Sample records for peripheral functional electrical

  1. 21 CFR 876.5310 - Nonimplanted, peripheral electrical continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a peripheral location and used to stimulate the nerves associated with pelvic floor function to... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonimplanted, peripheral electrical continence....5310 Nonimplanted, peripheral electrical continence device. (a) Identification. A nonimplanted...

  2. Electrical stimulation as a means for achieving recovery of function in stroke patients.

    PubMed

    Popović, Dejan B; Sinkaer, Thomas; Popović, Mirjana B

    2009-01-01

    This review presents technologies used in and assesses the main clinical outcomes of electrical therapies designed to speed up and increase functional recovery in stroke patients. The review describes methods which interface peripheral systems (e.g., cyclic neural stimulation, stimulation triggered by electrical activity of muscles, therapeutic functional electrical stimulation) and transcranial brain stimulation with surface and implantable electrodes. Our conclusion from reviewing these data is that integration of electrical therapy into exercise-active movement mediated by electrical activation of peripheral and central sensory-motor mechanisms enhances motor re-learning following damage to the central nervous system. Motor re-learning is considered here as a set of processes associated with practice or experience that leads to long-term changes in the capability for movement. An important suggestion is that therapeutic effects are likely to be much more effective when treatment is applied in the acute, rather than in the chronic, phase of stroke.

  3. Motor Cortex Stimulation Regenerative Effects in Peripheral Nerve Injury: An Experimental Rat Model.

    PubMed

    Nicolas, Nicolas; Kobaiter-Maarrawi, Sandra; Georges, Samuel; Abadjian, Gerard; Maarrawi, Joseph

    2018-06-01

    Immediate microsurgical nerve suture remains the gold standard after peripheral nerve injuries. However, functional recovery is delayed, and it is satisfactory in only 2/3 of cases. Peripheral electrical nerve stimulation proximal to the lesion enhances nerve regeneration and muscle reinnervation. This study aims to evaluate the effects of the motor cortex electrical stimulation on peripheral nerve regeneration after injury. Eighty rats underwent right sciatic nerve section, followed by immediate microsurgical epineural sutures. Rats were divided into 4 groups: Group 1 (control, n = 20): no electrical stimulation; group 2 (n = 20): immediate stimulation of the sciatic nerve just proximal to the lesion; Group 3 (n = 20): motor cortex stimulation (MCS) for 15 minutes after nerve section and suture (MCSa); group 4 (n = 20): MCS performed over the course of two weeks after nerve suture (MCSc). Assessment included electrophysiology and motor functional score at day 0 (baseline value before nerve section), and at weeks 4, 8, and 12. Rats were euthanized for histological study at week 12. Our results showed that MCS enhances functional recovery, nerve regeneration, and muscle reinnervation starting week 4 compared with the control group (P < 0.05). The MCS induces higher reinnervation rates even compared with peripheral stimulation, with better results in the MCSa group (P < 0.05), especially in terms of functional recovery. MCS seems to have a beneficial effect after peripheral nerve injury and repair in terms of nerve regeneration and muscle reinnervation, especially when acute mode is used. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  5. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  6. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    PubMed

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  7. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  8. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  9. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  10. Pulsed laser versus electrical energy for peripheral nerve stimulation

    PubMed Central

    Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2010-01-01

    Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515

  11. Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise

    PubMed Central

    Gordon, Tessa; English, Arthur W.

    2015-01-01

    Enhancing the regeneration of axons is often considered a therapeutic target for improving functional recovery after peripheral nerve injury. In this review, the evidence for the efficacy of electrical stimulation (ES), daily exercise, and their combination in promoting nerve regeneration after peripheral nerve injuries in both animal models and in human patients, is explored. The rationale, effectiveness, and molecular basis of ES and exercise in accelerating axon outgrowth are reviewed. In comparing the effects of ES and exercise in enhancing axon regeneration, increased neural activity, neurotrophins, and androgens are considered common requirements. Similar, gender-specific requirements are found for exercise to enhance axon regeneration in the periphery and for sustaining synaptic inputs onto injured motoneurons. ES promotes nerve regeneration after delayed nerve repair in humans and rats. The effectiveness of exercise is less clear. Although ES, but not exercise, results in a significant misdirection of regenerating motor axons to reinnervate different muscle targets, the loss of neuromuscular specificity encountered has only a very small impact on resulting functional recovery. Both ES and exercise are promising experimental treatments for peripheral nerve injury that seem ready to be translated to clinical use. PMID:26121368

  12. Analgesic efficacy of cerebral and peripheral electrical stimulation in chronic nonspecific low back pain: a randomized, double-blind, factorial clinical trial.

    PubMed

    Hazime, Fuad Ahmad; de Freitas, Diego Galace; Monteiro, Renan Lima; Maretto, Rafaela Lasso; Carvalho, Nilza Aparecida de Almeida; Hasue, Renata Hydee; João, Silvia Maria Amado

    2015-01-31

    Chronic non-specific low back pain is a major socioeconomic public health issue worldwide and, despite the volume of research in the area, it is still a difficult-to-treat condition. The conservative analgesic therapy usually comprises a variety of pharmacological and non-pharmacological strategies, such as transcutaneous electrical nerve stimulation. The neuromatrix pain model and the new findings on the process of chronicity of pain point to a higher effectiveness of treatments that address central rather than peripheral structures. The transcranial direct current stimulation is a noninvasive technique of neuromodulation that has made recent advances in the treatment of chronic pain. The simultaneous combination of these two electrostimulation techniques (cerebral and peripheral) can provide an analgesic effect superior to isolated interventions. However, all the evidence on the analgesic efficacy of these techniques, alone or combined, is still fragmented. This is a protocol for a randomized clinical trial to investigate whether cerebral electrical stimulation combined with peripheral electrical stimulation is more effective in relieving pain than the isolated application of electrical stimulations in patients with chronic nonspecific low back pain. Ninety-two patients will be randomized into four groups to receive transcranial direct current stimulation (real/sham) + transcutaneous electrical nerve stimulation (real/sham) for 12 sessions over a period of four weeks. The primary clinical outcome (pain intensity) and the secondary ones (sensory and affective aspects of pain, physical functioning and global perceived effect) will be recorded before treatment, after four weeks, in Month 3 and in Month 6 after randomization. Confounding factors such as anxiety and depression, the patient's satisfaction with treatment and adverse effects will also be listed. Data will be collected by an examiner unaware of (blind to) the treatment allocation. The results of this study may assist in clinical decision-making about the combined use of cerebral and peripheral electrical stimulation for pain relief in patients with chronic low back pain. NCT01896453.

  13. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  14. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins.

    PubMed

    Andrews, Russell J

    2003-05-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  15. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  16. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  17. Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke.

    PubMed

    Pan, Li-Ling Hope; Yang, Wen-Wen; Kao, Chung-Lan; Tsai, Mei-Wun; Wei, Shun-Hwa; Fregni, Felipe; Chen, Vincent Chiun-Fan; Chou, Li-Wei

    2018-06-15

    The peripheral sensory system is critical to regulating motor plasticity and motor recovery. Peripheral electrical stimulation (ES) can generate constant and adequate sensory input to influence the excitability of the motor cortex. The aim of this proof of concept study was to assess whether ES prior to each hand function training session for eight weeks can better improve neuromuscular control and hand function in chronic stroke individuals and change electroencephalography-electromyography (EEG-EMG) coherence, as compared to the control (sham ES). We recruited twelve subjects and randomly assigned them into ES and control groups. Both groups received 20-minute hand function training twice a week, and the ES group received 40-minute ES on the median nerve of the affected side before each training session. The control group received sham ES. EEG, EMG and Fugl-Meyer Assessment (FMA) were collected at four different time points. The corticomuscular coherence (CMC) in the ES group at fourth weeks was significantly higher (p = 0.004) as compared to the control group. The notable increment of FMA at eight weeks and follow-up was found only in the ES group. The eight-week rehabilitation program that implemented peripheral ES sessions prior to function training has a potential to improve neuromuscular control and hand function in chronic stroke individuals.

  18. Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats.

    PubMed

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing

    2009-10-01

    Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.

  19. Burn-related peripheral neuropathy: A systematic review.

    PubMed

    Tu, Yiji; Lineaweaver, William C; Zheng, Xianyou; Chen, Zenggan; Mullins, Fred; Zhang, Feng

    2017-06-01

    Peripheral neuropathy is the most frequent disabling neuromuscular complication of burns. However, the insidious and progressive onset of burn neuropathy makes it often undiagnosed or overlooked. In our study, we reviewed the current studies on the burn-related peripheral neuropathy to summarize the morbidity, mechanism, detecting method and management of peripheral neuropathy in burn patients. Of the 1533 burn patients included in our study, 98 cases (6.39%) were presented with peripheral neuropathy. Thermal and electrical burns were the most common etiologies. Surgical procedures, especially nerve decompression, showed good effect on functional recovery of both acute and delayed peripheral neuropathy in burn patients. It is noteworthy that, for early detection and prevention of peripheral neuropathy, electrodiagnostic examinations should be performed on burn patients independent of symptoms. Still, the underlying mechanisms of burn-related peripheral neuropathy remain to be clarified. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  20. Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential

    PubMed Central

    Du, Xiaona; Gamper, Nikita

    2013-01-01

    Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design. PMID:24396338

  1. Effect of presynaptic membrane potential on electrical vs. chemical synaptic transmission

    PubMed Central

    Evans, Colin G.; Ludwar, Bjoern Ch.; Kang, Timothy

    2011-01-01

    The growing realization that electrical coupling is present in the mammalian brain has sparked renewed interest in determining its functional significance and contrasting it with chemical transmission. One question of interest is whether the two types of transmission can be selectively regulated, e.g., if a cell makes both types of connections can electrical transmission occur in the absence of chemical transmission? We explore this issue in an experimentally advantageous preparation. B21, the neuron we study, is an Aplysia sensory neuron involved in feeding that makes electrical and chemical connections with other identified cells. Previously we demonstrated that chemical synaptic transmission is membrane potential dependent. It occurs when B21 is centrally depolarized prior to and during peripheral activation, but does not occur if B21 is peripherally activated at its resting membrane potential. In this article we study effects of membrane potential on electrical transmission. We demonstrate that maximal potentiation occurs in different voltage ranges for the two types of transmission, with potentiation of electrical transmission occurring at more hyperpolarized potentials (i.e., requiring less central depolarization). Furthermore, we describe a physiologically relevant type of stimulus that induces both spiking and an envelope of depolarization in the somatic region of B21. This depolarization does not induce functional chemical synaptic transmission but is comparable to the depolarization needed to maximally potentiate electrical transmission. In this study we therefore characterize a situation in which electrical and chemical transmission can be selectively controlled by membrane potential. PMID:21593394

  2. Preparation and characterization of electrical conductive PVA based materials for peripheral nerve tube-guides.

    PubMed

    Gonçalves, C; Ribeiro, J; Pereira, T; Luís, A L; Mauricio, A C; Santos, J D; Lopes, M A

    2016-08-01

    Peripheral nerve regeneration is a serious clinical problem. Presently, there are several nerve tube-guides available in the market, however with some limitations. The goal of this work was the development of a biomaterial with high electrical conductivity to produce tube-guides for nerve regeneration after neurotmesis injuries whenrver an end-to-end suture without tension is not possible. A matrix of poly(vinyl alcohol) (PVA) was used loaded with the following electrical conductive materials: COOH-functionalized multiwall carbon nanotubes (MWCNTs), poly(pyrrole) (PPy), magnesium chloride (MgCl2 ), and silver nitrate (AgNO3 ). The tube-guide production was carried out by a freezing/thawing process (physical crosslinking) with a final annealing treatment. After producing the tube-guide for nerve regeneration, the physicochemical characterization was performed. The most interesting results were achieved by loading PVA with 0.05% of PPy or COOH- functionalized CNTs. These tubes combined the electrical conductivity of carbon nanotubes (CNTs) and PPy with the biocompatibility of PVA matrix, with potential clinical application for nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1981-1987, 2016. © 2016 Wiley Periodicals, Inc.

  3. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits

    PubMed Central

    Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.

    2017-01-01

    Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739

  4. Overview of Functional Peripheral Arterial Disease

    MedlinePlus

    ... Pill Identifier Commonly searched drugs Aspirin Metformin Warfarin Tramadol Lactulose Ranitidine News & Commentary Recent News Afib and Weight AHA: Using Electricity to Test Your Risk for Heart Failure Close Siblings Can Ease the Pain of Family Conflict Don't Turn Into a ...

  5. Biological studies of swine exposed to 60-Hz electric fields. Volume 7. Neurology. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-12-01

    Neurophysiological responses in three generations of miniature swine chronically exposed to a 30-kV/m, 60-Hz electric field have been assessed in a series of screening experiments. Results are presented from experiments on peripheral nerve function in parental (F/sub 0/) female swine at 100 days of gestation, and from experiments on synaptic transmission in first- and second-generation (F/sub 1/ and F/sub 2/) progeny at 6 weeks of age, all following chronic exposure to a 60-Hz electric field. In the several measures of peripheral nerve function examined, only two showed consistent differences between exposed and sham-exposed animals: C-fiber (but not B-fiber) conduction velocitymore » was decreased in nerve preparations from exposed swine, and recovery, as measured by the increase in amplitude of the compound action potential, was consistently, although not statistically, less in B- and C-fibers from exposed animals when compared to values for the sham-exposed controls. Although changes (increases or decreases) in various parameters of synaptic transmission were observed between exposed and sham-exposed groups, the differences were not consistent across experiments or generations. Only one measure of synaptic function showed a consistent difference throughout the studies: the conduction velocities of B and C components of the postsynaptic compound action potential were increased following electric-field exposure (statistically significant only in B-fibers of the F/sub 2/ generations). 7 refs., 60 figs., 17 tabs.« less

  6. Real time imaging of peripheral nerve vasculature using optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srikanth; Kumsa, Doe; Takmakov, Pavel; Welle, Cristin G.; Hammer, Daniel X.

    2016-03-01

    The peripheral nervous system (PNS) carries bidirectional information between the central nervous system and distal organs. PNS stimulation has been widely used in medical devices for therapeutic indications, such as bladder control and seizure cessation. Investigational uses of PNS stimulation include providing sensory feedback for improved control of prosthetic limbs. While nerve safety has been well documented for stimulation parameters used in marketed devices, novel PNS stimulation devices may require alternative stimulation paradigms to achieve maximum therapeutic benefit. Improved testing paradigms to assess the safety of stimulation will expedite the development process for novel PNS stimulation devices. The objective of this research is to assess peripheral nerve vascular changes in real-time with optical coherence angiography (OCA). A 1300-nm OCA system was used to image vasculature changes in the rat sciatic nerve in the region around a surface contacting single electrode. Nerves and vasculature were imaged without stimulation for 180 minutes to quantify resting blood vessel diameter. Walking track analysis was used to assess motor function before and 6 days following experiments. There was no significant change in vessel diameter between baseline and other time points in all animals. Motor function tests indicated the experiments did not impair functionality. We also evaluated the capabilities to image the nerve during electrical stimulation in a pilot study. Combining OCA with established nerve assessment methods can be used to study the effects of electrical stimulation safety on neural and vascular tissue in the periphery.

  7. Challenges associated with nerve conduction block using kilohertz electrical stimulation

    NASA Astrophysics Data System (ADS)

    Patel, Yogi A.; Butera, Robert J.

    2018-06-01

    Neuromodulation therapies, which electrically stimulate parts of the nervous system, have traditionally attempted to activate neurons or axons to restore function or alleviate disease symptoms. In stark contrast to this approach is inhibiting neural activity to relieve disease symptoms and/or restore homeostasis. One potential approach is kilohertz electrical stimulation (KES) of peripheral nerves—which enables a rapid, reversible, and localized block of conduction. This review highlights the existing scientific and clinical utility of KES and discusses the technical and physiological challenges that must be addressed for successful translation of KES nerve conduction block therapies.

  8. Electrically stimulated signals from a long-term Regenerative Peripheral Nerve Interface.

    PubMed

    Langhals, Nicholas B; Woo, Shoshana L; Moon, Jana D; Larson, John V; Leach, Michelle K; Cederna, Paul S; Urbanchek, Melanie G

    2014-01-01

    Despite modern technological advances, the most widely available prostheses provide little functional recovery beyond basic grasping. Although sophisticated upper extremity prostheses are available, optimal prosthetic interfaces which give patients high-fidelity control of these artificial limbs are limited. We have developed a novel Regenerative Peripheral Nerve Interface (RPNI), which consists of a unit of free muscle that has been neurotized by a transected peripheral nerve. In conjunction with a biocompatible electrode on the muscle surface, the RPNI facilitates signal transduction from a residual peripheral nerve to a neuroprosthetic limb. The purpose of this study was to explore signal quality and reliability in an RPNI following an extended period of implantation. Following a 14-month maturation period, electromyographic signal generation was evaluated via electrical stimulation of the innervating nerve. The long-term RPNI was viable and healthy, as demonstrated by evoked compound muscle action potentials as well as histological tissue analysis. Signals exceeding 4 mV were successfully acquired and amplitudes were consistent across multiple repetitions of applied stimuli. There were no evident signs of muscle denervation, significant scar tissue, or muscle necrosis. This study provides further evidence that after a maturation period exceeding 1 year, reliable and consistent signals can still be acquired from an RPNI.

  9. Evaluation of patient suitability for a retinal prosthesis using structural and functional tests of inner retinal integrity

    NASA Astrophysics Data System (ADS)

    Huang, Qiuhen; Chowdhury, Vivek; Coroneo, Minas Theodore

    2009-06-01

    The purpose of this study was to assess inner retinal structure and function in patients with retinitis pigmentosa (RP) using optical coherence tomography (OCT) imaging of the retina, and electrical stimulation of the retina with a contact lens electrode. OCT images of 17 RP patients were acquired at the macula and at four quadrants of the peripheral retina in both eyes. Analysis was made of the residual inner retinal thickness and nerve fibre layer thickness in RP patients, and this was compared to normal controls. Eight of these patients further underwent contact lens electrical stimulation of one eye and thresholds for phosphene perception were obtained. OCT imaging showed a significant amount of inner retinal preservation in the peripheral retina and the macula of RP patients despite severe visual acuity and visual field loss. Phosphene thresholds were obtained across the range of pulse durations tested but were much higher than those obtained in normal controls. Phosphene thresholds in RP patients moderately correlated with inner retinal thicknesses as measured by OCT. Preservation of inner retinal structure in patients with RP and the responsiveness of these eyes to electrical stimulation suggest adequate inner retinal preservation for a retinal prosthesis to be successful.

  10. Use of Nerve Conduction Velocity to Assess Peripheral Nerve Health in Aging Mice

    PubMed Central

    Walsh, Michael E.; Sloane, Lauren B.; Fischer, Kathleen E.; Austad, Steven N.; Richardson, Arlan

    2015-01-01

    Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice. PMID:25477428

  11. In vivo study of transepithelial potential difference (TEPD) in proximal convoluted tubules of rat kidney by synchronization modulation electric field.

    PubMed

    Clausell, Mathis; Fang, Zhihui; Chen, Wei

    2014-07-01

    Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.

  12. High variability of facial muscle innervation by facial nerve branches: A prospective electrostimulation study.

    PubMed

    Raslan, Ashraf; Volk, Gerd Fabian; Möller, Martin; Stark, Vincent; Eckhardt, Nikolas; Guntinas-Lichius, Orlando

    2017-06-01

    To examine by intraoperative electric stimulation which peripheral facial nerve (FN) branches are functionally connected to which facial muscle functions. Single-center prospective clinical study. Seven patients whose peripheral FN branching was exposed during parotidectomy under FN monitoring received a systematic electrostimulation of each branch starting with 0.1 mA and stepwise increase to 2 mA with a frequency of 3 Hz. The electrostimulation and the facial and neck movements were video recorded simultaneously and evaluated independently by two investigators. A uniform functional allocation of specific peripheral FN branches to a specific mimic movement was not possible. Stimulation of the whole spectrum of branches of the temporofacial division could lead to eye closure (orbicularis oculi muscle function). Stimulation of the spectrum of nerve branches of the cervicofacial division could lead to reactions in the midface (nasal and zygomatic muscles) as well as around the mouth (orbicularis oris and depressor anguli oris muscle function). Frontal and eye region were exclusively supplied by the temporofacial division. The region of the mouth and the neck was exclusively supplied by the cervicofacial division. Nose and zygomatic region were mainly supplied by the temporofacial division, but some patients had also nerve branches of the cervicofacial division functionally supplying the nasal and zygomatic region. FN branches distal to temporofacial and cervicofacial division are not necessarily covered by common facial nerve monitoring. Future bionic devices will need a patient-specific evaluation to stimulate the correct peripheral nerve branches to trigger distinct muscle functions. 4 Laryngoscope, 127:1288-1295, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  13. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral nerve...

  14. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves

    PubMed Central

    Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo

    2013-01-01

    Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves. PMID:25206506

  15. Near-infrared signals associated with electrical stimulation of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  16. High frequency oscillations evoked by peripheral magnetic stimulation.

    PubMed

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  17. 21 CFR 876.5310 - Nonimplanted, peripheral electrical continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonimplanted, peripheral electrical continence device. 876.5310 Section 876.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876...

  18. 21 CFR 876.5310 - Nonimplanted, peripheral electrical continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonimplanted, peripheral electrical continence device. 876.5310 Section 876.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876...

  19. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise

    PubMed Central

    Froyd, Christian; Millet, Guillaume Y; Noakes, Timothy D

    2013-01-01

    The time course of muscular fatigue that develops during and after an intense bout of self-paced dynamic exercise was characterized by using different forms of electrical stimulation (ES) of the exercising muscles. Ten active subjects performed a time trial (TT) involving repetitive concentric extension/flexion of the right knee using a Biodex dynamometer. Neuromuscular function (NMF), including ES and a 5 s maximal isometric voluntary contraction (MVC), was assessed before the start of the TT and immediately (<5 s) after each 20% of the TT had been completed, as well as 1, 2, 4 and 8 min after TT termination. The TT time was 347 ± 98 s. MVCs were 52% of baseline values at TT termination. Torque responses from ES were reduced to 33–68% of baseline using different methods of stimulation, suggesting that the extent to which peripheral fatigue is documented during exercise depends upon NMF assessment methodology. The major changes in muscle function occurred within the first 40% of exercise. Significant recovery in skeletal muscle function occurs within the first 1–2 min after exercise, showing that previous studies may have underestimated the extent to which peripheral fatigue develops during exercise. PMID:23230235

  20. Functional Electrical Stimulation and Spinal Cord Injury

    PubMed Central

    Ho, Chester H.; Triolo, Ronald J.; Elias, Anastasia L.; Kilgore, Kevin L.; DiMarco, Anthony F.; Bogie, Kath; Vette, Albert H.; Audu, Musa; Kobetic, Rudi; Chang, Sarah R.; Chan, K. Ming; Dukelow, Sean; Bourbeau, Dennis J.; Brose, Steven W.; Gustafson, Kenneth J.; Kiss, Zelma; Mushahwar, Vivian K.

    2015-01-01

    Synopsis Spinal cord injuries (SCI) can disrupt communications between the brain and the body, leading to a loss of control over otherwise intact neuromuscular systems. The use of electrical stimulation (ES) of the central and peripheral nervous system can take advantage of these intact neuromuscular systems to provide therapeutic exercise options, to allow functional restoration, and even to manage or prevent many medical complications following SCI. The use of ES for the restoration of upper extremity, lower extremity and truncal functions can make many activities of daily living a potential reality for individuals with SCI. Restoring bladder and respiratory functions and preventing pressure ulcers may significantly decrease the morbidity and mortality following SCI. Many of the ES devices are already commercially available and should be considered by all SCI clinicians routinely as part of the lifelong rehabilitation care plan for all eligible individuals with SCI. PMID:25064792

  1. [The effectiveness of comprehensive rehabilitation of the patients presenting with coronary heart disease with the application of underwater shower massage and electrical stimulation].

    PubMed

    Rykov, S V; Lebedeva, O D; L'vova, N V; Tupitsina, Iu Iu

    2014-01-01

    The underwater shower massage and electrical stimulation were applied to treat 120 patients presenting with coronary heart disease. The estimation of the effectiveness of this treatment with the use of functional diagnostic methods revealed its psychocorrective effect manifested in the form of reduced frequency and duration of painful and painless angina seizures, restricted sympathetic influences on the heart as well as normalized sympathovagal balance, lipid status, antioxidative system, central and peripheral hemodynamics, improved systolic and diastolic function of the myocardium, enhanced tolerability of mental, emotional, and physical workload. The study allowed the predictors of the effectiveness of therapeutic and health-promoting measures to be identified.

  2. Peripheral controllers and devices--Part 1.

    PubMed

    Pinkert, J R; Wear, L L

    1992-10-01

    In this article, we looked at several peripherals, described their characteristics, and described how they are connected to computers. We included some discussions of problems caused by electrical and mechanical differences between computers and peripheral devices. During the past few years, many companies have addressed such problems. Numerous standards have been defined as a result of this work. These standards specify everything from what type of connectors will be used to the timing of electrical signals. They make it easier for peripheral manufacturers to design their devices for a wide range of computers. Peripherals and their controllers are important components of any computer system. Sometimes, however, other parts of the system, such as the control unit and main memory, receive more attention. Many engineers want to design new processors, but shy away from the design of peripherals and controllers; they consider such designs less glamorous. In reality, designs for some peripherals and their controllers can be more challenging than the design of the CPU itself. A computer without peripherals is of little use, other than as a paper weight. Until we attach peripherals to the computer, none of its power is accessible to the user. Peripherals turn computers into useful tools.

  3. An artificial arm/hand system with a haptic sensory function using electric stimulation of peripheral sensory nerve fibers.

    PubMed

    Mabuchi, Kunihiko

    2013-01-01

    We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers. The sensor system detects mechanical stimuli, which are transferred to the user by means of the microstimulation method so that the user experiences the stimuli as the corresponding somatic sensations. In trials, the system worked satisfactorily and there was a good correlation between the pressure applied to the pressure sensors on the robot fingers and the subjective intensities of the evoked pressure sensations.

  4. Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury.

    PubMed

    Gordon, Tessa; Chan, K Ming; Sulaiman, Olawale A R; Udina, Esther; Amirjani, Nasim; Brushart, Thomas M

    2009-10-01

    Injured peripheral nerves regenerate at very slow rates. Therefore, proximal injury sites such as the brachial plexus still present major challenges, and the outcomes of conventional treatments remain poor. This is in part attributable to a progressive decline in the Schwann cells' ability to provide a supportive milieu for the growth cone to extend and to find the appropriate target. These challenges are compounded by the often considerable delay of regeneration across the site of nerve laceration. Recently, low-frequency electrical stimulation (as brief as an hour) has shown promise, as it significantly accelerated regeneration in animal models through speeding of axon growth across the injury site. To test whether this might be a useful clinical tool, we carried out a randomized controlled trial in patients who had experienced substantial axonal loss in the median nerve owing to severe compression in the carpal tunnel. To further elucidate the potential mechanisms, we applied rolipram, a cyclic adenosine monophosphate agonist, to rats after axotomy of the femoral nerve. We demonstrated that effects similar to those observed in animal studies could also be attained in humans. The mechanisms of action of electrical stimulation likely operate through up-regulation of neurotrophic factors and cyclic adenosine monophosphate. Indeed, the application of rolipram significantly accelerated nerve regeneration. With new mechanistic insights into the influencing factors of peripheral nerve regeneration, the novel treatments described above could form part of an armament of synergistic therapies that could make a meaningful difference to patients with peripheral nerve injuries.

  5. Are Females More Resistant to Extreme Neuromuscular Fatigue?

    PubMed

    Temesi, John; Arnal, Pierrick J; Rupp, Thomas; Féasson, Léonard; Cartier, Régine; Gergelé, Laurent; Verges, Samuel; Martin, Vincent; Millet, Guillaume Y

    2015-07-01

    Despite interest in the possibility of females outperforming males in ultraendurance sporting events, little is known about the sex differences in fatigue during prolonged locomotor exercise. This study investigated possible sex differences in central and peripheral fatigue in the knee extensors and plantar flexors resulting from a 110-km ultra-trail-running race. Neuromuscular function of the knee extensors and plantar flexors was evaluated via transcranial magnetic stimulation (TMS) and electrical nerve stimulation before and after an ultra-trail-running race in 20 experienced ultraendurance trail runners (10 females and 10 males matched by percent of the winning time by sex) during maximal and submaximal voluntary contractions and in relaxed muscle. Maximal voluntary knee extensor torque decreased more in males than in females (-38% vs -29%, P = 0.006) although the reduction in plantar flexor torque was similar between sexes (-26% vs -31%). Evoked mechanical plantar flexor responses decreased more in males than in females (-23% vs -8% for potentiated twitch amplitude, P = 0.010), indicating greater plantar flexor peripheral fatigue in males. Maximal voluntary activation assessed by TMS and electrical nerve stimulation decreased similarly in both sexes for both muscle groups. Indices of knee extensor peripheral fatigue and corticospinal excitability and inhibition changes were also similar for both sexes. Females exhibited less peripheral fatigue in the plantar flexors than males did after a 110-km ultra-trail-running race and males demonstrated a greater decrease in maximal force loss in the knee extensors. There were no differences in the magnitude of central fatigue for either muscle group or TMS-induced outcomes. The lower level of fatigue in the knee extensors and peripheral fatigue in the plantar flexors could partly explain the reports of better performance in females in extreme duration running races as race distance increases.

  6. Neuroethology and life history adaptations of the elasmobranch electric sense.

    PubMed

    Sisneros, Joseph A; Tricas, Timothy C

    2002-01-01

    The electric sense of elasmobranch fishes (sharks and rays) is an important sensory modality known to mediate the detection of bioelectric stimuli. Although the best known function for the use of the elasmobranch electric sense is prey detection, relatively few studies have investigated other possible biological functions. Here, we review recent studies that demonstrate the elasmobranch electrosensory system functions in a wide number of behavioral contexts including social, reproductive and anti-predator behaviors. Recent work on non-electrogenic stingrays demonstrates that the electric sense is used during reproduction and courtship for conspecific detection and localization. Electrogenic skates may use their electrosensory encoding capabilities and electric organ discharges for communication during social and reproductive interactions. The electric sense may also be used to detect and avoid predators during early life history stages in many elasmobranch species. Embryonic clearnose skates demonstrate a ventilatory freeze response when a weak low-frequency electric field is imposed upon the egg capsule. Peak frequency sensitivity of the peripheral electrosensory system in embryonic skates matches the low frequencies of phasic electric stimuli produced by natural fish egg-predators. Neurophysiology experiments reveal that electrosensory tuning changes across the life history of a species and also seasonally due to steroid hormone changes during the reproductive season. We argue that the ontogenetic and seasonal variation in electrosensory tuning represent an adaptive electrosensory plasticity that may be common to many elasmobranchs to enhance an individual's fitness throughout its life history.

  7. Nervus terminalis ganglion of the bonnethead shark (Sphyrna tiburo): evidence for cholinergic and catecholaminergic influence on two cell types distinguished by peptide immunocytochemistry.

    PubMed

    White, J; Meredith, M

    1995-01-16

    The nervus terminalis is a ganglionated vertebrate cranial nerve of unknown function that connects the brain and the peripheral nasal structures. To investigate its function, we have studied nervus terminalis ganglion morphology and physiology in the bonnethead shark (Sphyrna tiburo), where the nerve is particularly prominent. Immunocytochemistry for gonadotropin-releasing hormone (GnRH) and Leu-Pro-Leu-Arg-Phe-NH2 (LPLRFamide) revealed two distinct populations of cells. Both were acetylcholinesterase positive, but LPLR-Famide-immunoreactive cells consistently stained more darkly for acetylcholinesterase activity. Tyrosine hydroxylase immunocytochemistry revealed fibers and terminal-like puncta in the ganglion, primarily in areas containing GnRH-immunoreactive cells. Consistent with the anatomy, in vitro electrophysiological recordings provided evidence for cholinergic and catecholaminergic actions. In extracellular recordings, acetylcholine had a variable effect on baseline ganglion cell activity, whereas norepinephrine consistently reduced activity. Electrical stimulation of the nerve trunks suppressed ganglion activity, as did impulses from the brain in vivo. During electrical suppression, acetylcholine consistently increased activity, and norepinephrine decreased activity. Muscarinic and, to a lesser extent, alpha-adrenergic antagonists both increased activity during the electrical suppression, suggesting involvement of both systems. Intracellular recordings revealed two types of ganglion cells that were distinguishable pharmacologically and physiologically. Some cells were hyperpolarized by cholinergic agonists and unaffected by norepinephrine; these cells did not depolarize with peripheral nerve trunk stimulation. Another group of cells did depolarize with peripheral trunk stimulation; a representative of this group was depolarized by carbachol and hyperpolarized by norepinephrine. These and other data suggest that the bonnethead nervus terminalis ganglion contains at least two cell populations that respond differently to acetylcholine and norepinephrine. The bonnethead nervus terminalis ganglion appears to differ fundamentally from sensory and autonomic ganglia but does share some features with the neural circuits of forebrain GnRH systems.

  8. Ownership of an artificial limb induced by electrical brain stimulation

    PubMed Central

    Collins, Kelly L.; Cronin, Jeneva; Olson, Jared D.; Ehrsson, H. Henrik; Ojemann, Jeffrey G.

    2017-01-01

    Replacing the function of a missing or paralyzed limb with a prosthetic device that acts and feels like one’s own limb is a major goal in applied neuroscience. Recent studies in nonhuman primates have shown that motor control and sensory feedback can be achieved by connecting sensors in a robotic arm to electrodes implanted in the brain. However, it remains unknown whether electrical brain stimulation can be used to create a sense of ownership of an artificial limb. In this study on two human subjects, we show that ownership of an artificial hand can be induced via the electrical stimulation of the hand section of the somatosensory (SI) cortex in synchrony with touches applied to a rubber hand. Importantly, the illusion was not elicited when the electrical stimulation was delivered asynchronously or to a portion of the SI cortex representing a body part other than the hand, suggesting that multisensory integration according to basic spatial and temporal congruence rules is the underlying mechanism of the illusion. These findings show that the brain is capable of integrating “natural” visual input and direct cortical-somatosensory stimulation to create the multisensory perception that an artificial limb belongs to one’s own body. Thus, they serve as a proof of concept that electrical brain stimulation can be used to “bypass” the peripheral nervous system to induce multisensory illusions and ownership of artificial body parts, which has important implications for patients who lack peripheral sensory input due to spinal cord or nerve lesions. PMID:27994147

  9. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    PubMed

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear.

    PubMed

    Schmidt, K; Forkmann, K; Sinke, C; Gratz, M; Bitz, A; Bingel, U

    2016-07-01

    Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Role of peripheral reflexes in the initiation of the esophageal phase of swallowing

    PubMed Central

    Medda, Bidyut K.; Babaei, Arash; Shaker, Reza

    2014-01-01

    The aim of this study was to determine the role of peripheral reflexes in initiation of the esophageal phase of swallowing. In 10 decerebrate cats, we recorded electromyographic responses from the pharynx, larynx, and esophagus and manometric data from the esophagus. Water (1–5 ml) was injected into the nasopharynx to stimulate swallowing, and the timing of the pharyngeal and esophageal phases of swallowing was quantified. The effects of transection or stimulation of nerves innervating the esophagus on swallowing and esophageal motility were tested. We found that the percent occurrence of the esophageal phase was significantly related to the bolus size. While the time delays between the pharyngeal and esophageal phases of swallowing were not related to the bolus size, they were significantly more variable than the time delays between activation of muscles within the pharyngeal phase. Transection of the sensory innervation of the proximal cervical esophagus blocked or significantly inhibited activation of the esophageal phase in the proximal cervical esophagus. Peripheral electrical stimulation of the pharyngoesophageal nerve activated the proximal cervical esophagus, peripheral electrical stimulation of the vagus nerve activated the distal cervical esophagus, and peripheral electrical stimulation the superior laryngeal nerve (SLN) had no effect on the esophagus. Centripetal electrical stimulation of the SLN activated the cervical component of the esophageal phase of swallowing before initiation of the pharyngeal phase. Therefore, we concluded that initiation of the esophageal phase of swallowing depends on feedback from peripheral reflexes acting through the SLN, rather than a central program. PMID:24557762

  12. Microscale Electrode Implantation during Nerve Repair: Effects on Nerve Morphology, Electromyography, and Recovery of Muscle Contractile Function

    PubMed Central

    Urbanchek, Melanie G; Wei, Benjamin; Egeland, Brent M; Abidian, Mohammad R; Kipke, Daryl R; Cederna, Paul S

    2011-01-01

    Background Our goal is to develop a peripheral nerve electrode with long-term stability and fidelity for use in nerve-machine interfaces. Microelectromechanical systems (MEMS) use silicon probes that contain multi-channel actuators, sensors, and electronics. We tested the null hypothesis that implantation of MEMS probes do not have a detrimental effect on peripheral nerve function or regeneration. Methods A rat hindlimb, peroneal nerve model was utilized in all experimental groups: a) intact nerve (Control, n= 10); b) nerve division and repair (Repair, n= 9); and c) Nerve division, insertion of MEMS probe, and repair (Repair + Probe, n=9). Nerve morphology, nerve to muscle compound action potential (CMAP) studies, walking tracks, and extensor digitorum longus (EDL) muscle function tests were evaluated following an 80 day recovery. Results Repair and Repair + Probe showed no differences in axon count, axon size, percent non-neural area, CMAP amplitude, latency, muscle mass, muscle force, or walking track scores. Though there was some local fibrosis around each MEMS probe, this did not lead to measurable detrimental effects in any anatomic or functional outcome measurements. Conclusions The lack of a significant difference between Repair and Repair + Probe groups in histology, CMAP, walking tracks, and muscle force suggests that MEMS electrodes are compatible with regenerating axons and show promise for establishing chemical and electrical interfaces with peripheral nerves. PMID:21921739

  13. Multifunctional Silk Nerve Guides for Axon Outgrowth

    NASA Astrophysics Data System (ADS)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long (> 3 cm) peripheral nerve gaps.

  14. Improved Walking Claudication Distance with Transcutaneous Electrical Nerve Stimulation: An Old Treatment with a New Indication in Patients with Peripheral Artery Disease.

    PubMed

    Labrunée, Marc; Boned, Anne; Granger, Richard; Bousquet, Marc; Jordan, Christian; Richard, Lisa; Garrigues, Damien; Gremeaux, Vincent; Sénard, Jean-Michel; Pathak, Atul; Guiraud, Thibaut

    2015-11-01

    The aim of this study was to determine whether 45 mins of transcutaneous electrical nerve stimulation before exercise could delay pain onset and increase walking distance in peripheral artery disease patients. After a baseline assessment of the walking velocity that led to pain after 300 m, 15 peripheral artery disease patients underwent four exercise sessions in a random order. The patients had a 45-min transcutaneous electrical nerve stimulation session with different experimental conditions: 80 Hz, 10 Hz, sham (presence of electrodes without stimulation), or control with no electrodes, immediately followed by five walking bouts on a treadmill until pain occurred. The patients were allowed to rest for 10 mins between each bout and had no feedback concerning the walking distance achieved. Total walking distance was significantly different between T10, T80, sham, and control (P < 0.0003). No difference was observed between T10 and T80, but T10 was different from sham and control. Sham, T10, and T80 were all different from control (P < 0.001). There was no difference between each condition for heart rate and blood pressure. Transcutaneous electrical nerve stimulation immediately before walking can delay pain onset and increase walking distance in patients with class II peripheral artery disease, with transcutaneous electrical nerve stimulation of 10 Hz being the most effective.

  15. Central and peripheral cardiovascular responses to electrically induced and voluntary leg exercise

    NASA Technical Reports Server (NTRS)

    Saltin, B.; Strange, S.; Bangsbo, J.; Kim, C. K.; Duvoisin, M.; Hargens, A.; Gollnick, P. D.

    1990-01-01

    With long missions in space countermeasures have to be used to secure safe operations in space and a safe return to Earth. Exercises of various forms have been used, but the question has arisen whether electrically induced contractions of muscle especially sensitive to weightlessness and crucial for man's performance would aid in maintaining their optimal function. The physiological responses both to short term and prolonged dynamic exercise performed either voluntarily or induced by electrical stimulation were considered. The local and systemic circulatory responses were similar for the voluntary and electrically induced contractions. The metabolic response was slightly more pronounced with electrical stimulation. This could be a reflection of not only slow twitch (type 1) but also fast twitch (type 2) fibers being recruited when the contractions were induced electrically. Intramuscular pressure recordings indicated that the dominant fraction of the muscle group was engaged regardless of mode of activation. Some 70 percent of the short term peak voluntary exercise capacity could be attained with electrical stimulation. Thus, electrically induced contractions of specific muscle groups should indeed be considered as an efficient countermeasure.

  16. [Neural control of somatic muscle function in the earthworm, Allobophora longa, and in the leech, Hirudo medicinalis].

    PubMed

    David, O F

    1978-01-01

    Studies have been made on the electrical activity of the segmentary nerves and connectives of the abdominal nervous chain in the earthworm and leech. It was shown that the electrical activity of the isolated piece of the abdominal chain of the leech is manifested of periodic outbursts of impulsation. Presumably this central periodicity accounts for the discharge-like pattern of muscle rhythmic activity which was revealed in our earlier investigations. The electrical activity in the central nervous system of the earthworm depends on afferent influences which pass to the ganglia from the peripheral sensory nervous cells. Stimulation of the abdominal nervous chain did not result in extra discharges of muscle activity, but only affected some of the parameters of the latter.

  17. Shell shock at Queen Square: Lewis Yealland 100 years on

    PubMed Central

    Jones, Edgar; Lees, Andrew J.

    2013-01-01

    This article reviews the treatment of functional neurological symptoms during World War I by Lewis Yealland at the National Hospital for the Paralysed and Epileptic in London. Yealland was among the first doctors in Britain to incorporate electricity in the systematic treatment of shell shock. Our analysis is based on the original case records of his treatment of 196 soldiers with functional motor and sensory symptoms, functional seizures and somatoform disorders. Yealland’s treatment approach integrated peripheral and central electrical stimulation with a variety of other—psychological and physical—interventions. A combination of electrical stimulation of affected muscles with suggestion of imminent improvement was the hallmark of his approach. Although his reported success rates were high, Yealland conducted no formal follow-up. Many of the principles of his treatment, including the emphasis on suggestion, demonstration of preserved function and the communication of a physiological illness model, are encountered in current therapeutic approaches to functional motor and sensory symptoms. Yealland has been attacked for his use of electrical stimulation and harsh disciplinary procedures in popular and scientific literature during and after World War I. This criticism reflects changing views on patient autonomy and the social role of doctors and directly impacts on current debates on ethical justification of suggestive therapies. We argue that knowledge of the historical approaches to diagnosis and management of functional neurological syndromes can inform both aetiological models and treatment concepts for these challenging conditions. PMID:23384604

  18. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.

  19. Investigating the Effects of Peripheral Electrical Stimulation on Corticomuscular Functional Connectivity Stroke Survivors.

    PubMed

    Lai, Meei-I; Pan, Li-Ling; Tsai, Mei-Wun; Shih, Yi-Fen; Wei, Shun-Hwa; Chou, Li-Wei

    2016-06-01

    Electrical stimulation (ES) in the periphery can induce brain plasticity and has been used clinically to promote motor recovery in patients with central nervous system lesion. Electroencephalogram (EEG) and electromyogram (EMG) are readily applicable in clinical settings and can detect real-time functional connectivity between motor cortex and muscles with EEG-EMG (corticomuscular) coherence. The purpose of this study was to determine whether EEG-EMG coherence can detect changes in corticomuscular control induced by peripheral ES. Fifteen healthy young adults and 15 stroke survivors received 40-min electrical stimulation session on median nerve. The stimulation (1-ms rectangular pulse, 100 Hz) was delivered with a 20-s on-20-s off cycle, and the intensity was set at the subjects' highest tolerable level without muscle contraction or pain. Both before and after the stimulation session, subjects performed a 20-s steady-hold thumb flexion at 50% maximal voluntary contraction (MVC) while EEG and EMG were collected. Our results demonstrated that after ES, EEG-EMG coherence in gamma band increased significantly for 22.1 and 48.6% in healthy adults and stroke survivors, respectively. In addition, after ES, force steadiness was also improved in both groups, as indicated by the decrease in force fluctuation during steady-hold contraction (-1.7% MVC and -3.9%MVC for healthy and stroke individuals, respectively). Our results demonstrated that EEG-EMG coherence can detect ES-induced changes in the neuromuscular system. Also, because gamma coherence is linked to afferent inputs encoding, improvement in motor performance is likely related to ES-elicited strong sensory input and enhanced sensorimotor integration.

  20. The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)

    NASA Astrophysics Data System (ADS)

    Azman, M. F.; Azman, A. W.

    2017-11-01

    Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.

  1. Decreased Axon Flare Reaction to Electrical Stimulation in Patients With Chronic Demyelinating Inflammatory Polyneuropathy.

    PubMed

    Kokotis, Panagiotis; Schmelz, Martin; Papagianni, Aikaterini E; Zambelis, Thomas; Karandreas, Nikos

    2017-03-01

    In chronic inflammatory demyelinating polyradiculopathy (CIDP), the impairment of unmyelinated nerve fibers appears unexpected. The measurement of the electrically induced axon flare reflex is a clinical test to assess the peripheral C-nociceptor function. In this study, we compared the flare area in patients suffering from CIDP with healthy subjects. We examined 18 patients fulfilling the criteria for CIDP (11 men, mean age 51.8 years, SD 15.1) and 18 age-matched adult healthy volunteers (control group) (11 men, mean age 51.9 years, SD 15.8). The flare responses were elicited by transcutaneous electrical stimulation and recorded by laser Doppler imaging. There was a significant reduction of electrically induced maximum flare area in the foot dorsum of patients with CIDP (t-value 2.08, P = 0.04) which proved to be length-dependent measured by a numerical index comparing the results with the forearm and thigh. The repeatedmeasures ANOVA revealed statistically significant smaller flare areas in all body regions for the CIDP group (P < 0.001). The axon flare reaction to electrical stimulation was decreased in patients with chronic demyelinating inflammatory polyneuropathy. The evaluation of the axon flare response can be proposed as a noninvasive objective functional test to detect an impaired C-fiber function in CIDP patients with the advantages of simplicity of the procedure, time economy, and objectivity.

  2. [The role of magnetic stimulation in diagnosis of the peripheral nervous system].

    PubMed

    Dressler, D; Benecke, R; Meyer, B U; Conrad, B

    1988-12-01

    Magnetic stimulation has recently been introduced as a new method for stimulation of neuronal tissues. Up to now most investigators were emphasized the advantages of this method for the investigation of the central nervous system. With this paper we want to show that magnetic stimulation may also be useful for the examination of the peripheral nervous system. Both, magnetic and electrical stimulation, seem to employ the same stimulation mechanisms in the nervous tissue. The results obtained with both methods should therefore be comparable. By measuring EMG-latencies after electrical and magnetic stimulation (Fig. 1) the exact site of magnetic stimulation can be determined. Magnetic stimulation offers major advantages over electrical stimulation: 1) Magnetic stimulation is a painless method even when high stimulus intensities are used. 2) Magnetic stimulation can reach deep neuronal structures that are not easily accessible using electrical stimulation (Fig. 2, Fig. 3). 3) Using a wide range of stimulus intensities (Fig. 4, Fig. 5) magnetic stimulation provides a much better descrimination of different components of the compound muscle action potential than electrical stimulation. Magnetic stimulation seems to be a promising new method for the electrodiagnostic examination of pain- sensitive patients, especially when deep-lying peripheral nerves have to be investigated.

  3. Connexin36 Expression in Primary Afferent Neurons in Relation to the Axon Reflex and Modality Coding of Somatic Sensation.

    PubMed

    Nagy, J I; Lynn, B D; Senecal, J M M; Stecina, K

    2018-05-07

    Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Neurological complication after low-voltage electric injury: a case report.

    PubMed

    Kim, Ha Min; Ko, Yeong-A; Kim, Joon Sung; Lim, Seong Hoon; Hong, Bo Young

    2014-04-01

    Electrical shock can result in neurological complications, involving both peripheral and central nervous systems, which may present immediately or later on. However, delayed neurological complications caused by low-voltage electric shock are rarely reported. Here, a case of a man suffering from weakness and aphasia due to the delayed-onset of the peripheral nerve injury and ischemic stroke following an electrical shock is presented. Possible mechanisms underlying the neurological complications include thermal injury to perineural tissue, overactivity of the sympathetic nervous system, vascular injury, and histological or electrophysiological changes. Moreover, vasospasms caused by low-voltage alternating current may predispose individuals to ischemic stroke. Therefore, clinicians should consider the possibility of neurological complications, even if the onset of the symptoms is delayed, and should perform diagnostic tests, such as electrophysiology or imaging, when patients present with weakness following an electric injury.

  5. [Peripheral neuropathy and blood-nerve barrier].

    PubMed

    Kanda, Takashi

    2009-11-01

    It is important to know the cellular properties of endoneurial microvascular endothelial cells (PnMECs) and microvascular pericytes which constitute blood-nerve barrier (BNB), since this barrier structure in the peripheral nervous system (PNS) may play pivotal pathophysiological roles in various disorders of the PNS including inflammatory neuropathies (i.e. Guillain-Barré syndrome), vasculitic neuropathies, hereditary neuropathies and diabetic neuropathy. However, in contrast to blood-brain barrier (BBB), very few studies have been directed to BNB and no adequate cell lines originating from BNB had been launched. In our laboratory, we successfully established human immortalized cell lines originating from BNB using temperature-sensitive SV40 large T antigen and the cellular properties of human cell lines are presented in this paper. Human PnMEC cell line showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Human pericyte cell line also possessed tight junction proteins except claudin-5 and secrete various cytokines and growth factors including bFGF, VEGF, GDNF, NGF, BDNF and angiopoietin-1. Co-culture with pericytes or pericyte-conditioned media strengthend barrier properties of PnMEC, suggesting that in the PNS, peripheral nerve pericytes support the BNB function and play the same role of astrocytes in the BBB. Future accumulation of the knowledge concerning the cellular properties of BNB-forming cells will open the door to novel therapeutic strategies for intractable peripheral neuropathies.

  6. Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions

    NASA Astrophysics Data System (ADS)

    Wu, Pae C.; Knaack, Gretchen; Weber, Douglas J.

    2016-05-01

    The rapid and exponential advances in micro- and nanotechnologies over the last decade have enabled devices that communicate directly with the nervous system to measure and influence neural activity. Many of the earliest implementations focused on restoration of sensory and motor function, but as knowledge of physiology advances and technology continues to improve in accuracy, precision, and safety, new modes of engaging with the autonomic system herald an era of health restoration that may augment or replace many conventional pharmacotherapies. DARPA's Biological Technologies Office is continuing to advance neurotechnology by investing in neural interface technologies that are effective, reliable, and safe for long-term use in humans. DARPA's Hand Proprioception and Touch Interfaces (HAPTIX) program is creating a fully implantable system that interfaces with peripheral nerves in amputees to enable natural control and sensation for prosthetic limbs. Beyond standard electrode implementations, the Electrical Prescriptions (ElectRx) program is investing in innovative approaches to minimally or non-invasively interface with the peripheral nervous system using novel magnetic, optogenetic, and ultrasound-based technologies. These new mechanisms of interrogating and stimulating the peripheral nervous system are driving towards unparalleled spatiotemporal resolution, specificity and targeting, and noninvasiveness to enable chronic, human-use applications in closed-loop neuromodulation for the treatment of disease.

  7. Inhibitory Mechanisms in Primary Somatosensory Cortex Mediate the Effects of Peripheral Electrical Stimulation on Tactile Spatial Discrimination.

    PubMed

    Saito, Kei; Otsuru, Naofumi; Inukai, Yasuto; Kojima, Sho; Miyaguchi, Shota; Tsuiki, Shota; Sasaki, Ryoki; Onishi, Hideaki

    2018-06-01

    Selective afferent activation can be used to improve somatosensory function, possibly by altering cortical inhibitory circuit activity. Peripheral electrical stimulation (PES) is widely used to induce selective afferent activation, and its effect may depend on PES intensity. Therefore, we investigated the effects of high- and low-intensity PES applied to the right index finger on tactile discrimination performance and cortical sensory-evoked potential paired-pulse depression (SEP-PPD) in 25 neurologically healthy subjects. In Experiment 1, a grating orientation task (GOT) was performed before and immediately after local high- and low-intensity PES (both delivered as 1-s, 20-Hz trains of 0.2-ms electrical pulses at 5-s intervals). In Experiment 2, PPD of SEP components N20/P25_SEP-PPD and N20_SEP-PPD, respectively, were assessed before and immediately after high- and low-intensity PES. Improved GOT discrimination performance after high-intensity PES (reduced discrimination threshold) was associated with lower baseline performance (higher baseline discrimination threshold). Subjects were classified into low and high (baseline) GOT performance groups. Improved GOT discrimination performance in the low GOT performance group was significantly associated with a greater N20_SEP-PPD decrease (weaker PPD). Subjects were also classified into GOT improvement and GOT decrement groups. High-intensity PES decreased N20_SEP-PPD in the GOT improvement group but increased N20_SEP-PPD in the GOT decrement group. Furthermore, a greater decrease in GOT discrimination threshold was significantly associated with a greater N20_SEP-PPD decrease in the GOT improvement group. These results suggest that high-intensity PES can improve sensory perception in subjects with low baseline function by modulating cortical inhibitory circuits in primary somatosensory cortex. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Reduced Radial Displacement of the Gastrocnemius Medialis Muscle After Electrically Elicited Fatigue.

    PubMed

    Macgregor, Lewis J; Ditroilo, Massimiliano; Smith, Iain J; Fairweather, Malcolm M; Hunter, Angus M

    2016-08-01

    Assessments of skeletal-muscle functional capacity often necessitate maximal contractile effort, which exacerbates muscle fatigue or injury. Tensiomyography (TMG) has been investigated as a means to assess muscle contractile function after fatigue; however, observations have not been contextualized by concurrent physiological measures. To measure peripheral-fatigue-induced alterations in mechanical and contractile properties of the plantar-flexor muscles through noninvasive TMG concurrently with maximal voluntary contraction (MVC) and passive muscle tension (PMT) to validate TMG as a gauge of peripheral fatigue. Pre- and posttest intervention with control. University laboratory. 21 healthy male volunteers. Subjects' plantar flexors were tested for TMG parameters, along with MVC and PMT, before and after either a 5-min rest period (control) or a 5-min electrical-stimulation intervention (fatigue). Temporal (contraction velocity) and spatial (radial displacement) contractile parameters of the gastrocnemius medialis were recorded through TMG. MVC was measured as an indicator of muscle fatigue, and PMT was measured to assess muscle stiffness. Radial displacement demonstrated a fatigue-associated reduction (3.3 ± 1.2 vs 4.0 ± 1.4 mm, P = .031), while contraction velocity remained unaltered. In addition, MVC significantly declined by 122.6 ± 104 N (P < .001) after stimulation (fatigue). PMT was significantly increased after fatigue (139.8 ± 54.3 vs 111.3 ± 44.6 N, P = .007). TMG successfully detected fatigue, evident from reduced MVC, by displaying impaired muscle displacement accompanied by elevated PMT. TMG could be useful in establishing skeletal-muscle fatigue status without exacerbating the functional decrement of the muscle.

  9. Cholesterol and myelin biogenesis.

    PubMed

    Saher, Gesine; Simons, Mikael

    2010-01-01

    Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.

  10. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    PubMed

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Myoneural necrosis following high-frequency electrical stimulation of the cast-immobilized rabbit hindlimb

    NASA Technical Reports Server (NTRS)

    Friden, J.; Lieber, R. L.; Myers, R. R.; Powell, H. C.; Hargens, A. R.

    1989-01-01

    The morphological and physiological effects of 4 weeks of high-frequency electrical stimulation (1 h/day, 5 days/week) on cast-immobilized rabbit hindlimbs were investigated in the tibialis anterior muscle and peroneal nerve. In 2 out of 6 animals, high-frequency stimulation with immobilization caused muscle fiber death, internalization of muscle fiber nuclei, connective tissue proliferation, inflammatory response, altered fiber size distribution and variable staining intensities. The fast-twitch fibers were predominantly affected. Two of six peripheral nerves subjected to immobilization and stimulation showed severe damage. Tetanic forces were significantly reduced in the affected muscles. Therefore, the immobilization and high-frequency stimulation may be detrimental to myoneural structure and function and, thus, this combination of therapies should be applied conservatively.

  12. Differential contribution of electrically evoked dorsal root reflexes to peripheral vasodilatation and plasma extravasation

    PubMed Central

    2011-01-01

    Background Dorsal root reflexes (DRRs) are antidromic activities traveling along the primary afferent fibers, which can be generated by peripheral stimulation or central stimulation. DRRs are thought to be involved in the generation of neurogenic inflammation, as indicated by plasma extravasation and vasodilatation. The hypothesis of this study was that electrical stimulation of the central stump of a cut dorsal root would lead to generation of DRRs, resulting in plasma extravasation and vasodilatation. Methods Sprague-Dawley rats were prepared to expose spinal cord and L4-L6 dorsal roots under pentobarbital general anesthesia. Electrical stimulation of either intact, proximal or distal, cut dorsal roots was applied while plasma extravasation or blood perfusion of the hindpaw was recorded. Results While stimulation of the peripheral stump of a dorsal root elicited plasma extravasation, electrical stimulation of the central stump of a cut dorsal root generated significant DRRs, but failed to induce plasma extravasation. However, stimulation of the central stump induced a significant increase in blood perfusion. Conclusions It is suggested that DRRs are involved in vasodilatation but not plasma extravasation in neurogenic inflammation in normal animals. PMID:21356101

  13. Comparative Investigation of Peripheral and Nonperipheral Zinc Phthalocyanine-Based Polycarbazoles in Terms of Optical, Electrical, and Sensing Properties.

    PubMed

    Soganci, Tugba; Baygu, Yasemin; Kabay, Nilgün; Gök, Yaşar; Ak, Metin

    2018-06-15

    In this study, nonperipherally alkyl-linked carbazole conjugated novel zinc(II) phthalocyanine was synthesized by cyclotetramerization reaction of 6-(9 H-carbazol-9-yl)hexane-1-thiol and 3,6-bis(tosyloxy) phthalonitrile in a one-step reaction. Optical, electrical, and sensing properties of this super structured polycarbazole obtained by electropolymerization are compared with peripherally alkyl-linked polycarbazole-based zinc(II) phthalocyanine. It has been found that the attachment of alkyl-linked carbazoles to the phthalocyanine molecule in either peripheral or nonperipheral positions has a great effect on the optical and electrical properties and sensing ability of the resulting polycarbazole derivatives. P(n-ZnPc) has the highest electrochromic contrast (70.5%) among the derivatives of zinc(II) phthalocyanines in the literature. In addition to these, the sensor platform has been successfully established, and analytical optimizations have been carried out. When the sensors prepared with zinc(II) phthalocyanine are examined, it was specified that the n-ZnPc- co-TP/GOx was ranked first in the literature with high sensor response and stability. As a result, by changing of the peripheral and nonperipheral position of phthalocyanines, their physical properties can be tuned to meet the requirements of desired technological application.

  14. Transfer of classical eyeblink conditioning with electrical stimulation of mPFC or tone as conditioned stimulus in guinea pigs.

    PubMed

    Yao, Juan; Wu, Guang-Yan; Liu, Guo-Long; Liu, Shu-Lei; Yang, Yi; Wu, Bing; Li, Xuan; Feng, Hua; Sui, Jian-Feng

    2014-11-01

    Learning with a stimulus from one sensory modality can facilitate subsequent learning with a new stimulus from a different sensory modality. To date, the characteristics and mechanism of this phenomenon named transfer effect still remain ambiguous. Our previous work showed that electrical stimulation of medial prefrontal cortex (mPFC) as a conditioned stimulus (CS) could successfully establish classical eyeblink conditioning (EBC). The present study aimed to (1) observe whether transfer of EBC learning would occur when CSs shift between central (mPFC electrical stimulation as a CS, mPFC-CS) and peripheral (tone as a CS, tone CS); (2) compare the difference in transfer effect between the two paradigms, delay EBC (DEBC) and trace EBC (TEBC). A total of 8 groups of guinea pigs were tested in the study, including 4 experimental groups and 4 control groups. Firstly, the experimental groups accepted central (or peripheral) CS paired with corneal airpuff unconditioned stimulus (US); then, CS shifted to the peripheral (or central) and paired with US. The control groups accepted corresponding central (or peripheral) CS and pseudo-paired with US, and then shifted CS from central (or peripheral) to peripheral (or central) and paired with US. The results showed that the acquisition rates of EBC were higher in experimental groups than in control groups after CS switching from central to peripheral or vice versa, and the CR acquisition rate was remarkably higher in DEBC than in TEBC in both transfer ways. The results indicate that EBC transfer can occur between learning established with mPFC-CS and tone CS. Memory of CS-US association for delay paradigm was less disturbed by the sudden switch of CS than for trace paradigm. This study provides new insight into neural mechanisms underlying conditioned reflex as well as the role of mPFC. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)

    PubMed Central

    Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander

    2017-01-01

    Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101

  16. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Liu, Jing

    2017-10-01

    With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µm in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1-1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time.

  17. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    PubMed Central

    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A.; Redl, Heinz; Tracey, Kevin J.

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre–electrical vagus nerve stimulation = 1033 ± 210 s versus post–electrical vagus nerve stimulation = 585 ± 111 s; P < 0.05) and total blood loss (pre–electrical vagus nerve stimulation = 48.4 ± 6.8 mL versus post–electrical vagus nerve stimulation = 26.3 ± 6.7 mL; P < 0.05). Reduced bleeding time after vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity. PMID:19953009

  18. Park size and disturbance: impact on soil heterogeneity - a case study Tel-Aviv- Jaffa.

    NASA Astrophysics Data System (ADS)

    Zhevelev, Helena; Sarah, Pariente; Oz, Atar

    2015-04-01

    Parks and gardens are poly-functional elements of great importance in urban areas, and can be used for optimization of physical and social components in these areas. This study aimed to investigate alteration of soil properties with land usages within urban park and with area size of park. Ten parks differed by size (2 - 50 acres) were chosen, in random, in Tel-Aviv- Jaffa city. Soil was sampled in four microenvironments ((lawn, path, picnic and peripheral area (unorganized area) of each the park)), in three points and three depth (0-2, 5-10 and 10-20 cm). Penetration depth was measured in all point of sampling. For each soil sample electrical conductivity and organic matter content were determined. Averages of penetration depth drastically increased from the most disturbed microenvironments (path and picnic) to the less disturbed ones (lawn and peripheral). The maximal heterogeneity (by variances and percentiles) of penetration depth was found in the peripheral area. In this area, penetration depth increased with increasing park size, i.e., from 2.6 cm to 3.7 cm in the small and large parks, respectively. Averages of organic matter content and electrical conductivity decreased with soil depth in all microenvironments and increased with decreasing disturbance of microenvironments. Maximal heterogeneity for both of these properties was found in the picnic area. Increase of park size was accompanied by increasing of organic matter content in the upper depth in the peripheral area, i.e., from 2.4% in the small parks to 4.5% in the large ones. In all microenvironments the increasing of averages of all studied soil properties was accompanied by increasing heterogeneity, i.e., variances and upper percentiles. The increase in the heterogeneity of the studied soil properties is attributed to improved ecological soil status in the peripheral area, on the one hand, and to the high anthropogenic pressure in the picnic area, on the other. This means that the urban park offers "islands" with better ecological conditions which improve the urban system.

  19. Hypothalamic involvement in stress-induced hypocalcemia in rats.

    PubMed

    Aou, S; Ma, J; Hori, T

    1993-08-20

    Although hormonal regulation of blood calcium homeostasis has been intensively investigated in the peripheral organs, the involvement of the central nervous system in calcium regulation is still poorly understood. In the present study, we found that (1) bilateral lesions of the ventromedial nucleus of the hypothalamus (VMH), but not those of the paraventricular hypothalamic nucleus or the lateral hypothalamic area, eliminated immobilization (IMB)-induced hypocalcemia, and (2) electrical stimulation of the VMH decreased the blood calcium level. The results suggest that the VMH has a hypocalcemic function and plays a role in IMB-induced hypocalcemia.

  20. Combined current collector and electrode separator

    DOEpatents

    Gerenser, R.J.; Littauer, E.L.

    1983-08-23

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.

  1. Combined current collector and electrode separator

    DOEpatents

    Gerenser, Robert J.; Littauer, Ernest L.

    1983-01-01

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  2. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srikanth; Patel, Kunal; Welle, Cristin

    2017-02-01

    Objective. In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. Approach. Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. Main results. Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons near the implanted electrode shanks, along with dense cellular accumulations near the implant site. Scanning electron microscopy (SEM) showed alterations of the electrode insulation and deformation of electrode shanks. Significance. We describe a comprehensive testing platform with applicability to electrodes that record from the peripheral nerves. This study assesses the long term safety and performance of electrodes in the peripheral nerves using a rodent model. Under this animal test platform, FMA electrodes record single unit action potentials but have limited chronic reliability due to structural weaknesses. Future work will apply these methods to other commercially-available and novel peripheral electrode technologies. This research was carried out in the Division of Biomedical Physics, Office of Science and Engineering Laboratory, Center for Devices and Radiological Health, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.

  3. The effects of hyperventilation on postural control mechanisms.

    PubMed

    Sakellari, V; Bronstein, A M; Corna, S; Hammon, C A; Jones, S; Wolsley, C J

    1997-09-01

    The effect of hyperventilation on postural balance was investigated. Voluntary hyperventilation increased body sway in normal subjects, particularly in the sagittal plane. The possibility that this hyperventilation-induced unsteadiness is due to interference with lower limb somatosensory input, vestibular reflexes or cerebellar function was assessed. (i) The effect of hyperventilation on peripheral compound sensory action potentials (SAPs) and somatosensory evoked potentials (SEPs) (recorded centrally, from the scalp) elicited by electrical stimulation of the sural nerve was measured in six normal adults. A reduction in the scalp SEP amplitude and an increase in the peripheral SAP amplitude were observed during hyperventilation, which reversed during the recovery period. These changes indicate increased peripheral neural excitability which could lead to a higher level of ectopic activity; the latter would interfere with central reception of peripheral input. (ii) The click-evoked vestibulo-collic reflex was recorded to study the effect of hyperventilation on vestibulo-spinal activity. EMG recordings from both sternocleidomastoid muscles of six healthy subjects were made in response to loud clicks presented to either ear. Neither the amplitude nor the latency of the response were altered significantly by hyperventilation. (iii) Eye-movement recordings were obtained in the six normal subjects to assess the effect of hyperventilation on the vestibulo-ocular reflex and its visual suppression, the latter being a function largely mediated by the cerebellum; no changes were detected. (iv) Three-dimensional eye-movement recordings and body-sway measurements were obtained in six patients with longstanding unilateral vestibular loss in order to evaluate if hyperventilation disrupts vestibular compensation. In all patients, a horizontal nystagmus either appeared or was significantly enhanced for > or = 60 s after voluntary hyperventilation. Sway was also enhanced by hyperventilation in these patients, particularly in the frontal plane. This study suggests that hyperventilation disrupts mechanisms mediating vestibular compensation. The increase in sway may be, at least partly, mediated by deranged peripheral and central somatosensory signals from the lower limbs. Hyperventilation seems to spare vestibular reflex activity and cerebellar-mediated eye movements.

  4. Neural tissue engineering options for peripheral nerve regeneration.

    PubMed

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fabrication of field-effect transistor utilizing oriented thin film of octahexyl-substituted phthalocyanine and its electrical anisotropy based on columnar structure

    NASA Astrophysics Data System (ADS)

    Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.

  6. A voltage-controlled capacitive discharge method for electrical activation of peripheral nerves.

    PubMed

    Rosellini, Will M; Yoo, Paul B; Engineer, Navzer; Armstrong, Scott; Weiner, Richard L; Burress, Chester; Cauller, Larry

    2011-01-01

    A voltage-controlled capacitive discharge (VCCD) method was investigated as an alternative to rectangular stimulus pulses currently used in peripheral nerve stimulation therapies.  In two anesthetized Gottingen mini pigs, the threshold (total charge per phase) for evoking a compound nerve action potential (CNAP) was compared between constant current (CC) and VCCD methods. Electrical pulses were applied to the tibial and posterior cutaneous femoralis nerves using standard and modified versions of the Medtronic 3778 Octad.  In contrast to CC stimulation, the combined application of VCCD pulses with a modified Octad resulted in a marked decrease (-73 ± 7.4%) in the stimulation threshold for evoking a CNAP. This was consistent for different myelinated fiber types and locations of stimulation.  The VCCD method provides a highly charge-efficient means of activating myelinated fibers that could potentially be used within a wireless peripheral nerve stimulator system. © 2011 International Neuromodulation Society.

  7. Silicone Molding and Lifetime Testing of Peripheral Nerve Interfaces for Neuroprostheses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupte, Kimaya; Tolosa, Vanessa

    Implantable peripheral nerve cuffs have a large application in neuroprostheses as they can be used to restore sensation to those with upper limb amputations. Modern day prosthetics, while lessening the pain associated with phantom limb syndrome, have limited fine motor control and do not provide sensory feedback to patients. Sensory feedback with prosthetics requires communication between the nervous system and limbs, and is still a challenge to accomplish with amputees. Establishing this communication between the peripheral nerves in the arm and artificial limbs is vital as prosthetics research aims to provide sensory feedback to amputees. Peripheral nerve cuffs restore sensationmore » by electrically stimulating certain parts of the nerve in order to create feeling in the hand. Cuff electrodes have an advantage over standard electrodes as they have high selective stimulation by bringing the electrical interface close to the neural tissue in order to selectively activate targeted regions of a peripheral nerve. In order to further improve the selective stimulation of these nerve cuffs, there is need for finer spatial resolution among electrodes. One method to achieve a higher spatial resolution is to increase the electrode density on the cuff itself. Microfabrication techniques can be used to achieve this higher electrode density. Using L-Edit, a layout editor, microfabricated peripheral nerve cuffs were designed with a higher electrode density than the current model. This increase in electrode density translates to an increase in spatial resolution by at least one order of magnitude. Microfabricated devices also have two separate components that are necessary to understand before implantation: lifetime of the device and assembly to prevent nerve damage. Silicone molding procedures were optimized so that devices do not damage nerves in vivo, and lifetime testing was performed on test microfabricated devices to determine their lifetime in vivo. Future work of this project would include fabricating some of the designed devices and seeing how they compare to the current cuffs in terms of their electrical performance, lifetime, shape, and mechanical properties.« less

  8. Neuromodulation of the neural circuits controlling the lower urinary tract

    PubMed Central

    Gad, Parag N.; Roy, Roland R.; Zhong, Hui; Gerasimenko, Yury P.; Taccola, Giuliano; Edgerton, V. Reggie

    2017-01-01

    The inability to control timely bladder emptying is one of the most serious challenges among the many functional deficits that occur after a spinal cord injury. We previously demonstrated that electrodes placed epidurally on the dorsum of the spinal cord can be used in animals and humans to recover postural and locomotor function after complete paralysis and can be used to enable voiding in spinal rats. In the present study, we examined the neuromodulation of lower urinary tract function associated with acute epidural spinal cord stimulation, locomotion, and peripheral nerve stimulation in adult rats. Herein we demonstrate that electrically evoked potentials in the hindlimb muscles and external urethral sphincter are modulated uniquely when the rat is stepping bipedally and not voiding, immediately pre-voiding, or when voiding. We also show that spinal cord stimulation can effectively neuromodulate the lower urinary tract via frequency-dependent stimulation patterns and that neural peripheral nerve stimulation can activate the external urethral sphincter both directly and via relays in the spinal cord. The data demonstrate that the sensorimotor networks controlling bladder and locomotion are highly integrated neurophysiologically and behaviorally and demonstrate how these two functions are modulated by sensory input from the tibial and pudental nerves. A more detailed understanding of the high level of interaction between these networks could lead to the integration of multiple neurophysiological strategies to improve bladder function. These data suggest that the development of strategies to improve bladder function should simultaneously engage these highly integrated networks in an activity-dependent manner. PMID:27381425

  9. 3D quantitative photoacoustic image reconstruction using Monte Carlo method and linearization

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Tsujita, Kazuhiro; Kushibiki, Toshihiro; Ishihara, Miya

    2018-02-01

    To quantify the functional and structural information of peripheral blood vessels for diagnoses of diseases which affects peripheral blood vessels such as diabetes and peripheral vascular disease, a 3D quantitative photoacoustic tomography (QPAT) reconstructing the optical properties such as the absorption coefficient reflecting microvascular structures and hemoglobin concentration and oxygenation saturation is studied. QPAT image reconstruction algorithms based on radiative transfer equation (RTE) and photon diffusion equation (PDE) have been proposed. However, it is not easy to use RTE in the clinical practice because of the huge computational load and long calculation time. On the other hand, it is always considered problematic to use PDE, because it does not approximate RTE well near the illuminating position. In this study, we developed the 3D QPAT image reconstruction using Monte Carlo (MC) method which approximates RTE better than PDE to reconstruct the optical properties in the region near the illuminating surface. To reduce the calculation time, we applied linearization. The QPAT image reconstruction algorithm with MC method and linearization was examined in numerical simulations and phantom experiment by use of a scanning system with a single probe consisting of P(VDF-TrFE) piezo electric film and optical fiber.

  10. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo

    NASA Astrophysics Data System (ADS)

    Downs, Matthew E.; Lee, Stephen A.; Yang, Georgiana; Kim, Seaok; Wang, Qi; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.

  11. Selective neural activation in a histologically derived model of peripheral nerve

    NASA Astrophysics Data System (ADS)

    Butson, Christopher R.; Miller, Ian O.; Normann, Richard A.; Clark, Gregory A.

    2011-06-01

    Functional electrical stimulation (FES) is a general term for therapeutic methods that use electrical stimulation to aid or replace lost ability. For FES systems that communicate with the nervous system, one critical component is the electrode interface through which the machine-body information transfer must occur. In this paper, we examine the influence of inhomogeneous tissue conductivities and positions of nodes of Ranvier on activation of myelinated axons for neuromuscular control as a function of electrode configuration. To evaluate these effects, we developed a high-resolution bioelectric model of a fascicle from a stained cross-section of cat sciatic nerve. The model was constructed by digitizing a fixed specimen of peripheral nerve, extruding the image along the axis of the nerve, and assigning each anatomical component to one of several different tissue types. Electrodes were represented by current sources in monopolar, transverse bipolar, and longitudinal bipolar configurations; neural activation was determined using coupled field-neuron simulations with myelinated axon cable models. We found that the use of an isotropic tissue medium overestimated neural activation thresholds compared with the use of physiologically based, inhomogeneous tissue medium, even after controlling for mean impedance levels. Additionally, the positions of the cathodic sources relative to the nodes of Ranvier had substantial effects on activation, and these effects were modulated by the electrode configuration. Our results indicate that physiologically based tissue properties cause considerable variability in the neural response, and the inclusion of these properties is an important component in accurately predicting activation. The results are used to suggest new electrode designs to enable selective stimulation of small diameter fibers.

  12. Electrical stimulation of paralyzed vibrissal muscles reduces endplate reinnervation and does not promote motor recovery after facial nerve repair in rats.

    PubMed

    Sinis, Nektarios; Horn, Frauke; Genchev, Borislav; Skouras, Emmanouil; Merkel, Daniel; Angelova, Srebrina K; Kaidoglou, Katerina; Michael, Joern; Pavlov, Stoyan; Igelmund, Peter; Schaller, Hans-Eberhard; Irintchev, Andrey; Dunlop, Sarah A; Angelov, Doychin N

    2009-10-01

    The outcome of peripheral nerve injuries requiring surgical repair is poor. Recent work has suggested that electrical stimulation (ES) of denervated muscles could be beneficial. Here we tested whether ES has a positive influence on functional recovery after injury and surgical repair of the facial nerve. Outcomes at 2 months were compared to animals receiving sham stimulation (SS). Starting on the first day after end-to-end suture (facial-facial anastomosis), electrical stimulation (square 0.1 ms pulses at 5 Hz at an ex tempore established threshold amplitude of between 3.0 and 5.0V) was delivered to the vibrissal muscles for 5 min a day, 3 times a week. Restoration of vibrissal motor performance following ES or SS was evaluated using the video-based motion analysis and correlated with the degree of collateral axonal branching at the lesion site, the number of motor endplates in the target musculature and the quality of their reinnervation, i.e. the degree of mono- versus poly-innervation. Neither protocol reduced collateral branching. ES did not improve functional outcome, but rather reduced the number of innervated motor endplates to approximately one-fifth of normal values and failed to reduce the proportion of poly-innervated motor endplates. We conclude that ES is not beneficial for recovery of whisker function after facial nerve repair in rats.

  13. Electric injury, Part II: Specific injuries.

    PubMed

    Fish, R M

    2000-01-01

    Electric injury can cause disruption of cardiac rhythm and breathing, burns, fractures, dislocations, rhabdomyolysis, eye and ear injury, oral and gastrointestinal injury, vascular damage, disseminated intravascular coagulation, peripheral and spinal cord injury, and Reflex Sympathetic Dystrophy. Secondary trauma from falls, fires, flying debris, and inhalation injury can complicate the clinical picture. Diagnostic and treatment considerations for electric injuries are described in this article, which is the second part of a three-part series on electric injuries.

  14. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.

    PubMed

    Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori

    2012-04-01

    To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation.

  15. Direct current electrical stimulation of acupuncture needles for peripheral nerve regeneration: an exploratory case series.

    PubMed

    Inoue, Motohiro; Katsumi, Yasukazu; Itoi, Megumi; Hojo, Tatsuya; Nakajima, Miwa; Ohashi, Suzuyo; Oi, Yuki; Kitakoji, Hiroshi

    2011-06-01

    To examine the therapeutic effect of a novel therapeutic method based on electroacupuncture with intermittent direct current (DCEA) and associated adverse events in patients with peripheral nerve damage and a poor clinical prognosis. In seven older patients with peripheral nerve damage (neurapraxia 2, axonotmesis 4, neuromesis 1), an acupuncture needle connected to an anode electrode was inserted proximal to the site of the injury along the route of the nerve, while the cathode electrode was inserted into the innervated muscle, and DCEA was performed (100 Hz for 20 min, weekly). Muscular paralysis was evaluated weekly with manual muscle testing, the active range of motion of joints related to the muscular paralysis and, when necessary, needle electromyography. Adverse events were also recorded during the course of the treatment. Complete functional recovery was observed in the two cases with neurapraxia and two with axonotmesis, while one axonotmesis case achieved improvement and the other showed reinnervation potential without functional recovery. No improvement was observed in the neurotmesis case. Pigmentation of the skin where the anode needle was inserted occurred in three cases. Although there was no definite causal link, one case showed excessive formation and resorption of bone in the area close to the cathode needle site. Accelerated nerve regeneration caused by DCEA may contribute to recovery. The skin pigmentation and callus formation suggest that the shape of the anode electrode, current intensity and other factors should be examined to establish a safer treatment method.

  16. Electrophysiological evidence for the antinociceptive effect of transcutaneous electrical stimulation on mechanically evoked responsiveness of dorsal horn neurons in neuropathic rats.

    PubMed

    Leem, J W; Park, E S; Paik, K S

    1995-06-16

    Using a rat model of peripheral neuropathy induced by a tight ligation of L5-6 spinal nerves, the effects of transcutaneous electrical stimulation on the mechanical responses of wide dynamic range (WDR) dorsal horn neurons were investigated. The responses of the WDR neurons to both the brush and pinch stimuli were found to be enhanced in the neuropathic rats compared to those in the normal rats. These enhanced responses were depressed by low-frequency and high-intensity transcutaneous electrical stimulation (2 Hz, 4-5 mA) applied to the somatic receptive field. The durations of the depressive effects on the brush responses ranged between 30 and 45 min and those on the pinch responses were 60-90 min. These results imply that the transcutaneous electrical stimulation used here produces an antinociceptive effect via a depressive action on the enhanced mechanical responsiveness of the spinal neurons in this rat model of peripheral neuropathy.

  17. Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search

    PubMed Central

    Tadin, Duje; Nyquist, Jeffrey B.; Lusk, Kelly E.; Corn, Anne L.; Lappin, Joseph S.

    2012-01-01

    Purpose. Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. Methods. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10–17) and low vision (n = 24, ages 9–18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. Results. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Conclusions. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function. PMID:22836766

  18. Peripheral vision of youths with low vision: motion perception, crowding, and visual search.

    PubMed

    Tadin, Duje; Nyquist, Jeffrey B; Lusk, Kelly E; Corn, Anne L; Lappin, Joseph S

    2012-08-24

    Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10-17) and low vision (n = 24, ages 9-18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function.

  19. [Research progress of functional magnetic resonance imaging in mechanism studies of tinnitus].

    PubMed

    Ji, B B; Li, M; Zhang, J N

    2018-02-07

    Tinnitus is a subjective symptom of phantom sound in the ear or brain without sound or electrical stimulation in the environment. The mechanism of tinnitus is complicated and mostly unclear. Recent studies suggested that the abnormal peripheral auditory input lead to neuroplasticity changes in central nervous system followed by tinnitus. More research concerned on the tinnitus central mechanism. A rapid development of functional magnetic resonance imaging (fMRI) technique made it more widely used in tinnitus central mechanism research. fMRI brought new findings but also presented some shortages in technology and cognition in tinnitus study. This article summarized the outcomes of fMRI research on tinnitus in recent years, exploring its existing problems and application prospects.

  20. Interface standards for computer equipment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The ability to configure data systems using modules provided by independent manufacturers is complicated by the wide range of electrical, mechanical, and functional characteristics exhibited within the equipment provided by different manufacturers of computers, peripherals, and terminal devices. A number of international organizations were and still are involved in the creation of standards that enable devices to be interconnected with minimal difficulty, usually involving only a cable or data bus connection that is defined by the standard. The elements covered by an interface standard are covered and the most prominent interface standards presently in use are identified and described.

  1. The body electric: a long view of electrical therapy for functional neurological disorders.

    PubMed

    McWhirter, Laura; Carson, Alan; Stone, Jon

    2015-04-01

    The use of electricity in medical treatment has always been technology-driven, rather than aetiology-driven; as new techniques have appeared, clinicians have quickly looked to try them in the treatment of all sorts of conditions where existing treatment options are limited. Functional disorders--as identified anachronistically in our analysis--have been key contenders for emerging electrical treatments: with Leyden jars, with galvanic and electromagnetic machines, and more recently with TMS and TENS. Parallels can be drawn with the history of electrical treatments for migraine and headache (Koehler and Boes, 2010). Regardless of the mode of delivery of electricity, stimulating a limb to produce movement has repeatedly been found to aid and assist recovery in functional motor disorders. This may also be true of non-electrical methods: we have found benefits using both therapeutic sedation and explanatory demonstration of a positive Hoover's sign as therapeutic methods of demonstrating normal movement in functionally weak limbs (Stone et al., 2014). Each surge in enthusiasm for new electrical treatments has been followed by questions about the nature of the disorder and validity of the treatment response. Physicians have tended to attribute therapeutic success initially to powerful biological or even metaphysical effects, but with time and experience these explanations have been replaced by views that the treatment works through suggestion and placebo. Discomfort with these conclusions has in the past discouraged ongoing development of electrical treatments, even if the end result for patients has been encouraging. In Edwards's Bayesian model, functional motor and sensory symptoms are hypothesized to arise when 'pathologically precise prior beliefs' mediated by attentional processes cause experience of symptoms via a hierarchy of false inferences (Edwards, 2012). It can be argued that use of TMS or peripheral stimulation to produce movement of a functionally weak limb has the specific potential to modulate pathological expectations. To reject these treatments as no more than placebo may mean missing an unusual opportunity to manipulate key elements in the mechanism of the disorder. However, changes to these 'priors' may also be dependent upon patient expectations, and as we see through history, this may only happen if the patient believes there is an actual neuromodulatory effect. This may give rise to significant ethical issues in that the treatment may well directly benefit patients but only if they are (mis)informed that there is an underlying biological rationale. We conclude that modern trials of TMS in functional disorders are part of a repeating cycle of experimentation recurring since the mid-18th century. We suspect that emerging technology, including transcranial direct current stimulation, will follow a similar pattern of experimentation, speculation and marginalization. We suggest that considering our modern efforts in a historical context could aid our ability to further expand and maintain our use of electrical therapies that have proven helpful in the past for patients with functional disorders.

  2. High-voltage electrical burn injuries: functional upper extremity assessment.

    PubMed

    Mazzetto-Betti, K C; Amâncio, A C G; Farina, J A; Barros, M E P M; Fonseca, M C R

    2009-08-01

    High-voltage electric injuries have many manifestations, and an important complication is the damage of the central/peripheral nervous system. The purpose of this work was to assess the upper limb dysfunction in patients injured by high-voltage current. The evaluation consisted of analysis of patients' records, cutaneous-sensibility threshold, handgrip and pinch strength and a specific questionnaire about upper limb dysfunctions (DASH) in 18 subjects. All subjects were men; the average age at the time of the injury was 38 years. Of these, 72% changed job/retired after the injury. The current entrance was the hand in 94% and grounding in the lower limb in 78%. The average burned surface area (BSA) was 8.6%. The handgrip strength of the injured limb was reduced (p<0.05) and so also that of the three pinch types. The relationship between the handgrip strength and the DASH was statistically significant (p<0.001) as well as the relationship between the three pinch types (p

  3. Peripheral ionotropic glutamate receptors contribute to Fos expression increase in the spinal cord through antidromic electrical stimulation of sensory nerves.

    PubMed

    Li, Jia-Heng; He, Pei-Yao; Fan, Dan-Ni; Alemujiang, Dilinapa; Huo, Fu-Quan; Zhao, Yan; Cao, Dong-Yuan

    2018-06-21

    Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord. Fos expression increased in the T8 - T12 segments of the spinal cord evoked by ADES of the T10 CBDR in rats. The increased Fos expression in the T11 and T12, but not T8 - T10 spinal cord segments, was significantly blocked by local application of either N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) or non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the receptive field of T11 CBDR. The results suggest that endogenous glutamate released by ADES of sensory nerve may bind to peripheral ionotropic glutamate receptors and activate adjacent sensory nerve endings to increase the sensitivity of the spinal cord. These data reveal the potential mechanisms of neuron activation in the spinal cord evoked by peripheral sensitization. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. THE REGULATION ROLE OF CAROTID BODY PERIPHERAL CHEMORECEPTORS IN PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL CONDITIONS.

    PubMed

    Lazovic, Biljana; Zlatkovic Svenda, Mirjana; Durmic, Tijana; Stajic, Zoran; Duric, Vesna; Zugic, Vladimir

    2016-11-01

    The major oxygen sensors in the human body are peripheral chemoreceptors. also known as interoreceptors- as connected with internal organs, located in the aortic arch and in the body of the common carotid artery. Chemoreceptor function under physiological conditions. Stimulation of peripheral chemoreceptors during enviromental hypoxia causes a reflex-mediated increased ventilation, followed by the increase of the muscle sympatic activity, aiming to maintain tissue oxygen homeostatis, as well as glucosae, homeostatis. Besides that, peripheral chemoreceptors interact with central chemoreceptors. responsible for carbon dioxide changes . and they are able to modulate each other. Chemoreceptor function in pathophysiological conditions. Investigations of respiratory function in many pathological processes, such as hypertension, obstructive sleep apnea, congestive heart failure and many other diseases that are presented with enhanced peripheral chemosensitivity and impaired functional sy mpatholysis ultimately determine the peripheral chemorcceptor role and significance of peripheral chemoreceptors in the process of those pathological conditions development. Considering this, the presumed influence of peripheral chemoreceptors is important in patients having the above mentioned pathology. The importance and the role of peripheral chemoreceptors in the course of the breathing control is still controversial, despite many scientific attempts to solve this problem. The main objective of this review is to give the latest data on the peripheral chemoreceptor role and to highlight the importance of peripheral chemoreceptors for maintaining of oxygen homeostasis in pateints with hypoxia caused by either physiological or pathological conditions.

  5. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability

    PubMed Central

    Dileone, Michele; Campolo, Michela; Carrasco-Lopez, Carmen; Moitinho-Ferreira, Fabricia; Gallego-Izquierdo, Tomas; Siebner, Hartwig R.; Valls-Solé, Josep; Aguilar, Juan

    2018-01-01

    Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS) of the median nerve has been shown to change spinal motoneuron excitability in the cervical spinal cord as indexed by a change in mean H-reflex amplitude in the flexor carpi radialis muscle. It is unknown whether continuous TBS of a peripheral nerve can also shift motoneuron excitability in the lower limb. In 26 healthy subjects, we examined the effects of electrical TBS given to the tibial nerve in the popliteal fossa on the excitability of lumbar spinal motoneurons as measured by H-reflex amplitude of the soleus muscle evoked by tibial nerve stimulation. Continuous TBS was given at 110% of H-reflex threshold intensity and compared to non-patterned regular electrical stimulation at 15 Hz. To disclose any pain-induced effects, we also tested the effects of TBS at individual sensory threshold. Moreover, in a subgroup of subjects we evaluated paired-pulse inhibition of H-reflex. Continuous TBS at 110% of H-reflex threshold intensity induced a short-term reduction of H-reflex amplitude. The other stimulation conditions produced no after effects. Paired-pulse H-reflex inhibition was not modulated by continuous TBS or non-patterned repetitive stimulation at 15 Hz. An effect of pain on the results obtained was discarded, since non-patterned 15 Hz stimulation at 110% HT led to pain scores similar to those induced by EcTBS at 110% HT, but was not able to induce any modulation of the H reflex amplitude. Together, the results provide first time evidence that peripheral continuous TBS induces a short-lasting change in the excitability of spinal motoneurons in lower limb circuitries. Future studies need to investigate how the TBS protocol can be optimized to produce a larger and longer effect on spinal cord physiology and whether this might be a useful intervention in patients with excessive excitability of the spinal motorneurons. PMID:29451889

  6. Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury.

    PubMed

    Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-05-27

    Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury.

  7. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    NASA Astrophysics Data System (ADS)

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-03-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  8. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    PubMed Central

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-01-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination. PMID:26932543

  9. Quantifying Demyelination in NK venom treated nerve using its electric circuit model.

    PubMed

    Das, H K; Das, D; Doley, R; Sahu, P P

    2016-03-02

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  10. Graded Positive Feedback in Elasmobranch Ampullae of Lorenzini

    NASA Astrophysics Data System (ADS)

    Kalmijn, Ad. J.

    2003-05-01

    The acute electrical sensitivity of marine sharks and rays is the greatest known in the Animal Kingdom. I investigate the possibility that the underlying biophysical principles are the very same as those encountered in the central nervous system of animal and man. The elasmobranch ampullae of Lorenzini detect the weak electric fields originating from the oceanic environment, whereas the nerve cells of the brain detect the electric fields arising, well, from the central nervous system. In responding to electrical signals, the cell membranes of excitable cells behave in different regions of the cell as negative or positive conductors. The negative and positive conductances in series, loaded by the cell's electrolytic environment, constitute a positive feedback circuit. The result may be of an all-or-none nature, as in peripheral nerve conduction, or of a graded nature, as in central processing. In this respect, the operation of the elasmobranch ampullae of Lorenzini is more akin to the graded, integrative processes of higher brain centers than to the conduction of nerve action potentials. Hence, the positive-feedback ampullary circuit promises to help elucidate the functioning of the central nervous system as profoundly as the squid giant axon has served to reveal the process of nervous conduction.

  11. Neuromodulation of the neural circuits controlling the lower urinary tract.

    PubMed

    Gad, Parag N; Roy, Roland R; Zhong, Hui; Gerasimenko, Yury P; Taccola, Giuliano; Edgerton, V Reggie

    2016-11-01

    The inability to control timely bladder emptying is one of the most serious challenges among the many functional deficits that occur after a spinal cord injury. We previously demonstrated that electrodes placed epidurally on the dorsum of the spinal cord can be used in animals and humans to recover postural and locomotor function after complete paralysis and can be used to enable voiding in spinal rats. In the present study, we examined the neuromodulation of lower urinary tract function associated with acute epidural spinal cord stimulation, locomotion, and peripheral nerve stimulation in adult rats. Herein we demonstrate that electrically evoked potentials in the hindlimb muscles and external urethral sphincter are modulated uniquely when the rat is stepping bipedally and not voiding, immediately pre-voiding, or when voiding. We also show that spinal cord stimulation can effectively neuromodulate the lower urinary tract via frequency-dependent stimulation patterns and that neural peripheral nerve stimulation can activate the external urethral sphincter both directly and via relays in the spinal cord. The data demonstrate that the sensorimotor networks controlling bladder and locomotion are highly integrated neurophysiologically and behaviorally and demonstrate how these two functions are modulated by sensory input from the tibial and pudental nerves. A more detailed understanding of the high level of interaction between these networks could lead to the integration of multiple neurophysiological strategies to improve bladder function. These data suggest that the development of strategies to improve bladder function should simultaneously engage these highly integrated networks in an activity-dependent manner. Copyright © 2016. Published by Elsevier Inc.

  12. A CCD Monolithic LMS Adaptive Analog Signal Processor Integrated Circuit.

    DTIC Science & Technology

    1980-03-01

    adaptive filter with electrically- reprogrammable MOS analog conductance weights. I The analog and digital peripheral MOS on-chip circuits are provided with...electrically reprogrammable analog weights at tap positions along a CCD analog delay line in order to form a basic linear combiner for adaptive filtering...electrically reprogrammable analog conductance weights was introduced with the use of non-volatile MNOS memory 6-7 transistors biased in their triode

  13. [Operative treatment of painful neuromas].

    PubMed

    Stokvis, Annemieke; Coert, J Henk

    2011-01-01

    3-5% of patients with traumatic or iatrogenic peripheral nerve injury develop a painful neuroma, especially following trauma of small cutaneous sensory nerve branches. Neuroma pain is difficult to treat and often leads to loss of function and reduction of quality of life. Patients with a painful neuroma present with spontaneous electric, shooting or burning pain, allodynia, hyperalgesia and cold intolerance. The diagnosis is based on the medical history and physical examination, supplemented by Tinel's test and a diagnostic nerve blockade. Lasting pain relief is possible by means of surgical neuroma treatment performed by a plastic surgeon. Surgical treatment consists of repair or denervation of the nerve with relocation of the nerve stump in bone or muscle tissue or a vein. Referral of neuroma patients without delay to a plastic surgeon or multidisciplinary consultation is important, because the symptoms become increasingly difficult to treat over time. 3-5% of patients with traumatic or iatrogenic peripheral nerve injury develop a painful neuroma, especially following trauma of small cutaneous sensory nerve branches. Neuroma pain is difficult to treat and often leads to loss of function and reduction of quality of life. Patients with a painful neuroma present with spontaneous electric, shooting or burning pain, allodynia, hyperalgesia and cold intolerance. The diagnosis is based on the medical history and physical examination, supplemented by Tinel's test and a diagnostic nerve blockade. Lasting pain relief is possible by means of surgical neuroma treatment performed by a plastic surgeon. Surgical treatment consists of repair or denervation of the nerve with relocation of the nerve stump in bone or muscle tissue or a vein. Referral of neuroma patients without delay to a plastic surgeon or multidisciplinary consultation is important, because the symptoms become increasingly difficult to treat over time.

  14. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Evaluation of pediatric upper extremity peripheral nerve injuries.

    PubMed

    Ho, Emily S

    2015-01-01

    The evaluation of motor and sensory function of the upper extremity after a peripheral nerve injury is critical to diagnose the location and extent of nerve injury as well as document functional recovery in children. The purpose of this paper is to describe an approach to the evaluation of the pediatric upper extremity peripheral nerve injuries through a critical review of currently used tests of sensory and motor function. Outcome studies on pediatric upper extremity peripheral nerve injuries in the Medline database were reviewed. The evaluation of the outcome in children less than 10 years of age with an upper extremity peripheral nerve injury includes careful observation of preferred prehension patterns, examination of muscle atrophy and sudomotor function, provocative tests, manual muscle testing and tests of sensory threshold and tactile gnosis. The evaluation of outcome in children with upper extremity peripheral nerve injuries warrants a unique approach. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  16. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  17. Primary afferent neurons express functional delta opioid receptors in inflamed skin.

    PubMed

    Brederson, Jill-Desiree; Honda, Christopher N

    2015-07-21

    Peripherally-restricted opiate compounds attenuate hyperalgesia in experimental models of inflammatory pain, but have little discernable effect on nociceptive behavior in normal animals. This suggests that activation of opioid receptors on peripheral sensory axons contributes to decreased afferent activity after injury. Previously, we reported that direct application of morphine to cutaneous receptive fields decreased mechanical and heat-evoked responses in a population of C-fiber nociceptors in inflamed skin. Consistent with reported behavioral studies, direct application of morphine had no effect on fiber activity in control skin. The aim of the present study was to determine whether mechanical responsiveness of nociceptors innervating inflamed skin was attenuated by direct activation of delta opioid receptors (DORs) on peripheral terminals. An ex vivo preparation of rat plantar skin and tibial nerve was used to examine effects of a selective DOR agonist, deltorphin II, on responsiveness of single fibers innervating inflamed skin. Electrical recordings were made eighteen hours after injection of complete Freund's adjuvant into the hindpaw. Deltorphin II produced an inhibition of the mechanical responsiveness of single fibers innervating inflamed skin; an effect blocked by the DOR-selective antagonist, naltrindole. The population of units responsive to deltorphin II was identified as consisting of C fiber mechanical nociceptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. "Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".

    PubMed

    Christie, Breanne P; Freeberg, Max; Memberg, William D; Pinault, Gilles J C; Hoyen, Harry A; Tyler, Dustin J; Triolo, Ronald J

    2017-07-11

    Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation. Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.7 ± 3.1 years). The primary outcome measures utilized in this study were muscle recruitment curves, charge thresholds, and percent overlap of recruited motor unit populations. In the eight recipients still actively involved in research studies, 44/45 of the spiral contacts were still functional. In four participants regularly studied over the course of 1 month to 10.4 years, the charge thresholds of the majority of individual contacts remained stable over time. The four participants with spiral cuffs on their femoral nerves were all able to generate sufficient moment to keep the knees locked during standing after 2-4.5 years. The dorsiflexion moment produced by all four fibular nerve cuffs in the active participants exceeded the value required to prevent foot drop, but no tibial nerve cuffs were able to meet the plantarflexion moment that occurs during push-off at a normal walking speed. The selectivity of two multi-contact spiral cuffs was examined and both were still highly selective for different motor unit populations for up to 6.3 years after implantation. The spiral nerve cuffs examined remain functional in motor and sensory neuroprostheses for 2-11 years after implantation. They exhibit stable charge thresholds, clinically relevant recruitment properties, and functional muscle selectivity. Non-penetrating spiral nerve cuff electrodes appear to be a suitable option for long-term clinical use on human peripheral nerves in implanted neuroprostheses.

  19. Dependence of negative ion formation on inhomogeneous electric field strength in atmospheric pressure negative corona discharge

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    2008-12-01

    The dependence of negative ion formation on the inhomogeneous electric field strength in atmospheric pressure negative corona discharge with point-to-plane electrodes has been described. The distribution of negative ions HO-, NOx - and COx - and their abundances on the plane electrode was obtained with a mass spectrometer. The ion distribution on the plane was divided into two regions, the center region on the needle axis and peripheral region occurring the dominant NOx - and COx - ions and HO- ion, respectively. The calculated electric field strength in inhomogeneous electric field established on the needle tip surface suggested that the abundant formation of NOx - and COx - ions and HO- ion is attributed to the high field strength at the tip apex region over 108 Vm-1 and the low field strength at the tip peripheral region of the order of 107 Vm-1, respectively. The formation of HO-, NOx - and COx - has been discussed from the standpoint of negative ion evolution based on the thermochemical reaction and the kinetic energy of electron emitted from the needle tip.

  20. Quantification of the proportion of motor neurons recruited by transcranial electrical stimulation during intraoperative motor evoked potential monitoring.

    PubMed

    Tsutsui, Shunji; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Yoshida, Munehito

    2013-12-01

    Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. However, they are much smaller and more variable in amplitude than responses evoked by maximal peripheral nerve stimulation, suggesting that a limited number of spinal motor neurons to the target muscle are excited by transcranial stimulation. The aim of this study was to quantify the proportion of motor neurons recruited during TcMEP monitoring under general anesthesia. In twenty patients who underwent thoracic and/or lumbar spinal surgery with TcMEP monitoring, the triple stimulation technique (TST) was applied to the unilateral upper arm intraoperatively. Total intravenous anesthesia was employed. Trains of four stimuli were delivered with maximal intensity and an inter-pulse interval of 1.5 ms. TST responses were recorded from the abductor digiti minimi muscle, and the negative peak amplitude and area were measured and compared between the TST test (two collisions between transcranial and proximal and distal peripheral stimulation) and control response (two collisions between two proximal and one distal peripheral stimulation). The highest degree of superimposition of the TST test and control responses was chosen from several trials per patient. The average ratios (test:control) were 17.1 % (range 1.8-38 %) for the amplitudes and 21.6 % (range 2.9-40 %) for the areas. The activity of approximately 80 % of the motor units to the target muscle cannot be detected by TcMEP monitoring. Therefore, changes in evoked potentials must be interpreted cautiously when assessing segmental motor function with TcMEP monitoring.

  1. Recovery of supraspinal control of leg movement in a chronic complete flaccid paraplegic man after continuous low-frequency pelvic nerve stimulation and FES-assisted training

    PubMed Central

    Possover, Marc; Forman, Axel

    2017-01-01

    Introduction: More than 30 years ago, functional electrical stimulation (FES) was developed as an orthotic system to be used for rehabilitation for SCI patients. In the present case report, FES-assisted training was combined with continuous low-frequency stimulation of the pelvic somatic nerves in a SCI patient. Case Presentation: We report on unexpected findings in a 41-year-old man with chronic complete flaccid paraplegia, since he was 18 years old, who underwent spinal stem cell therapy and a laparoscopic implantation of neuroprosthesis (LION procedure) in the pelvic lumbosacral nerves. The patient had complete flaccid sensomotoric paraplegia T12 as a result of a motor vehicle accident in 1998. In June 2011, he underwent a laparoscopic implantation of stimulation electrodes to the sciatic and femoral nerves for continuous low-frequency electrical stimulation and functional electrical stimulation of the pelvic nerves. Neither intraoperative direct stimulation of the pelvic nerves nor postoperative stimulation induced any sensation or muscle reactions. After 2 years of passive continuous low-frequency stimulation, the patient developed progressive recovery of electrically assisted voluntary motor functions below the lesions: he was first able to extend the right knee and 6 months later, the left. He is currently capable of voluntary weight-bearing standing and walking (with voluntary knee movements) about 50 m with open cuff crutches and drop foot braces. Discussion: Our findings suggest that continuous low-frequency pelvic nerve stimulation in combination with FES-assisted training might induce changes that affect both the upper and the lower motor neuron and allow supra- and infra-spinal inputs to engage residual spinal and peripheral pathways. PMID:28503316

  2. Outcome of occupational electrical injuries among French electric company workers: a retrospective report of 311 cases, 1996-2005.

    PubMed

    Piotrowski, Aleksandra; Fillet, Anne-Marie; Perez, Philippe; Walkowiak, Philippe; Simon, Denis; Corniere, Marie-Jean; Cabanes, Pierre-André; Lambrozo, Jacques

    2014-05-01

    This study reviewed records of all electrical incidents involving work-related injury to employees Electricité de France (EDF) from 1996 through 2005 and analysed data for 311 incidents. The results are compared with 1231 electrical incidents that occurred during 1970-1979 and 996 incidents during 1980-1989. A total of 311 electrical incidents were observed. The medical consequences of electrical incident remain severe and particularly, the current fatality rate (3.2%) is similar to that recorded in the 1980s (2.7%) and 1970s (3.3%). Among individuals with non-fatal incidents, any change has occurred in the prevalence of permanent functional sequelae (23.6% in the 1970s vs. 27.6% in the 1980s and 32.5% currently). An increase in the incidence of neuropsychiatric sequelae (5.4% in the 1980s vs. 13% currently) has been observed and they are now the second most common type of sequelae after those directly related to burns. Among the neurological sequelae, peripheral nervous system disorders are the most common, as observed in the 1980s. Since the definition of post-traumatic stress disorder (PTSD) has changed between the two periods, we can only report that the current prevalence of PTSD is 7.6%. This study emphasises the need for specific management of neurological and psychological impairments after electrical injuries, including especially early recognition and initiation of effective treatment. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  3. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    NASA Astrophysics Data System (ADS)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  4. Neurophysiological mechanism of possibly confounding peripheral activation of the facial nerve during corticobulbar tract monitoring.

    PubMed

    Téllez, Maria J; Ulkatan, Sedat; Urriza, Javier; Arranz-Arranz, Beatriz; Deletis, Vedran

    2016-02-01

    To improve the recognition and possibly prevent confounding peripheral activation of the facial nerve caused by leaking transcranial electrical stimulation (TES) current during corticobulbar tract monitoring. We applied a single stimulus and a short train of electrical stimuli directly to the extracranial portion of the facial nerve. We compared the peripherally elicited compound muscle action potential (CMAP) of the facial nerve with the responses elicited by TES during intraoperative monitoring of the corticobulbar tract. A single stimulus applied directly to the facial nerve at subthreshold intensities did not evoke a CMAP, whereas short trains of subthreshold stimuli repeatedly evoked CMAPs. This is due to the phenomenon of sub- or near-threshold super excitability of the cranial nerve. Therefore, the facial responses evoked by short trains TES, when the leaked current reaches the facial nerve at sub- or near-threshold intensity, could lead to false interpretation. Our results revealed a potential pitfall in the current methodology for facial corticobulbar tract monitoring that is due to the activation of the facial nerve by subthreshold trains of stimuli. This study proposes a new criterion to exclude peripheral activation during corticobulbar tract monitoring. The failure to recognize and avoid facial nerve activation due to leaking current in the peripheral portion of the facial nerve during TES decreases the reliability of corticobulbar tract monitoring by increasing the possibility of false interpretation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Reversible conduction block in peripheral nerve using electrical waveforms.

    PubMed

    Bhadra, Niloy; Vrabec, Tina L; Bhadra, Narendra; Kilgore, Kevin L

    2018-01-01

    Electrical nerve block uses electrical waveforms to block action potential propagation. Two key features that distinguish electrical nerve block from other nonelectrical means of nerve block: block occurs instantly, typically within 1 s; and block is fully and rapidly reversible (within seconds). Approaches for achieving electrical nerve block are reviewed, including kilohertz frequency alternating current and charge-balanced polarizing current. We conclude with a discussion of the future directions of electrical nerve block. Electrical nerve block is an emerging technique that has many significant advantages over other methods of nerve block. This field is still in its infancy, but a significant expansion in the clinical application of this technique is expected in the coming years.

  6. Retinotopic patterns of functional connectivity between V1 and large-scale brain networks during resting fixation

    PubMed Central

    Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Bowman, Anthony D.; Szaflarski, Jerzy P.; Visscher, Kristina M.

    2016-01-01

    Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. PMID:27554527

  7. Neurotrophic factor intervention restores auditory function in deafened animals

    NASA Astrophysics Data System (ADS)

    Shinohara, Takayuki; Bredberg, Göran; Ulfendahl, Mats; Pyykkö, Ilmari; Petri Olivius, N.; Kaksonen, Risto; Lindström, Bo; Altschuler, Richard; Miller, Josef M.

    2002-02-01

    A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses. The effects of neurotrophic factors were tested in a guinea pig cochlear prosthesis model. After chemical deafening to mimic the clinical situation, the neurotrophic factors brain-derived neurotrophic factor and an analogue of ciliary neurotrophic factor were infused directly into the cochlea of the inner ear for 26 days by using an osmotic pump system. An electrode introduced into the cochlea was used to elicit auditory responses just as in patients implanted with cochlear prostheses. Intervention with brain-derived neurotrophic factor and the ciliary neurotrophic factor analogue not only increased the survival of auditory spiral ganglion neurons, but significantly enhanced the functional responsiveness of the auditory system as measured by using electrically evoked auditory brainstem responses. This demonstration that neurotrophin intervention enhances threshold sensitivity within the auditory system will have great clinical importance for the treatment of deaf patients with cochlear prostheses. The findings have direct implications for the enhancement of responsiveness in deafferented peripheral nerves.

  8. Daily Electrical Muscle Stimulation Enhances Functional Recovery Following Nerve Transection and Repair in Rats.

    PubMed

    Willand, Michael P; Chiang, Cameron D; Zhang, Jennifer J; Kemp, Stephen W P; Borschel, Gregory H; Gordon, Tessa

    2015-08-01

    Incomplete recovery following surgical reconstruction of damaged peripheral nerves is common. Electrical muscle stimulation (EMS) to improve functional outcomes has not been effective in previous studies. To evaluate the efficacy of a new, clinically translatable EMS paradigm over a 3-month period following nerve transection and immediate repair. Rats were divided into 6 groups based on treatment (EMS or no treatment) and duration (1, 2, or 3 months). A tibial nerve transection injury was immediately repaired with 2 epineurial sutures. The right gastrocnemius muscle in all rats was implanted with intramuscular electrodes. In the EMS group, the muscle was electrically stimulated with 600 contractions per day, 5 days a week. Terminal measurements were made after 1, 2, or 3 months. Rats in the 3-month group were assessed weekly using skilled and overground locomotion tests. Neuromuscular junction reinnervation patterns were also examined. Muscles that received daily EMS had significantly greater numbers of reinnervated motor units with smaller average motor unit sizes. The majority of muscle endplates were reinnervated by a single axon arising from a nerve trunk with significantly fewer numbers of terminal sprouts in the EMS group, the numbers being small. Muscle mass and force were unchanged but EMS improved behavioral outcomes. Our results demonstrated that EMS using a moderate stimulation paradigm immediately following nerve transection and repair enhances electrophysiological and behavioral recovery. © The Author(s) 2014.

  9. Risk of neurological diseases among survivors of electric shocks: a nationwide cohort study, Denmark, 1968-2008.

    PubMed

    Grell, Kathrine; Meersohn, Andrea; Schüz, Joachim; Johansen, Christoffer

    2012-09-01

    Several studies suggest a link between electric injuries and neurological diseases, where electric shocks may explain elevated risks for neuronal degeneration and, subsequently, neurological diseases. We conducted a retrospective cohort study on the risk of neurological diseases among people in Denmark who had survived an electric accident in 1968-2008. The cohort included 3,133 people and occurrences of neurological diseases were determined by linkage to the nationwide population-based Danish National Register of Patients. The numbers of cases observed at first hospital contact in the cohort were compared with the respective rates of first hospital contacts for neurological diseases in the general population. We observed significantly increased risks for peripheral nerve diseases (standardized hospitalization ratio (SHR), 1.66; 95% confidence interval (CI), 1.22-2.22), for migraine (SHR, 1.80; 95% CI, 1.23-2.54), for vertigo (SHR, 1.60; 95% CI, 1.22-2.05), and for epilepsy (SHR, 1.45; 95% CI, 1.11-1.85). Only small numbers of cases of other neurological diseases were found, making the risk estimates unstable. These findings suggest an association between a single electric shock and increased risks for peripheral nerve diseases, migraines, vertigo, and epilepsy, but confirmation of these observations is needed. Copyright © 2012 Wiley Periodicals, Inc.

  10. Integral edge seals for phosphoric acid fuel cells

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.; Dunyak, Thomas J.

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  11. WELDING METHOD

    DOEpatents

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  12. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery

    PubMed Central

    Hirata, Maki; Nakajima, Nobuyuki; Saito, Kosuke; Hashimoto, Hiroyuki; Soeda, Shuichi; Uchiyama, Yoshiyasu; Watanabe, Masahiko

    2016-01-01

    Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8–12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80% vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks) of recovery was observed in both groups with the expression of key factors (mRNA and protein levels), suggesting the paracrine effects to angiogenesis. These results suggested that the human Sk-SCs may be a practical source for autologous stem cell therapy following severe peripheral nerve injury. PMID:27846318

  13. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.

    PubMed

    Tamaki, Tetsuro; Hirata, Maki; Nakajima, Nobuyuki; Saito, Kosuke; Hashimoto, Hiroyuki; Soeda, Shuichi; Uchiyama, Yoshiyasu; Watanabe, Masahiko

    2016-01-01

    Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8-12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80% vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks) of recovery was observed in both groups with the expression of key factors (mRNA and protein levels), suggesting the paracrine effects to angiogenesis. These results suggested that the human Sk-SCs may be a practical source for autologous stem cell therapy following severe peripheral nerve injury.

  14. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia

    PubMed Central

    Knutson, Jayme S.; Fu, Michael J.; Sheffler, Lynne R.; Chae, John

    2015-01-01

    Synopsis This article reviews the most common therapeutic and neuroprosthetic applications of neuromuscular electrical stimulation (NMES) for upper and lower extremity stroke rehabilitation. Fundamental NMES principles and purposes in stroke rehabilitation are explained. NMES modalities used for upper and lower limb rehabilitation are described and efficacy studies are summarized. The evidence for peripheral and central mechanisms of action is also summarized. PMID:26522909

  15. Identification of International Classification of Functioning, Disability and Health categories for patients with peripheral arterial disease.

    PubMed

    Vyskocil, Erich; Gruther, Wolfgang; Steiner, Irene; Schuhfried, Othmar

    2014-07-01

    Disease-specific categories of the International Classification of Functioning, Disability and Health have not yet been described for patients with chronic peripheral arterial obstructive disease (PAD). The authors examined the relationship between the categories of the Brief Core Sets for ischemic heart diseases with the Peripheral Artery Questionnaire and the ankle-brachial index to determine which International Classification of Functioning, Disability and Health categories are most relevant for patients with PAD. This is a retrospective cohort study including 77 patients with verified PAD. Statistical analyses of the relationship between International Classification of Functioning, Disability and Health categories as independent variables and the endpoints Peripheral Artery Questionnaire or ankle-brachial index were carried out by simple and stepwise linear regression models adjusting for age, sex, and leg (left vs. right). The stepwise linear regression model with the ankle-brachial index as dependent variable revealed a significant effect of the variables blood vessel functions and muscle endurance functions. Calculating a stepwise linear regression model with the Peripheral Artery Questionnaire as dependent variable, a significant effect of age, emotional functions, energy and drive functions, carrying out daily routine, as well as walking could be observed. This study identifies International Classification of Functioning, Disability and Health categories in the Brief Core Sets for ischemic heart diseases that show a significant effect on the ankle-brachial index and the Peripheral Artery Questionnaire score in patients with PAD. These categories provide fundamental information on functioning of patients with PAD and patient-centered outcomes for rehabilitation interventions.

  16. Recovery of function, peripheral sensitization and sensory neurone activation by novel pathways following axonal injury in Aplysia californica.

    PubMed

    Dulin, M F; Steffensen, I; Morris, C E; Walters, E T

    1995-10-01

    Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed within 1 week, and most animals displayed tail-evoked siphon responses within 2 weeks. Wide-dynamic-range mechanosensory neurons with somata in the ventrocaudal (VC) cluster of the ipsilateral pleural ganglion exhibited a few receptive fields (RFs) on the tail 3 weeks after unilateral pedal nerve crush, indicating that the RFs had either regenerated or been reconnected to the central somata. These RFs were smaller and sensitized compared with corresponding RFs on the contralateral, uncrushed side. Centrally conducted axon responses of VC sensory neurones to electrical stimulation distal to the nerve crush site did not reappear until at least 10 days after the crush. Because the crush site was much closer to the CNS than to the tail, the failure of axon responses to be restored earlier than the behavioural responses indicates that early stages of reflex recovery are not due to regeneration of VC sensory neurone axons into the tail. Following nerve crush, VC sensory neurones often could be activated by stimulating central connectives or peripheral nerves that do not normally contain the sensory neurone's axons. These results suggest that recovery of behavioral function after nerve injury involves complex mechanisms, including regenerative growth of axotomized VC sensory neurones, sensitization of regenerating RFs and sprouting of VC sensory neurone fibres within the CNS. Furthermore, the rapidity of behavioural recovery indicates that its initial phases are mediated by additional mechanisms, perhaps centripetal regeneration of unidentified sensory neurones having peripheral somata, or transient reconnection of proximal and distal stumps of axotomized VC cells.

  17. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    PubMed

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  18. The role of skin conductivity in a low frequency exposure assessment for peripheral nerve tissue according to the ICNIRP 2010 guidelines

    NASA Astrophysics Data System (ADS)

    Schmid, Gernot; Cecil, Stefan; Überbacher, Richard

    2013-07-01

    Based on numerical computations using commercially available finite difference time domain code and a state-of-the art anatomical model of a 5-year old child, the influence of skin conductivity on the induced electric field strength inside the tissue for homogeneous front-to-back magnetic field exposure and homogeneous vertical electric field exposure was computed. Both ungrounded as well as grounded conditions of the body model were considered. For electric field strengths induced inside CNS tissue the impact of skin conductivity was found to be less than 15%. However, the results demonstrated that the use of skin conductivity values as obtainable from the most widely used data base of dielectric tissue properties and recommended by safety standards are not suitable for exposure assessment with respect to peripheral nerve tissue according to the ICNIRP 2010 guidelines in which the use of the induced electric field strengths inside the skin is suggested as a conservative surrogate for peripheral nerve exposure. This is due to the fact that the skin conductivity values derived from these data bases refer to the stratum corneum, the uppermost layer of the skin, which does not contain any nerve or receptor cells to be protected from stimulation effects. Using these skin conductivity values which are approximately a factor 250-500 lower than skin conductivity values used in studies on which the ICNIRP 2010 guidelines are based on, may lead to overestimations of the induced electric field strengths inside the skin by substantially more than a factor of 10. However, reliable conductivity data of deeper skin layers where nerve and preceptor cells are located is very limited. It is therefore recommended to include appropriate background information in the ICNIRP guidelines and the dielectric tissue property databases, and to put some emphasis on a detailed layer-specific characterization of skin conductivity in near future.

  19. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.

    PubMed

    Hart, D J; Taylor, P N; Chappell, P H; Wood, D E

    2006-06-01

    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.

  20. The Relationship of Reduced Peripheral Nerve Function and Diabetes With Physical Performance in Older White and Black Adults

    PubMed Central

    Strotmeyer, Elsa S.; de Rekeneire, Nathalie; Schwartz, Ann V.; Faulkner, Kimberly A.; Resnick, Helaine E.; Goodpaster, Bret H.; Shorr, Ronald I.; Vinik, Aaron I.; Harris, Tamara B.; Newman, Anne B.

    2008-01-01

    OBJECTIVE—Poor peripheral nerve function is prevalent in diabetes and older populations, and it has great potential to contribute to poor physical performance. RESEARCH DESIGN AND METHODS—Cross-sectional analyses were done for the Health, Aging, and Body Composition (Health ABC) Study participants (n = 2,364; 48% men; 38% black; aged 73–82 years). Sensory and motor peripheral nerve function in legs/feet was assessed by 10- and 1.4-g monofilament perception, vibration detection, and peroneal motor nerve conduction amplitude and velocity. The Health ABC lower-extremity performance battery was a supplemented version of the Established Populations for the Epidemiologic Studies of the Elderly battery (chair stands, standing balance, and 6-m walk), adding increased stand duration, single foot stand, and narrow walk. RESULTS—Diabetic participants had fewer chair stands (0.34 vs. 0.36 stands/s), shorter standing balance time (0.69 vs. 0.75 ratio), slower usual walking speed (1.11 vs. 1.14 m/s), slower narrow walking speed (0.80 vs. 0.90 m/s), and lower performance battery score (6.43 vs. 6.93) (all P < 0.05). Peripheral nerve function was associated with each physical performance measure independently. After addition of peripheral nerve function in fully adjusted models, diabetes remained significantly related to a lower performance battery score and slower narrow walking speed but not to chair stands, standing balance, or usual walking speed. CONCLUSIONS—Poor peripheral nerve function accounts for a portion of worse physical performance in diabetes and may be directly associated with physical performance in older diabetic and nondiabetic adults. The impact of peripheral nerve function on incident disability should be evaluated in older adults. PMID:18535192

  1. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study.

    PubMed

    Chipchase, Lucy S; Schabrun, Siobhan M; Hodges, Paul W

    2011-09-01

    To evaluate the effect of 6 electric stimulation paradigms on corticospinal excitability. Using a same subject pre-post test design, transcranial magnetic stimulation (TMS) was used to measure the responsiveness of corticomotor pathway to biceps and triceps brachii muscles before and after 30 minutes of electric stimulation over the biceps brachii. Six different electric stimulation paradigms were applied in random order, at least 3 days apart. Motor control research laboratory. Healthy subjects (N=10; 5 women, 5 men; mean age ± SD, 26 ± 3.6y). Six different electric stimulation paradigms with varied stimulus amplitude, frequency, and ramp settings. Amplitudes of TMS-induced motor evoked potentials at biceps and triceps brachii normalized to maximal M-wave amplitudes. Electric stimulation delivered at stimulus amplitude sufficient to evoke a sensory response at both 10 Hz and 100 Hz, and stimulus amplitude to create a noxious response at 10 Hz decreased corticomotor responsiveness (all P<0.01). Stimulation sufficient to induce a motor contraction (30 Hz) applied in a ramped pattern to mimic a voluntary activation increased corticomotor responsiveness (P=0.002), whereas constant low- and high-intensity motor stimulation at 10 Hz did not. Corticomotor excitability changes were similar for both the stimulated muscle and its antagonist. Stimulus amplitude (intensity) and the nature (muscle flicker vs contraction) of motor stimulation have a significant impact on changes in corticospinal excitability induced by electric stimulation. Here, we demonstrate that peripheral electric stimulation at stimulus amplitude to create a sensory response reduces corticomotor responsiveness. Conversely, stimulus amplitude to create a motor response increases corticomotor responsiveness, but only the parameters that create a motor response that mimics a voluntary muscle contraction. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. [Blood-nerve barrier and peripheral nerve regeneration].

    PubMed

    Kanda, Takashi

    2013-01-01

    Blood-nerve barrier (BNB) restricts the movement of soluble mediators and leukocytes from the blood contents to the peripheral nervous system (PNS) parenchyma and thus maintains the endoneurial homeostasis. However, it interferes the supply of various neurotrophic factors from the blood constituents and stops the drainage of toxic substances out of the PNS parenchyma, resulting in the inhibition of peripheral nerve regeneration. If the manipulation of BNB function is possible, regeneration of peripheral nerve may be facilitated via the alteration of peripheral nerve microenvironment and ample supply of neurotrophic substances. A possible method to manipulate the BNB for therapeutic purposes is to modify the endothelial function using siRNAs, oligonucleotides and virus vectors. Another possible method is to modify BNB pericytes: small hydrophobic substances that can reach the pericyte membrane through the endothelial monolayer and strengthen the pericytic activity, including the release of various cytokines/chemokines that influence endothelial function, may also be useful as drug candidates to control the BNB function.

  3. Spectroscopic Diagnostics of Electric Fields in the Plasma of Current Sheets

    NASA Astrophysics Data System (ADS)

    Gavrilenko, Valeri; Kyrie, Natalya P.; Frank, Anna G.; Oks, Eugene

    2004-11-01

    Spectroscopic measurements of electric fields (EFs) in current sheet plasmas were performed in the CS-3D device. The device is intended to study the evolution of current sheets and the magnetic reconnection phenomena. We used the broadening of spectral lines (SLs) of HeII ions for diagnostics of EFs in the current sheet middle plane, and the broadening of SLs of HeI atoms for detection of EFs in the current sheet peripheral regions. For detection of EFs in current sheet plasma, we used SLs of HeII ions at 468.6; 320.3 and 656.0 nm, as well as SLs of HeI atoms at 667.8; 587.6; 492.2 and 447.1 nm. The latter two lines are of a special interest since their profiles include the dipole-forbidden components along with the allowed components. The experimental data have been analyzed by using the numerical calculations based on the Model Microfield Method. The maximum plasma density in the middle of the sheet was in the range (2-8) × 10^16 cm-3, the density in the peripheral regions was (1-2)×10^15 cm-3, and the strength of the quasi-one-dimensional anomalous electric fields in the peripheral regions reached the value of 100 kV/cm. Supported by CRDF, grant RU-P1-2594-MO-04; by the RFBR, grant 03-02-17282; and by the ISTC, project 2098.

  4. The Effectiveness of Aerobic Exercise in Improving Peripheral Nerve Functions in Type 2 Diabetes Mellitus: An Evidence Based Case Report.

    PubMed

    Mirtha, Listya Tresnanti; Permatahati, Viandini

    2018-01-01

    peripheral neuropathy is known as one of most common complication in diabetes mellitus type 2 patient. This complication is caused by uncontrolled condition of blood glucose level in long periode. Regular physical activity in moderate to high intensity is beneficial in management of diabetes mellitus. This report aimed to know the effectiveness of aerobic exercise in causing improved peripheral functions in type 2 diabetes mellitus. literature searching using several related keywords in Medline®, Pubmed®, and Cochrane library, following inclusion and exclusion criteria. Dixit et al suggested that a heart rate intensity of 40-60% aerobic exercise of 30-45 min duration per session for eight weeks suggest an important impact in controlling diabetic peripheral neuropathy. Kluding PM et al suggested that significantly improved selected measures of peripheral nerve function ("worst" pain levels and MNSI score), glycemic control (HbA1c), and resting heart rate. the studies showed significant benefit of aerobic exercise, despite the short duration of exercise being used as intervention towards improvement in peripheral nerve function. However, further studies with large samples and longer duration of intervention are needed to confirm the finding.

  5. A histone deacetylase 3–dependent pathway delimits peripheral myelin growth and functional regeneration

    PubMed Central

    He, Xuelian; Zhang, Liguo; Queme, Luis F; Liu, Xuezhao; Lu, Andrew; Waclaw, Ronald R; Dong, Xinran; Zhou, Wenhao; Kidd, Grahame; Yoon, Sung-Ok; Buonanno, Andres; Rubin, Joshua B; Xin, Mei; Nave, Klaus-Armin; Trapp, Bruce D; Jankowski, Michael P; Lu, Q Richard

    2018-01-01

    Deficits in Schwann cell–mediated remyelination impair functional restoration after nerve damage, contributing to peripheral neuropathies. The mechanisms mediating block of remyelination remain elusive. Here, through small-molecule screening focusing on epigenetic modulators, we identified histone deacetylase 3 (HDAC3; a histone-modifying enzyme) as a potent inhibitor of peripheral myelinogenesis. Inhibition of HDAC3 enhanced myelin growth and regeneration and improved functional recovery after peripheral nerve injury in mice. HDAC3 antagonizes the myelinogenic neuregulin–PI3K–AKT signaling axis. Moreover, genome-wide profiling analyses revealed that HDAC3 represses promyelinating programs through epigenetic silencing while coordinating with p300 histone acetyltransferase to activate myelination-inhibitory programs that include the HIPPO signaling effector TEAD4 to inhibit myelin growth. Schwann cell–specific deletion of either Hdac3 or Tead4 in mice resulted in an elevation of myelin thickness in sciatic nerves. Thus, our findings identify the HDAC3–TEAD4 network as a dual-function switch of cell-intrinsic inhibitory machinery that counters myelinogenic signals and maintains peripheral myelin homeostasis, highlighting the therapeutic potential of transient HDAC3 inhibition for improving peripheral myelin repair. PMID:29431744

  6. Reflexology in the management of chemotherapy induced peripheral neuropathy: A pilot randomized controlled trial.

    PubMed

    Kurt, Seda; Can, Gulbeyaz

    2018-02-01

    The current experimental study aimed to evaluate the effectiveness of reflexology on the management of symptoms and functions of chemotherapy-induced peripheral neuropathy (CIPN) in cancer patients. This study was conducted as a randomized controlled trial in 60 patients (30 experimental and 30 control patients) who had chemotherapy-induced Grade II-IV peripheral neuropathy complaints from July 2013 to November 2015. Data were collected using the patient identification form, European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Chemotherapy-Induced Peripheral Neuropathy (EORTC-CIPN-20) form, and BPI (used for related chemotherapy-induced peripheral neuropathy symptoms). The majority of the patients were being treated for gastrointestinal or breast cancer and were primarily receiving Eloxatine- or taxane-based treatment. It was found that reflexology applications did not lead to differences in either group in terms of peripheral neuropathy severity and incidence (p > 0.05) and only led to improvement in sensory functions in the experimental group (p < 0.05). It was determined that reflexology is not an effective method in the management of patients' activity levels, walking ability etc. and motor, autonomic functions related CIPN, but reflexology is effective method in the management of patients' sensory functions related CIPN. Key Words: Peripheral neuropathy, reflexology, chemotherapy, EORTC QLQ-CIPN-20, BPI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Adaptive Neurotechnology for Making Neural Circuits Functional .

    NASA Astrophysics Data System (ADS)

    Jung, Ranu

    2008-03-01

    Two of the most important trends in recent technological developments are that technology is increasingly integrated with biological systems and that it is increasingly adaptive in its capabilities. Neuroprosthetic systems that provide lost sensorimotor function after a neural disability offer a platform to investigate this interplay between biological and engineered systems. Adaptive neurotechnology (hardware and software) could be designed to be biomimetic, guided by the physical and programmatic constraints observed in biological systems, and allow for real-time learning, stability, and error correction. An example will present biomimetic neural-network hardware that can be interfaced with the isolated spinal cord of a lower vertebrate to allow phase-locked real-time neural control. Another will present adaptive neural network control algorithms for functional electrical stimulation of the peripheral nervous system to provide desired movements of paralyzed limbs in rodents or people. Ultimately, the frontier lies in being able to utilize the adaptive neurotechnology to promote neuroplasticity in the living system on a long-time scale under co-adaptive conditions.

  8. Lowering of blood pressure by chronic suppression of central sympathetic outflow: insight from prolonged baroreflex activation

    PubMed Central

    Iliescu, Radu

    2012-01-01

    Device-based therapy for resistant hypertension by electrical activation of the carotid baroreflex is currently undergoing active clinical investigation, and initial findings from clinical trials have been published. The purpose of this mini-review is to summarize the experimental studies that have provided a conceptual understanding of the mechanisms that account for the long-term lowering of arterial pressure with baroreflex activation. The well established mechanisms mediating the role of the baroreflex in short-term regulation of arterial pressure by rapid changes in peripheral resistance and cardiac function are often extended to long-term pressure control, and the more sluggish actions of the baroreflex on renal excretory function are often not taken into consideration. However, because clinical, experimental, and theoretical evidence indicates that the kidneys play a dominant role in long-term control of arterial pressure, this review focuses on the mechanisms that link baroreflex-mediated reductions in central sympathetic outflow with increases in renal excretory function that lead to sustained reductions in arterial pressure. PMID:22797307

  9. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    PubMed

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Neuroglial modulation in peripheral sensory systems.

    PubMed

    Pack, Adam K; Pawson, Lorraine J

    2010-08-01

    Glia are increasingly appreciated as active participants in central neural processing via calcium waves, electrical coupling, and even synaptic-like release of "neuro"-transmitters. In some sensory organs (e.g., retina, olfactory bulb), glia have been shown to interact with neurons in the same manner, although their role in perception has yet to be elucidated. In the organ of Corti, synapses occur between supporting cells and neurons. In one sensory organ, the Pacinian corpuscle (fine touch), glia have been shown to play just as important a role in sensory transduction as they do in neural processing in the brain, and the functional role is quite clear; the modified Schwann cells of the capsule are responsible for the rapid adaptation process of the PCs, integral to its function as a vibration detector. This complex glial/neuronal relationship may be a recent evolutionary phenomenon and may account for much of the relative sophistication of vertebrate nervous systems.

  11. Association of Transcutaneous Electrical Nerve Stimulation and Hypnosis

    ClinicalTrials.gov

    2017-08-02

    Limbs Arthrosis; Non Arthrosic Limbs Arthralgia; Chronic Lomboradiculalgia; Chronic Back Pain; Cervical Radiculopathy; Post-herpetic Neuralgia; Post-surgical Peripheral Neuropathic Pain; Post Trauma Neuropathic Pain; Complex Regional Pain Syndrome Type I or II; Tendinopathy

  12. Peripheral neuropathy: an often-overlooked cause of falls in the elderly.

    PubMed

    Richardson, J K; Ashton-Miller, J A

    1996-06-01

    Peripheral neuropathy is common in the elderly and results in impairments in distal proprioception and strength that hinder balance and predispose them to falls. The loss of heel reflexes, decreased vibratory sense that improves proximally, impaired position sense at the great toe, and inability to maintain unipedal stance for 10 seconds in three attempts all suggest functionally significant peripheral neuropathy. Physicians can help their patients with peripheral neuropathy to prevent falls by teaching them and their families about peripheral nerve dysfunction and its effects on balance and by advising patients to substitute vision for the lost somatosensory function, correctly use a cane, wear proper shoes and orthotics, and perform balance and upper extremity strengthening exercises.

  13. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia.

    PubMed

    Knutson, Jayme S; Fu, Michael J; Sheffler, Lynne R; Chae, John

    2015-11-01

    This article reviews the most common therapeutic and neuroprosthetic applications of neuromuscular electrical stimulation (NMES) for upper and lower extremity stroke rehabilitation. Fundamental NMES principles and purposes in stroke rehabilitation are explained. NMES modalities used for upper and lower limb rehabilitation are described, and efficacy studies are summarized. The evidence for peripheral and central mechanisms of action is also summarized. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Microneurography in rats: a minimally invasive method to record single C-fiber action potentials from peripheral nerves in vivo.

    PubMed

    Serra, Jordi; Bostock, Hugh; Navarro, Xavier

    2010-02-19

    Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.

  15. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature

    PubMed Central

    Eisenach, James C.; Ririe, Douglas G.

    2015-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873

  16. Nervous system (image)

    MedlinePlus

    Peripheral Neuropathy is not a distinct disease, but the manifestation of many conditions that damage the peripheral nerves ( ... abnormal. Damaged motor nerves impair movement or function. Peripheral neuropathy may be caused by direct or indirect injury, ...

  17. Targeting ion channels for the treatment of gastrointestinal motility disorders

    PubMed Central

    Beyder, Arthur

    2012-01-01

    Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (NaV), calcium (CaV), potassium (KV, KCa), chloride (Cl–) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress. PMID:22282704

  18. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and almost completely restored iBCI decoding performance (>90% recovery for surface stimulation and full recovery for intramuscular stimulation). The results demonstrate that FES-induced artifacts can be easily mitigated in FES  +  iBCI systems by using LRR for artifact reduction, and suggest that the LRR method may also be useful in other noise reduction applications.

  19. Loss of Peripheral Sensory Function Explains Much of the Increase in Postural Sway in Healthy Older Adults

    PubMed Central

    Anson, Eric; Bigelow, Robin T.; Swenor, Bonnielin; Deshpande, Nandini; Studenski, Stephanie; Jeka, John J.; Agrawal, Yuri

    2017-01-01

    Postural sway increases with age and peripheral sensory disease. Whether, peripheral sensory function is related to postural sway independent of age in healthy adults is unclear. Here, we investigated the relationship between tests of visual function (VISFIELD), vestibular function (CANAL or OTOLITH), proprioceptive function (PROP), and age, with center of mass sway area (COM) measured with eyes open then closed on firm and then a foam surface. A cross-sectional sample of 366 community dwelling healthy adults from the Baltimore Longitudinal Study of Aging was tested. Multiple linear regressions examined the association between COM and VISFIELD, PROP, CANAL, and OTOLITH separately and in multi-sensory models controlling for age and gender. PROP dominated sensory prediction of sway across most balance conditions (β's = 0.09–0.19, p's < 0.001), except on foam eyes closed where CANAL function loss was the only significant sensory predictor of sway (β = 2.12, p < 0.016). Age was not a consistent predictor of sway. This suggests loss of peripheral sensory function explains much of the age-associated increase in sway. PMID:28676758

  20. Peripheral Ulcerative Keratitis

    MedlinePlus

    ... Pill Identifier Commonly searched drugs Aspirin Metformin Warfarin Tramadol Lactulose Ranitidine News & Commentary Recent News Afib and Weight AHA: Using Electricity to Test Your Risk for Heart Failure Close Siblings Can Ease the Pain of Family Conflict Don't Turn Into a ...

  1. Are visual peripheries forever young?

    PubMed

    Burnat, Kalina

    2015-01-01

    The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.

  2. The Development of a Two-Dimensional Multielectrode Array for Visual Perception Research in the Mammalian Brain.

    DTIC Science & Technology

    1980-12-01

    primary and secondary visual cortex or in the secondary visual cortex itself. When the secondary visual cortex is electrically stimulated , the subject...effect enhances their excitability, which reduces the additional stimulation ( electrical or chemical) required to elicit an action potential. These...and the peripheral area with rods. The rods have a very low light intensity threshold and provide stimulation to optic nerve fibers for low light

  3. Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro

    2017-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.

  4. Performance-based Physical Functioning and Peripheral Neuropathy in a Population-based Cohort of Women at Midlife

    PubMed Central

    Ylitalo, Kelly R.; Herman, William H.; Harlow, Siobán D.

    2013-01-01

    Peripheral neuropathy is underappreciated as a potential cause of functional limitations. In the present article, we assessed the cross-sectional association between peripheral neuropathy and physical functioning and how the longitudinal association between age and functioning differed by neuropathy status. Physical functioning was measured in 1996–2008 using timed performances on stair-climb, walking, sit-to-stand, and balance tests at the Michigan site of the Study of Women's Health Across the Nation, a population-based cohort study of women at midlife (n = 396). Peripheral neuropathy was measured in 2008 and defined as having an abnormal monofilament test result or 4 or more symptoms. We used linear mixed models to determine whether trajectories of physical functioning differed by prevalent neuropathy status. Overall, 27.8% of the women had neuropathy. Stair-climb time differed by neuropathy status (P = 0.04), and for every 1-year increase in age, women with neuropathy had a 1.82% (95% confidence interval: 1.42, 2.21) increase compared with a 0.95% (95% confidence interval: 0.71, 1.20) increase for women without neuropathy. Sit-to-stand time differed by neuropathy status (P = 0.01), but the rate of change did not differ. No differences between neuropathy groups were observed for the walk test. For some performance-based tasks, poor functioning was maintained or exacerbated for women who had prevalent neuropathy. Peripheral neuropathy may play a role in physical functioning limitations and future disability. PMID:23524038

  5. Reproducibility and repeatability of peripheral microvascular assessment using iontophoresis in conjunction with laser Doppler imaging.

    PubMed

    Jadhav, Sachin; Sattar, Naveed; Petrie, John R; Cobbe, Stuart M; Ferrell, William R

    2007-09-01

    Interrogation of peripheral vascular function is increasingly recognized as a noninvasive surrogate marker for coronary vascular function and carries with it important prognostic information regarding future cardiovascular risk. Laser Doppler imaging (LDI) is a completely noninvasive method for looking at peripheral microvascular function. We sought to look at reproducibility and repeatability of LDI-derived assessment of peripheral microvascular function between arms and 8 weeks apart. We used LDI in conjunction with iontophoretic application of ACh and SNP to look at endothelium-dependent and -independent microvascular function, respectively, in a mixture of women with cardiac syndrome X and healthy volunteers. We looked at variation between arms (n = 40) and variation at 8 weeks apart (n = 22). When measurements were corrected for skin resistance, there was nonsignificant variation between arms for ACh (2.7%) and SNP (3.8%) and nonsignificant temporal variation for ACh (3.5%) and SNP (4.7%). Construction of Bland-Altman plots reinforce that measurements have good repeatability. Elimination of the baseline perfusion response had deleterious effects on repeatability. LDI can be used to assess peripheral vascular response with good repeatability as long as measurements are corrected for skin resistance, which affects drug delivery. This has important implications for the future use of LDI.

  6. Importance of electromyography and the electrophysiological severity scale in forensic reports.

    PubMed

    Bilgin, Nursel Gamsiz; Ozge, Aynur; Mert, Ertan; Yalçinkaya, Deniz E; Kar, Hakan

    2007-05-01

    Forensic reports on traumatic peripheral nerve injuries include dysfunction degrees of extremities, which are arranged according to the Turkish Penalty Code. The aim of this study is to discuss the role and importance of electromyography while preparing forensic reports in the cases of traumatic peripheral nerve injuries and the usefulness of scoring systems. A modified global scale, recommended by Mondelli et al., was used to assess the electrophysiological impairment of each peripheral nerve. Forensic reports of 106 patients, reported between 2002 and 2004, were evaluated. Thirty-four percent of the cases were reported as "total loss of function," 41.5% were reported as "functional disability," and there were no dysfunctions in the other cases in forensic reports that were prepared based on Council of Social Insurance Regulations of Health Processes and Guide prepared by the Council of Forensic Medicine and profession associations of forensic medicine. When we rearranged these forensic reports based on the electrophysiological severity scale (ESS), it was clearly found that all of the score 2 cases and 86.7% of the score 3 cases corresponded to "functional disability" and 91.4% of the score 4 cases correspond to "total loss of function." We found a significant correlation between the ESS and functional evaluation in peripheral nerve injury cases. Evaluation of functional disabilities in peripheral nerve injuries with the ESS represents a standardized and objective method used for forensic reports.

  7. Ultrasound-guided, percutaneous peripheral nerve stimulation: technical note.

    PubMed

    Chan, Isaac; Brown, Anthony R; Park, Kenneth; Winfree, Christopher J

    2010-09-01

    Peripheral nerve stimulation is a form of neuromodulation that applies electric current to peripheral nerves to induce stimulation paresthesias within the painful areas. To report a method of ultrasound-guided, percutaneous peripheral nerve stimulation. This technique utilizes real-time imaging to avoid injury to adjacent vascular structures during minimally invasive placement of peripheral nerve stimulator electrodes. We describe a patient that presented with chronic, bilateral foot pain following multiple foot surgeries, for whom a comprehensive, pain management treatment strategy had failed. We utilized ultrasound-guided, percutaneous tibial nerve stimulation at a thigh level to provide durable pain relief on the right side, and open peripheral nerve stimulation on the left. The patient experienced appropriate stimulation paresthesias and excellent pain relief on the plantar aspect of the right foot with the percutaneous electrode. On the left side, we were unable to direct the stimulation paresthesias to the sole of the foot, despite multiple electrode repositionings. A subsequent, open placement of a left tibial nerve stimulator was performed. This revealed that the correct electrode position against the tibial nerve was immediately adjacent to the popliteal artery, and was thus not appropriate for percutaneous placement. We describe a method of ultrasound-guided peripheral nerve stimulation that avoids the invasiveness of electrode placement via an open procedure while providing excellent pain relief. We further describe limitations of the percutaneous approach when navigating close to large blood vessels, a situation more appropriately managed with open peripheral nerve stimulator placement. Ultrasound-guided placement may be considered for patients receiving peripheral nerve stimulators placed within the deep tissues, and not easily placed in a blind fashion.

  8. Neural Responses to Electrical Stimulation on Patterned Silk Films

    PubMed Central

    Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Peripheral nerve injury is a critical issue for trauma patients. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 minutes each day for 7 days. Responses were compared to neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared to the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on day 5 and day 7 compared to the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 minutes daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment. PMID:23401351

  9. Effect of Tissue Heterogeneity on the Transmembrane Potential of Type-1 Spiral Ganglion Neurons: A Simulation Study.

    PubMed

    Sriperumbudur, Kiran Kumar; Pau, Hans Wilhelm; van Rienen, Ursula

    2018-03-01

    Electric stimulation of the auditory nerve by cochlear implants has been a successful clinical intervention to treat the sensory neural deafness. In this pathological condition of the cochlea, type-1 spiral ganglion neurons in Rosenthal's canal play a vital role in the action potential initiation. Various morphological studies of the human temporal bones suggest that the spiral ganglion neurons are surrounded by heterogeneous structures formed by a variety of cells and tissues. However, the existing simulation models have not considered the tissue heterogeneity in the Rosenthal's canal while studying the electric field interaction with spiral ganglion neurons. Unlike the existing models, we have implemented the tissue heterogeneity in the Rosenthal's canal using a computationally inexpensive image based method in a two-dimensional finite element model. Our simulation results suggest that the spatial heterogeneity of surrounding tissues influences the electric field distribution in the Rosenthal's canal, and thereby alters the transmembrane potential of the spiral ganglion neurons. In addition to the academic interest, these results are especially useful to understand how the latest tissue regeneration methods such as gene therapy and drug-induced resprouting of peripheral axons, which probably modify the density of the tissues in the Rosenthal's canal, affect the cochlear implant functionality.

  10. Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation.

    PubMed

    Tabernero, Juan; Schaeffel, Frank

    2009-10-01

    A new device was designed to provide fast measurements (4 s) of the peripheral refraction (90 degrees central horizontal field). Almost-continuous traces are obtained with high angular resolution (0.4 degrees) while the subject is fixating a central stimulus. Three-dimensional profiles can also be measured. The peripheral refractions in 10 emmetropic subjects were studied as a function of accommodation (200 cm, 50 cm, and 25 cm viewing distances). Peripheral refraction profiles were largely preserved during accommodation but were different in each individual. Apparently, the accommodating lens changes its focal length evenly over the central 90 degrees of the visual field.

  11. Relationship between tissue tension and thermal diffusion to peripheral tissue using an energy device.

    PubMed

    Kondo, Akihiro; Nishizawa, Yuji; Ito, Masaaki; Saito, Norio; Fujii, Satoshi; Akamoto, Shintaro; Fujiwara, Masao; Okano, Keiichi; Suzuki, Yasuyuki

    2016-08-01

    The aim of the study was to assess the relationship between tissue tension and thermal diffusion to peripheral tissues using an electric scalpel, ultrasonically activated device, or a bipolar sealing system. The mesentery of pigs was excised with each energy device (ED) at three tissue tensions (0, 300, 600 g). The excision time and thermal diffusion area were monitored with thermography, measured for each ED, and then histologically examined. Correlations between tissue tension and thermal diffusion area were examined. The excision time was inversely correlated with tissue tension for all ED (electric scalpel, r = 0.718; ultrasonically activated device, r = 0.949; bipolar sealing system, r = 0.843), and tissue tension was inversely correlated with the thermal diffusion area with the electric scalpel (r = 0.718) and bipolar sealing system (r = 0.869). Histopathologically, limited deep thermal denaturation occurred at a tension of 600 g with all ED. We conclude that thermal damage can be avoided with adequate tissue tension when any ED is used. © 2016 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  12. Electrotherapy for the treatment of painful diabetic peripheral neuropathy: a review.

    PubMed

    Pieber, Karin; Herceg, Malvina; Paternostro-Sluga, Tatjana

    2010-04-01

    To review different types of electrotherapy for the treatment of painful diabetic peripheral neuropathy. A structured search of the electronic database MEDLINE was performed from the time of its initiation to July 2009. Articles in English and German were selected. The efficacy of different types of electrotherapy for painful diabetic peripheral neuropathy has been evaluated in 15 studies; the effects of transcutaneous electrical nerve stimulation are consistent. The beneficial effects of prolonged use have been reported in three large studies and one small study. The effects of frequency-modulated electromagnetic neural stimulation were assessed in one large study, and a significant reduction in pain was reported. Treatment with pulsed and static electromagnetic fields has been investigated in two small and three large studies, and analgesic benefits have been reported. In one large study focusing on pulsed electromagnetic fields, no beneficial effect on pain was registered. Only small studies were found concerning other types of electrotherapy, such as pulsed-dose electrical stimulation, high-frequency external muscle stimulation or high-tone external muscle stimulation. The conclusions drawn in these articles are diverse. Shortcomings and problems, including a poor study design, were observed in some. Further randomized, double-blind, placebo-controlled studies comprising larger sample sizes, a longer duration of treatment, and longer follow-up assessments are required.

  13. Electrical and transcranial magnetic stimulation of the facial nerve: diagnostic relevance in acute isolated facial nerve palsy.

    PubMed

    Happe, Svenja; Bunten, Sabine

    2012-01-01

    Unilateral facial weakness is common. Transcranial magnetic stimulation (TMS) allows identification of a conduction failure at the level of the canalicular portion of the facial nerve and may help to confirm the diagnosis. We retrospectively analyzed 216 patients with the diagnosis of peripheral facial palsy. The electrophysiological investigations included the blink reflex, preauricular electrical stimulation and the response to TMS at the labyrinthine part of the canalicular proportion of the facial nerve within 3 days after symptom onset. A similar reduction or loss of the TMS amplitude (p < 0.005) of the affected side was seen in each patient group. Of the 216 patients (107 female, mean age 49.7 ± 18.0 years), 193 were diagnosed with Bell's palsy. Test results of the remaining patients led to the diagnosis of infectious [including herpes simplex, varicella zoster infection and borreliosis (n = 13)] and noninfectious [including diabetes and neoplasma (n = 10)] etiology. A conduction block in TMS supports the diagnosis of peripheral facial palsy without being specific for Bell's palsy. These data shed light on the TMS-based diagnosis of peripheral facial palsy, an ability to localize the site of lesion within the Fallopian channel regardless of the underlying pathology. Copyright © 2012 S. Karger AG, Basel.

  14. The relationship between anatomically correct electric and magnetic field dosimetry and publishe delectric and magnetic field exposure limits.

    PubMed

    Kavet, Robert; Dovan, Thanh; Reilly, J Patrick

    2012-12-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Institute of Electrical and Electronics Engineers are aimed at protection against adverse electrostimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits.

  15. Chronic ETA antagonist reverses hypertension and impairment of structure and function of peripheral small arteries in aortic stiffening.

    PubMed

    Guo, Xiaomei; Chen, Huan; Han, Ling; Haulon, Stephan; Kassab, Ghassan S

    2018-02-15

    Arterial stiffness may contribute to the pathogenesis of hypertension. The goal of this study is to elucidate the role of Endothelin-1 (ET-1) in aortic stiffening-induced hypertension through ET A receptor activation. An increase in aortic stiffness was created by use of a non-constrictive restraint, NCR on the abdominal aortic surface. A group of rats underwent aortic NCR or sham operation for 12 weeks and were then treated with ET A receptor antagonist BQ-123 for 3 weeks. We found that 12 weeks of aortic NCR significantly increased pulse and mean pressure and altered peripheral flow pattern, accompanied by an increased serum ET-1 level (p < 0.05). The increase in aortic stiffness (evidenced by an elevated pulse wave velocity) caused hypertrophic structural remodeling and decreased arterial compliance, along with an impaired endothelial function in peripheral small arteries. BQ-123 treatment only partially attenuated peripheral arterial hypertrophy and restored arterial compliance, but completely recovered endothelium function, and consequently restored local flow and lowered blood pressure. Our findings underscore the hemodynamic coupling between aortic stiffening and peripheral arterial vessels and flow dynamics through an ET A -dependent mechanism. ET A receptor blockade may have therapeutic potential for improving peripheral vessel structure and function in the treatment of aortic stiffness-induced hypertension.

  16. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration.

    PubMed

    Cunha, Carla; Panseri, Silvia; Antonini, Stefania

    2011-02-01

    Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achieved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair. Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Effect of aspirin on acute changes in peripheral arterial stiffness and endothelial function following exertional heat stress in firefighters: The factorial group results of the Enhanced Firefighter Rehab Trial.

    PubMed

    Olafiranye, Oladipupo; Hostler, David; Winger, Daniel G; Wang, Li; Reis, Steven E

    2015-06-01

    Peripheral arterial stiffness and endothelial function, which are independent predictors of cardiac events, are abnormal in firefighters. We examined the effects of aspirin on peripheral arterial stiffness and endothelial function in firefighters. Fifty-two firefighters were randomized to receive daily 81 mg aspirin or placebo for 14 days before treadmill exercise in thermal protection clothing, and a single dose of 325 mg aspirin or placebo immediately following exertion. Peripheral arterial augmentation index adjusted for a heart rate of 75 (AI75) and reactive hyperemia index (RHI) were determined immediately before, and 30, 60, and 90 minutes after exertion. Low-dose aspirin was associated with lower AI75 (-15.25±9.25 vs -8.08±10.70, p=0.014) but not RHI. On repeated measures analysis, treatment with low-dose aspirin before, but not single-dose aspirin after exertion, was associated with lower AI75 following exertional heat stress (p=0.018). Low-dose aspirin improved peripheral arterial stiffness and wave reflection but not endothelial function in firefighters. © The Author(s) 2015.

  18. Electrical stimulation of transplanted motoneurons improves motor unit formation

    PubMed Central

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  19. Sensory and motor peripheral nerve function and lower-extremity quadriceps strength: the health, aging and body composition study.

    PubMed

    Strotmeyer, Elsa S; de Rekeneire, Nathalie; Schwartz, Ann V; Resnick, Helaine E; Goodpaster, Bret H; Faulkner, Kimberly A; Shorr, Ronald I; Vinik, Aaron I; Harris, Tamara B; Newman, Anne B

    2009-11-01

    To determine whether sensory and motor nerve function is associated cross-sectionally with quadriceps or ankle dorsiflexion strength in an older community-based population. Cross-sectional analyses within a longitudinal cohort study. Two U.S. clinical sites. Two thousand fifty-nine Health, Aging and Body Composition Study (Health ABC) participants (49.5% male, 36.7% black, aged 73-82) in 2000/01. Quadriceps and ankle strength were measured using an isokinetic dynamometer. Sensory and motor peripheral nerve function in the legs and feet was assessed using 10-g and 1.4-g monofilaments, vibration threshold, and peroneal motor nerve conduction amplitude and velocity. Monofilament insensitivity, poorest vibration threshold quartile (>60 mu), and poorest motor nerve conduction amplitude quartile (<1.7 mV) were associated with 11%, 7%, and 8% lower quadriceps strength (all P<.01), respectively, than in the best peripheral nerve function categories in adjusted linear regression models. Monofilament insensitivity and lowest amplitude quartile were both associated with 17% lower ankle strength (P<.01). Multivariate analyses were adjusted for demographic characteristics, diabetes mellitus, body composition, lifestyle factors, and chronic health conditions and included all peripheral nerve measures in the same model. Monofilament insensitivity (beta=-7.19), vibration threshold (beta=-0.097), and motor nerve conduction amplitude (beta=2.01) each contributed independently to lower quadriceps strength (all P<.01). Monofilament insensitivity (beta=-5.29) and amplitude (beta=1.17) each contributed independently to lower ankle strength (all P<.01). Neither diabetes mellitus status nor lean mass explained the associations between peripheral nerve function and strength. Reduced sensory and motor peripheral nerve function is related to poorer lower extremity strength in older adults, suggesting a mechanism for the relationship with lower extremity disability.

  20. Early-Onset Physical Frailty in Adults with Diabesity and Peripheral Neuropathy.

    PubMed

    Tuttle, Lori J; Bittel, Daniel C; Bittel, Adam J; Sinacore, David R

    2017-12-07

    Diabesity (obesity and diabetes mellitus) has been identified as a potential contributor to early-onset frailty. Impairments contributing to early onset of physical frailty in this population are not well understood, and there is little evidence of the impact of peripheral neuropathy on frailty. The purpose of this study was to determine impairments that contribute to early-onset physical frailty in individuals with diabesity and peripheral neuropathy. We studied 105 participants, 82 with diabesity and peripheral neuropathy (57 years of age, body mass index [BMI] 31 kg/m 2 ); 13 with diabesity only (53 years of age, BMI 34 kg/m 2 ) and 10 obese controls (67 years of age, BMI 32 kg/m 2 ). Peripheral neuropathy was determined using Semmes Weinstein monofilaments; physical frailty was classified using the 9-item, modified Physical Performance Test; and knee extension and ankle plantarflexion peak torques were measured using isokinetic dynamometry. Participants with diabesity and peripheral neuropathy were 7.4 times more likely to be classified as physically frail. Impairments in lower-extremity function were associated with classification of frailty. Individuals with diabesity and peripheral neuropathy are particularly likely to be classified as frail. Earlier identification and interventions aimed at improving lower-extremity function may be important to mitigate the early-onset functional decline. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  1. Exogenous BDNF enhances the integration of chronically injured axons that regenerate through a peripheral nerve grafted into a chondroitinase-treated spinal cord injury site

    PubMed Central

    Tom, Veronica J.; Sandrow-Feinberg, Harra R.; Miller, Kassi; Domitrovich, Cheryl; Bouyer, Julien; Zhukareva, Victoria; Klaw, Michelle C.; Lemay, Michel A.; Houlé, John D.

    2016-01-01

    Although axons lose some of their intrinsic capacity for growth after their developmental period, some axons retain the potential for regrowth after injury. When provided with a growth-promoting substrate such as a peripheral nerve graft (PNG), severed axons regenerate into and through the graft; however, they stop when they reach the glial scar at the distal graft-host interface that is rich with inhibitory chondroitin sulfate proteoglycans. We previously showed that treatment of a spinal cord injury site with chondroitinase (ChABC) allows axons within the graft to traverse the scar and reinnervate spinal cord, where they form functional synapses. While this improvement in outgrowth was significant, it still represented only a small percentage (<20%) of axons compared to the total number of axons that regenerated into the PNG. Here we tested whether providing exogenous brain-derived neurotrophic factor (BDNF) via lentivirus in tissue distal to the PNG would augment regeneration beyond a ChABC-treated glial interface. We found that ChABC treatment alone promoted axonal regeneration but combining ChABC with BDNF-lentivirus did not increase the number of axons that regenerated back into spinal cord. Combining BDNF with ChABC did increase the number of spinal cord neurons that were trans-synaptically activated during electrical stimulation of the graft, as indicated by c-Fos expression, suggesting that BDNF overexpression improved the functional significance of axons that did reinnervate distal spinal cord tissue. PMID:23022460

  2. The effects of repetitive vibration on sensorineural function: biomarkers of sensorineural injury in an animal model of metabolic syndrome

    PubMed Central

    Kiedrowski, Megan; Waugh, Stacey; Miller, Roger; Johnson, Claud; Krajnak, Kristine

    2016-01-01

    Exposure to hand-transmitted vibration in the work-place can result in the loss of sensation and pain in workers. These effects may be exacerbated by pre-existing conditions such as diabetes or the presence of primary Raynaud's phenomena. The goal of these studies was to use an established model of vibration-induced injury in Zucker rats. Lean Zucker rats have a normal metabolic profile, while obese Zucker rats display symptoms of metabolic disorder or Type II diabetes. This study examined the effects of vibration in obese and lean rats. Zucker rats were exposed to 4 h of vibration for 10 consecutive days at a frequency of 125 Hz and acceleration of 49 m/s2 for 10 consecutive days. Sensory function was checked using transcutaneous electrical stimulation on days 1, 5 and 9 of the exposure. Once the study was complete the ventral tail nerves, dorsal root ganglia and spinal cord were dissected, and levels of various transcripts involved in sensorineural dysfunction were measured. Sensorineural dysfunction was assessed using transcutaneous electrical stimulation. Obese Zucker rats displayed very few changes in sensorineural function. However they did display significant changes in transcript levels for factors involved in synapse formation, peripheral nerve remodeling, and inflammation. The changes in transcript levels suggested that obese Zucker rats had some level of sensory nerve injury prior to exposure, and that exposure to vibration activated pathways involved in injury and re-innervation. PMID:26433044

  3. Peripheral Refraction, Peripheral Eye Length, and Retinal Shape in Myopia.

    PubMed

    Verkicharla, Pavan K; Suheimat, Marwan; Schmid, Katrina L; Atchison, David A

    2016-09-01

    To investigate how peripheral refraction and peripheral eye length are related to retinal shape. Relative peripheral refraction (RPR) and relative peripheral eye length (RPEL) were determined in 36 young adults (M +0.75D to -5.25D) along horizontal and vertical visual field meridians out to ±35° and ±30°, respectively. Retinal shape was determined in terms of vertex radius of curvature Rv, asphericity Q, and equivalent radius of curvature REq using a partial coherence interferometry method involving peripheral eye lengths and model eye raytracing. Second-order polynomial fits were applied to RPR and RPEL as functions of visual field position. Linear regressions were determined for the fits' second order coefficients and for retinal shape estimates as functions of central spherical refraction. Linear regressions investigated relationships of RPR and RPEL with retinal shape estimates. Peripheral refraction, peripheral eye lengths, and retinal shapes were significantly affected by meridian and refraction. More positive (hyperopic) relative peripheral refraction, more negative RPELs, and steeper retinas were found along the horizontal than along the vertical meridian and in myopes than in emmetropes. RPR and RPEL, as represented by their second-order fit coefficients, correlated significantly with retinal shape represented by REq. Effects of meridian and refraction on RPR and RPEL patterns are consistent with effects on retinal shape. Patterns derived from one of these predict the others: more positive (hyperopic) RPR predicts more negative RPEL and steeper retinas, more negative RPEL predicts more positive relative peripheral refraction and steeper retinas, and steeper retinas derived from peripheral eye lengths predict more positive RPR.

  4. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.

    PubMed

    Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu

    2015-11-15

    Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.

  5. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. Copyright © 2016 the American Physiological Society.

  6. T cell chronic lymphocytic leukaemia with suppressor phenotype.

    PubMed Central

    Hofman, F M; Smith, D; Hocking, W

    1982-01-01

    The peripheral blood cells from a patient with T cell chronic lymphocytic leukaemia were examined for surface marker and functional characteristics. Eighty-91% of the peripheral blood cells formed SRBC rosettes and 22-49% possessed Fc receptors; 73% of the peripheral blood cells were reactive with the OKT8 antiserum and 61% expressed DR antigens. Response to PHA stimulation was markedly reduced, whereas allogeneic responsiveness in mixed leucocyte culture was intact. The ability of Con A-stimulated peripheral blood cells to generate suppressor activity in a mixed leucocyte reaction was deficient, whereas suppression of in vitro immunoglobulin synthesis was greater than normal. The leukaemic peripheral blood cell population expressed a T suppressor phenotype. Functional studies suggest that these cells were derived from the subset of T lymphocytes with regulatory activity for immunoglobulin synthesis as opposed to mitogenic responsiveness. PMID:6215199

  7. Relationship between sensorimotor peripheral nerve function and indicators of cardiovascular autonomic function in older adults from the Health, Aging and Body Composition Study.

    PubMed

    Lange-Maia, Brittney S; Newman, Anne B; Jakicic, John M; Cauley, Jane A; Boudreau, Robert M; Schwartz, Ann V; Simonsick, Eleanor M; Satterfield, Suzanne; Vinik, Aaron I; Zivkovic, Sasa; Harris, Tamara B; Strotmeyer, Elsa S

    2017-10-01

    Age-related peripheral nervous system (PNS) impairments are highly prevalent in older adults. Although sensorimotor and cardiovascular autonomic function have been shown to be related in persons with diabetes, the nature of the relationship in general community-dwelling older adult populations is unknown. Health, Aging and Body Composition participants (n=2399, age=76.5±2.9years, 52% women, 38% black) underwent peripheral nerve testing at the 2000/01 clinic visit. Nerve conduction amplitude and velocity were measured at the peroneal motor nerve. Sensory nerve function was assessed with vibration detection threshold and monofilament (1.4-g/10-g) testing at the big toe. Symptoms of lower-extremity peripheral neuropathy were collected by self-report. Cardiovascular autonomic function indicators included postural hypotension, resting heart rate (HR), as well as HR response to and recovery from submaximal exercise testing (400m walk). Multivariable modeling adjusted for demographic/lifestyle factors, medication use and comorbid conditions. In fully adjusted models, poor motor nerve conduction velocity (<40m/s) was associated with greater odds of postural hypotension, (OR=1.6, 95% CI: 1.0-2.5), while poor motor amplitude (<1mV) was associated with 2.3beats/min (p=0.003) higher resting HR. No associations were observed between sensory nerve function or symptoms of peripheral neuropathy and indicators of cardiovascular autonomic function. Motor nerve function and indicators of cardiovascular autonomic function remained significantly related even after considering many potentially shared risk factors. Future studies should investigate common underlying processes for developing multiple PNS impairments in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Role of Neuroactive Steroids in the Peripheral Nervous System

    PubMed Central

    Melcangi, Roberto Cosimo; Giatti, Silvia; Pesaresi, Marzia; Calabrese, Donato; Mitro, Nico; Caruso, Donatella; Garcia-Segura, Luis Miguel

    2011-01-01

    Several reviews have so far pointed out on the relevant physiological and pharmacological role exerted by neuroactive steroids in the central nervous system. In the present review we summarize observations indicating that synthesis and metabolism of neuroactive steroids also occur in the peripheral nerves. Interestingly, peripheral nervous system is also a target of their action. Indeed, as here reported neuroactive steroids are physiological regulators of peripheral nerve functions and they may also represent interesting therapeutic tools for different types of peripheral neuropathy. PMID:22654839

  9. Lymphocyte Electrotaxis in vitro and in vivo

    PubMed Central

    Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D.; Santiago, Juan G.; Butcher, Eugene C.

    2008-01-01

    Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e. electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified transwell assay and a simple microfluidic device, we show that human peripheral blood lymphocytes migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well. PMID:18684937

  10. Continuous exposure to low amplitude extremely low frequency electrical fields characterizing the vascular streaming potential alters elastin accumulation in vascular smooth muscle cells.

    PubMed

    Bergethon, Peter R; Kindler, Dean D; Hallock, Kevin; Blease, Susan; Toselli, Paul

    2013-07-01

    In normal development and pathology, the vascular system depends on complex interactions between cellular elements, biochemical molecules, and physical forces. The electrokinetic vascular streaming potential (EVSP) is an endogenous extremely low frequency (ELF) electrical field resulting from blood flowing past the vessel wall. While generally unrecognized, it is a ubiquitous electrical biophysical force to which the vascular tree is exposed. Extracellular matrix elastin plays a central role in normal blood vessel function and in the development of atherosclerosis. It was hypothesized that ELF fields of low amplitude would alter elastin accumulation, supporting a link between the EVSP and the biology of vascular smooth muscle cells. Neonatal rat aortic smooth muscle cell cultures were exposed chronically to electrical fields characteristic of the EVSP. Extracellular protein accumulation, DNA content, and electron microscopic (EM) evaluation were performed after 2 weeks of exposure. Stimulated cultures showed no significant change in cellular proliferation as measured by the DNA concentration. The per-DNA normalized protein in the extracellular matrix was unchanged while extracellular elastin accumulation decreased 38% on average. EM analysis showed that the stimulated cells had a 2.85-fold increase in mitochondrial number. These results support the formulation that ELF fields are a potential factor in both normal vessel biology and in the pathogenesis of atherosclerotic diseases including heart disease, stroke, and peripheral vascular disease. Copyright © 2013 Wiley Periodicals, Inc.

  11. Electrical characterisation of SiGe heterojunction bipolar transistors and Si pseudo-HBTS

    NASA Astrophysics Data System (ADS)

    De Barros, O.; Le Tron, B.; Woods, R. C.; Giroult-Matlakowski, G.; Vincent, G.; Brémond, G.

    1996-08-01

    This paper reports an electrical characterisation of the emitter-base junction of Si pseudo-HBTs and SiGe HBTs fabricated in a CMOS compatible single polysilicon self-aligned process. From the reverse characteristics it appears that the definition of the emitter-base junction by plasma etching induces peripheral defects that increase the base current of the transistors. Deep level transient spectroscopy measurements show a deep level in the case of SiGe base, whose spatial origin is not fully determinate up to now.

  12. Transcutaneous Electrical Nerve Stimulation (TENS) A Possible Aid for Pain Relief in Developing Countries?

    PubMed Central

    Tashani, O; Johnson, MI

    2009-01-01

    Transcutaneous electrical nerve stimulation (TENS) refers to the delivery of electrical currents through the skin to activate peripheral nerves. The technique is widely used in developed countries to relieve a wide range of acute and chronic pain conditions, including pain resulting from cancer and its treatment. There are many systematic reviews on TENS although evidence is often inconclusive because of shortcomings in randomised control trials methodology. In this overview the basic science behind TENS will be discussed, the evidence of its effectiveness in specific clinical conditions analysed and a case for its use in pain management in developing countries will be made. PMID:21483510

  13. Mouse forward genetics in the study of the peripheral nervous system and human peripheral neuropathy

    PubMed Central

    Douglas, Darlene S.; Popko, Brian

    2009-01-01

    Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics. PMID:18481175

  14. Circulating hematopoietic progenitor cells in patients affected by Chornobyl accident.

    PubMed

    Bilko, N M; Dyagil, I S; Russu, I Z; Bilko, D I

    2016-12-01

    High radiation sensitivity of stem cells and their ability to accumulate sublethal radiation damage provides the basis for investigation of hematopoietic progenitors using in vivo culture methodology. Unique samples of peripheral blood and bone marrow were derived from the patients affected by Chornobyl accident during liquidation campaign. To investigate functional activity of circulating hematopoietic progenitor cells from peripheral blood and bone marrow of cleanup workers in early and remote periods after the accident at Chornobyl nuclear power plant (CNPP). The assessment of the functional activity of circulating hematopoietic progenitor cells was performed in samples of peripheral blood and bone marrow of 46 cleanup workers, who were treated in the National Scientific Center for Radiation Medicine of the Academy of Medical Sciences of Ukraine alongside with 35 non radiated patients, who served as a control. Work was performed by culturing peripheral blood and bone marrow mononuclear cells in the original gel diffusion capsules, implanted into the peritoneal cavity of CBA mice. It was shown that hematopoietic progenitor cells could be identified in the peripheral blood of liquidators of CNPP accident. At the same time the number of functionally active progenitor cells of the bone marrow was significantly decreased and during the next 10 years after the accident, counts of circulating progenitor cells in the peripheral blood as well as functionally active hematopoietic cells in bone marrow returned to normal levels. It was shown that hematopoietic progenitor cells are detected not only in the bone marrow but also in the peripheral blood of liquidators as a consequence of radiation exposure associated with CNPP accident. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  15. Therapeutic intraspinal stimulation to generate activity and promote long-term recovery.

    PubMed

    Mondello, Sarah E; Kasten, Michael R; Horner, Philip J; Moritz, Chet T

    2014-01-01

    Neuroprosthetic approaches have tremendous potential for the treatment of injuries to the brain and spinal cord by inducing appropriate neural activity in otherwise disordered circuits. Substantial work has demonstrated that stimulation applied to both the central and peripheral nervous system leads to immediate and in some cases sustained benefits after injury. Here we focus on cervical intraspinal microstimulation (ISMS) as a promising method of activating the spinal cord distal to an injury site, either to directly produce movements or more intriguingly to improve subsequent volitional control of the paretic extremities. Incomplete injuries to the spinal cord are the most commonly observed in human patients, and these injuries spare neural tissue bypassing the lesion that could be influenced by neural devices to promote recovery of function. In fact, recent results have demonstrated that therapeutic ISMS leads to modest but sustained improvements in forelimb function after an incomplete spinal cord injury (SCI). This therapeutic spinal stimulation may promote long-term recovery of function by providing the necessary electrical activity needed for neuron survival, axon growth, and synaptic stability.

  16. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography

    PubMed Central

    Henry, Francis P.; Wang, Yan; Rodriguez, Carissa L. R.; Randolph, Mark A.; Rust, Esther A. Z.; Winograd, Jonathan M.; de Boer, Johannes F.; Park, B. Hyle

    2015-01-01

    Abstract. Assessing nerve integrity and myelination after injury is necessary to provide insight for treatment strategies aimed at restoring neuromuscular function. Currently, this is largely done with electrical analysis, which lacks direct quantitative information. In vivo optical imaging with sufficient imaging depth and resolution could be used to assess the nerve microarchitecture. In this study, we examine the use of polarization sensitive-optical coherence tomography (PS-OCT) to quantitatively assess the sciatic nerve microenvironment through measurements of birefringence after applying a nerve crush injury in a rat model. Initial loss of function and subsequent recovery were demonstrated by calculating the sciatic function index (SFI). We found that the PS-OCT phase retardation slope, which is proportional to birefringence, increased monotonically with the SFI. Additionally, histomorphometric analysis of the myelin thickness and g-ratio shows that the PS-OCT slope is a good indicator of myelin health and recovery after injury. These results demonstrate that PS-OCT is capable of providing nondestructive and quantitative assessment of nerve health after injury and shows promise for continued use both clinically and experimentally in neuroscience. PMID:25858593

  17. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography.

    PubMed

    Henry, Francis P; Wang, Yan; Rodriguez, Carissa L R; Randolph, Mark A; Rust, Esther A Z; Winograd, Jonathan M; de Boer, Johannes F; Park, B Hyle

    2015-04-01

    Assessing nerve integrity and myelination after injury is necessary to provide insight for treatment strategies aimed at restoring neuromuscular function. Currently, this is largely done with electrical analysis, which lacks direct quantitative information. In vivo optical imaging with sufficient imaging depth and resolution could be used to assess the nerve microarchitecture. In this study, we examine the use of polarization sensitive-optical coherence tomography (PS-OCT) to quantitatively assess the sciatic nerve microenvironment through measurements of birefringence after applying a nerve crush injury in a rat model. Initial loss of function and subsequent recovery were demonstrated by calculating the sciatic function index (SFI). We found that the PS-OCT phase retardation slope, which is proportional to birefringence, increased monotonically with the SFI. Additionally, histomorphometric analysis of the myelin thickness and g-ratio shows that the PS-OCT slope is a good indicator of myelin health and recovery after injury. These results demonstrate that PS-OCT is capable of providing nondestructive and quantitative assessment of nerve health after injury and shows promise for continued use both clinically and experimentally in neuroscience.

  18. Dose postural control improve following application of transcutaneous electrical nerve stimulation in diabetic peripheral neuropathic patients? A randomized placebo control trial.

    PubMed

    Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L

    2017-12-01

    peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.

  19. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee...

  20. Phenotypic, ultra-structural and functional characterization of bovine peripheral blood dendritic cell subsets

    USDA-ARS?s Scientific Manuscript database

    Dendritic cells (DC) are multifunctional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets...

  1. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy

    PubMed Central

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.

    2015-01-01

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719

  2. Binaural electric-acoustic interactions recorded from the inferior colliculus of Guinea pigs: the effect of masking observed in the central nucleus of the inferior colliculus.

    PubMed

    Noh, Heil; Lee, Dong-Hee

    2012-09-01

    To investigate the electric-acoustic interactions within the inferior colliculus of guinea pigs and to observe how central masking appears in invasive neural recordings of the inferior colliculus (IC). A platinum-iridium wire was inserted to scala tympani through cochleostomy with a depth no greater than 1 mm for intracochlear stimulation of electric pulse train. A 5 mm 100 µm, single-shank, thin-film, penetrating recording probe was inserted perpendicularly to the surface of the IC in the coronal plane at an angle of 30-40° off the parasagittal plane with a depth of 2.0-2.5 mm. The peripheral and central masking effects were compared using electric pulse trains to the left ear and acoustic noise to the left ear (ipsilateral) and to the right ear (contralateral). Binaural acoustic stimuli were presented with different time delays and compared with combined electric and acoustic stimuli. The averaged evoked potentials and total spike numbers were measured using thin-film electrodes inserted into the central nucleus of the IC. Ipsilateral noise had more obvious effects on the electric response than did contralateral noise. Contralateral noise decreased slightly the response amplitude to the electric pulse train stimuli. Immediately after the onset of acoustic noise, the response pattern changed transiently with shorter response intervals. The effects of contralateral noise were evident at the beginning of the continuous noise. The total spike number decreased when the binaural stimuli reached the IC most simultaneously. These results suggest that central masking is quite different from peripheral masking and occurs within the binaural auditory system, and this study showed that the effect of masking could be observed in the IC recording. These effects are more evident and consistent with the psychophysical data from spike number analyses than with the previously reported gross potential data.

  3. Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission

    PubMed Central

    Du, Xiaona; Hao, Han; Yang, Yuehui; Huang, Sha; Wang, Caixue; Gigout, Sylvain; Ramli, Rosmaliza; Li, Xinmeng; Jaworska, Ewa; Edwards, Ian; Yanagawa, Yuchio; Qi, Jinlong; Guan, Bingcai; Jaffe, David B.; Zhang, Hailin

    2017-01-01

    The integration of somatosensory information is generally assumed to be a function of the central nervous system (CNS). Here we describe fully functional GABAergic communication within rodent peripheral sensory ganglia and show that it can modulate transmission of pain-related signals from the peripheral sensory nerves to the CNS. We found that sensory neurons express major proteins necessary for GABA synthesis and release and that sensory neurons released GABA in response to depolarization. In vivo focal infusion of GABA or GABA reuptake inhibitor to sensory ganglia dramatically reduced acute peripherally induced nociception and alleviated neuropathic and inflammatory pain. In addition, focal application of GABA receptor antagonists to sensory ganglia triggered or exacerbated peripherally induced nociception. We also demonstrated that chemogenetic or optogenetic depolarization of GABAergic dorsal root ganglion neurons in vivo reduced acute and chronic peripherally induced nociception. Mechanistically, GABA depolarized the majority of sensory neuron somata, yet produced a net inhibitory effect on the nociceptive transmission due to the filtering effect at nociceptive fiber T-junctions. Our findings indicate that peripheral somatosensory ganglia represent a hitherto underappreciated site of somatosensory signal integration and offer a potential target for therapeutic intervention. PMID:28375159

  4. Neural electrical activity and neural network growth.

    PubMed

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Improving neurovascular outcomes with bilateral forepaw stimulation in a rat photothrombotic ischemic stroke model

    PubMed Central

    Liao, Lun-De; Bandla, Aishwarya; Ling, Ji Min; Liu, Yu-Hang; Kuo, Li-Wei; Chen, You-Yin; King, Nicolas KK; Lai, Hsin-Yi; Lin, Yan-Ren; Thakor, Nitish V.

    2014-01-01

    Abstract. Restoring perfusion to the penumbra during the hyperacute phase of ischemic stroke is a key goal of neuroprotection. Thrombolysis is currently the only approved treatment for ischemic stroke. However, its use is limited by the narrow therapeutic window and side effect of bleeding. Therefore, other interventions are desired that could potentially increase the perfusion of the penumbra. Here, we hypothesized that bilateral peripheral electrical stimulation will improve cerebral perfusion and restore cortical neurovascular response. We assess the outcomes of bilateral forepaw electrical stimulation at intensities of 2 and 4 mA, administered either unilaterally or bilaterally. We developed a combined electrocorticogram (ECoG)-functional photoacoustic microscopy (fPAM) system to evaluate the relative changes in cerebral hemodynamic function and electrophysiologic response to acute, focal stroke. The fPAM system is used for cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) and the ECoG for neural activity, namely somatosensory-evoked potential (SSEP), interhemispheric coherence, and alpha-delta ratio (ADR) in response to forepaw stimulation. Our results confirmed the neuroprotective effect of bilateral forepaw stimulation at 2 mA as indicated by the 82% recovery of ADR and 95% improvement in perfusion into the region of penumbra. This experimental model can be used to study other potential interventions such as therapeutic hypertension and hypercarbia. PMID:26157965

  6. Reliability of burst superimposed technique to assess central activation failure during fatiguing contraction.

    PubMed

    Dousset, Erick; Jammes, Yves

    2003-04-01

    Recording a superimposed electrically-induced contraction at the limit of endurance during voluntary contraction is used as an indicator of failure of muscle activation by the central nervous system and discards the existence of peripheral muscle fatigue. We questioned on the reliability of this method by using other means to explore peripheral muscle failure. Fifteen normal subjects sustained handgrip at 60% of maximal voluntary contraction (MVC) until exhaustion. During sustained contraction, the power spectrum analysis of the flexor digitorum surface electromyogram allowed us to calculate the leftward shift of median frequency (MF). A superimposed 60 Hz 3 s pulse train (burst superimposition) was delivered to the muscle when force levelled off close to the preset value. Immediately after the fatigue trial had ended, the subject was asked to perform a 5 s 60% MVC and we measured the peak contractile response to a 60 Hz 3 s burst stimulation. Recordings of the compound evoked muscle action potential (M-wave) allowed us to explore an impairment of neuromuscular propagation. A superimposed contraction was measured in 7 subjects in their two forearms, whereas it was absent in the 8 others. Despite these discrepancies, all subjects were able to reproduce a 3 s 60% MVC immediately after the fatigue trial ended and there was no post-fatigue decrease of contraction elicited by the 60 Hz 3 s burst stimulation, as well as no M-wave decrease in amplitude and conduction time. Thus, there was no indication of peripheral muscle fatigue. MF decrease was present in all individuals throughout the fatiguing contraction and it was not correlated with the magnitude of superimposed force. These observations indicate that an absence of superimposed electrically-induced muscle contraction does not allow us to conclude the existence of a sole peripheral muscle fatigue in these circumstances.

  7. Functional visual fields: relationship of visual field areas to self-reported function.

    PubMed

    Subhi, Hikmat; Latham, Keziah; Myint, Joy; Crossland, Michael D

    2017-07-01

    The aim of this study is to relate areas of the visual field to functional difficulties to inform the development of a binocular visual field assessment that can reflect the functional consequences of visual field loss. Fifty-two participants with peripheral visual field loss undertook binocular assessment of visual fields using the 30-2 and 60-4 SITA Fast programs on the Humphrey Field Analyser, and mean thresholds were derived. Binocular visual acuity, contrast sensitivity and near reading performance were also determined. Self-reported overall and mobility function were assessed using the Dutch ICF Activity Inventory. Greater visual field loss (0-60°) was associated with worse self-reported function both overall (R 2 = 0.50; p < 0.0001), and for mobility (R 2 = 0.64; p < 0.0001). Central (0-30°) and peripheral (30-60°) visual field areas were similarly related to mobility function (R 2 = 0.61, p < 0.0001 and R 2 = 0.63, p < 0.0001 respectively), although the peripheral (30-60°) visual field was the best predictor of mobility self-reported function in multiple regression analyses. Superior and inferior visual field areas related similarly to mobility function (R 2 = 0.56, p < 0.0001 and R 2 = 0.67, p < 0.0001 respectively). The inferior field was found to be the best predictor of mobility function in multiple regression analysis. Mean threshold of the binocular visual field to 60° eccentricity is a good predictor of self-reported function overall, and particularly of mobility function. Both the central (0-30°) and peripheral (30-60°) mean threshold are good predictors of self-reported function, but the peripheral (30-0°) field is a slightly better predictor of mobility function, and should not be ignored when considering functional consequences of field loss. The inferior visual field is a slightly stronger predictor of perceived overall and mobility function than the superior field. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  8. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity

    PubMed Central

    D'Amico, Jessica M.; Condliffe, Elizabeth G.; Martins, Karen J. B.; Bennett, David J.; Gorassini, Monica A.

    2014-01-01

    The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI. PMID:24860447

  9. A neural interface provides long-term stable natural touch perception.

    PubMed

    Tan, Daniel W; Schiefer, Matthew A; Keith, Michael W; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J

    2014-10-08

    Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without "tingling," or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects' ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. Copyright © 2014, American Association for the Advancement of Science.

  10. A neural interface provides long-term stable natural touch perception

    PubMed Central

    Tan, Daniel W.; Schiefer, Matthew A.; Keith, Michael W.; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J.

    2017-01-01

    Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without “tingling,” or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects’ ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. PMID:25298320

  11. N-type Ca2+ channels mediate transmitter release at the electromotoneuron-electrocyte synapses of the weakly electric fish Gymnotus carapo.

    PubMed

    Sierra, F; Lorenzo, D; Macadar, O; Buño, W

    1995-06-19

    The effects of omega-conotoxin-GVIA (omega-CgTX) on synaptic transmission were studied in the electromotoneuron-electrocyte synapses of the electric organ (EO) of the weakly electric fish Gymnotus carapo. omega-CgTX selectively and irreversibly blocked excitatory postsynaptic potentials (EPSPs) in a dose dependent-manner. The toxin had no effect on: (a) resting postsynaptic membrane potential and conductance; (b) postsynaptic action potentials elicited by depolarizing transmembrane current pulses; (c) the action potential conduction in the presynaptic fiber; (d) acetylcholine (ACh)-induced postsynaptic responses. Nifedipine - a selective dihydropyridine antagonist of the L-type voltage-dependent Ca2+ channels (VDCCs) - did not affect synaptic transmission. Transmission was also undisturbed by the peptide omega-Agatoxin (omega-Aga-IVA), the low molecular weight polyamine, funnel-web toxin (FTX) - both included in the venom of the spider Agelenopsis aperta - and its synthetic analog sFTX, all selective blockers of P-type VDCCs. Since omega-CgTX irreversibly blocks the N-type VDCCs, we conclude that presynaptic N-type VDCCs mediate transmitter release at electromotoneuron terminals. The VDCCs involved in fish peripheral electromotoneuron-electrocyte presynaptic transmitter release are therefore similar to those in amphibian, reptilian and avian peripheral synapses, but differ from mammalian and invertebrate motoneuron terminals.

  12. High-Frequency Transcutaneous Peripheral Nerve Stimulation Induces a Higher Increase of Heat Pain Threshold in the Cutaneous Area of the Stimulated Nerve When Confronted to the Neighbouring Areas

    PubMed Central

    Buonocore, M.; Camuzzini, N.; Cecini, M.; Dalla Toffola, E.

    2013-01-01

    Background. TENS (transcutaneous electrical nerve stimulation) is probably the most diffused physical therapy used for antalgic purposes. Although it continues to be used by trial and error, correct targeting of paresthesias evoked by the electrical stimulation on the painful area is diffusely considered very important for pain relief. Aim. To investigate if TENS antalgic effect is higher in the cutaneous area of the stimulated nerve when confronted to neighbouring areas. Methods. 10 volunteers (4 males, 6 females) underwent three different sessions: in two, heat pain thresholds (HPTs) were measured on the dorsal hand skin before, during and after electrical stimulation (100 Hz, 0.1 msec) of superficial radial nerve; in the third session HPTs, were measured without any stimulation. Results. Radial nerve stimulation induced an increase of HPT significantly higher in its cutaneous territory when confronted to the neighbouring ulnar nerve territory, and antalgic effect persisted beyond the stimulation time. Conclusions. The location of TENS electrodes is crucial for obtaining the strongest pain relief, and peripheral nerve trunk stimulation is advised whenever possible. Moreover, the present study indicates that continuous stimulation could be unnecessary, suggesting a strategy for avoiding the well-known tolerance-like effect of prolonged TENS application. PMID:24027756

  13. Influence of Peripheral and Motivational Cues on Rigid-Flexible Functioning: Perceptual, Behavioral, and Cognitive Aspects

    ERIC Educational Resources Information Center

    Cretenet, Joel; Dru, Vincent

    2009-01-01

    Recent research has shown that performing approach versus avoidance behaviors (arm flexion vs. extension) effectively influences cognitive functioning. In another area, lateralized peripheral activations (left vs. right side) of the motivational systems of approach versus avoidance were linked to various performances in cognitive tasks. By…

  14. The Role of Oxidative Stress in Nervous System Aging

    PubMed Central

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  15. The role of oxidative stress in nervous system aging.

    PubMed

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  16. Peripheral vascular function, oxygen delivery and utilization: the impact of oxidative stress in aging and heart failure with reduced ejection fraction

    PubMed Central

    Wray, D. Walter; Amann, Markus

    2016-01-01

    The aging process appears to be a precursor to many age-related diseases, perhaps the most impactful of which is cardiovascular disease (CVD). Heart disease, a manifestation of CVD, is the leading cause of death in the USA, and heart failure (HF), a syndrome that develops as a consequence of heart disease, now affects almost six million American. Importantly, as this is an age-related disease, this number is likely to grow along with the ever-increasing elderly population. Hallmarks of the aging process and HF patients with a reduced ejection fraction (HFrEF) include exercise intolerance, premature fatigue, and limited oxygen delivery and utilization, perhaps as a consequence of diminished peripheral vascular function. Free radicals and oxidative stress have been implicated in this peripheral vascular dysfunction, as a redox imbalance may directly impact the function of the vascular endothelium. This review aims to bring together studies that have examined the impact of oxidative stress on peripheral vascular function and oxygen delivery and utilization with both healthy aging and HFrEF. PMID:27392715

  17. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  18. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  19. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  20. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  1. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  2. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  3. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  4. Use of tripolar electrodes for minimization of current spread in uncut peripheral nerve stimulation.

    PubMed

    Ohsawa, Ichiro; Inui, Koji

    2009-05-01

    The electrical stimulation of an uncut peripheral nerve requires a countermeasure to avoid the spread of current through a loop pathway formed outside the electrode array. Here the use of tripolar electrodes (TE) is proposed. By binding the two end poles, current spread through the loop pathway can theoretically be eliminated since both end poles are held equipotential. Experimentally, we tested the validity of this approach. In chloralose-urethane anesthetized rats, the left cervical vagus (LCV) was placed on TE which could function as such or as bipolar electrodes (BE) by the use of a selector switch. The spread of current to the adjacent tissues (rectus capitis muscle underlying the LCV, and the right cervical vagus (RCV) incised and translocated beside the target, LCV) was compared between TE and BE. When the stimulus intensity was increased, contraction occurred in the capitis muscle with BE, but not TE. Compound spike potentials of A fiber origin were evoked in the non-target RCV on high-intensity stimulation with BE, but not TE. Constant voltage stimulation of the LCV with TE produced bradycardia of the same magnitude as that with BE. In conclusion, constant voltage stimulation using TE can minimize current spread without changing the stimulus's effects.

  5. Method and Apparatus for Obtaining a Precision Thickness in Semiconductor and Other Wafers

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2002-01-01

    A method and apparatus for processing a wafer comprising a material selected from an electrical semiconducting material and an electrical insulating material is presented. The wafer has opposed generally planar front and rear sides and a peripheral edge, wherein said wafer is pressed against a pad in the presence of a slurry to reduce its thickness. The thickness of the wafer is controlled by first forming a recess such as a dimple on the rear side of the wafer. A first electrical conducting strip extends from a first electrical connection means to the base surface of the recess to the second electrical connector. The first electrical conducting strip overlies the base surface of the recess. There is also a second electrical conductor with an electrical potential source between the first electrical connector and the second electrical connector to form. In combination with the first electrical conducting strip, the second electrical conductor forms a closed electrical circuit, and an electrical current flows through the closed electrical circuit. From the front side of the wafer the initial thickness of the wafer is reduced by lapping until the base surface of the recess is reached. The conductive strip is at least partially removed from the base surface to automatically stop the lapping procedure and thereby achieve the desired thickness.

  6. Peripheral killer cells do not differentiate between asthma patients with or without fixed airway obstruction.

    PubMed

    Tubby, Carolyn; Negm, Ola H; Harrison, Timothy; Tighe, Patrick J; Todd, Ian; Fairclough, Lucy C

    2017-06-01

    The three main types of killer cells - CD8 + T cells, NK cells and NKT cells - have been linked to asthma and chronic obstructive pulmonary disease (COPD). However, their role in a small subset of asthma patients displaying fixed airway obstruction (FAO), similar to that seen in COPD, has not been explored. The objective of the present study was to investigate killer cell numbers, phenotype and function in peripheral blood from asthma patients with FAO, asthma patients without FAO, and healthy individuals. Peripheral CD8 + T cells (CD8 + CD3 + CD56 - ), NK cells (CD56 + CD3 - ) and NKT-like cells (CD56 + CD3 + ) of 14 asthma patients with FAO (post-bronchodilator FEV/FVC <0.7, despite clinician-optimised treatment), 7 asthma patients without FAO (post-bronchodilator FEV/FVC ≥ 0.7), and 9 healthy individuals were studied. No significant differences were seen between the number, receptor expression, MAPK signalling molecule expression, cytotoxic mediator expression, and functional cytotoxicity of peripheral killer cells from asthma patients with FAO, asthma patients without FAO and healthy individuals. Peripheral killer cell numbers or functions do not differentiate between asthma patients with or without fixed airway obstruction.

  7. Sodium-dependent Vitamin C transporter 2 deficiency impairs myelination and remyelination after injury: Roles of collagen and demethylation.

    PubMed

    Röhr, Dominik; Halfter, Hartmut; Schulz, Jörg B; Young, Peter; Gess, Burkhard

    2017-07-01

    Peripheral nerve myelination involves rapid production of tightly bound lipid layers requiring cholesterol biosynthesis and myelin protein expression, but also a collagen-containing extracellular matrix providing mechanical stability. In previous studies, we showed a function of ascorbic acid in peripheral nerve myelination and extracellular matrix formation in adult mice. Here, we sought the mechanism of action of ascorbic acid in peripheral nerve myelination using different paradigms of myelination in vivo and in vitro. We found impaired myelination and reduced collagen expression in Sodium-dependent Vitamin C Transporter 2 heterozygous mice (SVCT2 +/- ) during peripheral nerve development and after peripheral nerve injury. In dorsal root ganglion (DRG) explant cultures, hypo-myelination could be rescued by precoating with different collagen types. The activity of the ascorbic acid-dependent demethylating Ten-eleven-translocation (Tet) enzymes was reduced in ascorbic acid deprived and SVCT2 +/- DRG cultures. Further, in ascorbic acid-deprived DRG cultures, methylation of a CpG island in the collagen alpha1 (IV) and alpha2 (IV) bidirectional promoter region was increased compared to wild-type and ascorbic acid treated controls. Taken together, these results provide further evidence for the function of ascorbic acid in myelination and extracellular matrix formation in peripheral nerves and suggest a putative molecular mechanism of ascorbic acid function in Tet-dependent demethylation of collagen promoters. © 2017 Wiley Periodicals, Inc.

  8. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo

    PubMed Central

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki

    2017-01-01

    Abstract Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC‐specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin‐forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207–1216 PMID:28186702

  9. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice.

    PubMed

    Anderson, Nicholas J; King, Matthew R; Delbruck, Lina; Jolivalt, Corinne G

    2014-06-01

    One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype. © 2014. Published by The Company of Biologists Ltd.

  10. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    PubMed

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  11. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    NASA Technical Reports Server (NTRS)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  12. The efficacy of transcutaneous electrical nerve stimulation on the improvement of walking distance in patients with peripheral arterial disease with intermittent claudication: study protocol for a randomised controlled trial: the TENS-PAD study.

    PubMed

    Besnier, Florent; Sénard, Jean-Michel; Grémeaux, Vincent; Riédel, Mélanie; Garrigues, Damien; Guiraud, Thibaut; Labrunée, Marc

    2017-08-10

    In patients with peripheral arterial disease (PAD), walking improvements are often limited by early pain onset due to vascular claudication. It would thus appear interesting to develop noninvasive therapeutic strategies, such as transcutaneous electrical nerve stimulation (TENS), to improve the participation of PAD patients in rehabilitation programmes, and thus improve their quality of life. Our team recently tested the efficacy of a single 45-min session of 10-Hz TENS prior to walking. TENS significantly delayed pain onset and increased the pain-free walking distance in patients with class-II PAD. We now seek to assess the efficacy of a chronic intervention that includes the daily use of TENS for 3 weeks (5 days a week) on walking distance in Leriche-Fontaine stage-II PAD patients. This is a prospective, double-blind, multicentre, randomised, placebo-controlled trial. One hundred subjects with unilateral PAD (Leriche-Fontaine stage II) will be randomised into two groups (1:1). For the experimental group (TENS group): the treatment will consist of stimulation of the affected leg (at a biphasic frequency of 10 Hz, with a pulse width of 200 μs, maximal intensity below the motor threshold) for 45 min per day, in the morning before the exercise rehabilitation programme, for 3 weeks, 5 days per week. For the control group (SHAM group): the placebo stimulation will be delivered according to the same modalities as for the TENS group but with a voltage level automatically falling to zero after 10 s of stimulation. First outcome: walking distance without pain. transcutaneous oxygen pressure (TcPO 2 ) measured during a Strandness exercise test, peak oxygen uptake (VO 2 peak), endothelial function (EndoPAT®), Ankle-brachial Pressure Index, Body Mass Index, lipid profile (LDL-C, HDL-C, triglycerides), fasting glycaemia, HbA1c level, and the WELCH questionnaire. TENS-PAD is the first randomised controlled trial that uses transcutaneous electrical therapy as an adjuvant technique to improve vascular function in the treatment of PAD. If the results are confirmed, this technique could be incorporated into the routine care in cardiovascular rehabilitation centers and used in the long term by patients to improve their walking capacity. ClinicalTrials.gov, ID: NCT02678403 . Registered on 9 February 2016. Toulouse University Hospital.

  13. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    PubMed

    Ward, Patricia J; Jones, Laura N; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C; English, Arthur W

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  14. Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate

    NASA Astrophysics Data System (ADS)

    Hongo, Motoharu; Matsuo, Shigeki

    2016-06-01

    Laser-induced periodic surface structures (LIPSS) were fabricated on a prescratched silicon surface by irradiation with subnanosecond laser pulses. Low-spatial-frequency LIPSS (LSFL) were observed in the central and peripheral regions; both had a period Λ close to the laser wavelength λ, and the wavevector orientation was parallel to the electric field of the laser beam. The LSFL in the peripheral region seemed to be growing, that is, expanding in length with increasing number of pulses, into the outer regions. In addition, high-spatial-frequency LIPSS, Λ ≲ λ /2, were found along the scratches, and their wavevector orientation was parallel to the scratches.

  15. Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision

    PubMed Central

    Kwon, MiYoung; Legge, Gordon E.

    2011-01-01

    It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800

  16. Phosphonium carbosilane dendrimers - interaction with a simple biological membrane model.

    PubMed

    Wrobel, Dominika; Kubikova, Radka; Müllerová, Monika; Strašák, Tomas; RůŽička, Květoslav; Fulem, Michal; Maly, Jan

    2018-05-30

    The influence of three generations of five different phosphonium carbosilane dendrimers and one ammonium carbosilane dendrimer as a reference (PMe3, PBu3, P(Et2)2(CH2)3OH, PPh3, P(MeOPh)3 and NMe3, peripheral functional groups) on dimyristoylphosphatidylcholine (DMPC) or a lipid mixture dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) of liposomes was studied by fluorescence polarization measurements and differential scanning calorimetry. All types of dendrimers interacted with neutral as well as negatively charged liposomes, but the strength and observed influence were different. Concentration, type of peripheral functional group modification and dendrimer generation were the main factors influencing the interaction. Generally, weak interactions as well as destabilization of the lipid membranes at low concentrations, regardless of liposome type, were observed in the case of DmPMe3, DmNMe3, DmPBu3 and DmP(Et2)2(CH2)3OH. Dendrimers with PPh3 and P(MeOPh)3 peripheral functional groups interacted much more strongly and increased the rigidity of liposomes. Electrostatic interactions, the hydrophobicity of substituents and charge shielding on the peripheral phosphonium group are important factors in the interaction. We suggest that, among the other types of dendrimers, the dendrimer with the P(MeOPh)3 peripheral functional group is a highly promising candidate for the design of a drug delivery system due to its positive charge, efficient interaction with lipidic membranes and low cytotoxicity.

  17. Peripheral Vascular Disease: The Beneficial Effect of Exercise in Peripheral Vascular Diseases Based on Clinical Trials.

    PubMed

    Elnady, Basant M; Saeed, Ayman

    2017-01-01

    Intermittent claudication (IC) due to peripheral artery diseases (PAD) is one of the disabling disease that can affect quality of life (QOL) and functional status of capacity. It is characterized by cramping pain which develops with exercise and eliminated by rest secondary to decrease blood flow to the muscles. The annual incidence rate is increased with age. Exercise rehabilitation has a great impact in improving the functional capacity and prevent the functional disability. The available evidences from current studies have showed that exercise therapy is considered the primary treatment in PAD, which in consequently improves the QOL. In this chapter we will illustrate the current available evidences which support exercise benefit and outcomes in PAD with IC.

  18. Exercise for people with peripheral neuropathy.

    PubMed

    White, C M; Pritchard, J; Turner-Stokes, L

    2004-10-18

    Peripheral neuropathies are a wide range of diseases affecting the peripheral nerves. Demyelination or axonal degeneration gives rise to a variety of symptoms including reduced or altered sensation, pain, muscle weakness and fatigue. Secondary disability arises and this may result in adjustments to psychological and social function. Exercise therapy, with a view to developing strength and stamina, forms part of the treatment for people with peripheral neuropathy, particularly in the later stages of recovery from acute neuropathy and in chronic neuropathies. The primary objective was to examine the effect of exercise therapy on functional ability in the treatment of people with peripheral neuropathy. In addition, secondary outcomes of muscle strength, endurance, broader measures of health and well being, as well as unfavourable outcomes were examined. We searched the Cochrane Neuromuscular Disease Group register (July 2002 and updated February 2004) and MEDLINE (from January 1966 to June 2004), EMBASE (from January 1980 to June 2004), CINAHL (from January 1982 to July 2002) and LILACS (from January 1982 to July 2002) electronic databases. Bibliographies of all selected randomised controlled trials were checked and authors contacted to identify additional published or unpublished data. Any randomised or quasi-randomised controlled trial comparing the effect of exercise therapy with no exercise therapy or drugs or an alternative non-drug treatment on functional ability (or disability) in people with peripheral neuropathy at least eight weeks after randomisation was included. Two reviewers independently selected eligible studies, rated the methodological quality and extracted data. Only one trial fully met the inclusion criteria. An additional two trials assessed outcomes less than eight weeks after randomisation and were also included. Methodological quality was poor for several criteria in each study. Data used in the three studies could not be pooled due to heterogeneity of diagnostic groups and outcome measures. The results of the included trials failed to show any effect of strengthening and endurance exercise programmes on functional ability in people with peripheral neuropathy. However, there is some evidence that strengthening exercise programmes were moderately effective in increasing the strength of tested muscles. There is inadequate evidence to evaluate the effect of exercise on functional ability in people with peripheral neuropathy. The results suggest that progressive resisted exercise may improve muscle strength in affected muscles.

  19. Neuromodulation of lower limb motor control in restorative neurology.

    PubMed

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-06-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Neuromodulation of lower limb motor control in restorative neurology

    PubMed Central

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657

  1. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2014-10-01

    and peripheral neuropathy has been identified as an in- dependent predictor of low bone mass in the affected limb of diabetic subjects26. Despite...humans. In: Dyck PJ, Thomas PK, Lambert EH, Bunge P, eds. Peripheral Neuropathy . Philadelphia: WB Saunders; 1984:1103-38. 11. Akopian A, Demulder A...Rix M, Andreassen H, Eskildsen P. Impact of peripheral neuropathy on bone density in patients with type 1 dia- betes. Diabetes Care 1999;22:827-31

  2. Effects of pharyngeal electrical stimulation on swallowing performance.

    PubMed

    Takeishi, Ryosuke; Magara, Jin; Watanabe, Masahiro; Tsujimura, Takanori; Hayashi, Hirokazu; Hori, Kazuhiro; Inoue, Makoto

    2018-01-01

    Pharyngeal electrical stimulation (PEStim) has been found to facilitate voluntary swallowing. This study investigated how PEStim contributed to modulation of swallowing function in 15 healthy humans. In the involuntary swallowing test, water was injected onto the pharynx at 0.05 ml/s and the onset latency of the first swallow was measured. In the voluntary swallowing test, subjects swallowed their own saliva as quickly as possible for 30 s and the number of swallows was counted. Voluntary and involuntary swallowing was evaluated before (baseline), immediately after, and every 10 min after 10-min PEStim for 60 min. A voluntary swallowing test with simultaneous 30-s PEStim was also conducted before and 60 min after 10-min PEStim. The number of voluntary swallows with simultaneous PEStim significantly increased over 60 min after 10-min PEStim compared with the baseline. The onset latency of the first swallow in the involuntary swallowing test was not affected by 10-min PEStim. The results suggest that PEStim may have a long-term facilitatory effect on the initiation of voluntary swallowing in healthy humans, but not on peripherally-evoked swallowing. The physiological implications of this modulation are discussed.

  3. Effects of pharyngeal electrical stimulation on swallowing performance

    PubMed Central

    Takeishi, Ryosuke; Magara, Jin; Watanabe, Masahiro; Tsujimura, Takanori; Hayashi, Hirokazu; Hori, Kazuhiro

    2018-01-01

    Pharyngeal electrical stimulation (PEStim) has been found to facilitate voluntary swallowing. This study investigated how PEStim contributed to modulation of swallowing function in 15 healthy humans. In the involuntary swallowing test, water was injected onto the pharynx at 0.05 ml/s and the onset latency of the first swallow was measured. In the voluntary swallowing test, subjects swallowed their own saliva as quickly as possible for 30 s and the number of swallows was counted. Voluntary and involuntary swallowing was evaluated before (baseline), immediately after, and every 10 min after 10-min PEStim for 60 min. A voluntary swallowing test with simultaneous 30-s PEStim was also conducted before and 60 min after 10-min PEStim. The number of voluntary swallows with simultaneous PEStim significantly increased over 60 min after 10-min PEStim compared with the baseline. The onset latency of the first swallow in the involuntary swallowing test was not affected by 10-min PEStim. The results suggest that PEStim may have a long-term facilitatory effect on the initiation of voluntary swallowing in healthy humans, but not on peripherally-evoked swallowing. The physiological implications of this modulation are discussed. PMID:29293640

  4. The Molecular and Cellular Basis of Cold Sensation

    PubMed Central

    2012-01-01

    Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches. Chief among these was the identification of a number of ion channels that either serve as the initial detectors of cold as a stimulus in the peripheral nervous system, or are part of rather sophisticated differential expression patterns of channels that conduct electrical signals, thereby endowing select neurons with properties that are amenable to electrical signaling in the cold. This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia. PMID:23421674

  5. Peripheral tactile sensory perception of older adults improved using subsensory electrical noise stimulation.

    PubMed

    Breen, Paul P; Serrador, Jorge M; O'Tuathail, Claire; Quinlan, Leo R; McIntosh, Caroline; ÓLaighin, Gearóid

    2016-08-01

    Loss of tactile sensory function is common with aging and can lead to numbness and difficulty with balance and gait. In previous work we found that subsensory electrical noise stimulation (SENS) applied to the tibial nerve improved tactile perception in the soles of the feet of healthy adults. In this work we aimed to determine if SENS remained effective in an older adult population with significant levels of sensory loss. Older adult subjects (N=8, female = 4, aged 65-80) had SENS applied via surface electrodes placed proximally to the medial and lateral malleoli. Vibration perception thresholds (VPTs) were assessed in six conditions, two control conditions (no SENS) and four SENS conditions (zero mean ±15µA, 30µA, 45µA and 60µA SD). VPT was assessed at three sites on the plantar aspect of the foot. Vibration perception was significantly improved in the presence of ±30µA SENS and by 16.2±2.4% (mean ± s.e.m.) when optimised for each subject. The improvement in perception was similar across all VPT test sites. Copyright © 2016 IPEM. All rights reserved.

  6. Commentary: physical approaches for the treatment of epilepsy: electrical and magnetic stimulation and cooling.

    PubMed

    Löscher, Wolfgang; Cole, Andrew J; McLean, Michael J

    2009-04-01

    Physical approaches for the treatment of epilepsy currently under study or development include electrical or magnetic brain stimulators and cooling devices, each of which may be implanted or applied externally. Some devices may stimulate peripheral structures, whereas others may be implanted directly into the brain. Stimulation may be delivered chronically, intermittently, or in response to either manual activation or computer-based detection of events of interest. Physical approaches may therefore ultimately be appropriate for seizure prophylaxis by causing a modification of the underlying substrate, presumably with a reduction in the intrinsic excitability of cerebral structures, or for seizure termination, by interfering with the spontaneous discharge of pathological neuronal networks. Clinical trials of device-based therapies are difficult due to ethical issues surrounding device implantation, problems with blinding, potential carryover effects that may occur in crossover designs if substrate modification occurs, and subject heterogeneity. Unresolved issues in the development of physical treatments include optimization of stimulation parameters, identification of the optimal volume of brain to be stimulated, development of adequate power supplies to stimulate the necessary areas, and a determination that stimulation itself does not promote epileptogenesis or adverse long-term effects on normal brain function.

  7. Radiofrequency currents exert cytotoxic effects in NB69 human neuroblastoma cells but not in peripheral blood mononuclear cells

    PubMed Central

    HERNÁNDEZ-BULE, MARÍA LUISA; ROLDÁN, ERNESTO; MATILLA, JOAQUÍN; TRILLO, MARÍA ÁNGELES; ÚBEDA, ALEJANDRO

    2012-01-01

    Recently, a number of electric and electrothermal therapies have been applied to the treatment of specific cancer types. However, the cellular and molecular mechanisms involved in the response to such therapies have not been well characterized yet. Capacitive-resistive electric transfer (CRET) therapy uses electric currents at frequencies within the 0.45–0.6 MHz range to induce hyperthermia in target tissues. Preliminary trials in cancer patients have shown consistent signs that CRET could slow down growth of tumor tissues in brain gliomas, without inducing detectable damage in the surrounding healthy tissue. Previous studies by our group have shown that subthermal treatment with 0.57-MHz electric currents can induce a cytostatic, not cytotoxic response in HepG2 human hepatocarcinoma cells; such effect being mediated by cell cycle alterations. In contrast, the study of the response of NB69 human neuroblastoma cells to the same electric treatment revealed consistent indications of cytotoxic effects. The present study extends the knowledge on the response of NB69 cells to the subthermal stimulus, comparing it to that of primary cultures of human peripheral blood mononuclear cells (PBMC) exposed to the same treatment. The results showed no sensitivity of PBMC to the 0.57 MHz subthermal currents and confirmed that the treatment exerts a cytotoxic action in NB69 cells. The data also revealed a previously undetected cytostatic response of the neuroblastoma cell line. CRET currents affected NB69 cell proliferation by significantly reducing the fraction of cells in the phase G2/M of the cell cycle at 12 h of exposure. These data provide new information on the mechanisms of response to CRET therapy, and are consistent with a cytotoxic and/or cytostatic action of the electric treatment, which would affect human cells of tumor origin but not normal cells with a low proliferation rate. PMID:22843038

  8. Radiofrequency currents exert cytotoxic effects in NB69 human neuroblastoma cells but not in peripheral blood mononuclear cells.

    PubMed

    Hernández-Bule, María Luisa; Roldán, Ernesto; Matilla, Joaquín; Trillo, María Angeles; Ubeda, Alejandro

    2012-10-01

    Recently, a number of electric and electrothermal therapies have been applied to the treatment of specific cancer types. However, the cellular and molecular mechanisms involved in the response to such therapies have not been well characterized yet. Capacitive-resistive electric transfer (CRET) therapy uses electric currents at frequencies within the 0.45-0.6 MHz range to induce hyperthermia in target tissues. Preliminary trials in cancer patients have shown consistent signs that CRET could slow down growth of tumor tissues in brain gliomas, without inducing detectable damage in the surrounding healthy tissue. Previous studies by our group have shown that subthermal treatment with 0.57-MHz electric currents can induce a cytostatic, not cytotoxic response in HepG2 human hepatocarcinoma cells; such effect being mediated by cell cycle alterations. In contrast, the study of the response of NB69 human neuroblastoma cells to the same electric treatment revealed consistent indications of cytotoxic effects. The present study extends the knowledge on the response of NB69 cells to the subthermal stimulus, comparing it to that of primary cultures of human peripheral blood mononuclear cells (PBMC) exposed to the same treatment. The results showed no sensitivity of PBMC to the 0.57 MHz subthermal currents and confirmed that the treatment exerts a cytotoxic action in NB69 cells. The data also revealed a previously undetected cytostatic response of the neuroblastoma cell line. CRET currents affected NB69 cell proliferation by significantly reducing the fraction of cells in the phase G2/M of the cell cycle at 12 h of exposure. These data provide new information on the mechanisms of response to CRET therapy, and are consistent with a cytotoxic and/or cytostatic action of the electric treatment, which would affect human cells of tumor origin but not normal cells with a low proliferation rate.

  9. Peripheral vascular dysfunction in migraine: a review

    PubMed Central

    2013-01-01

    Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826

  10. Stackable Form-Factor Peripheral Component Interconnect Device and Assembly

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M. (Inventor); Ng, Tak-kwong (Inventor); Torres-Pomales, Wilfredo (Inventor); Malekpour, Mahyar R. (Inventor)

    2013-01-01

    A stackable form-factor Peripheral Component Interconnect (PCI) device can be configured as a host controller or a master/target for use on a PCI assembly. PCI device may comprise a multiple-input switch coupled to a PCI bus, a multiplexor coupled to the switch, and a reconfigurable device coupled to one of the switch and multiplexor. The PCI device is configured to support functionality from power-up, and either control function or add-in card function.

  11. Chemotherapy-Induced Peripheral Neuropathy in Long-term Survivors of Childhood Cancer: Clinical, Neurophysiological, Functional, and Patient-Reported Outcomes.

    PubMed

    Kandula, Tejaswi; Farrar, Michelle Anne; Cohn, Richard J; Mizrahi, David; Carey, Kate; Johnston, Karen; Kiernan, Matthew C; Krishnan, Arun V; Park, Susanna B

    2018-05-14

    In light of the excellent long-term survival of childhood cancer patients, it is imperative to screen for factors affecting health, function, and quality of life in long-term survivors. To comprehensively assess chemotherapy-induced peripheral neuropathy in childhood cancer survivors to define disease burden and functional effect and to inform screening recommendations. In this cross-sectional observational study, cancer survivors who were treated with chemotherapy for extracranial malignancy before age 17 years were recruited consecutively between April 2015 and December 2016 from a single tertiary hospital-based comprehensive cancer survivorship clinic and compared with healthy age-matched controls. Investigators were blinded to the type of chemotherapy. A total of 169 patients met inclusion criteria, of whom 48 (28.4%) were unable to be contacted or declined participation. Chemotherapy agents known to be toxic to peripheral nerves. The clinical peripheral neurological assessment using the Total Neuropathy Score was compared between recipients of different neurotoxic chemotherapy agents and control participants and was correlated with neurophysiological, functional, and patient-reported outcome measures. Of the 121 childhood cancer survivors included in this study, 65 (53.7%) were male, and the cohort underwent neurotoxicity assessments at a median (range) age of 16 (7-47) years, a median (range) 8.5 (1.5-29) years after treatment completion. Vinca alkaloids and platinum compounds were the main neurotoxic agents. Clinical abnormalities consistent with peripheral neuropathy were common, seen in 54 of 107 participants (50.5%) treated with neurotoxic chemotherapy (mean Total Neuropathy Score increase, 2.1; 95% CI, 1.4-2.9; P < .001), and were associated with lower limb predominant sensory axonal neuropathy (mean amplitude reduction, 5.8 μV; 95% CI, 2.8-8.8; P < .001). Functional deficits were seen in manual dexterity, distal sensation, and balance. Patient-reported outcomes demonstrating reduction in global quality of life and physical functioning were associated with the Total Neuropathy Score. Cisplatin produced long-term neurotoxicity more frequently than vinca alkaloids. Clinical abnormalities attributable to peripheral neuropathy were common in childhood cancer survivors and persisted long term, with concurrent deficits in patient-reported outcomes. Both the type of neurotoxic agent and a targeted clinical neurological assessment are important considerations when screening survivors for long-term neuropathy. Further development of peripheral neuropathy-specific pediatric assessment tools will aid research into neuroprotective and rehabilitative strategies.

  12. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo.

    PubMed

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam

    2017-04-01

    Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  13. Sexual Function Is an Indicator of Central Arterial Stiffness and Arterial Stiffness Gradient in Japanese Adult Men.

    PubMed

    Kumagai, Hiroshi; Yoshikawa, Toru; Myoenzono, Kanae; Kosaki, Keisei; Akazawa, Nobuhiko; Asako, Zempo-Miyaki; Tsujimoto, Takehiko; Kidokoro, Tetsuhiro; Tanaka, Kiyoji; Maeda, Seiji

    2018-05-05

    As arterial stiffness increases in the absence of subjective symptoms, a personal indicator that reflects increased risk of cardiovascular disease is necessary. Penile erection is regulated by vascular function, and atherosclerosis affects the penile artery earlier than it affects the coronary and carotid arteries. Therefore, we hypothesized that deterioration of erectile function could be a marker of increased risk for cardiovascular disease. To test our hypothesis, we assessed erectile function and arterial stiffness in a cross-sectional study. Carotid-femoral pulse wave velocity (PWV), brachial-ankle PWV, femoral-ankle PWV, and arterial stiffness gradient (PWV ratio: carotid-femoral PWV/femoral-ankle PWV) were measured as indexes of central, systemic, and peripheral arterial stiffness and peripheral organ damage, respectively, in 317 adult men. In addition, erectile function was assessed by using the questionnaire International Index of Erectile Function 5 (a descending score indicates worsening of erectile function). The scores of male sexual function were inversely correlated with carotid-femoral PWV ( r s =-0.41), brachial-ankle PWV ( r s =-0.35), femoral-ankle PWV ( r s =-0.19), and PWV ratio ( r s =-0.33). Furthermore, multivariate linear regression analyses revealed that International Index of Erectile Function 5 scores were significantly associated with carotid-femoral PWV (β=-0.22) and PWV ratio (β=-0.25), but not with brachial-ankle PWV and femoral-ankle PWV. Our results indicated that erectile function is independently associated with central arterial stiffness and peripheral organ damage. These findings suggest that male sexual function could be an easily identifiable and independent marker of increased central arterial stiffness and peripheral organ damage. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. An intersubject variable regional anesthesia simulator with a virtual patient architecture.

    PubMed

    Ullrich, Sebastian; Grottke, Oliver; Fried, Eduard; Frommen, Thorsten; Liao, Wei; Rossaint, Rolf; Kuhlen, Torsten; Deserno, Thomas M

    2009-11-01

    The main purpose is to provide an intuitive VR-based training environment for regional anesthesia (RA). The research question is how to process subject-specific datasets, organize them in a meaningful way and how to perform the simulation for peripheral regions. We propose a flexible virtual patient architecture and methods to process datasets. Image acquisition, image processing (especially segmentation), interactive nerve modeling and permutations (nerve instantiation) are described in detail. The simulation of electric impulse stimulation and according responses are essential for the training of peripheral RA and solved by an approach based on the electric distance. We have created an XML-based virtual patient database with several subjects. Prototypes of the simulation are implemented and run on multimodal VR hardware (e.g., stereoscopic display and haptic device). A first user pilot study has confirmed our approach. The virtual patient architecture enables support for arbitrary scenarios on different subjects. This concept can also be used for other simulators. In future work, we plan to extend the simulation and conduct further evaluations in order to provide a tool for routine training for RA.

  15. Combining Gene and Stem Cell Therapy for Peripheral Nerve Tissue Engineering.

    PubMed

    Busuttil, Francesca; Rahim, Ahad A; Phillips, James B

    2017-02-15

    Despite a substantially increased understanding of neuropathophysiology, insufficient functional recovery after peripheral nerve injury remains a significant clinical challenge. Nerve regeneration following injury is dependent on Schwann cells, the supporting cells in the peripheral nervous system. Following nerve injury, Schwann cells adopt a proregenerative phenotype, which supports and guides regenerating nerves. However, this phenotype may not persist long enough to ensure functional recovery. Tissue-engineered nerve repair devices containing therapeutic cells that maintain the appropriate phenotype may help enhance nerve regeneration. The combination of gene and cell therapy is an emerging experimental strategy that seeks to provide the optimal environment for axonal regeneration and reestablishment of functional circuits. This review aims to summarize current preclinical evidence with potential for future translation from bench to bedside.

  16. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    PubMed

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  17. Brief debrisoquin administration to assess central dopaminergic function in children.

    PubMed

    Riddle, M A; Shaywitz, B A; Leckman, J F; Anderson, G M; Shaywitz, S E; Hardin, M T; Ort, S I; Cohen, D J

    1986-03-17

    Central dopaminergic (DA) function in children was assessed by monitoring plasma-free homovanillic acid (pHVA) levels after brief (18 hour) administration with debrisoquin sulfate, a peripherally active antihypertensive agent that blocks peripheral, but not central, HVA production. Brief debrisoquin administration resulted in marked reductions in pHVA in each of six patients studied. In five of the six patients, post-debrisoquin pHVA levels remained relatively stable over the six-hour period of observation. No significant cardiovascular or behavioral side effects of debrisoquin were observed. The brief debrisoquin administration method appears to be a safe, simple, and potentially valid peripheral technique for evaluating aspects of central dopaminergic function in children with neuropsychiatric disorders. Additional work is needed to further establish this method's validity and reliability.

  18. Neuromuscular electrostimulation techniques: historical aspects and current possibilities in treatment of pain and muscle waisting.

    PubMed

    Heidland, August; Fazeli, Gholamreza; Klassen, André; Sebekova, Katarina; Hennemann, Hans; Bahner, Udo; Di Iorio, Biagio

    2013-01-01

    Application of electricity for pain treatment dates back to thousands of years BC. The Ancient Egyptians and later the Greeks and Romans recognized that electrical fishes are capable of generating electric shocks for relief of pain. In the 18th and 19th centuries these natural producers of electricity were replaced by man-made electrical devices. This happened in following phases. The first was the application of static electrical currents (called Franklinism), which was produced by a friction generator. Christian Kratzenstein was the first to apply it medically, followed shortly by Benjamin Franklin. The second phase was Galvanism. This method applied a direct electrical current to the skin by chemical means, applied a direct and pulsed electrical current to the skin. In the third phase the electrical current was induced intermittently and in alternate directions (called Faradism). The fourth stage was the use of high frequency currents (called d'Arsonvalisation). The 19th century was the "golden age" of electrotherapy. It was used for countless dental, neurological, psychiatric and gynecological disturbances. However, at beginning of the 20th century electrotherapy fell from grace. It was dismissed as lacking a scientific basis and being used also by quacks and charlatans for unserious aims. Furthermore, the development of effective analgesic drugs decreased the interest in electricity. In the second half of the 20th century electrotherapy underwent a revival. Based on animal experiments and clinical investigations, its neurophysiological mechanisms were elucidated in more details. The pain relieving action of electricity was explained in particular by two main mechanisms: first, segmental inhibition of pain signals to the brain in the dorsal horn of the spinal cord and second, activation of the descending inhibitory pathway with enhanced release of endogenous opioids and other neurochemical compounds (serotonin, noradrenaline, gamma aminobutyric acid (GABA), acetylcholine and adenosine). The modern electrotherapy of neuromusculo- skeletal pain is based in particular on the following types: transcutaneous electrical nerve stimulation (TENS), percutaneous electrical nerve stimulation (PENS or electro-acupuncture) and spinal cord stimulation (SCS). In mild to moderate pain, TENS and PENS are effective methods, whereas SCS is very useful for therapy of refractory neuropathic or ischemic pain. In 2005, high tone external muscle stimulation (HTEMS) was introduced. In diabetic peripheral neuropathy, its analgesic action was more pronounced than TENS application. HTEMS appeared also to have value in the therapy of symptomatic peripheral neuropathy in end-stage renal disease (ESRD). Besides its pain-relieving effect, electrical stimulation is of major importance for prevention or treatment of muscle dysfunction and sarcopenia. In controlled clinical studies electrical myostimulation (EMS) has been shown to be effective against the sarcopenia of patients with chronic congestive heart disease, diabetes, chronic obstructive pulmonary disease and ESRD.

  19. Electric organ discharges and electric images during electrolocation

    NASA Technical Reports Server (NTRS)

    Assad, C.; Rasnow, B.; Stoddard, P. K.

    1999-01-01

    Weakly electric fish use active electrolocation - the generation and detection of electric currents - to explore their surroundings. Although electrosensory systems include some of the most extensively understood circuits in the vertebrate central nervous system, relatively little is known quantitatively about how fish electrolocate objects. We believe a prerequisite to understanding electrolocation and its underlying neural substrates is to quantify and visualize the peripheral electrosensory information measured by the electroreceptors. We have therefore focused on reconstructing both the electric organ discharges (EODs) and the electric images resulting from nearby objects and the fish's exploratory behaviors. Here, we review results from a combination of techniques, including field measurements, numerical and semi-analytical simulations, and video imaging of behaviors. EOD maps are presented and interpreted for six gymnotiform species. They reveal diverse electric field patterns that have significant implications for both the electrosensory and electromotor systems. Our simulations generated predictions of the electric images from nearby objects as well as sequences of electric images during exploratory behaviors. These methods are leading to the identification of image features and computational algorithms that could reliably encode electrosensory information and may help guide electrophysiological experiments exploring the neural basis of electrolocation.

  20. Women show similar central and peripheral fatigue to men after half-marathon.

    PubMed

    Boccia, Gennaro; Dardanello, Davide; Tarperi, Cantor; Festa, Luca; La Torre, Antonio; Pellegrini, Barbara; Schena, Federico; Rainoldi, Alberto

    2018-06-01

    Women are known to be less fatigable than men in single-joint exercises, but fatigue induced by running has not been well understood. Here we investigated sex differences in central and peripheral fatigue and in rate of force development (RFD) in the knee extensors after a half-marathon run. Ten male and eight female amateur runners (aged 25-50 years) were evaluated before and immediately after a half-marathon race. Knee extensors forces were obtained under voluntary and electrically evoked isometric contractions. Maximal voluntary isometric contraction (MVC) force and peak RFD were recorded. Electrically doublet stimuli were delivered during the MVC and at rest to calculate the level of voluntary activation and the resting doublet twitch. After the race, decreases in MVC force (males: -11%, effect size [ES] 0.52; females: -11% ES 0.33), voluntary activation (males: -6%, ES 0.87; females: -4%, ES 0.72), and resting doublet twitch (males: -6%, ES 0.34; females: -8%, ES 0.30) were found to be similar between males and females. The decrease in peak RFD was found to be similar between males and females (males: -14%, ES 0.43; females: -15%, ES 0.14). Half-marathon run induced both central and peripheral fatigue, without any difference between men and women. The maximal and explosive strength loss was found similar between sexes. Together, these findings do not support the need of sex-specific training interventions to increase the tolerance to neuromuscular fatigue in half-marathoners.

  1. Intraoperative monitoring of somatosensory (SSEPs) and transcranial electric motor-evoked potentials (tce-MEPs) during surgical correction of neuromuscular scoliosis in patients with central or peripheral nervous system diseases.

    PubMed

    Pastorelli, F; Di Silvestre, M; Vommaro, F; Maredi, E; Morigi, A; Bacchin, M R; Bonarelli, S; Plasmati, R; Michelucci, R; Greggi, T

    2015-11-01

    Combined intraoperative monitoring (IOM) of transcranial electric motor-evoked potentials (tce-MEPs) and somatosensory-evoked potentials (SSEPs) is safe and effective for spinal cord monitoring during scoliosis surgery. However, the literature data regarding the reliability of spinal cord monitoring in patients with neuromuscular scoliosis are conflicting and need to be confirmed. We reviewed IOM records of 40 consecutive patients with neuromuscular scoliosis related to central nervous system (CNS) (29 pts) or peripheral nervous system (PNS) (11 patients) diseases, who underwent posterior fusion with instrumentation surgery for spinal deformity. Multimodalitary IOM with SSEPs and tce-MEPs was performed. Spinal cord monitoring using at least one modality was attempted in 38/40 (95 %) patients. No false-negative results were present in either group, but a relatively high incidence of false-positive cases (4/29, 13.8 %) was noted in the CNS group. Two patients in the CNS group and one patient in the PNS group presented transient postoperative motor deficits (true positive), related to surgical manoeuvres in two cases and to malposition in the other one. Multimodalitary IOM is safe and effective to detect impending spinal cord and peripheral nerves dysfunction in neuromuscular scoliosis surgery. However, the interpretation of neurophysiological data may be challenging in such patients, and the rate of false-positive results is high when pre-operatory motor deficits are severe.

  2. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    PubMed

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  3. A serving of blueberry (V. corymbosum) acutely improves peripheral arterial dysfunction in young smokers and non-smokers: two randomized, controlled, crossover pilot studies.

    PubMed

    Del Bo', Cristian; Deon, Valeria; Campolo, Jonica; Lanti, Claudia; Parolini, Marina; Porrini, Marisa; Klimis-Zacas, Dorothy; Riso, Patrizia

    2017-11-15

    Several studies have documented the important role of polyphenol-rich foods in the modulation of vascular remodelling and function. This study aimed to evaluate the capacity of a single portion of blueberry (V. corymbosum) to acutely improve peripheral arterial dysfunction in a group of young volunteers. Twenty-four healthy males (12 non-smokers and 12 smokers) were recruited for two different randomized, controlled, crossover pilot acute studies. In the first study, non-smokers were exposed to a control treatment (C; 300 mL of water with sugar) and a blueberry treatment (BB; 300 g of blueberry). In the second study, smokers underwent 3 different protocols: (1) - smoking treatment (S); (2) - control treatment (CS; 300 mL of water with sugar + smoking); (3) - blueberry treatment (BS; 300 g of blueberry + smoking). Each treatment (1 day long) was separated by a one week washout period. Blood pressure, peripheral arterial function (reactive hyperemia index, RHI, a marker of endothelial function) and arterial stiffness (digital augmentation index, dAix and dAix normalized by considering a heart rate of 75 bpm, dAix@75) were measured before and after each treatment. In the first study, the consumption of blueberry and control treatment acutely increased peripheral arterial function in the group of non-smokers. The improvement in RHI was higher and significantly different after blueberry treatment compared to the control treatment (54.8 ± 8.4% BB vs. 28.2 ± 8.3% C; p = 0.01). No effects were observed for markers of arterial stiffness, blood pressure and heart rate. Acute cigarette smoke significantly increased blood pressure and heart rate, while no significant effect was registered in peripheral arterial function and stiffness. The intake of blueberry and control treatment before a cigarette did not counteract the increase in blood pressure and heart rate, while it significantly improved peripheral arterial function. In particular, a significant increase was observed following BS (35.2 ± 7.5% RHI; p = 0.02) and CS treatments (34.6 ± 11.9% RHI; p = 0.02) when compared to only smoking treatment. No difference between BS and CS was detected. In conclusion, the intake of blueberry and control treatments acutely improved peripheral arterial dysfunction both in smoker and in non-smoker subjects. Further studies should be performed to confirm the results obtained and reveal the potential mechanisms of blueberry in the improvement of endothelial function.

  4. Incidence of intraoperative seizures during motor evoked potential monitoring in a large cohort of patients undergoing different surgical procedures.

    PubMed

    Ulkatan, Sedat; Jaramillo, Ana Maria; Téllez, Maria J; Kim, Jinu; Deletis, Vedran; Seidel, Kathleen

    2017-04-01

    OBJECTIVE The purpose of this study was to investigate the incidence of seizures during the intraoperative monitoring of motor evoked potentials (MEPs) elicited by electrical brain stimulation in a wide spectrum of surgeries such as those of the orthopedic spine, spinal cord, and peripheral nerves, interventional radiology procedures, and craniotomies for supra- and infratentorial tumors and vascular lesions. METHODS The authors retrospectively analyzed data from 4179 consecutive patients who underwent surgery or an interventional radiology procedure with MEP monitoring. RESULTS Of 4179 patients, only 32 (0.8%) had 1 or more intraoperative seizures. The incidence of seizures in cranial procedures, including craniotomies and interventional neuroradiology, was 1.8%. In craniotomies in which transcranial electrical stimulation (TES) was applied to elicit MEPs, the incidence of seizures was 0.7% (6/850). When direct cortical stimulation was additionally applied, the incidence of seizures increased to 5.4% (23/422). Patients undergoing craniotomies for the excision of extraaxial brain tumors, particularly meningiomas (15 patients), exhibited the highest risk of developing an intraoperative seizure (16 patients). The incidence of seizures in orthopedic spine surgeries was 0.2% (3/1664). None of the patients who underwent surgery for conditions of the spinal cord, neck, or peripheral nerves or who underwent cranial or noncranial interventional radiology procedures had intraoperative seizures elicited by TES during MEP monitoring. CONCLUSIONS In this largest such study to date, the authors report the incidence of intraoperative seizures in patients who underwent MEP monitoring during a wide spectrum of surgeries such as those of the orthopedic spine, spinal cord, and peripheral nerves, interventional radiology procedures, and craniotomies for supra- and infratentorial tumors and vascular lesions. The low incidence of seizures induced by electrical brain stimulation, particularly short-train TES, demonstrates that MEP monitoring is a safe technique that should not be avoided due to the risk of inducing seizures.

  5. A study of tapping by the unaffected finger of patients presenting with central and peripheral nerve damage.

    PubMed

    Zhang, Lingli; Han, Xiuying; Li, Peihong; Liu, Yang; Zhu, Yulian; Zou, Jun; Yu, Zhusheng

    2015-01-01

    Whether the unaffected function of the hand of patients presenting with nerve injury is affected remains inconclusive. We aimed to evaluate whether there are differences in finger tapping following central or peripheral nerve injury compared with the unaffected hand and the ipsilateral hand of a healthy subject. Thirty right brain stroke patients with hemiplegia, 30 left arm peripheral nerve injury cases, and 60 healthy people were selected. We tested finger tapping of the right hands, and each subject performed the test twice. Finger tapping following peripheral nerve injury as compared with the unaffected hand and the dominant hand of a healthy person was markedly higher than was found for central nerve injury (P < 0.05). Finger tapping of the male peripheral group's unaffected hand and the control group's dominant hand was significantly higher than the central group (P < 0.001). However, finger tapping of the female control group's dominant hand was significantly higher than the central group's unaffected hand (P < 0.01, P = 0.002), the peripheral group's unaffected hand (P < 0.05, P = 0.034). The unaffected function of the hand of patients with central and peripheral nerve injury was different as compared with the ipsilateral hand of healthy individuals. The rehabilitation therapist should intensify the practice of normal upper limb fine activities and coordination of the patient.

  6. Control of octopus arm extension by a peripheral motor program.

    PubMed

    Sumbre, G; Gutfreund, Y; Fiorito, G; Flash, T; Hochner, B

    2001-09-07

    For goal-directed arm movements, the nervous system generates a sequence of motor commands that bring the arm toward the target. Control of the octopus arm is especially complex because the arm can be moved in any direction, with a virtually infinite number of degrees of freedom. Here we show that arm extensions can be evoked mechanically or electrically in arms whose connection with the brain has been severed. These extensions show kinematic features that are almost identical to normal behavior, suggesting that the basic motor program for voluntary movement is embedded within the neural circuitry of the arm itself. Such peripheral motor programs represent considerable simplification in the motor control of this highly redundant appendage.

  7. Bioelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Weiland, James D.

    2016-05-01

    Retinal prosthesis have been translated to clinical use over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa and one device is in clinical trials for treatment of age-related macular degeneration. These devices provide partial sight restoration and patients use this improved vision in their everyday lives to navigate and to detect large objects. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. In particular, current retinal prostheses do not provide peripheral visions due to technical and surgical limitations, thus limiting the effectiveness of the treatment. This paper reviews recent results from human implant patients and presents technical approaches for peripheral vision.

  8. [Diagnosis and treatment of peripheral neuropathy induced by ANCA-associated vasculitis].

    PubMed

    Hattori, Naoki

    2014-07-01

    ANCA-associated vasculitis is induced by necrotizing angiitis of small vessels supplying the peripheral nervous system. Ischemic processes induce neuronal damage and axonal degeneration in the peripheral nerve. Motor dysfunction as well as sensory disturbance and allodynia caused by neuropathic symptoms may influence an individual's activities of daily living and quality of life. Notably, the peripheral nerve is predominantly affected in ANCA-associated vasculitis. We suggest that early diagnosis and appropriate treatment are important to improve survival in and functional prognosis of ANCA-associated vasculitis.

  9. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Liu, Yi; Zhao, Hua

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediatedmore » transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair.« less

  10. A content analysis of peripheral arterial disease patient-reported outcome measures using the International Classification of Functioning, Disability and Health.

    PubMed

    Osborne, Candice Lee; Kauvar, David Seth

    2017-10-17

    The purpose of this study was to link, classify and describe the content of peripheral arterial disease (PAD)-specific patient-reported outcome measures using the International Classification of Functioning. The results were then analyzed to determine if these assessments provide clinicians and researchers with a comprehensive understanding of the lived experience of patients with PAD. Each meaningful concept in identified PAD assessments was linked to the International Classification of Functioning, Disability and Health to determine included and excluded content areas. An overall perspective was assigned to each assessment item. Inter-rater reliability was established using a kappa statistic. The body functions component is most frequently addressed overall followed by the activities and participation component. International Classification of Functioning chapter and category distribution vary greatly between assessments and no assessment comprehensively examines community participation and relationships. The majority of the assessment items are of the health status-disability and quality of life perspectives. The results of this study suggest the need for the development of a comprehensive PAD assessment that includes a more even distribution of International Classification of Functioning topics and subtopics. A more comprehensive assessment would better capture the lived experience of this patient population. Implications for Rehabilitation A better understanding of the data collected using the current peripheral arterial disease-specific patient-reported outcome measures may contribute to the development of more comprehensive assessment tools that will ultimately lead to improved patient care. This study contributes to the preliminary foundation for the development of a peripheral arterial disease International Classification of Functioning, Disability and Health Core Set. Clinicians and researchers interested in using peripheral arterial disease-specific patient-reported outcome measures for clinical and research purposes can better understand what topics are included and excluded in the collection and what perspectives are addressed.

  11. Role of transcutaneous electric nerve stimulation in the management of trigeminal neuralgia.

    PubMed

    Singla, Sanju; Prabhakar, Vikram; Singla, Rajan Kumar

    2011-07-01

    Trigeminal neuralgia typically involves nerves supplying teeth, jaws and face of older females. Though the etiology is usually obscure, different treatment modalities have been tried for it viz. medicinal treatment, injection alcohol, peripheral neurectomy, rhizotomy, and microvascular decompression etc. Transcutaneous electric nerve stimulation (TENS) is an emerging and promising option for management of such patients. The present study was designed with an aim to study the efficacy of TENS in management of trigeminal neuralgia. The study was conducted on 30 patients of trigeminal neuralgia confirmed by diagnostic nerve block. They were given bursts of TENS for 20-40 days over the path of the affected nerve and subsequently evaluated at 1 month and 3 month intervals by visual analogue scale (VAS), verbal pain scale (VPS), a functional outcome scales for main daily activities like sleep, chewing, talking, or washing face. The results showed that, on VAS, the score decreased from 8.9 (Pre TENS) to 3.1 at 1 month and 1.3 at 3 months, and on VPS, the score decreased from 3.5 (Pre TENS) to 1.2 at 1 month and 0.3 at 3 months. Similarly, a considerable decrease in scores was seen on functional outcome scale for different activities. No side effects like irritation or redness of skin were seen in any of the patients. Thus, TENS was found to be a safe, easily acceptable, and non-invasive outdoor patient department procedure for management of trigeminal neuralgia.

  12. Ambient geothermal hydrogen sulfide exposure and peripheral neuropathy

    PubMed Central

    Pope, Karl; So, Yuen T.; Crane, Julian; Bates, Michael N.

    2017-01-01

    The mechanism of toxicity of hydrogen sulfide (H2S) gas is thought mainly to operate through effects on the nervous system. The gas has high acute toxicity, but whether chronic exposure causes effects, including peripheral neuropathy, is yet unclear. The city of Rotorua, New Zealand, sits on an active geothermal field and the population has some of the highest measured ambient H2S exposures. A previous study in Rotorua provided evidence that H2S is associated with peripheral neuropathy. Using clinical methods, the present study sought to investigate and possibly confirm this association in the Rotorua population. The study population comprised 1,635 adult residents of Rotorua, aged 18–65. Collected data relevant to the peripheral neuropathy investigation included symptoms, ankle stretch reflex, vibration sensitivity, as measured by the timed-tuning fork test and a Bio-Thesiometer (Bio-Medical Instrument Co., Ohio), and light touch sensitivity measured by monofilaments. An exposure metric, estimating time-weighted H2S exposure across the last 30 years was used. Principal components analysis was used to combine data across the various indicators of possible peripheral neuropathy. The main data analysis used linear regression to examine associations between the peripheral nerve function indicators and H2S exposure. None of the peripheral nerve function indicators were associated with H2S exposure, providing no evidence that H2S exposure at levels found in Rotorua is a cause of peripheral neuropathy. The earlier association between H2S exposure and peripheral neuropathy diagnoses may be attributable to the ecological study design used. The possibility that H2S exposure misclassification could account for the lack of association found cannot be entirely excluded. PMID:28223159

  13. Ambient geothermal hydrogen sulfide exposure and peripheral neuropathy.

    PubMed

    Pope, Karl; So, Yuen T; Crane, Julian; Bates, Michael N

    2017-05-01

    The mechanism of toxicity of hydrogen sulfide (H 2 S) gas is thought mainly to operate through effects on the nervous system. The gas has high acute toxicity, but whether chronic exposure causes effects, including peripheral neuropathy, is yet unclear. The city of Rotorua, New Zealand, sits on an active geothermal field and the population has some of the highest measured ambient H 2 S exposures. A previous study in Rotorua provided evidence that H 2 S is associated with peripheral neuropathy. Using clinical methods, the present study sought to investigate and possibly confirm this association in the Rotorua population. The study population comprised 1635 adult residents of Rotorua, aged 18-65. Collected data relevant to the peripheral neuropathy investigation included symptoms, ankle stretch reflex, vibration sensitivity, as measured by the timed-tuning fork test and a Bio-Thesiometer (Bio-Medical Instrument Co., Ohio), and light touch sensitivity measured by monofilaments. An exposure metric, estimating time-weighted H 2 S exposure across the last 30 years was used. Principal components analysis was used to combine data across the various indicators of possible peripheral neuropathy. The main data analysis used linear regression to examine associations between the peripheral nerve function indicators and H 2 S exposure. None of the peripheral nerve function indicators were associated with H 2 S exposure, providing no evidence that H 2 S exposure at levels found in Rotorua is a cause of peripheral neuropathy. The earlier association between H 2 S exposure and peripheral neuropathy diagnoses may be attributable to the ecological study design used. The possibility that H 2 S exposure misclassification could account for the lack of association found cannot be entirely excluded. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Areti, Aparna; Komirishetty, Prashanth; Kumar, Ash

    Oxaliplatin use as chemotherapeutic agent is frequently limited by cumulative neurotoxicity which may compromise quality of life. Reports relate this neurotoxic effect to oxidative stress and mitochondrial dysfunction in peripheral nerves and dorsal root ganglion (DRG). Carvedilol is an antihypertensive drug, has also been appreciated for its antioxidant and mitoprotective properties. Carvedilol co-treatment did not reduce the anti-tumor effects of oxaliplatin in human colon cancer cells (HT-29), but exhibited free radical scavenging activity against oxaliplatin-induced oxidative stress in neuronal cells (Neuro-2a). Hence, the present study was designed to investigate the effect of carvedilol in the experimental model of oxaliplatin-induced peripheralmore » neuropathy (OIPN) in Sprague-Dawley rats. Oxaliplatin reduced the sensory nerve conduction velocity and produced the thermal and mechanical nociception. Carvedilol significantly (P < 0.001) attenuated these functional and sensorimotor deficits. It also counteracted oxidative/nitrosative stress by reducing the levels of nitrotyrosine and improving the mitochondrial superoxide dismutase expression in both sciatic nerve and DRG tissues. It improved the mitochondrial function and prevented the oxaliplatin-induced alteration in mitochondrial membrane potential in sciatic nerve thus prevented loss of intra epidermal nerve fiber density in the foot pads. Together the results prompt the use of carvedilol along with chemotherapy with oxaliplatin to prevent the peripheral neuropathy. - Graphical abstract: Schematic representation neuroprotective mechanisms of carvedilol in oxaliplatin-induced peripheral neuropathy. - Highlights: • Oxaliplatin-induced mitochondrial dysfunction causes neurotoxicity. • Mitochondrial dysfunction leads to bioenergetic and functional deficits. • Carvedilol alleviated oxaliplatin-induced behavioural and functional changes. • Targeting mitochondria with carvedilol attenuated neuropathic pain.« less

  15. Experimental gastric ulcers induced by immobilization and electric shock of rats and their pharmacotherapy

    NASA Technical Reports Server (NTRS)

    Zabrodin, O. N.

    1980-01-01

    The mechanism of development of experimental gastric ulcers, induced in rats by combined immobilization and electric shock, was analyzed pharmacologically with peripheral neurotropic agents. It is concluded that: (1) The most marked preventive effect in the development of the experimentally induced gastric ulcers was displayed by agents capable of blocking the ascending activation system of the reticular formation. (2) Sympathetic fibers, which disrupt the trophism of the gastric wall, form the efferent portion of the reflex arc. (3) Gastric secretion does not appear to be the primary cause of ulceration.

  16. Peripheral functional organisation of vagally evoked gastric motor responses in the ferret.

    PubMed Central

    Andrews, P L; Lawes, I N; Bower, A J

    1980-01-01

    The aims of the present study were to determine the relative amplitudes of intragastric motor responses evoked by different vagal branches and to establish whether the effects of acute or chronic vagotomy could be predicted from these data. Intragastric pressure responses to electrical stimulation of the vagus were measured in urethane-anaesthetised ferrets and acute or chronic vagotomies were performed. The results show that the left and right cervical vagi were equipotential and fully overlaped each other. Their contributions to the dorsal trunk were equipotential and fully overlapping and so were their contributions to the ventral trunk. The dorsal trunk was more effective than the ventral trunk and there was total functional overlap between these two trunks. Vagal evoked gastric motor responses of the ferret are apparently organised in a different way from vagally induced acid secretion or hormone release in the cat. Acute removal of a trunk led to a reduction in evoked responses that was not linear function of the effect of stimulation of that trunk. In contrast, chronic removal caused a relative increase in evoked responses that ws inversely related to the decrease caused by acute removal. The implications of total functional overlap and neuromuscular reorganisation after chronic vagotomy are discussed. PMID:7439800

  17. Detection of a diabetic sural nerve from the magnetic field after electric stimulation

    NASA Astrophysics Data System (ADS)

    Hayami, Takehito; Iramina, Keiji; Hyodo, Akira; Chen, Xian; Sunagawa, Kenji

    2009-04-01

    In this study, we proposed a new diagnostic technique for diabetic neuropathy using biomagnetic measurement. Peripheral neuropathy is one of the most common complications of diabetes. To examine the injury, the skin potential around the nerve is often measured after electric stimulation. However, measuring the magnetic field may reveal precise condition of the injury. To evaluate the effect of measuring the magnetic field, a simulation study was performed. A diabetic sural nerve was simulated as a bundle of myelinated nerve fibers. Each fiber was modeled as an electric cable of Ranvier's nodes. Anatomical data were used to determine the number of nerve fibers and distribution of nerve fiber diameters. The electric potential and the magnetic field on the skin after electric stimulation were computed to the boundary element method. Biphasic time courses were obtained as the electric potential and the magnetic flux density at measurement points. In diabetic nerves, the longer interpeak latency of the electric potential wave and the shorter interpeak latency of the magnetic flux wave were obtained. Measuring both the electric potential and the magnetic flux density seemed to provide a noninvasive and objective marker for diabetic neuropathy.

  18. Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration

    PubMed Central

    Ayala-Caminero, Radamés; Pinzón-Herrera, Luis; Martinez, Carol A. Rivera; Almodovar, Jorge

    2018-01-01

    Understanding peripheral nerve repair requires the evaluation of 3D structures that serve as platforms for 3D cell culture. Multiple platforms for 3D cell culture have been developed, mimicking peripheral nerve growth and function, in order to study tissue repair or diseases. To recreate an appropriate 3D environment for peripheral nerve cells, key factors are to be considered including: selection of cells, polymeric biomaterials to be used, and fabrication techniques to shape and form the 3D scaffolds for cellular culture. This review focuses on polymeric 3D platforms used for the development of 3D peripheral nerve cell cultures. PMID:29515936

  19. Biopsychosocial Profiles and Functional Correlates in Older Adults with Chronic Low Back Pain: A Preliminary Study.

    PubMed

    Weiner, Debra K; Gentili, Angela; Coffey-Vega, Katherine; Morone, Natalia; Rossi, Michelle; Perera, Subashan

    2018-04-16

    To describe key peripheral and central nervous system (CNS) conditions in a group of older adults with chronic low back pain (CLBP) and their association with pain severity and self-reported and performance-based physical function. Cross-sectional. Outpatient VA clinics. Forty-seven community-dwelling veterans with CLBP (age 68.0 ± 6.5 years, range = 60-88 years, 12.8% female, 66% white) participated. Data were collected on peripheral pain generators-body mass index, American College of Rheumatology hip osteoarthritis criteria, neurogenic claudication (i.e., spinal stenosis), sacroiliac joint (SIJ) pain, myofascial pain, leg length discrepancy (LLD), and iliotibial band pain; and CNS pain generators-anxiety (GAD-7), depression (PHQ-9), insomnia (Insomnia Severity Index), maladaptive coping (Fear Avoidance Beliefs Questionnaire, Cognitive Strategies Questionnaire), and fibromyalgia (fibromyalgia survey). Outcomes were pain severity (0 to 10 scale, seven-day average and worst), self-reported pain interference (Roland Morris [RM] questionnaire), and gait speed. Approximately 96% had at least one peripheral CLBP contributor, 83% had at least one CNS contributor, and 80.9% had both peripheral and CNS contributors. Of the peripheral conditions, only SIJ pain and LLD were associated with outcomes. All of the CNS conditions and SIJ pain were related to RM score. Only depression/anxiety and LLD were associated with gait speed. In this sample of older veterans, CLBP was a multifaceted condition. Both CNS and peripheral conditions were associated with self-reported and performance-based function. Additional investigation is required to determine the impact of treating these conditions on patient outcomes and health care utilization.

  20. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy

    PubMed Central

    Barakat-Walter, I.; Kraftsik, R.

    2018-01-01

    Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions. Despite extensive investigation, testing various surgical repair techniques and neurotrophic molecules, at present, a satisfactory method to ensuring successful recovery does not exist. For successful molecular therapy in nerve regeneration, it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth. Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination. Therefore, any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration. Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system, so they could be candidates for nervous system regeneration. This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration. Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves. We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves, and accelerates functional recovering. This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves. The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells. PMID:29722302

  1. Beauty and cuteness in peripheral vision

    PubMed Central

    Kuraguchi, Kana; Ashida, Hiroshi

    2015-01-01

    Guo et al. (2011) showed that attractiveness was detectable in peripheral vision. Since there are different types of attractiveness (Rhodes, 2006), we investigated how beauty and cuteness are detected in peripheral vision with a brief presentation. Participants (n = 45) observed two Japanese female faces for 100 ms, then were asked to respond which face was more beautiful (or cuter). The results indicated that both beauty and cuteness were detectable in peripheral vision, but not in the same manner. Discrimination rates for judging beauty were invariant in peripheral and central vision, while discrimination rates for judging cuteness declined in peripheral vision as compared with central vision. This was not explained by lower resolution in peripheral vision. In addition, for male participants, it was more difficult to judge cuteness than beauty in peripheral vision, thus suggesting that gender differences can have a certain effect when judging cuteness. Therefore, central vision might be suitable for judging cuteness while judging beauty might not be affected by either central or peripheral vision. This might be related with the functional difference between beauty and cuteness. PMID:25999883

  2. Autoimmune Channelopathies of the Nervous System

    PubMed Central

    Kleopa, Kleopas A

    2011-01-01

    Ion channels are complex transmembrane proteins that orchestrate the electrical signals necessary for normal function of excitable tissues, including the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the functional assessment of expressed proteins at the level of single channel molecules possible. The role of ion channel defects in the pathogenesis of numerous disorders has become increasingly apparent over the last two decades. Neurological channelopathies are frequently genetically determined but may also be acquired through autoimmune mechanisms. All of these autoimmune conditions can arise as paraneoplastic syndromes or independent from malignancies. The pathogenicity of autoantibodies to ion channels has been demonstrated in most of these conditions, and patients may respond well to immunotherapies that reduce the levels of the pathogenic autoantibodies. Autoimmune channelopathies may have a good prognosis, especially if diagnosed and treated early, and if they are non-paraneoplastic. This review focuses on clinical, pathophysiologic and therapeutic aspects of autoimmune ion channel disorders of the nervous system. PMID:22379460

  3. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    PubMed

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Simulation of concomitant magnetic fields on fast switched gradient coils used in advanced application of MRI

    NASA Astrophysics Data System (ADS)

    Salinas-Muciño, G.; Torres-García, E.; Hidalgo-Tobon, S.

    2012-10-01

    The process to produce an MR image includes nuclear alignment, RF excitation, spatial encoding, and image formation. To form an image, it is necessary to perform spatial localization of the MR signals, which is achieved using gradient coils. MRI requires the use of gradient coils that generate magnetic fields, which vary linearly with position over the imaging volume. Safety issues have been a motivation to study deeply the relation between the interaction of gradient magnetic field and the peripheral nerve stimulation. In this work is presented a numerical modeling between the concomitant magnetic fields produced by the gradient coils and the electric field induced in a cube with σ conductivity by the gradient field switching in pulse sequences as Eco planar Imaging (EPI), due to this kind of sequence is the most used in advance applications of magnetic resonance imaging as functional MRI, cardiac imaging or diffusion.

  5. Extremely Low Frequency (ELF) Communications Program Non-Ionizing Electromagnetic Radiation Literature Evaluation and Assessment; 1977-1986 Literature Review.

    DTIC Science & Technology

    1986-11-01

    Napoli, Italy, who tested the possible chromosomal abnormalities caused by a 50-Hz electric field. Bovine lymphocytes from peripheral blood were cultured...production, ’. mastitis , etc. The problem can be mitigated by improved grounding practices on farmsteads, and it is not directly relevant to ELFCSs. The

  6. Contribution of peripheral and central chemoreceptors to sympatho‐excitation in heart failure

    PubMed Central

    Toledo, Camilo; Andrade, David C.; Lucero, Claudia; Schultz, Harold D.; Marcus, Noah; Retamal, Mauricio; Madrid, Carlos

    2016-01-01

    Abstract Chronic heart failure (CHF) is a major public health problem. Tonic hyper‐activation of sympathetic neural outflow is commonly observed in patients with CHF. Importantly, sympatho‐excitation in CHF exacerbates its progression and is strongly related to poor prognosis and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies (CBs) and alteration in their function has been described in CHF. Mainly, during CHF the CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow. In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic drive in response to CC activation has been shown in patients with CHF as well as in animal models. Therefore, improving understanding of the contribution of the peripheral and central chemoreflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this review is to discuss recent evidence that peripheral and central chemoreflex function are altered in CHF and that they contribute to autonomic imbalance and progression of CHF. PMID:27218485

  7. Treadmill Training Enhances Axon Regeneration In Injured Mouse Peripheral Nerves Without Increased Loss of Topographic Specificity

    PubMed Central

    English, Arthur W.; Cucoranu, Delia; Mulligan, Amanda; Sabatier, Manning

    2009-01-01

    We investigated the extent of misdirection of regenerating axons when that regeneration was enhanced using treadmill training. Retrograde fluorescent tracers were applied to the cut proximal stumps of the tibial and common fibular nerves two or four weeks after transection and surgical repair of the mouse sciatic nerve. The spatial locations of retrogradely labeled motoneurons were studied in untreated control mice and in mice receiving two weeks of treadmill training, either according to a continuous protocol (10 m/min, one hour/day, five day/week) or an interval protocol (20 m/min for two minutes, followed by a five minute rest, repeated 4 times, five days/week). More retrogradely labeled motoneurons were found in both treadmill trained groups. The magnitude of this increase was as great as or greater than that found after using other enhancement strategies. In both treadmill trained groups, the proportions of motoneurons labeled from tracer applied to the common fibular nerve that were found in spinal cord locations reserved for tibial motoneurons in intact mice was no greater than in untreated control mice and significantly less than found after electrical stimulation or chondroitinase treatment. Treadmill training in the first two weeks following peripheral nerve injury produces a marked enhancement of motor axon regeneration without increasing the propensity of those axons to choose pathways leading to functionally inappropriate targets. PMID:19731339

  8. Guillian-Barré syndrome--a case study.

    PubMed

    Toft, C E

    2002-04-01

    'Acute Guillian-Barré Syndrome is an acute inflammatory demyelinating disease of the peripheral nerves' (Pfister & Bullas 1990) which affects the normal transmission of electrical impulses along these nerves and consequently the function of the organs and tissues which they innervate (Springhouse 1998, Waldock 1995). This disorder can rapidly replace an individual's busy and active lifestyle with one of total dependence, often lasting months (Waldock 1995). It is important, therefore, that nurses understand the pathophysiology of the disease and its effect on the organs and tissue within the body, to enable them to provide a high standard of care for patients suffering from this condition. This discussion of Guillian-Barré Syndrome (GBS) will be in relation to patient (who shall be called Jane Smith for the purpose of this discussion) who was admitted to the Accident and Emergency (A&E) department and diagnosed with GBS (see Box 1 for patient history). Within this discussion GBS will be defined and its pathophysiology explained. The epidemiology and aetiology of the disease will also be highlighted. The majority of the discussion will focus on the physiological effects of GBS on the components of the peripheral nervous system and the appropriate assessment and treatment measures. Finally, the outcomes of the disease will be highlighted. The focus will be on the management of this condition within the A&E department.

  9. Genetics Home Reference: hereditary sensory and autonomic neuropathy type IE

    MedlinePlus

    ... loss of sensation in the feet and legs (peripheral neuropathy). People with HSAN IE develop hearing loss that ... control, become apparent before problems with thinking skills. Peripheral neuropathy is caused by impaired function of nerve cells ...

  10. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    PubMed

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Direct effects of recurrent hypoglycaemia on adrenal catecholamine release.

    PubMed

    Orban, Branly O; Routh, Vanessa H; Levin, Barry E; Berlin, Joshua R

    2015-01-01

    In Type 1 and advanced Type 2 diabetes mellitus, elevation of plasma epinephrine plays a key role in normalizing plasma glucose during hypoglycaemia. However, recurrent hypoglycaemia blunts this elevation of plasma epinephrine. To determine whether recurrent hypoglycaemia affects peripheral components of the sympatho-adrenal system responsible for epinephrine release, male rats were administered subcutaneous insulin daily for 3 days. These recurrent hypoglycaemic animals showed a smaller elevation of plasma epinephrine than saline-injected controls when subjected to insulin-induced hypoglycaemia. Electrical stimulation of an adrenal branch of the splanchnic nerve in recurrent hypoglycaemic animals elicited less release of epinephrine and norepinephrine than in controls, without a change in adrenal catecholamine content. Responsiveness of isolated, perfused adrenal glands to acetylcholine and other acetylcholine receptor agonists was also unchanged. These results indicate that recurrent hypoglycaemia compromised the efficacy with which peripheral neuronal activity stimulates adrenal catecholamine release and demonstrate that peripheral components of the sympatho-adrenal system were directly affected by recurrent hypoglycaemia. © The Author(s) 2014.

  12. Clinical relevance of the modified physical performance test versus the short physical performance battery for detecting mobility impairments in older men with peripheral arterial disease.

    PubMed

    Addison, Odessa; Kundi, Rishi; Ryan, Alice S; Goldberg, Andrew P; Patel, Richa; Lal, Brajesh K; Prior, Steven J

    2017-08-23

    The study is to compare the Modified Physical Performance Test (MPPT) and Short Physical Performance Battery (SPPB) as metrics of mobility and function in older men with peripheral arterial disease (PAD). A total of 51 men (55-87 years) with PAD underwent functional testing including the SPPB, MPPT, Walking Impairment Questionnaire (WIQ), stair ascent, and 6-min walk distance. Individuals were grouped according to SPPB and MPPT scores as not limited on either, limited only on the MPPT, or limited on both. The MPPT identified a higher proportion of patients as being functionally limited than the SPPB (p < 0.001). Men identified as limited only by the MPPT, and not the SPPB, were subsequently confirmed to have lower function on all measures compared to those not identified as limited by either the SPPB or the MPPT (p < 0.02). These findings suggest the MPPT is an appropriate measure to identify early declines in men with PAD and may identify global disability better than SPPB. Implications for rehabilitation Individuals with peripheral arterial disease have low activity levels and are at risk for a loss of independence and global disability. Early detection of decline in mobility and global function would allow for interventions before large changes in ambulatory ability or a loss of functional independence occur. This study shows the Modified Physical Performance Test may be an appropriate test to identify early decline in function in men with peripheral arterial disease.

  13. Between genetics and biology. Is ENMG useful in peripheral neuropathy diagnosis and management?

    PubMed

    Stålberg, E

    2016-10-01

    Neurography and EMG are complementary techniques used in the diagnosis and monitoring of neuropathies. Both assess function of the peripheral nervous system and provide clinically useful information regarding the functional status of peripheral nerves. This information is not readily obtainable using biochemical, genetic or imaging techniques. I will discuss the role of these techniques in the diagnosis and management of neuropathies and some limitations of these techniques. These methods are routinely used in an EMG lab. These are most useful when used in conjunction with clinical examination to answer a well-defined clinical question. Reference values are required for interpretation of the data. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Cortical motor activity and reorganization following upper-limb amputation and subsequent targeted reinnervation.

    PubMed

    Chen, Albert; Yao, Jun; Kuiken, Todd; Dewald, Julius P A

    2013-01-01

    Previous studies have postulated that the amount of brain reorganization following peripheral injuries may be correlated with negative symptoms or consequences. However, it is unknown whether restoring effective limb function may then be associated with further changes in the expression of this reorganization. Recently, targeted reinnervation (TR), a surgical technique that restores a direct neural connection from amputated sensorimotor nerves to new peripheral targets such as muscle, has been successfully applied to upper-limb amputees. It has been shown to be effective in restoring both peripheral motor and sensory functions via the reinnervated nerves as soon as a few months after the surgery. However, it was unclear whether TR could also restore normal cortical motor representations for control of the missing limb. To answer this question, we used high-density electroencephalography (EEG) to localize cortical activity related to cued motor tasks generated by the intact and missing limb. Using a case study of 3 upper-limb amputees, 2 of whom went through pre and post-TR experiments, we present unique quantitative evidence for the re-mapping of motor representations for the missing limb closer to their original locations following TR. This provides evidence that an effective restoration of peripheral function from TR can be linked to the return of more normal cortical expression for the missing limb. Therefore, cortical mapping may be used as a potential guide for monitoring rehabilitation following peripheral injuries.

  15. Peripheral i.v. analysis (PIVA) of venous waveforms for volume assessment in patients undergoing haemodialysis.

    PubMed

    Hocking, K M; Alvis, B D; Baudenbacher, F; Boyer, R; Brophy, C M; Beer, I; Eagle, S

    2017-12-01

    The assessment of intravascular volume status remains a challenge for clinicians. Peripheral i.v. analysis (PIVA) is a method for analysing the peripheral venous waveform that has been used to monitor volume status. We present a proof-of-concept study for evaluating the efficacy of PIVA in detecting changes in fluid volume. We enrolled 37 hospitalized patients undergoing haemodialysis (HD) as a controlled model for intravascular volume loss. Respiratory rate (F0) and pulse rate (F1) frequencies were measured. PIVA signal was obtained by fast Fourier analysis of the venous waveform followed by weighing the magnitude of the amplitude of the pulse rate frequency. PIVA was compared with peripheral venous pressure and standard monitoring of vital signs. Regression analysis showed a linear correlation between volume loss and change in the PIVA signal (R2=0.77). Receiver operator curves demonstrated that the PIVA signal showed an area under the curve of 0.89 for detection of 20 ml kg-1 change in volume. There was no correlation between volume loss and peripheral venous pressure, blood pressure or pulse rate. PIVA-derived pulse rate and respiratory rate were consistent with similar numbers derived from the bio-impedance and electrical signals from the electrocardiogram. PIVA is a minimally invasive, novel modality for detecting changes in fluid volume status, respiratory rate and pulse rate in spontaneously breathing patients with peripheral i.v. cannulas. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice.

    PubMed

    Baltgalvis, Kristen A; White, Kathy; Li, Wei; Claypool, Mark D; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K; Friera, Annabelle M; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J; Godinez, Guillermo; Shaw, Simon J; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G; Kinsella, Todd M

    2014-04-15

    Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.

  17. After-effects of peripheral neurostimulation on brain plasticity and ankle function in chronic stroke: The role of afferents recruited.

    PubMed

    Beaulieu, Louis-David; Massé-Alarie, Hugo; Camiré-Bernier, Samuel; Ribot-Ciscar, Édith; Schneider, Cyril

    2017-09-01

    This study tested the after-effects of neuromuscular electrical stimulation (NMES), repetitive peripheral magnetic stimulation (rPMS) and muscle tendon vibration (VIB) on brain plasticity and sensorimotor impairments in chronic stroke to investigate whether different results could depend on the nature of afferents recruited by each technique. Fifteen people with chronic stroke participated in five sessions (one per week). Baseline measures were collected in session one, then, each participant received 4 randomly ordered interventions (NMES, rPMS, VIB and a 'control' intervention of exercises). Interventions were applied to the paretic ankle muscles and parameters of application were matched as closely as possible. Standardized clinical measures of the ankle function on the paretic side and transcranial magnetic stimulation (TMS) outcomes of both primary motor cortices (M1) were collected at pre- and post-application of each intervention. The ankle muscle strength was significantly improved by rPMS and VIB (P≤0.02). rPMS influenced M1 excitability (increase in the contralesional hemisphere, P=0.03) and inhibition (decrease in both hemispheres, P≤0.04). The group mean of a few clinical outcomes improved across sessions, i.e. independently of the order of interventions. Some TMS outcomes at baseline could predict the responsiveness to rPMS and VIB. This original study suggests that rPMS and VIB were efficient to drive M1 plasticity and sensorimotor improvements, likely via massive inflows of 'pure' proprioceptive information generated. Usefulness of some TMS outcomes to predict which intervention a patient could be more responsive to should be further tested in future studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. On the Origin of the 1,000 Hz Peak in the Spectrum of the Human Tympanic Electrical Noise

    PubMed Central

    Pardo-Jadue, Javiera; Dragicevic, Constantino D.; Bowen, Macarena; Delano, Paul H.

    2017-01-01

    The spectral analysis of the spontaneous activity recorded with an electrode positioned near the round window of the guinea pig cochlea shows a broad energy peak between 800 and 1,000 Hz. This spontaneous electric activity is called round window noise or ensemble background activity. In guinea pigs, the proposed origin of this peak is the random sum of the extracellular field potentials generated by action potentials of auditory nerve neurons. In this study, we used a non-invasive method to record the tympanic electric noise (TEN) in humans by means of a tympanic wick electrode. We recorded a total of 24 volunteers, under silent conditions or in response to stimuli of different modalities, including auditory, vestibular, and motor activity. Our results show a reliable peak of spontaneous activity at ~1,000 Hz in all studied subjects. In addition, we found stimulus-driven responses with broad-band noise that in most subjects produced an increase in the magnitude of the energy band around 1,000 Hz (between 650 and 1,200 Hz). Our results with the vestibular stimulation were not conclusive, as we found responses with all caloric stimuli, including 37°C. No responses were observed with motor tasks, like eye movements or blinking. We demonstrate the feasibility of recording neural activity from the electric noise of the tympanic membrane with a non-invasive method. From our results, we suggest that the 1,000 Hz component of the TEN has a mixed origin including peripheral and central auditory pathways. This research opens up the possibility of future clinical non-invasive techniques for the functional study of auditory and vestibular nerves in humans. PMID:28744193

  19. Transcutaneous Electrical Nerve Stimulation Improves Walking Performance in Patients With Intermittent Claudication.

    PubMed

    Seenan, Chris; McSwiggan, Steve; Roche, Patricia A; Tan, Chee-Wee; Mercer, Tom; Belch, Jill J F

    2016-01-01

    The purpose of this study was to investigate the effects of 2 types of transcutaneous electrical nerve stimulation (TENS) on walking distance and measures of pain in patients with peripheral arterial disease (PAD) and intermittent claudication (IC). In a phase 2a study, 40 participants with PAD and IC completed a graded treadmill test on 2 separate testing occasions. Active TENS was applied to the lower limb on the first occasion; and placebo TENS, on the second. The participants were divided into 2 experimental groups. One group received high-frequency TENS; and the other, low-frequency TENS. Measures taken were initial claudication distance, functional claudication distance, and absolute claudication distance. The McGill Pain Questionnaire (MPQ) vocabulary was completed at the end of the intervention, and the MPQ-Pain Rating Index score was calculated. Four participants were excluded from the final analysis because of noncompletion of the experimental procedure. Median walking distance increased with high-frequency TENS for all measures (P < .05, Wilcoxon signed rank test, all measures). Only absolute claudication distance increased significantly with low-frequency TENS compared with placebo (median, 179-228; Ws = 39; z = 2.025; P = .043; r = 0.48). No difference was observed between reported median MPQ-Pain Rating Index scores: 21.5 with placebo TENS and 21.5 with active TENS (P = .41). Transcutaneous electrical nerve stimulation applied to the lower limb of the patients with PAD and IC was associated with increased walking distance on a treadmill but not with any reduction in pain. Transcutaneous electrical nerve stimulation may be a useful adjunctive intervention to help increase walking performance in patients with IC.

  20. A new psychometric questionnaire for reporting of somatosensory percepts

    NASA Astrophysics Data System (ADS)

    Kim, L. H.; McLeod, R. S.; Kiss, Z. H. T.

    2018-02-01

    Objective. There have been remarkable advances over the past decade in neural prostheses to restore lost motor function. However, restoration of somatosensory feedback, which is essential for fine motor control and user acceptance, has lagged behind. With an increasing interest in using electrical stimulation to restore somatosensory sensations within the peripheral (PNS) and central nervous systems (CNS), it is critical to characterize the percepts evoked by electrical stimulation in a standardized manner with a validated psychometric questionnaire. This will allow comparison of results from applications at various nervous system levels in multiple settings. Approach. We compiled a summary of published reports of somatosensory percepts that were elicited by electrical stimulation in humans and used these to develop a new psychometric questionnaire. Results. This new questionnaire was able to characterize subjective evoked sensations with good test-retest reliability (Spearman’s correlation coefficients ranging 0.716  ⩽  ρ  ⩽  1.000, p  ⩽  0.005) in 13 subjects receiving stimulation through neural implants in both the CNS and PNS. Furthermore, the new questionnaire captured more descriptors (M  =  2.65, SD  =  0.91) that would have been missed by being categorized as ‘other sensations’, using a previous questionnaire (M  =  1.40, SD  =  0.77, t(12)  =  -10.24, p  <  0.001). Lastly, the new questionnaire was able to capture different descriptors within subjects using different patterns of electrical stimulation (Wilk’s Lambda  =  0.42, F(3, 10)  =  4.58, p  =  0.029). Significance. This new somatosensory psychometric questionnaire will aid in establishing consistency and standardization of reporting in future studies of somatosensory neural prostheses.

  1. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, N.; Horowitz, L. F.; Folch, A.

    2016-10-01

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  2. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology.

    PubMed

    Bhattacharjee, N; Horowitz, L F; Folch, A

    2016-10-17

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  3. On the Origin of the 1,000 Hz Peak in the Spectrum of the Human Tympanic Electrical Noise.

    PubMed

    Pardo-Jadue, Javiera; Dragicevic, Constantino D; Bowen, Macarena; Delano, Paul H

    2017-01-01

    The spectral analysis of the spontaneous activity recorded with an electrode positioned near the round window of the guinea pig cochlea shows a broad energy peak between 800 and 1,000 Hz. This spontaneous electric activity is called round window noise or ensemble background activity. In guinea pigs, the proposed origin of this peak is the random sum of the extracellular field potentials generated by action potentials of auditory nerve neurons. In this study, we used a non-invasive method to record the tympanic electric noise (TEN) in humans by means of a tympanic wick electrode. We recorded a total of 24 volunteers, under silent conditions or in response to stimuli of different modalities, including auditory, vestibular, and motor activity. Our results show a reliable peak of spontaneous activity at ~1,000 Hz in all studied subjects. In addition, we found stimulus-driven responses with broad-band noise that in most subjects produced an increase in the magnitude of the energy band around 1,000 Hz (between 650 and 1,200 Hz). Our results with the vestibular stimulation were not conclusive, as we found responses with all caloric stimuli, including 37°C. No responses were observed with motor tasks, like eye movements or blinking. We demonstrate the feasibility of recording neural activity from the electric noise of the tympanic membrane with a non-invasive method. From our results, we suggest that the 1,000 Hz component of the TEN has a mixed origin including peripheral and central auditory pathways. This research opens up the possibility of future clinical non-invasive techniques for the functional study of auditory and vestibular nerves in humans.

  4. Change in functional balance after an exercise program with Nintendo Wii in Latino patients with cerebral palsy: a case series.

    PubMed

    Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Olave-Godoy, Felipe; Villalobos-Rebolledo, David

    2016-08-01

    [Purpose] This study aimed to explore the possibility of improving functional balance using an exercise program with Nintendo and the Balance Board peripheral in subjects with cerebral palsy. [Subjects and Methods] This study included 4 male outpatients of a neurological center. All participants received an exercise program based on the use of Nintendo with the Balance Board peripheral. Training consisted of three 25-min sessions per week for 6 weeks. Each session was guided by a physical therapist. Timed up-and-go and one-leg standing tests were conducted before and after the intervention. [Results] All subjects showed significant improvements in the results of the timed up-and-go test. However, there were no significant changes in the results of the one-leg standing test. [Conclusion] The exercise protocol involving Nintendo with the Balance Board peripheral appears to improve functional dynamic balance in patients with cerebral palsy. However, static functional balance does not improve after 6 weeks of training.

  5. Change in functional balance after an exercise program with Nintendo Wii in Latino patients with cerebral palsy: a case series

    PubMed Central

    Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Olave-Godoy, Felipe; Villalobos-Rebolledo, David

    2016-01-01

    [Purpose] This study aimed to explore the possibility of improving functional balance using an exercise program with Nintendo and the Balance Board peripheral in subjects with cerebral palsy. [Subjects and Methods] This study included 4 male outpatients of a neurological center. All participants received an exercise program based on the use of Nintendo with the Balance Board peripheral. Training consisted of three 25-min sessions per week for 6 weeks. Each session was guided by a physical therapist. Timed up-and-go and one-leg standing tests were conducted before and after the intervention. [Results] All subjects showed significant improvements in the results of the timed up-and-go test. However, there were no significant changes in the results of the one-leg standing test. [Conclusion] The exercise protocol involving Nintendo with the Balance Board peripheral appears to improve functional dynamic balance in patients with cerebral palsy. However, static functional balance does not improve after 6 weeks of training. PMID:27630446

  6. Decreased electrical excitability of peripheral nerves in demyelinating polyneuropathies.

    PubMed Central

    Meulstee, J; Darbas, A; van Doorn, P A; van Briemen, L; van der Meché, F G

    1997-01-01

    Not recognising the presence of decreased excitability may give rise to a seemingly low compound muscle action potential, which may lead erroneously to the conclusion of conduction block. To quantify decreased electrical excitability, stimulation-response curves and the current needed to achieve 90% of the maximal compound muscle action potential amplitude, i90, were obtained in 17 healthy controls, eight patients with Guillain-Barre syndrome, 14 with chronic inflammatory demyelinating polyneuropathy, and 10 with hereditary motor sensory neuropathy type I. Decreased electrical excitability was found in patients with chronic inflammatory demyelinating polyneuropathy and hereditary motor sensory neuropathy type I, by contrast with patients with Guillain-Barré syndrome. Recognising decreased excitability prevents the false assertion of conduction block and has electrodiagnostic importance for the differential diagnosis of demyelinating polyneuropathies. PMID:9120460

  7. Sensorimotor Peripheral Nerve Function and the Longitudinal Relationship with Endurance Walking in the Health, Aging and Body Composition Study

    PubMed Central

    Lange-Maia, Brittney S.; Newman, Anne B.; Cauley, Jane A.; Boudreau, Robert M.; Jakicic, John M.; Caserotti, Paolo; Glynn, Nancy W.; Harris, Tamara B.; Kritchevsky, Stephen B.; Schwartz, Ann V.; Satterfield, Suzanne; Simonsick, Eleanor M.; Vinik, Aaron I.; Zivkovic, Sasa; Strotmeyer, Elsa S.

    2015-01-01

    Objectives To determine whether lower extremity sensorimotor peripheral nerve deficits are associated with reduced walking endurance in older adults. Design Prospective cohort study with six years of follow-up. Setting Two U.S. clinical sites in (Pittsburgh, PA and Memphis, TN). Participants Community-dwelling older adults enrolled in Health, Aging and Body Composition study from the 2000/01 annual clinical examination (n=2393; age 76.5 ± 2.9 years; 48.2% male; 38.2% black) and subset with longitudinal data (n=1,178). Interventions Not applicable Main Outcome Measures Participants underwent peripheral nerve function examination in 2000/01, including peroneal motor nerve conduction amplitude and velocity, vibration perception threshold, and monofilament testing. Symptoms of lower-extremity peripheral neuropathy included numbness or tingling and sudden stabbing, burning, pain, or aches in the feet or legs. The long distance corridor walk (LDCW; 400m) was administered in 2000/01 and every two years afterwards for 6 years to assess endurance walking performance over time. Results In separate fully adjusted linear mixed models poor vibration threshold (>130 microns), 10-g and 1.4-g monofilament insensitivity were each associated with slower LDCW completion time (16.0, 14.1, and 6.7, seconds slower, respectively, P<.05 for each). Poor motor amplitude (<1mV), poor vibration perception threshold, and 10-g monofilament insensitivity were related to greater slowing/year (4.7, 4.3, and 4.3 additional seconds/year, respectively, P<.05), though poor motor amplitude was not associated with initial completion time. Conclusions Poorer sensorimotor peripheral nerve function is related to slower endurance walking and greater slowing longitudinally. Interventions to reduce the burden of sensorimotor peripheral nerve function impairments should be considered in order to help older adults to maintain walking endurance—a critical component for remaining independent in the community. PMID:26343170

  8. The effect of electrical stimulation on corticospinal excitability is dependent on application duration: a same subject pre-post test design.

    PubMed

    Andrews, Rebecca K; Schabrun, Siobhan M; Ridding, Michael C; Galea, Mary P; Hodges, Paul W; Chipchase, Lucinda S

    2013-06-10

    In humans, corticospinal excitability is known to increase following motor electrical stimulation (ES) designed to mimic a voluntary contraction. However, whether the effect is equivalent with different application durations and whether similar effects are apparent for short and long applications is unknown. The aim of this study was to investigate whether the duration of peripheral motor ES influenced its effect on corticospinal excitability. The excitability of the corticomotor pathway to abductor pollicis brevis (APB) was measured in fourteen health subjects using transcranial magnetic stimulation before, immediately after and 10 minutes after three different durations (20-, 40-, 60-min) of motor ES (30Hz, ramped). This intervention was designed to mimic a voluntary contraction in APB. To control for effects of motor ES on the peripheral elements (muscle fibre, membrane, neuromuscular junction), maximum compound muscle actions potentials (M-waves) were also recorded at each time point. Results were analysed using a repeated measures analysis of variance. Peripheral excitability was reduced following all three motor ES interventions. Conversely, corticospinal excitability was increased immediately following 20- and 40-min applications of motor ES and this increase was maintained at least 20-min following the intervention. A 60-min application of motor ES did not alter corticospinal excitability. A 20-min application of motor ES that is designed to mimic voluntary muscle contraction is as effective as that applied for 40-min when the aim of the intervention is to increase corticospinal excitability. Longer motor ES durations of 60-min do not influence corticospinal excitability, possibly as a result of homeostatic plasticity mechanisms.

  9. Mechanized fluid connector and assembly tool system with ball detents

    NASA Technical Reports Server (NTRS)

    Zentner, Ronald C. (Inventor); Smith, Steven A. (Inventor)

    1991-01-01

    A fluid connector system is disclosed which includes a modified plumbing union having a rotatable member for drawing said union into a fluid tight condition. A drive tool is electric motor actuated and includes a reduction gear train providing an output gear engaging an integral peripheral spur gear on the rotatable member. Coaxial alignment means are attached to both the connector assembly and the drive tool. A hand lever actuated latching system includes a plurality of circumferentially spaced latching balls selectively wedged against the alignment means attached to the connector assembly or to secure the drive tool with its output gear in mesh with the integral peripheral spur gear. The drive motor is torque, speed, and direction controllable.

  10. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  11. Electrophysiological correlates of target eccentricity in texture segmentation.

    PubMed

    Schaffer, Susann; Schubö, Anna; Meinecke, Cristina

    2011-06-01

    Event-related potentials and behavioural performance as a function of target eccentricity were measured while subjects performed a texture segmentation task. Fit-of-structures, i.e. easiness of target detection was varied: in Experiment 1, a texture with peripheral fit (easier detection of peripheral presented targets) and in Experiment 2, a texture with foveal fit (easier detection of foveal presented targets) was used. In the two experiments, the N2p was sensitive to target eccentricity showing larger amplitudes for foveal targets compared to peripheral targets, and at the foveal position, a reversal of the N2p differential amplitude effect was found. The anterior P2 seemed sensitive to the easiness of target detection. In both experiments the N2pc varied as a function of eccentricity. However, the P3 was neither sensitive to target eccentricity nor to the fit-of-structures. Results show the existence of a P2/N2 complex (Potts and Tucker, 2001) indicating executive functions located in the anterior cortex and perceptual processes located in the posterior cortex. Furthermore, the N2p might indicate the existence of a foveal vs. peripheral subsystem in visual processing. 2011 Elsevier B.V. All rights reserved.

  12. Schwann cell glycogen selectively supports myelinated axon function.

    PubMed

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-09-01

    Interruption of energy supply to peripheral axons is a cause of axon loss. We determined whether glycogen was present in mammalian peripheral nerve, and whether it supported axon conduction during aglycemia. We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Glycogen was present in sciatic nerve, its concentration varying directly with ambient glucose. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm, and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time course of glycogen loss. Latency to compound action potential (CAP) failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small-diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large-diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. . Copyright © 2012 American Neurological Association.

  13. Heparin for prolonging peripheral intravenous catheter use in neonates: a randomized controlled trial.

    PubMed

    Upadhyay, A; Verma, K K; Lal, P; Chawla, D; Sreenivas, V

    2015-04-01

    To determine the efficacy of heparinized saline administered as intermittent flush on functional duration of the peripheral intravenous catheter (PIVC) in neonates. Randomized, double-blind and placebo-controlled trial. Neonatal intensive care unit of a teaching hospital. Term and preterm neonates born at >32 weeks of gestation who required PIVC only for intermittent administration of antibiotics. Eligible neonates were randomized to receive 1 ml of either heparinized saline (10 U ml(-1)) (n=60) or normal saline (n=60) every 12 h before and after intravenous antibiotics. Functional duration of first peripheral intravenous catheter. A total of 120 neonates were randomized to two groups of 60 neonates each. The mean (s.d.) of age of babies in case and control group was 5.7 (2.5) days and 4.6 (3.1) days, respectively. The average weight of babies in both the groups was 2.1 kg. Mean functional duration of first catheter was more in heparinized saline group, mean (s.d.) of 71.68 h  (27.3) as compared with 57.7 h (23.6) in normal saline group (P<0.005). The mean (95% confidence interval) difference in functional duration in the two groups was 13.9 h (4.7-23.15). Mean duration of patency for any catheter was also significantly more in heparinized saline group than control group. Heparinized saline flush increases the functional duration of peripheral intravenous catheter.

  14. The intriguing nature of dorsal root ganglion neurons: linking structure with polarity and function.

    PubMed

    Nascimento, Ana Isabel; Mar, Fernando Milhazes; Sousa, Mónica Mendes

    2018-05-02

    Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type. Copyright © 2018. Published by Elsevier Ltd.

  15. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    PubMed Central

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  16. Fundamental Visual Representations of Social Cognition in ASD

    DTIC Science & Technology

    2015-10-01

    autism spectrum disorder as assessed by high density electrical mapping...C., Russo, N. N., & Foxe, J. J. (2013). Atypical cortical representation of peripheral visual space in children with an autism spectrum disorder . European Journal of Neuroscience, 38(1), 2125-2138. ...Sensory processing issues are prevalent in the autism spectrum (ASD) population, and sensory adaptation can be a potential biomarker - a

  17. Age-related changes in the function and structure of the peripheral sensory pathway in mice.

    PubMed

    Canta, Annalisa; Chiorazzi, Alessia; Carozzi, Valentina Alda; Meregalli, Cristina; Oggioni, Norberto; Bossi, Mario; Rodriguez-Menendez, Virginia; Avezza, Federica; Crippa, Luca; Lombardi, Raffaella; de Vito, Giuseppe; Piazza, Vincenzo; Cavaletti, Guido; Marmiroli, Paola

    2016-09-01

    This study is aimed at describing the changes occurring in the entire peripheral nervous system sensory pathway along a 2-year observation period in a cohort of C57BL/6 mice. The neurophysiological studies evidenced significant differences in the selected time points corresponding to childhood, young adulthood, adulthood, and aging (i.e., 1, 7, 15, and 25 months of age), with a parabolic course as function of time. The pathological assessment allowed to demonstrate signs of age-related changes since the age of 7 months, with a remarkable increase in both peripheral nerves and dorsal root ganglia at the subsequent time points. These changes were mainly in the myelin sheaths, as also confirmed by the Rotating-Polarization Coherent-Anti-stokes-Raman-scattering microscopy analysis. Evident changes were also present at the morphometric analysis performed on the peripheral nerves, dorsal root ganglia neurons, and skin biopsies. This extensive, multimodal characterization of the peripheral nervous system changes in aging provides the background for future mechanistic studies allowing the selection of the most appropriate time points and readouts according to the investigation aims. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. BMI, HOMA-IR, and Fasting Blood Glucose Are Significant Predictors of Peripheral Nerve Dysfunction in Adult Overweight and Obese Nondiabetic Nepalese Individuals: A Study from Central Nepal.

    PubMed

    Thapa, Lekhjung; Rana, P V S

    2016-01-01

    Objective. Nondiabetic obese individuals have subclinical involvement of peripheral nerves. We report the factors predicting peripheral nerve function in overweight and obese nondiabetic Nepalese individuals. Methodology. In this cross-sectional study, we included 50 adult overweight and obese nondiabetic volunteers without features of peripheral neuropathy and 50 healthy volunteers to determine the normative nerve conduction data. In cases of abnormal function, the study population was classified on the basis of the number of nerves involved, namely, "<2" or "≥2." Multivariable logistic regression analysis was carried out to predict outcomes. Results. Fasting blood glucose (FBG) was the significant predictor of motor nerve dysfunction (P = 0.039, 95% confidence interval (CI) = 1.003-1.127). Homeostatic model assessment of insulin resistance (HOMA-IR) was the significant predictor (P = 0.019, 96% CI = 1.420-49.322) of sensory nerve dysfunction. Body mass index (BMI) was the significant predictor (P = 0.034, 95% CI = 1.018-1.577) in case of ≥2 mixed nerves' involvement. Conclusion. FBG, HOMA-IR, and BMI were significant predictors of peripheral nerve dysfunction in overweight and obese Nepalese individuals.

  19. X-ray irradiation has positive effects for the recovery of peripheral nerve injury maybe through the vascular smooth muscle contraction signaling pathway.

    PubMed

    Jiang, Bo; Zhang, Yong; She, Chang; Zhao, Jiaju; Zhou, Kailong; Zuo, Zhicheng; Zhou, Xiaozhong; Wang, Peiji; Dong, Qirong

    2017-09-01

    It is well known that moderate to high doses of ionizing radiation have a toxic effect on the organism. However, there are few experimental studies on the mechanisms of LDR ionizing radiation on nerve regeneration after peripheral nerve injury. We established the rats' peripheral nerve injury model via repaired Peripheral nerve injury nerve, vascular endothelial growth factor a and Growth associated protein-43 were detected from different treatment groups. We performed transcriptome sequencing focusing on investigating the differentially expressed genes and gene functions between the control group and 1Gy group. Sequencing was done by using high-throughput RNA-sequencing (RNA-seq) technologies. The results showed the 1Gy group to be the most effective promoting repair. RNA-sequencing identified 619 differently expressed genes between control and treated groups. A Gene Ontology analysis of the differentially expressed genes revealed enrichment in the functional pathways. Among them, candidate genes associated with nerve repair were identified. Pathways involved in cell-substrate adhesion, vascular smooth muscle contraction and cell adhesion molecule signaling may be involved in recovery from peripheral nerve injury. Copyright © 2017. Published by Elsevier B.V.

  20. Nmnat mitigates sensory dysfunction in a Drosophila model of paclitaxel-induced peripheral neuropathy.

    PubMed

    Brazill, Jennifer M; Cruz, Beverley; Zhu, Yi; Zhai, R Grace

    2018-06-12

    Chemotherapy-induced peripheral neuropathy (CIPN) is the major dose-limiting side effect of many commonly used chemotherapeutic agents, including paclitaxel. Currently, there are no neuroprotective or effective symptomatic treatments for CIPN. Lack of understanding of the in vivo mechanisms of CIPN has greatly impeded the identification of therapeutic targets. Here, we optimized a model of paclitaxel-induced peripheral neuropathy using Drosophila larvae that recapitulates aspects of chemotherapy-induced sensory dysfunction . We showed that nociceptive sensitivity is associated with disrupted organization of microtubule-associated MAP1B/Futsch and aberrant stabilization of peripheral sensory dendrites. These findings establish a robust and amenable model for studying peripheral mechanisms of CIPN. Using this model, we uncovered a critical role for nicotinamide mononucleotide adenylyltransferase (Nmnat) in maintaining the integrity and function of peripheral sensory neurons and uncovered Nmnat's therapeutic potential against diverse sensory symptoms of CIPN. © 2018. Published by The Company of Biologists Ltd.

  1. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  2. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios

    NASA Astrophysics Data System (ADS)

    Schmid, Gernot; Hirtl, Rene

    2016-06-01

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the current-limiting effect of the low-conductivity stratum corneum layer.

  3. Association of diabetic peripheral arterial disease and objectively-measured physical activity: NHANES 2003-2004

    PubMed Central

    2014-01-01

    Background Although much is known about the management of peripheral arterial disease among adults in the general population, the management of this disease among those with diabetes, and the effects of diabetic-induced peripheral arterial disease on objectively-measured physical activity, is unclear. Here, we examined the association between accelerometer-assessed physical activity and peripheral arterial disease among a national sample of U.S. adults with diabetes. Methods Data from the 2003–2004 National Health and Nutrition Examination Survey were used. Physical activity was measured using an accelerometer in 254 adults with diabetes. Peripheral arterial disease was assessed via ankle brachial index. Negative binomial regression analysis was used to examine the association between physical activity and peripheral arterial disease. Results Results were adjusted for age, gender, race-ethnicity, comorbidity index, smoking, HgbA1C, C-reactive protein, homocysteine, glomerular filtration rate, microalbuminuria, peripheral neuropathy, physical functioning, and medication use. After adjustments, participants with peripheral arterial disease engaged in 23% less physical activity (RR = 0.77, 95% CI: 0.62-0.96) than those without peripheral arterial disease. Conclusions These findings demonstrate an inverse association between accelerometer-assessed physical activity and peripheral arterial disease in a national sample of U.S adults with diabetes. PMID:24967220

  4. Evaluation of Peripheral Blood Circulation Disorder in Scleroderma Patients Using an Optical Sensor with a Pressurization Mechanism

    PubMed Central

    Yamakoshi, Yoshiki

    2016-01-01

    Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer–Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method. PMID:27479094

  5. Evaluation of Peripheral Blood Circulation Disorder in Scleroderma Patients Using an Optical Sensor with a Pressurization Mechanism.

    PubMed

    Yamakoshi, Yoshiki; Motegi, Sei-Ichiro; Ishikawa, Osamu

    2016-01-01

    Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer-Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method.

  6. Functional Biomarkers of Depression: Diagnosis, Treatment, and Pathophysiology

    PubMed Central

    Schmidt, Heath D; Shelton, Richard C; Duman, Ronald S

    2011-01-01

    Major depressive disorder (MDD) is a heterogeneous illness for which there are currently no effective methods to objectively assess severity, endophenotypes, or response to treatment. Increasing evidence suggests that circulating levels of peripheral/serum growth factors and cytokines are altered in patients with MDD, and that antidepressant treatments reverse or normalize these effects. Furthermore, there is a large body of literature demonstrating that MDD is associated with changes in endocrine and metabolic factors. Here we provide a brief overview of the evidence that peripheral growth factors, pro-inflammatory cytokines, endocrine factors, and metabolic markers contribute to the pathophysiology of MDD and antidepressant response. Recent preclinical studies demonstrating that peripheral growth factors and cytokines influence brain function and behavior are also discussed along with their implications for diagnosing and treating patients with MDD. Together, these studies highlight the need to develop a biomarker panel for depression that aims to profile diverse peripheral factors that together provide a biological signature of MDD subtypes as well as treatment response. PMID:21814182

  7. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.

    PubMed

    Scheperle, Rachel A; Abbas, Paul J

    2015-01-01

    The ability to perceive speech is related to the listener's ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel discrimination and the Bamford-Kowal-Bench Speech-in-Noise test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. All electrophysiological measures were significantly correlated with each other and with speech scores for the mixed-model analysis, which takes into account multiple measures per person (i.e., experimental MAPs). The ECAP measures were the best predictor. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech scores; spectral auditory change complex amplitude was the strongest predictor. The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be most useful for within-subject applications when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on a single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered.

  8. Valve Cap For An Electric Storage Cell

    DOEpatents

    Verhoog, Roelof; Genton, Alain

    2000-04-18

    The valve cap for an electric storage cell includes a central annular valve seat (23) and a membrane (5) fixed by its peripheral edge and urged against the seat by a piston (10) bearing thereagainst by means of a spring (12), the rear end of said spring (12) bearing on the endwall (8) of a chamber (20) formed in the cap and containing the piston (10) and the spring. A vent (19) puts the chamber (20) into communication with the atmosphere. A central orifice (26, 28) through the piston (10) and the membrane (5), enables gas from within the cell to escape via the top vent (19) when the valve opens.

  9. Inpatient rehabilitation improves functional capacity, peripheral muscle strength and quality of life in patients with community-acquired pneumonia: a randomised trial.

    PubMed

    José, Anderson; Dal Corso, Simone

    2016-04-01

    Among people who are hospitalised for community-acquired pneumonia, does an inpatient exercise-based rehabilitation program improve functional outcomes, symptoms, quality of life and length of hospital stay more than a respiratory physiotherapy regimen? Randomised trial with concealed allocation, intention-to-treat analysis and blinding of some outcomes. Forty-nine adults hospitalised for community-acquired pneumonia. The experimental group (n=32) underwent a physical training program that included warm-up, stretching, peripheral muscle strength training and walking at a controlled speed for 15 minutes. The control group (n=17) underwent a respiratory physiotherapy regimen that included percussion, vibrocompression, respiratory exercises and free walking. The intervention regimens lasted 8 days. The primary outcome was the Glittre Activities of Daily Living test, which assesses the time taken to complete a series of functional tasks (eg, rising from a chair, walking, stairs, lifting and bending). Secondary outcomes were distance walked in the incremental shuttle walk test, peripheral muscle strength, quality of life, dyspnoea, lung function, C-reactive protein and length of hospital stay. Measures were taken 1 day before and 1 day after the intervention period. There was greater improvement in the experimental group than in the control group on the Glittre Activities of Daily Living test (mean between-group difference 39 seconds, 95% CI 20 to 59) and the incremental shuttle walk test (mean between-group difference 130 m, 95% CI 77 to 182). There were also significantly greater improvements in quality of life, dyspnoea and peripheral muscle strength in the experimental group than in the control group. There were no between-group differences in lung function, C-reactive protein or length of hospital stay. The improvement in functional outcomes after an inpatient rehabilitation program was greater than the improvement after standard respiratory physiotherapy. The exercise training program led to greater benefits in functional capacity, peripheral muscle strength, dyspnoea and quality of life. ClinicalTrials.gov, NCT02103400. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  10. Genome-wide Integration Study of Circulating miRNAs and Peripheral Whole-Blood mRNAs of Male Acute Ischemic Stroke Patients.

    PubMed

    Xue, Yang; Yin, Pengqi; Li, Guozhong; Zhong, Di

    2018-06-01

    Several circulating microRNAs (miRNAs) have been proved to serve as stable biomarkers in blood for acute ischemic stroke (AIS). However, the functions of these biomarkers remain elusive. By conducting the integration analysis of circulating miRNAs and peripheral whole-blood mRNAs using bioinformatics methods, we explored the biological role of these circulating markers in peripheral whole blood at the genome-wide level. Stroke-related circulating miRNA profile data (GSE86291) and peripheral whole-blood mRNA expression data (GSE16561) were collected from the Gene Expression Omnibus (GEO) datasets. We selected male patients to avoid any gender differences in stroke pathology. Male stroke-related miRNAs (M-miRNAs) and mRNAs (M-mRNAs) were detected using GEO2R. Nine M-miRNAs (five up- and four down-regulated) were applied to TargetScan to predict the possible target mRNAs. Next, we intersected these targets with the M-mRNAs (38 up- and three down-regulated) to obtain the male stroke-related overlapped mRNAs (Mo-mRNAs). Finally, we analyzed biological functions of Mo-mRNAs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and constructed networks among the Mo-mRNAs, overlapped M-miRNAs (Mo-miRNAs), and their functions. The Mo-mRNAs were enriched in functions such as platelet degranulation, immune response, and pathways associated with phagosome biology and Staphylococcus aureus infection. This study provides an integrated view of interactions among circulating miRNAs and peripheral whole-blood mRNAs involved in the pathophysiological processes of male AIS. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Fate of combat nerve injury.

    PubMed

    Beltran, Michael J; Burns, Travis C; Eckel, Tobin T; Potter, Benjamin K; Wenke, Joseph C; Hsu, Joseph R

    2012-11-01

    Assess a cohort of combat-related type III open tibia fractures with peripheral nerve injury to determine the injury mechanism and likelihood for recovery or improvement in nerve function. Retrospective study. Three military medical centers. Out of a study cohort of 213 type III open tibia fractures, 32 fractures (in 32 patients) with a total of 43 peripheral nerve injuries (peroneal or tibial) distal to the popliteal fossa met inclusion criteria and were available for follow-up at an average of 20 months (range, 2-48 months). Clinical assessment of motor and sensory nerve improvement. There was a 22% incidence of peripheral nerve injury in the study cohort. At an average follow-up of 20 months (range, 2-48 months), 89% of injured motor nerves were functional, whereas the injured sensory nerves had function in 93%. Fifty percent and 27% of motor and sensory injuries demonstrated improvement, respectively (P = 0.043). With the numbers available, there was no difference in motor or sensory improvement based on mechanism of injury, fracture severity or location, soft tissue injury, or specific nerve injured. In the subset of patients with an initially impaired sensory examination, full improvement was related to fracture location (P = 0.0164). Type III open tibia fractures sustained in combat are associated with a 22% incidence of peripheral nerve injury, and the majority are due to multiple projectile penetrating injury. Despite the severe nature of these injuries, the vast majority of patients had a functional nerve status by an average of 2-year follow-up. Based on these findings, discussions regarding limb salvage and amputation should not be overly influenced by the patient's peripheral nerve status. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  12. Comprehensive assessment of impaired peripheral and coronary artery endothelial functions in smokers using brachial artery ultrasound and oxygen-15-labeled water PET.

    PubMed

    Ochi, Noriki; Yoshinaga, Keiichiro; Ito, Yoichi M; Tomiyama, Yuuki; Inoue, Mamiko; Nishida, Mutsumi; Manabe, Osamu; Shibuya, Hitoshi; Shimizu, Chikara; Suzuki, Eriko; Fujii, Satoshi; Katoh, Chietsugu; Tamaki, Nagara

    2016-10-01

    Comprehensive evaluation of endothelium-dependent and endothelium-independent vascular functions in peripheral arteries and coronary arteries in smokers has never been performed previously. Through the use of brachial artery ultrasound and oxygen-15-labeled water positron emission tomography (PET), we sought to investigate peripheral and coronary vascular dysfunctions in smokers. Eight smokers and 10 healthy individuals underwent brachial artery ultrasound at rest, during reactive hyperemia [250mmHg cuff occlusion (flow-mediated dilatation (FMD)], and following sublingual nitroglycerin (NTG) administration. Myocardial blood flow (MBF) was assessed through O-15-labeled water PET at rest, during adenosine triphosphate (ATP) administration, and during a cold pressor test (CPT). Through ultrasound, smokers were shown to have significantly reduced %FMD compared to controls (6.62±2.28% vs. 11.29±2.75%, p=0.0014). As assessed by O-15-labeled water PET, smokers were shown to have a significantly lower CPT response than were controls (21.1±9.5% vs. 50.9±16.9%, p=0.0004). There was no relationship between %FMD and CPT response (r=0.40, p=0.097). Endothelium-independent vascular dilatation was similar for both groups in terms of coronary flow reserve with PET (p=0.19). Smokers tended to have lower %NTG in the brachial artery (p=0.055). Smokers exhibited impaired coronary endothelial function as well as peripheral brachial artery endothelial function. In addition, there was no correlation between PET and ultrasound measurements, possibly implying that while smokers may have systemic vascular endothelial dysfunction, the characteristics of that dysfunction may be different in peripheral arteries and coronary arteries. Copyright © 2016. Published by Elsevier Ltd.

  13. Effects of peripheral sensory nerve stimulation plus task-oriented training on upper extremity function in patients with subacute stroke: a pilot randomized crossover trial.

    PubMed

    Ikuno, Koki; Kawaguchi, Saori; Kitabeppu, Shinsuke; Kitaura, Masaki; Tokuhisa, Kentaro; Morimoto, Shigeru; Matsuo, Atsushi; Shomoto, Koji

    2012-11-01

    To investigate the feasibility of peripheral sensory nerve stimulation combined with task-oriented training in patients with stroke during inpatient rehabilitation. A pilot randomized crossover trial. Two rehabilitation hospitals. Twenty-two patients with subacute stroke. Participants were randomly assigned to two groups and underwent two weeks of training in addition to conventional inpatient rehabilitation. The immediate group underwent peripheral sensory nerve stimulation combined with task-oriented training in the first week, followed by another week with task-oriented training alone. The delayed group underwent the same training in reverse order. Outcome measures were the level of fatigue and Wolf Motor Function Test. Patients were assessed at baseline, one and two weeks. All participants completed the study with no adverse events. There was no significant difference in level of fatigue between each treatment. From baseline to one week, the immediate group showed larger improvements than the delayed groups in the Wolf Motor Function Test (decrease in mean time (± SD) from 41.9 ± 16.2 seconds to 30.6 ± 11.4 seconds versus from 46.8 ± 19.4 seconds to 42.9 ± 14.7 seconds, respectively) but the difference did not reach significance after Bonferroni correction (P = 0.041). Within-group comparison showed significant improvements in the Wolf Motor Function Test mean time after the peripheral sensory nerve stimulation combined with task-oriented training periods in each group (P < 0.01). Peripheral sensory nerve stimulation is feasible in clinical settings and may enhance the effects of task-oriented training in patients with subacute stroke.

  14. The renal response to electrical stimulation of renal efferent sympathetic nerves in the anaesthetized greyhound.

    PubMed Central

    Poucher, S M; Karim, F

    1991-01-01

    1. The effect of direct electrical stimulation of the renal efferent nerves upon renal haemodynamics and function was studied in greyhounds anaesthetized with chloralose and artificially ventilated. The left kidney was neurally and vascularly isolated, and perfused with blood from one of the femoral arteries at a constant pressure of 99 +/- 1 mmHg. Renal blood flow was measured with a cannulating electromagnetic flow probe placed in the perfusion circuit, glomerular filtration rate by creatinine clearance, urinary sodium excretion by flame photometry and solute excretion by osmometry. Beta-Adrenergic receptor activation was blocked by the infusion of dl-propranolol (17 micrograms kg-1 min-1). The peripheral ends of the ligated renal nerves were stimulated at 0.5, 1.0, 1.5 and 2.0 Hz. 2. At 0.5 Hz frequency only osmolar excretion was significantly reduced (10.3 +/- 3.2%, P less than 0.05, n = 6). Reductions in sodium excretion (53.6 +/- 8.5%, P less than 0.01, n = 6) and water excretion (26.9 +/- 8.0%, P less than 0.05, n = 6) and further reductions of osmolar excretion (20.7 +/- 3.7%, P less than 0.01, n = 6) were observed at 1.0 Hz; however, these were observed in the absence of significant changes in renal blood flow and glomerular filtration rate. Significant reductions were observed in glomerular filtration rate at 1.5 Hz (16.3 +/- 4.1%, P less than 0.02, n = 5) and in renal blood flow at 2.0 Hz (13.1 +/- 4.0%, P less than 0.05, n = 5). Further reductions in urine flow and sodium excretion were also observed at these higher frequencies. 3. These results clearly show that significant changes in renal tubular function can occur in the absence of changes in renal blood flow and glomerular filtration rate when the renal nerves are stimulated electrically from a zero baseline activity up to a frequency of 1.5 Hz. Higher frequencies caused significant changes in both renal haemodynamics and function. PMID:2023113

  15. Comparative characteristics of electron energy spectrum in PIG and arc type discharge plasmas

    NASA Technical Reports Server (NTRS)

    Romanyuk, L. I.; Suavilnyy, N. Y.

    1978-01-01

    The electron distribution functions relative to the velocity component directed along the magnetic field are compared for PIG and arc type discharges. The identity of these functions for the plasma region pierced by the primary electron beam and their difference in the peripheral part of the discharge are shown. It is concluded that the electron distribution function in the PIG type discharge is formed during one transit of the primary electron through the discharge gap. The mechanisms of electron energy spectrum formation in both the axis region and the peripheral region of the discharge are discussed.

  16. Challenges Evaluating Chemotherapy-Induced Peripheral Neuropathy in Childhood Cancer Survivors.

    PubMed

    Mohrmann, Caroline; Armer, Jane; Hayashi, Robert J

    Children treated for cancer are exposed to a variety of chemotherapeutic agents with known toxicity to the peripheral nervous system. The side effect of peripheral neuropathy can cause changes in sensation, function, and even cause pain. Although peripheral neuropathy is recognized by pediatric oncology nurses as an important and significant side effect, measuring neuropathy can be quite complex for clinical care and research efforts. With more children surviving a cancer diagnosis today, this issue is increasingly important for childhood cancer survivors. This article has reviewed existing literature examining peripheral neuropathy in childhood cancer survivors with particular interest paid to measurement tools available and needs for future research. It is important for nurses to choose appropriate measures for clinical care and research methods in order to have an impact on patients experiencing this condition.

  17. Quantitative magnetic resonance (MR) neurography for evaluation of peripheral nerves and plexus injuries

    PubMed Central

    Barousse, Rafael; Socolovsky, Mariano; Luna, Antonio

    2017-01-01

    Traumatic conditions of peripheral nerves and plexus have been classically evaluated by morphological imaging techniques and electrophysiological tests. New magnetic resonance imaging (MRI) studies based on 3D fat-suppressed techniques are providing high accuracy for peripheral nerve injury evaluation from a qualitative point of view. However, these techniques do not provide quantitative information. Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are functional MRI techniques that are able to evaluate and quantify the movement of water molecules within different biological structures. These techniques have been successfully applied in other anatomical areas, especially in the assessment of central nervous system, and now are being imported, with promising results for peripheral nerve and plexus evaluation. DWI and DTI allow performing a qualitative and quantitative peripheral nerve analysis, providing valuable pathophysiological information about functional integrity of these structures. In the field of trauma and peripheral nerve or plexus injury, several derived parameters from DWI and DTI studies such as apparent diffusion coefficient (ADC) or fractional anisotropy (FA) among others, can be used as potential biomarkers of neural damage providing information about fiber organization, axonal flow or myelin integrity. A proper knowledge of physical basis of these techniques and their limitations is important for an optimal interpretation of the imaging findings and derived data. In this paper, a comprehensive review of the potential applications of DWI and DTI neurographic studies is performed with a focus on traumatic conditions, including main nerve entrapment syndromes in both peripheral nerves and brachial or lumbar plexus. PMID:28932698

  18. Electrophysiological measurements of diabetic peripheral neuropathy: A systematic review.

    PubMed

    Shabeeb, Dheyauldeen; Najafi, Masoud; Hasanzadeh, Gholamreza; Hadian, Mohammed Reza; Musa, Ahmed Eleojio; Shirazi, Alireza

    2018-03-28

    Peripheral neuropathy is one of the main complications of diabetes mellitus. One of the features of diabetic nerve damage is abnormality of sensory and motor nerve conduction study. An electrophysiological examination can be reproduced and is also a non-invasive approach in the assessment of peripheral nerve function. Population-based and clinical studies have been conducted to validate the sensitivity of these methods. When the diagnosis was based on clinical electrophysiological examination, abnormalities were observed in all patients. In this research, using a review design, we reviewed the issue of clinical electrophysiological examination of diabetic peripheral neuropathy in articles from 2008 to 2017. For this purpose, PubMed, Scopus and Embase databases of journals were used for searching articles. The researchers indicated that diabetes (both types) is a very disturbing health issue in the modern world and should be given serious attention. Based on conducted studies, it was demonstrated that there are different procedures for prevention and treatment of diabetes-related health problems such as diabetic polyneuropathy (DPN). The first objective quantitative indication of the peripheral neuropathy is abnormality of sensory and motor nerve conduction tests. Electrophysiology is accurate, reliable and sensitive. It can be reproduced and also is a noninvasive approach in the assessment of peripheral nerve function. The methodological review has found that the best method for quantitative indication of the peripheral neuropathy compared with all other methods is clinical electrophysiological examination. For best results, standard protocols such as temperature control and equipment calibration are recommended. Copyright © 2018. Published by Elsevier Ltd.

  19. Is lower peripheral information weighted differently as a function of step number during step climbing?

    PubMed

    Graci, Valentina; Rabuffetti, Marco; Frigo, Carlo; Ferrarin, Maurizio

    2017-02-01

    The importance of peripheral visual information during stair climbing and how peripheral visual information is weighted as a function of step number during step climbing is unclear. Previous authors postulated that the knowledge of predictable characteristics of the steps may decrease reliance on foveal vision and transfer the online visual guidance of stair climbing to peripheral vision. Hence the aim of this study was to investigate if and how the occlusion of the lower peripheral visual field influenced stair climbing and if peripheral visual information was weighted differently between steps. Ten young adult male participants ascended a 5-step staircase under 2 visual conditions: full vision (FV) and lower visual occlusion (LO). Kinematic data (100Hz) were collected. The effect of Vision and Step condition on vertical forefoot clearance was examined with a Repeated Measures 2-way ANOVA. Tukey's HSD test was used for post-hoc comparisons. A significant interaction Vision x Step and main effect of Step were found (p<=0.04): vertical forefoot clearance was greater in LO compared to FV condition only on the 1st and the 2nd steps (p<0.013) and on the last step compared to the other steps (p<0.01). These findings suggest that online peripheral visual information is more relevant when negotiating the first two steps, rather than the end of a staircase and that the steps subsequent the first few ones may require different information likely based on proprioception or working memory of the step height. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery.

    PubMed

    Borton, Anna Henry; Benson, Bryan L; Neilson, Lee E; Saunders, Ashley; Alaiti, M Amer; Huang, Alex Y; Jain, Mukesh K; Proweller, Aaron; Ramirez-Bergeron, Diana L

    2018-06-01

    Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. We used Arnt SMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. Arnt SMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of Arnt SMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. Arnt SMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in Arnt SMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Neuronal deletion of ghrelin receptor almost completely prevents diet-induced obesity

    USDA-ARS?s Scientific Manuscript database

    Ghrelin signaling has major effects on energy- and glucose-homeostasis, but it is unknown whether ghrelin's functions are centrally and/or peripherally mediated. The ghrelin receptor, Growth Hormone Secretagogue Receptor (GHS-R), is highly expressed in brain and detectable in some peripheral tissues...

  2. Sustained reduction in blood pressure from electrical activation of the baroreflex is mediated via the central pathway of unmyelinated baroreceptors.

    PubMed

    Turner, Michael J; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru

    2014-06-13

    This study aims to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) baroreceptor central pathways to the baroreflex control of sympathetic nerve activity and arterial pressure. Two binary white noise stimulation protocols were used to electrically stimulate the aortic depressor nerve and activate reflex responses from either A-fiber (3 V, 20-100 Hz) or C-fiber (20 V, 0-10 Hz) baroreceptor in anesthetized Sprague-Dawley rats (n=10). Transfer function analysis was performed between stimulation and sympathetic nerve activity (central arc), sympathetic nerve activity and arterial pressure (peripheral arc), and stimulation and arterial pressure (Stim-AP arc). The central arc transfer function from nerve stimulation to splanchnic sympathetic nerve activity displayed derivative characteristics for both stimulation protocols. However, the modeled steady-state gain (0.28 ± 0.04 vs. 4.01 ± 0.2%·Hz(-1), P<0.001) and coherence at 0.01 Hz (0.44 ± 0.05 vs. 0.81 ± 0.03, P<0.05) were significantly lower for A-fiber stimulation compared with C-fiber stimulation. The slope of the dynamic gain was higher for A-fiber stimulation (14.82 ± 1.02 vs. 7.21 ± 0.79 dB·decade(-1), P<0.001). The steady-state gain of the Stim-AP arc was also significantly lower for A-fiber stimulation compared with C-fiber stimulation (0.23 ± 0.05 vs. 3.05 ± 0.31 mmHg·Hz(-1), P<0.001). These data indicate that the A-fiber central pathway contributes to high frequency arterial pressure regulation and the C-fiber central pathway provides more sustained changes in sympathetic nerve activity and arterial pressure. A sustained reduction in arterial pressure from electrical stimulation of arterial baroreceptor afferents is likely mediated through the C-fiber central pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a military-based study.

    PubMed

    Grenier, Jordane G; Millet, Guillaume Y; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît

    2012-01-01

    Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre-/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. After the SMM, MVC declined by -10.2±3.6% for KE (P<0.01) and -10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter walking characteristics. Name: Effect of prolonged military exercises with high load carriage on neuromuscular fatigue and physiological/biomechanical responses. Number: NCT01127191.

  4. Effects of Extreme-Duration Heavy Load Carriage on Neuromuscular Function and Locomotion: A Military-Based Study

    PubMed Central

    Grenier, Jordane G.; Millet, Guillaume Y.; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît

    2012-01-01

    Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. Purpose The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Methods Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre−/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. Results After the SMM, MVC declined by −10.2±3.6% for KE (P<0.01) and −10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. Conclusion this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter walking characteristics. Clinical Trial Registration Name: Effect of prolonged military exercises with high load carriage on neuromuscular fatigue and physiological/biomechanical responses. Number: NCT01127191. PMID:22927995

  5. Misdirection of Regenerating Axons and Functional Recovery Following Sciatic Nerve Injury in Rats

    PubMed Central

    Hamilton, Shirley K.; Hinkle, Marcus L.; Nicolini, Jennifer; Rambo, Lindsay N.; Rexwinkle, April M.; Rose, Sam J.; Sabatier, Manning J.; Backus, Deborah; English, Arthur W.

    2013-01-01

    Poor functional recovery found after peripheral nerve injury has been attributed to the misdirection of regenerating axons to reinnervate functionally inappropriate muscles. We applied brief electrical stimulation (ES) to the common fibular (CF) but not the tibial (Tib) nerve just prior to transection and repair of the entire rat sciatic nerve, to attempt to influence the misdirection of its regenerating axons. The specificity with which regenerating axons reinnervated appropriate targets was evaluated physiologically using compound muscle action potentials (M responses) evoked from stimulation of the two nerve branches above the injury site. Functional recovery was assayed using the timing of electromyography (EMG) activity recorded from the tibialis anterior (TA) and soleus (Sol) muscles during treadmill locomotion and kinematic analysis of hindlimb locomotor movements. Selective ES of the CF nerve resulted in restored M-responses at earlier times than in unstimulated controls in both TA and Sol muscles. Stimulated CF axons reinnervated inappropriate targets to a greater extent than unstimulated Tib axons. During locomotion, functional antagonist muscles, TA and Sol, were coactivated both in stimulated rats and in unstimulated but injured rats. Hindlimb kinematics in stimulated rats were comparable to untreated rats, but significantly different from intact controls. Selective ES promotes enhanced axon regeneration but does so with decreased fidelity of muscle reinnervation. Functional recovery is neither improved nor degraded, suggesting that compensatory changes in the outputs of the spinal circuits driving locomotion may occur irrespective of the extent of misdirection of regenerating axons in the periphery. PMID:21120925

  6. Central as well as Peripheral Attentional Bottlenecks in Dual-Task Performance Activate Lateral Prefrontal Cortices

    PubMed Central

    Szameitat, André J.; Vanloo, Azonya; Müller, Hermann J.

    2016-01-01

    Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage) as well as peripheral limitations (i.e., bottleneck at response initiation) both demand executive functions located in the lateral prefrontal cortex. For this, we re-analyzed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP) during functional magnetic resonance imaging (fMRI). In one study (N = 17), the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group). In the other study (N = 16), the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group). Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect). Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus (IFG) were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices (LPFC). Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns suggest that the executive functions resolving interference at least partially differ between the groups. PMID:27014044

  7. A comparison of respiratory and peripheral muscle strength, functional exercise capacity, activities of daily living and physical fitness in patients with cystic fibrosis and healthy subjects.

    PubMed

    Arikan, Hulya; Yatar, İlker; Calik-Kutukcu, Ebru; Aribas, Zeynep; Saglam, Melda; Vardar-Yagli, Naciye; Savci, Sema; Inal-Ince, Deniz; Ozcelik, Ugur; Kiper, Nural

    2015-01-01

    There are limited reports that compare muscle strength, functional exercise capacity, activities of daily living (ADL) and parameters of physical fitness of cystic fibrosis (CF) patients with healthy peers in the literature. The purpose of this study was to assess and compare respiratory and peripheral muscle strength, functional exercise capacity, ADL and physical fitness in patients with CF and healthy subjects. Nineteen patients with CF (mean forced expiratory volume in one second-FEV1: 86.56±18.36%) and 20 healthy subjects were included in this study. Respiratory (maximal inspiratory pressure-MIP and maximal expiratory pressure-MEP) and peripheral muscle strength (quadriceps, shoulder abductors and hand grip strength) were evaluated. Functional exercise capacity was determined with 6min walk test (6MWT). ADL was assessed with Glittre ADL test and physical fitness was assessed with Munich fitness test (MFT). There were not any statistically significant difference in MIP, %MIP, MEP and %MEP values between two groups (p>0.05). %Peripheral muscle strength (% quadriceps and shoulder abductors strength), 6MWT distance and %6MWT distance were significantly lower in patients with CF than those of healthy subjects (p<0.05). Glittre ADL-test time was significantly longer in patients with CF than healthy subjects (p<0.05). According to Munich fitness test, the number of bouncing a ball, hanging score, distance of standing vertical jumping and standing vertical jumping score were significantly lower in patients with CF than those of healthy subjects (p<0.05). Peripheral muscle strength, functional exercise capacity, ADL performance and speed, coordination, endurance and power components of physical fitness are adversely affected in mild-severe patients with CF compared to healthy peers. Evaluations must be done in comprehensive manner in patients with CF with all stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Role of transcutaneous electric nerve stimulation in the management of trigeminal neuralgia

    PubMed Central

    Singla, Sanju; Prabhakar, Vikram; Singla, Rajan Kumar

    2011-01-01

    Background: Trigeminal neuralgia typically involves nerves supplying teeth, jaws and face of older females. Though the etiology is usually obscure, different treatment modalities have been tried for it viz. medicinal treatment, injection alcohol, peripheral neurectomy, rhizotomy, and microvascular decompression etc. Transcutaneous electric nerve stimulation (TENS) is an emerging and promising option for management of such patients. Aims and Design: The present study was designed with an aim to study the efficacy of TENS in management of trigeminal neuralgia. Materials and Methods: The study was conducted on 30 patients of trigeminal neuralgia confirmed by diagnostic nerve block. They were given bursts of TENS for 20-40 days over the path of the affected nerve and subsequently evaluated at 1 month and 3 month intervals by visual analogue scale (VAS), verbal pain scale (VPS), a functional outcome scales for main daily activities like sleep, chewing, talking, or washing face. Results: The results showed that, on VAS, the score decreased from 8.9 (Pre TENS) to 3.1 at 1 month and 1.3 at 3 months, and on VPS, the score decreased from 3.5 (Pre TENS) to 1.2 at 1 month and 0.3 at 3 months. Similarly, a considerable decrease in scores was seen on functional outcome scale for different activities. No side effects like irritation or redness of skin were seen in any of the patients. Conclusions: Thus, TENS was found to be a safe, easily acceptable, and non-invasive outdoor patient department procedure for management of trigeminal neuralgia. PMID:21897677

  9. From Morphology to Neural Information: The Electric Sense of the Skate

    PubMed Central

    Camperi, Marcelo; Tricas, Timothy C; Brown, Brandon R

    2007-01-01

    Morphology typically enhances the fidelity of sensory systems. Sharks, skates, and rays have a well-developed electrosense that presents strikingly unique morphologies. Here, we model the dynamics of the peripheral electrosensory system of the skate, a dorsally flattened batoid, moving near an electric dipole source (e.g., a prey organism). We compute the coincident electric signals that develop across an array of the skate's electrosensors, using electrodynamics married to precise morphological measurements of sensor location, infrastructure, and vector projection. Our results demonstrate that skate morphology enhances electrosensory information. Not only could the skate locate prey using a simple population vector algorithm, but its morphology also specifically leads to quick shifts in firing rates that are well-suited to the demonstrated bandwidth of the electrosensory system. Finally, we propose electrophysiology trials to test the modeling scheme. PMID:17571918

  10. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve...of Decellularized Nerve Allograft with 5a. CONTRACT NUMBER Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve 5b. GRANT NUMBER W81XWH...commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with autologous bone marrow

  11. Pretransplantation recipient regulatory T cell suppressive function predicts delayed and slow graft function after kidney transplantation.

    PubMed

    Nguyen, Minh-Tri J P; Fryml, Elise; Sahakian, Sossy K; Liu, Shuqing; Michel, Rene P; Lipman, Mark L; Mucsi, Istvan; Cantarovich, Marcelo; Tchervenkov, Jean I; Paraskevas, Steven

    2014-10-15

    Delayed graft function (DGF) and slow graft function (SGF) are a continuous spectrum of ischemia-reperfusion-related acute kidney injury (AKI) that increases the risk for acute rejection and graft loss after kidney transplantation. Regulatory T cells (Tregs) are critical in transplant tolerance and attenuate murine AKI. In this prospective observational cohort study, we evaluated whether pretransplantation peripheral blood recipient Treg frequency and suppressive function are predictors of DGF and SGF after kidney transplantation. Deceased donor kidney transplant recipients (n=53) were divided into AKI (n=37; DGF, n=10; SGF, n=27) and immediate graft function (n=16) groups. Pretransplantation peripheral blood CD4CD25FoxP3 Treg frequency was quantified by flow cytometry. Regulatory T-cell suppressive function was measured by suppression of autologous effector T-cell proliferation by Treg in co-culture. Pretransplantation Treg suppressive function, but not frequency, was decreased in AKI recipients (P<0.01). In univariate and multivariate analyses accounting for the effects of cold ischemic time and donor age, Treg suppressive function discriminated DGF from immediate graft function recipients in multinomial logistic regression (odds ratio, 0.77; P<0.01), accurately predicted AKI in receiver operating characteristic curve (area under the curve, 0.82; P<0.01), and predicted 14-day estimated glomerular filtration rate in linear regression (P<0.01). Our results indicate that recipient peripheral blood Treg suppressive function is a potential independent pretransplantation predictor of DGF and SGF.

  12. [Peripheral nerve repair: 30 centuries of scientific research].

    PubMed

    Desouches, C; Alluin, O; Mutaftschiev, N; Dousset, E; Magalon, G; Boucraut, J; Feron, F; Decherchi, P

    2005-11-01

    Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.

  13. Wave disc engine apparatus

    DOEpatents

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  14. Advanced Technologies in Trauma Critical Care Management

    DTIC Science & Technology

    2012-01-01

    CVL, central venous line; DVT, deep venous thrombosis; FAST, focused assessment with sonography for trauma; IVC, inferior vena cava; PIV, peripheral...either for a 1-time view of the target vein or in real time using a 1- or 2-person technique. Recently, ultrasound-guided subclavian central venous ...technologies such as bedside echocardiography, central venous pressure monitoring, and cardiac electrical velocimetry. These limitations aside, it is

  15. Monitoring sepsis using electrical cell profiling.

    PubMed

    Prieto, Javier L; Su, Hao-Wei; Hou, Han Wei; Vera, Miguel Pinilla; Levy, Bruce D; Baron, Rebecca M; Han, Jongyoon; Voldman, Joel

    2016-11-01

    Sepsis is a potentially lethal condition that may be ameliorated through early monitoring of circulating activated leukocytes for faster stratification of severity of illness and improved administration of targeted treatment. Characterization of the intrinsic electrical properties of leukocytes is label-free and can provide a quick way to quantify the number of activated cells as sepsis progresses. Iso-dielectric separation (IDS) uses dielectrophoresis (DEP) to characterize the electrical signatures of cells. Here, we use IDS to show that activated and non-activated leukocytes have different electrical properties. We then present a double-sided version of the IDS platform to increase throughput to characterize thousands of cells. This new platform is less prone to cell fouling and allows faster characterization. Using peripheral blood samples from a cecal ligation and puncture (CLP) model of polymicrobial sepsis in mice, we estimate the number of activated leukocytes by looking into differences in the electrical properties of cells. We show for the first time using animal models that electrical cell profiling correlates with flow cytometry (FC) results and that IDS is therefore a good candidate for providing rapid monitoring of sepsis by quantifying the number of circulating activated leukocytes.

  16. Modelling the impact of altered axonal morphometry on the response of regenerative nervous tissue to electrical stimulation through macro-sieve electrodes.

    PubMed

    Zellmer, Erik R; MacEwan, Matthew R; Moran, Daniel W

    2018-04-01

    Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Recruitment thresholds of individual regenerated fibers with diameters  >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.

  17. Modelling the impact of altered axonal morphometry on the response of regenerative nervous tissue to electrical stimulation through macro-sieve electrodes

    NASA Astrophysics Data System (ADS)

    Zellmer, Erik R.; MacEwan, Matthew R.; Moran, Daniel W.

    2018-04-01

    Objective. Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). Approach. A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Main results. Recruitment thresholds of individual regenerated fibers with diameters  >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Significance. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.

  18. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruskamo, Salla; University of Oulu, Oulu; Yadav, Ravi P.

    2014-01-01

    The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structuralmore » analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.« less

  19. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    NASA Astrophysics Data System (ADS)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  20. Neurotrophin gene therapy for sustained neural preservation after deafness.

    PubMed

    Atkinson, Patrick J; Wise, Andrew K; Flynn, Brianna O; Nayagam, Bryony A; Hume, Clifford R; O'Leary, Stephen J; Shepherd, Robert K; Richardson, Rachael T

    2012-01-01

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the residual spiral ganglion neurons. These neurons, however, undergo progressive degeneration after hearing loss, marked initially by peripheral fibre retraction and ultimately culminating in cell death. This research aims to use gene therapy techniques to both hold and reverse this degeneration by providing a sustained and localised source of neurotrophins to the deafened cochlea. Adenoviral vectors containing green fluorescent protein, with or without neurotrophin-3 and brain derived neurotrophic factor, were injected into the lower basal turn of scala media of guinea pigs ototoxically deafened one week prior to intervention. This single injection resulted in localised and sustained gene expression, principally in the supporting cells within the organ of Corti. Guinea pigs treated with adenoviral neurotrophin-gene therapy had greater neuronal survival compared to contralateral non-treated cochleae when examined at 7 and 11 weeks post injection. Moreover; there was evidence of directed peripheral fibre regrowth towards cells expressing neurotrophin genes after both treatment periods. These data suggest that neurotrophin-gene therapy can provide sustained protection of spiral ganglion neurons and peripheral fibres after hearing loss.

  1. Peripheral Inflammation Undermines the Plasticity of the Isolated Spinal Cord

    PubMed Central

    Huie, John R.; Grau, James W.

    2009-01-01

    Peripheral capsaicin treatment induces molecular changes that sensitize the responses of nociceptive neurons in the spinal dorsal horn. The current studies demonstrate that capsaicin also undermines the adaptive plasticity of the spinal cord, rendering the system incapable of learning a simple instrumental task. In these studies, male rats are transected at the second thoracic vertebra and are tested 24 to 48 hours later. During testing, subjects receive shock to one hindleg when it is extended (controllable stimulation). Rats quickly learn to maintain the leg in a flexed position. Rats that have been injected with capsaicin (1% or 3%) in the hindpaw fail to learn, even when tested on the leg contralateral to the injection. This learning deficit lasts at least 24 hours. Interestingly, training with controllable electrical stimulation prior to capsaicin administration protects the spinal cord against the maladaptive effects. Rats pretrained with controllable stimulation do not display a learning deficit or tactile allodynia. Moreover, controllable stimulation, combined with naltrexone, reverses the capsaicin-induced deficit. These data suggest that peripheral inflammation, accompanying spinal cord injuries, might have an adverse effect on recovery. PMID:18298266

  2. Role of Netrin-1 Signaling in Nerve Regeneration

    PubMed Central

    Dun, Xin-Peng; Parkinson, David B.

    2017-01-01

    Netrin-1 was the first axon guidance molecule to be discovered in vertebrates and has a strong chemotropic function for axonal guidance, cell migration, morphogenesis and angiogenesis. It is a secreted axon guidance cue that can trigger attraction by binding to its canonical receptors Deleted in Colorectal Cancer (DCC) and Neogenin or repulsion through binding the DCC/Uncoordinated (Unc5) A–D receptor complex. The crystal structures of Netrin-1/receptor complexes have recently been revealed. These studies have provided a structure based explanation of Netrin-1 bi-functionality. Netrin-1 and its receptor are continuously expressed in the adult nervous system and are differentially regulated after nerve injury. In the adult spinal cord and optic nerve, Netrin-1 has been considered as an inhibitor that contributes to axon regeneration failure after injury. In the peripheral nervous system, Netrin-1 receptors are expressed in Schwann cells, the cell bodies of sensory neurons and the axons of both motor and sensory neurons. Netrin-1 is expressed in Schwann cells and its expression is up-regulated after peripheral nerve transection injury. Recent studies indicated that Netrin-1 plays a positive role in promoting peripheral nerve regeneration, Schwann cell proliferation and migration. Targeting of the Netrin-1 signaling pathway could develop novel therapeutic strategies to promote peripheral nerve regeneration and functional recovery. PMID:28245592

  3. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy.

    PubMed

    Iebba, Valerio; Guerrieri, Francesca; Di Gregorio, Vincenza; Levrero, Massimo; Gagliardi, Antonella; Santangelo, Floriana; Sobolev, Anatoly P; Circi, Simone; Giannelli, Valerio; Mannina, Luisa; Schippa, Serena; Merli, Manuela

    2018-05-29

    In liver cirrhosis (LC), impaired intestinal functions lead to dysbiosis and possible bacterial translocation (BT). Bacteria or their byproducts within the bloodstream can thus play a role in systemic inflammation and hepatic encephalopathy (HE). We combined 16S sequencing, NMR metabolomics and network analysis to describe the interrelationships of members of the microbiota in LC biopsies, faeces, peripheral/portal blood and faecal metabolites with clinical parameters. LC faeces and biopsies showed marked dysbiosis with a heightened proportion of Enterobacteriaceae. Our approach showed impaired faecal bacterial metabolism of short-chain fatty acids (SCFAs) and carbon/methane sources in LC, along with an enhanced stress-related response. Sixteen species, mainly belonging to the Proteobacteria phylum, were shared between LC peripheral and portal blood and were functionally linked to iron metabolism. Faecal Enterobacteriaceae and trimethylamine were positively correlated with blood proinflammatory cytokines, while Ruminococcaceae and SCFAs played a protective role. Within the peripheral blood and faeces, certain species (Stenotrophomonas pavanii, Methylobacterium extorquens) and metabolites (methanol, threonine) were positively related to HE. Cirrhotic patients thus harbour a 'functional dysbiosis' in the faeces and peripheral/portal blood, with specific keystone species and metabolites related to clinical markers of systemic inflammation and HE.

  4. alpha(2)-adrenoceptor antagonist properties of OPC-28326, a novel selective peripheral vasodilator.

    PubMed

    Orito, K; Kishi, M; Imaizumi, T; Nakazawa, T; Hashimoto, A; Mori, T; Kambe, T

    2001-10-01

    1. Antagonistic properties of OPC-28326 ([4-(N-methyl-2-phenylethylamino)-1-(3,5-dimethyl-4-propionyl-aminobenzoyl)] piperidine hydrochloride monohydrate), a selective peripheral vasodilator, were investigated by analysing the data from functional studies in various tissues from the rat and binding studies of the drug to alpha(2)-adrenoceptor subtypes. 2. Using a human recombinant receptor and rat kidney cortex, we found that OPC-28326 displays affinities to alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptors with K(i) values of 2040, 285, and 55 nM, respectively. The K(i) values of yohimbine for alpha(2A)-, alpha(2B)-, and alpha(2C)-adrenoceptors were 3.0, 2.0 and 11.0 nM, respectively. 3. B-HT 920, an alpha(2)-adrenoceptor agonist, produced a pressor response via peripheral postsynaptic alpha(2)-adrenoceptor stimulation (thought to be an alpha(2B)-subtype) in a reserpine-pretreated pithed rat preparation. OPC-28326 (3 - 30 mg kg(-1), i.v.) and yohimbine (0.3 - 3 mg kg(-1), i.v.) caused dose-dependent rightward shift in the pressor dose-response curve induced by B-HT 920. The apparent pA(2) values were 1.55 (0.87 - 2.75, 95% confidence interval) and 0.11 (0.06 - 0.21) mg kg(-1), respectively. The potency of OPC-28326 was about 14 times less than that of yohimbine. 4. Clonidine inhibited the tension developed by electrical stimulation, of the rat vas deferens, by its peripheral presynaptic alpha(2A/D)-adrenoceptor action. OPC-28326 (1 - 100 microM) and yohimbine (10 - 1000 nM) caused a rightward shift in the concentration-response curve of clonidine. The pA(2) values were 5.73 (5.54 - 5.91) and 7.92 (7.84 - 8.01), respectively, providing evidence for a potency of OPC-28326 of about 155 times less than that of yohimbine. 5. Mydriasis was induced by brimonidine via stimulation of central alpha(2A/D)-adrenoceptors in anaesthetized rats. Intravenous OPC-28326 had no effect on this action, even at a very high dose of 10 mg kg(-1) i.v., while yohimbine (0.1 - 0.3 mg kg(-1) i.v.) inhibited mydriasis in a dose-dependent manner, indicating that OPC-28326 was at least 100 times less potent than yohimbine in regard to the anti-mydriatic effect. 6. These data suggest that OPC-28326 preferentially exerts peripheral and postsynaptic antagonistic actions on the alpha(2B)- and alpha(2C)-adrenoceptor subtypes.

  5. [Regeneration and repair of peripheral nerves: clinical implications in facial paralysis surgery].

    PubMed

    Hontanilla, B; Vidal, A

    2000-01-01

    Peripheral nerve lesions are one of the most frequent causes of chronic incapacity. Upper or lower limb palsies due to brachial or lumbar plexus injuries, facial paralysis and nerve lesions caused by systemic diseases are one of the major goals of plastic and reconstructive surgery. However, the poor results obtained in repaired peripheral nerves during the Second World War lead to a pessimist vision of peripheral nerve repair. Nevertheless, a well understanding of microsurgical principles in reconstruction and molecular biology of nerve regeneration have improved the clinical results. Thus, although the results obtained are quite far from perfect, these procedures give to patients a hope in the recuperation of their lesions and then on function. Technical aspects in nerve repair are well established; the next step is to manipulate the biology. In this article we will comment the biological processes which appear in peripheral nerve regeneration, we will establish the main concepts on peripheral nerve repair applied in facial paralysis cases and, finally, we will proportionate some ideas about how clinical practice could be affected by manipulation of the peripheral nerve biology.

  6. Sodium Iodate Selectively Injuries the Posterior Pole of the Retina in a Dose-Dependent Manner: Morphological and Electrophysiological Study

    PubMed Central

    Machalińska, Anna; Lubiński, Wojciech; Kłos, Patrycja; Kawa, Miłosz; Baumert, Bartłomiej; Penkala, Krzysztof; Grzegrzółka, Ryszard; Karczewicz, Danuta; Wiszniewska, Barbara

    2010-01-01

    Sequential morphological and functional features of retinal damage in mice exposed to different doses (40 vs. 20 mg/kg) of sodium iodate (NaIO3) were analyzed. Retinal morphology, apoptosis (TUNEL assay), and function (electroretinography; ERG) were examined at several time points after NaIO3 administration. The higher dose of NaIO3 caused progressive degeneration of the whole retinal area and total suppression of scotopic and photopic ERG. In contrast, the lower dose induced much less severe degeneration in peripheral part of retina along with a moderate decline of b- and a-wave amplitudes in ERG, corroborating the presence of regions within retina that retain their function. The peak of photoreceptor apoptosis was found on the 3rd day, but the lower dose induced more intense reaction within the central retina than in its peripheral region. In conclusion, these results indicate that peripheral area of the retina reveals better resistance to NaIO3 injury than its central part. PMID:20725778

  7. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity

    NASA Astrophysics Data System (ADS)

    Sabetian, Parisa; Popovic, Milos R.; Yoo, Paul B.

    2017-06-01

    Objective. Differential measurement of efferent and afferent peripheral nerve activity offers a promising means of improving the clinical utility of implantable neuroprostheses. The tripolar nerve cuff electrode has historically served as the gold standard for achieving high signal-to-noise ratios (SNRs) of the recordings. However, the symmetrical geometry of this electrode array (i.e. electrically-shorted side contacts) precludes it from measuring electrical signals that can be used to obtain directional information. In this study, we investigated the feasibility of using a bipolar nerve cuff electrode to achieve high-SNR of peripheral nerve activity. Approach. A finite element model was implemented to investigate the effects of electrode design parameters—electrode length, electrode edge length (EEL), and a conductive shielding layer (CSL)—on simulated single fiber action potentials (SFAP) and also artifact noise signals (ANS). Main results. Our model revealed that the EEL was particularly effective in increasing the peak-to-peak amplitude of the SFAP (319%) and reducing the common mode ANS (67%) of the bipolar cuff electrode. By adding a CSL to the bipolar cuff electrode, the SNR was found to be 65.2% greater than that of a conventional tripolar cuff electrode. In vivo experiments in anesthetized rats confirmed that a bipolar cuff electrode can achieve a SNR that is 38% greater than that achieved by a conventional tripolar cuff electrode (p  <  0.05). Significance. The current study showed that bipolar nerve cuff electrodes can be designed to achieve SNR levels that are comparable to that of tripolar configuration. Further work is needed to confirm that these bipolar design parameters can be used to record bi-directional neural activity in a physiological setting.

  8. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.

    PubMed

    Sabetian, Parisa; Popovic, Milos R; Yoo, Paul B

    2017-06-01

    Differential measurement of efferent and afferent peripheral nerve activity offers a promising means of improving the clinical utility of implantable neuroprostheses. The tripolar nerve cuff electrode has historically served as the gold standard for achieving high signal-to-noise ratios (SNRs) of the recordings. However, the symmetrical geometry of this electrode array (i.e. electrically-shorted side contacts) precludes it from measuring electrical signals that can be used to obtain directional information. In this study, we investigated the feasibility of using a bipolar nerve cuff electrode to achieve high-SNR of peripheral nerve activity. A finite element model was implemented to investigate the effects of electrode design parameters-electrode length, electrode edge length (EEL), and a conductive shielding layer (CSL)-on simulated single fiber action potentials (SFAP) and also artifact noise signals (ANS). Our model revealed that the EEL was particularly effective in increasing the peak-to-peak amplitude of the SFAP (319%) and reducing the common mode ANS (67%) of the bipolar cuff electrode. By adding a CSL to the bipolar cuff electrode, the SNR was found to be 65.2% greater than that of a conventional tripolar cuff electrode. In vivo experiments in anesthetized rats confirmed that a bipolar cuff electrode can achieve a SNR that is 38% greater than that achieved by a conventional tripolar cuff electrode (p  <  0.05). The current study showed that bipolar nerve cuff electrodes can be designed to achieve SNR levels that are comparable to that of tripolar configuration. Further work is needed to confirm that these bipolar design parameters can be used to record bi-directional neural activity in a physiological setting.

  9. Effect of peripheral nerve injury on receptive fields of cells in the cat spinal cord.

    PubMed

    Devor, M; Wall, P D

    1981-06-20

    When the sciatic and saphenous nerves are cut and ligated in adult cats, the immediate effect is the production of a completely anesthetic foot and a region in medial lumbar dorsal horn where almost all cells have lost their natural receptive fields (RFs). Beginning at about 1 week and maturing by 4 weeks, some 40% of cells in the medial dorsal horn gain a novel RF on proximal skin, that is, upper and lower leg, thigh, lower back, or perineum. This new RF is supplied by intact proximal nerves and not by sciatic and saphenous nerve fibers that sprouted in the periphery. During the period of switching of RFs from distal to proximal skin there was no gross atrophy of dorsal horn grey matter and no Fink-Heimer stainable degeneration of central arbors and terminals of peripherally axotomized afferents. In intact animals medial dorsal horn cells showed no sign of response to mechanical stimulation of proximal skin. RFs of some of the cells had spontaneous variations in size and sensitivity, but these were not nearly sufficient to explain the large shifts observed after chronic nerve section. Tetanic electrical stimulation of skin or peripheral nerves often caused RFs to shrink, but never to expand. Although natural stimuli of proximal skin would not excite medial dorsal horn cells in intact or acutely deafferented animals, it was found that electrical stimulation of proximal nerves did excite many of these cells, often at short latencies. In the discussion we justify our working hypothesis that the appearance of novel RFs is due to the strengthening or unmasking of normally present but ineffective afferent terminals, rather than to long-distance sprouting of new afferent arbors within the spinal cord.

  10. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    PubMed

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. © 2016 Wiley Periodicals, Inc.

  11. Central and peripheral fatigue in knee and elbow extensor muscles after a long-distance cross-country ski race.

    PubMed

    Boccia, G; Dardanello, D; Zoppirolli, C; Bortolan, L; Cescon, C; Schneebeli, A; Vernillo, G; Schena, F; Rainoldi, A; Pellegrini, B

    2017-09-01

    Although elbow extensors (EE) have a great role in cross-country skiing (XC) propulsion, previous studies on neuromuscular fatigue in long-distance XC have investigated only knee extensor (KE) muscles. In order to investigate the origin and effects of fatigue induced by long-distance XC race, 16 well-trained XC skiers were tested before and after a 56-km classical technique race. Maximal voluntary isometric contraction (MVC) and rate of force development (RFD) were measured for both KE and EE. Furthermore, electrically evoked double twitch during MVC and at rest were measured. MVC decreased more in KE (-13%) than in EE (-6%, P = 0.016), whereas the peak RFD decreased only in EE (-26%, P = 0.02) but not in KE. The two muscles showed similar decrease in voluntary activation (KE -5.0%, EE -4.8%, P = 0.61) and of double twitch amplitude (KE -5%, EE -6%, P = 0.44). A long-distance XC race differently affected the neuromuscular function of lower and upper limbs muscles. Specifically, although the strength loss was greater for lower limbs, the capacity to produce force in short time was more affected in the upper limbs. Nevertheless, both KE and EE showed central and peripheral fatigue, suggesting that the origins of the strength impairments were multifactorial for the two muscles. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. “Can't Walk Nor Raise Arms to Head”

    PubMed Central

    Pendleton, Courtney; Dorsi, Michael J.; Belzberg, Allan J.; Cohen-Gadol, Aaron A.; Quiñones-Hinojosa, Alfredo

    2015-01-01

    Study Design This study was a retrospective chart review for patients undergoing operative treatment by Dr. Harvey Cushing at the Johns Hopkins Hospital between 1896 and 1912. Objective To illustrate the early use of peripheral nerve anastomoses for the treatment of postpoliomyelitis paralysis. Summary of Background Data At the turn of the 20th century, poliomyelitis was recognized as a disease of neurons; neurological surgeons sought to find a surgical cure for the paralysis occurring after the disease onset. Peripheral nerve anastomoses were an attractive option employed during this time. Methods Following IRB approval, and through the courtesy of the Alan Mason Chesney Archives, the surgical records of the Johns Hopkins Hospital from 1896 to 1912 were reviewed. A single case of peripheral nerve anastomosis for the treatment of postpoliomyelitis paralysis was selected for further analysis. Results Cushing performed a multiple peripheral nerve anastomoses in a 3-year-old girl. Although the patient experienced no postoperative complications, there was no improvement in her function at the time of discharge from the hospital, and no long-term follow-up was available. Conclusion While unsuccessful, Cushing's use of peripheral nerve anastomoses to restore motor function in the pediatric patient described here demonstrates his commitment to pushing the boundaries of neurological surgery at the turn of the 20th century. PMID:21301395

  13. "Can't walk nor raise arms to head": Harvey Cushing's surgical treatment of poliomyelitis.

    PubMed

    Pendleton, Courtney; Dorsi, Michael J; Belzberg, Allan J; Cohen-Gadol, Aaron A; Quiñones-Hinojosa, Alfredo

    2012-02-15

    This study was a retrospective chart review for patients undergoing operative treatment by Dr. Harvey Cushing at the Johns Hopkins Hospital between 1896 and 1912. To illustrate the early use of peripheral nerve anastomoses for the treatment of postpoliomyelitis paralysis. At the turn of the 20th century, poliomyelitis was recognized as a disease of neurons; neurological surgeons sought to find a surgical cure for the paralysis occurring after the disease onset. Peripheral nerve anastomoses were an attractive option employed during this time. Following IRB approval, and through the courtesy of the Alan Mason Chesney Archives, the surgical records of the Johns Hopkins Hospital from 1896 to 1912 were reviewed. A single case of peripheral nerve anastomosis for the treatment of postpoliomyelitis paralysis was selected for further analysis. Cushing performed a multiple peripheral nerve anastomoses in a 3-year-old girl. Although the patient experienced no postoperative complications, there was no improvement in her function at the time of discharge from the hospital, and no long-term follow-up was available. While unsuccessful, Cushing's use of peripheral nerve anastomoses to restore motor function in the pediatric patient described here demonstrates his commitment to pushing the boundaries of neurological surgery at the turn of the 20th century.

  14. A 3D-engineered porous conduit for peripheral nerve repair

    PubMed Central

    Tao, Jie; Hu, Yu; Wang, Shujuan; Zhang, Jiumeng; Liu, Xuan; Gou, Zhiyuan; Cheng, Hao; Liu, Qianqi; Zhang, Qianqian; You, Shenglan; Gou, Maling

    2017-01-01

    End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy. PMID:28401914

  15. Impact of Morphometry, Myelinization and Synaptic Current Strength on Spike Conduction in Human and Cat Spiral Ganglion Neurons

    PubMed Central

    Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese

    2013-01-01

    Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea. PMID:24260179

  16. Detecting target changes in multiple object tracking with peripheral vision: More pronounced eccentricity effects for changes in form than in motion.

    PubMed

    Vater, Christian; Kredel, Ralf; Hossner, Ernst-Joachim

    2017-05-01

    In the current study, dual-task performance is examined with multiple-object tracking as a primary task and target-change detection as a secondary task. The to-be-detected target changes in conditions of either change type (form vs. motion; Experiment 1) or change salience (stop vs. slowdown; Experiment 2), with changes occurring at either near (5°-10°) or far (15°-20°) eccentricities (Experiments 1 and 2). The aim of the study was to test whether changes can be detected solely with peripheral vision. By controlling for saccades and computing gaze distances, we could show that participants used peripheral vision to monitor the targets and, additionally, to perceive changes at both near and far eccentricities. Noticeably, gaze behavior was not affected by the actual target change. Detection rates as well as response times generally varied as a function of change condition and eccentricity, with faster detections for motion changes and near changes. However, in contrast to the effects found for motion changes, sharp declines in detection rates and increased response times were observed for form changes as a function of the eccentricities. This result can be ascribed to properties of the visual system, namely to the limited spatial acuity in the periphery and the comparably receptive motion sensitivity of peripheral vision. These findings show that peripheral vision is functional for simultaneous target monitoring and target-change detection as saccadic information suppression can be avoided and covert attention can be optimally distributed to all targets. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.

    PubMed

    Nakajima, Hiroshi; Yamamoto, Sumiko; Katsuhira, Junji

    2018-07-01

    Patients with diabetes often develop diabetic peripheral neuropathy, which is a distal symmetric polyneuropathy, so foot function on the non-amputated side is expected to affect gait in vascular trans-tibial amputees. However, there is little information on the kinematics and kinetics of gait or the effects of diabetic peripheral neuropathy in vascular trans-tibial amputees. This study aimed to clarify these effects, including the biomechanics of the ankle on the non-amputated side. Participants were 10 vascular trans-tibial amputees with diabetic peripheral neuropathy (group V) and 8 traumatic trans-tibial amputees (group T). Each subject's gait was analyzed at a self-selected speed using a three-dimensional motion analyzer and force plates. Ankle plantarflexion angle, heel elevation angle, and peak and impulse of anterior ground reaction force were smaller on the non-amputated side during pre-swing in group V than in group T. Center of gravity during pre-swing on the non-amputated side was lower in group V than in group T. Hip extension torque during loading response on the prosthetic side was greater in group V than in group T. These findings suggest that the biomechanical function of the ankle on the non-amputated side during pre-swing is poorer in vascular trans-tibial amputees with DPN than in traumatic trans-tibial amputees; the height of the center of gravity could not be maintained during this phase in vascular trans-tibial amputees with diabetic peripheral neuropathy. The hip joint on the prosthetic side compensated for this diminished function at the ankle during loading response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Age-Dependent Schwann Cell Phenotype Regulation Following Peripheral Nerve Injury.

    PubMed

    Chen, Wayne A; Luo, T David; Barnwell, Jonathan C; Smith, Thomas L; Li, Zhongyu

    2017-12-01

    Schwann cells are integral to the regenerative capacity of the peripheral nervous system, which declines after adolescence. The mechanisms underlying this decline are poorly understood. This study sought to compare the protein expression of Notch, c-Jun, and Krox-20 after nerve crush injury in adolescent and young adult rats. We hypothesized that these Schwann cell myelinating regulatory factors are down-regulated after nerve injury in an age-dependent fashion. Adolescent (2 months old) and young adult (12 months old) rats (n = 48) underwent sciatic nerve crush injury. Protein expression of Notch, c-Jun, and Krox-20 was quantified by Western blot analysis at 1, 3, and 7 days post-injury. Functional recovery was assessed in a separate group of animals (n = 8) by gait analysis (sciatic functional index) and electromyography (compound motor action potential) over an 8-week post-injury period. Young adult rats demonstrated a trend of delayed onset of the dedifferentiating regulatory factors, Notch and c-Jun, corresponding to the delayed functional recovery observed in young adult rats compared to adolescent rats. Compound motor action potential area was significantly greater in adolescent rats relative to young adult rats, while amplitude and velocity trended toward statistical significance. The process of Schwann cell dedifferentiation following peripheral nerve injury shows different trends with age. These trends of delayed onset of key regulatory factors responsible for Schwann cell myelination may be one of many possible factors mediating the significant differences in functional recovery between adolescent and young adult rats following peripheral nerve injury.

  19. Roles of neural stem cells in the repair of peripheral nerve injury.

    PubMed

    Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu

    2017-12-01

    Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  20. Topical amitriptyline and ketamine for the treatment of neuropathic pain.

    PubMed

    Mercadante, Sebastiano

    2015-01-01

    A neuropathy is a disturbance of function or pathological change in nerves. In some cases, peripheral neuropathic pain may occur due to a lesion or disease of the peripheral somatosensory nervous system. Efficacy of different agents for peripheral neuropathic pain conditions is less than optimal. The administration of topical analgesics might be an option, due to the potential of reduced adverse effects and increased patient compliance. There is major interest in compounding topical analgesics for peripheral neuropathic pain, but several challenges remain for this approach. Topical analgesics have the potential to be a valuable additional approach for the management of peripheral neuropathic pain. Topical amitriptyline-ketamine combination (AK) is a promising agent for peripheral neuropathic pain conditions. Some studies have shown its efficacy in neuropathic pain conditions. However, this data was not uniformely obtained and its role remains still controversial. Efficacy may depend on many factors, including the choice of the vehicle, the concentration, the pain site, and specific diseases. More studies are necessary to support the use of AK in clinical practice.

  1. Premature aging-related peripheral neuropathy in a mouse model of progeria.

    PubMed

    Goss, James R; Stolz, Donna Beer; Robinson, Andria Rasile; Zhang, Mingdi; Arbujas, Norma; Robbins, Paul D; Glorioso, Joseph C; Niedernhofer, Laura J

    2011-08-01

    Peripheral neuropathy is a common aging-related degenerative disorder that interferes with daily activities and leads to increased risk of falls and injury in the elderly. The etiology of most aging-related peripheral neuropathy is unknown. Inherited defects in several genome maintenance mechanisms cause tissue-specific accelerated aging, including neurodegeneration. We tested the hypothesis that a murine model of XFE progeroid syndrome, caused by reduced expression of ERCC1-XPF DNA repair endonuclease, develops peripheral neuropathy. Nerve conduction studies revealed normal nerve function in young adult (8 week) Ercc1(-/Δ) mice, but significant abnormalities in 20 week-old animals. Morphologic and ultrastructural analysis of the sciatic nerve from mutant mice revealed significant alterations at 20 but not 8 weeks of age. We conclude that Ercc1(-/Δ) mice have accelerated spontaneous peripheral neurodegeneration that mimics aging-related disease. This provides strong evidence that DNA damage can drive peripheral neuropathy and offers a rapid and novel model to test therapies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. The Escherichia coli Peripheral Inner Membrane Proteome*

    PubMed Central

    Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios

    2013-01-01

    Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher. PMID:23230279

  3. VIBROTACTILE THRESHOLD AND PIN-PRICK SENSITIVITY AS INDICATORS OF SUBCLINICAL CHANGES IN SOMATOSENSORY FUNCTION: EFFECTS OF ENVIRONMENTAL EXPOSURE TO ARSENIC IN DRINKING WATER.

    EPA Science Inventory

    Peripheral neuropathy is a classical symptom of arsenic poisoning. Nerve conduction velocity (NCV) is the preferred measure for clinical assessment of peripheral neuropathy, but this method is not practical for field studies. Alternative methods available for assessing functi...

  4. Combined reduced forced expiratory volume in 1 second (FEV1) and peripheral artery disease in sedentary elders with functional limitations

    USDA-ARS?s Scientific Manuscript database

    Objectives: Because they are potentially modifiable and may coexist, we evaluated the combined occurrence of a reduced forced expiratory volume in 1-second (FEV1) and peripheral artery disease (PAD), including its association with exertional symptoms, physical inactivity, and impaired mobility, in s...

  5. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    PubMed Central

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  6. Clinical Response of 277 Patients with Spinal Cord Injury to Stem Cell Therapy in Iraq

    PubMed Central

    Hammadi, Abdulmajeed Alwan; Marino, Andolina; Farhan, Saad

    2012-01-01

    Background and Objectives: Spinal cord injury is a common neurological problem secondary to car accidents, war injuries and other causes, it may lead to varying degrees of neurological disablement, and apart from physiotherapy there is no available treatment to regain neurological function loss. Our aim is to find a new method using autologous hematopoietic stem cells to gain some of the neurologic functions lost after spinal cord injury. Methods and Results: 277 patients suffering from spinal cord injury were submitted to an intrathecally treatment with peripheral stem cells. The cells were harvested from the peripheral blood after a treatment with G-CSF and then concentrated to 4∼ 6 ml. 43% of the patients improved; ASIA score shifted from A to B in 88 and from A to C in 32. The best results were achieved in patients treated within one year from the injury. Conclusions: Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cell cultivation prior to injection. It seems reasonable treatment for spinal cord injury. PMID:24298358

  7. [Effects of functional electrical therapy on upper extremity functional motor recovery in patients after stroke--our experience and future directions].

    PubMed

    Plavsić, Aleksandra; Svirtlih, Laslo; Stefanović, Aleksandra; Jović, Stevan; Durović, Aleksandar; Popović, Mirjana

    2011-01-01

    New neurorehabilitation together with conventional techniques provide methods and technologies for maximizing what is preserved from the sensory motor system after cerebrovascular insult. The rehabilitation technique named functional electrical therapy was investigated in more than 60 patients in acute, subacute and chronic phase after cerebrovascular insult. The functional sensory information generated by functional electrical therapy was hypothesized to result in the intensive functional brain training of the activities performed. Functional electrical therapy is a combination of functional exercise and electrical therapy. The functional electrical therapy protocol comprises voluntary movement of the paretic arm in synchrony with the electrically assisted hand functions in order to perform typical daily activities. The daily treatment of 30 minutes lasts three weeks. The outcome measures include several tests for the evaluation of arm/hand functionality: upper extremity function test, drawing test, modified Aschworth scale, motor activity log and passive range of movement. Results from our several clinical studies showed that functional electrical therapy, if applied in acute and subacute stroke patients, leads to faster and greater improvement of functioning of the hemiplegic arm/hand compared to the control group. The outcomes were significantly superior at all times after the treatment for the higher functioning group. Additional well-planned clinical studies are needed to determine the adequate dose of treatment (timing, duration, intensity) with functional electrical therapy regarding the patient's status. A combination with other techniques should be further investigated.

  8. Mutations in the Drosophila neuroglian cell adhesion molecule affect motor neuron pathfinding and peripheral nervous system patterning.

    PubMed

    Hall, S G; Bieber, A J

    1997-03-01

    We have identified and characterized three embryonic lethal mutations that alter or abolish expression of Drosophila Neuroglian and have used these mutations to analyze Neuroglian function during development. Neuroglian is a member of the immunoglobulin superfamily. It is expressed by a variety of cell types during embryonic development, including expression on motoneurons and the muscle cells that they innervate. Examination of the nervous systems of neuroglian mutant embryos reveals that motoneurons have altered pathfinding trajectories. Additionally, the sensory cell bodies of the peripheral nervous system display altered morphology and patterning. Using a temperature-sensitive mutation, the phenocritical period for Neuroglian function was determined to occur during late embryogenesis, an interval which coincides with the period during which neuromuscular connections and the peripheral nervous system pattern are established.

  9. Platelet-rich plasma, an adjuvant biological therapy to assist peripheral nerve repair

    PubMed Central

    Sánchez, Mikel; Garate, Ane; Delgado, Diego; Padilla, Sabino

    2017-01-01

    Therapies such as direct tension-free microsurgical repair or transplantation of a nerve autograft, are nowadays used to treat traumatic peripheral nerve injuries (PNI), focused on the enhancement of the intrinsic regenerative potential of injured axons. However, these therapies fail to recreate the suitable cellular and molecular microenvironment of peripheral nerve repair and in some cases, the functional recovery of nerve injuries is incomplete. Thus, new biomedical engineering strategies based on tissue engineering approaches through molecular intervention and scaffolding offer promising outcomes on the field. In this sense, evidence is accumulating in both, preclinical and clinical settings, indicating that platelet-rich plasma products, and fibrin scaffold obtained from this technology, hold an important therapeutic potential as a neuroprotective, neurogenic and neuroinflammatory therapeutic modulator system, as well as enhancing the sensory and motor functional nerve muscle unit recovery. PMID:28250739

  10. Ipsilateral masking between acoustic and electric stimulations.

    PubMed

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  11. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice.

    PubMed

    Park, Dong-Wook; Ness, Jared P; Brodnick, Sarah K; Esquibel, Corinne; Novello, Joseph; Atry, Farid; Baek, Dong-Hyun; Kim, Hyungsoo; Bong, Jihye; Swanson, Kyle I; Suminski, Aaron J; Otto, Kevin J; Pashaie, Ramin; Williams, Justin C; Ma, Zhenqiang

    2018-01-23

    Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm 2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.

  12. Exploiting the Automatic Dependent Surveillance-Broadcast System via False Target Injection

    DTIC Science & Technology

    2012-03-01

    THESIS Domenic Magazu III, Captain, USAF AFIT/GCO/ENG/12-07 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY...Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...of GNU Radio, a Universal Software Radio Peripheral (USRP), and software developed by the author. The ability to generate, transmit, and insert

  13. Suppression of Peripheral Sympathetic Activity Underlies Protease-Activated Receptor 2-Mediated Hypotension

    PubMed Central

    Kim, Young-Hwan; Ahn, Duck-Sun; Joeng, Ji-Hyun

    2014-01-01

    Protease-activated receptor (PAR)-2 is expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although some reports have suggested involvement of a neurogenic mechanism in PAR-2-induced hypotension, the accurate mechanism remains to be elucidated. To examine this possibility, we investigated the effect of PAR-2 activation on smooth muscle contraction evoked by electrical field stimulation (EFS) in the superior mesenteric artery. In the present study, PAR-2 agonists suppressed neurogenic contractions evoked by EFS in endothelium-denuded superior mesenteric arterial strips but did not affect contraction elicited by the external application of noradrenaline (NA). However, thrombin, a potent PAR-1 agonist, had no effect on EFS-evoked contraction. Additionally, ω-conotoxin GVIA (CgTx), a selective N-type Ca2+ channel (ICa-N) blocker, significantly inhibited EFS-evoked contraction, and this blockade almost completely occluded the suppression of EFS-evoked contraction by PAR-2 agonists. Finally, PAR-2 agonists suppressed the EFS-evoked overflow of NA in endothelium-denuded rat superior mesenteric arterial strips and this suppression was nearly completely occluded by ω-CgTx. These results suggest that activation of PAR-2 may suppress peripheral sympathetic outflow by modulating activity of ICa-N which are located in peripheral sympathetic nerve terminals, which results in PAR-2-induced hypotension. PMID:25598663

  14. Is the notion of central fatigue based on a solid foundation?

    PubMed

    Contessa, Paola; Puleo, Alessio; De Luca, Carlo J

    2016-02-01

    Exercise-induced muscle fatigue has been shown to be the consequence of peripheral factors that impair muscle fiber contractile mechanisms. Central factors arising within the central nervous system have also been hypothesized to induce muscle fatigue, but no direct empirical evidence that is causally associated to reduction of muscle force-generating capability has yet been reported. We developed a simulation model to investigate whether peripheral factors of muscle fatigue are sufficient to explain the muscle force behavior observed during empirical studies of fatiguing voluntary contractions, which is commonly attributed to central factors. Peripheral factors of muscle fatigue were included in the model as a time-dependent decrease in the amplitude of the motor unit force twitches. Our simulation study indicated that the force behavior commonly attributed to central fatigue could be explained solely by peripheral factors during simulated fatiguing submaximal voluntary contractions. It also revealed important flaws regarding the use of the interpolated twitch response from electrical stimulation of the muscle as a means for assessing central fatigue. Our analysis does not directly refute the concept of central fatigue. However, it raises important concerns about the manner in which it is measured and about the interpretation of the commonly accepted causes of central fatigue and questions the very need for the existence of central fatigue. Copyright © 2016 the American Physiological Society.

  15. Role of connexin 32 hemichannels in the release of ATP from peripheral nerves.

    PubMed

    Nualart-Marti, Anna; del Molino, Ezequiel Mas; Grandes, Xènia; Bahima, Laia; Martin-Satué, Mireia; Puchal, Rafel; Fasciani, Ilaria; González-Nieto, Daniel; Ziganshin, Bulat; Llobet, Artur; Barrio, Luis C; Solsona, Carles

    2013-12-01

    Extracellular purines elicit strong signals in the nervous system. Adenosine-5'-triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration-evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X-linked form of Charcot-Marie-Tooth disease, suggesting that purinergic-mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. Copyright © 2013 Wiley Periodicals, Inc.

  16. Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses.

    PubMed

    Cartee, Lianne A; Miller, Charles A; van den Honert, Chris

    2006-05-01

    To determine the site of excitation on the spiral ganglion cell in response to electrical stimulation similar to that from a cochlear implant, single-fiber responses to electrical stimuli delivered by an electrode positioned in the scala tympani were compared to responses from stimuli delivered by an electrode placed in the internal auditory meatus. The response to intrameatal stimulation provided a control set of data with a known excitation site, the central axon of the spiral ganglion cell. For both intrameatal and scala tympani stimuli, the responses to single-pulse, summation, and refractory stimulus protocols were recorded. The data demonstrated that summation pulses, as opposed to single pulses, are likely to give the most insightful measures for determination of the site of excitation. Single-fiber summation data for both scala tympani and intrameatally stimulated fibers were analyzed with a clustering algorithm. Combining cluster analysis and additional numerical modeling data, it was hypothesized that the scala tympani responses corresponded to central excitation, peripheral excitation adjacent to the cell body, and peripheral excitation at a site distant from the cell body. Fibers stimulated by an intrameatal electrode demonstrated the greatest range of jitter measurements indicating that greater fiber independence may be achieved with intrameatal stimulation.

  17. The Parameters of Transcutaneous Electrical Nerve Stimulation Are Critical to Its Regenerative Effects When Applied Just after a Sciatic Crush Lesion in Mice

    PubMed Central

    Martins Lima, Êmyle; Teixeira Goes, Bruno; Zugaib Cavalcanti, João; Vannier-Santos, Marcos André; Martinez, Ana Maria Blanco; Baptista, Abrahão Fontes

    2014-01-01

    We investigated the effect of two frequencies of transcutaneous electrical nerve stimulation (TENS) applied immediately after lesion on peripheral nerve regeneration after a mouse sciatic crush injury. The animals were anesthetized and subjected to crushing of the right sciatic nerve and then separated into three groups: nontreated, Low-TENS (4 Hz), and High-TENS (100 Hz). The animals of Low- and High-TENS groups were stimulated for 2 h immediately after the surgical procedure, while the nontreated group was only positioned for the same period. After five weeks the animals were euthanized, and the nerves dissected bilaterally for histological and histomorphometric analysis. Histological assessment by light and electron microscopy showed that High-TENS and nontreated nerves had a similar profile, with extensive signs of degeneration. Conversely, Low-TENS led to increased regeneration, displaying histological aspects similar to control nerves. High-TENS also led to decreased density of fibers in the range of 6–12 μm diameter and decreased fiber diameter and myelin area in the range of 0–2 μm diameter. These findings suggest that High-TENS applied just after a peripheral nerve crush may be deleterious for regeneration, whereas Low-TENS may increase nerve regeneration capacity. PMID:25147807

  18. Peripheral metabolic actions of leptin.

    PubMed

    Muoio, Deborah M; Lynis Dohm, G

    2002-12-01

    The adipocyte-derived hormone, leptin, regulates food intake and systemic fuel metabolism; ob /ob mice, which lack functional leptin, exhibit an obesity syndrome that is similar to morbid obesity in humans. Leptin receptors are expressed most abundantly in the brain but are also present in several peripheral tissues. The role of leptin in controlling energy homeostasis has thus far focused on brain receptors and neuroendocrine pathways that regulate feeding behaviour and sympathetic nervous system activity. This chapter focuses on mounting evidence that leptin's effects on energy balance are also mediated by direct peripheral actions on key metabolic organs such as skeletal muscle, liver, pancreas and adipose tissue. Strong evidence indicates that peripheral leptin receptors regulate cellular lipid balance, favouring beta-oxidation over triacylglycerol storage. There are data to indicate that peripheral leptin also modulates glucose metabolism and insulin action; however, its precise role in controlling gluco-regulatory pathways remains uncertain and requires further investigation.

  19. Peripheral inflammation and cognitive aging.

    PubMed

    Lim, Alvin; Krajina, Katarina; Marsland, Anna L

    2013-01-01

    Evidence suggests that inflammation, an innate immune response facilitating recovery from injury and pathogenic invasion, is positively associated with age-related cognitive decline and may play a role in risk for dementia. Physiological pathways linking the peripheral immune and central nervous systems are outlined, and studies linking inflammation with neurocognitive function are overviewed. We also present recent studies from our laboratory showing that midlife inflammation is related to cognitive function and brain morphology. Finally, potential implications for treatment, future directions, and limitations are discussed. Copyright © 2013 S. Karger AG, Basel.

  20. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research.

    PubMed

    Hayashi-Takagi, Akiko; Vawter, Marquis P; Iwamoto, Kazuya

    2014-06-15

    Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  1. Vitamin B-12 status and neurologic function in older people: a cross-sectional analysis of baseline trial data from the Older People and Enhanced Neurological Function (OPEN) study.

    PubMed

    Miles, Lisa M; Allen, Elizabeth; Mills, Kerry; Clarke, Robert; Uauy, Ricardo; Dangour, Alan D

    2016-09-01

    Aging is associated with a progressive decline in vitamin B-12 status. Overt vitamin B-12 deficiency causes neurologic disturbances in peripheral and central motor and sensory systems, but the public health impact for neurologic disease of moderately low vitamin B-12 status in older people is unclear. Evidence from observational studies is limited by heterogeneity in the definition of vitamin B-12 status and imprecise measures of nerve function. We aimed to determine whether vitamin B-12 status is associated with electrophysiologic indexes of peripheral or central neurologic function in asymptomatic older people with moderately low vitamin B-12 status. We used a cross-sectional analysis of baseline data from the Older People and Enhanced Neurological Function study conducted in Southeast England. This trial investigated the effectiveness of vitamin B-12 supplementation on electrophysiologic indexes of neurologic function in asymptomatic older people (mean age: 80 y) with moderately low vitamin B-12 status (serum vitamin B-12 concentrations ≥107 and <210 pmol/L without anemia, n = 201). Vitamin B-12 status was assessed with the use of total vitamin B-12, holotranscobalamin, and a composite indicator of vitamin B-12 status (cB-12). Electrophysiologic measures of sensory and motor components of peripheral and central nerve function were assessed in all participants by a single observer. In multivariate models, there was no evidence of an association of vitamin B-12, holotranscobalamin, or cB-12 with any nerve conduction outcome. There was also no evidence of an association of vitamin B-12 status with clinical markers of neurologic function. This secondary analysis of high-quality trial data did not show any association of any measure of vitamin B-12 status with either peripheral or central neurologic function or any clinical markers of neurologic function in older people with moderately low vitamin B-12 status. The results of this study are unlikely to be generalizable to a less healthy older population with more severe vitamin B-12 deficiency. This trial was registered at www.controlled-trials.com as ISRCTN54195799. © 2016 American Society for Nutrition.

  2. Clinical impact of exercise in patients with peripheral arterial disease.

    PubMed

    Novakovic, Marko; Jug, Borut; Lenasi, Helena

    2017-08-01

    Increasing prevalence, high morbidity and mortality, and decreased health-related quality of life are hallmarks of peripheral arterial disease. About one-third of peripheral arterial disease patients have intermittent claudication with deleterious effects on everyday activities, such as walking. Exercise training improves peripheral arterial disease symptoms and is recommended as first line therapy for peripheral arterial disease. This review examines the effects of exercise training beyond improvements in walking distance, namely on vascular function, parameters of inflammation, activated hemostasis and oxidative stress, and quality of life. Exercise training not only increases walking distance and physiologic parameters in patients with peripheral arterial disease, but also improves the cardiovascular risk profile by helping patients achieve better control of hypertension, hyperglycemia, obesity and dyslipidemia, thus further reducing cardiovascular risk and the prevalence of coexistent atherosclerotic diseases. American guidelines suggest supervised exercise training, performed for a minimum of 30-45 min, at least three times per week, for at least 12 weeks. Walking is the most studied exercise modality and its efficacy in improving cardiovascular parameters in patients with peripheral arterial disease has been extensively proven. As studies have shown that supervised exercise training improves walking performance, cardiovascular parameters and quality of life in patients with peripheral arterial disease, it should be encouraged and more often prescribed.

  3. Investigation of the low-level modulated light action

    NASA Astrophysics Data System (ADS)

    Antonov, Sergei N.; Sotnikov, V. N.; Koreneva, L. G.

    1994-07-01

    Now there exists no clear complete knowledge about mechanisms and pathways by which low level laser bioactivation works. Modulated laser light action has been investigated two new ways: dynamical infrared thermography and computing image of living brain. These ways permit observation in real time laser action on peripheral blood flow, reflex reactions to functional probes, thermoregulation mechanisms as well as brain electrical activity changes of humans. We have designed a universal apparatus which produced all regimes of the output laser light. It has a built-in He-Ne laser with an acousto-optic modulator and an infrared GaAs laser. The device provided spatial combination of both the light beams and permitted us to irradiate an object both separately and simultaneously. This research shows that the most effective frequencies range from several to dozens of hertz. The duty factor and frequency scanning are also important. On the basis of these results in Russian clinics new treatment methods using modulated light are applied in practical neurology, gynecology, etc.

  4. Integration of OLEDs in biomedical sensor systems: design and feasibility analysis

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.

    2010-04-01

    Organic (electronic) Light Emitting Diodes (OLEDs) have been shown to have applications in the field of lighting and flexible display. These devices can also be incorporated in sensors as light source for imaging/fluorescence sensing for miniaturized systems for biomedical applications and low-cost displays for sensor output. The current device capability aligns well with the aforementioned applications as low power diffuse lighting and momentary/push button dynamic display. A top emission OLED design has been proposed that can be incorporated with the sensor and peripheral electrical circuitry, also based on organic electronics. Feasibility analysis is carried out for an integrated optical imaging/sensor system, based on luminosity and spectrum band width. A similar study is also carried out for sensor output display system that functions as a pseudo active OLED matrix. A power model is presented for device power requirements and constraints. The feasibility analysis is also supplemented with the discussion about implementation of ink-jet printing and stamping techniques for possibility of roll to roll manufacturing.

  5. Micro-RNAs in cognition and cognitive disorders: Potential for novel biomarkers and therapeutics.

    PubMed

    Woldemichael, Bisrat T; Mansuy, Isabelle M

    2016-03-15

    Micro-RNAs (miRNAs) are small regulatory non-coding RNAs involved in the regulation of many biological functions. In the brain, they have distinct expression patterns depending on region, cell-type and developmental stage. Their expression profile is altered by neuronal activation in response to behavioral training or chemical/electrical stimulation. The dynamic changes in miRNA level regulate the expression of genes required for cognitive processes such as learning and memory. In addition, in cognitive dysfunctions such as dementias, expression levels of many miRNAs are perturbed, not only in brain areas affected by the pathology, but also in peripheral body fluids such as serum and cerebrospinal fluid. This presents an opportunity to utilize miRNAs as biomarkers for early detection and assessment of cognitive dysfunctions. Further, since miRNAs target many genes and pathways, they may represent key molecular signatures that can help understand the mechanisms of cognitive disorders and the development of potential therapeutic agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Conceptual analysis of Physiology of vision in Ayurveda.

    PubMed

    Balakrishnan, Praveen; Ashwini, M J

    2014-07-01

    The process by which the world outside is seen is termed as visual process or physiology of vision. There are three phases in this visual process: phase of refraction of light, phase of conversion of light energy into electrical impulse and finally peripheral and central neurophysiology. With the advent of modern instruments step by step biochemical changes occurring at each level of the visual process has been deciphered. Many investigations have emerged to track these changes and helping to diagnose the exact nature of the disease. Ayurveda has described this physiology of vision based on the functions of vata and pitta. Philosophical textbook of ayurveda, Tarka Sangraha, gives certain basics facts of visual process. This article discusses the second and third phase of visual process. Step by step analysis of the visual process through the spectacles of ayurveda amalgamated with the basics of philosophy from Tarka Sangraha has been analyzed critically to generate a concrete idea regarding the physiology and hence thereby interpret the pathology on the grounds of ayurveda based on the investigative reports.

  7. Argon laser peripheral iridoplasty for angle-closure glaucoma in sibilings with weill-marchesani syndrome.

    PubMed

    Ritch, R; Solomon, L D

    1992-01-01

    A patient with Weill-Marchesani syndrome and angle-closure glaucoma had persistent appositional closure after laser iridotomy that was unrelieved by topical application of either miotic or cycloplegic agents. Argon laser peripheral iridoplasty successfully opened the angle. The patient's sister also had Weill-Marchesani syndrome and angle closure unrelieved by laser iridotomy. Angle closure in Weill-Marchesani syndrome and the response to laser iridotomy and treatment with either miotic or cycloplegic agents may be complex and depends on the relative proportion of pupillary block as a mechanism underlying the angle closure, the functional status of the zonular apparatus, and the degree of angle crowding by the peripheral iris in the presence or absence of peripheral anterior synechiae.

  8. Effect of Platelet-Rich Fibrin on Peripheral Nerve Regeneration.

    PubMed

    Şenses, Fatma; Önder, Mustafa E; Koçyiğit, Ismail D; Kul, Oğuz; Aydin, Gülümser; Inal, Elem; Atil, Fethi; Tekin, Umut

    2016-10-01

    This study aimed to evaluate the effect of platelet-rich fibrin (PRF) on peripheral nerve regeneration on the sciatic nerve of rats by using functional, histopathologic, and electrophysiologic analyses. Thirty female Wistar rats were divided randomly into 3 experimental groups. In group 1 (G1), which was the control group, the sciatic nerve was transected and sutured (n = 10). In group 2 (G2), the sciatic nerve was transected, sutured, and then covered with PRF as a membrane (n = 10). In group 3 (G3), the sciatic nerve was transected, sutured by leaving a 5-mm gap, and then covered by PRF as a nerve guide (n = 10). Functional, histopathologic, and electrophysiologic analyses were performed. The total histopathologic semiquantitative score was significantly higher in G1 compared to G2 and G3 (P < 0.05). Myelin thickness and capillaries were significantly lower in G3 compared to G1 (P < 0.05). There was no statistically significant difference between the groups with regard to the functional and electrophysiologic results. The study results suggest that PRF decreases functional recovery in sciatic nerve injury. Further studies are required to determine the efficacy of PRF on peripheral nerve regeneration.

  9. Diagnostic Accuracy of Fall Risk Assessment Tools in People With Diabetic Peripheral Neuropathy

    PubMed Central

    Pohl, Patricia S.; Mahnken, Jonathan D.; Kluding, Patricia M.

    2012-01-01

    Background Diabetic peripheral neuropathy affects nearly half of individuals with diabetes and leads to increased fall risk. Evidence addressing fall risk assessment for these individuals is lacking. Objective The purpose of this study was to identify which of 4 functional mobility fall risk assessment tools best discriminates, in people with diabetic peripheral neuropathy, between recurrent “fallers” and those who are not recurrent fallers. Design A cross-sectional study was conducted. Setting The study was conducted in a medical research university setting. Participants The participants were a convenience sample of 36 individuals between 40 and 65 years of age with diabetic peripheral neuropathy. Measurements Fall history was assessed retrospectively and was the criterion standard. Fall risk was assessed using the Functional Reach Test, the Timed “Up & Go” Test, the Berg Balance Scale, and the Dynamic Gait Index. Sensitivity, specificity, positive and negative likelihood ratios, and overall diagnostic accuracy were calculated for each fall risk assessment tool. Receiver operating characteristic curves were used to estimate modified cutoff scores for each fall risk assessment tool; indexes then were recalculated. Results Ten of the 36 participants were classified as recurrent fallers. When traditional cutoff scores were used, the Dynamic Gait Index and Functional Reach Test demonstrated the highest sensitivity at only 30%; the Dynamic Gait Index also demonstrated the highest overall diagnostic accuracy. When modified cutoff scores were used, all tools demonstrated improved sensitivity (80% or 90%). Overall diagnostic accuracy improved for all tests except the Functional Reach Test; the Timed “Up & Go” Test demonstrated the highest diagnostic accuracy at 88.9%. Limitations The small sample size and retrospective fall history assessment were limitations of the study. Conclusions Modified cutoff scores improved diagnostic accuracy for 3 of 4 fall risk assessment tools when testing people with diabetic peripheral neuropathy. PMID:22836004

  10. Receptor type I and type II binding regions and the peptidyl-prolyl isomerase site of cyclophilin B are required for enhancement of T-lymphocyte adhesion to fibronectin.

    PubMed

    Carpentier, Mathieu; Allain, Fabrice; Slomianny, Marie-Christine; Durieux, Sandrine; Vanpouille, Christophe; Haendler, Bernard; Spik, Geneviève

    2002-04-23

    Cyclophilin B (CyPB), a cyclosporin A (CsA) binding protein, interacts with two types of binding sites at the surface of T-lymphocytes. The type I sites correspond to functional receptors involved in endocytosis and the type II sites to sulfated glycosaminoglycans (GAGs). Mutational analysis of CyPB has revealed that W128, which is part of the CsA-binding pocket, is implicated in the binding to the functional type I receptors and that two amino acid clusters located in the N-terminus ensure the binding to GAGs. The peptidyl-prolyl isomerase activity of CyPB is not required for receptor binding. We have recently demonstrated that CyPB enhances adhesion of peripheral blood T-lymphocytes to fibronectin, a component of the extracellular matrix. We intended to identify additional amino acids involved in the binding of CyPB to its functional type I receptor and to determine regions responsible for the stimulation of peripheral blood T-lymphocyte adhesion. We determined that residues R76, G77, K132, D155, and D158 of the calcineurin (CN) interacting region were implicated in the recognition of type I receptor but not of GAGs. We also found that two different changes in the N-terminal extension that abated binding to GAGs prevented adhesion of peripheral blood T-lymphocytes to coated CyPB, whereas abbrogation of the PPIase activity had no effect. On the other hand, the adhesion of peripheral blood T-lymphocytes to coated fibronectin was not stimulated by CyPB mutants devoid of either type I receptor or GAGs binding activity or by mutants of the PPIase site. Altogether, the results demonstrate that different regions of CyPB are involved in peripheral blood T-lymphocyte activation and imply a novel important physiological function for peptidyl-prolyl isomerase activity.

  11. Comprehending expository texts: the dynamic neurobiological correlates of building a coherent text representation

    PubMed Central

    Swett, Katherine; Miller, Amanda C.; Burns, Scott; Hoeft, Fumiko; Davis, Nicole; Petrill, Stephen A.; Cutting, Laurie E.

    2013-01-01

    Little is known about the neural correlates of expository text comprehension. In this study, we sought to identify neural networks underlying expository text comprehension, how those networks change over the course of comprehension, and whether information central to the overall meaning of the text is functionally distinct from peripheral information. Seventeen adult subjects read expository passages while being scanned using functional magnetic resonance imaging (fMRI). By convolving phrase onsets with the hemodynamic response function (HRF), we were able to identify regions that increase and decrease in activation over the course of passage comprehension. We found that expository text comprehension relies on the co-activation of the semantic control network and regions in the posterior midline previously associated with mental model updating and integration [posterior cingulate cortex (PCC) and precuneus (PCU)]. When compared to single word comprehension, left PCC and left Angular Gyrus (AG) were activated only for discourse-level comprehension. Over the course of comprehension, reliance on the same regions in the semantic control network increased, while a parietal region associated with attention [intraparietal sulcus (IPS)] decreased. These results parallel previous findings in narrative comprehension that the initial stages of mental model building require greater visuospatial attention processes, while maintenance of the model increasingly relies on semantic integration regions. Additionally, we used an event-related analysis to examine phrases central to the text's overall meaning vs. peripheral phrases. It was found that central ideas are functionally distinct from peripheral ideas, showing greater activation in the PCC and PCU, while over the course of passage comprehension, central and peripheral ideas increasingly recruit different parts of the semantic control network. The finding that central information elicits greater response in mental model updating regions than peripheral ideas supports previous behavioral models on the cognitive importance of distinguishing textual centrality. PMID:24376411

  12. Presence of neuropathic pain may explain poor performances on olfactory testing in diabetes mellitus patients.

    PubMed

    Brady, Shauna; Lalli, Paul; Midha, Nisha; Chan, Ayechen; Garven, Alexandra; Chan, Cynthia; Toth, Cory

    2013-07-01

    Olfactory dysfunction in neurodegenerative conditions such as Parkinson's syndrome and Alzheimer's disease can hallmark disease onset. We hypothesized that patients with diabetes mellitus, a condition featuring peripheral and central neurodegeneration, would have decreased olfaction abilities. We examined participants with diabetic peripheral neuropathy, participants with diabetes without diabetic peripheral neuropathy, and control participants in blinded fashion using standardized Sniffin' Sticks. Diabetic peripheral neuropathy severity was quantified using the Utah Early Neuropathy Scale. Further subcategorization of diabetic peripheral neuropathy based on presence of neuropathic pain was performed with Douleur Neuropathique 4 Questionnaires. Participants with diabetes had decreased olfactory sensitivity, impaired olfactory discrimination abilities, and reduced odor identification skills when compared with controls. However, loss of olfaction ability was, at least partially, attributed to presence of neuropathic pain on subcategory assessment, although pain severity was not associated with dysfunction. Those participants with diabetes without diabetic peripheral neuropathy and those with diabetic peripheral neuropathy without neuropathic pain had similar olfactory function as controls in general. The presence of neuropathic pain, associated with limited attention and concentration, may explain at least a portion of the olfactory dysfunction witnessed in the diabetic patient population.

  13. Peripheral prism glasses: effects of moving and stationary backgrounds.

    PubMed

    Shen, Jieming; Peli, Eli; Bowers, Alex R

    2015-04-01

    Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance and partial suppression of the prism image, thereby limiting device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared with monocular viewing. Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than in monocular (prism eye) viewing on the motion background (medians, 13 and 58%, respectively, p = 0.008) but not the still frame background (medians, 63 and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in one HH and one normally sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations.

  14. Peripheral Prism Glasses: Effects of Moving and Stationary Backgrounds

    PubMed Central

    Shen, Jieming; Peli, Eli; Bowers, Alex R.

    2015-01-01

    Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance (partial local suppression) of the prism image and limit device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared to monocular viewing. Methods Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. Results With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than monocular (prism eye) viewing on the motion background (medians 13% and 58%, respectively, p = 0.008), but not the still frame background (63% and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in 1 HH and 1 normally-sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conclusions Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations. PMID:25785533

  15. The development and validation of a neuropathy- and foot ulcer-specific quality of life instrument.

    PubMed

    Vileikyte, Loretta; Peyrot, Mark; Bundy, Christine; Rubin, Richard R; Leventhal, Howard; Mora, Pablo; Shaw, Jonathan E; Baker, Paul; Boulton, Andrew J M

    2003-09-01

    The purpose of this study was to develop a questionnaire that measures patients' perceptions of the impact of diabetic peripheral neuropathy and foot ulcers on their quality of life and to assess the psychometric properties of this instrument in a sample of patients with varying severity and symptomatology of diabetic peripheral neuropathy. The neuropathy- and foot ulcer-specific quality of life instrument (NeuroQoL), generated from interviews with patients with (n = 47) and without (n = 15) diabetic peripheral neuropathy, was administered to 418 consecutive patients with diabetic peripheral neuropathy (35% with foot ulcer history) attending either U.K. (n = 290) or U.S. (n = 128) diabetes centers. Psychometric tests of NeuroQoL included factor analyses and internal consistency of scales; a series of multivariate analyses were performed to establish its criterion, construct, and incremental validity. Results were compared with those obtained using the Short Form (SF)-12 measure of health-related functioning. Factor analyses of NeuroQoL revealed three physical symptom measures and two psychosocial functioning measures with good reliability (alpha = 0.86-0.95). NeuroQoL was more strongly associated with measures of neuropathic severity than SF-12, more fully mediated the relationship of diabetic peripheral neuropathy with overall quality of life, and significantly increased explained variance in overall quality of life over SF-12. NeuroQoL reliably captures the key dimensions of the patients' experience of diabetic peripheral neuropathy and is a valid tool for studying the impact of neuropathy and foot ulceration on quality of life.

  16. Peripheral Glial Cells in the Development of Diabetic Neuropathy.

    PubMed

    Gonçalves, Nádia Pereira; Vægter, Christian Bjerggaard; Pallesen, Lone Tjener

    2018-01-01

    The global prevalence of diabetes is rapidly increasing, affecting more than half a billion individuals within the next few years. As diabetes negatively affects several physiological systems, this dramatic increase represents not only impaired quality of life on the individual level but also a huge socioeconomic challenge. One of the physiological consequences affecting up to half of diabetic patients is the progressive deterioration of the peripheral nervous system, resulting in spontaneous pain and eventually loss of sensory function, motor weakness, and organ dysfunctions. Despite intense research on the consequences of hyperglycemia on nerve functions, the biological mechanisms underlying diabetic neuropathy are still largely unknown, and treatment options lacking. Research has mainly focused directly on the neuronal component, presumably from the perspective that this is the functional signal-transmitting unit of the nerve. However, it is noteworthy that each single peripheral sensory neuron is intimately associated with numerous glial cells; the neuronal soma is completely enclosed by satellite glial cells and the length of the longest axons covered by at least 1,000 Schwann cells. The glial cells are vital for the neuron, but very little is still known about these cells in general and especially how they respond to diabetes in terms of altered neuronal support. We will discuss current knowledge of peripheral glial cells and argue that increased research in these cells is imperative for a better understanding of the mechanisms underlying diabetic neuropathy.

  17. Peripheral Glial Cells in the Development of Diabetic Neuropathy

    PubMed Central

    Gonçalves, Nádia Pereira; Vægter, Christian Bjerggaard; Pallesen, Lone Tjener

    2018-01-01

    The global prevalence of diabetes is rapidly increasing, affecting more than half a billion individuals within the next few years. As diabetes negatively affects several physiological systems, this dramatic increase represents not only impaired quality of life on the individual level but also a huge socioeconomic challenge. One of the physiological consequences affecting up to half of diabetic patients is the progressive deterioration of the peripheral nervous system, resulting in spontaneous pain and eventually loss of sensory function, motor weakness, and organ dysfunctions. Despite intense research on the consequences of hyperglycemia on nerve functions, the biological mechanisms underlying diabetic neuropathy are still largely unknown, and treatment options lacking. Research has mainly focused directly on the neuronal component, presumably from the perspective that this is the functional signal-transmitting unit of the nerve. However, it is noteworthy that each single peripheral sensory neuron is intimately associated with numerous glial cells; the neuronal soma is completely enclosed by satellite glial cells and the length of the longest axons covered by at least 1,000 Schwann cells. The glial cells are vital for the neuron, but very little is still known about these cells in general and especially how they respond to diabetes in terms of altered neuronal support. We will discuss current knowledge of peripheral glial cells and argue that increased research in these cells is imperative for a better understanding of the mechanisms underlying diabetic neuropathy. PMID:29770116

  18. Phenotypic and Functional Characterization of Peripheral Blood Lymphocytes from Various Age- and Sex-Specific Groups of Owl Monkeys (Aotus nancymaae).

    PubMed

    Nehete, Pramod N; Nehete, Bharti P; Chitta, Sriram; Williams, Lawrence E; Abee, Christian R

    2017-02-01

    Owl monkeys (Aotus nancymaae) are New World NHP that serve an important role in vaccine development and as a model for human disease conditions such as malaria. Despite the past contributions of this animal model, limited information is available about the phenotype and functional properties of peripheral blood lymphocytes in reference to sex and age. Using a panel of human antibodies and a set of standardized human immune assays, we identified and characterized various peripheral blood lymphocyte subsets, evaluated the immune functions of T cells, and analyzed cytokines relative to sex and age in healthy owl monkeys. We noted age- and sex-dependent changes in CD28+ (an essential T cell costimulatory molecule) and CD95+ (an apoptotic surface marker) T cells and various levels of cytokines in the plasma. In immune assays of freshly isolated peripheral blood mononuclear cells, IFNγ and perforin responses were significantly higher in female than in male monkeys and in young adults than in juvenile and geriatric groups, despite similar lymphocyte (particularly T cell) populations in these groups. Our current findings may be useful in exploring Aotus monkeys as a model system for the study of aging, susceptibility to infectious diseases, and age-associated differences in vaccine efficacy, and other challenges particular to pediatric and geriatric patients.

  19. Sensory and motor peripheral nerve function and longitudinal changes in quadriceps strength.

    PubMed

    Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Newman, Anne B; Strotmeyer, Elsa S

    2015-04-01

    Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age = 76.3 ± 2.8, body mass index = 27.2 ± 4.6kg/m(2), strength = 96.3 ± 34.7 Nm, 51.0% female, 34.8% black) from the Health ABC study. Isokinetic quadriceps strength was measured semiannually over 6 years. Peroneal motor nerve conduction amplitude and velocity were recorded. Sensory nerve function was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower strength, respectively, in women. Initial 10-g monofilament insensitivity predicted 14.2% lower strength and faster strength decline in women and 6.6% lower strength in men (all p < .05). Poor nerve function predicted lower strength and faster strength decline. Future work should examine interventions aimed at preventing declines in strength in older adults with impaired nerve function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users

    PubMed Central

    Scheperle, Rachel A.; Abbas, Paul J.

    2014-01-01

    Objectives The ability to perceive speech is related to the listener’s ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Design Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every-other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex (ACC) with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel-discrimination and the Bamford-Kowal-Bench Sentence-in-Noise (BKB-SIN) test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. Results All electrophysiological measures were significantly correlated with each other and with speech perception for the mixed-model analysis, which takes into account multiple measures per person (i.e. experimental MAPs). The ECAP measures were the best predictor of speech perception. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech; spectral ACC amplitude was the strongest predictor. Conclusions The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be the most useful for within-subject applications, when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered. PMID:25658746

  1. False Positive Stress Testing: Does Endothelial Vascular Dysfunction Contribute to ST-Segment Depression in Women? A Pilot Study.

    PubMed

    Sharma, Shilpa; Mehta, Puja K; Arsanjani, Reza; Sedlak, Tara; Hobel, Zachary; Shufelt, Chrisandra; Jones, Erika; Kligfield, Paul; Mortara, David; Laks, Michael; Diniz, Marcio; Bairey Merz, C Noel

    2018-06-19

    The utility of exercise-induced ST-segment depression for diagnosing ischemic heart disease (IHD) in women is unclear. Based on evidence that IHD pathophysiology in women involves coronary vascular dysfunction, we hypothesized that coronary vascular dysfunction contributes to exercise electrocardiography (Ex-ECG) ST-depression in the absence of obstructive CAD, so-called "false positive" results. We tested our hypothesis in a pilot study evaluating the relationship between peripheral vascular endothelial function and Ex-ECG. Twenty-nine asymptomatic women without cardiac risk factors underwent maximal Bruce protocol exercise treadmill testing and peripheral endothelial function assessment using peripheral arterial tonometry (Itamar EndoPAT 2000) to measure reactive hyperemia index (RHI). The relationship between RHI and Ex-ECG ST-segment depression was evaluated using logistic regression and differences in subgroups using two-tailed t-tests. Mean age was 54 ± 7 years, body mass index 25 ± 4 kg/m 2 , and RHI 2.51 ± 0.66. Three women (10%) had RHI less than 1.68, consistent with abnormal peripheral endothelial function, while 18 women (62%) met criteria for a positive Ex-ECG based on ST-segment depression in contiguous leads. Women with and without ST-segment depression had similar baseline and exercise vital signs, metabolic equivalents (METS) achieved, and RHI (all p>0.05). RHI did not predict ST-segment depression. Our pilot study demonstrates a high prevalence of exercise-induced ST-segment depression in asymptomatic, middle-aged, overweight women. Peripheral vascular endothelial dysfunction did not predict Ex-ECG ST-segment depression. Further work is needed to investigate the utility of vascular endothelial testing and Ex-ECG for IHD diagnostic and management purposes in women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. NMDA Receptors Regulate Genes Responsible for Major Immune Functions of Mononuclears in Human Peripheral Blood.

    PubMed

    Kuzmina, U Sh; Zainullina, L F; Sadovnikov, S V; Vakhitov, V A; Vakhitova, Yu V

    2018-06-19

    To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).

  3. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  4. The risk of pedestrian collisions with peripheral visual field loss.

    PubMed

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L; Goldstein, Robert B

    2016-12-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development.

  5. Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves

    PubMed Central

    Colom, Bartomeu; Poitelon, Yannick; Huang, Wenlong; Woodfin, Abigail; Averill, Sharon; Del Carro, Ubaldo; Zambroni, Desirée; Brain, Susan D.; Perretti, Mauro; Ahluwalia, Amrita; Priestley, John V.; Chavakis, Triantafyllos; Imhof, Beat A.; Feltri, M. Laura; Nourshargh, Sussan

    2012-01-01

    Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed at junctions between adjacent endothelial and epithelial cells and implicated in multiple inflammatory and vascular responses. In addition, we recently reported on the expression of JAM-C in Schwann cells (SCs) and its importance for the integrity and function of peripheral nerves. To investigate the role of JAM-C in neuronal functions further, mice with a specific deletion of JAM-C in SCs (JAM-C SC KO) were generated. Compared to wild-type (WT) controls, JAM-C SC KO mice showed electrophysiological defects, muscular weakness, and hypersensitivity to mechanical stimuli. In addressing the underlying cause of these defects, nerves from JAM-C SC KO mice were found to have morphological defects in the paranodal region, exhibiting increased nodal length as compared to WTs. The study also reports on previously undetected expressions of JAM-C, namely on perineural cells, and in line with nociception defects of the JAM-C SC KO animals, on finely myelinated sensory nerve fibers. Collectively, the generation and characterization of JAM-C SC KO mice has provided unequivocal evidence for the involvement of SC JAM-C in the fine organization of peripheral nerves and in modulating multiple neuronal responses.—Colom, B., Poitelon, Y., Huang, W., Woodfin, A., Averill, S., Del Carro, U., Zambroni, D., Brain, S. D., Perretti, M., Ahluwalia, A., Priestley, J. V., Chavakis, T., Imhof, B. A., Feltri, M. L., Nourshargh, S. Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves. PMID:22090315

  6. Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit.

    PubMed

    Salehi, Majid; Naseri-Nosar, Mahdi; Ebrahimi-Barough, Somayeh; Nourani, Mohammdreza; Khojasteh, Arash; Hamidieh, Amir-Ali; Amani, Amir; Farzamfar, Saeed; Ai, Jafar

    2018-05-01

    The current study aimed to enhance the efficacy of peripheral nerve regeneration using an electrically conductive biodegradable porous neural guidance conduit for transplantation of allogeneic Schwann cells (SCs). The conduit was produced from polylactic acid (PLA), multiwalled carbon nanotubes (MWCNTs), and gelatin nanofibrils (GNFs) coated with the recombinant human erythropoietin-loaded chitosan nanoparticles (rhEpo-CNPs). The PLA/MWCNTs/GNFs/rhEpo-CNPs conduit had the porosity of 85.78 ± 0.70%, the contact angle of 77.65 ± 1.91° and the ultimate tensile strength and compressive modulus of 5.51 ± 0.13 MPa and 2.66 ± 0.34 MPa, respectively. The conduit showed the electrical conductivity of 0.32 S cm -1 and lost about 11% of its weight after 60 days in normal saline. The produced conduit was able to release the rhEpo for at least 2 weeks and exhibited favorable cytocompatibility towards SCs. For functional analysis, the conduit was seeded with 1.5 × 10 4 SCs and implanted into a 10 mm sciatic nerve defect of Wistar rat. After 14 weeks, the results of sciatic functional index, hot plate latency, compound muscle action potential amplitude, weight-loss percentage of wet gastrocnemius muscle and Histopathological examination using hematoxylin-eosin and Luxol fast blue staining demonstrated that the produced conduit had comparable nerve regeneration to the autograft, as the gold standard to bridge the nerve gaps. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1463-1476, 2018. © 2017 Wiley Periodicals, Inc.

  7. Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro

    PubMed Central

    McCarthy, Kelly M.; Tank, David W.; Enquist, Lynn W.

    2009-01-01

    Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals. PMID:19876391

  8. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients.

    PubMed

    Gordon, Tessa; Amirjani, Nasim; Edwards, David C; Chan, K Ming

    2010-05-01

    Electrical stimulation (ES) of injured peripheral nerves accelerates axonal regeneration in laboratory animals. However, clinical applicability of this intervention has never been investigated in human subjects. The aim of this pilot study was to determine the effect of ES on axonal regeneration after surgery in patients with median nerve compression in the carpal tunnel causing marked motor axonal loss. A randomized control trial was conducted to provide proof of principle for ES-induced acceleration of axon regeneration in human patients. Carpel tunnel release surgery (CTRS) was performed and in the stimulation group of patients, stainless steel electrode wires placed alongside the median nerve proximal to the surgical decompression site for immediate 1 h 20 Hz bipolar ES. Subjects were followed for a year at regular intervals. Axonal regeneration was quantified using motor unit number estimation (MUNE) and sensory and motor nerve conduction studies. Purdue Pegboard Test, Semmes Weinstein Monofilaments, and Levine's Self-Assessment Questionnaire were used to assess functional recovery. The stimulation group had significant axonal regeneration 6-8 months after the CTRS when the MUNE increased to 290+/-140 (mean+/-SD) motor units (MU) from 150+/-62 MU at baseline (p<0.05). In comparison, MUNE did not significantly improve in the control group (p>0.2). Terminal motor latency significantly accelerated in the stimulation group but not the control group (p>0.1). Sensory nerve conduction values significantly improved in the stimulation group earlier than the controls. Other outcome measures showed a significant improvement in both patient groups. We conclude that brief low frequency ES accelerates axonal regeneration and target reinnervation in humans. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Systematically Ranking the Tightness of Membrane Association for Peripheral Membrane Proteins (PMPs)*

    PubMed Central

    Gao, Liyan; Ge, Haitao; Huang, Xiahe; Liu, Kehui; Zhang, Yuanya; Xu, Wu; Wang, Yingchun

    2015-01-01

    Large-scale quantitative evaluation of the tightness of membrane association for nontransmembrane proteins is important for identifying true peripheral membrane proteins with functional significance. Herein, we simultaneously ranked more than 1000 proteins of the photosynthetic model organism Synechocystis sp. PCC 6803 for their relative tightness of membrane association using a proteomic approach. Using multiple precisely ranked and experimentally verified peripheral subunits of photosynthetic protein complexes as the landmarks, we found that proteins involved in two-component signal transduction systems and transporters are overall tightly associated with the membranes, whereas the associations of ribosomal proteins are much weaker. Moreover, we found that hypothetical proteins containing the same domains generally have similar tightness. This work provided a global view of the structural organization of the membrane proteome with respect to divergent functions, and built the foundation for future investigation of the dynamic membrane proteome reorganization in response to different environmental or internal stimuli. PMID:25505158

  10. Coding and Plasticity in the Mammalian Thermosensory System.

    PubMed

    Yarmolinsky, David A; Peng, Yueqing; Pogorzala, Leah A; Rutlin, Michael; Hoon, Mark A; Zuker, Charles S

    2016-12-07

    Perception of the thermal environment begins with the activation of peripheral thermosensory neurons innervating the body surface. To understand how temperature is represented in vivo, we used genetically encoded calcium indicators to measure temperature-evoked responses in hundreds of neurons across the trigeminal ganglion. Our results show how warm, hot, and cold stimuli are represented by distinct population responses, uncover unique functional classes of thermosensory neurons mediating heat and cold sensing, and reveal the molecular logic for peripheral warmth sensing. Next, we examined how the peripheral somatosensory system is functionally reorganized to produce altered perception of the thermal environment after injury. We identify fundamental transformations in sensory coding, including the silencing and recruitment of large ensembles of neurons, providing a cellular basis for perceptual changes in temperature sensing, including heat hypersensitivity, persistence of heat perception, cold hyperalgesia, and cold analgesia. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A divergent route to core- and peripherally functionalized diazacoronenes that act as colorimetric and fluorescence proton sensors

    DOE PAGES

    He, Bo; Dai, Jing; Zherebetskyy, Danylo; ...

    2015-03-31

    Combining core annulation and peripheral group modification, we have demonstrated a divergent synthesis of a family of highly functionalized coronene derivatives from a readily accessible dichlorodiazaperylene intermediate. Various reactions, such as aromatic nucleophilic substitution, Kumada coupling and Suzuki coupling proceed effectively on α-positions of the pyridine sites, giving rise to alkoxy, thioalkyl, alkyl or aryl substituted polycyclic aromatic hydrocarbons. In addition to peripheral group modulation, the aromatic core structures can be altered by annulation with thiophene or benzene ring systems. Corresponding single crystal X-ray diffraction and optical studies indicate that the heteroatom linkages not only impact the solid state packing,more » but also significantly influence the optoelectronic properties. Moreover, these azacoronene derivatives display significant acid-induced spectroscopic changes, suggesting their great potential as colorimetric and fluorescence proton sensors.« less

  12. Treatment of human immunodeficiency virus-related peripheral neuropathy with Scrambler Therapy: a case report.

    PubMed

    Smith, Thomas J; Auwaerter, Paul; Knowlton, Amy; Saylor, Deanna; McArthur, Justin

    2017-02-01

    Peripheral neuropathy is one of the most common neurological complications of HIV infection with a 30-60% lifetime prevalence. Newer HIV drugs cause less peripheral neuropathy, but patients are now living long enough to develop concomitant diabetes-related, vascular-related, and chemotherapy-related neuropathy so it continues as a major debilitating issue. Recent national CDC guidelines have stressed the importance of non-opioid therapies, especially in this population that may have had drug abuse problems. We treated a 52-year-old man who had severe disabling classic peripheral neuropathy since 1998 with Scrambler Therapy (Calmare), an FDA-cleared peripheral non-invasive neuromodulation device. His pain rapidly improved, as did his motor and sensory function, with just four 45-min treatments, and he was able to come off opioids for the first time in years. When his pain returned six months later, only two treatments were needed to resolve it. This represents the first published use of this novel, inexpensive, and non-invasive pain modality in HIV peripheral neuropathy, and should engender further trials.

  13. Quantitative analysis of peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography.

    PubMed

    Karampelas, Michael; Sim, Dawn A; Chu, Colin; Carreno, Ester; Keane, Pearse A; Zarranz-Ventura, Javier; Westcott, Mark; Lee, Richard W J; Pavesio, Carlos E

    2015-06-01

    To investigate the relationships between peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography (FA). Cross-sectional, consecutive case series. Consecutive ultra-widefield FA images were collected from 82 uveitis patients (82 eyes) in a single center. The extent of peripheral vasculitis, capillary nonperfusion, and vessel leakage were quantified. Parameters included: (1) foveal avascular zone area and macular leakage, (2) peripheral diffuse capillary leakage and ischemia, (3) peripheral vasculitis, and (4) leakage from neovascularization. Central macular thickness measurements were derived with optical coherence tomography. Main outcome measures were correlations between central and peripheral fluorangiographic changes as well as associations between visual function, ultra-widefield FA-derived metrics, and central macular thickness. Although central leakage was associated with peripheral leakage (r = 0.553, P = .001), there was no association between foveal avascular zone size and peripheral ischemia (r = 0.114, P = .324), regardless of the underlying uveitic diagnosis. Peripheral ischemia was, however, correlated to neovascularization-related leakage (r = 0.462, P = .001) and focal vasculitis (r = 0.441, P = .001). Stepwise multiple regression analysis revealed that a poor visual acuity was independently associated with foveal avascular zone size and central macular thickness (R(2)-adjusted = 0.45, P = .001). We present a large cohort of patients with uveitis imaged with ultra-widefield FA and further describe novel methods for quantification of peripheral vascular pathology, in an attempt to identify visually significant parameters. Although we observed that relationships exist between peripheral vessel leakage, vasculitis, and ischemia, it was only macular ischemia and increased macular thickness that were independently associated with a reduced visual acuity. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Late peripheral stent thrombosis due to stent fracture, vigorous exercise and hyporesponsiveness to clopidogrel.

    PubMed

    Linnemann, Birgit; Thalhammer, Axel; Wolf, Zsuzsanna; Tirneci, Vanessa; Vogl, Thomas J; Edelgard Lindhoff-Last, And

    2012-03-01

    Late peripheral arterial stent thrombosis usually occurs due to haemodynamically relevant in-stent restenosis. However, late stent thrombosis may be multicausal. We report here the well-documented case of a 69-year-old man with acute thrombosis of the stented superficial femoral artery after a long-distance bicycle tour. Catheter-directed thrombolysis revealed a residual stenosis located at a stent fracture site. In addition, platelet function tests revealed an inadequate platelet response to clopidogrel. In conclusion, stent fracture, strenuous exercise and hyporesponsiveness to clopidogrel may have contributed to the development of late peripheral stent thrombosis.

  15. Combined Effects of Gamma Radiation and High Dietary Iron on Peripheral Leukocyte Distribution and Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Morgan, Jennifer L. L.; Quiriarte, Heather A.; Sams, Clarence F.; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of: (1) peripheral leukocyte distribution, (2) plasma cytokine levels and (3) cytokine production profiles following whole blood mitogenic stimulation

  16. A Bionic Neural Link for peripheral nerve repair.

    PubMed

    Xu, Yong Ping; Yen, Shih-Cheng; Ng, Kian Ann; Liu, Xu; Tan, Ter Chyan

    2012-01-01

    Peripheral nerve injuries with large gaps and long nerve regrowth paths are difficult to repair using existing surgical techniques, due to nerve degeneration and muscle atrophy. This paper proposes a Bionic Neural Link (BNL) as an alternative way for peripheral nerve repair. The concept of the BNL is described, along with the hypothetical benefits. A prototype monolithic single channel BNL has been developed, which consists of 16 neural recording channels and one stimulation channel, and is implemented in a 0.35-µm CMOS technology. The BNL has been tested in in-vivo animal experiments. Full function of the BNL chip has been demonstrated.

  17. Functional plasticity in the interposito-thalamo-cortical pathway during conditioning. Role of the interstimulus interval.

    PubMed

    Pananceau, M; Rispal-Padel, L

    2000-06-01

    In classic conditioning, the interstimulus interval (ISI) between the conditioned (CS) and unconditioned (US) stimulus is a critical parameter. The aim of the present experiment was to assess whether, during conditioning, modification of the CS-US interval could reliably produce changes in the functional properties of the interposito-thalamo-cortical pathways (INTCps). Five cats were prepared for chronic stimulation and recording from several brain regions along this pathway in awake animals. The CS was a weak electric shock applied on the interposed nucleus of the cerebellum in sites that initially elicited forelimb flexion (i.e., alpha motor responses) in three cats, and equal proportions of flexor and extensor responses in two cats. The US was an electric shock applied on the skin that elicited forelimb flexions. The motor and neurobiological effects of synchronous CS-US were compared with pairings in which the CS was applied 100 ms before US. Simultaneous and sequential application of CS and US produced different behavioral outcomes and resulted in different neural processes in the interposito-thalamo-cortical pathways (INTCps). The simultaneous presentation of stimuli only produced a small increase in excitability spreading to all the body representational zones of the primary motor cortex and a weak increase in the amplitude of the alpha motor response. In contrast, the sequential application led to a profound modification of the interposed output to neurons in the forelimb representation of the motor cortex. These robust neuronal correlates of conditioning were accompanied by a large facilitation of the alpha motor response (alpha-MR). There were also changes in the direction of misdirected alpha responses and an emergence of functionally appropriate, long-latency withdrawal forelimb flexion. These data revealed that, during conditioning, plastic changes within the thalamocortical connections are selectively induced by sequential information from central and peripheral afferents. This sequence significantly contributed to neural processes that are responsible for the acquisition, expression, and extinction of anticipatory flexion responses.

  18. Nicotine-Induced Antinociception in Male and Female Sprague-Dawley Rats

    DTIC Science & Technology

    1999-07-21

    drugs, e.g., ibuprofen , naproxen, and fenbufen. These agents provide analgesia and also may act peripherally to decrease the inflammatory cascade (Wall...although a single dose of ibuprofen (a non-steroidal analgesic) was an effective analgesic against electrically-induced experimental pain in male subjects...discomfort from illness or injUry (e.g., ibuprofen ). Although these two drugs have been used safely and effectively for many years, we still do not know

  19. Energy star. (Latest citations from the Computer database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The bibliography contains citations concerning a collaborative effort between the Environmental Protection Agency (EPA) and private industry to reduce electrical power consumed by personal computers and related peripherals. Manufacturers complying with EPA guidelines are officially recognized by award of a special Energy Star logo, and are referred to in official documents as a vendor of green computers. (Contains a minimum of 81 citations and includes a subject term index and title list.)

  20. Energy star. (Latest citations from the Computer database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning a collaborative effort between the Environmental Protection Agency (EPA) and private industry to reduce electrical power consumed by personal computers and related peripherals. Manufacturers complying with EPA guidelines are officially recognized by award of a special Energy Star logo, and are referred to in official documents as a vendor of green computers. (Contains a minimum of 234 citations and includes a subject term index and title list.)

  1. Studies of Electrically Stimulated Rat Limb and Peripheral Nerve Regeneration.

    DTIC Science & Technology

    1983-08-25

    principal adaptations of mammals to a dry land enviorment is rapid cicatrization . Under ordinary circumstances, a mammal cannot afford to leave open wounds...treatment to prevent rapid cicatrization . The classical way to do this is with glucocorticoids, and some success with such treatments alone has been...suppression of cicatrization , and thus to complete regeneration. In view of the fact that the rat obviously can form all of the tissues necessary -13

  2. Controversies related to electromagnetic field exposure on peripheral nerves.

    PubMed

    Say, Ferhat; Altunkaynak, Berrin Zuhal; Coşkun, Sina; Deniz, Ömür Gülsüm; Yıldız, Çağrı; Altun, Gamze; Kaplan, Arife Ahsen; Kaya, Sefa Ersan; Pişkin, Ahmet

    2016-09-01

    Electromagnetic field (EMF) is a pervasive environmental presence in modern society. In recent years, mobile phone usage has increased rapidly throughout the world. As mobile phones are generally held close to the head while talking, studies have mostly focused on the central and peripheral nervous system. There is a need for further research to ascertain the real effect of EMF exposure on the nervous system. Several studies have clearly demonstrated that EMF emitted by cell phones could affect the systems of the body as well as functions. However, the adverse effects of EMF emitted by mobile phones on the peripheral nerves are still controversial. Therefore, this review summarizes current knowledge on the possible positive or negative effects of electromagnetic field on peripheral nerves. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Sub-cellular distribution and translocation of TRP channels.

    PubMed

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  4. Psychophysics, flare, and neurosecretory function in human pain models: capsaicin versus electrically evoked pain.

    PubMed

    Geber, Christian; Fondel, Ricarda; Krämer, Heidrun H; Rolke, Roman; Treede, Rolfe-Detlef; Sommer, Claudia; Birklein, Frank

    2007-06-01

    Intradermal capsaicin injection (CAP) and electrical current stimulation (ES) are analyzed in respect to patterns and test-retest reliability of pain as well as sensory and neurosecretory changes. In 10 healthy subjects, 2x CAP (50 microg) and 2x ES (5 to 30 mA) were applied to the volar forearm. The time period between 2 identical stimulations was about 4 months. Pain ratings, areas of mechanical hyperalgesia, and allodynia were assessed. The intensity of sensory changes was quantified by using quantitative sensory testing. Neurogenic flare was assessed by using laser Doppler imaging. Calcitonin gene-related peptide (CGRP) release was quantified by dermal microdialysis in combination with an enzyme immunoassay. Time course and peak pain ratings were different between CAP and ES. Test-retest correlation was high (r > or = 0.73). Both models induced primary heat hyperalgesia and primary plus secondary pin-prick hyperalgesia. Allodynia occurred in about half of the subjects. Maximum flare sizes did not differ between CAP and ES, but flare intensities were higher for ES. Test-retest correlation was higher for flare sizes than for flare intensity. A significant CGRP release could only be measured after CAP. The different time courses of pain stimulation (CAP: rapidly decaying pain versus ES: pain plateau) led to different peripheral neurosecretory effects but induced similar central plasticity and hyperalgesia. The present study gives a detailed overview of psychophysical and neurosecretory characteristics induced by noxious stimulation with capsaicin and electrical current. We describe differences, similarities, and reproducibility of these human pain models. These data might help to interpret past and future results of human pain studies using experimental pain.

  5. Electrical stimulation of the insular cortex as a novel target for the relief of refractory pain: An experimental approach in rodents.

    PubMed

    Dimov, Luiz Fabio; Toniolo, Elaine Flamia; Alonso-Matielo, Heloísa; de Andrade, Daniel Ciampi; Garcia-Larrea, Luis; Ballester, Gerson; Teixeira, Manoel Jacobsen; Dale, Camila Squarzoni

    2018-07-02

    Cortical electrical stimulation (CES) has shown to be an effective therapeutic alternative for neuropathic pain refractory to pharmacological treatment. The primary motor cortex(M1) was the main cortical target used in the vast majority of both invasive and non-invasive studies. Despite positive results M1-based approaches still fail to relieve pain in a significant proportion of individuals. It has been advocated that the direct stimulation of cortical areas directly implicated in the central integration of pain could increase the efficacy of analgesic brain stimulation. Here, we evaluated the behavioral effects of electrical stimulation of the insular cortex (ESI) on pain sensitivity in an experimental rat model of peripheral neuropathy, and have described the pathways involved. Animals underwent chronic constriction of the sciatic nerve in the right hind limb and had concentric electrodes implanted in the posterior dysranular insular cortex. Mechanical nociception responses were evaluated before and at the end of a 15-min session of ESI (60Hz, 210μs, 1V). ESI reversed mechanical hypersensitivity in the paw contralateral to the brain hemisphere stimulated, without inducing motor impairment in the open-field test. Pharmacological blockade of μ-opioid (MOR) or type 1-cannabinoid receptors (CB1R) abolished ESI-induced antinociceptive effects. Evaluation of CB1R and MOR spatial expression demonstrated differential modulation of CB1R and MOR in the periaqueductal gray matter (PAG) of ESI-treated rats in sub-areas involved in pain processing/modulation. These results indicate that ESI induces antinociception by functionally modulating opioid and cannabinoid systems in the PAG pain circuitry in rats with experimentally induced neuropathic pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nervous System Sensitization as a Predictor of Outcome in the Treatment of Peripheral Musculoskeletal Conditions: A Systematic Review.

    PubMed

    O'Leary, Helen; Smart, Keith M; Moloney, Niamh A; Doody, Catherine M

    2017-02-01

    Research suggests that peripheral and central nervous system sensitization can contribute to the overall pain experience in peripheral musculoskeletal (MSK) conditions. It is unclear, however, whether sensitization of the nervous system results in poorer outcomes following the treatment. This systematic review investigated whether nervous system sensitization in peripheral MSK conditions predicts poorer clinical outcomes in response to a surgical or conservative intervention. Four electronic databases were searched to identify the relevant studies. Eligible studies had a prospective design, with a follow-up assessing the outcome in terms of pain or disability. Studies that used baseline indices of nervous system sensitization were included, such as quantitative sensory testing (QST) or questionnaires that measured centrally mediated symptoms. Thirteen studies met the inclusion criteria, of which six were at a high risk of bias. The peripheral MSK conditions investigated were knee and hip osteoarthritis, shoulder pain, and elbow tendinopathy. QST parameters indicative of sensitization (lower electrical pain thresholds, cold hyperalgesia, enhanced temporal summation, lower punctate sharpness thresholds) were associated with negative outcome (more pain or disability) in 5 small exploratory studies. Larger studies that accounted for multiple confounders in design and analysis did not support a predictive relationship between QST parameters and outcome. Two studies used self-report measures to capture comorbid centrally mediated symptoms, and found higher questionnaire scores were independently predictive of more persistent pain following a total joint arthroplasty. This systematic review found insufficient evidence to support an independent predictive relationship between QST measures of nervous system sensitization and treatment outcome. Self-report measures demonstrated better predictive ability. Further high-quality prognostic research is warranted. © 2016 World Institute of Pain.

  7. Processing and Memory of Central versus Peripheral Information as a Function of Reading Goals: Evidence from Eye-Movements

    ERIC Educational Resources Information Center

    Yeari, Menahem; van den Broek, Paul; Oudega, Marja

    2015-01-01

    The present study examined the effect of reading goals on the processing and memory of central and peripheral textual information. Using eye-tracking methodology, we compared the effect of four common reading goals--entertainment, presentation, studying for a close-ended (multiple-choice) questions test, and studying for an open-ended questions…

  8. Unusual Voltage-Gated Sodium Currents as Targets for Pain.

    PubMed

    Barbosa, C; Cummins, T R

    2016-01-01

    Pain is a serious health problem that impacts the lives of many individuals. Hyperexcitability of peripheral sensory neurons contributes to both acute and chronic pain syndromes. Because voltage-gated sodium currents are crucial to the transmission of electrical signals in peripheral sensory neurons, the channels that underlie these currents are attractive targets for pain therapeutics. Sodium currents and channels in peripheral sensory neurons are complex. Multiple-channel isoforms contribute to the macroscopic currents in nociceptive sensory neurons. These different isoforms exhibit substantial variations in their kinetics and pharmacology. Furthermore, sodium current complexity is enhanced by an array of interacting proteins that can substantially modify the properties of voltage-gated sodium channels. Resurgent sodium currents, atypical currents that can enhance recovery from inactivation and neuronal firing, are increasingly being recognized as playing potentially important roles in sensory neuron hyperexcitability and pain sensations. Here we discuss unusual sodium channels and currents that have been identified in nociceptive sensory neurons, describe what is known about the molecular determinants of the complex sodium currents in these neurons. Finally, we provide an overview of therapeutic strategies to target voltage-gated sodium currents in nociceptive neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of a Bacteria-Based Probiotic on Subpopulations of Peripheral Leukocytes and Their Cytokine mRNA Expression in Calves

    PubMed Central

    QADIS, Abdul Qadir; GOYA, Satoru; YATSU, Minoru; YOSHIDA, Yu-uki; ICHIJO, Toshihiro; SATO, Shigeru

    2013-01-01

    ABSTRACT Eight Holstein calves (10 ± 3 weeks) were used to examine the interaction between a bacteria-based probiotic agent (probiotic) and the function of peripheral blood mononuclear cells (PBMCs). The probiotic, consisting of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum, was administered orally at 3.0 g/100 kg body weight to calves once daily for 5 consecutive days. Calves given the vehicle alone with no probiotic served as the control. In the treatment group, increases in numbers of CD282+ (TLR2) monocytes, CD3+ T cells and CD4+, CD8+ and WC1+ γδ T cell subsets were noted on day 7 post-placement compared to predose day and the control group. Expression of interleukin (IL)-6, interferon-gamma (INF-γ) and tumor necrosis factor-alpha (TNF-α) was elevated in peripheral leukocytes on days 7 and 14. These results suggest that peripheral blood leukocytes in healthy calves may be stimulated via the gastrointestinal microbiota, which was increased by the oral probiotic treatment, with overall stability of the rumen bacterial flora. The 5-day repeated administration of a bacteria-based probiotic may enhance cellular immune function in weaned calves. PMID:24131856

  10. Effects of a bacteria-based probiotic on subpopulations of peripheral leukocytes and their cytokine mRNA expression in calves.

    PubMed

    Qadis, Abdul Qadir; Goya, Satoru; Yatsu, Minoru; Yoshida, Yu-Uki; Ichijo, Toshihiro; Sato, Shigeru

    2014-03-01

    Eight Holstein calves (10 ± 3 weeks) were used to examine the interaction between a bacteria-based probiotic agent (probiotic) and the function of peripheral blood mononuclear cells (PBMCs). The probiotic, consisting of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum, was administered orally at 3.0 g/100 kg body weight to calves once daily for 5 consecutive days. Calves given the vehicle alone with no probiotic served as the control. In the treatment group, increases in numbers of CD282(+) (TLR2) monocytes, CD3(+) T cells and CD4(+), CD8(+) and WC1(+) γδ T cell subsets were noted on day 7 post-placement compared to predose day and the control group. Expression of interleukin (IL)-6, interferon-gamma (INF-γ) and tumor necrosis factor-alpha (TNF-α) was elevated in peripheral leukocytes on days 7 and 14. These results suggest that peripheral blood leukocytes in healthy calves may be stimulated via the gastrointestinal microbiota, which was increased by the oral probiotic treatment, with overall stability of the rumen bacterial flora. The 5-day repeated administration of a bacteria-based probiotic may enhance cellular immune function in weaned calves.

  11. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve

    PubMed Central

    Roberts, Sheridan L.; Onaitis, Mark W.; Florio, Francesca; Quattrini, Angelo; Lloyd, Alison C.; D'Antonio, Maurizio

    2017-01-01

    Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system. PMID:28743796

  12. Peripheral and central mediators of lipopolysaccharide induced suppression of defensive rage behavior in the cat.

    PubMed

    Bhatt, S; Bhatt, R S; Zalcman, S S; Siegel, A

    2009-11-10

    Based upon recent findings in our laboratory that cytokines microinjected into the medial hypothalamus or periaqueductal gray (PAG) powerfully modulate defensive rage behavior in cat, the present study determined the effects of peripherally released cytokines following lipopolysaccharide (LPS) challenge upon defensive rage. The study involved initial identification of the effects of peripheral administration of LPS upon defensive rage by electrical stimulation from PAG and subsequent determination of the peripheral and central mechanisms governing this process. The results revealed significant elevation in response latencies for defensive rage from 60 to 300 min, post LPS injection, with no detectable signs of sickness behavior present at 60 min. In contrast, head turning behavior elicited by stimulation of adjoining midbrain sites was not affected by LPS administration, suggesting a specificity of the effects of LPS upon defensive rage. Direct administration of LPS into the medial hypothalamus had no effect on defensive rage, suggesting that the effects of LPS were mediated by peripheral cytokines rather than by any direct actions upon hypothalamic neurons. Complete blockade of the suppressive effects of LPS by peripheral pretreatment with an Anti-tumor necrosis factor-alpha (TNFalpha) antibody but not with an anti- interleukin-1 (IL-1) antibody demonstrated that the effects of LPS were mediated through TNF-alpha rather than through an IL-1 mechanism. A determination of the central mechanisms governing LPS suppression revealed that pretreatment of the medial hypothalamus with PGE(2) or 5-HT(1A) receptor antagonists each completely blocked the suppressive effects of LPS, while microinjections of a TNF-alpha antibody into the medial hypothalamus were ineffective. Microinjections of -Iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) benzamide monohydrochloride (p-MPPI) into lateral hypothalamus (to test for anatomical specificity) had no effect upon LPS induced suppression of defensive rage. The results demonstrate that LPS suppresses defensive rage by acting through peripheral TNF-alpha in periphery and that central effects of LPS suppression of defensive rage are mediated through PGE(2) and 5-HT(1A) receptors in the medial hypothalamus.

  13. Strategies for providing upper extremity amputees with tactile and hand position feedback--moving closer to the bionic arm.

    PubMed

    Riso, R R

    1999-01-01

    A continuing challenge for prostheses developers is to replace the sensory function of the hand. This includes tactile sensitivity such as finger contact, grip force, object slippage, surface texture and temperature, as well as proprioceptive sense. One approach is sensory substitution whereby an intact sensory system such as vision, hearing or cutaneous sensation elsewhere on the body is used as an input channel for information related to the prosthesis. A second technique involves using electrical stimulation to deliver sensor derived information directly to the peripheral afferent nerves within the residual limb. Stimulation of the relevant afferent nerves can ultimately come closest to restoring the original sensory perceptions of the hand, and to this end, researchers have already demonstrated some degree of functionality of the transected sensory nerves in studies with amputee subjects. This paper provides an overview of different types of nerve interface components and the advantages and disadvantages of employing each of them in sensory feedback systems. Issues of sensory perception, neurophysiology and anatomy relevant to hand sensation and function are discussed with respect to the selection of the different types of nerve interfaces. The goal of this paper is to outline what can be accomplished for implementing sensation into artificial arms in the near term by applying what is present or presently attainable technology.

  14. Electric Imaging through Evolution, a Modeling Study of Commonalities and Differences

    PubMed Central

    Pedraja, Federico; Aguilera, Pedro; Caputi, Angel A.; Budelli, Ruben

    2014-01-01

    Modeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating electric images which takes into account the structure and physiology of the electric organ as well as the geometry and resistivity of fish tissues. The present article reports a general application of our simulator for studying electric images in electric fish with heterogeneous, extended electric organs. We studied three species of Gymnotiformes, including both wave-type (Apteronotus albifrons) and pulse-type (Gymnotus obscurus and Gymnotus coropinae) fish, with electric organs of different complexity. The results are compared with the African (Gnathonemus petersii) and American (Gymnotus omarorum) electric fish studied previously. We address the following issues: 1) how to calculate equivalent source distributions based on experimental measurements, 2) how the complexity of the electric organ discharge determines the features of the electric field and 3) how the basal field determines the characteristics of electric images. Our findings allow us to generalize the hypothesis (previously posed for G. omarorum) in which the perioral region and the rest of the body play different sensory roles. While the “electrosensory fovea” appears suitable for exploring objects in detail, the rest of the body is likened to a “peripheral retina” for detecting the presence and movement of surrounding objects. We discuss the commonalities and differences between species. Compared to African species, American electric fish show a weaker field. This feature, derived from the complexity of distributed electric organs, may endow Gymnotiformes with the ability to emit site-specific signals to be detected in the short range by a conspecific and the possibility to evolve predator avoidance strategies. PMID:25010765

  15. Electric imaging through evolution, a modeling study of commonalities and differences.

    PubMed

    Pedraja, Federico; Aguilera, Pedro; Caputi, Angel A; Budelli, Ruben

    2014-07-01

    Modeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating electric images which takes into account the structure and physiology of the electric organ as well as the geometry and resistivity of fish tissues. The present article reports a general application of our simulator for studying electric images in electric fish with heterogeneous, extended electric organs. We studied three species of Gymnotiformes, including both wave-type (Apteronotus albifrons) and pulse-type (Gymnotus obscurus and Gymnotus coropinae) fish, with electric organs of different complexity. The results are compared with the African (Gnathonemus petersii) and American (Gymnotus omarorum) electric fish studied previously. We address the following issues: 1) how to calculate equivalent source distributions based on experimental measurements, 2) how the complexity of the electric organ discharge determines the features of the electric field and 3) how the basal field determines the characteristics of electric images. Our findings allow us to generalize the hypothesis (previously posed for G. omarorum) in which the perioral region and the rest of the body play different sensory roles. While the "electrosensory fovea" appears suitable for exploring objects in detail, the rest of the body is likened to a "peripheral retina" for detecting the presence and movement of surrounding objects. We discuss the commonalities and differences between species. Compared to African species, American electric fish show a weaker field. This feature, derived from the complexity of distributed electric organs, may endow Gymnotiformes with the ability to emit site-specific signals to be detected in the short range by a conspecific and the possibility to evolve predator avoidance strategies.

  16. Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.

    PubMed

    Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S

    2017-02-28

    Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Peripheral nerve field stimulation (PNFS) in chronic low back pain: a prospective multicenter study.

    PubMed

    Kloimstein, Herwig; Likar, Rudolf; Kern, Michael; Neuhold, Josef; Cada, Miroslav; Loinig, Nadja; Ilias, Wilfried; Freundl, Brigitta; Binder, Heinrich; Wolf, Andreas; Dorn, Christian; Mozes-Balla, Eva Maria; Stein, Rolf; Lappe, Ivo; Sator-Katzenschlager, Sabine

    2014-02-01

    The goal of this study was to evaluate the long-term efficacy and safety of peripheral nerve field stimulation (PNFS) for chronic low back pain (cLBP). In this prospective, multicenter observational study, 118 patients were admitted to 11 centers throughout Austria and Switzerland. After a screening visit, all patients underwent a trial stimulation period of at least seven days before implantation of the permanent system. Leads were placed in the subcutaneous tissues of the lower back directly in the region of greatest pain. One hundred five patients were implanted with a permanent stimulating system. Patients' evaluation of pain and functional levels were completed before implantation and one, three, and six months after implantation. Adverse events, medication usage, and coverage of the painful area and predictive value of transcutaneous electrical nerve stimulation (TENS) were monitored. All pain and quality-of-life measures showed statistically significant improvement during the treatment period. These included the average pain visual analog scale, the Oswestry Disability Questionnaire, the Becks Depression Inventory, and the Short Form-12 item Health survey. Additionally, medication usage with opioids, nonsteroidal anti-inflammatory drugs, and anti-convulsants showed a highly significant reduction. Complications requiring surgical intervention were reported in 9.6% of the patients. The degree of coverage of painful areas seems to be an important criterion for efficacy of PNFS, whereas TENS is presumably no predictor. This prospective, multicenter study confirms that PNFS is an effective therapy for the management of cLBP. Significant improvements in many aspects of the pain condition were measured, and complications were minimal. © 2013 International Neuromodulation Society.

  18. Combined Brain and Peripheral Nerve Stimulation in Chronic Stroke Patients With Moderate to Severe Motor Impairment.

    PubMed

    Menezes, Isabella S; Cohen, Leonardo G; Mello, Eduardo A; Machado, André G; Peckham, Paul Hunter; Anjos, Sarah M; Siqueira, Inara L; Conti, Juliana; Plow, Ela B; Conforto, Adriana B

    2018-02-01

    To evaluate effects of somatosensory stimulation in the form of repetitive peripheral nerve sensory stimulation (RPSS) in combination with transcranial direct current stimulation (tDCS), tDCS alone, RPSS alone, or sham RPSS + tDCS as add-on interventions to training of wrist extension with functional electrical stimulation (FES), in chronic stroke patients with moderate to severe upper limb impairments in a crossover design. We hypothesized that the combination of RPSS and tDCS would enhance the effects of FES on active range of movement (ROM) of the paretic wrist to a greater extent than RPSS alone, tDCS alone or sham RPSS + tDCS. The primary outcome was the active ROM of extension of the paretic wrist. Secondary outcomes were ROM of wrist flexion, grasp, and pinch strength of the paretic and nonparetic upper limbs, and ROM of wrist extension of the nonparetic wrist. Outcomes were blindly evaluated before and after each intervention. Analysis of variance with repeated measures with factors "session" and "time" was performed. After screening 2499 subjects, 22 were included. Data from 20 subjects were analyzed. There were significant effects of "time" for grasp force of the paretic limb and for ROM of wrist extension of the nonparetic limb, but no effects of "session" or interaction "session x time." There were no significant effects of "session," "time," or interaction "session x time" regarding other outcomes. Single sessions of PSS + tDCS, tDCS alone, or RPSS alone did not improve training effects in chronic stroke patients with moderate to severe impairment. © 2017 International Neuromodulation Society.

  19. Sleep-Disordered Breathing in Acute Ischemic Stroke: A Mechanistic Link to Peripheral Endothelial Dysfunction.

    PubMed

    Scherbakov, Nadja; Sandek, Anja; Ebner, Nicole; Valentova, Miroslava; Nave, Alexander Heinrich; Jankowska, Ewa A; Schefold, Jörg C; von Haehling, Stephan; Anker, Stefan D; Fietze, Ingo; Fiebach, Jochen B; Haeusler, Karl Georg; Doehner, Wolfram

    2017-09-11

    Sleep-disordered breathing (SDB) after acute ischemic stroke is frequent and may be linked to stroke-induced autonomic imbalance. In the present study, the interaction between SDB and peripheral endothelial dysfunction (ED) was investigated in patients with acute ischemic stroke and at 1-year follow-up. SDB was assessed by transthoracic impedance records in 101 patients with acute ischemic stroke (mean age, 69 years; 61% men; median National Institutes of Health Stroke Scale, 4) while being on the stroke unit. SDB was defined by apnea-hypopnea index ≥5 episodes per hour. Peripheral endothelial function was assessed using peripheral arterial tonometry (EndoPAT-2000). ED was defined by reactive hyperemia index ≤1.8. Forty-one stroke patients underwent 1-year follow-up (390±24 days) after stroke. SDB was observed in 57% patients with acute ischemic stroke. Compared with patients without SDB, ED was more prevalent in patients with SDB (32% versus 64%; P <0.01). After adjustment for multiple confounders, presence of SDB remained independently associated with ED (odds ratio, 3.1; [95% confidence interval, 1.2-7.9]; P <0.05). After 1 year, the prevalence of SDB decreased from 59% to 15% ( P <0.001). Interestingly, peripheral endothelial function improved in stroke patients with normalized SDB, compared with patients with persisting SDB ( P <0.05). SDB was present in more than half of all patients with acute ischemic stroke and was independently associated with peripheral ED. Normalized ED in patients with normalized breathing pattern 1 year after stroke suggests a mechanistic link between SDB and ED. URL: https://drks-neu.uniklinik-freiburg.de. Unique identifier: DRKS00000514. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. The peripheral artery questionnaire: a new disease-specific health status measure for patients with peripheral arterial disease.

    PubMed

    Spertus, John; Jones, Philip; Poler, Sherri; Rocha-Singh, Krishna

    2004-02-01

    The most common indication for treating patients with peripheral arterial disease is to improve their health status: their symptoms, function, and quality of life. Quantifying health status requires a valid, reproducible, and sensitive disease-specific measure. The Peripheral Artery Questionnaire (PAQ) is a 20-item questionnaire developed to meet this need by quantifying patients' physical limitations, symptoms, social function, treatment satisfaction, and quality of life. Psychometric and clinical properties of the PAQ were evaluated in a prospective cohort study of 44 patients undergoing elective percutaneous peripheral revascularization. To establish reproducibility, 2 assessments were performed 2 weeks apart and before revascularization. The change in scores before and 6 weeks after revascularization were used to determine the instruments' responsiveness and were compared with the Short Form-36 and the Walking Impairment Questionnaire. A series of cross-sectional analyses were performed to establish the construct validity of the PAQ. The 7 domains of the PAQ were internally reliable, with Cronbach alpha = 0.80 to 0.94. The test-retest reliability analyses revealed insignificant mean changes of 0.6 to 2.3 points (P = not significant for all). Conversely, the change after revascularization ranged from 13.7 to 41.9 points (P < or =.001 for all), reflecting substantial sensitivity of the PAQ to clinical improvement. The PAQ Summary Scale was the most sensitive of all scales tested. Construct validity was established by demonstrating correlations with other measures of patient health status. The PAQ is a valid, reliable, and responsive disease-specific measure for patients with peripheral arterial disease. It may prove to be a useful end point in clinical trials and a potential aid in disease management.

  1. Types of neural guides and using nanotechnology for peripheral nerve reconstruction

    PubMed Central

    Biazar, Esmaeil; Khorasani, MT; Montazeri, Naser; Pourshamsian, Khalil; Daliri, Morteza; T, Mostafa Rezaei; B, Mahmoud Jabarvand; Khoshzaban, Ahad; K, Saeed Heidari; Jafarpour, Mostafa; Roviemiab, Ziba

    2010-01-01

    Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Different methods, such as conventional allograft procedures and use of biologic tubes present problems when used for damaged peripheral nerve reconstruction. Designed scaffolds comprised of natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and nonabsorbable synthetic and natural polymers with unique characteristics can be an appropriate solution to repair damaged nerve tissues. Polymeric nanofibrous scaffolds with properties similar to neural structures can be more effective in the reconstruction process. Better cell adhesion and migration, more guiding of axons, and structural features, such as porosity, provide a clearer role for nanofibers in the restoration of neural tissues. In this paper, basic concepts of peripheral nerve injury, types of artificial and natural guides, and methods to improve the performance of tubes, such as orientation, nanotechnology applications for nerve reconstruction, fibers and nanofibers, electrospinning methods, and their application in peripheral nerve reconstruction are reviewed. PMID:21042546

  2. Re-visiting the Endocannabinoid System and Its Therapeutic Potential in Obesity and Associated Diseases.

    PubMed

    Richey, Joyce M; Woolcott, Orison

    2017-09-14

    The purpose of the review was to revisit the possibility of the endocannabinoid system being a therapeutic target for the treatment of obesity by focusing on the peripheral roles in regulating appetite and energy metabolism. Previous studies with the global cannabinoid receptor blocker rimonabant, which has both central and peripheral properties, showed that this drug has beneficial effects on cardiometabolic function but severe adverse psychiatric side effects. Consequently, focus has shifted to peripherally restricted cannabinoid 1 (CB1) receptor blockers as possible therapeutic agents that mitigate or eliminate the untoward effects in the central nervous system. Targeting the endocannabinoid system using novel peripheral CB1 receptor blockers with negligible penetrance across the blood-brain barrier may prove to be effective therapy for obesity and its co-morbidities. Perhaps the future of blockers targeting CB1 receptors will be tissue-specific neutral antagonists (e.g., skeletal muscle specific to treat peripheral insulin resistance, adipocyte-specific to treat fat excess, liver-specific to treat fatty liver and hepatic insulin resistance).

  3. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling.

    PubMed

    Altmann, Christine; Vasic, Verica; Hardt, Stefanie; Heidler, Juliana; Häussler, Annett; Wittig, Ilka; Schmidt, Mirko H H; Tegeder, Irmgard

    2016-10-22

    Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in 'regulation of transcription' and 'response to insulin' (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery.

  4. Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis.

    PubMed

    Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-Jye; Salton, Stephen R

    2012-11-01

    Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.

  5. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain123

    PubMed Central

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R.; Wieskopf, Jeffrey S.; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S.

    2016-01-01

    Abstract We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8+ primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch+ mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2+-Arch+mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch+ mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8+ afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  6. Karolinska institutet 200-year anniversary. Symposium on traumatic injuries in the nervous system: injuries to the spinal cord and peripheral nervous system - injuries and repair, pain problems, lesions to brachial plexus.

    PubMed

    Sköld, Mattias K; Svensson, Mikael; Tsao, Jack; Hultgren, Thomas; Landegren, Thomas; Carlstedt, Thomas; Cullheim, Staffan

    2011-01-01

    The Karolinska Institutet 200-year anniversary symposium on injuries to the spinal cord and peripheral nervous system gathered expertise in the spinal cord, spinal nerve, and peripheral nerve injury field spanning from molecular prerequisites for nerve regeneration to clinical methods in nerve repair and rehabilitation. The topics presented at the meeting covered findings on adult neural stem cells that when transplanted to the hypoglossal nucleus in the rat could integrate with its host and promote neuron survival. Studies on vascularization after intraspinal replantation of ventral nerve roots and microarray studies in ventral root replantation as a tool for mapping of biological patterns typical for neuronal regeneration were discussed. Different immune molecules in neurons and glia and their very specific roles in synapse plasticity after injury were presented. Novel strategies in repair of injured peripheral nerves with ethyl-cyanoacrylate adhesive showed functional recovery comparable to that of conventional epineural sutures. Various aspects on surgical techniques which are available to improve function of the limb, once the nerve regeneration after brachial plexus lesions and repair has reached its limit were presented. Moreover, neurogenic pain after amputation and its treatment with mirror therapy were shown to be followed by dramatic decrease in phantom limb pain. Finally clinical experiences on surgical techniques to repair avulsed spinal nerve root and the motoric as well as sensoric regain of function were presented.

  7. Karolinska Institutet 200-Year Anniversary. Symposium on Traumatic Injuries in the Nervous System: Injuries to the Spinal Cord and Peripheral Nervous System – Injuries and Repair, Pain Problems, Lesions to Brachial Plexus

    PubMed Central

    Sköld, Mattias K.; Svensson, Mikael; Tsao, Jack; Hultgren, Thomas; Landegren, Thomas; Carlstedt, Thomas; Cullheim, Staffan

    2011-01-01

    The Karolinska Institutet 200-year anniversary symposium on injuries to the spinal cord and peripheral nervous system gathered expertise in the spinal cord, spinal nerve, and peripheral nerve injury field spanning from molecular prerequisites for nerve regeneration to clinical methods in nerve repair and rehabilitation. The topics presented at the meeting covered findings on adult neural stem cells that when transplanted to the hypoglossal nucleus in the rat could integrate with its host and promote neuron survival. Studies on vascularization after intraspinal replantation of ventral nerve roots and microarray studies in ventral root replantation as a tool for mapping of biological patterns typical for neuronal regeneration were discussed. Different immune molecules in neurons and glia and their very specific roles in synapse plasticity after injury were presented. Novel strategies in repair of injured peripheral nerves with ethyl-cyanoacrylate adhesive showed functional recovery comparable to that of conventional epineural sutures. Various aspects on surgical techniques which are available to improve function of the limb, once the nerve regeneration after brachial plexus lesions and repair has reached its limit were presented. Moreover, neurogenic pain after amputation and its treatment with mirror therapy were shown to be followed by dramatic decrease in phantom limb pain. Finally clinical experiences on surgical techniques to repair avulsed spinal nerve root and the motoric as well as sensoric regain of function were presented. PMID:21629875

  8. Effects of visual attention on chromatic and achromatic detection sensitivities.

    PubMed

    Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko

    2014-05-01

    Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.

  9. Peripheral facial palsy: Speech, communication and oral motor function.

    PubMed

    Movérare, T; Lohmander, A; Hultcrantz, M; Sjögreen, L

    2017-02-01

    The aim of the present study was to examine the effect of acquired unilateral peripheral facial palsy on speech, communication and oral functions and to study the relationship between the degree of facial palsy and articulation, saliva control, eating ability and lip force. In this descriptive study, 27 patients (15 men and 12 women, mean age 48years) with unilateral peripheral facial palsy were included if they were graded under 70 on the Sunnybrook Facial Grading System. The assessment was carried out in connection with customary visits to the ENT Clinic and comprised lip force, articulation and intelligibility, together with perceived ability to communicate and ability to eat and control saliva conducted through self-response questionnaires. The patients with unilateral facial palsy had significantly lower lip force, poorer articulation and ability to eat and control saliva compared with reference data in healthy populations. The degree of facial palsy correlated significantly with lip force but not with articulation, intelligibility, perceived communication ability or reported ability to eat and control saliva. Acquired peripheral facial palsy may affect communication and the ability to eat and control saliva. Physicians should be aware that there is no direct correlation between the degree of facial palsy and the possible effect on communication, eating ability and saliva control. Physicians are therefore recommended to ask specific questions relating to problems with these functions during customary medical visits and offer possible intervention by a speech-language pathologist or a physiotherapist. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  11. A dynamic auditory-cognitive system supports speech-in-noise perception in older adults

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Understanding speech in noise is one of the most complex activities encountered in everyday life, relying on peripheral hearing, central auditory processing, and cognition. These abilities decline with age, and so older adults are often frustrated by a reduced ability to communicate effectively in noisy environments. Many studies have examined these factors independently; in the last decade, however, the idea of the auditory-cognitive system has emerged, recognizing the need to consider the processing of complex sounds in the context of dynamic neural circuits. Here, we use structural equation modeling to evaluate interacting contributions of peripheral hearing, central processing, cognitive ability, and life experiences to understanding speech in noise. We recruited 120 older adults (ages 55 to 79) and evaluated their peripheral hearing status, cognitive skills, and central processing. We also collected demographic measures of life experiences, such as physical activity, intellectual engagement, and musical training. In our model, central processing and cognitive function predicted a significant proportion of variance in the ability to understand speech in noise. To a lesser extent, life experience predicted hearing-in-noise ability through modulation of brainstem function. Peripheral hearing levels did not significantly contribute to the model. Previous musical experience modulated the relative contributions of cognitive ability and lifestyle factors to hearing in noise. Our models demonstrate the complex interactions required to hear in noise and the importance of targeting cognitive function, lifestyle, and central auditory processing in the management of individuals who are having difficulty hearing in noise. PMID:23541911

  12. Assessment of vascularization and myelination following peripheral nerve repair using angiographic and polarization sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nam, Ahhyun S.; Chico-Calero, Isabel; Easow, Jeena M.; Villiger, Martin; Welt, Jonathan; Winograd, Jonathan M.; Randolph, Mark A.; Redmond, Robert W.; Vakoc, Benjamin J.

    2017-02-01

    A severe traumatic injury to a peripheral nerve often requires surgical graft repair. However, functional recovery after these surgical repairs is often unsatisfactory. To improve interventional procedures, it is important to understand the regeneration of the nerve grafts. The rodent sciatic nerve is commonly used to investigate these parameters. However, the ability to longitudinally assess the reinnervation of injured nerves are limited, and to our knowledge, no methods currently exist to investigate the timing of the revascularization in functional recovery. In this work, we describe the development and use of angiographic and polarization-sensitive (PS) optical coherence tomography (OCT) to visualize the vascularization, demyelination and remyelination of peripheral nerve healing after crush and transection injuries, and across a variety of graft repair methods. A microscope was customized to provide 3.6 cm fields of view along the nerve axis with a capability to track the nerve height to maintain the nerve within the focal plane. Motion artifact rejection was implemented in the angiography algorithm to reduce degradation by bulk respiratory motion in the hindlimb site. Vectorial birefringence imaging methods were developed to significantly enhance the accuracy of myelination measurements and to discriminate birefringent contributions from the myelin and epineurium. These results demonstrate that the OCT platform has the potential to reveal new insights in preclinical studies and may ultimately provide a means for clinical intra-surgical assessment of peripheral nerve function.

  13. Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter?

    PubMed

    Andrade, David C; Arce-Alvarez, Alexis; Toledo, Camilo; Díaz, Hugo S; Lucero, Claudia; Quintanilla, Rodrigo A; Schultz, Harold D; Marcus, Noah J; Amann, Markus; Del Rio, Rodrigo

    2018-03-01

    Heart failure (HF) is a global public health problem that, independent of its etiology [reduced (HFrEF) or preserved ejection fraction (HFpEF)], is characterized by functional impairments of cardiac function, chemoreflex hypersensitivity, baroreflex sensitivity (BRS) impairment, and abnormal autonomic regulation, all of which contribute to increased morbidity and mortality. Exercise training (ExT) has been identified as a nonpharmacological therapy capable of restoring normal autonomic function and improving survival in patients with HFrEF. Improvements in autonomic function after ExT are correlated with restoration of normal peripheral chemoreflex sensitivity and BRS in HFrEF. To date, few studies have addressed the effects of ExT on chemoreflex control, BRS, and cardiac autonomic control in HFpEF; however, there are some studies that have suggested that ExT has a beneficial effect on cardiac autonomic control. The beneficial effects of ExT on cardiac function and autonomic control in HF may have important implications for functional capacity in addition to their obvious importance to survival. Recent studies have suggested that the peripheral chemoreflex may also play an important role in attenuating exercise intolerance in HFrEF patients. The role of the central/peripheral chemoreflex, if any, in mediating exercise intolerance in HFpEF has not been investigated. The present review focuses on recent studies that address primary pathophysiological mechanisms of HF (HFrEF and HFpEF) and the potential avenues by which ExT exerts its beneficial effects.

  14. Etiology and Recovery of Neuromuscular Fatigue following Competitive Soccer Match-Play

    PubMed Central

    Brownstein, Callum G.; Dent, Jack P.; Parker, Paul; Hicks, Kirsty M.; Howatson, Glyn; Goodall, Stuart; Thomas, Kevin

    2017-01-01

    Aim: Previous research into the etiology of neuromuscular fatigue following competitive soccer match-play has primarily focused on peripheral perturbations, with limited research assessing central nervous system function in the days post-match. The aim of the present study was to examine the contribution and time-course of recovery of central and peripheral factors toward neuromuscular fatigue following competitive soccer match-play. Methods: Sixteen male semi-professional soccer players completed a 90-min soccer match. Pre-, post- and at 24, 48, and 72 h participants completed a battery of neuromuscular, physical, and perceptual tests. Maximal voluntary contraction force (MVC) and twitch responses to electrical (femoral nerve) and transcranial magnetic stimulation (TMS) of the motor cortex during isometric knee-extension and at rest were measured to assess central nervous system (voluntary activation, VA) and muscle contractile (potentiated twitch force, Qtw, pot) function. Electromyography responses of the rectus femoris to single- and paired-pulse TMS were used to assess corticospinal excitability and short-interval intracortical inhibition (SICI), respectively. Fatigue and perceptions of muscle soreness were assessed via visual analog scales, and physical function was assessed through measures of jump (countermovement jump height and reactive strength index) and sprint performance. Results: Competitive match-play elicited significant post-match declines in MVC force (−14%, P < 0.001) that persisted for 48 h (−4%, P = 0.01), before recovering by 72 h post-exercise. VA (motor point stimulation) was reduced immediately post-match (−8%, P < 0.001), and remained depressed at 24 h (−5%, P = 0.01) before recovering by 48 h post-exercise. Qtw,pot was reduced post-match (−14%, P < 0.001), remained depressed at 24 h (−6%, P = 0.01), before recovering by 48 h post-exercise. No changes were evident in corticospinal excitability or SICI. Jump performance took 48 h to recover, while perceptions of fatigue persisted at 72 h. Conclusion: Competitive soccer match-play elicits substantial impairments in central nervous system and muscle function, requiring up to 48 h to resolve. The results of the study could have important implications for fixture scheduling, the optimal management of the training process, squad rotation during congested competitive schedules, and the implementation of appropriate recovery interventions. PMID:29118716

  15. Photosystem II Peripheral Accessory Chlorophyll Mutants in Chlamydomonas reinhardtii. Biochemical Characterization and Sensitivity to Photo-Inhibition12

    PubMed Central

    Ruffle, Stuart V.; Wang, Jun; Johnston, Heather G.; Gustafson, Terry L.; Hutchison, Ronald S.; Minagawa, Jun; Crofts, Anthony; Sayre, Richard T.

    2001-01-01

    In addition to the four chlorophylls (Chls) involved in primary charge separation, the photosystem II (PSII) reaction center polypeptides, D1 and D2, coordinate a pair of symmetry-related, peripheral accessory Chls. These Chls are axially coordinated by the D1-H118 and D2-H117 residues and are in close association with the proximal Chl antennae proteins, CP43 and CP47. To gain insight into the function(s) of each of the peripheral Chls, we generated site-specific mutations of the amino acid residues that coordinate these Chls and characterized their energy and electron transfer properties. Our results demonstrate that D1-H118 and D2-H117 mutants differ with respect to: (a) their relative numbers of functional PSII complexes, (b) their relative ability to stabilize charge-separated states, (c) light-harvesting efficiency, and (d) their sensitivity to photo-inhibition. The D2-H117N and D2-H117Q mutants had reduced levels of functional PSII complexes and oxygen evolution capacity as well as reduced light-harvesting efficiencies relative to wild-type cells. In contrast, the D1-H118Q mutant was capable of near wild-type rates of oxygen evolution at saturating light intensities. The D1-H118Q mutant also was substantially more resistant to photo-inhibition than wild type. This reduced sensitivity to photo-inhibition is presumably associated with a reduced light-harvesting efficiency in this mutant. Finally, it is noted that the PSII peripheral accessory Chls have similarities to a to a pair of Chls also present in the PSI reaction center complex. PMID:11598237

  16. Global muscle dysfunction as a risk factor of readmission to hospital due to COPD exacerbations.

    PubMed

    Vilaró, Jordi; Ramirez-Sarmiento, Alba; Martínez-Llorens, Juana M A; Mendoza, Teresa; Alvarez, Miguel; Sánchez-Cayado, Natalia; Vega, Angeles; Gimeno, Elena; Coronell, Carlos; Gea, Joaquim; Roca, Josep; Orozco-Levi, Mauricio

    2010-12-01

    Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with several modifiable (sedentary life-style, smoking, malnutrition, hypoxemia) and non-modifiable (age, co-morbidities, severity of pulmonary function, respiratory infections) risk factors. We hypothesise that most of these risk factors may have a converging and deleterious effects on both respiratory and peripheral muscle function in COPD patients. A multicentre study was carried out in 121 COPD patients (92% males, 63 ± 11 yr, FEV(1), 49 ± 17%pred). Assessments included anthropometrics, lung function, body composition using bioelectrical impedance analysis (BIA), and global muscle function (peripheral muscle (dominant and non-dominant hand grip strength, HGS), inspiratory (PI(max)), and expiratory (PE(max)) muscle strength). GOLD stage, clinical status (stable vs. non-stable) and both current and past hospital admissions due to COPD exacerbations were included as covariates in the analyses. Respiratory and peripheral muscle weakness were observed in all subsets of patients. Muscle weakness, was significantly associated with both current and past hospitalisations. Patients with history of multiple admissions showed increased global muscle weakness after adjusting by FEV(1) (PE(max), OR = 6.8, p < 0.01; PI(max), OR = 2.9, p < 0.05; HGSd, OR = 2.4, and HGSnd, OR = 2.6, p = 0.05). Moreover, a significant increase in both respiratory and peripheral muscle weakness, after adjusting by FEV(1), was associated with current acute exacerbations. Muscle dysfunction, adjusted by GOLD stage, is associated with an increased risk of hospital admissions due to acute episodes of exacerbation of the disease. Current exacerbations further deteriorate muscle dysfunction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I.

    PubMed

    Sippel, Trisha R; White, Jason; Nag, Kamalika; Tsvankin, Vadim; Klaassen, Marci; Kleinschmidt-DeMasters, B K; Waziri, Allen

    2011-11-15

    The source of glioblastoma (GBM)-associated immunosuppression remains multifactorial. We sought to clarify and therapeutically target myeloid cell-derived peripheral immunosuppression in patients with GBM. Direct ex vivo T-cell function, serum Arginase I (ArgI) levels, and circulating myeloid lineage populations were compared between patients with GBM and normal donors or patients with other intracranial tumors. Immunofunctional assays were conducted using bulk and sorted cell populations to explore the potential transfer of myeloid cell-mediated immunosuppression and to identify a potential mechanism for these effects. ArgI-mediated immunosuppression was therapeutically targeted in vitro through pharmacologic inhibition or arginine supplementation. We identified a significantly expanded population of circulating, degranulated neutrophils associated with elevated levels of serum ArgI and decreased T-cell CD3ζ expression within peripheral blood from patients with GBM. Sorted CD11b(+) cells from patients with GBM were found to markedly suppress normal donor T-cell function in coculture, and media harvested from mitogen-stimulated GBM peripheral blood mononuclear cell (PBMC) or GBM-associated mixed lymphoid reactions showed ArgI levels that were significantly higher than controls. Critically, T-cell suppression in both settings could be completely reversed through pharmacologic ArgI inhibition or with arginine supplementation. These data indicate that peripheral cellular immunosuppression in patients with GBM is associated with neutrophil degranulation and elevated levels of circulating ArgI, and that T-cell function can be restored in these individuals by targeting ArgI. These data identify a novel pathway of GBM-mediated suppression of cellular immunity and offer a potential therapeutic window for improving antitumor immunity in affected patients.

  18. The effects of hemostatic agents on peripheral nerve function: an experimental study.

    PubMed

    Alkan, Alper; Inal, Samet; Yildirim, Mehmet; Baş, Burcu; Ağar, Erdal

    2007-04-01

    In the practice of oral and maxillofacial surgery, hemostatic agents are sometimes placed in close proximity to peripheral nerves. In the present study, we evaluated immediate and delayed effects of 4 hemostatic agents (oxidized regenerated cellulose, 5% colloid silver-added gelatine sponge, bovine collagen, bone wax) on peripheral nerve function. A total of 25 rat sciatic nerves were prepared, and the amplitudes were recorded with a physiological data acquisition system. Animals were randomly assigned to 5 groups: control, oxidized regenerated cellulose, gelatine sponge, bone wax, and bovine collagen. The first hour records are defined as immediate effects of these hemostatic agents on nerve function. The animals were then allowed to recover for 4 weeks. At the end of this period, the same surgical and recording procedures were performed. These final records are defined as delayed effects of hemostatic agents on nerve function. According to nerve conduction velocity (NCV) and compound action potential (CAP) values of the experimental groups, early and delayed effects of each hemostatic agent were statistically compared with Bonferroni corrected test (P < .05). Statistically, NCV was significantly reduced, and the CAP was significantly increased 1 hour after surgery (P < .05) in the group of oxidized regenerated cellulose. However, there were no significant differences after 4 weeks compared with the first records. In the gelatine sponge group, CAP was significantly increased 4 weeks after the application. In the bovine collagen and bone wax groups, NCV and CAP values (1 hour and 4 weeks after the application) were not statistically significant compared with initial control records. The present study shows that bovine collagen is the most suitable hemostatic agent applicable for peripheral nerves.

  19. Sex differences in disease-specific health status measures in patients with symptomatic peripheral artery disease: Data from the PORTRAIT study.

    PubMed

    Roumia, Mazen; Aronow, Herbert D; Soukas, Peter; Gosch, Kensey; Smolderen, Kim G; Spertus, John A; Abbott, J Dawn

    2017-04-01

    Peripheral artery disease (PAD) is associated with poor health status (symptoms, functioning, quality of life (QOL)). Whether sex differences exist in PAD-specific health status is unknown. In patients presenting to a specialty clinic with new-onset or recent exacerbation of PAD, we examined sex differences as assessed by the Peripheral Artery Questionnaire (PAQ). The Patient-centered Outcomes Related to TReatment Practices in Peripheral Arterial Disease: Investigating Trajectories (PORTRAIT) study is a multicenter, international prospective study of patients with new or worsening PAD symptoms. Baseline characteristics and mean PAQ scores were compared among women ( n=481) and men ( n=793) before they underwent treatment. The independent association of sex with health status was assessed with multivariable linear regression. As compared with men, women were less often Caucasian, married and employed, and more often lacking health insurance, living alone (36.2% vs 23.6%, p<0.001), had depression and avoided care due to cost (17.0% vs 12.3%, p=0.018). Women and men were of a similar age and education level, and had similar ankle-brachial index (ABI) values (0.7 ± 0.2 in both groups, p=0.052). Female sex was independently associated with lower PAQ scores on all domains (physical functioning adjusted mean difference of -8.40, p<0.001; social functioning adjusted mean difference of -6.8, p<0.001; QOL adjusted mean difference of -6.7, p<0.001), although no differences were observed in treatment satisfaction (adjusted mean difference -0.20, p=0.904). Despite similar ABIs, women presenting with symptoms of PAD had poorer PAD-specific functioning as compared with men, impacting all major health status domains, independent of socio-economic and clinical characteristics.

  20. Course of chemotherapy-induced peripheral neuropathy and its impact on health-related quality of life among ovarian cancer patients: A longitudinal study.

    PubMed

    Bonhof, Cynthia S; Mols, Floortje; Vos, M Caroline; Pijnenborg, Johanna M A; Boll, Dorry; Vreugdenhil, Gerard; Ezendam, Nicole P M; van de Poll-Franse, Lonneke V

    2018-06-01

    Chemotherapy-induced peripheral neuropathy (CIPN) presents itself as sensory peripheral neuropathy (SPN) or motor peripheral neuropathy (MPN). Our aim was to examine the course of SPN and MPN, and their impact on health-related quality of life (HRQoL) among ovarian cancer patients. All newly diagnosed ovarian cancer patients from twelve hospitals in the South of the Netherlands were eligible for participation. Patients (N=174) completed questions on CIPN (EORTC QLQ-OV28) and HRQoL (EORTC QLQ-C30) after initial treatment and at 6, 12, and 24months (response rates were 70%, 71%, 58%, and 43% respectively). Generalized linear mixed models showed that among chemotherapy-treated patients (N=98), SPN levels were stable over time. For MPN, symptoms significantly improved at 12months. At 2years, 13% still reported high SPN. Also, 11% still reported high MPN. Regarding HRQoL, patients with high SPN reported a worse physical, role, emotional, social, and cognitive functioning compared to those with low SPN. Moreover, those who changed from low to high SPN over time worsened on physical functioning. For MPN, a worse global quality of life and a worse functioning was reported among patients with high MPN. Also, those who changed from low to high MPN over time worsened on global quality of life and on physical, role, social, and cognitive functioning. Among chemotherapy-treated ovarian cancer patients, SPN levels were stable over time. In contrast, MPN symptoms significantly improved at 12months. These symptoms seriously impacted HRQoL. Future studies should examine the impact of different treatment decisions and alterations on CIPN, so recommendations can be made to reduce CIPN (prevalence). Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Enhanced CD8+ cytolytic T cell responses in the peripheral circulation of patients with sarcoidosis and non-Löfgren's disease.

    PubMed

    Parasa, Venkata Ramanarao; Forsslund, Helena; Enger, Tobias; Lorenz, Daniel; Kullberg, Susanna; Eklund, Anders; Sköld, Magnus; Wahlström, Jan; Grunewald, Johan; Brighenti, Susanna

    2018-05-01

    The role of CD4 + T cells in the immunopathogenesis of pulmonary sarcoidosis is well-established, while less is known about the phenotype and function of CD8 + cytolytic T cells (CTLs). CD8 + CTLs were explored in peripheral blood and bronchoalveolar lavage (BAL) samples obtained from up to 25 patients with sarcoidosis and 25 healthy controls. The proportion of CTLs was assessed by the expression of cytolytic effector molecules perforin, granzyme B and granulysin in CD8 + T cells, using flow cytometry. Cytolytic function in blood lymphocytes was assessed using a standard 51 Cr-release assay. Patients with Löfgren´s syndrome (LS) and an acute disease onset, were compared to non-LS patients with an insidious onset. Higher proportions of peripheral CD8 + CTLs expressing perforin and granzyme B were observed in sarcoidosis compared to healthy controls. Blood CTLs from non-LS patients had significantly higher expression of perforin, granzyme B and granulysin compared to matched BAL, while LS patients maintained lower levels of effector molecules in both compartments. Mitogen-stimulated peripheral lymphocytes from sarcoidosis patients, particularly from the non-LS group, showed a higher target cell lysis compared to controls. These results demonstrated enhanced peripheral CD8 + CTL responses in sarcoidosis, especially in non-LS patients who have an increased risk of chronic disease. Further comprehensive clinical studies are warranted to increase our understanding of CD8 + CTL responses in sarcoidosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila.

    PubMed

    Banerjee, Swati; Pillai, Anilkumar M; Paik, Raehum; Li, Jingjun; Bhat, Manzoor A

    2006-03-22

    Axonal insulation is critical for efficient action potential propagation and normal functioning of the nervous system. In Drosophila, the underlying basis of nerve ensheathment is the axonal insulation by glial cells and the establishment of septate junctions (SJs) between glial cell membranes. However, the details of the cellular and molecular mechanisms underlying axonal insulation and SJ formation are still obscure. Here, we report the characterization of axonal insulation in the Drosophila peripheral nervous system (PNS). Targeted expression of tau-green fluorescent protein in the glial cells and ultrastructural analysis of the peripheral nerves allowed us to visualize the glial ensheathment of axons. We show that individual or a group of axons are ensheathed by inner glial processes, which in turn are ensheathed by the outer perineurial glial cells. SJs are formed between the inner and outer glial membranes. We also show that Neurexin IV, Contactin, and Neuroglian are coexpressed in the peripheral glial membranes and that these proteins exist as a complex in the Drosophila nervous system. Mutations in neurexin IV, contactin, and neuroglian result in the disruption of blood-nerve barrier function in the PNS, and ultrastructural analyses of the mutant embryonic peripheral nerves show loss of glial SJs. Interestingly, the murine homologs of Neurexin IV, Contactin, and Neuroglian are expressed at the paranodal SJs and play a key role in axon-glial interactions of myelinated axons. Together, our data suggest that the molecular machinery underlying axonal insulation and axon-glial interactions may be conserved across species.

  3. Transplantation of autologous peripheral blood mononuclear cells in the subarachnoid space for amyotrophic lateral sclerosis: a safety analysis of 14 patients

    PubMed Central

    Li, Xiao-yan; Liang, Zhan-hua; Han, Chao; Wei, Wen-juan; Song, Chun-li; Zhou, Li-na; Liu, Yang; Li, Ying; Ji, Xiao-fei; Liu, Jing

    2017-01-01

    There is a small amount of clinical data regarding the safety and feasibility of autologous peripheral blood mononuclear cell transplantation into the subarachnoid space for the treatment of amyotrophic lateral sclerosis. The objectives of this retrospective study were to assess the safety and efficacy of peripheral blood mononuclear cell transplantation in 14 amyotrophic lateral sclerosis patients to provide more objective data for future clinical trials. After stem cell mobilization and collection, autologous peripheral blood mononuclear cells (1 × 109) were isolated and directly transplanted into the subarachnoid space of amyotrophic lateral sclerosis patients. The primary outcome measure was incidence of adverse events. Secondary outcome measures were electromyography 1 week before operation and 4 weeks after operation, Functional Independence Measurement, Berg Balance Scale, and Dysarthria Assessment Scale 1 week preoperatively and 1, 2, 4 and 12 weeks postoperatively. There was no immediate or delayed transplant-related cytotoxicity. The number of leukocytes, serum alanine aminotransferase and creatinine levels, and body temperature were within the normal ranges. Radiographic evaluation showed no serious transplant-related adverse events. Muscle strength grade, results of Functional Independence Measurement, Berg Balance Scale, and Dysarthria Assessment Scale were not significantly different before and after treatment. These findings suggest that peripheral blood mononuclear cell transplantation into the subarachnoid space for the treatment of amyotrophic lateral sclerosis is safe, but its therapeutic effect is not remarkable. Thus, a large-sample investigation is needed to assess its efficacy further. PMID:28469667

  4. Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation

    PubMed Central

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-01-01

    Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494

  5. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.

    PubMed

    Koppes, A N; Zaccor, N W; Rivet, C J; Williams, L A; Piselli, J M; Gilbert, R J; Thompson, D M

    2014-08-01

    Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.

  6. Anomalies of the CD8+ T cell pool in haemochromatosis: HLA-A3-linked expansions of CD8+CD28- T cells.

    PubMed

    Arosa, F A; Oliveira, L; Porto, G; da Silva, B M; Kruijer, W; Veltman, J; de Sousa, M

    1997-03-01

    The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28- T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population 'to expand', coinciding with an 'expansion' of CD8+ CD28- T cells in peripheral blood of HLA-A3+ but not HLA-A3- HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28- T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH.

  7. Anomalies of the CD8+ T cell pool in haemochromatosis: HLA-A3-linked expansions of CD8+CD28− T cells

    PubMed Central

    AROSA, F A; OLIVEIRA, L; PORTO, G; DA SILVA, B M; KRUIJER, W; VELTMAN, J; DE SOUSA, M

    1997-01-01

    The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28− T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population ‘to expand’, coinciding with an ‘expansion’ of CD8+ CD28− T cells in peripheral blood of HLA-A3+ but not HLA-A3− HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28− T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH. PMID:9067531

  8. Passively cooled direct drive wind turbine

    DOEpatents

    Costin, Daniel P [Chelsea, VT

    2008-03-18

    A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

  9. Energy star. (Latest citations from the Computer database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning a collaborative effort between the Environmental Protection Agency (EPA) and private industry to reduce electrical power consumed by personal computers and related peripherals. Manufacturers complying with EPA guidelines are officially recognized by award of a special Energy Star logo, and are referred to in official documents as a vendor of green computers. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. A finite element simulation of sound attenuation in a finite duct with a peripherally variable liner

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1977-01-01

    Using multimodal analysis, a variational finite element method is presented for analyzing sound attenuation in a three-dimensional finite duct with a peripherally variable liner in the absence of flow. A rectangular element, with cubic shaped functions, is employed. Once a small portion of a peripheral liner is removed, the attenuation rate near the frequency where maximum attenuation occurs drops significantly. The positioning of the liner segments affects the attenuation characteristics of the liner. Effects of the duct termination are important in the low frequency ranges. The main effect of peripheral variation of the liner is a broadening of the attenuation characteristics in the midfrequency range. Because of matrix size limitations of the presently available computer program, the eigenvalue equations should be solved out of core in order to handle realistic sources.

  11. Ultrastructural identification of peripheral myelin proteins by a pre-embedding immunogold labeling method.

    PubMed

    Canron, Marie-Hélène; Bouillot, Sandrine; Favereaux, Alexandre; Petry, Klaus G; Vital, Anne

    2003-03-01

    Ultrastructural immunolabeling of peripheral nervous system components is an important tool to study the relation between structure and function. Owing to the scarcity of certain antigens and the dense structure of the peripheral nerve, a pre-embedding technique is likely appropriate. After several investigations on procedures for pre-embedding immunolabeling, we propose a method that offers a good compromise between detection of antigenic sites and preservation of morphology at the ultrastructural level, and that is easy to use and suitable for investigations on peripheral nerve biopsies from humans. Pre-fixation by immersion in paraformaldehyde/glutaraldehyde is necessary to stabilize the ultrastructure. Then, ultrasmall gold particles with silver enhancement are advised. Antibodies against myelin protein zero and myelin basic protein were chosen for demonstration. The same technique was applied to localize a 35 kDa myelin protein.

  12. Novel grid combined with peripheral distortion correction for ultra-widefield image grading of age-related macular degeneration

    PubMed Central

    Mach, Steven; Garas, Shady; Kim, Ivana K; Vavvas, Demetrios G; Miller, Joan W; Husain, Deeba; Miller, John B

    2017-01-01

    Purpose Eyes with age-related macular degeneration (AMD) often harbor pathological changes in the retinal periphery and perimacular region. These extramacular changes have not been well classified, but may be phenotypically and functionally relevant. The purpose of this study was to demonstrate a novel grid to systematically study peripheral retinal abnormalities in AMD using geometric distortion-corrected ultra-widefield (UWF) imaging. Methods This is a cross-sectional observational case series. Consecutive patients with AMD without any other coexisting vitreoretinal disease and control patients over age 50 without AMD or any other vitreoretinal disease were imaged using Optos 200 Tx. Captured 200° UWF images were corrected for peripheral geometric distortion using Optos transformation software. A newly developed grid to study perimacular and peripheral abnormalities in AMD was then projected onto the images. Results Peripheral and perimacular changes such as drusen, retinal pigment epithelium changes and atrophy were found in patients with AMD. The presented grid in conjunction with geometric distortion-corrected UWF images allowed for systematic study of these peripheral changes in AMD. Conclusion We present a novel grid to study peripheral and posterior pole changes in AMD. The grid is unique in that it adds a perimacular zone, which may be important in characterizing certain phenotypes in AMD. Our UWF images were corrected for geometric peripheral distortion to accurately reflect the anatomical dimensions of the retina. This grid offers a reliable and reproducible foundation for the exploration of peripheral retinal pathology associated with AMD. PMID:29184386

  13. Rehabilitation of brachial plexus and peripheral nerve disorders.

    PubMed

    Scott, Kevin R; Ahmed, Aiesha; Scott, Linda; Kothari, Milind J

    2013-01-01

    Peripheral nerve lesions are common and can present in a variety of ways. Peripheral nerve injury can result from a broad spectrum of causes. For the majority of patients, rehabilitation is generally indicated regardless of etiology. Evaluation and treatment by a multidisciplinary team including neurologists, psychiatrists, surgeons, occupational and physical therapists, and therapists with specialized training in orthotics maximizes the potential for recovery. This chapter will focus on those upper and lower extremity neuropathies that are most commonly seen in clinical practice. In addition, we discuss various rehabilitative strategies designed to improve function and quality of life. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Peripherally Metalated Porphyrins with Applications in Catalysis, Molecular Electronics and Biomedicine.

    PubMed

    Longevial, Jean-François; Clément, Sébastien; Wytko, Jennifer A; Ruppert, Romain; Weiss, Jean; Richeter, Sébastien

    2018-04-24

    Porphyrins are conjugated, stable chromophores with a central core that binds a variety of metal ions and an easily functionalized peripheral framework. By combining the catalytic, electronic or cytotoxic properties of selected transition metal complexes with the binding and electronic properties of porphyrins, enhanced characteristics of the ensemble are generated. This review article focuses on porphyrins bearing one or more peripheral transition metal complexes and discusses their potential applications in catalysis or biomedicine. Modulation of the electronic properties and intramolecular communication through coordination bond linkages in bis-porphyrin scaffolds is also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Treatment of Peripheral Talus Fractures.

    PubMed

    Shank, John R; Benirschke, Stephen K; Swords, Michael P

    2017-03-01

    Peripheral talus fractures include injuries to the lateral process, posteromedial talar body, and talar head. These injuries are rare and are often missed. Nonunion with conservative treatment is high and excision can lead to joint instability, rapid arthrosis, and earlier need for arthrodesis. Open reduction internal fixation of most peripheral talus fractures is critical to achieving a good outcome. Open reduction leads to more rapid union and ability to mobilize the ankle and subtalar joints, quicker revascularization of the talus, and lower rates of arthrosis. Surgical treatment can lead to substantial functional improvement and a slowing of the degenerative process. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Peripheral blood sampling for the detection of allograft rejection: biomarker identification and validation.

    PubMed

    Heidt, Sebastiaan; San Segundo, David; Shankar, Sushma; Mittal, Shruti; Muthusamy, Anand S R; Friend, Peter J; Fuggle, Susan V; Wood, Kathryn J

    2011-07-15

    Currently, acute allograft rejection can only be detected reliably by deterioration of graft function confirmed by allograft biopsy. A huge drawback of this method of diagnosis is that substantial organ damage has already taken place at the time that rejection is diagnosed. Discovering and validating noninvasive biomarkers that predict acute rejection, and chronic allograft dysfunction, is of great importance. Many studies have investigated changes in the peripheral blood in an attempt to find biomarkers that reflect changes in the graft directly or indirectly. Herein, we will review the promises and limitations of the peripheral blood biomarkers that have been described in the literature so far.

  17. Axonal regeneration through acellular muscle grafts

    PubMed Central

    HALL, SUSAN

    1997-01-01

    The management of peripheral nerve injury remains a major clinical problem. Progress in this field will almost certainly depend upon manipulating the pathophysiological processes which are triggered by traumatic injuries. One of the most important determinants of functional outcome after the reconstruction of a transected peripheral nerve is the length of the gap between proximal and distal nerve stumps. Long defects (> 2 cm) must be bridged by a suitable conduit in order to support axonal regrowth. This review examines the cellular and acellular elements which facilitate axonal regrowth and the use of acellular muscle grafts in the repair of injuries in the peripheral nervous system. PMID:9034882

  18. Diabetes, peripheral neuropathy, and lower-extremity function.

    PubMed

    Chiles, Nancy S; Phillips, Caroline L; Volpato, Stefano; Bandinelli, Stefania; Ferrucci, Luigi; Guralnik, Jack M; Patel, Kushang V

    2014-01-01

    Diabetes among older adults causes many complications, including decreased lower-extremity function and physical disability. Diabetes can cause peripheral nerve dysfunction, which might be one pathway through which diabetes leads to decreased physical function. The study aims were to determine the following: (1) whether diabetes and impaired fasting glucose are associated with objective measures of physical function in older adults, (2) which peripheral nerve function (PNF) tests are associated with diabetes, and (3) whether PNF mediates the diabetes-physical function relationship. This study included 983 participants, age 65 years and older from the InCHIANTI study. Diabetes was diagnosed by clinical guidelines. Physical performance was assessed using the Short Physical Performance Battery (SPPB), scored from 0 to 12 (higher values, better physical function) and usual walking speed (m/s). PNF was assessed via standard surface electroneurographic study of right peroneal nerve conduction velocity, vibration and touch sensitivity. Clinical cutpoints of PNF tests were used to create a neuropathy score from 0 to 5 (higher values, greater neuropathy). Multiple linear regression models were used to test associations. One hundred twenty-six (12.8%) participants had diabetes. Adjusting for age, sex, education, and other confounders, diabetic participants had decreased SPPB (β=-0.99; p<0.01), decreased walking speed (β=-0.1m/s; p<0.01), decreased nerve conduction velocity (β=-1.7m/s; p<0.01), and increased neuropathy (β=0.25; p<0.01) compared to non-diabetic participants. Adjusting for nerve conduction velocity and neuropathy score decreased the effect of diabetes on SPPB by 20%, suggesting partial mediation through decreased PNF. © 2014.

  19. Diabetes, Peripheral Neuropathy, and Lower Extremity Function

    PubMed Central

    Chiles, Nancy S.; Phillips, Caroline L.; Volpato, Stefano; Bandinelli, Stefania; Ferrucci, Luigi; Guralnik, Jack M.; Patel, Kushang V.

    2014-01-01

    Objective Diabetes among older adults causes many complications, including decreased lower extremity function and physical disability. Diabetes can cause peripheral nerve dysfunction, which might be one pathway through which diabetes leads to decreased physical function. The study aims were to determine: (1) whether diabetes and impaired fasting glucose are associated with objective measures of physical function in older adults, (2) which peripheral nerve function (PNF) tests are associated with diabetes, and (3) whether PNF mediates the diabetes-physical function relationship. Research Design and Methods This study included 983 participants, age 65 and older from the InCHIANTI Study. Diabetes was diagnosed by clinical guidelines. Physical performance was assessed using the Short Physical Performance Battery (SPPB), scored from 0-12 (higher values, better physical function) and usual walking speed (m/s). PNF was assessed via standard surface electroneurographic study of right peroneal nerve conduction velocity, vibration and touch sensitivity. Clinical cut-points of PNF tests were used to create a neuropathy score from 0-5 (higher values, greater neuropathy). Multiple linear regression models were used to test associations. Results and Conclusion 12.8% (n=126) of participants had diabetes. Adjusting for age, sex, education, and other confounders, diabetic participants had decreased SPPB (β= −0.99; p< 0.01), decreased walking speed (β= −0.1m/s; p< 0.01), decreased nerve conduction velocity (β= −1.7m/s; p< 0.01), and increased neuropathy (β= 0.25; p< 0.01) compared to non-diabetic participants. Adjusting for nerve conduction velocity and neuropathy score decreased the effect of diabetes on SPPB by 20%, suggesting partial mediation through decreased PNF. PMID:24120281

  20. Hypokalemia correlated with arterial stiffness but not microvascular endothelial function in patients with primary aldosteronism.

    PubMed

    Chang, Yi-Yao; Chen, Aaron; Chen, Ying-Hsien; Hung, Chi-Sheng; Wu, Vin-Cent; Wu, Xue-Ming; Lin, Yen-Hung; Ho, Yi-Lwun; Wu, Kwan-Dun

    2015-06-01

    Hypokalemia in primary aldosteronism (PA) patients correlates with higher levels of cardiovascular events and altered left ventricular geometry. However, the influence of aldosterone on microvascular endothelial function and the effect of hypokalemia on the vascular structure still remain unclear. We investigated the peripheral arterial functions, including the endothelial function of microvasculature and arterial stiffness in PA and essential hypertension (EH) patients, and the correlation between hypokalemia and peripheral arterial function among PA patients. Twenty patients diagnosed as EH and 37 patients with PA were enrolled in this study. Reactive hyperemia index (RHI) and the augmentation index (AI) were obtained by non-invasive peripheral arterial tonometry. Twenty EH patients and a total of 37 PA patients, including 21 patients with normokalemia and 16 patients with hypokalemia, were enrolled and divided into groups 1, 2 and 3 respectively. PA patients had significantly higher AI (p=0.024) but not RHI than EH patients. RHI showed no difference between groups 1, 2 and 3. Group 3 had higher AI than either group 1 or group 2. In the whole study population, serum potassium level, after multivariate regression analysis testing, was the only factor associated with AI (ß= -0.102; p=0.002). In PA patients, serum potassium level was the only significant factor correlated with AI. (r= -0.458; p=0.004) CONCLUSIONS: PA patients had higher arterial stiffness but comparable microvascular endothelial function to EH patients. Hypokalemia correlated with arterial stiffness but not microvascular endothelial function in PA patients. © The Author(s) 2014.

Top