Clinical vedolizumab treatment was associated with marked expansion of UC Treg cells in peripheral blood. α4β7 rather than GPR15 is crucial for increased colonic homing of UC Treg cells in vivo, while both receptors control UC Teff cell homing. Vedolizumab treatment impairs homing of UC Treg cells leading to their accumulation in peripheral blood with subsequent suppression of systemic Teff cell expansion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Tanaka, Yoshiya
2017-01-01
Introduction P-glycoprotein (P-gp) expression on activated lymphocytes in systemic lupus erythematosus (SLE) plays a role in active efflux of intracellular drugs, resulting in drug resistance. The role of P-gp-expressing lymphocytes in the pathogenesis of SLE remains unclear. The aim of this study was to determine the importance of P-gp+CD4+ cells in organ manifestations in refractory SLE. Methods The proportion of P-gp+CD4+ cells was determined by flow cytometry in peripheral blood of patients with SLE (n=116) and healthy adults (n=10). Renal biopsy specimens were examined by immunohistochemistry for P-gp expression. Results CD69 is a marker of CD4 cell activation. The proportion of both P-gp-expressing CD4+ cells and CD69-expressing CD4+ cells in peripheral blood was higher in SLE than control. The proportion of P-gp+CD69+CD4+ cells correlated with Systemic Lupus Erythematosus Disease Activity Index and was higher in poor responders to corticosteroids. Furthermore, the proportion of P-gp+CD69+CD4+ cells was significantly higher in proliferative lupus nephritis (LN) with poor response to corticosteroids. The efficacy of immunosuppressive therapy depended on the regulation of the proportion of P-gp+CD69+CD4+ cells. Marked accumulation of P-gp+CD4+ cells in renal interstitial tissue and high proportion of peripheral P-gp+CD69+CD4+ cells were noted in patients with proliferative LN. Conclusions The results showed high proportion of P-gp+CD69+CD4+ cells in peripheral blood and their accumulation in renal tissue in patients with proliferative LN refractory to CS therapy, suggesting that P-gp expression on activated CD4+ T cells is a potentially useful marker for refractoriness to treatment and a novel target for treatment. PMID:29225917
Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Tanaka, Yoshiya
2017-01-01
P-glycoprotein (P-gp) expression on activated lymphocytes in systemic lupus erythematosus (SLE) plays a role in active efflux of intracellular drugs, resulting in drug resistance. The role of P-gp-expressing lymphocytes in the pathogenesis of SLE remains unclear. The aim of this study was to determine the importance of P-gp + CD4 + cells in organ manifestations in refractory SLE. The proportion of P-gp + CD4 + cells was determined by flow cytometry in peripheral blood of patients with SLE (n=116) and healthy adults (n=10). Renal biopsy specimens were examined by immunohistochemistry for P-gp expression. CD69 is a marker of CD4 cell activation. The proportion of both P-gp-expressing CD4 + cells and CD69-expressing CD4 + cells in peripheral blood was higher in SLE than control. The proportion of P-gp + CD69 + CD4 + cells correlated with Systemic Lupus Erythematosus Disease Activity Index and was higher in poor responders to corticosteroids. Furthermore, the proportion of P-gp + CD69 + CD4 + cells was significantly higher in proliferative lupus nephritis (LN) with poor response to corticosteroids. The efficacy of immunosuppressive therapy depended on the regulation of the proportion of P-gp + CD69 + CD4 + cells. Marked accumulation of P-gp + CD4 + cells in renal interstitial tissue and high proportion of peripheral P-gp + CD69 + CD4 + cells were noted in patients with proliferative LN. The results showed high proportion of P-gp + CD69 + CD4 + cells in peripheral blood and their accumulation in renal tissue in patients with proliferative LN refractory to CS therapy, suggesting that P-gp expression on activated CD4 + T cells is a potentially useful marker for refractoriness to treatment and a novel target for treatment.
Quintana-Bustamante, Oscar; Segovia, Jose C
2016-01-01
Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.
Jurgens, Heidi A.; Amancherla, Kaushik; Johnson, Rodney W.
2012-01-01
Influenza is a common and highly contagious viral pathogen yet its effects on the structure and function of the central nervous system remain largely unknown. Although there is evidence that influenza strains that infect the brain can lead to altered cognitive and emotional behaviors, it is unknown if a viral strain that is not neurotropic (A/PR/8/34) can result in a central inflammatory response, neuronal damage and neurobehavioral effects. We hypothesized that neuroinflammation and alterations in hippocampal neuron morphology may parallel cognitive dysfunction following peripheral infection with live influenza virus. Here we show that influenza-infected mice exhibited cognitive deficits in a reversal learning version of the Morris water maze. At the same timepoint in which cognitive impairment was evident, proinflammatory cytokines (IL-1β, IL-6, TNF-α, IFN-α) and microglial reactivity were increased, while neurotrophic (BDNF, NGF) and immunomodulatory (CD200, CX3CL1) factors were decreased in the hippocampus of infected mice. In addition, influenza induced architectural changes to hippocampal neurons in the CA1 and dentate gyrus, with the most profound effects on dentate granule cells in the innermost portion of the granule cell layer. Overall these data provide the first evidence that neuroinflammation and changes in hippocampal structural plasticity may underlie cognitive dysfunction associated with influenza infection. In addition, the heightened inflammatory state concurrent with reduced neurotrophic support could leave the brain vulnerable to subsequent insult following influenza infection. A better understanding of how influenza impacts the brain and behavior may provide insight for preventing inflammation and neuronal damage during peripheral viral infection. PMID:22442063
Maier, T; Braun-Falco, M; Hinz, T; Schmid-Wendtner, M H; Ruzicka, T; Berking, C
2013-01-01
Optical coherence tomography (OCT) allows real-time, in vivo examination of basal cell carcinoma (BCC). A new high definition OCT with high lateral and axial resolution in a horizontal (en-face) and vertical (slice) imaging mode offers additional information in the diagnosis of BCC and may potentially replace invasive diagnostic biopsies. To define the characteristic morphologic features of BCC by using high definition optical coherence tomography (HD-OCT) compared to conventional histology. A total of 22 BCCs were examined preoperatively by HD-OCT in the en-face and slice imaging mode and characteristic features were evaluated in comparison to the histopathological findings. The following features were found in the en-face mode of HD-OCT: lobulated nodules (20/22), peripheral rimming (17/22), epidermal disarray (21/22), dilated vessels (11/22) and variably refractile stroma (19/22). In the slice imaging mode the following characteristics were found: grey/dark oval structures (18/22), peripheral rimming (13/22), destruction of layering (22/22), dilated vessels (7/22) and peritumoural bright stroma (11/22). In the en-face mode the lobulated structure of the BCC was more distinct than in the slice mode compared to histology. HD-OCT with a horizontal and vertical imaging mode offers additional information in the diagnosis of BCC compared to conventional OCT imaging and enhances the feasibility of non-invasive diagnostics of BCC. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.
Godoy-Guzmán, Carlos; Nuñez, Claudio; Orihuela, Pedro; Campos, Antonio; Carriel, Víctor
2018-04-16
The uterine tube (UT) is an important and complex organ of the women's reproductive system. In general, the anatomy and basic histology of this organ are well-known. However, the composition and function of the extracellular matrix (ECM) of the UT is still poorly understood. The ECM is a complex supramolecular material produced by cells which is commonly restricted to the basement membrane and interstitial spaces. ECM molecules play not only a structural role, they are also important for cell growth, survival and differentiation in all tissues. In this context, the aim of this study was to evaluate the deposition and distribution of type I and III collagens and proteoglycans (decorin, biglycan, fibromodulin and versican) in human UT during the follicular and luteal phases by using histochemical and immunohistochemical techniques. Our results showed a broad synthesis of collagens (I and III) in the stroma of the UT. The analysis by regions showed, in the mucosa, a specific distribution of versican and fibromodulin in the epithelial surface, whereas decorin and fibromodulin were observed in the lamina propria. Versican and decorin were found in the stroma of the muscular layer, whereas all studied proteoglycans were identified in the serosa. Curiously, biglycan was restricted to the wall of the blood vessels of the serosa and muscular layers. Furthermore, there was an immunoreaction for collagens, decorin, versican and fibromodulin in the UT peripheral nerves. The differential distribution of these ECM molecules in the different layers of the UT could be related to specific structural and/or biomechanical functions needed for the oviductal transport, successful fertilization and early embryogenesis. However, further molecular studies under physiological and pathological conditions are still needed to elucidate the specific role of each molecule in the human UT. © 2018 Anatomical Society.
Kobayashi, Akira; Yokogawa, Hideaki; Mori, Natsuko; Masaki, Toshinori; Sugiyama, Kazuhisa
2017-01-01
To report the in vivo laser confocal microscopy findings of corneas with keratoconus, with special attention to abnormality of Bowman's layer and sub-Bowman's fibrous structures (Kobayashi-structures [K-structures]). Sixteen keratoconic eyes in 8 consecutive patients with keratoconus (4 males, 4 females, mean age, 41.1 years) were included in this study. Slit-lamp biomicroscopic photos were taken with or without fluorescein staining. The existence of anterior corneal mosaic (ACM) after eyelid rubbing under fluorescein staining was documented. In vivo laser confocal microscopic examinations were performed for all patients in both the central cone and the peripheral cornea to examine the existence of K-structures. According to the Amsler-Krumeich scale, the eyes were graded as follows: stage 1 (n=3), stage 2 (n=1), stage 3 (n=1), and stage 4 (n=11). ACM was observed in 7 eyes (61.1%) in the cone area and 16 eyes (100%) in the peripheral cornea among all keratoconic eyes enrolled in this study. In addition, K-structures were observed in the 7 eyes (61.1%) and 16 eyes (100%) in the peripheral cornea among all keratoconic eyes. The presence of the K-structures was completely matched (100%) with the presence of ACM in both the central cone and the peripheral cornea. In 11 eyes with stage 4 keratoconus, ACM and K-structure was absent in 9 eyes (81.8%) in the cone area. On the contrary, in 5 eyes with mild-to-moderate keratoconus (grade 1 to 3), ACM and K-structure was present in all eyes (100%) in the cone area. The absent ratio of ACM and K-structures in the cone area was significantly higher in stage 4 severe keratoconus compared to mild-to-moderate keratoconus (grade 1 to 3) (Fisher, P =0.005). The existence of ACM and K-structures in both the central cone and the peripheral cornea showed perfect accord in patients with keratoconus, indicating a strong association of ACM and K-structures in patients with keratoconus. With the progress of the keratoconus, it seemed that ACM and K-structure progressively disappeared, suggesting Bowman's layer abnormalities due to keratoconus. Further study in larger groups of patients with keratoconus is required to fully understand the significance of ACM/K-structures in keratoconic eyes and their association with Bowman's layer.
The Human Cutaneous Chemokine System
McCully, Michelle L.; Moser, Bernhard
2011-01-01
Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfill a critical immune surveillance function by contributing to the first line of defense against a series of local threats, including microbes, tumors, and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and compare it when possible with gut-selective homing. We also discuss candidate chemokines that may account for the tissue selectivity in this process and present a model whereby CCR8, and its ligand CCL1, selectively regulate the homeostatic migration of memory lymphocytes to skin tissue. PMID:22566823
Unusual presentation Of Sjögren-associated neuropathy with plasma cell-rich infiltrate.
Naddaf, Elie; Berini, Sarah E; B Dyck, P James; Laughlin, Ruple S
2017-04-01
Sjögren syndrome is thought to be a lymphocyte-driven process. Peripheral nervous system involvement occurs in about 20%-25% of patients. A sensory-predominant, large-fiber peripheral neuropathy is most common, and it is usually associated with a subacute to chronic presentation. We report a rare case of an acute Sjögren-associated, sensory predominant, length-dependent peripheral neuropathy mimicking Guillain-Barré syndrome. The patient presented with sensory ataxia preceded by fever and polyarthralgia. She gave a history of years of dry eyes and dry mouth. She had a positive Shirmer test, abnormal salivary gland scan, and positive SS-A and SS-B antibodies. A sural nerve biopsy showed an unusual, dense, non-IgG4, polyclonal, plasma-cell perivascular infiltrate. The patient responded to treatment with weekly pulse intravenous methylprednisolone. Sjögren syndrome can present with acute-onset, sensory predominant peripheral neuropathy. The role of plasma cells in Sjögren syndrome is unexplored and deserves further study. Muscle Nerve 55: 605-608, 2017. © 2016 Wiley Periodicals, Inc.
Becker, Maria; Benromano, Tali; Shahar, Abraham; Nevo, Zvi; Pick, Chaim G
2014-12-01
Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.
Schmid, C D; Stienekemeier, M; Oehen, S; Bootz, F; Zielasek, J; Gold, R; Toyka, K V; Schachner, M; Martini, R
2000-01-15
The adhesive cell surface molecule P(0) is the most abundant glycoprotein in peripheral nerve myelin and fulfills pivotal functions during myelin formation and maintenance. Mutations in the corresponding gene cause hereditary demyelinating neuropathies. In mice heterozygously deficient in P(0) (P(0)(+/-) mice), an established animal model for a subtype of hereditary neuropathies, T-lymphocytes are present in the demyelinating nerves. To monitor the possible involvement of the immune system in myelin pathology, we cross-bred P(0)(+/-) mice with null mutants for the recombination activating gene 1 (RAG-1) or with mice deficient in the T-cell receptor alpha-subunit. We found that in P(0)(+/-) mice myelin degeneration and impairment of nerve conduction properties is less severe when the immune system is deficient. Moreover, isolated T-lymphocytes from P(0)(+/-) mice show enhanced reactivity to myelin components of the peripheral nerve, such as P(0), P(2), and myelin basic protein. We hypothesize that autoreactive immune cells can significantly foster the demyelinating phenotype of mice with a primarily genetically based peripheral neuropathy.
Miyauchi, Eisaku; Motoi, Noriko; Ono, Hiroshi; Ninomiya, Hironori; Ohyanagi, Fumiyoshi; Nishio, Makoto; Okumura, Sakae; Ichinose, Masakazu; Ishikawa, Yuichi
2015-12-01
Small-cell lung carcinoma (SCLC) is a type of lung cancer with neuroendocrine differentiation and a poor prognosis that is widely believed to arise in the central lung. Thyroid transcription factor-1 (TTF-1) is a peripheral marker of lung adenocarcinoma that is also highly expressed in SCLC. In this study, we examined whether SCLC is really a central-type tumor and the relationship between tumor location, TTF-1 expression and prognosis of SCLC.Ninety six SCLCs, diagnosed from biopsies or surgical materials, for which detailed computed tomography (CT) images were available, were collected consecutively from Japanese patients between 2004 and 2011. We examined the location of the primary tumor (central or peripheral) using thin-sliced CT, a TTF-1 immunohistochemical expression, and clinicopathology including prognosis.Of the 96 SCLCs, 74% (71/96) were of the peripheral type and found to have a significantly worse prognosis than central-type tumors. TTF-1 immunoreactivity was identified in 79 tumors (82%), 78% of which (62/79) were of the peripheral type and 22% of which were central. TTF-1 expression was significantly correlated with peripheral location (P = 0.030). Multivariate analysis revealed that high TNM stages and the peripheral location were independent markers for poor survival.The majority of SCLCs were of the peripheral type. The peripheral-type SCLC expressed TTF-1 more frequently and had a poorer prognosis than central-type tumors did. Further analysis on original sites of SCLC, using molecular methodology, or based on another ethnicity, should be warranted.
Vascular pericyte density and angiogenesis associated with adenocarcinoma of the prostate.
Killingsworth, Murray C; Wu, Xiaojuan
2011-01-01
Angiogenesis facilitates metabolism, proliferation and metastasis of adenocarcinoma cells in the prostate, as without the development of new vasculature tumor growth cannot be sustained. However, angiogenesis is variable with the well-known phenomenon of vascular 'hotspots' seen associated with viable tumor cell mass. With the recent recognition of pericytes as molecular regulators of angiogenesis, we have examined the interaction of these cells in actively growing new vessels. Pericyte interactions with developing new vessels were examined using transmission electron microscopy. Pericyte distribution was mapped from α-SMA+ immunostained histological sections and quantified using image analysis. Data was obtained from peripheral and more central regions of 27 cases with Gleason scores of 4-9. Pericyte numbers were increased around developing new vessel sprouts at sites of luminal maturation. Numbers were reduced around the actively growing tips of migrating endothelial cells and functional new vessels. Tumor regions internal to a 500-μm peripheral band showed higher microvessel pericyte density than the peripheral region. Pericytes were found to be key cellular components of developing new vessels in adenocarcinoma of the prostate. Their numbers increased at sites of luminal maturation with these cells displaying an activated phenotype different to quiescent pericytes. Increased pericyte density was found internal to the peripheral region, suggesting more mature vessels lie more centrally. Copyright © 2011 S. Karger AG, Basel.
Wang, H; Xu, Lj; Lu, Lq
2016-02-01
Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection. © 2015 John Wiley & Sons Ltd.
Nehete, Pramod N; Nehete, Bharti P; Chitta, Sriram; Williams, Lawrence E; Abee, Christian R
2017-02-01
Owl monkeys (Aotus nancymaae) are New World NHP that serve an important role in vaccine development and as a model for human disease conditions such as malaria. Despite the past contributions of this animal model, limited information is available about the phenotype and functional properties of peripheral blood lymphocytes in reference to sex and age. Using a panel of human antibodies and a set of standardized human immune assays, we identified and characterized various peripheral blood lymphocyte subsets, evaluated the immune functions of T cells, and analyzed cytokines relative to sex and age in healthy owl monkeys. We noted age- and sex-dependent changes in CD28+ (an essential T cell costimulatory molecule) and CD95+ (an apoptotic surface marker) T cells and various levels of cytokines in the plasma. In immune assays of freshly isolated peripheral blood mononuclear cells, IFNγ and perforin responses were significantly higher in female than in male monkeys and in young adults than in juvenile and geriatric groups, despite similar lymphocyte (particularly T cell) populations in these groups. Our current findings may be useful in exploring Aotus monkeys as a model system for the study of aging, susceptibility to infectious diseases, and age-associated differences in vaccine efficacy, and other challenges particular to pediatric and geriatric patients.
Aguiar, Odair; Gollücke, Andréa Pittelli Boiago; de Moraes, Bárbara Bueno; Pasquini, Gabriela; Catharino, Rodrigo Ramos; Riccio, Maria Francesca; Ihara, Silvia Saiuli Miki; Ribeiro, Daniel Araki
2011-03-01
The goal of the present study was to investigate whether subchronic treatment with grape juice concentrate is able to protect liver and peripheral blood cells against cholesterol-induced injury in rats. The effects of the grape juice concentrate treatment on histopathological changes, immunohistochemistry for cyclo-oxygenase-2 (COX-2), and basal and oxidative DNA damage induced by H2O2 using a single-cell gel (comet) assay were evaluated. Male Wistar rats (n 18) were divided into three groups: group 1--negative control; group 2--cholesterol at 1 % (w/w) in their diet, treated for 5 weeks; group 3--cholesterol at 1 % in their chow, treated for 5 weeks, and grape juice concentrate at 222 mg/d in their drinking-water in the final week only. The results indicated that the treatment with grape juice concentrate did not show remarkable differences regarding liver tissue in group 3 compared with group 2. However, grape juice concentrate was able to decrease oxidative DNA damage induced by H2O2 in peripheral blood cells, as depicted by the tail moment results. COX-2 expression in the liver did not show statistically significant differences (P>0·05) between groups. Taken together, the present results suggest that the administration of subchronic grape juice concentrate prevents oxidative DNA damage in peripheral blood cells.
Keilhoff, G; Fansa, H; Schneider, W; Wolf, G
1999-07-01
In vivo predegeneration of peripheral nerves is presented as a convenient and effective method to obtain activated Schwann cells and an enhanced cell yield following in vitro cultivation. The experiments conducted in rats were aimed at clinical use in gaining Schwann cell suspensions for filling artificial conduits in order to bridge peripheral nerve gaps. The rat sciatic nerve used as a model was transected distally to the spinal ganglia. Predegeneration in vivo was allowed to take place for 1, 2, 3 and 4 days and up to 1, 2 and 3 weeks. The nerve was then resected and prepared for cell cultivation. Schwann cells cultivated from the contralateral untreated nerve served as control. Immunostaining for S100, nerve growth factor receptor and the adhesion molecules N-cadherin and L1 was used to characterize the general state of the cultures. Viability was assessed by fluorescein fluorescence staining, and the proliferation index was determined by bromodeoxyuridine-DNA incorporation. The Schwann cells from predegenerated nerves revealed an increased proliferation rate compared to the control, whereas fibroblast contamination was decreased. Best results were obtained 1 week after predegeneration.
Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E
2015-08-01
Sos-1 and Sos-2 are ubiquitously expressed Ras-guanine exchange factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4(+) T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4(+) T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4(+) T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Gajski, Goran; Garaj-Vrhovac, Vera
2008-09-01
Bee venom (BV) has been known to have therapeutic applications in traditional medicine to treat variety of diseases. It is also known that bee venom possesses anti-inflammatory and anticancer effects and that it can inhibit proliferation and induces apoptosis in cancer cells, but there is lack of information regarding genotoxicity of whole bee venom on normal human cells. In the present study, peripheral blood human lymphocytes from healthy donor were exposed in vitro to different concentration (5, 10, 25, 50 and 100 micro g/mL) of whole bee venom at different time periods (1, 6 and 24 hours). The single cell gel electrophoresis (SCGE) assay was used to evaluate the genotoxicity towards human cells. Results showed statistically significant increase in DNA damage caused in BV treated human lymphocytes compared to corresponding control cells for the tail length and tail moment. These results show that the extent of DNA damage, determined by the use of single cell gel electrophoresis is time and dose dependent. Based on the results it is clear that whole bee venom induces DNA damage and has genotoxic potential on human peripheral blood lymphocytes in vitro.
Stanis, Ronald J.; Lambert, Timothy N.
2016-12-06
An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.
de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves
2010-12-15
Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.
Sutinen, M.; Kainulainen, T.; Hurskainen, T.; Vesterlund, E.; Alexander, J. P.; Overall, C. M.; Sorsa, T.; Salo, T.
1998-01-01
Although matrix metalloproteinases (MMPs) are among the potential key mediators of cancer invasion, their involvement in premalignant lesions and conditions is not clarified. Therefore, we studied, using in situ hybridization, immunohistochemistry and zymography the expression and distribution of MMP-1 and -2, and their tissue inhibitors (TIMPs -1, -2 and -3) in oral squamous cell carcinomas (SCC) and lymph node metastases as well as in oral lichen planus, epithelial dysplasias and normal buccal mucosa. In oral SCC and lymph node metastasis, MMP-1 mRNA was detected in fibroblastic cells of tumoral stroma. In two out of ten carcinomas studied, the peripheral cells of neoplastic islands were also positive. MMP-2 mRNA expression was noted in fibroblasts surrounding the carcinoma cells, and no signal in carcinoma cells was detected. A clear TIMP-3 mRNA expression was seen in stromal cells surrounding the neoplastic islands in all SCCs and lymph node metastases studied. TIMP-1 mRNA was detected in some stromal cells surrounding the neoplastic islands, whereas the mRNA expression for TIMP-2 was negligible. On the other hand, expression of MMPs and TIMPs was consistently low in oral epithelial dysplasias, lichen planus and normal mucosa. In certain epithelial dysplasias and lichen planus, MMP-1 and -2 mRNA expressions were detected in few fibroblasts under the basement membrane zone, but normal mucosa was completely negative. In SCC and lymph node metastasis, a detectable immunostaining for MMP-1 in stromal cells and in some carcinoma cells was observed. MMP-2 immunoreactivity was detected in the peripheral cell layer in neoplastic islands and in some fibroblast-like cells of tumoral stroma. Immunostaining for TIMP-3 was detected in stromal cells surrounding the neoplastic islands. A weak positive staining for TIMP-1 was located in tumoral stroma, whereas the immunostaining for TIMP-2 was negative. Using zymography, elevated levels of MMP-2 and MMP-9 were observed in carcinoma samples in comparison with lichen planus or normal oral mucosa. Our results indicate that the studied MMPs and TIMPs are clearly up-regulated during invasion in oral SCC. However, there was also a clear, although weak, up-regulation of the expression of the MMPs but not TIMPs in some of the lichen planus and dysplastic lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9649139
Design of barrier coatings on kink-resistant peripheral nerve conduits
Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim
2016-01-01
Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288
Peripheral ossifying fibroma of oral cavity: histopathologic differential diagnoses.
Shamim, Thorakkal
2012-01-01
Peripheral ossifying fibroma is a benign neoplasm that usuallydevelops from gingiva, presenting as an exophytic smooth surfaced pink or red nodular mass that is sessile or is less frequently seen on a pedicle. From the Indian perspective, it is usually noticed in 5th-6th decades of life with female predilection. Microscopically, the tumour shows stratified squamous epithelium and highly cellular fibrous stroma, sparse endothelial proliferation with fibroblasts and dystrophic calcifications. It has to be differentiated histopathologically from pyogenic granuloma, fibroma, peripheral giant cell granuloma, peripheral odontogenic fibroma and fibrous hyperplasia. A case of peripheral ossifying fibroma of maxillary gingiva in a 55-year-old Indian woman is reported.
NASA Technical Reports Server (NTRS)
Fernandez, C.; Lysakowski, A.; Goldberg, J. M.
1995-01-01
1. The numbers of type I and type II hair cells were estimated by dissector techniques applied to semithin, stained sections of the horizontal, superior, and posterior cristae in the squirrel monkey and the chinchilla. 2. The crista in each species was divided into concentrically arranged central, intermediate, and peripheral zones of equal areas. The three zones can be distinguished by the sizes of individual hair cells and calyx endings, by the density of hair cells, and by the relative frequency of calyx endings innervating single or multiple type I hair cells. 3. In the monkey crista, type I hair cells outnumber type II hair cells by a ratio of almost 3:1. The ratio decreases from 4-5:1 in the central and intermediate zones to under 2:1 in the peripheral zone. For the chinchilla, the ratio is near 1:1 for the entire crista and decreases only slightly between the central and peripheral zones. 4. Nerve fibers supplying the cristae in the squirrel monkey were labeled by extracellular injections of horseradish peroxidase (HRP) into the vestibular nerve. Peripheral terminations of individual fibers were reconstructed and related to the zones of the cristae they innervated and to the sizes of their parent axons. Results were similar for the horizontal, superior, and posterior cristae. 5. Axons seldom bifurcate below the neuroepithelium. Most fibers begin branching shortly after crossing the basement membrane. Their terminal arbors are compact, usually extending no more than 50-100 microns from the parent exon. A small number of long intraepithelial fibers enter the intermediate and peripheral zones of the cristae near its base, then run unbranched for long distances through the neuroepithelium to reach the central zone. 6. There are three classes of afferent fibers innervating the monkey crista. Calyx fibers terminate exclusively on type I hair cells, and bouton fibers end only on type II hair cells. Dimorphic fibers provide a mixed innervation, including calyx endings to type I hair cells and bouton endings to type II hair cells. Long intraepithelial fibers are calyx and dimorphic units, whose terminal fields are similar to those of other fibers. The central zone is innervated by calyx and dimorphic fibers; the peripheral zone, by bouton and dimorphic fibers; and the intermediate zone, by all three kinds of fibers. Internal (axon) diameters are largest for calyx fibers and smallest for bouton fibers. Of the entire sample of 286 labeled fibers, 52% were dimorphic units, 40% were calyx units, and 8% were bouton units.(ABSTRACT TRUNCATED AT 400 WORDS).
Han, In Ho; Sun, Fangfang; Choi, Yoon Ji; Zou, Fengming; Nam, Kyoung Hyup; Cho, Won Ho; Choi, Byung Kwan; Song, Geun Sung; Koh, Kwangnak; Lee, Jaebeom
2015-11-01
Carbon nanotubes (CNTs) are promising candidates as novel scaffolds for peripheral nerve regeneration. Schwann cells (SCs) are attractive therapeutic targets due to their pivotal role in peripheral nerve regeneration, but primary SCs have limitations for clinical application. However, adipose-derived stem cells (ASCs) may differentiate into Schwann-like cells. The present study assesses the potential applicability of multiwall CNTs (MWNTs) composited with polydimethylsiloxane (PDMS), which were then seeded with differentiated adipose-derived stem cells (dASCs) to promote neuronal differentiation and growth. Aqueous MWNT dispersion was filtered, and the PDMS/MWNT sheets were prepared using a simple printing-transfer method. Characterization of PDMS/MWNT sheets indicated their unique physical properties, such as superior mechanical strength and electroconductivity, compared with bare PDMS sheets. ASCs were differentiated into Schwann-like cells using a mixture of glial growth factors. Dorsal root ganglion (DRG) neurons were co-cultured with SCs and dASCs on PDMS/MWNTs sheets or noncoated dishes. An alamar blue proliferation assay of dASC and SCs showed significantly more dASC and SCs cultured on PDMS/MWNT sheets at 48 h and 72 h than when cultured on noncoated dishes (p < 0.05). Additionally, when DRG were cultured on PDMS/MWNT sheets seeded with dASCs, the proliferation of DRG neurons and the longest neurite outgrowth length per neuron were significantly greater than when DRG were cultured on PDMS/MWNT sheets alone or on noncoated dishes seeded with SCs or dASCs (p < 0.05). Overall, PDMS/MWNT sheets exhibited excellent biocompatibility for culturing Schwann-like cells differentiated from ASCs. Seeding the dASCs on PDMS/MWNT sheets may produce synergistic effects in peripheral nerve regeneration, similarly to SCs. © 2015 Wiley Periodicals, Inc.
MinT: Middleware for Cooperative Interaction of Things
Jeon, Soobin; Jung, Inbum
2017-01-01
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices. PMID:28632182
MinT: Middleware for Cooperative Interaction of Things.
Jeon, Soobin; Jung, Inbum
2017-06-20
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.
USDA-ARS?s Scientific Manuscript database
CD40 and CD40L interactions have costimulatory effects that are part of a complex series of events in host cellular and humoral immune responses and inflammation. The purpose of this study was to examine the changes in expression of CD40 and CD40L on peripheral blood mononuclear cells (PBMCs) isolat...
Wang, Jing; Tian, Lingling; He, Liumin; Chen, Nuan; Ramakrishna, Seeram; So, Kwok-Fai; Mo, Xiumei
2018-06-06
Nerve regeneration is a serious clinical challenge following peripheral nerve injury. Lycium barbarum polysaccharide (LBP) is the major component of wolfberry extract, which has been shown to be neuroprotective and promising in nerve recovery in many studies. Electrospun nanofibers, especially core-shell structured nanofibers being capable of serving as both drug delivery system and tissue engineering scaffolds, are well known to be suitable scaffolds for regeneration of peripheral nerve applications. In this study, LBP was incorporated into core-shell structured nanofibrous scaffolds via coaxial electrospinning. Alamar blue assays were performed to investigate the proliferation of both PC12 and Schwann cells cultured on the scaffolds. The neuronal differentiation of PC12 cells was evaluated by NF200 expression with immunostaining and morphology changes observed by SEM. The results indicated that the released LBP dramatically enhanced both proliferation and neuronal differentiation of PC12 cells induced by NGF. Additionally, the promotion of Schwann cells myelination and neurite outgrowth of DRG neurons were also observed on LBP loaded scaffolds by LSCM with immunostaining. In summary, LBP, as a drug with neuroprotection, encapsulated into electrospun nanofibers could be a potential candidate as tissue engineered scaffold for peripheral nerve regeneration.
Yamamoto, Sayaka; Ishida, Tatsuhiro; Inoue, Akiko; Mikami, Junko; Muraguchi, Masahiro; Ohmoto, Yasukazu; Kiwada, Hiroshi
2002-04-02
The immune response caused by liposome stimulation was studied by assessing the level of several cytokines released from human peripheral blood cells. Liposome stimulation resulted in the release of IL-6, IL-10, IL-1beta, TNF-alpha and IFN-gamma. The size of the liposomes affected the degree of the cytokine releases with larger sized liposomes causing higher levels of cytokine induction. In addition, it appears that the lipid composition of liposomes had no effect on the degree of cytokine release. The release of cytokines occurred even in the absence of serum, suggesting that serum proteins did not contribute to liposome stimulation in peripheral blood cells. The release of cytokines induced by liposome stimulation was inhibited by the presence of either protein kinase-C (PKC) or protein tyrosine kinase (PTK) inhibitor, but not by the presence of an endocytosis inhibitor. This indicates that signal transduction via PKC or PTK is necessary, in order for human peripheral blood cells to release cytokines (IL-6, IL-10, IL-1beta, TNF-alpha and IFN-gamma) as the result of liposome stimulation. These quantitative data on the release of cytokines by liposomal stimulation provide useful information for the development of rational drug delivery systems and the safety of cytokine induction via the use of liposomes.