Science.gov

Sample records for peripheral lipopolysaccharide induce

  1. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  2. Behavioral and monoamine perturbations in adult male mice with chronic inflammation induced by repeated peripheral lipopolysaccharide administration.

    PubMed

    Krishna, Saritha; Dodd, Celia A; Filipov, Nikolay M

    2016-04-01

    Considering the limited information on the ability of chronic peripheral inflammation to induce behavioral alterations, including on their persistence after inflammatory stimuli termination and on associated neurochemical perturbations, this study assessed the effects of chronic (0.25 mg/kg; i.p.; twice weekly) lipopolysaccharide (LPS) treatment on selected behavioral, neurochemical and molecular measures at different time points in adult male C57BL/6 mice. Behaviorally, LPS-treated mice were hypoactive after 6 weeks, whereas significant hyperactivity was observed after 12 weeks of LPS and 11 weeks after 13 week LPS treatment termination. Similar biphasic responses, i.e., early decrease followed by a delayed increase were observed in the open field test center time, suggestive of, respectively, increased and decreased anxiety. In a forced swim test, mice exhibited increased immobility (depressive behavior) at all times they were tested. Chronic LPS also produced persistent increase in splenic serotonin (5-HT) and time-dependent, brain region-specific alterations in striatal and prefrontocortical dopamine and 5-HT homeostasis. Microglia, but not astrocytes, were activated by LPS early and late, but their activation did not persist after LPS treatment termination. Above findings demonstrate that chronic peripheral inflammation initially causes hypoactivity and increased anxiety, followed by persistent hyperactivity and decreased anxiety. Notably, chronic LPS-induced depressive behavior appears early, persists long after LPS termination, and is associated with increased splenic 5-HT. Collectively, our data highlight the need for a greater focus on the peripheral/central monoamine alterations and lasting behavioral deficits induced by chronic peripheral inflammation as there are many pathological conditions where inflammation of a chronic nature is a hallmark feature.

  3. Behavioral and monoamine perturbations in adult male mice with chronic inflammation induced by repeated peripheral lipopolysaccharide administration

    PubMed Central

    Krishna, Saritha; Dodd, Celia A.; Filipov, Nikolay M.

    2016-01-01

    Considering the limited information on the ability of chronic peripheral inflammation to induce behavioral alterations, including on their persistence after inflammatory stimuli termination and on associated neurochemical perturbations, this study assessed the effects of chronic (0.25 mg/kg; i.p.; twice weekly) lipopolysaccharide (LPS) treatment on selected behavioral, neurochemical and molecular measures at different time points in adult male C57BL/6 mice. Behaviorally, LPS-treated mice were hypoactive after 6 weeks, whereas significant hyperactivity was observed after 12 weeks of LPS and 11 weeks after 13 week LPS treatment termination. Similar biphasic responses, i.e., early decrease followed by a delayed increase were observed in the open field test center time, suggestive of, respectively, increased and decreased anxiety. In a forced swim test, mice exhibited increased immobility (depressive behavior) at all times they were tested. Chronic LPS also produced persistent increase in splenic serotonin (5-HT) and time-dependent, brain region-specific alterations in striatal and prefrontocortical dopamine and 5-HT homeostasis. Microglia, but not astrocytes, were activated by LPS early and late, but their activation did not persist after LPS treatment termination. Above findings demonstrate that chronic peripheral inflammation initially causes hypoactivity and increased anxiety, followed by persistent hyperactivity and decreased anxiety. Notably, chronic LPS-induced depressive behavior appears early, persists long after LPS termination, and is associated with increased splenic 5-HT. Collectively, our data highlight the need for a greater focus on the peripheral/central monoamine alterations and lasting behavioral deficits induced by chronic peripheral inflammation as there are many pathological conditions where inflammation of a chronic nature is a hallmark feature. PMID:26802725

  4. Critical role for peripherally-derived interleukin-10 in mediating the thermoregulatory manifestations of fever and hypothermia in severe forms of lipopolysaccharide-induced inflammation.

    PubMed

    Harden, Lois M; Rummel, Christoph; Laburn, Helen P; Damm, Jelena; Wiegand, Florian; Poole, Stephen; Gerstberger, Rüdiger; Roth, Joachim

    2014-07-01

    Although peripherally released interleukin (IL)-10 has a critical regulatory role in limiting fever in mild-to-moderate forms of inflammation, its role in regulating the more complex thermoregulatory manifestations of hypothermia and fever noted during severe inflammation is less clear. Using cytokine antagonism, we therefore investigated the involvement of peripherally released IL-10 in mediating hypothermia, fever and inflammation induced by intraperitoneal (IP) administration of a large dose of lipopolysaccharide (LPS). Male Wistar rats (200-250 g) were anaesthetized and implanted intra-abdominally with temperature-sensitive radiotelemeters. Rats were randomly assigned to receive IL-10 antiserum (IL-10AS) or normal sheep serum IP, 4 h before receiving an IP injection of LPS (10 mg/kg) or phosphate-buffered saline (PBS). Inflammatory responses were measured in plasma and tissue samples (spleen, liver and brain) at 90 min and 6 h after the IP injection of LPS or PBS. Administration of LPS induced an initial period of hypothermia (~90 min) after which fever developed. Pre-treating rats with IL-10AS abolished the LPS-induced increase in plasma IL-10 levels, attenuated the hypothermia and increased the amplitude of the fever. Moreover, IL-10AS pre-treatment augmented the LPS-induced increase in plasma levels of tumor necrosis factor-alpha (90 min and 6 h), IL-1β (90 min), prostaglandin E2 (90 min) and IL-6 (6 h), in the periphery, but not the hypothalamus, over the duration of hypothermia and fever. Via its action on the synthesis of inflammatory mediators in the spleen and liver, endogenous IL-10 plays a crucial regulatory role in mediating hypothermia and fever during severe aspectic (LPS-induced) systemic inflammation.

  5. Peripheral tumors alter neuroinflammatory responses to lipopolysaccharide in female rats.

    PubMed

    Pyter, Leah M; El Mouatassim Bih, Sarah; Sattar, Husain; Prendergast, Brian J

    2014-03-13

    Cancer is associated with an increased prevalence of depression. Peripheral tumors induce inflammatory cytokine production in the brain and depressive-like behaviors. Mounting evidence indicates that cytokines are part of a pathway by which peripheral inflammation causes depression. Neuroinflammatory responses to immune challenges can be exacerbated (primed) by prior immunological activation associated with aging, early-life infection, and drug exposure. This experiment tested the hypothesis that peripheral tumors likewise induce neuroinflammatory sensitization or priming. Female rats with chemically-induced mammary carcinomas were injected with either saline or lipopolysaccharide (LPS, 250μg/kg; i.p.), and expression of mRNAs involved in the pathway linking inflammation and depression (interleukin-1beta [Il-1β], CD11b, IκBα, indolamine 2,3-deoxygenase [Ido]) was quantified by qPCR in the hippocampus, hypothalamus, and frontal cortex, 4 or 24h post-treatment. In the absence of LPS, hippocampal Il-1β and CD11b mRNA expression were elevated in tumor-bearing rats, whereas Ido expression was reduced. Moreover, in saline-treated rats basal hypothalamic Il-1β and CD11b expression were positively correlated with tumor weight; heavier tumors, in turn, were characterized by more inflammatory, necrotic, and granulation tissue. Tumors exacerbated CNS proinflammatory gene expression in response to LPS: CD11b was greater in hippocampus and frontal cortex of tumor-bearing relative to tumor-free rats, IκBα was greater in hippocampus, and Ido was greater in hypothalamus. Greater neuroinflammatory responses in tumor-bearing rats were accompanied by attenuated body weight gain post-LPS. The data indicate that neuroinflammatory pathways are potentiated, or primed, in tumor-bearing rats, which may exacerbate future negative behavioral consequences.

  6. Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells.

    PubMed

    Giovannini, L; Migliori, M; Filippi, C; Origlia, N; Panichi, V; Falchi, M; Bertelli, A A E; Bertelli, A

    2002-01-01

    The objective of this study was to assess whether tyrosol and caffeic acid are able to inhibit lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha release. TNF is one of the most important cytokines involved in inflammatory reactions. The results show that both tyrosol and caffeic acid are able to inhibit LPS-induced TNF-alpha release from human monocytes, even at low doses. Their mechanisms of action are discussed and we conclude that high doses of the two compounds are not required to achieve effective inhibition of inflammatory reactions due to TNF-alpha release.

  7. Protective Effect of Yinhua Miyanling Tablet on Lipopolysaccharide-Induced Inflammation through Suppression of NLRP3/Caspase-1 Inflammasome in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Sai, Jingying; Zheng, Jingtong; Liu, Chuangui; Lu, Yanjiao; Wang, Guoqiang; Wang, Ting; Guan, Xuewa; Chen, Fang; Fang, Keyong; Zhang, Chao; Lu, Junying; Zhang, Xiaotian; Zhu, Hailin

    2016-01-01

    Yinhua Miyanling Tablet (YMT), the Chinese formula, has long been administrated in clinical practice for the treatment of acute pyelonephritis and acute urocystitis. In the current study, we aimed to investigate the anti-inflammatory effect of YMT in vitro and to evaluate the association between anti-inflammation and innate immune response. Human peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll density gradient centrifugation and then were stimulated by Lipopolysaccharide (LPS). The differential gene expression of inflammation-related genes after drug administration was assessed using PCR array, and the protein levels of differential genes were measured by ELISA and Western blot. The result showed that YMT significantly inhibited the expression of NLRP3, Caspase-1, and the downstream cytokine IL-1β and suppressed the production of inflammatory mediators TNF-α, IL-6, IL-10, and MCP-1 in a dose-dependent manner compared to the LPS group (P < 0.01). The finding indicated that YMT exhibited anti-inflammatory effect in vitro by suppressing the NLRP3/Caspase-1 inflammasome, and that may have therapeutic potential for the treatment of inflammatory diseases. PMID:27795729

  8. Early life peripheral lipopolysaccharide challenge reprograms catecholaminergic neurons

    PubMed Central

    Ong, Lin Kooi; Fuller, Erin A.; Sominsky, Luba; Hodgson, Deborah M.; Dunkley, Peter R.; Dickson, Phillip W.

    2017-01-01

    Neonatal immune challenge with the bacterial mimetic lipopolysaccharide has the capacity to generate long-term changes in the brain. Neonatal rats were intraperitoneally injected with lipopolysaccharide (0.05 mg/kg) on postnatal day (PND) 3 and again on PND 5. The activation state of tyrosine hydroxylase (TH) was measured in the locus coeruleus, ventral tegmental area and substantia nigra on PND 85. In the locus coeruleus there was an approximately four-fold increase in TH activity. This was accompanied by a significant increase in TH protein together with increased phosphorylation of all three serine residues in the N-terminal region of TH. In the ventral tegmental area, a significant increase in TH activity and increased phosphorylation of the serine 40 residue was seen. Neonatal lipopolysaccharide had no effect on TH activation in the substantia nigra. These results indicate the capacity of a neonatal immune challenge to generate long-term changes in the activation state of TH, in particular in the locus coeruleus. Overall, the current results demonstrate the enduring outcomes of a neonatal immune challenge on specific brain catecholaminergic regions associated with catecholamine synthesis. This highlights a novel mechanism for long-term physiological and behavioural alterations induced by this model. PMID:28071709

  9. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death.

    PubMed

    Kell, Douglas B; Pretorius, Etheresia

    2015-11-01

    We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.

  10. Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or staphylococcal enterotoxin B.

    PubMed

    Prager, Geraldine; Hadamitzky, Martin; Engler, Andrea; Doenlen, Raphael; Wirth, Timo; Pacheco-López, Gustavo; Krügel, Ute; Schedlowski, Manfred; Engler, Harald

    2013-03-01

    Activated immune cells produce soluble mediators that not only coordinate local and systemic immune responses but also act on the brain to initiate behavioral, neuroendocrine and metabolic adaptations. Earlier studies have shown that the amygdala, a group of nuclei located in the medial temporal lobe, is engaged in the central processing of afferent signals from the peripheral immune system. Here, we compared amygdaloid responses to lipopolysaccharide (LPS) and staphylococcal enterotoxin B (SEB), two prototypic bacterial products that elicit distinct immune responses. Intraperitoneal administration of LPS (0.1 mg/kg) or SEB (1 mg/kg) in adult rats induced substantial increases in amygdaloid neuronal activity as measured by intracerebral electroencephalography and c-fos gene expression. Amygdaloid neuronal activation was accompanied by an increase in anxiety-related behavior in the elevated plus-maze test. However, only treatment with LPS, but not SEB, enhanced amygdaloid IL-1β and TNF-α mRNA expression. This supports the view of the immune system as a sensory organ that recognizes invading pathogens and rapidly relays this information to the brain, independent of the nature of the immune response induced. The observation that neuronal and behavioral responses to peripheral immune challenges are not necessarily accompanied by increased brain cytokine expression suggests that cytokines are not the only factors driving sickness-related responses in the CNS.

  11. Peripherally induced oromandibular dystonia

    PubMed Central

    Sankhla, C.; Lai, E.; Jankovic, J.

    1998-01-01

    OBJECTIVES—Oromandibular dystonia (OMD) is a focal dystonia manifested by involuntary muscle contractions producing repetitive, patterned mouth, jaw, and tongue movements. Dystonia is usually idiopathic (primary), but in some cases it follows peripheral injury. Peripherally induced cervical and limb dystonia is well recognised, and the aim of this study was to characterise peripherally induced OMD.
METHODS—The following inclusion criteria were used for peripherally induced OMD: (1) the onset of the dystonia was within a few days or months (up to 1 year) after the injury; (2) the trauma was well documented by the patient's history or a review of their medical and dental records; and (3) the onset of dystonia was anatomically related to the site of injury (facial and oral).
RESULTS—Twenty seven patients were identified in the database with OMD, temporally and anatomically related to prior injury or surgery. No additional precipitant other than trauma could be detected. None of the patients had any litigation pending. The mean age at onset was 50.11 (SD 14.15) (range 23-74) years and there was a 2:1 female preponderance. Mean latency between the initial trauma and the onset of OMD was 65 days (range 1 day-1 year). Ten (37%) patients had some evidence of predisposing factors such as family history of movement disorders, prior exposure to neuroleptic drugs, and associated dystonia affecting other regions or essential tremor. When compared with 21 patients with primary OMD, there was no difference for age at onset, female preponderance, and phenomenology. The frequency of dystonic writer's cramp, spasmodic dysphonia, bruxism, essential tremor, and family history of movement disorder, however, was lower in the post-traumatic group (p<0.05). In both groups the response to botulinum toxin treatment was superior to medical therapy (p<0.005). Surgical intervention for temporomandibular disorders was more frequent in the post-traumatic group and was associated with

  12. Epigenetic Alterations Induced by Bacterial Lipopolysaccharides.

    PubMed

    Chiariotti, Lorenzo; Coretti, Lorena; Pero, Raffaela; Lembo, Francesca

    2016-01-01

    Lipopolysaccharide (LPS) is one of the principal bacterial products known to elicit inflammation. Cells of myeloid lineage such as monocytes and macrophages, but also epithelial cells give rise to an inflammatory response upon LPS stimulation. This phenomenon implies reprogramming of cell specific gene expression that can occur through different mechanisms including epigenetic modifications. Given their intrinsic nature, epigenetic modifications may be involved both in the acute response to LPS and in the establishment of a preconditioned genomic state (epigenomic memory) that may potentially influence the host response to further contacts with microorganisms. Information has accumulated during the last years aimed at elucidating the epigenetic mechanisms which underlie the cellular LPS response. These findings, summarized in this chapter, will hopefully be a good basis for a definition of the complete cascade of LPS-induced epigenetic events and their biological significance in different cell types.

  13. Lipopolysaccharide induced conversion of recombinant prion protein

    PubMed Central

    Saleem, Fozia; Bjorndahl, Trent C; Ladner, Carol L; Perez-Pineiro, Rolando; Ametaj, Burim N; Wishart, David S

    2014-01-01

    The conformational conversion of the cellular prion protein (PrPC) to the β-rich infectious isoform PrPSc is considered a critical and central feature in prion pathology. Although PrPSc is the critical component of the infectious agent, as proposed in the “protein-only” prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrPC to proteinase K resistant PrPSc. A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrPC conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrPC to PrPSc, we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in β sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90–232). PMID:24819168

  14. Brain CB₁ receptor expression following lipopolysaccharide-induced inflammation.

    PubMed

    Hu, H; Ho, W; Mackie, K; Pittman, Q J; Sharkey, K A

    2012-12-27

    Cannabinoid 1 receptors (CB(1)) are highly expressed on presynaptic terminals in the brain where they are importantly involved in the control of neurotransmitter release. Alteration of CB(1) expression is associated with a variety of neurological and psychiatric disorders. There is now compelling evidence that peripheral inflammatory disorders are associated with depression and cognitive impairments. These can be modeled in rodents with peripheral administration of lipopolysaccharide (LPS), but central effects of this treatment remain to be fully elucidated. As a reduction in endocannabinoid tone is thought to contribute to depression, we asked whether the expression of CB(1) in the CNS is altered following LPS treatment. CD1 mice received LPS (0.1-1mg/kg, ip) and 6h later activated microglial cells were observed only in circumventricular organs and only at the higher dose. At 24h, activated microglial cells were identified in other brain regions, including the hippocampus, a structure implicated in some mood disorders. Immunohistochemistry and real-time polymerase chain reaction (PCR) were utilized to evaluate the change of CB(1) expression 24h after inflammation. LPS induced an increase of CB(1) mRNA in the hippocampus and brainstem. Subsequent immunohistochemical analysis revealed reduced CB(1) in the hippocampus, especially in CA3 pyramidal layer. Analysis of co-localization with markers of excitatory and inhibitory terminals indicated that the decrease in CB(1) expression was restricted to glutamatergic terminals. Despite widespread microglial activation, these results suggest that peripheral LPS treatment leads to limited changes in CB(1) expression in the brain.

  15. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation.

    PubMed

    Reisenauer, Chris J; Bhatt, Dhaval P; Mitteness, Dane J; Slanczka, Evan R; Gienger, Heidi M; Watt, John A; Rosenberger, Thad A

    2011-04-01

    Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6 g/kg by oral gavage. In parallel experiments, free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 h. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 h. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive glial fibrillary acidic protein-positive astrocytes and activated CD11b-positive microglia by 40-50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of choline acetyltransferase (ChAT)-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model.

  16. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes

    PubMed Central

    Hussain, Salik; Al-Nsour, Faris; Rice, Annette B; Marshburn, Jamie; Ji, Zhaoxia; Zink, Jeffery I; Yingling, Brenda; Walker, Nigel J; Garantziotis, Stavros

    2012-01-01

    Background Cerium dioxide (CeO2) nanoparticles have potential therapeutic applications and are widely used for industrial purposes. However, the effects of these nanoparticles on primary human cells are largely unknown. The ability of nanoparticles to exacerbate pre-existing inflammatory disorders is not well documented for engineered nanoparticles, and is certainly lacking for CeO2 nanoparticles. We investigated the inflammation-modulating effects of CeO2 nanoparticles at noncytotoxic concentrations in human peripheral blood monocytes. Methods CD14+ cells were isolated from peripheral blood samples of human volunteers. Cells were exposed to either 0.5 or 1 μg/mL of CeO2 nanoparticles over a period of 24 or 48 hours with or without lipopolysaccharide (10 ng/mL) prestimulation. Modulation of the inflammatory response was studied by measuring secreted tumor necrosis factor-alpha, interleukin-1beta, macrophage chemotactic protein-1, interferon-gamma, and interferon gamma-induced protein 10. Results CeO2 nanoparticle suspensions were thoroughly characterized using dynamic light scattering analysis (194 nm hydrodynamic diameter), zeta potential analysis (−14 mV), and transmission electron microscopy (irregular-shaped particles). Transmission electron microscopy of CD14+ cells exposed to CeO2 nanoparticles revealed that these nanoparticles were efficiently internalized by monocytes and were found either in vesicles or free in the cytoplasm. However, no significant differences in secreted cytokine profiles were observed between CeO2 nanoparticle-treated cells and control cells at noncytotoxic doses. No significant effects of CeO2 nanoparticle exposure subsequent to lipopolysaccharide priming was observed on cytokine secretion. Moreover, no significant difference in lipopolysaccharide-induced cytokine production was observed after exposure to CeO2 nanoparticles followed by lipopolysaccharide exposure. Conclusion CeO2 nanoparticles at noncytotoxic concentrations neither

  17. Proteomic changes in chicken plasma induced by Salmonella typhimurium lipopolysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that cause inflammation and sickness through genetic and proteomic activation. The objective of our study was to identify the proteomic changes in plasma associated with inflammation induced by LPS treatment. Five-week-old ...

  18. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    SciTech Connect

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  19. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    PubMed

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  20. Evidence that the anorexia induced by lipopolysaccharide is mediated by the 5-HT2C receptor.

    PubMed

    von Meyenburg, Claudia; Langhans, Wolfgang; Hrupka, Brian J

    2003-01-01

    Rats consistently reduce their food intake following injections of bacterial lipopolysaccharides (LPS). Because inhibition of serotonergic (5-HT) activity by 8-OH-DPAT (5-HT(1A) activation) attenuates LPS-induced anorexia, we conducted a series of studies to examine whether other 5-HT-receptors are involved in the mediation of peripheral LPS-induced anorexia. In all experiments, rats were injected with LPS (100 microg/kg body weight [BW] ip) at lights out (hour 0). Antagonists were administered peripherally at hour 4, shortly after the onset of anorexia, which presumably follows the enhanced cytokine production after LPS. Food intake was then recorded during the subsequent 2 h or longer. 5-HT receptor antagonists cyanopindolol and SB 224289 (5-HT(1B)), ketanserin (5-HT(2A)), RS-102221 (5-HT(2C)), and metoclopramide (5-HT(3)) failed to attenuate LPS-induced anorexia. In contrast, both ritanserin (5-HT(2A/C)-receptor antagonist) (0.5 mg/kg BW) and SB 242084 (5-HT(2C)) (0.3 mg/kg BW) attenuated LPS-induced anorexia at doses that did not alter food intake in non-LPS-treated rats (all P<.01). Our results suggest that at least part of the anorexia following peripheral LPS administration is mediated through an enhanced 5-HT-ergic activity and the 5-HT(2C) receptor.

  1. Chemotherapy-induced peripheral neuropathy.

    PubMed

    Fehrenbacher, Jill C

    2015-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is common in patients receiving anticancer treatment and can affect survivability and long-term quality of life of the patient following treatment. The symptoms of CIPN primarily include abnormal sensory discrimination of touch, vibration, thermal information, and pain. There is currently a paucity of pharmacological agents to prevent or treat CIPN. The lack of efficacious therapeutics is due, at least in part, to an incomplete understanding of the mechanisms by which chemotherapies alter the sensitivity of sensory neurons. Although the clinical presentation of CIPN can be similar with the various classes of chemotherapeutic agents, there are subtle differences, suggesting that each class of drugs might induce neuropathy via different mechanisms. Multiple mechanisms have been proposed to underlie the development and maintenance of neuropathy; however, most pharmacological agents generated from preclinical experiments have failed to alleviate the symptoms of CIPN in the clinic. Further research is necessary to identify the specific mechanisms by which each class of chemotherapeutics induces neuropathy.

  2. Dexmedetomidine Attenuates Lipopolysaccharide Induced MCP-1 Expression in Primary Astrocyte

    PubMed Central

    Liu, Huan; Faez Abdelgawad, Amro

    2017-01-01

    Background. Neuroinflammation which presents as a possible mechanism of delirium is associated with MCP-1, an important proinflammatory factor which is expressed on astrocytes. It is known that dexmedetomidine (DEX) possesses potent anti-inflammatory properties. This study aimed to investigate the potential effects of DEX on the production of MCP-1 in lipopolysaccharide-stimulated astrocytes. Materials and Methods. Astrocytes were treated with LPS (10 ng/ml, 50 ng/ml, 100 ng/ml, and 1000 ng/ml), DEX (500 ng/mL), LPS (100 ng/ml), and DEX (10, 100, and 500 ng/mL) for a duration of three hours; expression levels of MCP-1 were measured by real-time PCR. The double immunofluorescence staining protocol was utilized to determine the expression of α2-adrenoceptors (α2AR) and glial fibrillary acidic protein (GFAP) on astrocytes. Results. Expressions of MCP-1 mRNA in astrocytes were induced dose-dependently by LPS. Administration of DEX significantly inhibited the expression of MCP-1 mRNA (P < 0.001). Double immunofluorescence assay showed that α2AR colocalize with GFAP, which indicates the expression of α2-adrenoceptors in astrocytes. Conclusions. DEX is a potent suppressor of MCP-1 in astrocytes induced with lipopolysaccharide through α2A-adrenergic receptors, which potentially explains its beneficial effects in the treatment of delirium by attenuating neuroinflammation. PMID:28286770

  3. Dexmedetomidine Attenuates Lipopolysaccharide Induced MCP-1 Expression in Primary Astrocyte.

    PubMed

    Liu, Huan; Davis, Jacques R J; Wu, Zhi-Lin; Faez Abdelgawad, Amro

    2017-01-01

    Background. Neuroinflammation which presents as a possible mechanism of delirium is associated with MCP-1, an important proinflammatory factor which is expressed on astrocytes. It is known that dexmedetomidine (DEX) possesses potent anti-inflammatory properties. This study aimed to investigate the potential effects of DEX on the production of MCP-1 in lipopolysaccharide-stimulated astrocytes. Materials and Methods. Astrocytes were treated with LPS (10 ng/ml, 50 ng/ml, 100 ng/ml, and 1000 ng/ml), DEX (500 ng/mL), LPS (100 ng/ml), and DEX (10, 100, and 500 ng/mL) for a duration of three hours; expression levels of MCP-1 were measured by real-time PCR. The double immunofluorescence staining protocol was utilized to determine the expression of α2-adrenoceptors (α2AR) and glial fibrillary acidic protein (GFAP) on astrocytes. Results. Expressions of MCP-1 mRNA in astrocytes were induced dose-dependently by LPS. Administration of DEX significantly inhibited the expression of MCP-1 mRNA (P < 0.001). Double immunofluorescence assay showed that α2AR colocalize with GFAP, which indicates the expression of α2-adrenoceptors in astrocytes. Conclusions. DEX is a potent suppressor of MCP-1 in astrocytes induced with lipopolysaccharide through α2A-adrenergic receptors, which potentially explains its beneficial effects in the treatment of delirium by attenuating neuroinflammation.

  4. Galangin dampens mice lipopolysaccharide-induced acute lung injury.

    PubMed

    Shu, Yu-Sheng; Tao, Wei; Miao, Qian-Bing; Lu, Shi-Chun; Zhu, Ya-Bing

    2014-10-01

    Galangin, an active ingredient of Alpinia galangal, has been shown to possess anti-inflammatory and antioxidant activities. Inflammation and oxidative stress are known to play vital effect in the pathogenesis of acute lung injury (ALI). In this study, we determined whether galangin exerts lung protection in lipopolysaccharide (LPS)-induced ALI. Male BALB/c mice were randomized to receive galangin or vehicle intraperitoneal injection 3 h after LPS challenge. Samples were harvested 24 h post LPS administration. Galangin administration decreased biochemical parameters of oxidative stress and inflammation, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of galangin were associated with inhibition of nuclear factor (NF)-κB and upregulation of heme oxygenase (HO)-1. Galangin reduces LPS-induced ALI by inhibition of inflammation and oxidative stress.

  5. Cognitive deficits in interleukin-10-deficient mice after peripheral injection of lipopolysaccharide

    PubMed Central

    Richwine, Amy F.; Sparkman, Nathan L.; Dilger, Ryan N.; Buchanan, Jessica B.; Johnson, Rodney W.

    2010-01-01

    Interleukin (IL)-10 is important for regulating inflammation but whether it protects against infection-related deficits in cognitive function is unknown. Therefore, the current study evaluated sickness behavior, hippocampal-dependent matching-to-place performance and several inflammatory cytokines and neurotrophins in wild type (IL-10+/+) and IL-10-deficient (IL-10−/−) mice after i.p. injection of lipopolysaccharide (LPS). Additionally, morphology of dendrites of pyramidal neurons in the dorsal CA1 hippocampus was assessed. Treatment with LPS increased IL-1β, IL-6, and tumor necrosis factor alpha (TNFα) mRNA in all brain areas examined including the hippocampus, in both IL-10+/+ and IL-10−/− mice but the increase was largest in IL-10−/− mice. Plasma IL-1β, IL-6 and TNFα were also higher in IL-10−/− mice compared to IL-10+/+ mice after LPS. Consistent with increased inflammatory cytokines in IL-10−/− mice after LPS treatment, were a more lengthy sickness behavior syndrome and a more prominent reduction in hippocampal levels of nerve growth factor mRNA; brain-derived neurotrophic factor mRNA was reduced similarly in both genotypes after LPS. In a test of hippocampal-dependent learning and memory that required mice to integrate new information with previously learned information and switch strategies to master a task, IL-10−/− mice were found to be less efficient after LPS than were similarly treated wild type mice. LPS did not affect morphology of dendrites of pyramidal neurons in the dorsal CA1 hippocampus in either genotype. Taken together the results are interpreted to suggest that during peripheral infection IL-10 inhibits sickness behavior and tribulations in hippocampal-dependent working memory via its propensity to mitigate inflammation. We conclude that IL-10 is critical for maintaining normal neuro-immune communication during infection. PMID:19272439

  6. Alpinetin inhibits lipopolysaccharide-induced acute kidney injury in mice.

    PubMed

    Huang, Yi; Zhou, Li-shan; Yan, Li; Ren, Juan; Zhou, Dai-xing; Li, Shu-Sheng

    2015-10-01

    Alpinetin, a novel plant flavonoid isolated from Alpinia katsumadai Hayata, has been demonstrated to have anti-inflammatory and antioxidant effects. However, the effects of alpinetin on lipopolysaccharide (LPS)-induced acute kidney injury have not been reported. In the present study, we investigated the protective effects and the underlying mechanism of alpinetin against LPS-induced acute kidney injury in mice. The results showed that alpinetin inhibited LPS-induced kidney histopathologic changes, blood urea nitrogen (BUN) and creatinine levels. Alpinetin also inhibited LPS-induced ROS, MDA, and inflammatory cytokines TNF-α, IL-6 and IL-1β production in kidney tissues. Meanwhile, Western blot analysis showed that alpinetin suppressed LPS-induced TLR4 expression and NF-κB activation in kidney tissues. In addition, alpinetin was found to up-regulate the expression of Nrf2 and HO-1 in a dose-dependent manner. In conclusion, alpinetin protected LPS-induced kidney injury through activating Nrf2 and inhibiting TLR4 expression.

  7. Systematic Analysis of the Cytokine and Anhedonia Response to Peripheral Lipopolysaccharide Administration in Rats.

    PubMed

    Biesmans, Steven; Matthews, Liam J R; Bouwknecht, Jan A; De Haes, Patrick; Hellings, Niels; Meert, Theo F; Nuydens, Rony; Ver Donck, Luc

    2016-01-01

    Inflammatory processes may cause depression in subsets of vulnerable individuals. Inflammation-associated behavioral changes are commonly modelled in rodents by administration of bacterial lipopolysaccharide (LPS). However, the time frame in which immune activation and depressive-like behavior occur is not very clear. In this study, we showed that systemic administration of LPS robustly increased circulating levels of corticosterone, leptin, pro- and anti-inflammatory cytokines, and chemokines. Serum concentrations of most analytes peaked within the first 6 h after LPS injection and returned to baseline values by 24 h. Chemokine levels, however, remained elevated for up to 96 h. Using an optimized sucrose preference test (SPT) we showed that sickness behavior was present from 2 to 24 h. LPS-induced anhedonia, as measured by decreased sucrose preference, lasted up to 96 h. To mimic the human situation, where depression develops after chronic inflammation, rats were preexposed to repeated LPS administration or subchronic restraint stress and subsequently challenged with LPS. While these procedures did not increase the duration of anhedonia, our results do indicate that inflammation may cause depressive symptoms such as anhedonia. Using our SPT protocol, more elaborate rodent models can be developed to study the mechanisms underlying inflammation-associated depression in humans.

  8. Systematic Analysis of the Cytokine and Anhedonia Response to Peripheral Lipopolysaccharide Administration in Rats

    PubMed Central

    Bouwknecht, Jan A.; De Haes, Patrick; Hellings, Niels; Meert, Theo F.

    2016-01-01

    Inflammatory processes may cause depression in subsets of vulnerable individuals. Inflammation-associated behavioral changes are commonly modelled in rodents by administration of bacterial lipopolysaccharide (LPS). However, the time frame in which immune activation and depressive-like behavior occur is not very clear. In this study, we showed that systemic administration of LPS robustly increased circulating levels of corticosterone, leptin, pro- and anti-inflammatory cytokines, and chemokines. Serum concentrations of most analytes peaked within the first 6 h after LPS injection and returned to baseline values by 24 h. Chemokine levels, however, remained elevated for up to 96 h. Using an optimized sucrose preference test (SPT) we showed that sickness behavior was present from 2 to 24 h. LPS-induced anhedonia, as measured by decreased sucrose preference, lasted up to 96 h. To mimic the human situation, where depression develops after chronic inflammation, rats were preexposed to repeated LPS administration or subchronic restraint stress and subsequently challenged with LPS. While these procedures did not increase the duration of anhedonia, our results do indicate that inflammation may cause depressive symptoms such as anhedonia. Using our SPT protocol, more elaborate rodent models can be developed to study the mechanisms underlying inflammation-associated depression in humans. PMID:27504457

  9. Neutrophil adherence induced by lipopolysaccharide in vitro. Role of plasma component interaction with lipopolysaccharide.

    PubMed Central

    Worthen, G S; Avdi, N; Vukajlovich, S; Tobias, P S

    1992-01-01

    Endotoxemia results in neutrophil localization within a number of microcirculatory beds, reflecting in part an adhesive interaction between neutrophils and the vascular endothelial cell. In previous studies, endotoxin or lipopolysaccharide (LPS) treatment of rabbits resulted in neutrophil sequestration at LPS concentrations well below those effective at increasing neutrophil adherence in vitro. We hypothesized that LPS-induced neutrophil adherence involved a plasma component. In the absence of plasma, high concentrations of LPS (10 micrograms/ml) were required to increase human neutrophil adherence to endothelial cells in vitro. With the inclusion of as little as 1% plasma or serum, however, the LPS dose-response curve was markedly shifted, resulting in increments in adherence at 10 ng/ml, and the time course of enhanced adherence was accelerated. Pretreatment studies suggested that the effect of LPS was on the neutrophil rather than the endothelial cell. Immunoprecipitation of 0111:B4 LPS paralleled the loss of functional activity, suggesting that LPS was an integral part of the active complex, rather than altering a plasma component to make it active. The incubation of plasma with LPS decreased the apparent molecular mass of LPS from 500-1,000 kD to approximately 100 kD. The disaggregated 0111:B4 LPS eluted in the range of albumin and was able to increase adherence in the absence of additional plasma. Plasma depleted of lipoproteins or heat treated retained activity, suggesting that the interaction of LPS with HDL or complement did not account for the observed findings. An LPS-binding protein isolated from rabbit serum enhanced the adherence-inducing effects of both 0111:B4 and Re595 LPS. Furthermore, the activity of rabbit serum was abolished after incubation with an antibody directed against this LPS-binding protein (LBP). An antibody directed against CD14, the putative receptor of the LPS-LBP complex, prevented the adhesive response to LPS. These data suggest

  10. Effects of interleukin-10 on human peripheral blood mononuclear cell responses to Cryptococcus neoformans, Candida albicans, and lipopolysaccharide.

    PubMed Central

    Levitz, S M; Tabuni, A; Nong, S H; Golenbock, D T

    1996-01-01

    Deactivation of mononuclear phagocytes is critical to limit the inflammatory response but can be detrimental in the face of progressive infection. We compared the effects of the deactivating cytokine interleukin 10 (IL-10) on human peripheral blood mononuclear cell (PBMC) responses to lipopolysaccharide (LPS), Cryptococcus neoformans, and Candida albicans. IL-10 effected dose-dependent inhibition of tumor necrosis factor alpha (TNF-alpha) release in PBMC stimulated by LPS and C. neoformans, with significant inhibition seen with 0.1 U/ml and greater than 90% inhibition noted with 10 U/ml. In contrast, even at doses as high as 100 U/ml, IL-10 inhibited TNF-alpha release in response to C. albicans by only 50%. IL-10 profoundly inhibited release of IL-1beta from PBMC stimulated by all three stimuli. TNF-alpha mRNA and release was inhibited even if IL-10 was added up to 8 h after cryptococcal stimulation. In contrast, inhibition of IL-1 beta mRNA was of lesser magnitude and occurred only when IL-10 was added within 2 h of cryptococcal stimulation. IL-10 inhibited translocation of NF-kappaB in response to LPS but not the fungal stimuli. All three stimuli induced IL-10 production in PBMC, although over 10-fold less IL-10 was released in response to C. neoformans compared with LPS and C. albicans. Thus, while IL-10 has deactivating effects on PBMC responses to all three stimuli, disparate stimulus- and response-specific patterns of deactivation are seen. Inhibition by IL-10 of proinflammatory cytokine release appears to occur at the level of gene transcription for TNF-alpha and both transcriptionally and posttranscriptionally for IL-1beta. PMID:8641805

  11. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  12. Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses.

    PubMed

    Kobori, Masuko; Nakayama, Hirosuke; Fukushima, Kenji; Ohnishi-Kameyama, Mayumi; Ono, Hiroshi; Fukushima, Tatsunobu; Akimoto, Yukari; Masumoto, Saeko; Yukizaki, Chizuko; Hoshi, Yoshikazu; Deguchi, Tomoaki; Yoshida, Mitsuru

    2008-06-11

    Bitter gourd ( Momordica charantia L.) is a popular tropical vegetable in Asian countries. Previously it was shown that bitter gourd placenta extract suppressed lipopolysaccharide (LPS)-induced TNFalpha production in RAW 264.7 macrophage-like cells. Here it is shown that the butanol-soluble fraction of bitter gourd placenta extract strongly suppresses LPS-induced TNFalpha production in RAW 264.7 cells. Gene expression analysis using a fibrous DNA microarray showed that the bitter gourd butanol fraction suppressed expression of various LPS-induced inflammatory genes, such as those for TNF, IL1alpha, IL1beta, G1p2, and Ccl5. The butanol fraction significantly suppressed NFkappaB DNA binding activity and phosphorylation of p38, JNK, and ERK MAPKs. Components in the active fraction from bitter gourd were identified as 1-alpha-linolenoyl-lysophosphatidylcholine (LPC), 2-alpha-linolenoyl-LPC, 1-lynoleoyl-LPC, and 2-linoleoyl-LPC. Purified 1-alpha-linolenoyl-LPC and 1-linoleoyl-LPC suppressed the LPS-induced TNFalpha production of RAW 264.7 cells at a concentration of 10 microg/mL.

  13. Preventive Effects of Carnosine on Lipopolysaccharide-induced Lung Injury

    PubMed Central

    Tanaka, Ken-Ichiro; Sugizaki, Toshifumi; Kanda, Yuki; Tamura, Fumiya; Niino, Tomomi; Kawahara, Masahiro

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute lung injury, which involves neutrophilic inflammation and pulmonary cell death. Reactive oxygen species (ROS) play important roles in ARDS development. New compounds for inhibiting the onset and progression of ARDS are required. Carnosine (β-alanyl-L-histidine) is a small di-peptide with numerous activities, including antioxidant effects, metal chelation, proton buffering capacity and the inhibition of protein carbonylation and glycoxidation. We have examined the preventive effects of carnosine on tissue injury, oedema and inflammation in a murine model for ARDS. Oral administration of carnosine suppressed lipopolysaccharide (LPS)-induced vascular permeability, tissue injury and inflammation in the lung. In vivo imaging analysis revealed that LPS administration increased the level of ROS and that this increase was inhibited by carnosine administration. Carnosine also suppressed LPS-induced neutrophilic inflammation (evaluated by activation of myeloperoxidase in the lung and increased extracellular DNA in bronchoalveolar lavage fluid). Furthermore, carnosine administration suppressed the LPS-induced endoplasmic reticulum stress response in vivo. These results suggest that the oral administration of carnosine suppresses LPS-induced lung injury via carnosine’s ROS-reducing activity. Therefore, carnosine may be beneficial for suppressing the onset and progression of ARDS. PMID:28205623

  14. Maturation Phenotype of Peripheral Blood Monocyte/Macrophage After Stimulation with Lipopolysaccharides in Irritable Bowel Syndrome

    PubMed Central

    Rodríguez-Fandiño, Oscar A; Hernández-Ruiz, Joselín; López-Vidal, Yolanda; Charúa-Guindic, Luis; Escobedo, Galileo; Schmulson, Max J

    2017-01-01

    Background/Aims Abnormal immune regulation and increased intestinal permeability augmenting the passage of bacterial molecules that can activate immune cells, such as monocytes/macrophages, have been reported in irritable bowel syndrome (IBS). The aim was to compare the maturation phenotype of monocytes/macrophages (CD14+) from IBS patients and controls in the presence or absence of Escherichia coli lipopolysaccharides (LPS), in vitro. Methods Mononuclear cells were isolated from peripheral blood of 20 Rome II-IBS patients and 19 controls and cultured with or without LPS for 72 hours. The maturation phenotype was examined by flow cytometry as follows: M1-Early (CD11c+CD206−), M2-Advanced (CD11c−CD206+CX3CR1+); expression of membrane markers was reported as mean fluorescence intensity (MFI). The Mann-Whitney test was used and significance was set at P < 0.05. Results In CD14+ cells, CD11c expression decreased with vs without LPS both in IBS (MFI: 8766.0 ± 730.2 vs 12 920.0 ± 949.2, P < 0.001) and controls (8233.0 ± 613.9 vs 13 750.0 ± 743.3, P < 0.001). M1-Early cells without LPS, showed lower CD11c expression in IBS than controls (MFI: 11 540.0 ± 537.5 vs 13 860.0 ± 893.7, P = 0.040), while both groups showed less CD11c in response to LPS (P < 0.01). Furthermore, the percentage of “Intermediate” (CD11c+CD206+CX3CR1+) cells without LPS, was higher in IBS than controls (IBS = 9.5 ± 1.5% vs C = 4.9 ± 1.4%, P < 0.001). Finally, fractalkine receptor (CX3CR1) expression on M2-Advanced cells was increased when treated with LPS in controls but not in IBS (P < 0.001). Conclusions The initial phase of monocyte/macrophage maturation appears to be more advanced in IBS compared to controls. However, the decreased CX3CR1 in patients with IBS, compared to controls, when stimulated with LPS suggests a state of immune activation in IBS. PMID:28044051

  15. Lipopolysaccharide induced acute red eye and corneal ulcers.

    PubMed

    Schultz, C L; Morck, D W; McKay, S G; Olson, M E; Buret, A

    1997-01-01

    Using a new animal model, the aims of this study were to assess the role played by purified lipopolysaccharide (LPS) and neutrophils in the pathogenesis of acute red-eye reactions (ARE) and corneal ulcers. In addition, IL-1 alpha was assessed for its implications in the formation of corneal ulcers. Following corneal abrasion, eyes of rabbits underwent single or double exposures to various doses of LPS from Pseudomonas aeruginosa or Serratia marcescens. This protocol induced ARE symptoms, and their severity depended on the dosage, number of LPS exposures, and type of LPS used (LPS from S. marcescens showing highest virulence). Corneal ulcers were induced by delivering a high dose of Serratia LPS (100 micrograms) followed by a low dose (10 micrograms). Histopathological examination revealed that both ARE and corneal ulceration were associated with prominent neutrophil infiltration. In addition, many lymphocytes and other monocytic cells infiltrated ulcerated ocular tissue. Tear fluids obtained from ulcerated eyes contained high concentrations of a protein recognized by anti-rabbit IL-1 alpha antibodies as demonstrated by immunoblotting studies. The results indicate that LPS can induce ARE and corneal ulceration in the absence of any live bacteria. Moreover, the findings implicate the accumulation of neutrophils and IL-1 alpha-related proteins in the pathogenesis of ARE and corneal ulcers.

  16. Lipopolysaccharide induces autotaxin expression in human monocytic THP-1 cells

    SciTech Connect

    Li Song; Zhang Junjie

    2009-01-09

    Autotaxin (ATX) is a secreted enzyme with lysophospholipase D (lysoPLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive phospholipid involved in numerous biological activities, including cell proliferation, differentiation, and migration. In the present study, we found that bacterial lipopolysaccharide (LPS), a well-known initiator of the inflammatory response, induced ATX expression in monocytic THP-1 cells. The activation of PKR, JNK, and p38 MAPK was required for the ATX induction. The LPS-induced ATX in THP-1 cells was characterized as the {beta} isoform. In the presence of LPC, ATX could promote the migrations of THP-1 and Jurkat cells, which was inhibited by pertussis toxin (PTX), an inhibitor of Gi-mediated LPA receptor signaling. In summary, LPS induces ATX expression in THP-1 cells via a PKR, JNK and p38 MAPK-mediated mechanism, and the ATX induction is likely to enhance immune cell migration in proinflammatory response by regulating LPA levels in the microenvironment.

  17. Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells.

    PubMed

    Echeverría, César; Montorfano, Ignacio; Sarmiento, Daniela; Becerra, Alvaro; Nuñez-Villena, Felipe; Figueroa, Xavier F; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Simon, Felipe

    2013-06-01

    Endothelial dysfunction is crucial in endotoxaemia-derived sepsis syndrome pathogenesis. It is well accepted that lipopolysaccharide (LPS) induces endothelial dysfunction through immune system activation. However, LPS can also directly generate actions in endothelial cells (ECs) in the absence of participation by immune cells. Although interactions between LPS and ECs evoke endothelial death, a significant portion of ECs are resistant to LPS challenge. However, the mechanism that confers endothelial resistance to LPS is not known. LPS-resistant ECs exhibit a fibroblast-like morphology, suggesting that these ECs enter a fibrotic programme in response to LPS. Thus, our aim was to investigate whether LPS is able to induce endothelial fibrosis in the absence of immune cells and explore the underlying mechanism. Using primary cultures of ECs and culturing intact blood vessels, we demonstrated that LPS is a crucial factor to induce endothelial fibrosis. We demonstrated that LPS was able and sufficient to promote endothelial fibrosis, in the absence of immune cells through an activin receptor-like kinase 5 (ALK5) activity-dependent mechanism. LPS-challenged ECs showed an up-regulation of both fibroblast-specific protein expression and extracellular matrix proteins secretion, as well as a down-regulation of endothelial markers. These results demonstrate that LPS is a crucial factor in inducing endothelial fibrosis in the absence of immune cells through an ALK5-dependent mechanism. It is noteworthy that LPS-induced endothelial fibrosis perpetuates endothelial dysfunction as a maladaptive process rather than a survival mechanism for protection against LPS. These findings are useful in improving current treatment against endotoxaemia-derived sepsis syndrome and other inflammatory diseases.

  18. Adrenomedullin ameliorates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Itoh, Takefumi; Obata, Hiroaki; Murakami, Shinsuke; Hamada, Kaoru; Kangawa, Kenji; Kimura, Hiroshi; Nagaya, Noritoshi

    2007-08-01

    Adrenomedullin (AM), an endogenous peptide, has been shown to have a variety of protective effects on the cardiovascular system. However, the effect of AM on acute lung injury remains unknown. Accordingly, we investigated whether AM infusion ameliorates lipopolysaccharide (LPS)-induced acute lung injury in rats. Rats were randomized to receive continuous intravenous infusion of AM (0.1 microg x kg(-1) x min(-1)) or vehicle through a microosmotic pump. The animals were intratracheally injected with either LPS (1 mg/kg) or saline. At 6 and 18 h after intratracheal instillation, we performed histological examination and bronchoalveolar lavage and assessed the lung wet/dry weight ratio as an index of acute lung injury. Then we measured the numbers of total cells and neutrophils and the levels of tumor necrosis factor (TNF)-alpha and cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid (BALF). In addition, we evaluated BALF total protein and albumin levels as indexes of lung permeability. LPS instillation caused severe acute lung injury, as indicated by the histological findings and the lung wet/dry weight ratio. However, AM infusion attenuated these LPS-induced abnormalities. AM decreased the numbers of total cells and neutrophils and the levels of TNF-alpha and CINC in BALF. AM also reduced BALF total protein and albumin levels. In addition, AM significantly suppressed apoptosis of alveolar wall cells as indicated by cleaved caspase-3 staining. In conclusion, continuous infusion of AM ameliorated LPS-induced acute lung injury in rats. This beneficial effect of AM on acute lung injury may be mediated by inhibition of inflammation, hyperpermeability, and alveolar wall cell apoptosis.

  19. Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2,3-dioxygenase-dependent depression-like behaviors

    PubMed Central

    2013-01-01

    Background Activation of the tryptophan degrading enzyme indoleamine-2,3-dioxygenase 1 (IDO1) is associated with the development of behavioral signs of depression. Systemic immune challenge induces IDO1 in both the periphery and the brain, leading to increased circulating and brain concentrations of kynurenines. However, whether IDO1 activity within the brain is necessary for the manifestation of depression-like behavior of mice following a central immune challenge remains to be elucidated. Methods We investigated the role of brain IDO1 in mediating depression-like behavior of mice in response to intracerebroventricular injection of saline or lipopolysaccharide (LPS, 10 ng). Results LPS increased the duration of immobility in the tail suspension test and decreased preference for a sucrose solution. These effects were associated with an activation of central but not peripheral IDO1, as LPS increased brain kynurenine but had no effect on plasma concentrations of kynurenine. Interestingly, genetic deletion or pharmacological inhibition of IDO1, using 1-methyl-tryptophan, abrogated the reduction in sucrose preference induced by intracerebroventricular LPS. 1-Methyl-tryptophan also blocked the LPS-induced increase in duration of immobility during the tail suspension test. Conclusions These data indicate that activation of brain IDO1 is sufficient to induce depression-like behaviors of mice in response to central LPS. PMID:23866724

  20. Lipopolysaccharide-induced hemolysis: Evidence for direct membrane interactions

    PubMed Central

    Brauckmann, Stephan; Effenberger-Neidnicht, Katharina; de Groot, Herbert; Nagel, Michael; Mayer, Christian; Peters, Jürgen; Hartmann, Matthias

    2016-01-01

    While hemolysis in patients with sepsis is associated with increased mortality its mechanisms are unknown and Toll-like receptor (TLR)-4 mediated effects, complement-mediated hemolysis, or direct cell membrane effects are all conceivable mechanisms. In this study, we tested the hypotheses that toxic lipopolysaccharide (LPS) as well as non-toxic RS-LPS evokes hemolysis (1) by direct membrane effects, and (2) independent of the complement system and TLR-4 activation. We found, that incubation with LPS resulted in a marked time and concentration dependent increase of free hemoglobin concentration and LDH activity in whole blood and washed red cells. Red cell integrity was diminished as shown by decreased osmotic resistance, formation of schistocytes and rolls, and a decrease in red cell membrane stiffness. Non-toxic RS-LPS inhibited the LPS-evoked increase in TNF-α concentration demonstrating its TLR-4 antagonism, but augmented LPS-induced increase in supernatant hemoglobin concentration and membrane disturbances. Removal of plasma components in washed red cell assays failed to attenuate hemolysis. In summary, this study demonstrates direct physicochemical interactions of LPS with red cell membranes resulting in hemolysis under in vitro conditions. It might thus be hypothesized, that not all effects of LPS are mediated by TLR and may explain LPS toxicity in cells missing TLR. PMID:27759044

  1. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure. PMID:26133372

  2. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats

    SciTech Connect

    El-Agamy, Dina S.

    2011-06-01

    The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO{sub 2}{sup -}/NO{sub 3}{sup -}) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-{alpha} (TNF-{alpha}), transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1}) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO{sub 2}{sup -}/NO{sub 3}{sup -} levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-{alpha}, TGF-{beta}{sub 1} and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells

  3. Lipopolysaccharide-induced hepatic injury is enhanced by polychlorinated biphenyls.

    PubMed Central

    Brown, A P; Schultze, A E; Holdan, W L; Buchweitz, J P; Roth, R A; Ganey, P E

    1996-01-01

    After intravenous administration of bacterial lipopolysaccharide (LPS) to rats, polymorphonuclear neutrophils (PMNs) rapidly accumulate in the liver, and midzonal hepatic necrosis is prominent by 6 hr. PMNs are required for the development of hepatic injury in rats. Certain polychlorinated biphenyls (PCBs) can activate PMNs, resulting in production of superoxide anion (O2-.) and release of cytolytic factors from granules. This raises the possibility that PCB exposure might enhance PMN-mediated tissue injury, such as LPS-induced hepatotoxicity. We treated female Sprague-Dawley rats with a minimally toxic dose of LPS in saline (2 mg/kg, intravenous) and 90 min later exposed them to Aroclor 1248 (50 mg/kg, intraperitoneal), a mixture of PCBs. The animals were killed 6 hr after LPS administration, and hepatic injury was assessed. Neither LPS nor Aroclor 1248 alone produced liver injury. Co-treatment with LPS and Aroclor 1248 resulted in pronounced liver injury as demonstrated from increased activities of alanine aminotransferase and isocitrate dehydrogenase in plasma. Histological evaluation indicated increased severity of hepatic necrosis in rats receiving both LPS and Aroclor 1248. Hepatic accumulation of PMNs, normally observed after LPS, was not altered by co-exposure to PCBs. Aroclor 1248 stimulated rat PMNs in vitro to produce O2-. and to degranulate. In addition, PMN-mediated cytotoxicity to isolated rat hepatocytes in culture was increased upon addition of Aroclor 1248. PCBs activate PMNs in vitro and increase PMN-dependent hepatocellular damage in vitro and after LPS treatment in vivo. PCBs may act in vivo as an additional inflammatory stimulus to activate PMNs to become cytotoxic, resulting in increased tissue injury. Images Figure 1. Figure 2. A Figure 2. B Figure 3. Figure 4. A Figure 4. B Figure 5. Figure 6. PMID:8793352

  4. Citrate modulates lipopolysaccharide-induced monocyte inflammatory responses

    PubMed Central

    Ashbrook, M J; McDonough, K L; Pituch, J J; Christopherson, P L; Cornell, T T; Selewski, D T; Shanley, T P; Blatt, N B

    2015-01-01

    Citrate, a central component of cellular metabolism, is a widely used anti-coagulant due to its ability to chelate calcium. Adenosine triphosphate (ATP)-citrate lyase, which metabolizes citrate, has been shown to be essential for inflammation, but the ability of exogenous citrate to impact inflammatory signalling cascades remains largely unknown. We hypothesized that citrate would modulate inflammatory responses as both a cellular metabolite and calcium chelator, and tested this hypothesis by determining how clinically relevant levels of citrate modulate monocyte proinflammatory responses to lipopolysaccharide (LPS) in a human acute monocytic leukaemia cell line (THP-1). In normal medium (0·4 mM calcium), citrate inhibited LPS-induced tumour necrosis factor (TNF)-α and interleukin (IL)-8 transcripts, whereas in medium supplemented with calcium (1·4 mM), TNF-α and IL-8 levels increased and appeared independent of calcium chelation. Using an IL-8–luciferase plasmid construct, the same increased response was observed in the activation of the IL-8 promoter region, suggesting transcriptional regulation. Tricarballylic acid, an inhibitor of ATP-citrate lyase, blocked the ability of citrate to augment TNF-α, linking citrate's augmentation effect with its metabolism by ATP-citrate lyase. In the presence of citrate, increased histone acetylation was observed in the TNF-α and IL-8 promoter regions of THP-1 cells. We observed that citrate can both augment and inhibit proinflammatory cytokine production via modulation of inflammatory gene transactivation. These findings suggest that citrate anti-coagulation may alter immune function through complex interactions with the inflammatory response. PMID:25619261

  5. Influence of feeding status on neuronal activity in the hypothalamus during lipopolysaccharide-induced anorexia in rats.

    PubMed

    Gautron, L; Mingam, R; Moranis, A; Combe, C; Layé, S

    2005-01-01

    Fasting attenuates disease-associated anorexia, but the mechanisms underlying this effect are not well understood. In the present study, we investigated the extent to which a 48 h fast alters hypothalamic neuronal activity in response to the anorectic effects of lipopolysaccharide in rats. Male rats were fed ad libitum or fasted, and were injected with i.p. saline or lipopolysaccharide (250 microg/kg). Immunohistochemistry for Fos protein was used to visualize neuronal activity in response to lipopolysaccharide within selected hypothalamic feeding regulatory nuclei. Additionally, food intake, body weight, plasma interleukin-1 and leptin levels, and the expression of mRNA for appetite-related neuropeptides (neuropeptide Y, proopiomelanocortin and cocaine-amphetamine-regulated transcript) were measured in a time-related manner. Our data show that the pattern of lipopolysaccharide-induced Fos expression was similar in most hypothalamic nuclei whatever the feeding status. However, we observed that fasting significantly reduced lipopolysaccharide-induced Fos expression in the paraventricular nucleus, in association with an attenuated lipopolysaccharide-induced anorexia and body weight loss. Moreover, lipopolysaccharide reduced fasting-induced Fos expression in the perifornical area of the lateral hypothalamus. Lipopolysaccharide-induced circulating levels of interleukin-1 were similar across feeding status. Finally, fasting, but not lipopolysaccharide, affected circulating level of leptin and appetite-related neuropeptides expression in the arcuate nucleus. Together, our data show that fasting modulates lipopolysaccharide-induced anorexia and body weight loss in association with neural changes in specific hypothalamic nuclei.

  6. The effects of Nigella sativa on sickness behavior induced by lipopolysaccharide in male Wistar rats

    PubMed Central

    Norouzi, Fatemeh; Abareshi, Azam; Anaeigoudari, Akbar; Shafei, Mohammad Naser; Gholamnezhad, Zahra; Saeedjalali, Mohsen; Mohebbati, Reza; Hosseini, Mahmoud

    2016-01-01

    Objective: Neuroimmune factors contribute on the pathogenesis of sickness behaviors. Nigella sativa (NS) has anti-inflammatory, anti-anxiety and anti-depressive effects. In the present study, the effect of NS hydro-alcoholic extract on sickness behavior induced by lipopolysaccharide (LPS) was investigated. Materials and Methods: The rats were divided into five groups (n=10 in each): (1) control (saline), (2) LPS (1 mg/kg, administered two hours before behavioral tests), (3-5) LPS-Nigella sativa 100 , 200 and 400 mg/kg (LPS-NS 100, LPS-NS 200 and LPS-NS 400, respectively). Open- field (OF), elevated plus maze (EPM) and forced swimming test (FST) were performed. Results: In OF, LPS reduced the peripheral crossing, peripheral distance, total crossing and total distance compared to control (p<0.01- p<0.001). The central crossing, central distance and central time in LPS-NS 100, LPS-NS200 and LPS-NS 400 groups were higher than LPS (p<0.01- p<0.001). In EPM, LPS decreased the open arm entries, open arm time and closed arm entries while increased the closed time compared to control (p<0.001). Pretreatment by NS extract reversed the effects of LPS (p<0.05- p<0.001). In FST, LPS increased the immobility time while, decreased the climbing and active times compared to control (p<0.05- p<0.001). In LPS-NS 100, LPS-NS 200 and LPS-NS 400 groups the immobility time was less while, the active and climbing times were more than those of LPS (p<0.05- p<0.001). Conclusion: The results of the present study showed that the hydro-alcoholic extract of NS reduced the LPS-induced sickness behaviors in rats. Further investigations are required for better understanding the responsible compound (s) and the underlying mechanism(s). PMID:27247927

  7. Supra-therapeutic plasma concentrations of haloperidol induce moderate inhibition of lipopolysaccharide-induced interleukin-8 release in human monocytes

    PubMed Central

    2016-01-01

    Background The clinical use of antipsychotics and mood-stabilizing drugs with proven efficacy is largely determined by the occurrence of treatment-emergent adverse events and routine clinical chemistry and haematology data, which together define the safety and tolerability profile of these psychopharmaceuticals. Whereas the effects of mood-stabilizing drugs on functional properties of blood cells have been poorly investigated, the effects of antipsychotics have received more attention. Such studies have yielded conflicting results. This study examined the effects of the mood-stabilizing drugs carbamazepine and valproic acid and of the antipsychotic drugs olanzapine, risperidone and haloperidol on the production of the pro-inflammatory chemokine interleukin-8 (IL-8), which is released from human monocytes when activated by Gram-negative lipopolysaccharide (LPS). Methods Peripheral human whole blood was diluted with Roswell Park Memorial Institute (RPMI) cell culture medium and stimulated with LPS. Accumulating IL-8 was quantified in the supernatant with an adapted enzyme-linked immunosorbent assay (ELISA) and the results correlated to the number of monocytes at venipuncture. Results At supra-therapeutic concentrations of 100 µM, haloperidol inhibited the LPS-induced release of IL-8 in peripheral human monocytes moderately, whereas olanzapine, risperidone, carbamazepine and valproic acid showed no such effect. Conclusions The results suggest that these mood-stabilizing drugs and antipsychotics are endowed with clinically favorable inertness rather than pro-inflammatory properties. PMID:27867948

  8. Modulation of lipopolysaccharide-induced oxidative stress by capsaicin.

    PubMed

    Abdel-Salam, Omar M E; Abdel-Rahman, Rehab Fawzy; Sleem, Amany A; Farrag, Abdel Razik

    2012-08-01

    This study investigated the effect of capsaicin (the active principle of hot red pepper and a sensory excitotoxin) on oxidative stress after systemic administration of the endotoxin lipopolysaccharide (100 μg/kg, i.p.) in rats. Capsaicin (15, 150 or 1,500 μg/kg; 10, 100 or 400 μg/mL) was given via intragastric (i.g.) or intraperitoneal (i.p.) routes at time of endotoxin administration. Rats were killed 4 h later. Malondialdehyde (MDA) and reduced glutathione (GSH) were measured in brain, liver, and lungs. Alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase (ALP), nitric oxide, and glucose were measured in serum. In addition, histopathological examination of liver tissue was performed. In LPS-treated rats, hepatic GSH increased significantly by 40.8% after i.p. capsaicin at 1,500 μg/kg. Liver MDA increased significantly by 32.9% after the administration of i.g. capsaicin at 1,500 μg/kg and by 27.8 and 37.6% after the administration of i.p. capsaicin at 150 and 1,500 μg/kg, respectively. In lung tissue, both MDA and GSH were decreased by capsaicin administration. MDA decreased by 19-20.8% after i.g. capsaicin and by 17.5-23.2% after i.p. capsaicin (150-1,500 μg/kg), respectively. GSH decreased by 39.3-64.3% and by 35.7-41.1% after i.g. or i.p. capsaicin (150-1,500 μg/kg), respectively. Brain GSH increased significantly after the highest dose of i.g. or i.p. capsaicin (by 20.6 and 15.9%, respectively). The increase in serum ALT and ALP after endotoxin administration was decreased by oral or i.p. capsaicin. Serum nitric oxide showed marked increase after LPS injection, but was markedly decreased after capsaicin (1,500 μg/kg, i.p.). Serum glucose increased markedly after the administration of LPS, and was normalized by capsaicin treatment. It is suggested that in the presence of mild systemic inflammation, acute capsaicin administration might alter oxidative status in some tissues and exert an anti-inflammatory effect

  9. Lipopolysaccharide-induced lethality and cytokine production in aged mice.

    PubMed Central

    Tateda, K; Matsumoto, T; Miyazaki, S; Yamaguchi, K

    1996-01-01

    This study was designed to define the lipopolysaccharide (LPS) sensitivity of aged mice in terms of lethality and cytokine production and to determine down-regulating responses of corticosterone and interleukin 10 (IL-10). The 50% lethal doses of LPS in young (6- to 7-week-old) and aged (98- to 102-week-old) mice were 601 and 93 microg per mouse (25.6 and 1.6 mg per kg of body weight), respectively. Aged mice were approximately 6.5-fold more sensitive to the lethal toxicity of LPS in micrograms per mouse (16-fold more sensitive in milligrams per kilogram) than young mice. Levels in sera of tumor necrosis factor-alpha (TNF-alpha) IL-1alpha, and IL-6 after intraperitoneal injection of 100 microg of LPS peaked at 1.5, 3, and 3 h, respectively, and declined thereafter in both groups of mice. However, the peak values of these cytokines were significantly higher in aged than in young mice (P < 0.05). Gamma interferon (IFN-gamma) was detectable at 3 h, and sustained high levels were still detected after 12 h in both age groups. Although there were no significant differences in levels of IFN-gamma in sera from both groups, aged mice showed higher IFN-gamma levels throughout the 3- to 12-h study period. Administration of increasing doses of LPS revealed that aged mice had a lower threshold to IL-1alpha production than young mice. In addition, aged mice were approximately 4-fold more sensitive to the lethal toxicity of exogenous TNF in units per mouse (10-fold more sensitive in units per kilogram) than young mice. With regard to down-regulating factors, corticosterone amounts were similar at basal levels and no differences in kinetics after the LPS challenge were observed, whereas IL-10 levels in sera were significantly higher in aged mice at 1.5 and 3 h than in young mice (P < 0.01). These results indicate that aged mice are more sensitive to the lethal toxicities of LPS and TNF than young mice. We conclude that a relatively activated, or primed, state for LPS-induced

  10. Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation*

    PubMed Central

    Grabner, Gernot F.; Eichmann, Thomas O.; Wagner, Bernhard; Gao, Yuanqing; Farzi, Aitak; Taschler, Ulrike; Radner, Franz P. W.; Schweiger, Martina; Lass, Achim; Holzer, Peter; Zinser, Erwin; Tschöp, Matthias H.; Yi, Chun-Xia; Zimmermann, Robert

    2016-01-01

    Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKOGFAP). MKOGFAP mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKOGFAP mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKOGFAP mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation. PMID:26565024

  11. Iloprost improves endothelial barrier function in lipopolysaccharide-induced lung injury.

    PubMed

    Birukova, Anna A; Wu, Tinghuai; Tian, Yufeng; Meliton, Angelo; Sarich, Nicolene; Tian, Xinyong; Leff, Alan; Birukov, Konstantin G

    2013-01-01

    The protective effects of prostacyclin and its stable analogue iloprost are mediated by elevation of intracellular cyclic AMP (cAMP) leading to enhancement of the peripheral actin cytoskeleton and cell-cell adhesive structures. This study tested the hypothesis that iloprost may exhibit protective effects against lung injury and endothelial barrier dysfunction induced by bacterial wall lipopolysaccharide (LPS). Endothelial barrier dysfunction was assessed by measurements of transendothelial permeability, morphologically and by analysis of LPS-activated inflammatory signalling. In vivo, C57BL/6J mice were challenged with LPS with or without iloprost or 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) treatment. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count and Evans blue extravasation. Iloprost and Br-cAMP attenuated the disruption of the endothelial monolayer, and suppressed the activation of p38 mitogen-activated protein kinase (MAPK), the nuclear factor (NF)-κB pathway, Rho signalling, intercellular adhesion molecular (ICAM)-1 expression and neutrophil migration after LPS challenge. In vivo, iloprost was effective against LPS-induced protein and neutrophil accumulation in bronchoalveolar lavage fluid, and reduced myeloperoxidase activation, ICAM-1 expression and Evans blue extravasation in the lungs. Inhibition of Rac activity abolished the barrier-protective and anti-inflammatory effects of iloprost and Br-cAMP. Iloprost-induced elevation of intracellular cAMP triggers Rac signalling, which attenuates LPS-induced NF-κB and p38 MAPK inflammatory pathways and the Rho-dependent mechanism of endothelial permeability.

  12. The alteration of copper homeostasis in inflammation induced by lipopolysaccharides.

    PubMed

    Han, Ming; Lin, Zhexuan; Zhang, Yuan

    2013-08-01

    Significant changes of copper homeostasis were triggered by lipopolysaccharides, which result in systemic inflammatory response and contribute to hepatic injury. Administration of lipopolysaccharides resulted in the increase of plasma "free" copper and total copper concentrations, whereas, the decrease of "free" copper and total copper contents in liver tissue. Copper-associated proteins were detected and showed a down-regulation of X-linked inhibitor of apoptosis protein, and up-regulation of copper metabolism domain containing 1 and copper transporter 1. The alteration of these proteins would lower the apoptotic threshold. Meanwhile, the increasing of circulation copper might cause oxidative injury through Fenton reaction and contribute to tissue injury. Our findings underscored the possibility that these changes in systemic copper homeostasis might provide a novel insight of the characteristic of the acute phase of inflammatory response and the underlying influence on tissue injury.

  13. Roles of interleukin-1 and tumor necrosis factor in lipopolysaccharide-induced hypoglycemia.

    PubMed Central

    Vogel, S N; Henricson, B E; Neta, R

    1991-01-01

    In this study, hypoglycemia induced by injection of lipopolysaccharide (LPS) or the recombinant cytokine interleukin-1 alpha or tumor necrosis factor alpha (administered alone or in combination) was compared. LPS-induced hypoglycemia was reversed significantly by recombinant interleukin-1 receptor antagonist. PMID:1828792

  14. Synergistic effect of DDT and its metabolites in lipopolysaccharide-mediated TNF-α production is inhibited by progesterone in peripheral blood mononuclear cells.

    PubMed

    Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Aguilar-Rojas, Arturo; Arechavaleta-Velasco, Fabian

    2017-02-26

    Increased TNF-α levels have been associated with adverse pregnancy outcomes. Lipopolysaccharide (LPS), 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) induce TNF-α release in peripheral blood mononuclear cells (PBMC). Conversely, progesterone (P4) inhibits TNF-α secretion. Pregnant women in malaria endemic areas may be co-exposure to these compounds. Thus, this study was to investigate the synergistic effect of LPS and these pesticides in PBMC and to assess P4 influence on this synergy. Cultured PBMC were exposed to each pesticide in the presence of LPS, P4, or their combination. TNF-α was measured by ELISA. All pesticides enhanced TNF-α synthesis in PBMC. Co-exposure with LPS synergizes TNF-α production, which is blocked by progesterone. These results indicate that these organochlorines act synergistically with LPS to induce TNF-α secretion in PBMC. This effect is blocked by P4.

  15. Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide.

    PubMed

    Konsman, J P; Veeneman, J; Combe, C; Poole, S; Luheshi, G N; Dantzer, R

    2008-12-01

    Although receptors for the pro-inflammatory cytokine interleukin-1 have long been known to be expressed in the brain, their role in fever and behavioural depression observed during the acute phase response (APR) to tissue infection remains unclear. This may in part be due to the fact that interleukin-1 in the brain is bioactive only several hours after peripheral administration of bacterial lipopolysaccharide (LPS). To study the role of cerebral interleukin-1 action in temperature and behavioural changes, and activation of brain structures during the APR, interleukin-1 receptor antagonist (IL-1ra; 100 microg) was infused into the lateral brain ventricle 4 h after intraperitoneal (i.p.) LPS injection (250 microg/kg) in rats. I.p. LPS administration induced interleukin-1beta (IL-1beta) production in systemic circulation as well as in brain circumventricular organs and the choroid plexus. Intracerebroventricular (i.c.v.) infusion of IL-1ra 4 h after i.p. LPS injection attenuated the reduction in social interaction, a cardinal sign of behavioural depression during sickness, and c-Fos expression in the amygdala and bed nucleus of the stria terminalis. However, LPS-induced fever, rises in plasma corticosterone, body weight loss and c-Fos expression in the hypothalamus and caudal brainstem were not altered by i.c.v. infusion of IL-1ra. These findings, together with our previous observations showing that i.c.v. infused IL-1ra diffuses throughout perivascular spaces, where macrophages express interleukin-1 receptors, can be interpreted to suggest that circulating or locally produced brain IL-1beta acts on these cells to bring about behavioural depression and activation of limbic structures during the APR after peripheral LPS administration.

  16. The effects of Nigella sativa hydro-alcoholic extract and thymoquinone on lipopolysaccharide - induced depression like behavior in rats

    PubMed Central

    Hosseini, Mahmoud; Zakeri, Samaneh; Khoshdast, Sadieh; Yousefian, Fatemeh T.; Rastegar, Monireh; Vafaee, Farzaneh; Kahdouee, Shamsi; Ghorbani, Fatemeh; Rakhshandeh, Hassan; Kazemi, S. Abolfazl

    2012-01-01

    Background: Neuroimmune factors have been proposed as contributors to the pathogenesis of depression. Beside other therapeutic effects including neuroprotective, antioxidant, anticonvulsant and analgesic effects, Nigella sativa and its main ingredient, thymoquinone (TQ), have been shown to have anti-inflammatory effects. In the present study, the effects of Nigella sativa hydro-alcoholic extract and thymoquinone was investigated on lipopolysaccharide- induced depression like behavior in rats. Materials and Methods: 50 male Wistar rats were divided into 5 groups: Group 1 (control group) received saline instead of NS extract, thymoquinone or lipopolysaccharide. The animals in group 2 (lipopolysaccharide (LPS)) were treated by saline instead of NS extract and were injected LPS (100μg/kg, ip) 2 hours before conducting each forced swimming test. Groups 3 (LPS + NS 200) and 4 (LPS + NS 400) were treated by 200 and 400 mg/kg of NS (ip), respectively, from the day before starting the experiments and before each forced swimming test. These animals were also injected LPS 2hours before conducting each swimming test. The animals in group 5 received TQ instead of NS extract. Forced swimming test was performed 3 times for all groups (in alternative days), and immobility time was recorded. Finally, the animals were placed in an open- field apparatus, and the crossing number on peripheral and central areas was observed. Results: The immobility time in the LPS group was higher than that in the control group in all 3 times (P<0.001). The animals in LPS + NS 200, LPS + NS 400 and LPS + TQ had lower immobility times in comparison with LPS groups (P<0.01, and P<0.01). In the open- field test, the crossing number of peripheral in the LPS group was higher than that of the control one (P<0.01) while the animals of LPS + NS 200, LPS + NS 400 and LPS + TQ groups had lower crossing number of peripheral compared with the LPS group (P <0.05, and P<0.001). Furthermore, in the LPS group, the

  17. Modulation by gamithromycin and ketoprofen of in vitro and in vivo porcine lipopolysaccharide-induced inflammation.

    PubMed

    Wyns, Heidi; Meyer, Evelyne; Plessers, Elke; Watteyn, Anneleen; van Bergen, Thomas; Schauvliege, Stijn; De Baere, Siegrid; Devreese, Mathias; De Backer, Patrick; Croubels, Siska

    2015-12-15

    The immunomodulatory properties of gamithromycin (GAM), ketoprofen (KETO) and their combination (GAM-KETO) were investigated after both in vitro and in vivo lipopolysaccharide (LPS)-induced inflammation. The influence of these drugs was measured on the production of prostaglandin E2 (PGE2) and the pro-inflammatory cytokines tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in both LPS-stimulated porcine peripheral blood mononuclear cells (PBMCs) and LPS-challenged pigs. Additionally, effects on the production of acute phase proteins (APPs), including pig major acute phase protein (pig-MAP) and C-reactive protein (CRP), as well as on the development of fever, pulmonary symptoms and sickness behaviour were investigated. Dexamethasone was included as a positive control in the in vitro research. Following an 18h-incubation period with 1.25μg/mL LPS, the levels of TNF-α, IL-1β and IL-6 (p<0.05) measured in the PBMC supernatants were significantly increased. Incubation with a high concentration of both GAM and KETO significantly reduced the in vitro levels of all three cytokines. Maximal plasma concentrations of TNF-α and IL-6 were observed at 1h and 2.5h following LPS challenge in pigs, respectively. Neither GAM, nor KETO nor the combination GAM-KETO was able to inhibit the in vivo LPS-induced cytokine production. Furthermore, none of the drugs influenced the subsequent APPs production. In contrast, administration of KETO significantly reduced PGE2 production both in vitro and in vivo (p<0.05 and p<0.001, respectively) and prevented the development of fever and severe symptoms, including dyspnoea, anorexia, vomiting and lateral decubitus.

  18. Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells.

    PubMed

    Jian, Congxiang; Li, Chenjun; Ren, Yu; He, Yong; Li, Yunming; Feng, Xiaodan; Zhang, Gang; Tan, Yinghui

    2014-10-01

    Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth supporting tissues. Hypoxia, the mainly changes of the plateau environment, can induce severe periodontitis by animal experiments. There is, however, very little information on hypoxia and lipopolysaccharide (LPS) induced cytokine expression in periodontal ligament (PDL) cells. In this article, we characterized hypoxia or P. gingivalis lipopolysaccharide (Pg LPS) induced tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 expression by human periodontal ligament (hPDL) cells. We found that hypoxia augmented Pg LPS induced TNF-α, IL-1β, and IL-6 expression in hPDL cells. We also demonstrated that nuclear factor kappa B pathway was involved in hypoxia augmenting Pg LPS induced cytokine expression in hPDL cells. Thus, our results suggest that the hypoxic environment may enhance the immune function of hPDL cells that is induced by Pg LPS.

  19. Alpha-lipoic acid protects mitochondrial enzymes and attenuates lipopolysaccharide-induced hypothermia in mice

    EPA Science Inventory

    Abstract: Hypothermia is a key symptom of sepsis and the mechanism(s) leading to hypothermia during sepsis is largely unknown. To investigate a potential mechanism and find an effective treatment for hypothermia in sepsis, we induced hypothermia in mice by lipopolysaccharide (LP...

  20. Garlic (Allium sativum) Extracts Inhibits Lipopolysaccharide-Induced Toll-Like Receptor 4 Dimerization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Garlic has been used as a folk medicine for a long history. Numerous studies demonstrated that garlic extracts and its sulfur-containing compounds inhibit nuclear factor-kappa B (NF-kB) activation induced by various receptor agonist including lipopolysaccharide (LPS). These effects suggest that garl...

  1. An interleukin-1 receptor antagonist blocks lipopolysaccharide-induced colony-stimulating factor production and early endotoxin tolerance.

    PubMed Central

    Henricson, B E; Neta, R; Vogel, S N

    1991-01-01

    In this report, administration of a recombinant interleukin-1 receptor antagonist protein to mice was found to inhibit induction of colony-stimulating factor as well as induction of early endotoxin tolerance by lipopolysaccharide. These findings provide direct evidence that interleukin-1 is an intermediate in these two lipopolysaccharide-induced phenomena. PMID:1825485

  2. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death.

    PubMed Central

    Laubach, V E; Shesely, E G; Smithies, O; Sherman, P A

    1995-01-01

    Nitric oxide produced by cytokine-inducible nitric oxide synthase (iNOS) is thought to be important in the pathogenesis of septic shock. To further our understanding of the role of iNOS in normal biology and in a variety of inflammatory disorders, including septic shock, we have used gene targeting to generate a mouse strain that lacks iNOS. Mice lacking iNOS were indistinguishable from wild-type mice in appearance and histology. Upon treatment with lipopolysaccharide and interferon gamma, peritoneal macrophages from the mutant mice did not produce nitric oxide measured as nitrite in the culture medium. In addition, lysates of these cells did not contain iNOS protein by immunoblot analysis or iNOS enzyme activity. In a Northern analysis of total RNA, no iNOS transcript of the correct size was detected. No increases in serum nitrite plus nitrate levels were observed in homozygous mutant mice treated with a lethal dose of lipopolysaccharide, but the mutant mice exhibited no significant survival advantage over wild-type mice. These results show that lack of iNOS activity does not prevent mortality in this murine model for septic shock. Images Fig. 2 Fig. 3 PMID:7479866

  3. The opioid antagonist, β-funaltrexamine, inhibits lipopolysaccharide-induced neuroinflammation and reduces sickness behavior in mice.

    PubMed

    Davis, Randall L; Stevens, Craig W; Thomas Curtis, J

    2017-05-01

    Brain pathologies such as neurodegenerative diseases, infection, traumatic brain injury, and mood disorders produce enormous personal and economic burdens. It is well established that neuroinflammation plays an important role in the etiology and/or manifestation of such disorders. Previously, we discovered that beta-funaltrexamine (β-FNA) inhibits inflammatory signaling in human astrocytes in vitro, resulting in reduced expression of proinflammatory cytokines/chemokines. The present study examines the effects of peripherally administered β-FNA on lipopolysaccharide (LPS)-induced neuroinflammation and sickness behavior in vivo. Adult male C57BL/6J mice were administered β-FNA and were then immediately administered bacterial lipopolysaccharide (LPS). At 24h post-injections, sickness behavior was assessed in an open-field test. Following behavioral analysis plasma and brains were collected. Levels of interleukin-6 (IL-6), interferon-γ inducible protein-10 (CXCL10), and monocyte chemoattractant protein-1 (CCL2) were determined by enzyme-linked immunosorbant assay (ELISA). At 24h post-LPS injection, IL-6, CCL2 and CXCL10 were increased in the plasma, whereas, only CCL2 and CXCL10 were elevated in the brain. β-FNA significantly inhibited LPS-induced CXCL10 and CCL2 expression in brain, but minimally or not at all in the plasma. LPS-induced sickness behavior, as indicated by a reduction in distance moved, was prevented by β-FNA. Overall, CXCL10 expression in the brain was most positively and significantly correlated with sickness behavior; whereas, anxiety-like behavior was most positively and significantly correlated with IL-6 and CCL2 levels in the plasma and levels of CXCL10 and CCL2 in the brain. The reduction in sickness behavior may be in part due to decreased chemokine expression in the brain; further examination of the anti-inflammatory and neuroprotective effects of β-FNA is warranted.

  4. Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides

    PubMed Central

    Packialakshmi, Balamurugan; Liyanage, Rohana; Lay, Jackson O.; Makkar, Sarbjeet K.; Rath, Narayan C.

    2016-01-01

    Lipopolysaccharides (LPS) are cell wall components of Gram-negative bacteria that produce inflammation and sickness in higher animals. The objective was to identify plasma proteomic changes in an avian model of inflammation. Chickens were treated with either saline or LPS, and blood was collected at 24 hours postinjection. The pooled plasma samples were depleted of high-abundant proteins and analyzed by matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS). MALDI analyses showed an increase in fibrinogen beta-derived peptide and a decrease in apolipoprotein-AII-derived peptide in LPS samples. Label-free quantitation of LC–MS/MS spectra revealed an increase in the levels of α1-acid glycoprotein, a chemokine CCLI10, and cathelicidin-2, but a decrease in an interferon-stimulated gene-12-2 protein in the LPS group. These differentially expressed proteins are associated with immunomodulation, cytokine changes, and defense mechanisms, which may be useful as candidate biomarkers of infection and inflammation. PMID:27053921

  5. Intravenous Lidocaine Infusion to Treat Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Papapetrou, Peter; Kumar, Aashish J; Muppuri, Rudram; Chakrabortty, Shushovan

    2015-11-01

    Chemotherapy-induced peripheral neuropathy is a debilitating side effect of chemotherapy, which manifests as paresthesias, dysesthesias, and numbness in the hands and feet. Numerous chemoprotective agents and treatments have been used with limited success to treat chemotherapy-induced peripheral neuropathy. We report a case in which a patient presenting with chemotherapy-induced peripheral neuropathy received an IV lidocaine infusion over the course of 60 minutes with complete symptomatic pain relief for a prolonged period of 2 weeks.

  6. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  7. Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice.

    PubMed

    Jangra, Ashok; Lukhi, Manish M; Sulakhiya, Kunjbihari; Baruah, Chandana C; Lahkar, Mangala

    2014-10-05

    Numerous studies have demonstrated that inflammation, oxidative stress and altered level of neurotrophins are involved in the pathogenesis of depressive illness. Mangiferin, a C-glucosylxanthone is abundant in the stem and bark of Mangifera indica L. The compound has been shown to possess antioxidant, anti-inflammatory and immunomodulatory activities. The present study was performed to investigate the effect of mangiferin pretreatment on lipopolysaccharide-induced increased proinflammatory cytokines, oxidative stress and neurobehavioural abnormalities. Mice were challenged with lipopolysaccharide (0.83 mg/kg, i.p.) after 14 days of mangiferin (20 and 40 mg/kg, p.o.) pretreatment. Mangiferin pretreatment significantly ameliorated the anxiety-like behaviour as evident from the results of an elevated plus maze, light-dark box and open field test. Mangiferin pretreatment also improved the anhedonic behaviour as revealed by sucrose preference test and increased social interaction time. It also prevented the lipopolysaccharide-evoked depressive-like effect by reducing the immobility time in forced swim and tail suspension test. Lipopolysaccharide-induced elevated oxidative stress was decreased with mangiferin pretreatment due to its potential to increase reduced glutathione concentration, Superoxide dismutase and catalase activity and decrease lipid peroxidation and nitrite level in the hippocampus as well as in the prefrontal cortex. Mangiferin pretreatment also attenuated neuroinflammation by reducing the interleukin-1 beta (IL-1β) level in hippocampus and prefrontal cortex. In conclusion, our results demonstrated that mangiferin possessed antidepressant and anti-anxiety properties due to its ability to attenuate IL-1β level and oxidative stress evoked by intraperitoneal administration of lipopolysaccharide. Mangiferin may be a potential therapeutic agent for the treatment of depressive and anxiety illness.

  8. Peripheral nerve morphogenesis induced by scaffold micropatterning

    PubMed Central

    Memon, Danish; Boneschi, Filippo Martinelli; Madaghiele, Marta; Brambilla, Paola; Del Carro, Ubaldo; Taveggia, Carla; Riva, Nilo; Trimarco, Amelia; Lopez, Ignazio D.; Comi, Giancarlo; Pluchino, Stefano; Martino, Gianvito; Sannino, Alessandro; Quattrini, Angelo

    2014-01-01

    Several bioengineering approaches have been proposed for peripheral nervous system repair, with limited results and still open questions about the underlying molecular mechanisms. We assessed the biological processes that occur after the implantation of collagen scaffold with a peculiar porous microstructure of the wall in a rat sciatic nerve transection model compared to commercial collagen conduits and nerve crush injury using functional, histological and genome wide analyses. We demonstrated that within 60 days, our conduit had been completely substituted by a normal nerve. Gene expression analysis documented a precise sequential regulation of known genes involved in angiogenesis, Schwann cells/axons interactions and myelination, together with a selective modulation of key biological pathways for nerve morphogenesis induced by porous matrices. These data suggest that the scaffold’s microstructure profoundly influences cell behaviors and creates an instructive micro-environment to enhance nerve morphogenesis that can be exploited to improve recovery and understand the molecular differences between repair and regeneration. PMID:24559639

  9. Effects of D-003 on Lipopolysaccharides-induced Osteonecrosis in Rabbits.

    PubMed

    Noa, Miriam; Valle, M; Mendoza, Sarahí; Mas, Rosa; Mendoza, Nilda

    2011-09-01

    D-003, a mixture of high molecular weight acids, inhibits cholesterol synthesis prior to mevalonate and prevents osteoporosis induced by ovariectomy in rats, and both osteoporosis and osteonecrosis induced by corticoids in rats. The aim of this study was to investigate effects of D-003 on lipopolysaccharides-induced osteonecrosis in rabbits. Animals were randomized into 5 groups: a sham and four groups injected with lipopolysaccharides: one treated orally with vehicle and three with D-003 (5, 25 and 200 mg/kg, respectively) during four weeks. We assessed the effects of treatments on the incidence of osteonecrosis (number of animals with osteonecrosis lesions/animals per group), the mean numbers and areas of osteonecrosis per animal and on the mean sizes of the bone marrow fat cells. The incidence of osteonecrosis in the groups of D-003 25 and 200 mg/kg was significantly lower than in the positive controls. The reduction of osteonecrosis increased with the doses, but significant dose-dependence relationship was not achieved. D-003 significantly and dose-dependently decreased the number of osteonecrosis lesions per animal as compared to the positive controls. Likewise, the mean osteonecrosis areas in the proximal femoral and humeral bones were significantly decreased by D-003. The injection of lipopolysaccharides significantly increased the average size of bone marrow fat cells as compared to the negative controls, and such increase was significantly and markedly reduced with D-003. It is concluded that D-003 reduced the incidence, number and percent areas of osteonecrosis lesions, and the size of bone marrow fat cells, a marker of adipogenesis, in rabbits with lipopolysaccharides-induced ostenonecrosis.

  10. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge.

    PubMed

    Lee, Sang In; Kim, Hyun Soo; Koo, Jin Mo; Kim, In Ho

    2016-02-28

    A total of forty weaned pigs ((Landrace × Yorkshire) × Duroc) were used to evaluate the effects of Lactobacillus acidophilus on inflammatory activity after lipopolysaccharide (LPS) challenge. Experimental treatments were as follows: (T1) control diet+saline challenge; (T2) control diet with 0·1% L. acidophilus+saline challenge; (T3) control diet+LPS challenge; and (T4) control diet with 0·1% L. acidophilus+LPS challenge. On d-14, piglets were challenged with saline (T1 and T2) or LPS (T3 and T4). Blood samples were obtained at 0, 2, 4, 6 and 12 h after being challenged and analysed for immune cell cytokine production and gene expression pattern. The L. acidophilus treatment increased the average daily weight gain (ADWG) and average daily feed intake (ADFI) compared with the control diet. With the control diet, the LPS challenge (T3) increased the number of immune cells and expression of TNF-α and IL-6 compared with the saline challenge (T1). Whereas with the saline challenge L. acidophilus treatment (T2) increased the number of leucocytes and CD4 compared with the control diet (T1), with the LPS challenge L. acidophilus treatment (T4) decreased the number of leucocytes, lymphocytes, CD4+ and CD8+ and expression of TNF-α and IL-6 compared with the control diet (T3). L. acidophilus treatment decreased the expression of TRL4 and NF-κB in peripheral blood mononuclear cells (PBMC) after LPS challenge, which leads to inhibition of TNF-α, IFN-γ, IL-6, IL-8 and IL1B1 and to induction of IL-4 and IL-10. We suggested that L. acidophilus improved ADWG and ADFI and protected against LPS-induced inflammatory responses by regulating TLR4 and NF-κB expression in porcine PBMC.

  11. Bromelain inhibits lipopolysaccharide-induced cytokine production in human THP-1 monocytes via the removal of CD14.

    PubMed

    Huang, Jing-Rong; Wu, Chia-Chuan; Hou, Rolis Chien-Wei; Jeng, Kee-Ching

    2008-01-01

    Bromelain has been reported to have anti-inflammatory and immunomodulatory effects. However, the anti-inflammatory mechanism of bromelain is unclear. Therefore, we investigated the effect of bromelain on cytokine production from lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMC) and monocytic leukemia THP-1 cells. The result showed that bromelain (50-100 microg/ml) significantly and reversibly reduced tumor necrosis factor (TNF)-alpha interleukin- (IL)-1beta and IL-6 from LPS-induced PBMC and THP-1 cells. This effect was correlated with reduced LPS-induced TNF-alpha mRNA and NF-kappaB activity in THP-1 cells. In addition, bromelain dose-dependently inhibited LPS-induced prostaglandin E(2), thromboxane B(2) and COX-2 mRNA but not COX-1 mRNA. Importantly, bromelain degraded TNF-alpha and IL-1beta molecules, reduced the expression of surface marker CD14 but not Toll-like receptor 4 from THP-1 cells. Taken together, the results suggest that the suppression of signaling pathways by bromelain's proteolytic activity may contribute to the anti-inflammatory activity of bromelain.

  12. Patchouli alcohol dampens lipopolysaccharide induced mastitis in mice.

    PubMed

    Li, Yong-Ping; Yuan, Shi-Fang; Cai, Guo-Hong; Wang, Hui; Wang, Ling; Yu, Lei; Ling, Rui; Yun, Jun

    2014-10-01

    Patchouli alcohol (PA), a tricyclic sesquiterpene isolated from Pogostemonis Herba, has been known to exhibit antioxidant, anti-inflammatory, and other important therapeutic activities. The aim of this study was to investigate the effects of PA on LPS-induced mastitis in vivo and the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Mice were pretreated with dexamethasone or PA 1 h before and 12 h after induction of LPS. The myeloperoxidase activity and inflammatory cytokines production in mammary tissues were determined. The effects of PA on NF-κB signal pathways were analyzed by Western blotting. The results showed that PA inhibited the LPS-induced TNF-α, IL-6, and IL-1β production in a dose manner. It was also observed that PA attenuated mammary histopathologic changes. Furthermore, Western blot analysis showed that PA could inhibit the phosphorylation of NF-κB and IκB induced by LPS. These results indicate that PA inhibits NF-κB signaling pathways to attenuate inflammatory injury induced by LPS. PA may be a potent therapeutic reagent for the prevention of mastitis.

  13. Lipopolysaccharide-induced inflammation aggravates irradiation-induced injury to the young mouse brain.

    PubMed

    Roughton, Karolina; Andreasson, Ulf; Blomgren, Klas; Kalm, Marie

    2013-01-01

    Radiotherapy is an effective treatment strategy in the treatment of brain tumors, but it is also a major cause of long-term complications, especially in survivors of pediatric brain tumors. Cognitive decline caused by cranial radiotherapy is thought, at least partly, to depend on injury to stem and progenitor cells in the dentate gyrus of the hippocampus. This study investigated the effects of lipopolysaccharide (LPS)-induced inflammation at the time of irradiation (IR) in the growing mouse brain. A single injection of LPS (0.3 mg/kg) was administered 24 h prior to cranial IR of 14-day-old male mice. LPS pretreatment increased the levels of the chemokine CCL2 and the cytokine IL-1β in the brain by 440 and 560%, respectively, compared to IR alone. IR disrupted hippocampal neurogenesis and the growth of the dentate gyrus, and the mice pretreated with LPS displayed an even more pronounced lack of growth than the vehicle-treated group 2 months after IR. The density of microglia was not affected, but LPS-pretreated mice displayed 48% fewer bromodeoxyuridine-positive cells and 43% fewer doublecortin-positive cells in the granule cell layer 2 months after IR compared with the vehicle-treated group. In conclusion, an ongoing inflammation in the brain at the time of IR further enhanced the IR-induced loss of neurogenesis, and may aggravate future cognitive deficits in patients treated with cranial radiotherapy.

  14. Effect of Capparis spinosa Linn. extract on lipopolysaccharide-induced cognitive impairment in rats.

    PubMed

    Goel, Ashish; Digvijaya; Garg, Arun; Kumar, Ashok

    2016-02-01

    Cognitive disorders in mankind are not uncommon. Apart from neurodegenerative diseases such as Alzheimer's (AD), various stresses also affect cognitive functions. Plants are known to be potential source of compounds that ameliorate several diseases including cognitive impairment. Here, we evaluated effect of aqueous extract of caper (Capparis spinosa) buds on lipopolysaccharide-induced cognitive impairment in rats using two different oral doses i.e. 10 (pre-treatment) and 30 mg/rat(post-treatment) through assessment of behavioural (Morris Water maze test and Y maze test), biochemical (Cholinesterase assay) and histopathological (H&E staining) parameters. Lipopolysaccharide (from E. coli) administration resulted in an increased neurodegeneration and time taken to reach the platform (in Morris water maze). The increased neurodegeneration in CA1 region of hippocampus was significantly reduced in animals which received caper bud extract; they showed marked reduction in time taken to reach the platform at both the dose levels. The experiment demonstrated that caper bud extract exhibits potential protective effect against learning and memory damage induced by chronic administration of lipopolysaccharide (175 μg/kg) for 7 days. The results suggest that the caper bud extract could be explored for its use in the treatment of cognitive disorders.

  15. [Immune-regulating effect of phenibut under lipopolysaccharide-induced immune stress conditions].

    PubMed

    Samotrueva, M A; Tiurenkov, I N; Teplyĭ, D L; Kuleshevskaia, N R; Khlebtsova, E V

    2010-05-01

    The immunoregulating effect of phenibut has been demonstrated on the model of immune stress caused by the injection of lipopolysaccharide from Pseudomonas aeruginosa. The degree of expression of the specific (in a delayed-type hypersensitivity reaction and passive hemagglutination) and nonspecific (phagocytic activity of neutrophils) links of immunomodulation was studied. The formation of lipopolysaccharide (LPS) induced immune stress is characterized by the increase of the indicated parameters of immunity. It is found that phenibut (under intraabdominal injection of 25 mg/kg within 5 days) removes the manifestations of hyperreactivity of the cellular link of immunity, and also restores the amount of phagocytic cells, which is evidence of the immunomodulating properties of the drug under conditions of hyperimmunization.

  16. Glucocorticoid-induced leucine zipper overexpression inhibits lipopolysaccharide-induced retinal inflammation in rats.

    PubMed

    Gu, Ruiping; Lei, Boya; Shu, Qinmeng; Li, Gang; Xu, Gezhi

    2017-02-24

    Glucocorticoid-induced leucine zipper (GILZ) mediates several effects of glucocorticoids and has important anti-inflammatory properties. Here, we explored the role of GILZ in inhibiting retinal inflammation. Endotoxin-induced uveitis (EIU) was established in rats by intravitreal injection of lipopolysaccharide (LPS). GILZ levels decreased in the EIU retina at 4 h after LPS injection and slowly recovered within 24 h. Retinal GILZ was downregulated by recombinant lentivirus-delivered short-hairpin RNA targeting GILZ (shRNA-GILZ-rLV) and upregulated by recombinant lentivirus-mediated GILZ overexpression (Oe-GILZ-rLV). GILZ silencing attenuated the anti-inflammatory effects of intravitreal injection of triamcinolone acetonide (TA) in the EIU retina, as demonstrated by increased retinal interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1and intercellular cell adhesion molecule-1 expression at 18 h after TA injection. A Bio-Plex cytokine assay and western blotting demonstrated that GILZ overexpression inhibited the effects of LPS, downregulating retinal IL-1β, MCP-1, MIP-1α, and IL-17 and inhibiting LPS-induced activation of the retinal toll-like receptor 4-myeloid differentiation factor 88 signaling pathway. At 48 and 72 h after LPS injection, the clinical score of inflammation was significantly lower in Oe-GILZ-rLV-transfected eyes than in blank-rLV-transfected eyes. Histological examination showed a 67.85% reduction of infiltrating inflammatory cells in the anterior chamber and a 58.97% reduction in vitreous cavity of Oe-GILZ-rLV transfected eyes at 48 h after LPS injection. Taken together, our results suggest that GILZ is a novel therapeutic target for the treatment of retinal inflammatory diseases.

  17. Lipopolysaccharide-induced hypothermia and hypotension are associated with inflammatory signaling that is triggered outside the brain.

    PubMed

    Al-Saffar, Hiba; Lewis, Kevin; Liu, Elaine; Schober, Alexandra; Corrigan, Joshua J; Shibata, Keita; Steiner, Alexandre A

    2013-02-01

    Little is known about the neuroimmune mechanisms responsible for the switch from fever to hypothermia observed in severe forms of systemic inflammation. We evaluated whether bacterial lipopolysaccharide (LPS) acting directly on the brain could promote a fever-hypothermia switch as well as the hypotension that is often associated with hypothermia in models of systemic inflammation. At an ambient temperature of 22°C, freely moving rats received intracerebroventricular (i.c.v.) injections of LPS at doses ranging from 0.5 to 25μg. Despite the use of such high doses, the prevailing thermal response was fever. To investigate if a hypothermic response could be hidden within the prevailing febrile response, rats were pretreated with a cyclooxygenase-2 inhibitor (SC-236, 3.5mg/kg i.v.) known to block fever, but this strategy also failed to reveal any consistent hypothermic response following i.c.v. LPS. At the doses tested, i.c.v. LPS was similarly ineffective at inducing hypotension. Additional doses of LPS did not need to be tested because the 25-μg dose was already sufficient to induce both hypothermia and hypotension when administered peripherally (intra-arterially). An empirical 3D model of the interplay among body temperature, arterial pressure and heart rate following intra-arterial LPS reinforced the strong association of hypothermia with hypotension and, at the same time, exposed a bell-shaped relationship between heart rate and body temperature. In summary, the present study demonstrates that hypothermia and hypotension are triggered exclusively by LPS acting outside the brain and provides an integrated model of the thermal and cardiovascular responses to peripheral LPS.

  18. The CRTH2 agonist Pyl A prevents lipopolysaccharide-induced fetal death but induces preterm labour

    PubMed Central

    Sykes, Lynne; Herbert, Bronwen R; MacIntyre, David A; Hunte, Emma; Ponnampalam, Sathana; Johnson, Mark R; Teoh, Tiong G; Bennett, Phillip R

    2013-01-01

    We have previously demonstrated that the anti-inflammatory prostaglandin 15-deoxy-Δ 12,14-prostaglandin J2 (15dPGJ2) delays inflammation-induced preterm labour in the mouse and improves pup survival through the inhibition of nuclear factor-κB (NF-κB) by a mechanism yet to be elucidated. 15dPGJ2 is an agonist of the second prostaglandin D2 receptor, chemoattractant receptor homologous to the T helper 2 cell (CRTH2). In human T helper cells CRTH2 agonists induce the production of the anti-inflammatory interleukins IL-10 and IL-4. We hypothesized that CRTH2 is involved in the protective effect of 15dPGJ2 in inflammation-induced preterm labour in the murine model. We therefore studied the effects of a specific small molecule CRTH2 agonist on preterm labour and pup survival. An intrauterine injection of lipopolysaccharide (LPS) was administered to CD1 mice at embryonic day 16, ± CRTH2 agonist/vehicle controls. Mice were killed at 4.5 hr to assess fetal wellbeing and to harvest myometrium and pup brain for analysis of NF-κB, and T helper type 1/2 interleukins. To examine the effects of the CRTH2 agonist on LPS-induced preterm labour, mice were allowed to labour spontaneously. Direct effects of the CRTH2 agonist on uterine contractility were examined ex vivo on contracting myometrial strips. The CRTH2 agonist increased fetal survival from 20 to 100% in LPS-treated mice, and inhibited circular muscle contractility ex vivo. However, it augmented LPS-induced labour and significantly increased myometrial NF-κB, IL-1β, KC-GRO, interferon-γ and tumour necrosis factor-α. This suggests that the action of 15dPGJ2 is not via CRTH2 and therefore small molecule CRTH2 agonists are not likely to be beneficial for the prevention of inflammation-induced preterm labour. PMID:23374103

  19. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    PubMed

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (p<0.001) brain- reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) significantly increased (p<0.001) the level of malondialdehyde (MDA), nitric oxide and the activity of cytokines in the brain. MEAR supplementation resulted in normalization of brain GSH and CAT and SOD and decreases in the levels of MDA with reduction of nitric oxide and cytokines in the brain. The action of the extract at dose of 200 mg/kg was almost similar to the standard drug, quercetin (100mg/kg, p.o.). These present study conclude that MEAR administration significantly (P<0.05) reduced LPS- induced oxidative-stress and intensely suggest that Asparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  20. Trametinib, a novel MEK kinase inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor (TNF)-α production and endotoxin shock.

    PubMed

    Du, Shi-lin; Yuan, Xue; Zhan, Sun; Tang, Luo-jia; Tong, Chao-yang

    2015-03-13

    Lipopolysaccharide (LPS), one of the most prominent pathogen-associated molecular patterns (PAMPs), activates macrophages, causing release of toxic cytokines (i.e. tumor necrosis factor (TNF)-α) that may provoke inflammation and endotoxin shock. Here, we tested the potential role of trametinib, a novel and highly potent MAPK/ERK kinase (MEK) inhibitor, against LPS-induced TNF-α response in monocytes, and analyzed the underlying mechanisms. We showed that trametinib, at nM concentrations, dramatically inhibited LPS-induced TNF-α mRNA expression and protein secretion in transformed (RAW 264.7 cells) and primary murine macrophages. In ex-vivo cultured human peripheral blood mononuclear cells (PBMCs), this MEK inhibitor similarly suppressed TNF-α production by LPS. For the mechanism study, we found that trametinib blocked LPS-induced MEK-ERK activation in above monocytes, which accounted for the defective TNF-α response. Macrophages or PBMCs treated with a traditional MEK inhibitor PD98059 or infected with MEK1/2-shRNA lentivirus exhibited a similar defect as trametinib, and nullified the activity of trametinib. On the other hand, introducing a constitutively-active (CA) ERK1 restored TNF-α production by LPS in the presence of trametinib. In vivo, mice administrated with trametinib produced low levels of TNF-α after LPS stimulation, and these mice were protected from LPS-induced endotoxin shock. Together, these results show that trametinib inhibits LPS-induced TNF-α expression and endotoxin shock probably through blocking MEK-ERK signaling.

  1. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice.

    PubMed

    Feng, Xiaosheng; Jia, Aiqing

    2014-08-01

    Carvacrol, the major component of Plectranthus amboinicus, has been known to exhibit anti-inflammatory activities. The aim of this study was to investigate the effects of carvacrol on lipopolysaccharide (LPS)-induced endotoxemia and acute lung injury (ALI) in mice. Mice were injected intraperitoneally (i.p.) with LPS and the mortality of mice for 7 days were observed twice a day. Meanwhile, the protective effect of carvacrol (20, 40 or 80 mg/kg) on LPS-induced endotoxemia were detected. Using an experimental model of LPS-induced ALI, we examined the effect of carvacrol in resolving lung injury. The results showed that carvacrol could improve survival during lethal endotoxemia and attenuate LPS-induced ALI in mice. The anti-inflammatory mechanisms of carvacrol may be due to its ability to inhibit NF-κB and MAPKs signaling pathways, thereby inhibiting inflammatory cytokines TNF-α, IL-6 and IL-1β production.

  2. Identification and Characterization of Lipopolysaccharide Induced TNFα Factor from Blunt Snout Bream, Megalobrama amblycephala

    PubMed Central

    Lv, Yina; Xiang, Xinying; Jiang, Yuhong; Tang, Leilei; Zhou, Yi; Zhong, Huan; Xiao, Jun; Yan, Jinpeng

    2017-01-01

    Lipopolysaccharide induced TNFα factor (LITAF) is an important transcription factor responsible for regulation of tumor necrosis factor α. In this study, a novel litaf gene (designated as Malitaf) was identified and characterized from blunt snout bream, Megalobrama amblycephala. The full-length cDNA of Malitaf was of 956 bp, encoding a polypeptide of 161 amino acids with high similarity to other known LITAFs. A phylogenetic tree also showed that Malitaf significantly clustered with those of other teleost, indicating that Malitaf was a new member of fish LITAF family. The putative maLITAF protein possessed a highly conserved LITAF domain with two CXXC motifs. The mRNA transcripts of Malitaf were detected in all examined tissues of healthy M. amblycephala, including kidney, head kidney, muscle, liver, spleen, gill, and heart, and with the highest expression in immune organs: spleen and head kidney. The expression level of Malitaf in spleen was rapidly up-regulated and peaked (1.29-fold, p < 0.05) at 2 h after lipopolysaccharide (LPS) stimulation. Followed the stimulation of Malitaf, Matnfα transcriptional level was also transiently induced to a high level (51.74-fold, p < 0.001) at 4 h after LPS stimulation. Taken together, we have identified a putative fish LITAF ortholog, which was a constitutive and inducible immune response gene involved in M. amblycephala innate immunity during the course of a pathogenic infection. PMID:28212275

  3. Chemotherapy-induced peripheral neuropathy: Current status and progress.

    PubMed

    Brewer, Jamie R; Morrison, Gladys; Dolan, M Eileen; Fleming, Gini F

    2016-01-01

    As there are increasing numbers of cancer survivors, more attention is being paid to the long term unwanted effects patients may experience as a result of their treatment and the impact these side effects can have on their quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxicities from chemotherapy. In this review we will briefly review the clinical presentation, evaluation and management of chemotherapy-induced peripheral neuropathy, with a focus on CIPN related to platinum and taxane agents. We will then discuss current clinical models of peripheral neuropathy and ongoing research to better understand CIPN and develop potential treatment options.

  4. Chemotherapy-Induced Peripheral Neuropathy: Current Status and Progress

    PubMed Central

    Brewer, Jamie R; Morrison, Gladys; Dolan, M. Eileen; Fleming, Gini F

    2015-01-01

    As there are increasing numbers of cancer survivors, more attention is being paid to the long term unwanted effects patients may experience as a result of their treatment and the impact these side effects can have on their quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxicities from chemotherapy. In this review we will briefly review the clinical presentation, evaluation and management of chemotherapy-induced peripheral neuropathy, with a focus on CIPN related to platinum and taxane agents. We will then discuss current clinical models of peripheral neuropathy and ongoing research to better understand CIPN and develop potential treatment options. PMID:26556766

  5. Circulating leptin mediates lipopolysaccharide-induced anorexia and fever in rats.

    PubMed

    Sachot, Christelle; Poole, Stephen; Luheshi, Giamal N

    2004-11-15

    Anorexia and fever are important features of the host's response to inflammation that can be triggered by the bacterial endotoxin lipopolysaccharide (LPS) and the appetite suppressant leptin. Previous studies have demonstrated that LPS induces leptin synthesis and secretion in the periphery, and that the action of leptin on appetite suppression and fever are dependent on brain interleukin (IL)-1beta. However, the role of leptin as a neuroimmune mediator of LPS-induced inflammation has not been fully elucidated. To address this issue, we neutralized circulating leptin using a leptin antiserum (LAS) and determined how this neutralization affected LPS-induced anorexia, fever and hypothalamic IL-1beta. Adult male rats were separated into four treatment groups, namely LPS + normal sheep serum (NSS), LPS + LAS, saline + LAS and saline + NSS. Intraperitoneal injection of LPS (100 microg kg(-1)) induced a significant reduction in food intake and body weight, which were significantly reversed in the presence of LAS (1 ml kg(-1)), 8 and 24 h after treatment. In addition, LPS-induced fever was significantly attenuated by LAS over the duration of the fever response (8 h). Lipopolysaccharide induced an increase of circulating IL-6, another potential circulating pyrogen, which was not affected by neutralization of leptin at 2 h. Interleukin-1beta mRNA at 1 and 8 h, and IL-1 receptor antagonist (ra) at 2 h were significantly upregulated in the hypothalamus of LPS-treated animals. The induction of these cytokines was attenuated in the presence of LAS. These results are the first to demonstrate that leptin is a circulating mediator of LPS-induced anorexia and fever, probably through a hypothalamic IL-1beta-dependent mechanism.

  6. Paeonol suppresses lipopolysaccharide-induced inflammatory cytokines in macrophage cells and protects mice from lethal endotoxin shock.

    PubMed

    Chen, Na; Liu, Dianfeng; Soromou, Lanan Wassy; Sun, Jingjing; Zhong, Weiting; Guo, Weixiao; Huo, Meixia; Li, Hongyu; Guan, Shuang; Chen, Zhenwen; Feng, Haihua

    2014-06-01

    Paeonol (2'-hydroxy-4'-methoxyacetophenone) is the main phenolic compound of the radix of Paeonia suffruticosa which has been used as traditional Chinese medicine. In this study, we primarily investigated the anti-inflammatory effects and the underlying mechanisms of paeonol in RAW macrophage cells; and based on these effects, we assessed the protective effects of paeonol on lipopolysaccharide-induced endotoxemia in mice. The in vitro study showed that paeonol regulated the production of TNF-α, IL-1β, IL-6, and IL-10 via inactivation of IκBα, ERK1/2, JNK, and p38 MAPK. In mouse model of lipopolysaccharide-induced endotoxemia, pro- and anti-inflammatory cytokines are significantly regulated, and thus the survival rates of lipolysaccharide-challenged mice are improved by paeonol (150, 200, or 250 mg/kg). Therefore, paeonol has a beneficial activity against lipopolysaccharide-induced inflammation in RAW 264.7 cell and mouse models.

  7. Requirement for tyrosine phosphorylation in lipopolysaccharide-induced murine B-cell proliferation.

    PubMed Central

    Dearden-Badet, M T; Revillard, J P

    1993-01-01

    Bacterial lipopolysaccharide (LPS) induces a strong B-cell proliferative response with subsequent differentiation, through a complex signal transduction pathway. This process is known to be mediated through protein kinase C (PKC) translocation without Ca2+ mobilization. Here, we show that B-cell proliferative responses induced by five different LPS preparations, as well as by F(ab')2 anti-IgM antibodies, are inhibited by the tyrosine kinase inhibitors, genistein and herbimycin A. In contrast, B-cell proliferation induced by the combination of phorbol 12-myristate 13-acetate (PMA) plus ionomycin was not influenced by treatment with either herbimycin A or genistein. These data indicate that tyrosine phosphorylation is required to initiate B-cell proliferation by LPS. PMID:8307617

  8. Fish Oil Prevents Lipopolysaccharide-Induced Depressive-Like Behavior by Inhibiting Neuroinflammation.

    PubMed

    Shi, Zhe; Ren, Huixia; Huang, Zhijian; Peng, Yu; He, Baixuan; Yao, Xiaoli; Yuan, Ti-Fei; Su, Huanxing

    2016-11-04

    Depression is associated with somatic immune changes, and neuroinflammation is now recognized as hallmark for depressive disorders. N-3 (or omega-3) polyunsaturated fatty acids (PUFAs) are well known to suppress neuroinflammation, reduce oxidative stress, and protect neuron from injury. We pretreated animals with fish oil and induced acute depression-like behaviors with systemic lipopolysaccharide (LPS) injection. The levels of cytokines and stress hormones were determined from plasma and different brain areas. The results showed that fish oil treatment prevent LPS-induce depressive behavior by suppression of neuroinflammation. LPS induced acute neuroinflammation in different brain regions, which were prevented in fish oil fed mice. However, neither LPS administration nor fish oil treatment has strong effect on stress hormone secretion in the hypothalamus and adrenal. Fish oil might provide a useful therapy against inflammation-associated depression.

  9. Activation of α2 adrenoceptor attenuates lipopolysaccharide-induced hepatic injury.

    PubMed

    Chen, Jing-Hui; Yu, Gao-Feng; Jin, Shang-Yi; Zhang, Wen-Hua; Lei, Dong-Xu; Zhou, Shao-Li; Song, Xing-Rong

    2015-01-01

    Sepsis induces hepatic injury but whether alpha-2 adrenoceptor (α2-AR) modulates the severity of sepsis-induced liver damage remains unclear. The present study used lipopolysaccharide (LPS) to induce hepatic injury and applied α2-AR agonist dexmedetomidine (DEX) and/or antagonist yohimbine to investigate the contribution of α2-AR in LPS-induced liver injury. Our results showed that LPS resulted in histological and functional abnormality of liver tissue (ALT and AST transaminases, lactate), higher mortality, an increase in proinflammatory cytokines (IL-1β, IL-6 & TNF-α), as well as a change in oxidative stress (MDA, SOD). Activation of α2-AR by dexmedetomidine (DEX) attenuated LPS-induced deleterious effects on the liver and block of α2-AR by yohimbine aggravated LPS-induced liver damage. Our data suggest that α2-AR plays an important role in sepsis-induced liver damage and activation of α2-AR with DEX could be a novel therapeutic avenue to protect the liver against sepsis-induced injury.

  10. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

    PubMed Central

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Tang, Jiajun; Huan, Jingning

    2016-01-01

    Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis. PMID:27807512

  11. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice.

    PubMed

    Zhao, Mei; Chen, Yuan-Hua; Chen, Xue; Dong, Xu-Ting; Zhou, Jun; Wang, Hua; Wu, Shu-Xian; Zhang, Cheng; Xu, De-Xiang

    2014-01-13

    Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. The aim of this study was to investigate the effects of high-dose folic acid supplementation during pregnancy on LPS-induced NTDs. Pregnant mice were intraperitoneally injected with LPS (20 μg/kg/d) from gestational day (GD) 8 to GD12. As expected, a five-day LPS injection resulted in 19.96% of fetuses with NTDs. Interestingly, supplementation with folic acid (3mg/kg/d) during pregnancy significantly alleviated LPS-induced NTDs. Additionally, folic acid significantly attenuated LPS-induced fetal growth restriction and skeletal malformations. Additional experiment showed that folic acid attenuated LPS-induced glutathione (GSH) depletion in maternal liver and placentas. Moreover, folic acid significantly attenuated LPS-induced expression of placental MyD88. Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-κB) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects.

  12. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    PubMed

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses.

  13. Vagal nerve stimulation blocks interleukin 6-dependent synaptic hyperexcitability induced by lipopolysaccharide-induced acute stress in the rodent prefrontal cortex

    PubMed Central

    Garcia-Oscos, Francisco; Peña, David; Housini, Mohammad; Cheng, Derek; Lopez, Diego; Borland, Michael S.; Salgado-Delgado, Roberto; Salgado, Humberto; D’Mello, Santosh; Kilgard, Michael P.; Rose-John, Stefan; Atzori, Marco

    2016-01-01

    The ratio between synaptic inhibition and excitation (sI/E) is a critical factor in the pathophysiology of neuropsychiatric disease. We recently described a stress-induced interleukin-6 dependent mechanism leading to a decrease in sI/E in the rodent temporal cortex. The aim of the present study was to determine whether a similar mechanism takes place in the prefrontal cortex, and to elaborate strategies to prevent or attenuate it. We used aseptic inflammation (single acute injections of lipopolysaccharide, LPS, 10 mg/kg) as stress model, and patch-clamp recording on a prefrontal cortical slice preparation from wild-type rat and mice, as well as from transgenic mice in which the inhibitor of IL-6 trans-signaling sgp130Fc was produced in a brain-specific fashion (sgp130Fc mice). The anti-inflammatory reflex was activated either by vagal nerve stimulation or peripheral administration of the nicotinic α7 receptor agonist PHA543613. We found that the IL-6-dependent reduction in prefrontal cortex synaptic inhibition was blocked in sgp130Fc mice, or – in wild-type animals – upon application sgp130Fc. Similar results were obtained by activating the “anti-inflammatory reflex” – a neural circuit regulating peripheral immune response – by stimulation of the vagal nerve or through peripheral administration of the α7 nicotinic receptor agonist PHA543613. Our results indicate that the prefrontal cortex is an important potential target of IL-6 mediated trans-signaling, and suggest a potential new avenue in the treatment of a large class of hyperexcitable neuropsychiatric conditions, including epilepsy, schizophrenic psychoses, anxiety disorders, autism spectrum disorders, and depression. PMID:25128387

  14. Interferon-induced guanylate-binding proteins promote cytosolic lipopolysaccharide detection by caspase-11.

    PubMed

    Meunier, Etienne; Broz, Petr

    2015-01-01

    Lipopolysaccharide (LPS) from gram-negative bacteria is a classical pathogen-associated molecular pattern and a strong inducer of immune responses. While the detection of LPS on the cell surface and in the endosome by Toll-like receptor 4 (TLR4) has been studied for some time, it has only recently been discovered that LPS can also be sensed in the cytosol of cells by a noncanonical inflammasome pathway, resulting in the activation of the cysteine protease caspase-11. Intriguingly, activation of this pathway requires the production of interferons (IFNs) and the induction of a class of IFN-induced GTPases called guanylate-binding proteins (GBPs), which have previously been linked to cell-autonomous killing of intracellular microbes. In this study, we review the recent advances in our understanding of cytosolic LPS sensing and the function of mammalian GBPs.

  15. CXCL10/IP-10 Neutralization Can Ameliorate Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Rats

    PubMed Central

    Lang, Shan; Li, Libing; Wang, Xuning; Sun, Junping; Xue, Xinying; Xiao, Yongjiu; Zhang, Mingyue; Ao, Ting; Wang, Jianxin

    2017-01-01

    The role of C-X-C motif chemokine 10 (CXCL10), a pro-inflammatory factor, in the development of acute respiratory distress syndrome (ARDS) remains unclear. In this study, we explored the role of CXCL10 and the effect of CXCL10 neutralization in lipopolysaccharide (LPS)-induced ARDS in rats. The expression of CXCL10 and its receptor chemokine receptor 3(CXCR3) increased after LPS induction. Moreover, neutralization of CXCL10 ameliorated the severity of ARDS by reducing pulmonary edema, inhibiting the release of inflammatory mediators (IFN-γ, IL-6 and ICAM-1) and limiting inflammatory cells (neutrophils, macrophages, CD8+ T cells) influx into the lung, with a reduction in CXCR3 expression in neutrophils and macrophages. Therefore, CXCL10 could be a potential therapeutic target in LPS-induced ARDS. PMID:28046003

  16. The intracerebroventricular injection of rimonabant inhibits systemic lipopolysaccharide-induced lung inflammation.

    PubMed

    Johnson, Arnold; Neumann, Paul H; Peng, Jianya; James, Janey; Russo, Vincenzo; MacDonald, Hunter; Gertzberg, Nancy; Feleder, Carlos

    2015-09-15

    We investigated the role of intracerebroventricular (ICV) injection of rimonabant (500ng), a CB1 antagonist, on lipopolysaccharide ((LPS) 5mg/kg)-induced pulmonary inflammation in rats in an isolated perfused lung model. There were decreases in pulmonary capillary pressure (Ppc) and increases in the ((Wet-Dry)/Dry lung weight)/(Ppc) ratio in the ICV-vehicle/LPS group at 4h. There were decreases in TLR4 pathway markers, such as interleukin receptor-associated kinase-1, IκBα, Raf1 and phospho-SFK (Tyr416) at 30min and at 4h increases in IL-6, vascular cell adhesion molecule-1 and myeloperoxidase in lung homogenate. Intracerebroventricular rimonabant attenuated these LPS-induced responses, indicating that ICV rimonabant modulates LPS-initiated pulmonary inflammation.

  17. Follistatin-like protein 1 suppressed pro-inflammatory cytokines expression during neuroinflammation induced by lipopolysaccharide.

    PubMed

    Cheng, Kai-Yuan; Liu, Yi; Han, Ying-Guang; Li, Jing-Kun; Jia, Jia-Lin; Chen, Bin; Yao, Zhi-Xiao; Nie, Lin; Cheng, Lei

    2017-04-01

    Follistain-like protein 1 (FSTL1), has been recently demonstrated to be involved in the embryo development of nervous system and glioblastoma. However, the role of FSTL1 in neuroinflammation remains unexplored. In this study, the expression of FSTL1 in astrocytes was verified and its role was studied in neuroinflammation induced by in vivo intracerebroventricular (ICV) injection of lipopolysaccharide (LPS) or LPS treatment to astrocytes in vitro. FSTL1 was significantly induced after ICV LPS injection or LPS treatment. FSTL1 suppressed upregulation of pro-inflammatory cytokines in astrocytes after LPS treatment. Moreover, FSTL1 downregulated expression of pro-inflammatory cytokines through suppressing MAPK/p-ERK1/2 pathway in astrocytes. Our results suggest that FSTL1 may play an anti-inflammatory role in neuroinflammation mediated by astrocytes.

  18. Tamoxifen Attenuates Lipopolysaccharide/Galactosamine-induced Acute Liver Failure by Antagonizing Hepatic Inflammation and Apoptosis.

    PubMed

    Zhang, Peng; Zhang, Meisheng; Wan, Mengqi; Huang, Xiaoliu; Jiang, Yan; Xu, Siying; Luo, Mansheng

    2017-04-01

    Bacterial lipopolysaccharide (LPS)-induced acute liver failure (ALF) is a common severe clinical syndrome in intensive care unit. No other methods are available for its prevention apart from supportive treatment and liver transplantation. Tamoxifen (TAM) was reported to attenuate ALF induced by excessive acetaminophen, while its effect on LPS-induced ALF remained unknown. For this, in the present study, we comprehensively assessed whether TAM can attenuate ALF induced by LPS/galactosamine (GaIN). Mice were given TAM once a day for three times. Twelve hours after the last treatment, mice were given LPS/GaIN (intraperitoneally [i.p.]). Survival, plasma transaminases, and histopathology were examined. Serum TNF-α and IL-1β were analyzed by ELISA. Hepatic apoptosis was analyzed by TUNEL and caspase-3 Western blotting, respectively. Compared to the model group, ALF induced by LPS/GaIN was alleviated remarkably following TAM administration, as evidenced by the improvement of survival (87.5% vs. 37.5%), hepatic swell, moderate transaminases, slightly increased serum TNF-α, IL-1β (P < 0.05), and moderate histopathology. In respect of apoptosis, severe hepatocellular apoptosis was reduced notably by TAM treatment confirmed by less TUNEL-positive hepatocytes and decreased caspase-3 cleavage. The results demonstrated that TAM could attenuate LPS/GaIN-induced ALF effectively, probably due to hepatic inflammation and apoptosis antagonism. Furthermore, it was the first report about the effect of TAM on LPS/GaIN-induced ALF.

  19. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy.

    PubMed

    Zheng, H; Xiao, W H; Bennett, G J

    2012-12-01

    Many of the most effective anti-cancer drugs induce a dose-limiting peripheral neuropathy that compromises therapy. Evidence from animal models of chemotherapy-induced painful peripheral neuropathy produced by the taxane agent, paclitaxel, and the platinum-complex agent, oxaliplatin, indicate that they produce neuropathy via a common mechanism-a toxic effect on the mitochondria in primary afferent sensory neurons. Bortezomib is from the proteasome-inhibitor class of chemotherapeutics. It also produces a dose-limiting peripheral neuropathy, but its effects on neuronal mitochondria are unknown. To investigate this, we developed a model of bortezomib-induced painful peripheral neuropathy in the rat and assessed mitochondrial function (respiration and ATP production) in sciatic nerve samples harvested at two time points: day 7, which is three days after treatment and before pain appears, and day 35, which is one month post-treatment and the time of peak pain severity. We found significant deficits in Complex I-mediated and Complex II-mediated respiration, and in ATP production at both time points. Prophylactic treatment with acetyl-L-carnitine, which has previously been shown to prevent paclitaxel- and oxaliplatin-induced mitochondrial dysfunction and pain, completely blocked bortezomib's effects on mitochondria and pain. These results suggest that mitotoxicity may be the core pathology for all chemotherapy-induced peripheral neuropathy and that drugs that protect mitochondrial function may be useful chemotherapy adjuncts.

  20. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  1. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Xia, Mi-Zhen; Wang, Hua; Zhao, Hui; Xu, De-Xiang; Yu, De-Xin

    2015-08-01

    Increasing evidence demonstrates that reactive oxygen species plays important roles in sepsis-induced acute kidney injury. This study investigated the effects of VitD3 pretreatment on renal oxidative stress in sepsis-induced acute kidney injury. Mice were intraperitoneally injected with lipopolysaccharide (LPS, 2.0mg/kg) to establish an animal model of sepsis-induced acute kidney injury. In VitD3+LPS group, mice were orally pretreated with three doses of VitD3 (25 μg/kg) at 1, 24 and 48 h before LPS injection. As expected, oral pretreatment with three daily recommended doses of VitD3 markedly elevated serum 25(OH)D concentration and efficiently activated renal VDR signaling. Interestingly, LPS-induced renal GSH depletion and lipid peroxidation were markedly alleviated in VitD3-pretreated mice. LPS-induced serum and renal nitric oxide (NO) production was obviously suppressed by VitD3 pretreatment. In addition, LPS-induced renal protein nitration, as determined by 3-nitrotyrosine residue, was obviously attenuated by VitD3 pretreatment. Further analysis showed that LPS-induced up-regulation of renal inducible nitric oxide synthase (inos) was repressed in VitD3-pretreated mice. LPS-induced up-regulation of renal p47phox and gp91phox, two NADPH oxidase subunits, were normalized by VitD3 pretreatment. In addition, LPS-induced down-regulation of renal superoxide dismutase (sod) 1 and sod2, two antioxidant enzyme genes, was reversed in VitD3-pretreated mice. Finally, LPS-induced tubular epithelial cell apoptosis, as determined by TUNEL, was alleviated by VitD3 pretreatment. Taken together, these results suggest that VitD3 pretreatment alleviates LPS-induced renal oxidative stress through regulating oxidant and antioxidant enzyme genes.

  2. 6-Hydroxydopamine and lipopolysaccharides induced DNA damage in astrocytes: involvement of nitric oxide and mitochondria.

    PubMed

    Gupta, Sonam; Goswami, Poonam; Biswas, Joyshree; Joshi, Neeraj; Sharma, Sharad; Nath, C; Singh, Sarika

    2015-01-15

    The present study was conducted to investigate the effect of the neurotoxins 6-hydroxydopamine and lipopolysaccharide on astrocytes. Rat astrocyte C6 cells were treated with different concentration of 6-hydroxydopamine (6-OHDA)/lipopolysaccharides (LPS) for 24 h. Both neurotoxins significantly decreased the viability of astrocytes, augmented the expression of inducible nitric oxide synthase (iNOS) and the astrocyte marker--glial fibrillar acidic protein. A significantly decreased mitochondrial dehydrogenase activity, mitochondrial membrane potential, augmented reactive oxygen species (ROS) level, caspase-3 mRNA level, chromatin condensation and DNA damage was observed in 6-OHDA/LPS treated astroglial cells. 6-OHDA/LPS treatment also caused the significantly increased expression of iNOS and nitrite level. Findings showed that 6-OHDA/LPS treatment caused mitochondrial dysfunction mediated death of astrocytes, which significantly involve the nitric oxide. Since we have observed significantly increased level of iNOS along with mitochondrial impairment and apoptotic cell death in astrocytes, therefore to validate the role of iNOS, the cells were co-treated with iNOS inhibitor aminoguanidine (AG, 100 μM). Co-treatment of AG significantly attenuated the 6-OHDA/LPS induced cell death, mitochondrial activity, augmented ROS level, chromatin condensation and DNA damage. GFAP and caspase-3 expression were also inhibited with co-treatment of AG, although the extent of inhibition was different in both experimental sets. In conclusion, the findings showed that iNOS mediated increased level of nitric oxide acts as a key regulatory molecule in 6-OHDA/LPS induced mitochondrial dysfunction, DNA damage and apoptotic death of astrocytes.

  3. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    SciTech Connect

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi . E-mail: yokochi@aichi-med-u.ac.jp

    2007-08-24

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-{alpha} antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-{kappa}B ligand (RANKL). TNF-{alpha} might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-{kappa}B and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.

  4. Ameliorative Effect of Ginsenoside Rg1 on Lipopolysaccharide-Induced Cognitive Impairment: Role of Cholinergic System.

    PubMed

    Jin, Yang; Peng, Jian; Wang, Xiaona; Zhang, Dong; Wang, Tianyin

    2017-01-11

    Bacterial endotoxin lipopolysaccharide (LPS) can induce systemic inflammation, and therefore disrupt learning and memory processes. Ginsenoside Rg1, a major bioactive component of ginseng, is shown to greatly improve cognitive function. The present study was designed to further investigate whether administration of ginsenoside Rg1 can ameliorate LPS-induced cognitive impairment in the Y-maze and Morris water maze (MWM) task, and to explore the underlying mechanisms. Results showed that exposure to LPS (500 μg/kg) significantly impaired working and spatial memory and that repeated treatment with ginsenoside Rg1 (200 mg/kg/day, for 30 days) could effectively alleviate the LPS-induced cognitive decline as indicated by increased working and spatial memory in the Y-maze and MWM tests. Furthermore, ginsenoside Rg1 treatment prevented LPS-induced decrease of acetylcholine (ACh) levels and increase of acetylcholinesterase (AChE) activity. Ginsenoside Rg1 treatment also reverted the decrease of alpha7 nicotinic acetylcholine receptor (α7 nAChR) protein expression in the prefrontal cortex (PFC) and hippocampus of LPS-treated rats. These findings suggest that ginsenoside Rg1 has protective effect against LPS-induced cognitive deficit and that prevention of LPS-induced changes in cholinergic system is crucial to this ameliorating effect.

  5. Vitexin alleviates lipopolysaccharide-induced islet cell injury by inhibiting HMGB1 release

    PubMed Central

    Wang, Feifei; Yin, Jiajing; Ma, Yujin; Jiang, Hongwei; Li, Yanbo

    2017-01-01

    Diabetes mellitus (DM) is a chronic metabolic disease, where the predominant pathogenesis is pancreatic β-cells dysfunction or injury. It has been well established that inflammation leads to a gradual exhaustion of pancreatic β-cell function with decreased β-cell mass likely resulting from pancreatic β-cells apoptosis or death. Vitexin, a major bioactive flavonoid compound in plants has numerous pharmacological properties, including antioxidant, anti-inflammatory and antimyeloperoxidase. Whether vitexin can protect pancreatic β-cells against lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and apoptosis has received little attention. The present study investigated the potential effects of vitexin on LPS-induced pancreatic β-cell injury and apoptosis. It was revealed that apoptosis and damage induced by LPS in islet tissue of rats and INS-1 cells was significantly decreased in response to vitexin treatment. In addition, pretreatment with vitexin decreased the levels of the pro-inflammatory cytokines tumor necrosis factor-α and high mobility group box 1 (HMGB1) in LPS-induced rats. Further experiments demonstrated that vitexin pretreatment suppressed the activation of P38 mitogen-activated protein kinase signaling pathways in LPS-induced INS-1 cells. In conclusion, the results indicated that vitexin prevented LPS-induced islet tissue damage in rats, and INS-1 cells injury and apoptosis by inhibiting HMGB1 release. Therefore, the present study provided clear evidence indicating that vitexin may be a viable therapeutic strategy for the treatment of DM. PMID:28098903

  6. Involvement of Prokineticin 2 and Prokineticin Receptor 1 in Lipopolysaccharide-Induced Testitis in Rats.

    PubMed

    Chen, Biao; Yu, Lili; Wang, Jiaojiao; Li, Cuiling; Zhao, Kai; Zhang, Huiping

    2016-04-01

    Prokineticin 2, a newly discovered proinflammatory peptide, has been amply evidenced to be involved in the occurrence and progress of local and systematical inflammation. Although the presence of Prokineticn 2 in mammal testis has been documented clearly, research targeting the involvement of prokineticin 2 in testicular pathology, especially testitis, is rather scarce. Employing a lipopolysaccharide-induced testitis rat model, we for the first time demonstrated the expression and upregulation of prokineticin 2 in orchitis at several levels. Our effort also addressed the differential expression patterns of prokineticin 2 and interleukin-1β, a key inflammation indicator, during testitis suggesting Prokineticn 2 serves more than a proinflammatory factor in the context of testitis. Given one of the cognate receptors of prokineticin 2, prokineticin receptor 1 (PKR1) was also significantly upregulated in orchitis as discussed in the current study, it is very likely that PK2/PKR1 signaling contribute to the development of inflammation-related testicular diseases.

  7. Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement.

    PubMed

    Bullón, Pedro; Román-Malo, Lourdes; Marín-Aguilar, Fabiola; Alvarez-Suarez, José Miguel; Giampieri, Francesca; Battino, Maurizio; Cordero, Mario D

    2015-01-01

    Oxidative stress is implicated in several infectious diseases. In this regard, lipopolysaccharide (LPS), an endotoxic component, induces mitochondrial dysfunction and oxidative stress in several pathological events such as periodontal disease or sepsis. In our experiments, LPS-treated fibroblasts provoked increased oxidative stress, mitochondrial dysfunction, reduced oxygen consumption and mitochondrial biogenesis. After comparing coenzyme Q10 (CoQ10) and N-acetylcysteine (NAC), we observed a more significant protection of CoQ10 than of NAC, which was comparable with other lipophilic and hydrophilic antioxidants such as vitamin E or BHA respectively. CoQ10 improved mitochondrial biogenesis by activating PGC-1α and TFAM. This lipophilic antioxidant protection was observed in mice after LPS injection. These results show that mitochondria-targeted lipophilic antioxidants could be a possible specific therapeutic strategy in pharmacology in the treatment of infectious diseases and their complications.

  8. Hepatoprotective effect of myristicin from nutmeg (Myristica fragrans) on lipopolysaccharide/d-galactosamine-induced liver injury.

    PubMed

    Morita, Tatsuya; Jinno, Keiko; Kawagishi, Hirokazu; Arimoto, Yasushi; Suganuma, Hiroyuki; Inakuma, Takahiro; Sugiyama, Kimio

    2003-03-12

    To evaluate the hepatoprotective activity of spices, 21 different spices were fed to rats with liver damage caused by lipopolysaccharide (LPS) plus d-galactosamine (D-GalN). As assessed by plasma aminotranferase activities, nutmeg showed the most potent hepatoprotective activity. Bioassay-guided isolation of the active compound from nutmeg was carried out in mice by a single oral administration of the respective fractions. Myristicin, one of the major essential oils of nutmeg, was found to possess extraordinarily potent hepatoprotective activity. Myristicin markedly suppressed LPS/D-GalN-induced enhancement of serum TNF-alpha concentrations and hepatic DNA fragmentation in mice. These findings suggest that the hepatoprotective activity of myristicin might be, at least in part, due to the inhibition of TNF-alpha release from macrophages. However, further studies are needed to elucidate the hepatoprotective mechanism(s) of myristicin.

  9. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    SciTech Connect

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  10. Protective effect of sodium cromoglycate on lipopolysaccharide-induced bronchial obstruction in asthmatics.

    PubMed

    Michel, O; Ginanni, R; Sergysels, R

    1995-11-01

    Lipopolysaccharides (LPS, the major part of endotoxins) are bacterial proinflammatory substances which can induce in asthmatic patients after inhalation a bronchial obstruction with an increase in both histamine bronchial hyperresponsiveness and blood inflammatory markers. The aim of the present study was to evaluate whether an acute inhalation of sodium cromoglycate, an anti-inflammatory and membrane-stabilizating agent, can block the LPS-induced lung function response. Using a double-blind placebo-controlled crossover method, 7 asthmatic subjects were submitted, at 4 days' interval, to a bronchial challenge test with either solvent solution or LPS (20 micrograms) preceded by inhalation of sodium cromoglycate (10 mg) or placebo. Compared to the solvent reaction, LPS induced a significant bronchial obstruction [measured by both the forced expiratory volume in 1 s (FEV1) and the airway resistances] beginning at the 60th minute and lasting more than 300 min (p < 0.01, 2-way ANOVA). On the other hand, acute pretreatment with sodium cromoglycate significantly inhibited the LPS-induced bronchial obstruction. The total lung capacity did not change significantly after LPS inhalation. Thus, this study showed that in asthmatics the LPS-induced FEV1 response is blocked by acute treatment with sodium cromoglycate. Sodium cromoglycate could be an active treatment in asthmatics exposed to house dust containing endotoxin.

  11. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2017-02-01

    Melatonin, a naturally occurring neurohormone in the pineal gland, has been shown to exert antioxidant and anti-inflammatory effects. This study examined the effects of melatonin on manganese (Mn) and/or lipopolysaccharide (LPS)-induced microglial activation. Melatonin (10 μM) inhibited Mn (100 μM) and/or LPS (0.5 μg/ml)-induced phagocytotic activity of activated BV2 microglia. It also inhibited the lipid peroxidation and intracellular reduced glutathione (GSH) depletion induced by Mn and/or LPS. Melatonin effectively suppressed the upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in Mn and/or LPS-stimulated BV2 microglia. In addition, melatonin pretreatment attenuated Mn and/or LPS-induced degradation of IκB-α, nuclear translocation of nuclear factor-κB (NF-κB) and its activation, and the expressions of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in BV2 microglial cells. These results suggest that melatonin can effectively modulate phagocytosis and expression of proinflammatory mediators, and can prevent neuroinflammatory disorders accompanied by microglial activation.

  12. RAGE/NF-κB signaling mediates lipopolysaccharide induced acute lung injury in neonate rat model.

    PubMed

    Li, Yuhong; Wu, Rong; Tian, Yian; Yu, Min; Tang, Yun; Cheng, Huaipin; Tian, Zhaofang

    2015-01-01

    Lipopolysaccharide (LPS) is known to induce acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Accumulating data suggest the crucial role of RAGE in the pathogenesis of ALI/ARDS. However, the mechanism by which RAGE mediates inflammatory lung injury in the neonates remains elusive. In this study we established LPS-induced ALI model in neonate rats, and investigated the role of RAGE/NF-κB signaling in mediating ALI. We found that RAGE antibody or bortezomib reduced LPS-induced histopathological abnormalities in the lung and lung damage score. RAGE antibody or bortezomib also reduced TNF-α level in both serum and BALF of the rats. Furthermore, RAGE antibody or bortezomib significantly reduced LPS-induced upregulation of RAGE and NF-κB expression in the lung. In conclusion, we established ALI model in neonate rats to demonstrate that LPS induced inflammatory lung injury via RAGE/NF-κB signaling. Interference with RAGE/NF-κB signaling is a potential approach to prevent and treat sepsis-related ALI/ARDS.

  13. Mangiferin regulates cognitive deficits and heme oxygenase-1 induced by lipopolysaccharide in mice.

    PubMed

    Fu, Yanyan; Liu, Hongzhi; Song, Chengjie; Zhang, Fang; Liu, Yi; Wu, Jian; Wen, Xiangru; Liang, Chen; Ma, Kai; Li, Lei; Zhang, Xunbao; Shao, Xiaoping; Sun, Yafeng; Du, Yang; Song, Yuanjian

    2015-12-01

    Accumulating evidence reveals that lipopolysaccharide (LPS) can induce neuroinflammation, ultimately leading to cognitive deficits. Mangiferin, a natural glucoxilxanthone, is known to possess various biological activities. The present study aimed to investigate the effects of mangiferin on LPS-induced cognitive deficits and explore the underlying mechanisms. Brain injury was induced in mice via intraperitoneal LPS injection (1mg/kg) for five consecutive days. Mangiferin was orally pretreatmented (50mg/kg) for seven days and then treatmented (50mg/kg) for five days after LPS injection. The Morris water maze was used to detect changes in cognitive function. Immunohistochemical and immunoblotting were respectively performed to measure the expression of interleukin-6 (IL-6) and heme oxygenase-1 (HO-1) in the hippocampus. The results showed that mangiferin can ameliorate cognitive deficits. Moreover, mangiferin decreased LPS-induced IL-6 production and increase HO-1 in the hippocampus. Taken together, these results suggest that mangiferin attenuates LPS-induced cognitive deficits, which may be potentially linked to modulating HO-1 in the hippocampus.

  14. Mucoactive effects of naringin in lipopolysaccharide-induced acute lung injury mice and beagle dogs.

    PubMed

    Chen, Yan; Wu, Hao; Nie, Yi-chu; Li, Pei-bo; Shen, Jian-gang; Su, Wei-wei

    2014-07-01

    Our previous study has demonstrated that naringin attenuates EGF-induced MUC5AC hypersecretion in A549 cells by suppressing the cooperative activities of MAPKs/AP-1 and IKKs/IκB/NF-κB signaling pathways. However, the volume of airway mucus is determined by two factors including the number of mucous cells and capacity of mucus secretion. The aim of the present study is to explore the mucoactive effects of naringin in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and beagle dogs. The results demonstrated that naringin of 12.4 mg/kg treatment significantly decreased LPS-induced enhancement of sputum volume and pulmonary inflammation, remarkably increased the subglottic sputum volume and solids content in sputum of lower trachea, while partially, but not fully, significantly increased the elasticity and viscosity of sputum in lower trachea of beagle dogs. Moreover, the MUC5AC content in BALF and goblet-cells in large airways of LPS-induced ALI mice were significantly attenuated by dexamethasone (5 mg/kg), ambroxol (25 mg/kg), and naringin (15, 60 mg/kg). However, the goblet-cells hyperplasia in small airways induced by LPS was only significantly inhibited by dexamethasone and naringin (60 mg/kg). In conclusion, naringin exhibits mucoactive effects through multiple targets which including reduction of goblet cells hyperplasia and mucus hypersecretion, as well as promotion of sputum excretion.

  15. Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice.

    PubMed

    Cao, Rongfeng; Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Zhang, Naisheng

    2014-10-01

    Kaempferol isolated from the root of Zingiberaceae plants galangal and other Chinese herbal medicines have been reported to have anti-inflammatory properties. However, the anti-inflammatory effects of kaempferol on lipopolysaccharide (LPS)-induced mastitis are unknown and their underlying molecular mechanisms remain to be explored. The aim of this study was to evaluate the effects of kaempferol on LPS-induced mouse mastitis. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Kaempferol was injected 1 h before and 12 h after induction of LPS intraperitoneally. The present results showed that kaempferol markedly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner, which were increased in LPS-induced mouse mastitis. Furthermore, kaempferol suppressed the phosphorylation of nuclear factor-κB (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All results suggest that anti-inflammatory effects of kaempferol against the LPS-induced mastitis possibly through inhibition of the NF-κB signaling pathway. Kaempferol may be a potential therapeutic agent for mastitis.

  16. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis

    PubMed Central

    Liu, Liang; Zhang, Qin; Cai, Yulong; Sun, Dayu; He, Xie; Wang, Lian; Yu, Dan; Li, Xin; Xiong, Xiaoyi; Xu, Haiwei; Yang, Qingwu; Fan, Xiaotang

    2016-01-01

    Radial glial-like cells (RGLs) in the adult dentate gyrus (DG) function as progenitor cells for adult hippocampal neurogenesis, a process involved in the stress-related pathophysiology and treatment efficiency of depression. Resveratrol (RSV) has been demonstrated to be a potent activator of neurogenesis. The present study investigated whether chronic RSV treatment has antidepressant potential in relation to hippocampal neurogenesis. Mice received two weeks of RSV (20 mg/kg) or dimethylsulfoxide (DMSO) treatment, followed by lipopolysaccharide (LPS; 1 mg/kg) or saline injections for 5 days. We found that RSV treatment abrogated the increased immobility in the forced swimming test and tail suspension test induced by LPS. Immunohistochemical staining revealed that RSV treatment reversed the increase in microglial activation and the inhibition in DG neurogenesis. RSV treatment also attenuated LPS-induced defects in the expanding of RGLs through promoting symmetric division. In addition, RSV ameliorated LPS-induced NF-κB activation in the hippocampus coincides with the up-regulation levels of Sirt1 and Hes1. Taken together, these data indicated that RSV-induced Sirt1 activation counteracts LPS-induced depression-like behaviors via a neurogenic mechanism. A new model to understand the role of RSV in treating depression may result from these findings. PMID:27517628

  17. Paclitaxel inhibits the hyper-activation of spleen cells by lipopolysaccharide and induces cell death

    PubMed Central

    Kim, Hyun-Ji

    2016-01-01

    Paclitaxel was isolated from the bark of the Pacific yew, Taxus brevifolia, and used as an anticancer agent. Paclitaxel prevents cancer cell division by inhibiting spindle fiber function, inducing cell death. A recent study demonstrated that paclitaxel binds to myeloid differentiation protein-2 of Toll-like receptor 4 and prevents the signal transduction of lipopolysaccharide (LPS). Paclitaxel converts immune cells hypo-responsive to LPS. In this study, we investigated whether paclitaxel can inhibit the phenotype and function of immune cells. To accomplish this, we used spleen cells, a major type of immune cell, LPS, a representative inflammatory agent and a mitogen for B lymphocytes. LPS profoundly increased the activation and cytokine production of spleen cells. However, paclitaxel significantly inhibited LPS-induced hyper-activation of spleen cells. Furthermore, we found that paclitaxel induced cell death of LPS-treated spleen cells. These results suggest that paclitaxel can inhibit the hyper-immune response of LPS in spleen cells via a variety of mechanisms. These findings suggest that paclitaxel can be used as a modulating agent for diseases induced by hyper-activation of B lymphocytes. Taken together, these results demonstrate that paclitaxel inhibits the function of spleen cells activated by LPS, and further induces cell death. PMID:27030196

  18. Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-κB signaling pathway.

    PubMed

    Ershun, Zhou; Yunhe, Fu; Zhengkai, Wei; Yongguo, Cao; Naisheng, Zhang; Zhengtao, Yang

    2014-04-01

    Cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of CEP on a mouse model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms remain to be elucidated. The purpose of the present study was to investigate the effects of CEP on LPS-induced mouse mastitis. The mouse model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. CEP was administered intraperitoneally at 1 h before and 12 h after induction of LPS. The results show that CEP significantly attenuates the infiltration of neutrophils, suppresses myeloperoxidase activity, and reduces the levels of TNF-α, IL-1β, and IL-6 in LPS-induced mouse mastitis. Furthermore, CEP inhibited the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that CEP exerts potent anti-inflammatory effects on LPS-induced mouse mastitis. Accordingly, CEP might be a potential therapeutic agent for mastitis.

  19. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2.

  20. Cross-linked bromelain inhibits lipopolysaccharide-induced cytokine production involving cellular signaling suppression in rats.

    PubMed

    Hou, Rolis Chien-Wei; Chen, Yuh-Shuen; Huang, Jing-Rong; Jeng, Kee-Ching G

    2006-03-22

    Bromelain has been reported to have anti-inflammatory and immunomodulatory effects. It has been cross-linked with organic acids and polysaccharides by gamma irradiation. The cross-linked (CL)-bromelain preparation resisted an acidic environment of pH 3 for 2 h and preserved 80% of its enzyme activity. Pretreatment of rats with CL-bromelain intragastrically for 7 days significantly reduced serum cytokine production induced by injected i.p. with 2.5 mg/kg of lipopolysaccharide (LPS). Bromelain significantly reduced serum glutamate-oxalacetate transaminase induced by LPS. The anti-inflammatory effect of CL-bromelain was correlated with reduced LPS-induced NF-kappaB activity and cyclooxygenase 2 (COX-2) mRNA expression in rat livers. In addition, CL-bromelain dose-dependently inhibited LPS-induced COX-2 mRNA and prostaglandin E2 (PGE2) in BV-2 microglial cells. CL-Bromelain also suppressed the LPS-activated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). In conclusion, the anti-inflammatory effects of the CL-bromelain preparation in vivo and in vitro suggest its therapeutic potentials.

  1. Sesamin inhibits lipopolysaccharide-induced inflammation and extracellular matrix catabolism in rat intervertebral disc.

    PubMed

    Li, Kang; Li, Yan; Xu, Bo; Mao, Lu; Zhao, Jie

    2016-09-01

    Intervertebral disc (IVD) degeneration contributes to most spinal degenerative diseases, while treatment inhibiting IVD degeneration is still in the experimental stage. Sesamin, a bioactive component extracted from sesame, has been reported to exert chondroprotective and anti-inflammatory effects. Here, we analyzed the anti-inflammatory and anti-catabolic effects of sesamin on rat IVD in vitro and ex vivo. Results show that sesamin significantly inhibits the lipopolysaccharide (LPS)-induced expression of catabolic enzymes (MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5) and inflammation factors (IL-1β, TNF-α, iNOS, NO, COX-2, PGE2) in a dose-dependent manner in vitro. It is also proven that migration of macrophages induced by LPS can be inhibited by treatment with sesamin. Organ culture experiments demonstrate that sesamin protects the IVD from LPS-induced depletion of the extracellular matrix ex vivo. Moreover, sesamin suppresses LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway through inhibiting phosphorylation of JNK, the common downstream signaling pathway of LPS and IL-1β, which may be the potential mechanism of the effects of sesamin. In light of our results, sesamin protects the IVD from inflammation and extracellular matrix catabolism, presenting positive prospects in the treatment of IVD degenerative diseases.

  2. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts.

    PubMed

    Zdarilová, A; Svobodová, A; Simánek, V; Ulrichová, J

    2009-04-01

    Periodontitis is a chronic disease associated with inflammation of the tooth-supporting tissues. The inflammation is initiated by a group of gram-negative anaerobic bacteria. These express a number of irritating factors including a lipopolysaccharide (LPS), which plays a key role in periodontal disease development. Plant extracts with anti-inflammatory and anti-microbial properties have been shown to inhibit bacterial plaque formation and thus prevent chronic gingivitis. In this study we tested effects of Prunella vulgaris L. extract (PVE; 5, 10, 25microg/ml) and its component rosmarinic acid (RA; 1microg/ml) on LPS-induced oxidative damage and inflammation in human gingival fibroblasts. PVE and RA reduced reactive oxygen species (ROS) production, intracellular glutathione (GSH) depletion as well as lipid peroxidation in LPS-treated cells. Treatment with PVE and RA also inhibited LPS-induced up-regulation of interleukin 1beta (IL-1beta), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and suppressed expression of inducible nitric oxide synthase (iNOS). The results indicate that PVE and RA are able to suppress LPS-induced biological changes in gingival fibroblasts. The effects of PVE and RA are presumably linked to their anti-inflammatory activities and thus use of PVE and RA may be relevant in modulating the inflammation process, including periodontal disease.

  3. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    PubMed

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.

  4. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium

    PubMed Central

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-01-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4+ T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. PMID:21631497

  5. The effects of fisetin on lipopolysaccharide-induced depressive-like behavior in mice.

    PubMed

    Yu, Xuefeng; Jiang, Xi; Zhang, Xiangming; Chen, Ziwei; Xu, Lexing; Chen, Lei; Wang, Guokang; Pan, Jianchun

    2016-10-01

    Major depressive disorder (MDD) involves a series of pathological changes including the inflammation and increased cytokine levels. Fisetin, a natural flavonoid, has anti-inflammatory and antioxidant, and also has been shown in our previous studies to exert anti-depressant-like properties. The present study aimed to investigate the effect of fisetin on lipopolysaccharide (LPS)-induced depressive-like behavior and inflammation in mice. The results suggested that the immobility time in the forced swimming test (FST) and tail suspension test (TST) were increased at 6 h, 12 h and 24 h after LPS injection (0.83 mg/kg). However, only the group of 24 h treatment did not show any effect on locomotion counts. Pretreatment with fisetin at doses of 20, 40 and 80 mg/kg (p.o.) for 7 days reversed LPS-induced alterations of the immobility time in both of these two tests. Further neurochemical assays suggested that pretreatment with fisetin reversed LPS-induced overexpression of pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) in the hippocampus and the prefrontal cortex (PFC). Moreover, higher dose of fisetin effectively antagonized iNOS mRNA expression and nitrite levels via the modulation of NF-κB in the hippocampus and PFC. Taken together, fisetin may be an effective therapeutic agent for LPS-induced depressive-like behaviors, which is due to its anti-inflammatory property.

  6. Inhibition of TLR4 protects rat islets against lipopolysaccharide-induced dysfunction.

    PubMed

    Wang, Xiao; Ge, Qin Min; Bian, Fan; Dong, Yan; Huang, Chun Mei

    2017-02-01

    Oxidative stress leads to dysfunction in pancreatic cells, causing a reduction in insulin secretion following exposure to glucose. Toll-like receptor 4 (TLR4) may be activated by exposure to lipopolysaccharide (LPS) stress. TLR4 may mediate the initiation of inflammatory and immune defense responses; however, the importance of the LPS/TLR4 interaction in apoptosis induced by oxidative stress in pancreatic β cells remains to be elucidated. The present study aimed to investigate the importance of TLR4 during LPS‑induced oxidative stress, apoptosis and dysfunction of insulin secretion in isolated islets of rats. LPS‑induced stimulation of TLR4 increased the production of reactive oxygen species and promoted apoptosis by upregulating the expression levels of caspase‑3, poly ADP ribose polymerase and altering the expression ratio of B‑cell lymphoma‑2 (Bcl‑2)/Bcl‑2 associated X protein. Additionally, the insulin secretion of islets cells was reduced. Anti‑TLR4 antibody and a knockdown of TLR4 by TLR4‑short hairpin RNA were used to inhibit TLR4 activity, which may reverse LPS‑induced events. The present study determined that in islets exposed to LPS oxidative stress, dysfunction may be partly mediated via the TLR4 pathway. Inhibition of TLR4 may prevent dysfunction of rat islets due to oxidative stress. The present study revealed that targeting the LPS/TLR4 signaling pathway and antioxidant therapy may be a novel treatment for the severely septic patients with hyperglycemia stress.

  7. Dexmedetomidine attenuates acute lung injury induced by lipopolysaccharide in mouse through inhibition of MAPK pathway.

    PubMed

    Xu, Yingzhen; Zhang, Ruyi; Li, Chunli; Yin, Xue; Lv, Changjun; Wang, Yaoqi; Zhao, Wenxiang; Zhang, Xiuli

    2015-10-01

    Dexmedetomidine (Dex) is widely used for sedation in intensive care units and can be used as an adjunct to anesthetics. Previous studies have demonstrated that Dex has anti-inflammatory property. In this study, we aim to explore the potential therapeutic effects and mechanisms of Dex on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. To induce ALI, mice were intraperitoneally injected with LPS, while Dex was treated 1 h before LPS injection. The inflammation of lung tissues was evaluated by HE stain, and bronchoalveolar lavage fluid (BALF) was obtained after 6 h to measure protein concentrations. We also used an enzyme-linked immunosorbent assay to detect the secretion levels of proinflammatory cytokines in the serum. Western blotting method was adopted to observe changes in mitogen-activated protein kinases and downstream nuclear transcription factors. The results showed that pretreatment with Dex considerably reduced neutrophil infiltration and pulmonary edema, and significantly reduced protein concentrations in the BALF, as well as suppressed LPS-induced elevation of proinflammatory cytokines (TNF-α and IL-1β) in the serum. In addition, we observed that the molecular mechanism of Dex-mediated anti-inflammation is associated with decreasing phosphorylation of MKK4, MMK3/6, ERK1/2, p38MAPK, and JNK, and diminishing activation of Elk-1, c-Jun, and ATF-2. Dex could attenuate ALI induced by LPS in mice, and this effect may be mediated through the inhibition of MAPK pathway.

  8. Effect of azithromycin on Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages.

    PubMed

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-15

    Interleukin-6 (IL-6) is a key proinflammatory cytokine which plays a central role in the pathogenesis of periodontal disease. Host modulatory agents targeting at inhibiting IL-6, therefore, appear to be beneficial in slowing the progression of periodontal disease and potentially reducing destructive aspects of the host response. The present study was designed to investigate the effect of the macrolide antibiotic azithromycin on IL-6 generation in murine macrophages treated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. Azithromycin significantly suppressed IL-6 production as well as its mRNA expression in P. intermedia LPS-activated RAW264.7 cells. LPS-induced activation of JNK and p38 was not affected by azithromycin treatment. Azithromycin failed to prevent P. intermedia LPS from degrading IκB-α. Instead, azithromycin significantly diminished nuclear translocation and DNA binding activity of NF-κB p50 subunit induced with LPS. Azithromycin inhibited P. intermedia LPS-induced STAT1 and STAT3 phosphorylation. In addition, azithromycin up-regulated the mRNA level of SOCS1 in cells treated with LPS. In conclusion, azithromycin significantly attenuated P. intermedia LPS-induced production of IL-6 in murine macrophages via inhibition of NF-κB, STAT1 and STAT3 activation, which is possibly related to the activation of SOCS1 signaling. Further in vivo studies are required to better evaluate the potential of azithromycin in the treatment of periodontal disease.

  9. Analysis of cellular senescence induced by lipopolysaccharide in pulmonary alveolar epithelial cells.

    PubMed

    Kim, Chang Oh; Huh, Ae Jung; Han, Sang Hoon; Kim, June Myung

    2012-01-01

    In this work, it was examined the possibility of lipopolysaccharide (LPS) causing cellular senescence in lung alveolar epithelial cells. Then, it was clarified how this cellular senescence phenomenon is associated with oxidative stress effect induced by LPS and whether antioxidants could inhibit reduced cellular viability by oxidant stress effect of LPS. In cell viability using cell counting kit-8, exposure to LPS decreased cellular viability and induced growth arrest in a concentration-dependent manner. The pre-apoptotic concentration of LPS was determined by caspase activation using a Caspase-Glo 3/7 luminescence assay kit. This concentration of LPS caused morphologic characteristics shown in senescent cells and elevated senescence-associated β-galactosidase activity. In addition, lysosomal content associated with senescence was increased by LPS at the pre-apoptotic concentration. However, this concentration of LPS did not shorten the telomere length. Exposure to LPS resulted in the formation of hydrogen peroxide in a concentration-dependent manner. The ability of LPS to reduce cellular viability was inhibited by the presence of glutathione. This study revealed that LPS could induce cellular senescence in lung alveloar epithelial cells, and these phenomena were closely associated with hydrogen peroxide production by LPS. Taken together, it is suggested that LPS-induced cellular senescence may play an important role in limiting the tissue repair response after sepsis.

  10. Antioxidant properties of lutein contribute to the protection against lipopolysaccharide-induced uveitis in mice

    PubMed Central

    2011-01-01

    Background Lutein is an important eye-protective nutrient. This study investigates the protective effects and mechanisms of lutein on lipopolysaccharides (LPS)-induced uveitis in mice. Methods Lutein, suspended in drinking water at a final concentration of 12.5 and 25 mg/mL, was administered to mice at 0.1 mL/10 g body weight for five consecutive days. Control and model group received drinking water only. Uveitis was induced by injecting LPS (100 mg per mouse) into the footpad in the model and lutein groups on day 5 after the last drug administration. Eyes of the mice were collected 24 hours after the LPS injection for the detection of indicators using commercial kits and reverse transcription-polymerase chain reaction. Results LPS-induced uveitis was confirmed by significant pathological damage and increased the nitric oxide level in eye tissue of BALB/C mice 24 hours after the footpad injection. The elevated nitric oxide level was significantly reduced by oral administration of lutein (125 and 500 mg/kg/d for five days) before LPS injection. Moreover, lutein decreased the malondialdehyde content, increased the oxygen radical absorbance capacity level, glutathione, the vitamin C contents and total superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Lutein further increased expressions of copper-zinc SOD, manganese SOD and GPx mRNA. Conclusion The antioxidant properties of lutein contribute to the protection against LPS-induced uveitis, partially through the intervention of inflammation process. PMID:22040935

  11. Dietary selenium deficiency exacerbates lipopolysaccharide-induced inflammatory response in mouse mastitis models.

    PubMed

    Wei, Zhengkai; Yao, Minjun; Li, Yimeng; He, Xuexiu; Yang, Zhengtao

    2014-12-01

    Selenium (Se) is an essential micronutrient that plays a critical role in anti-inflammatory processes and antioxidant defense system. In this study, we investigated the effects of dietary selenium deficiency on lipopolysaccharide (LPS)-induced mastitis in mouse models. Se content in the liver was assessed by fluorescent atomic absorption spectrometry. Glutathione peroxidase (GPx) activity in the blood, myeloperoxidase (MPO) activity, tumor necrosis actor alpha (TNF-α), and interleukin (IL)-1β in the supernatant of the mammary tissue were determined according to the corresponding kits. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were evaluated by Western blotting. The results showed that the Se-deficient mouse model was successfully replicated, and selenium deficiency exacerbated mammary gland histopathology, increased the expressions of TNF-α and IL-1β, and facilitated the activation of iNOS and COX-2 in LPS-induced mouse mastitis. In conclusion, our studies demonstrated that selenium deficiency resulted in more severe inflammatory response in LPS-induced mouse mastitis.

  12. Estradiol-mediated increases in the anorexia induced by intraperitoneal injection of bacterial lipopolysaccharide in female rats.

    PubMed

    Geary, Nori; Asarian, Lori; Sheahan, James; Langhans, Wolfgang

    2004-09-15

    Lipopolysaccharide (LPS) derived from the cell walls of gram-negative bacteria causes a robust acute phase response (APR) that includes fever, anorexia, and many other elements. Because immune system function, including some models of illness anorexia, is sexually differentiated, we investigated the sexual differentiation of the anorexia induced by intraperitoneal LPS injections in rats. Cycling female Long-Evans rats tested either during diestrus or estrus ate less following 6.25 microg/kg LPS than did intact males. Following 12.5 microg/kg LPS, females in estrus ate less than either females during diestrus or males. Similarly, a more pronounced anorexia occurred following 12.5, 25, and 50 microg/kg LPS in ovariectomized females that received cyclic estradiol treatment and were tested on the day modeling estrus than in untreated ovariectomized rats. LPS also increased the length of the rats' ovarian cycles, usually by a day, especially when injected during diestrus. As in male rats, when LPS injections were repeated in the same rats, both estradiol-treated and untreated rats failed to display any significant anorexia. The inhibitory effects of LPS on eating in intact and ovariectomized rats were expressed solely as decreases in spontaneous meal frequency, without significant alteration of spontaneous meal size. These data indicate that anorexia following peripheral LPS administration is sexually differentiated and that estradiol is sufficient to produce this response. The mechanism of the pathophysiological effect of estradiol on meal frequency appears to be different from the physiological effect of estradiol on food intake because the latter is expressed solely as a change in meal size.

  13. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  14. Cystathionine γ-Lyase Deficiency Protects Mice from Galactosamine/Lipopolysaccharide-Induced Acute Liver Failure

    PubMed Central

    Shirozu, Kazuhiro; Tokuda, Kentaro; Marutani, Eizo; Lefer, David; Wang, Rui

    2014-01-01

    Abstract Aims: Acute liver failure (ALF) is a fatal syndrome attributed to massive hepatocyte death. Hydrogen sulfide (H2S) has been reported to exert cytoprotective or cytotoxic effects. Here, we examined the role of cystathionine γ-lyase (CSE, an enzyme produces H2S) in ALF induced by D-Galactosamine (GalN) and lipopolysaccharide (LPS). Results: Wild-type (WT) mice exhibited high mortality rate, prominent liver injury, and increased plasma alanine aminotransferase levels after GalN/LPS challenge. Congenital deficiency or chemical inhibition of CSE by DL-propargylglycine attenuated GalN/LPS-induced liver injury. CSE deficiency markedly improved survival rate and attenuated GalN/LPS-induced upregulation of inflammatory cytokines and activation of caspase 3 and poly (ADP-ribose) polymerase (PARP) in the liver. CSE deficiency protected primary hepatocytes from GalN/tumor necrosis factor-α (TNF-α)-induced cell death without affecting LPS-induced TNF-α production from primary peritoneal macrophages. Beneficial effects of CSE deficiency were associated with markedly elevated homocysteine and thiosulfate levels, upregulation of NF-E2 p45-related factor 2 (Nrf2) and antioxidant proteins, activation of Akt-dependent anti-apoptotic signaling, and inhibition of GalN/LPS-induced JNK phosphorylation in the liver. Finally, administration of sodium thiosulfate (STS) attenuated GalN/LPS-induced liver injury via activation of Akt- and Nrf2-dependent signaling and inhibition of GalN/LPS-induced JNK phosphorylation in WT mice. Innovation: These results suggest that inhibition of CSE or administration of STS prevents acute inflammatory liver failure by augmenting thiosulfate levels and upregulating antioxidant and anti-apoptotic defense in the liver. Conclusion: Congenital deficiency or chemical inhibition of CSE increases thiosulfate levels in the liver and prevents ALF at least in part by augmentation of antioxidant and anti-apoptotic mechanisms. Antioxid. Redox Signal. 20, 204

  15. Copper sulfate pentahydrate reduced epithelial cytotoxicity induced by lipopolysaccharide from enterogenic bacteria.

    PubMed

    Feyzi, Adel; Delkhosh, Aref; Nasrabadi, Hamid Tayefi; Cheraghi, Omid; Khakpour, Mansour; Barekati-Mowahed, Mazyar; Soltani, Sina; Mohammadi, Seyede Momeneh; Kazemi, Masoumeh; Hassanpour, Mehdi; Rezabakhsh, Aysa; Maleki-Dizaji, Nasrin; Rahbarghazi, Reza; Namdarian, Reza

    2017-02-26

    The over usage of multiple antibiotics contributes to the emergence of a whole range of antibiotic-resistant strains of bacteria causing enterogenic infections in poultry science. Therefore, finding an appropriate alternative natural substance carrying an antibacterial capacity would be immensely beneficial. It has been previously discovered that the different types of cupric salts, especially copper sulfate pentahydrate (CuSO4·5H2O), to carry a potent bactericidal capacity. We investigated the neutralizing effect of CuSO4·5H2O (6.25μg/ml) on the reactive oxygen species generation, and expression of MyD88, an essential adaptor protein of Toll-like receptor, and NF-κB in three intestinal epithelial cell lines exposed to 50ng/ml lipopolysaccharide. In order to find the optimal cupric sulfate concentration without enteritis-inducing toxicity, broiler chickens were initially fed with water containing 0.4, 0.5, and 1mg/l during a period of 4days. After determination of appropriate dosage, two broiler chickens and turkey flocks with enteritis were fed with cupric compound for 4days. We found that cupric sulfate can lessen the cytotoxic effect of lipopolysaccharide by reducing the reactive oxygen species content (p<0.05). Additionally, the expression of MyD88 and NF-κB was remarkably down-regulated in the presence of lipopolysaccharide and cupric sulfate. The copper sulfate in doses lower than 0.4mg/ml expressed no cytotoxic effect on the liver, kidney, and the intestinal tract while a concentration of 0.5 and 1mg/ml contributed to a moderate to severe tissue injuries. Pearson Chi-Square analysis revealed the copper cation significantly diminished the rate of mortality during 4-day feeding of broiler chicken and turkey with enteritis (p=0.000). Thus, the results briefed above all confirm the potent anti-bactericidal feature of cupric sulfate during the course of enteritis.

  16. The Role of IL-17 in a Lipopolysaccharide-Induced Rhinitis Model

    PubMed Central

    Bae, Jun-Sang; Kim, Ji-Hye; Kim, Eun Hee

    2017-01-01

    Purpose Lipopolysaccharide (LPS) is a cell wall component of Gram-negative bacteria and important for pro-inflammatory mediators. This study aimed to establish a rhinitis model using ovalbumin (OVA) and LPS in order to evaluate the role of interleukin (IL)-17 in the pathogenesis of an LPS-induced non-eosionophilic rhinitis model. Methods Mice were divided into 4 groups and each group consisted of 10 mice (negative control group, allergic rhinitis model group, 1-µg LPS treatment group, and 10-µg LPS treatment group). BALB/c mice were sensitized with OVA and 1 or 10 µg of LPS, and challenged intranasally with OVA. Multiple parameters of rhinitis were also evaluated to establish the LPS-induced rhinitis model. IL-17 knockout mice were used to check if the LPS-induced rhinitis model were dependent on IL-17. Eosinophil and neutrophil infiltration, and mRNA and protein expression profiles of cytokine in nasal mucosa or spleen cell culture were evaluated using molecular, biochemical, histopathological, and immunohistological methods. Results In the LPS-induced rhinitis model, neutrophil infiltration increased in the nasal mucosa, and systemic and nasal IL-17 and interferon-gamma (IFN-γ) levels also increased as compared with the OVA-induced allergic rhinitis model. These findings were LPS-dose-dependent. In IL-17 knockout mice, those phenotypes (neutrophil infiltration, IL-17, and IFN-γ) were reversed, showing IL-17 dependency of LPS-induced rhinitis. The expression of vascular endothelial growth factor (VEGF), an important mediator for inflammation and angiogenesis, decreased in IL-17 knockout mice, showing the relationship between IL-17 and VEGF. Conclusions This study established an LPS-induced rhinitis model dependent on IL-17, characterized by neutrophil infiltration and increased expression of IL-17. PMID:28102062

  17. Neutrophil extracellular traps induce IL-1β production by macrophages in combination with lipopolysaccharide

    PubMed Central

    Hu, Zhongshuang; Murakami, Taisuke; Tamura, Hiroshi; Reich, Johannes; Kuwahara-Arai, Kyoko; Iba, Toshiaki; Tabe, Yoko; Nagaoka, Isao

    2017-01-01

    Upon exposure to invading microorganisms, neutrophils undergo NETosis, a recently identified type of programmed cell death, and release neutrophil extracellular traps (NETs). NETs are described as an antimicrobial mechanism, based on the fact that NETs can trap microorganisms and exhibit bactericidal activity through the action of NET-associated components. In contrast, the components of NETs have been recognized as damage-associated molecular pattern molecules (DAMPs), which trigger inflammatory signals to induce cell death, inflammation and organ failure. In the present study, to clarify the effect of NETs on cytokine production by macrophages, mouse macrophage-like J774 cells were treated with NETs in combination with lipopolysaccharide (LPS) as a constituent of pathogen-associated molecular patterns. The results revealed that NETs significantly induced the production of interleukin (IL)-1β by J774 cells in the presence of LPS. Notably, the NET/LPS-induced IL-1β production was inhibited by both caspase-1 and caspase-8 inhibitors. Furthermore, nucleases and serine protease inhibitors but not anti-histone antibodies significantly inhibited the NET/LPS-induced IL-1β production. Moreover, we confirmed that caspase-1 and caspase-8 were activated by NETs/LPS, and the combination of LPS, DNA and neutrophil elastase induced IL-1β production in reconstitution experiments. These observations indicate that NETs induce the production of IL-1β by J774 macrophages in combination with LPS via the caspase-1 and caspase-8 pathways, and NET-associated DNA and serine proteases are involved in NET/LPS-induced IL-1β production as essential components. PMID:28204821

  18. A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells

    PubMed Central

    Gabriele, Morena; Del Prato, Stefano; Pucci, Laura

    2017-01-01

    Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS) orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs), bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG), on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER) stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation. PMID:28386305

  19. Reactive oxygen species contribute to lipopolysaccharide-induced teratogenesis in mice.

    PubMed

    Zhao, Lei; Chen, Yuan-Hua; Wang, Hua; Ji, Yan-Li; Ning, Huan; Wang, Su-Fang; Zhang, Cheng; Lu, Jin-Wei; Duan, Zi-Hao; Xu, De-Xiang

    2008-05-01

    Lipopolysaccharide (LPS) has been associated with adverse developmental outcome, including embryonic resorption, fetal death and growth retardation, and preterm delivery. In the present study, we showed that an ip injection with LPS daily from gestational day (gd) 8 to gd 12 resulted in the incidence of external malformations. The highest incidence of malformed fetuses was observed in fetuses from dams exposed to 20 microg/kg LPS, in which 34.9% of fetuses per litter were externally malformed. In addition, 17.4% of fetuses per litter in 30 microg/kg group and 12.5% of fetuses per litter in 10 microg/kg group were externally malformed. Importantly, external malformations were also observed in fetuses from dams exposed to only two doses of LPS (20 microg/kg, ip) on gd 8, in which 76.5% (13/17) of litters and 39.1% of fetuses per litter were affected. LPS-induced teratogenicity seemed to be associated with oxidative stress in fetal environment, measured by lipid peroxidation, nitrotyrosine residues, and glutathione (GSH) depletion in maternal liver, embryo, and placenta. alpha-Phenyl-N-t-butylnitrone (PBN, 100 mg/kg, ip), a free radical spin-trapping agent, abolished LPS-induced lipid peroxidation, nitrotyrosine residues, and GSH depletion. Consistent with its antioxidant effects, PBN decreased the incidence of external malformations. Taken together, these results suggest that reactive oxygen species might be, at least partially, involved in LPS-induced teratogenesis.

  20. Lipopolysaccharide-Induced Spatial Memory and Synaptic Plasticity Impairment Is Preventable by Captopril

    PubMed Central

    Abareshi, Azam; Anaeigoudari, Akbar; Norouzi, Fatemeh; Shafei, Mohammad Naser; Khazaei, Majid

    2016-01-01

    Introduction. Renin-angiotensin system has a role in inflammation and also is involved in many brain functions such as learning, memory, and emotion. Neuroimmune factors have been proposed as the contributors to the pathogenesis of memory impairments. In the present study, the effect of captopril on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide (LPS) was investigated. Methods. The rats were divided and treated into control (saline), LPS (1 mg/kg), LPS-captopril (LPS-Capto; 50 mg/kg captopril before LPS), and captopril groups (50 mg/kg) before saline. Morris water maze was done. Long-term potentiation (LTP) from CA1 area of hippocampus was assessed by 100 Hz stimulation in the ipsilateral Schaffer collateral pathway. Results. In the LPS group, the spent time and traveled path to reach the platform were longer than those in the control, while, in the LPS-Capto group, they were shorter than those in the LPS group. Moreover, the slope and amplitude of field excitatory postsynaptic potential (fEPSP) decreased in the LPS group, as compared to the control group, whereas, in the LPS-Capto group, they increased compared to the LPS group. Conclusion. The results of the present study showed that captopril improved the LPS-induced memory and LTP impairments induced by LPS in rats. Further investigations are required in order to better understand the exact responsible mechanism(s). PMID:27830176

  1. Establishment of hydrochloric acid/lipopolysaccharide-induced pelvic inflammatory disease model.

    PubMed

    Oh, Yeonsu; Lee, Jaehun; Kim, Hyeon-Cheol; Hahn, Tae-Wook; Yoon, Byung-Il; Han, Jeong-Hee; Kwon, Yong-Soo; Park, Joung Jun; Koo, Deog-Bon; Rhee, Ki-Jong; Jung, Bae Dong

    2016-09-30

    Pelvic inflammatory disease (PID), which is one of the most problematic complications experienced by women with sexually transmitted diseases, frequently causes secondary infections after reproductive abnormalities in veterinary animals. Although the uterus is self-protective, it becomes fragile during periods or pregnancy. To investigate PID, bacteria or lipopolysaccharide (LPS) extracted from gram negative bacteria has been used to induce the disease in several animal models. However, when LPS is applied to the peritoneum, it often causes systemic sepsis leading to death and the PID was not consistently demonstrated. Hydrochloric acid (HCl) has been used to induce inflammation in the lungs and stomach but not tested for reproductive organs. In this study, we developed a PID model in mice by HCl and LPS sequential intracervical (i.c.) administration. The proinflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α, were detected in the mouse uterus by western blot analysis and cytokine enzyme-linked immunosorbent assay after HCl (25 mg/kg) administration i.c. followed by four LPS (50 mg/kg) treatments. Moreover, mice exhibited increased infiltration of neutrophils in the endometrium and epithelial layer. These results suggest that ic co-administration of HCl and LPS induces PID in mice. This new model may provide a consistent and reproducible PID model for future research.

  2. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    PubMed Central

    Tsao, Jeng-Ting; Lee, Lin-Wen; Lin, Che-Tong

    2015-01-01

    One of the causes of dental pulpitis is lipopolysaccharide- (LPS-) induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs), and dental pulp stem cells (DPSCs) will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF) can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability. PMID:25884030

  3. Suppression of lipopolysaccharide and galactosamine-induced hepatic inflammation by red grape pomace.

    PubMed

    Nishiumi, Shin; Mukai, Rie; Ichiyanagi, Takashi; Ashida, Hitoshi

    2012-09-12

    Grape pomace is generated in the production process of wine and grape juices and is an industrial waste. This study investigated whether an intake of grape pomace was able to suppress chronic inflammation induced by lipopolysaccharide (LPS) and galactosamine (GalN) in vivo. When Sprague-Dawley rats were orally given methanolic extracts from red and white grape pomace, the extracts inhibited the LPS/GalN-evoked activation of nuclear factor-κB (NF-κB) dose-dependently, and red grape pomace exerted a stronger effect than white grape one. Next, rats were fed an AIN93 M-based diet containing 5% red grape pomace for 7 days, followed by the intraperitoneal injection of LPS and GalN. The intake of the red grape pomace-supplemented diet was found to suppress the LPS/GalN-induced activation of NF-κB and expression of inducible nitric oxide synthase and cyclooxygenase-2 proteins. These results suggest that red grape pomace may contain an abundance of effective compound(s) for anti-inflammatory action.

  4. Mycoplasma membrane lipoproteins induced proinflammatory cytokines by a mechanism distinct from that of lipopolysaccharide.

    PubMed Central

    Rawadi, G; Roman-Roman, S

    1996-01-01

    To gain a clear understanding of the mechanisms by which mycoplasmas induced the expression of proinflammatory cytokines in monocytic cells, we have studied the induction of interleukin-1 beta (IL-1 beta), tumor necrosis factor alpha, and IL-6 by mycoplasmas in three distinct human myelomonocytic cell lines in comparison with induction by lipopolysaccharide (LPS). HL-60 cell line did not release cytokines when induced with either LPS or mycoplasmas. In contrast to LPS, mycoplasmas failed to increase the weak levels of tumor necrosis factor alpha secreted by phorbol myristate acetate-differentiated U937 cells. In addition, Northern (RNA) blot analysis of cytokine expression in these cells showed that the induction of IL-1 beta by mycoplasmas involves, unlike that by LPS, posttranscriptional events. Interestingly, in THP-1 cells, cytokine induction pathways triggered by mycoplasmas remained operational under conditions where LPS pathways were abolished, suggesting functional independence. The study of cytokine-inducing activity displayed by distinct fractions derived from a series of different mycoplasma species demonstrated that lipid membrane constituents were largely responsible for these effects. Finally, we have demonstrated that tyrosine phosphorylation is a crucial event in the mycoplasma-mediated induction of proinflammatory cytokines in either THP-1 cells or human monocytes. PMID:8550219

  5. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    SciTech Connect

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  6. Establishment of hydrochloric acid/lipopolysaccharide-induced pelvic inflammatory disease model

    PubMed Central

    Oh, Yeonsu; Lee, Jaehun; Kim, Hyeon-Cheol; Hahn, Tae-Wook; Yoon, Byung-Il; Han, Jeong-Hee; Kwon, Yong-Soo; Park, Joung Jun; Koo, Deog-Bon; Rhee, Ki-Jong

    2016-01-01

    Pelvic inflammatory disease (PID), which is one of the most problematic complications experienced by women with sexually transmitted diseases, frequently causes secondary infections after reproductive abnormalities in veterinary animals. Although the uterus is self-protective, it becomes fragile during periods or pregnancy. To investigate PID, bacteria or lipopolysaccharide (LPS) extracted from gram negative bacteria has been used to induce the disease in several animal models. However, when LPS is applied to the peritoneum, it often causes systemic sepsis leading to death and the PID was not consistently demonstrated. Hydrochloric acid (HCl) has been used to induce inflammation in the lungs and stomach but not tested for reproductive organs. In this study, we developed a PID model in mice by HCl and LPS sequential intracervical (i.c.) administration. The proinflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α, were detected in the mouse uterus by western blot analysis and cytokine enzyme-linked immunosorbent assay after HCl (25 mg/kg) administration i.c. followed by four LPS (50 mg/kg) treatments. Moreover, mice exhibited increased infiltration of neutrophils in the endometrium and epithelial layer. These results suggest that ic co-administration of HCl and LPS induces PID in mice. This new model may provide a consistent and reproducible PID model for future research. PMID:26726020

  7. Interleukin-13 Inhibits Lipopolysaccharide-Induced BPIFA1 Expression in Nasal Epithelial Cells

    PubMed Central

    Chen, Hui-Chen; Hsu, Hui-Ying; Wu, Lii-Tzu; Chiang-Ni, Chuan; Chen, Chih-Jung; Wu, Tsu-Fang; Kao, Min-Chuan; Chen, Yu-An; Peng, Ming-Te; Tsai, Ming-Hsui; Chen, Chuan-Mu; Lai, Chih-Ho

    2015-01-01

    Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is expressed in human nasopharyngeal and respiratory epithelium and has demonstrated antimicrobial activity. SPLUNC1 is now referred to as bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1). Reduced BPIFA1 expression is associated with bacterial colonization in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Interleukin 13 (IL-13), predominately secreted by T helper 2 (TH2) cells, has been found to contribute to airway allergies and suppress BPIFA1 expression in nasal epithelial cells. However, the molecular mechanism of IL-13 perturbation of bacterial infection and BPIFA1 expression in host airways remains unclear. In this study, we found that lipopolysaccharide (LPS)-induced BPIFA1 expression in nasal epithelial cells was mediated through the JNK/c-Jun signaling pathway and AP-1 activation. We further demonstrated that IL-13 downregulated the LPS-induced activation of phosphorylated JNK and c-Jun, followed by attenuation of BPIFA1 expression. Moreover, the immunohistochemical analysis showed that IL-13 prominently suppressed BPIFA1 expression in eosinophilic CRSwNP patients with bacterial infection. Taken together, these results suggest that IL-13 plays a critical role in attenuation of bacteria-induced BPIFA1 expression that may result in eosinophilic CRSwNP. PMID:26646664

  8. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-12-22

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury.

  9. Hypothalamic neuronal histamine modulates febrile response but not anorexia induced by lipopolysaccharide.

    PubMed

    Chiba, Seiichi; Itateyama, Emi; Oka, Kyoko; Masaki, Takayuki; Sakata, Toshiie; Yoshimatsu, Hironobu

    2005-05-01

    This study examined the contribution of hypothalamic neuronal histamine (HA) to the anorectic and febrile responses induced by lipopolysaccharide (LPS), an exogenous pyrogen, and the endogenous pyrogens interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Intraperitoneal (ip) injection of LPS, IL-1beta, or TNF-alpha suppressed 24-hr cumulative food intake and increased rectal temperature in rats. To analyze the histaminergic contribution, rats were pretreated with intracerebroventricular (icv) injection of 2.44 mmol/kg or ip injection of 244 mmol/kg of alpha-fluoromethylhistidine (FMH), a suicide inhibitor of histidine decarboxylase (HDC), to deplete neural HA. The depletion of neural HA augmented the febrile response to ip injection of LPS and IL-1beta and alleviated the anorectic response to ip injection of IL-1beta. However, the depletion of neural HA did not modify the LPS-induced anorectic response or TNF-alpha-induced febrile and anorectic responses. Consistent with these results, the rate of hypothalamic HA turnover, assessed by the accumulation of tele-methylhistamine (t-MH), was elevated with ip injections of LPS and IL-1beta, but unaffected by TNF-alpha at equivalent doses. This suggests that (i) LPS and IL-1beta activate hypothalamic neural HA turnover; (ii) hypothalamic neural HA suppresses the LPS- and IL-1beta-induced febrile responses and accelerates the IL-1beta-induced anorectic response; and (iii) TNF-alpha modulates the febrile and anorectic responses via a neural HA-independent pathway. Therefore, hypothalamic neural HA is involved in the IL-1beta-dominant pathway, rather than the TNF-alpha-dominant pathway, preceding the systemic inflammatory response induced by exogenous pyrogens, such as LPS. Further research on this is needed.

  10. Hypoxic preconditioning attenuates lipopolysaccharide-induced oxidative stress in rat kidneys

    PubMed Central

    Yang, Chih-Ching; Ma, Ming-Chieh; Chien, Chiang-Ting; Wu, Ming-Shiou; Sun, Wan-Kuan; Chen, Chau-Fong

    2007-01-01

    Chronic hypoxic (CH) preconditioning reduces superoxide-induced renal dysfunction via the upregulation of superoxide dismutase (SOD) activity and contents. Endotoxaemia reduces renal antioxidant status. We hypothesize that CH preconditioning might protect the kidney from subsequent endotoxaemia-induced oxidative injury. Endotoxaemia was induced by intraperitoneal injection of lipopolysaccharide (LPS; 4 mg kg−1) in rats kept at sea level (SL) and rats with CH in an altitude chamber (5500 m for 15 h day−1) for 4 weeks. LPS enhanced xanthine oxidase (XO) and gp91phox (catalytic subunit of NADPH oxidase) expression associated with burst amount of superoxide production from the SL kidney surface and renal venous blood detected by lucigenin-enhanced chemiluminescence. LPS induced a morphologic-independent renal dysfunction in baseline and acute saline loading stages and increased renal IL-1β protein and urinary protein concentration in the SL rats. After 4 weeks of induction, CH significantly increased Cu/ZnSOD, MnSOD and catalase expression (16 ± 17, 128 ± 35 and 48 ± 21, respectively) in renal cortex, and depressed renal cortex XO (44 ± 16%) and renal cortex (20 ± 9%) and medulla (28 ± 11%) gp91phox when compared with SL rats. The combined effect of enhanced antioxidant proteins and depressed oxidative proteins significantly reduced LPS-enhanced superoxide production, renal XO and gp91phox expression, renal IL-1β production, and urinary protein level. CH also ameliorated LPS-induced renal dysfunction in the baseline and acute saline loading periods. We conclude that CH treatment enhances the intrarenal antioxidant/oxidative protein ratio to overcome endotoxaemia-induced reactive oxygen species formation and inflammatory cytokine release. PMID:17317755

  11. [Chemotherapy-induced peripheral neuropathy: characteristics, diagnosis and treatment].

    PubMed

    Istenes, Ildikó; Nagy, Zsolt; Demeter, Judit

    2016-06-06

    Longer remissions and better overall survival rates can be achieved with the introduction of new, effective treatments and targeted therapies in the past 1-2 decades, however, the incidence of side effects is also increasing parallelly. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially debilitating side effect due to peripheral somatic or autonomic nerve dysfunction. CIPN becomes increasingly important, as it affects patients' quality of life, and it is very often a dose limiting factor with the potential for reduced treatment efficacy. The pathomechanism, diagnosis, prevention and treatment possibilities are described in this review with special attention to the different groups of drugs.

  12. [Chemotherapy-induced peripheral neuropathy and neuropathic pain].

    PubMed

    Schuler, U; Heller, S

    2017-03-14

    The perception of the media is that chemotherapy is mainly associated with nausea, vomiting and hair loss. In the longer term the development of peripheral neuropathy, i.e. chemotherapy-induced peripheral neuropathy (CIPN) is often more important for patients. The CIPN represents a side effect of many antineoplastic substances with severe functional impairment and its prevention and treatment is an important task. In addition to many interventions, which have been shown to be ineffective, physiotherapeutic measures and possibly the prophylactic application of cold are helpful for prevention. Randomized studies on the treatment of painful CIPN provided positive data for duloxetine and to a lesser extent for venlafaxine.

  13. Trans-10, cis-12 conjugated linoleic acid and the PPAR-γ agonist rosiglitazone attenuate lipopolysaccharide-induced TNF-α production by bovine immune cells.

    PubMed

    Perdomo, M C; Santos, J E; Badinga, L

    2011-10-01

    Lipopolysaccharide (LPS) modulates innate immunity through alteration of cytokine production by immune cells. The objective of this study was to examine the effect of exogenous conjugated linoleic acid (CLA) and PPAR-γ agonist, rosiglitazone, on LPS-induced tumor necrosis factor α (TNF-α) production by cultured whole blood from prepubertal Holstein heifers (mean age, 5.5 mo). Compared with unstimulated cells, addition of LPS (10 μg/mL) to the culture medium increased (P<0.03) peripheral blood mononuclear cell proliferation≤2.5-fold. Coincubation with interferon γ (5 ng/mL) further stimulated (P<0.01) the lymphoproliferative response to LPS. Lipopolysaccharide increased (P<0.01) TNF-α concentration in cultured whole blood in a dose- and time-dependent manner. The greatest TNF-α stimulation occurred after 12 h of exposure to 1 μg/mL LPS. Coincubation with trans-10, cis-12 CLA isomer (100 μM) or rosiglitazone (10 μM), a PPAR-γ agonist, decreased (P<0.01) LPS-induced TNF-α production by 13% and 29%, respectively. Linoleic acid and cis-9, trans-11 CLA isomer had no detectable effects on LPS-induced TNF-α production in cultured bovine blood. The PPAR-γ agonist-induced TNF-α attenuation was reversed when blood was treated with both rosiglitazone and GW9662, a selective PPAR-γ antagonist. Addition of rosiglitazone to the culture medium tended to reduce nuclear factor-κ Bp65 concentration in nuclear and cytosolic extracts isolated from cultured peripheral blood mononuclear cells. Results show that LPS is a potent inducer of TNF-α production in bovine blood cells and that trans-10, cis-12 CLA and PPAR-γ agonists may attenuate the pro-inflammatory response induced by LPS in growing dairy heifers. Additional studies are needed to fully characterize the involvement of nuclear factor-κ B in LPS signaling in bovine blood cells.

  14. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures

    PubMed Central

    Zhu, Yan; Chen, Xiao; Liu, Zhan; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-01-01

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson’s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation. PMID:26729090

  15. Interleukin-1β induces in vivo tolerance to lipopolysaccharide in mice

    PubMed Central

    ALVES-ROSA, F; VULCANO, M; BEIGIER-BOMPADRE, M; FERNÁNDEZ, G; PALERMO, M; ISTURIZ, M A

    2002-01-01

    Endotoxin or lipopolysaccharide (LPS) tolerance may be partially due to the secretion of potent anti-inflammatory cytokines following severe Gram-negative infections, or by low doses of LPS. In this work, we describe the effects of interleukin-1β (IL-1β) and tumour necrosis factor alpha (TNF-α), two early cytokines secreted after LPS exposure, in the induction of LPS tolerance. Our results demonstrate that mice treated with three daily doses of 100 ng of IL-1β were tolerant to LPS-induced shock. However, TNF-α was unable to induce an LPS refractory state. Given the fact that 100 ng of IL-1β increase the plasma levels of glucocorticoids, we evaluated whether a daily injection of dexamethasone (DEX) alone was able to reproduce the LPS-like tolerant state. However, no signs of LPS refractoriness were detected, except when DEX was administered concomitantly with a dose of IL-1β that does not induce corticosterone secretion (12 ng/mouse). This dose was found to induce in vitro up-regulation of the glucocorticoid receptors (GcR) of peritoneal macrophages following 24 h of treatment. In addition, we demonstrate that IL-1β is capable of inducing the down-regulation of Toll-like receptor 4 (TLR4), a crucial molecule in the signal transduction of LPS. Taken together, our results indicate that IL-1β can generate tolerance to LPS in vivo, and suggest that the regulation of mechanisms of the down-regulation of TLR4, as well as those involved in the expression of GcR and/or in the secretion of glucocorticoids, would be crucial for these effects. PMID:12041508

  16. Lipopolysaccharide-induced multinuclear cells: Increased internalization of polystyrene beads and possible signals for cell fusion

    SciTech Connect

    Nakanishi-Matsui, Mayumi Yano, Shio; Futai, Masamitsu

    2013-11-01

    Highlights: •LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. •Large beads are internalized by cells actively fusing to become multinuclear. •The multinuclear cell formation is inhibited by anti-inflammatory cytokine, IL10. •Signal transduction for cell fusion is different from that for inflammation. -- Abstract: A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence of large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.

  17. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice.

    PubMed

    Karmaus, Peer W F; Wagner, James G; Harkema, Jack R; Kaminski, Norbert E; Kaplan, Barbara L F

    2013-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL)-5 and -23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function.

  18. Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Tsurumaki, Hiroaki; Mogi, Chihiro; Aoki-Saito, Haruka; Tobo, Masayuki; Kamide, Yosuke; Yatomi, Masakiyo; Sato, Koichi; Dobashi, Kunio; Ishizuka, Tamotsu; Hisada, Takeshi; Yamada, Masanobu; Okajima, Fumikazu

    2015-01-01

    Acute lung injury is characterized by the infiltration of neutrophils into lungs and the subsequent impairment of lung function. Here we explored the role of TDAG8 in lung injury induced by lipopolysaccharide (LPS) administrated intratracheally. In this model, cytokines and chemokines released from resident macrophages are shown to cause neutrophilic inflammation in the lungs. We found that LPS treatment increased TDAG8 expression in the lungs and confirmed its expression in resident macrophages in bronchoalveolar lavage (BAL) fluids. LPS administration remarkably increased neutrophil accumulation without appreciable change in the resident macrophages, which was associated with increased penetration of blood proteins into BAL fluids, interstitial accumulation of inflammatory cells, and damage of the alveolar architecture. The LPS-induced neutrophil accumulation and the associated lung damage were enhanced in TDAG8-deficient mice as compared with those in wild-type mice. LPS also increased several mRNA and protein expressions of inflammatory cytokines and chemokines in the lungs or BAL fluids. Among these inflammatory mediators, mRNA and protein expression of KC (also known as CXCL1), a chemokine of neutrophils, were significantly enhanced by TDAG8 deficiency. We conclude that TDAG8 is a negative regulator for lung neutrophilic inflammation and injury, in part, through the inhibition of chemokine production. PMID:26690120

  19. Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice

    PubMed Central

    Xin, Shao-bin; Yan, Hao; Ma, Jing; Sun, Qiang; Shen, Li

    2016-01-01

    Background Sepsis can cause serious acute kidney injury in bacterium-infected patients, especially in intensive care patients. Luteolin, a bioactive flavonoid, has renal protection and anti-inflammatory effects. This study aimed to investigate the effect and underlying mechanism of luteolin in attenuating lipopolysaccharide (LPS)-induced renal injury. Material/Methods ICR mice were treated with LPS (25 mg/kg) with or without luteolin pre-treatment (40 mg/kg for three days). The renal function, histological changes, degree of oxidative stress, and tubular apoptosis in these mice were examined. The effects of luteolin on LPS-induced expression of renal tumor necrosis factor-α (TNF-α), NF-κB, MCP-1, ICAM-1, and cleaved caspase-3 were evaluated. Results LPS resulted in rapid renal damage of mice, increased level of blood urea nitrogen (BUN), and serum creatinine (Scr), tubular necrosis, and increased oxidative stress, whereas luteolin pre-treatment could attenuate this renal damage and improve the renal functions significantly. Treatment with LPS increased TNF-α, NF-κB, IL-1β, cleaved caspase-3, MCP-1, and ICAM-1 expression, while these disturbed expressions were reversed by luteolin pre-treatment. Conclusions These results indicate that luteolin ameliorates LPS-mediated nephrotoxicity via improving renal oxidant status, decreasing NF-κB activation and inflammatory and apoptosis factors, and then disturbing the expression of apoptosis-related proteins. PMID:28029146

  20. Role of circulating Fibroblast Growth Factor-2 in lipopolysaccharide-induced acute kidney injury in mice

    PubMed Central

    Mattison, Parnell C.; Soler-García, Ángel A.; Das, Jharna R.; Jerebtsova, Marina; Perazzo, Sofia; Tang, Pingtao; Ray, Patricio E.

    2011-01-01

    Background Fibroblast Growth Factor (FGF-2) is an angiogenic growth factor involved in renal growth and regeneration. Previous studies in rodents showed that single intrarenal injections of FGF-2 improved the outcome of acute kidney injury (AKI). Septic children usually show elevated plasma levels of FGF-2, and are at risk of developing AKI. However, the role of circulating FGF-2 in the pathogenesis of AKI is not well understood. Methods Here, we developed a mouse model to determine how FGF-2 released into the circulation modulates the outcome of AKI induced by lipopolysaccharide (LPS). Young FVB/N mice were infected with adenoviruses carrying a secreted form of human FGF-2 or control LacZ vectors. Subsequently, when the circulating levels of FGF-2 were similar to those seen in septic children, mice were injected with a non-lethal dose of LPS or control buffer. Results All mice injected with LPS developed hypotension and AKI, and recovered after five days. FGF-2 did not improve the outcome of AKI, and induced more significant renal proliferative and apoptotic changes during the recovery phase. Conclusions These findings suggest that circulating FGF-2 may not necessarily prevent the development or improve the outcome of AKI. Moreover, the renal accumulation of FGF-2 might cause further renal damage. PMID:21959768

  1. Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide.

    PubMed

    Hirose, Keiko; Li, Song-Zhe; Ohlemiller, Kevin K; Ransohoff, Richard M

    2014-08-01

    Aminoglycoside antibiotics are highly effective agents against gram-negative bacterial infections, but they cause adverse effects on hearing and balance dysfunction as a result of toxicity to hair cells of the cochlea and vestibular organs. While ototoxicity has been comprehensively studied, the contributions of the immune system, which controls the host response to infection, have not been studied in antibiotic ototoxicity. Recently, it has been shown that an inflammatory response is induced by hair cell injury. In this study, we found that lipopolysaccharide (LPS), an important component of bacterial endotoxin, when given in combination with kanamycin and furosemide, augmented the inflammatory response to hair cell injury and exacerbated hearing loss and hair cell injury. LPS injected into the peritoneum of experimental mice induced a brisk cochlear inflammatory response with recruitment of mononuclear phagocytes into the spiral ligament, even in the absence of ototoxic agents. While LPS alone did not affect hearing, animals that received LPS prior to ototoxic agents had worse hearing loss compared to those that did not receive LPS pretreatment. The poorer hearing outcome in LPS-treated mice did not correlate to changes in endocochlear potential. However, LPS-treated mice demonstrated an increased number of CCR2(+) inflammatory monocytes in the inner ear when compared with mice treated with ototoxic agents alone. We conclude that LPS and its associated inflammatory response are harmful to the inner ear when coupled with ototoxic medications and that the immune system may contribute to the final hearing outcome in subjects treated with ototoxic agents.

  2. Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice.

    PubMed

    Tao, Weiwei; Wang, Hanqing; Su, Qiang; Chen, Yanyan; Xue, Wenda; Xia, Baomei; Duan, Jinao; Chen, Gang

    2016-04-30

    The present study was designed to detect the anti-depressant effects of paeonol and the possible mechanisms in the lipopolysaccharide-induced depressive-like behavior. Open-field test(OFT), tail suspension test(TST) and forced swimming test(FST) were used to evaluate the behavioral activity. The contents of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in mice hippocampus were determined by HPLC-ECD. Serum interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels were evaluated by enzyme-linked immunosorbent assay (ELISA). Our results showed that LPS significantly decreased the levels of 5-HT and NE in the hippocampus. LPS also reduced open-field activity, as well as increased immobility duration in FST and TST. Paeonol administration could effectively reverse the alterations in the concentrations of 5-HT, NE and reduce the IL-6 and TNF-α levels. Moreover, paeonol effectively downregulated brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) and Nuclear factor-κB (NF-κB) in hippocampal. In conclusion, paeonol administration exhibited significant antidepressant-like effects in mice with LPS-induced depression.

  3. Hypersensitivity of Aryl Hydrocarbon Receptor-Deficient Mice to Lipopolysaccharide-Induced Septic Shock▿ †

    PubMed Central

    Sekine, Hiroki; Mimura, Junsei; Oshima, Motohiko; Okawa, Hiromi; Kanno, Jun; Igarashi, Katsuhide; Gonzalez, Frank J.; Ikuta, Togo; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki

    2009-01-01

    Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is known to mediate a wide variety of pharmacological and toxicological effects caused by polycyclic aromatic hydrocarbons. Recent studies have revealed that AhR is involved in the normal development and homeostasis of many organs. Here, we demonstrate that AhR knockout (AhR KO) mice are hypersensitive to lipopolysaccharide (LPS)-induced septic shock, mainly due to the dysfunction of their macrophages. In response to LPS, bone marrow-derived macrophages (BMDM) of AhR KO mice secreted an enhanced amount of interleukin-1β (IL-1β). Since the enhanced IL-1β secretion was suppressed by supplementing Plasminogen activator inhibitor-2 (Pai-2) expression through transduction with Pai-2-expressing adenoviruses, reduced Pai-2 expression could be a cause of the increased IL-1β secretion by AhR KO mouse BMDM. Analysis of gene expression revealed that AhR directly regulates the expression of Pai-2 through a mechanism involving NF-κB but not AhR nuclear translocator (Arnt), in an LPS-dependent manner. Together with the result that administration of the AhR ligand 3-methylcholanthrene partially protected mice with wild-type AhR from endotoxin-induced death, these results raise the possibility that an appropriate AhR ligand may be useful for treating patients with inflammatory disorders. PMID:19822660

  4. Protective Effect of Dihydromyricetin Against Lipopolysaccharide-Induced Acute Kidney Injury in a Rat Model.

    PubMed

    Wang, Jun-Tao; Jiao, Peng; Zhou, Yun; Liu, Qian

    2016-02-11

    BACKGROUND The present study investigated the effect of dihydromyricetin (DHM) on lipopolysaccharide (LPS)-induced acute kidney injury in a rat model. MATERIAL AND METHODS Kidney injury was induced in male Sprague-Dawley rats by injection of LPS through the tail vein. The rats were treated with 5 µg/kg body weight DHM within 12 h of the LPS administration. The urine of the rats was collected over a period of 48 h for determination of calcium and creatinine concentrations. Blood urea nitrogen in the serum was analyzed using a BC-2800 Vet Animal Auto Biochemistry Analyzer. On day 3 after treatment, the rats were sacrificed to extract the kidneys. RESULTS Treatment of the endotoxemia rats with DHM caused a significant (P<0.05) decrease in the level of kidney injury molecule‑1 and blood urea nitrogen. DHM treatment significantly (P<0.05) decreased the level of calcium in the kidney tissues compared to those of the untreated endotoxemia rats. The level of malonaldehyde (MDA) in the kidney tissues was significantly reduced in the endotoxemia rats by DHM treatment. The results from immunohistochemistry reveled a significant decrease in the expression of osteopontin (OPN) and CD44 levels. The endotoxemia rats showed significantly higher levels of TUNEL-positive stained nuclei compared to the normal controls. However, treatment of the endotoxemia rats with DHM resulted in a significant decrease in the population of TUNEL-positive cells. CONCLUSIONS DHM may be a promising candidate for the treatment of acute kidney injury.

  5. Lipopolysaccharide-induced epididymitis disrupts epididymal beta-defensin expression and inhibits sperm motility in rats.

    PubMed

    Cao, Dongmei; Li, Yidong; Yang, Rui; Wang, Yan; Zhou, Yuchuan; Diao, Hua; Zhao, Yue; Zhang, Yonglian; Lu, Jian

    2010-12-01

    Although more than 40 beta-defensins have been identified in rat epididymis, little is known about their regulation or their relation to male infertility caused by inflammation. Using a rat model of epididymitis induced by lipopolysaccharide (LPS), we examined expression of SPAG11E (also known as Bin1b), a caput epididymis-specific beta-defensin in rat. Unlike the expression of other beta-defensins in various epithelial cells with upregulated expression after LPS stimulation, expression of SPAG11E was significantly decreased by LPS at the mRNA and protein levels. LPS treatment also significantly decreased both sperm binding to SPAG11E and sperm motility, and supplementation of the spermatozoa with recombinant SPAG11E in vitro remarkably increased both SPAG11E binding and motility of sperm. To clarify whether decreased expression is a common pattern of epididymal beta-defensins after LPS stimulation, we examined the expression of another 12 epididymal beta-defensins expressed in the caput epididymis. For nine of these beta-defensins, expression was decreased, but for the other three, expression remained unaffected. These findings demonstrate that LPS-induced epididymitis can decrease the expression of epididymal beta-defensins and that disruption of SPAG11E expression is involved in the impairment of sperm motility.

  6. Modulation of Pseudomonas aeruginosa lipopolysaccharide-induced lung inflammation by chronic iron overload in rat.

    PubMed

    Lê, Bá Vuong; Khorsi-Cauet, Hafida; Bach, Véronique; Gay-Quéheillard, Jérôme

    2012-03-01

    Iron constitutes a critical nutrient source for bacterial growth, so iron overload is a risk factor for bacterial infections. This study aimed at investigating the role of iron overload in modulating bacterial endotoxin-induced lung inflammation. Weaning male Wistar rats were intraperitoneally injected with saline or iron sucrose [15 mg kg(-1) body weight (bw), 3 times per week, 4 weeks]. They were then intratracheally injected with Pseudomonas aeruginosa lipopolysaccharide (LPS) (5 μg kg(-1) bw) or saline. Inflammatory indices were evaluated 4 or 18 h post-LPS/saline injection. At 4 h, LPS-treated groups revealed significant increases in the majority of inflammatory parameters (LPS-binding protein (LBP), immune cell recruitment, inflammatory cytokine synthesis, myeloperoxidase activity, and alteration of alveolar-capillary permeability), as compared with control groups. At 18 h, these parameters reduced strongly with the exception for LBP content and interleukin (IL)-10. In parallel, iron acted as a modulator of immune cell recruitment; LBP, tumor necrosis factor-α, cytokine-induced neutrophil chemoattractant 3, and IL-10 synthesis; and alveolar-capillary permeability. Therefore, P. aeruginosa LPS may only act as an acute lung inflammatory molecule, and iron overload may modulate lung inflammation by enhancing different inflammatory parameters. Thus, therapy for iron overload may be a novel and efficacious approach for the prevention and treatment of bacterial lung inflammations.

  7. Cannabidiol (CBD) Enhances Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation in C57BL/6 Mice

    PubMed Central

    Karmaus, Peer W. F.; Wagner, James G.; Harkema, Jack R.; Kaminski, Norbert E.; Kaplan, Barbara L.F.

    2012-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL) 6 and 23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function. PMID:23173851

  8. Eupatorium lindleyanum DC. flavonoids fraction attenuates lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Chu, Chunjun; Yao, Shi; Chen, Jinglei; Wei, Xiaochen; Xia, Long; Chen, Daofeng; Zhang, Jian

    2016-10-01

    Eupatorium lindleyanum DC., "Ye-Ma-Zhui" called by local residents in China, showed anti-inflammatory activity and is used to treat tracheitis. We had isolated and identified the flavonoids, diterpenoids and sesquiterpenes compounds from the herb. In the present study, we evaluated the protective effects of the flavonoids fraction of E. lindleyanum (EUP-FLA) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanisms of action. EUP-FLA could significantly decrease lung wet-to-dry weight (W/D) ratio, nitric oxide (NO) and protein concentration in BALF, lower myeloperoxidase (MPO) activity, increase superoxide dismutase (SOD) activity and down-regulate the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Additionally, EUP-FLA attenuated lung histopathological changes and significantly reduced complement deposition with decreasing the levels of Complement 3 (C3) and Complement 3c (C3c) in serum. These results demonstrated that EUP-FLA may attenuate LPS-induced ALI via reducing productions of pro-inflammatory mediators, decreasing the level of complement and affecting the NO, SOD and MPO activity.

  9. Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury.

    PubMed

    Tsurumaki, Hiroaki; Mogi, Chihiro; Aoki-Saito, Haruka; Tobo, Masayuki; Kamide, Yosuke; Yatomi, Masakiyo; Sato, Koichi; Dobashi, Kunio; Ishizuka, Tamotsu; Hisada, Takeshi; Yamada, Masanobu; Okajima, Fumikazu

    2015-12-04

    Acute lung injury is characterized by the infiltration of neutrophils into lungs and the subsequent impairment of lung function. Here we explored the role of TDAG8 in lung injury induced by lipopolysaccharide (LPS) administrated intratracheally. In this model, cytokines and chemokines released from resident macrophages are shown to cause neutrophilic inflammation in the lungs. We found that LPS treatment increased TDAG8 expression in the lungs and confirmed its expression in resident macrophages in bronchoalveolar lavage (BAL) fluids. LPS administration remarkably increased neutrophil accumulation without appreciable change in the resident macrophages, which was associated with increased penetration of blood proteins into BAL fluids, interstitial accumulation of inflammatory cells, and damage of the alveolar architecture. The LPS-induced neutrophil accumulation and the associated lung damage were enhanced in TDAG8-deficient mice as compared with those in wild-type mice. LPS also increased several mRNA and protein expressions of inflammatory cytokines and chemokines in the lungs or BAL fluids. Among these inflammatory mediators, mRNA and protein expression of KC (also known as CXCL1), a chemokine of neutrophils, were significantly enhanced by TDAG8 deficiency. We conclude that TDAG8 is a negative regulator for lung neutrophilic inflammation and injury, in part, through the inhibition of chemokine production.

  10. Hepcidin protects against lipopolysaccharide-induced liver injury in a mouse model of obstructive jaundice.

    PubMed

    Huang, Ying-Hsien; Yang, Ya-Ling; Tiao, Mao-Meng; Kuo, Ho-Chang; Huang, Li-Tung; Chuang, Jiin-Haur

    2012-06-01

    Obstructive jaundice (OJ) increases the risk of liver injury and sepsis, leading to increased mortality. Cholestatic liver injury is associated with a downregulation of hepcidin expression levels. In fact, hepcidin has an important antimicrobial effect, especially against Escherichia coli. It is unknown whether supplementing recombinant hepcidin is effective in alleviating cholestasis-induced liver injury and mortality in mice with superimposed sepsis. A mouse model of cholestasis was developed using extrahepatic bile duct ligation for 3 days. In addition, sepsis due to E. coli 0111:B4 lipopolysaccharide (LPS) was induced in the model. The serum levels of total bilirubin, AST, ALT, and LDH and the mRNA levels of IL-1β, TNF-α, and MCP-1 in the liver were significantly higher in the OJ mice receiving LPS than in the sham-operated mice receiving LPS. Compared to the OJ mice receiving LPS, the hepcidin-pretreated OJ mice receiving LPS showed a significant decrease in the above mentioned parameters, as well as a reversal in the downregulation of LC3B-II and upregulation of cleaved caspase-3; this, in turn, led to significantly decreased lethality in 24h. In conclusion, these results indicate that hepcidin pretreatment significantly reduced hepatic proinflammatory cytokine expression and liver injury, leading to reduced early lethality in OJ mice receiving LPS. Enhanced autophagy and reduced apoptosis may account for the protective effects of hepcidin.

  11. HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy.

    PubMed

    Krukowski, Karen; Ma, Jiacheng; Golonzhka, Olga; Laumet, Geoffroy O; Gutti, Tanuja; van Duzer, John H; Mazitschek, Ralph; Jarpe, Matthew B; Heijnen, Cobi J; Kavelaars, Annemieke

    2017-03-04

    Chemotherapy-induced peripheral neuropathy is one of the most common doselimiting side-effects of cancer treatment. Currently, there is no FDA-approved treatment available. Histone deacetylase 6 (HDAC6) is a microtubule-associated deacetylase whose function includes regulation of á-tubulin-dependent intracellular mitochondrial transport. Here we examined the effect of HDAC6 inhibition on established cisplatin-induced peripheral neuropathy. We used a novel HDAC6 inhibitor ACY-1083, which shows 260-fold selectivity towards HDAC6 versus other HDACs. Our results show that HDAC6 inhibition prevented cisplatin-induced mechanical allodynia, and also completely reversed already existing cisplatin-induced mechanical allodynia, spontaneous pain, and numbness. These findings were confirmed using the established HDAC6 inhibitor ACY-1215 (Ricolinostat), which is currently in clinical trials for cancer treatment. Mechanistically, treatment with the HDAC6 inhibitor increased á-tubulin acetylation in the peripheral nerve. In addition, HDAC6 inhibition restored the cisplatin-induced reduction in mitochondrial bioenergetics and mitochondrial content in the tibial nerve, indicating increased mitochondrial transport. At a later time point, dorsal root ganglion mitochondrial bioenergetics also improved. HDAC6 inhibition restored the loss of intra-epidermal nerve fiber density in cisplatin-treated mice. Our results demonstrate that pharmacological inhibition of HDAC6 completely reverses all the hallmarks of established cisplatin-induced peripheral neuropathy by normalization of mitochondrial function in DRG and nerve, and restoration of intra-epidermal innervation. These results are especially promising because one of the HDAC6 inhibitors tested here is currently in clinical trials as an add-on cancer therapy, highlighting the potential for a fast clinical translation of our findings.

  12. Both inflammatory and classical lipolytic pathways are involved in lipopolysaccharide-induced lipolysis in human adipocytes.

    PubMed

    Grisouard, Jean; Bouillet, Elisa; Timper, Katharina; Radimerski, Tanja; Dembinski, Kaethi; Frey, Daniel M; Peterli, Ralph; Zulewski, Henryk; Keller, Ulrich; Müller, Beat; Christ-Crain, Mirjam

    2012-02-01

    High fat diet-induced endotoxaemia triggers low-grade inflammation and lipid release from adipose tissue. This study aims to unravel the cellular mechanisms leading to the lipopolysaccharide (LPS) effects in human adipocytes. Subcutaneous pre-adipocytes surgically isolated from patients were differentiated into mature adipocytes in vitro. Lipolysis was assessed by measurement of glycerol release and mRNA expression of pro-inflammatory cytokines were evaluated by real-time PCR. Treatment with LPS for 24 h induced a dose-dependent increase in interleukin (IL)-6 and IL-8 mRNA expression. At 1 µg/ml LPS, IL-6 and IL-8 were induced to 19.5 ± 1.8-fold and 662.7 ± 91.5-fold (P < 0.01 vs basal), respectively. From 100 ng/ml to 1 µg/ml, LPS-induced lipolysis increased to a plateau of 3.1-fold above basal level (P < 0.001 vs basal). Co-treatment with inhibitors of inhibitory kappa B kinase kinase beta (IKKβ) or NF-κB inhibited LPS-induced glycerol release. Co-treatment with the protein kinase A (PKA) inhibitor H-89, the lipase inhibitor orlistat or the hormone-sensitive lipase (HSL) inhibitor CAY10499 abolished the lipolytic effects of LPS. Co-treatment with the MAPK inhibitor, U0126 also reduced LPS-induced glycerol release. Inhibition of lipolysis by orlistat or CAY10499 reduced LPS-induced IL-6 and IL-8 mRNA expression. Induction of lipolysis by the synthetic catecholamine isoproterenol or the phosphodiesterase type III inhibitor milrinone did not alter basal IL-6 and IL-8 mRNA expression after 24 treatments whereas these compounds enhanced LPS-induced IL-6 and IL-8 mRNA expression. Both the inflammatory IKKβ/NF-κB pathway and the lipolytic PKA/HSL pathways mediate LPS-induced lipolysis. In turn, LPS-induced lipolysis reinforces the expression of pro-inflammatory cytokines and, thereby, triggers its own lipolytic activity.

  13. Use of mice tolerant to lipopolysaccharide to demonstrate requirement of cooperation between macrophages and lymphocytes to generate lipopolysaccharide-induced colony-stimulating factor in vivo.

    PubMed Central

    Williams, Z; Hertogs, C F; Pluznik, D H

    1983-01-01

    Injection of lipopolysaccharide (LPS) into mice was followed by a rapid elevation of colony-stimulating factor (CSF) in the serum. A second, challenging injection of LPS given 3 to 4 days later failed to induce elevated levels of CSF in the serum. Such mice tolerant to LPS were used as an experimental tool to identify the CSF-producing cells which respond to LPS. We observed that generation of LPS-induced CSF in mice tolerant to LPS could be restored by an intraperitoneal injection of spleen cells 24 h before the challenging injection of LPS. Depletion of the adherent cells from the spleen cells reduced the ability of the splenic lymphocytes to restore the capacity of the mice tolerant to LPS to generate serum CSF. Reconstitution of the splenic lymphocytes with 5% thioglycolate-elicited peritoneal macrophages, however, reestablished the restorative capacity of these cells, whereas almost no restoration was observed after direct injection of elicited peritoneal macrophages. These data suggest that the spleen cells are active in generating CSF, provided that macrophages are present and can interact with the splenic lymphocytes to generate LPS-induced CSF in the serum. PMID:6602767

  14. A novel role of kukoamine B: Inhibition of the inflammatory response in the livers of lipopolysaccharide-induced septic mice via its unique property of combining with lipopolysaccharide

    PubMed Central

    QIN, WEI-TING; WANG, XU; SHEN, WEI-CHANG; SUN, BING-WEI

    2015-01-01

    Kukoamine B (KB), derived from the traditional Chinese herb cortex Lycii, exerts anti-inflammatory effects due to its potent affinity with lipopolysaccharide (LPS) and CpG DNA; however, little is known regarding whether the in vivo administration of KB can effectively inhibit inflammation in septic mice. The present study thus aimed to investigate the inhibitory effects of KB on the inflammatory response in the livers of LPS-induced septic mice. KB treatment in the LPS-induced septic mice significantly decreased the plasma level of LPS. In addition, KB protected against liver injury, as confirmed by improved histology and decreased aminotransferase levels in the serum. Further experiments revealed that KB attenuated liver myeloperoxidase activity and reduced the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. These effects were accompanied by decreases in the levels of tumor necrosis factor α and interleukin-1β in the liver tissue. In parallel, the activity of nuclear factor-κ-gene binding (NF-κB) in the livers of LPS-induced septic mice was markedly inhibited with KB treatment. In combination, these results demonstrate that KB inhibits inflammation in septic mice by reducing the concentrations of plasma LPS, decreasing leukocyte sequestration and interfering with NF-κB activation, and, therefore, suppressing the pro-adhesive phenotype of endothelial cells. PMID:25667619

  15. Effect of induced transverse chromatic aberration on peripheral vision.

    PubMed

    Winter, Simon; Fathi, Mohammad Taghi; Venkataraman, Abinaya Priya; Rosén, Robert; Seidemann, Anne; Esser, Gregor; Lundström, Linda; Unsbo, Peter

    2015-10-01

    Transverse chromatic aberration (TCA) is one of the largest optical errors affecting the peripheral image quality in the human eye. However, the effect of chromatic aberrations on our peripheral vision is largely unknown. This study investigates the effect of prism-induced horizontal TCA on vision, in the central as well as in the 20° nasal visual field, for four subjects. Additionally, the magnitude of induced TCA (in minutes of arc) was measured subjectively in the fovea with a Vernier alignment method. During all measurements, the monochromatic optical errors of the eye were compensated for by adaptive optics. The average reduction in foveal grating resolution was about 0.032 ± 0.005  logMAR/arcmin of TCA (mean ± std). For peripheral grating detection, the reduction was 0.057 ± 0.012  logMAR/arcmin. This means that the prismatic effect of highly dispersive spectacles may reduce the ability to detect objects in the peripheral visual field.

  16. Lipopolysaccharide induces multinuclear cell from RAW264.7 line with increased phagocytosis activity

    SciTech Connect

    Nakanishi-Matsui, Mayumi; Yano, Shio; Matsumoto, Naomi; Futai, Masamitsu

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. Black-Right-Pointing-Pointer The multinuclear cells are formed through cell-cell fusion in the presence of Ca{sup 2+}. Black-Right-Pointing-Pointer The multinuclear cells do not express osteoclast-specific enzymes. Black-Right-Pointing-Pointer They internalized more and larger beads than mononuclear cells and osteoclasts. -- Abstract: Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, induces strong proinflammatory responses, including the release of cytokines and nitric oxide from macrophage. In this study, we found that a murine macrophage-derived line, RAW264.7, became multinuclear through cell-cell fusion after incubation with highly purified LPS or synthetic lipid A in the presence of Ca{sup 2+}. The same cell line is known to differentiate into multinuclear osteoclast, which expresses a specific proton pumping ATPase together with osteoclast markers on stimulation by the extracellular domain of receptor activator of nuclear factor {kappa}B ligand (Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G.-H., Wada, Y. and Futai, M., 2003). The LPS-induced multinuclear cells did not express osteoclast-specific enzymes including tartrate-resistant acid phosphatase and cathepsin K. During multinuclear cell formation, the cells internalized more and larger polystyrene beads (diameter 6-15 {mu}m) than mononuclear cells and osteoclasts. The internalized beads were located in lysosome-marker positive organelles, which were probably phagolysosomes. The LPS-induced multinuclear cell could be a good model system to study phagocytosis of large foreign bodies.

  17. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury.

    PubMed

    Lee, Dong Hun; Park, Mi Hee; Hwang, Chul Ju; Hwang, Jae Yeon; Yoon, Hae Suk; Yoon, Do Young; Hong, Jin Tae

    2016-05-01

    C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.

  18. Milk Thistle Extract and Silymarin Inhibit Lipopolysaccharide Induced Lamellar Separation of Hoof Explants in Vitro

    PubMed Central

    Reisinger, Nicole; Schaumberger, Simone; Nagl, Veronika; Hessenberger, Sabine; Schatzmayr, Gerd

    2014-01-01

    The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS) in this process remains unclear. Phytogenic substances, like milk thistle (MT) and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control), MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application. PMID:25290524

  19. Role of polysaccharide and lipid in lipopolysaccharide induced prion protein conversion

    PubMed Central

    LeVatte, Marcia; Wishart, David S.

    2016-01-01

    ABSTRACT Conversion of native cellular prion protein (PrPc) from an α-helical structure to a toxic and infectious β-sheet structure (PrPSc) is a critical step in the development of prion disease. There are some indications that the formation of PrPSc is preceded by a β-sheet rich PrP (PrPβ) form which is non-infectious, but is an intermediate in the formation of infectious PrPSc. Furthermore the presence of lipid cofactors is thought to be critical in the formation of both intermediate-PrPβ and lethal, infectious PrPSc. We previously discovered that the endotoxin, lipopolysaccharide (LPS), interacts with recombinant PrPc and induces rapid conformational change to a β-sheet rich structure. This LPS induced PrPβ structure exhibits PrPSc-like features including proteinase K (PK) resistance and the capacity to form large oligomers and rod-like fibrils. LPS is a large, complex molecule with lipid, polysaccharide, 2-keto-3-deoxyoctonate (Kdo) and glucosamine components. To learn more about which LPS chemical constituents are critical for binding PrPc and inducing β-sheet conversion we systematically investigated which chemical components of LPS either bind or induce PrP conversion to PrPβ. We analyzed this PrP conversion using resolution enhanced native acidic gel electrophoresis (RENAGE), tryptophan fluorescence, circular dichroism, electron microscopy and PK resistance. Our results indicate that a minimal version of LPS (called detoxified and partially de-acylated LPS or dLPS) containing a portion of the polysaccharide and a portion of the lipid component is sufficient for PrP conversion. Lipid components, alone, and saccharide components, alone, are insufficient for conversion. PMID:27906600

  20. DHA suppresses Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    PubMed

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-14

    Several reports have indicated that dietary intake of DHA is associated with lower prevalence of periodontitis. In the present study, we investigated the effect of DHA on the production of proinflammatory mediators in murine macrophage-like RAW264.7 cells stimulated with lipopolysaccharide (LPS) isolated from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. LPS was isolated from lyophilised P. intermedia ATCC 25,611 cells using the standard hot-phenol-water protocol. Culture supernatants were collected and assayed for NO, IL-1β and IL-6. Real-time PCR analysis was carried out to detect the expression of inducible NO synthase (iNOS), IL-1β, IL-6 and haeme oxygenase-1 (HO-1) mRNA. Immunoblot analysis was carried out to quantify the expression of iNOS and HO-1 protein and concentrations of signalling proteins. DNA-binding activities of NF-κB subunits were determined using an ELISA-based assay kit. DHA significantly attenuated the production of NO, IL-1β and IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. DHA induced the expression of HO-1 in cells treated with P. intermedia LPS. Selective inhibition of HO-1 activity by tin protoporphyrin IX significantly mitigated the inhibitory effects of DHA on LPS-induced NO production. DHA significantly attenuated the phosphorylation of c-Jun N-terminal kinase induced by LPS. In addition, DHA suppressed the transcriptional activity of NF-κB by regulating the nuclear translocation and DNA-binding activity of NF-κB p50 subunit and inhibited the phosphorylation of signal transducer and activator of transcription 1. Further in vivo studies are needed to better evaluate the potential of DHA in humans as a therapeutic agent to treat periodontal disease.

  1. Bacterial lipopolysaccharides induce in vitro degradation of cartilage matrix through chondrocyte activation.

    PubMed Central

    Jasin, H E

    1983-01-01

    The present studies demonstrate that bacterial lipopolysaccharides (LPS) induce cartilage matrix degradation in live explants in organ culture. Quintuplicate bovine nasal fibrocartilage explants cultured for 8 d with three different purified LPS preparations derived from Escherichia coli and Salmonella typhosa at concentrations ranging from 1.0 to 25.0 micrograms/ml resulted in matrix proteoglycan depletion of 33.3 +/- 5.8 to 92.5 +/- 2.0% (medium control depletion 17.7 +/- 0.7 to 32.4 +/- 1.4%). Matrix degradation depended on the presence of live chondrocytes because frozen-thawed explants incubated with LPS failed to show any proteoglycan release. Moreover, the addition of Polymyxin B (25 micrograms/ml) to live explants incubated with LPS abolished matrix release, whereas Polymyxin B had no effect on the matrix-degrading activity provided by blood mononuclear cell factors. A highly purified Lipid A preparation induced matrix degradation at a concentration of 0.01 micrograms/ml. Cartilage matrix collagen and proteoglycan depletion also occurred with porcine articular cartilage explants (collagen release: 18.3 +/- 3.5%, medium control: 2.1 +/- 0.5%; proteoglycan release: 79.0 +/- 5.9%, medium control: 28.8 +/- 4.8%). Histochemical analysis of the cultured explants confirmed the results described above. Gel chromatography of the proteoglycans released in culture indicated that LPS induced significant degradation of the high molecular weight chondroitin sulfate-containing aggregates. These findings suggest that bacterial products may induce cartilage damage by direct stimulation of chondrocytes. This pathogenic mechanism may play a role in joint damage in septic arthritis and in arthropathies resulting from the presence of bacterial products derived from the gastrointestinal tract. Images PMID:6358260

  2. Protective effects of Lactobacillus plantarum NDC 75017 against lipopolysaccharide-induced liver injury in mice.

    PubMed

    Peng, Xinyan; Jiang, Yujun

    2014-10-01

    This study investigated the protective effect of Lactobacillus plantarum NDC 75017 (L. plantarum NDC 75017) against acute liver injury induced by lipopolysaccharide (LPS). Thirty male mice were randomly divided into the control, LPS, and LPS + L. plantarum NDC 75017 groups. In the LPS + L. plantarum group, the mice were orally pretreated with L. plantarum NDC 75017 for 15 days. At 16 days, the mice in the LPS and LPS + L. plantarum NDC 75017 groups were intraperitoneally injected with LPS at 4 mg/kg body weight, whereas the control mice were treated with an equal amount of saline. After 8 h, the serum alanine transaminase (ALT), aspartate aminotransferase (AST), and histology changes were examined. The oxidative stress markers and pro-inflammatory cytokines in the liver were also examined. Meanwhile, the expression of nuclear factor κB (NF-κB) mRNA and toll-like receptor 4 (TLR4) in the liver was determined by qRT-PCR. The LPS group showed an increase in ALT and AST, whereas the LPS + L. plantarum NDC 75017 group showed a significant decrease. In addition, pretreatment with L. plantarum NDC 75017 can attenuate LPS-induced oxidative stress and inflammatory response. Furthermore, the increase of hepatic NF-κB and TLR4 mRNA induced by LPS was significantly downregulated by the pretreatment with L. plantarum NDC 75017. These data show that pretreatment with L. plantarum NDC 75017 protects against LPS-induced oxidative stress and inflammatory injury in the liver of mice, which may be attributed to the inhibition of the TLR4-NF-κB pathway.

  3. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy.

    PubMed

    Turdi, Subat; Han, Xuefeng; Huff, Anna F; Roe, Nathan D; Hu, Nan; Gao, Feng; Ren, Jun

    2012-09-15

    Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy.

  4. Hericium erinaceum induces maturation of dendritic cells derived from human peripheral blood monocytes.

    PubMed

    Kim, Sun Kyung; Son, Chang Gue; Yun, Cheol-Heui; Han, Seung Hyun

    2010-01-01

    Hericium erinaceum, a medicinal mushroom, has long been used as a therapeutic due to its immuno-regulating potentials eliciting anticarcinogenic and antimicrobial efficacies. Since maturation of dendritic cells (DC) is an important process in the initiation and regulation of immune responses, the ability of water-soluble components from H. erinaceum (WEHE) to regulate DC maturation was investigated. Immature DC were prepared by differentiating human peripheral blood CD14-positive cells with GM-CSF and IL-4. DC were stimulated with WEHE at 2-20 microg/mL for 48 h and subjected to flow cytometric analysis to determine the expression of indicative maturation markers. The endocytic capacity of WEHE-stimulated DC was examined by a Dextran-FITC uptake assay. An enzyme-linked immunosorbent assay was performed to examine the secretion of TNF-alpha and IL-12p40. DC stimulated with WEHE showed representative features upon DC maturation: enhanced expression of CD80, CD83 and CD86, and both MHC class I and II molecules, decreased endocytic capacity of DC, increased expression of CD205, and decreased expression of CD206. However, interestingly, WEHE could not induce the production of TNF-alpha and IL-12p40, whereas lipopolysaccharide substantially increased the production of both cytokines. Collectively, these results suggest that H. erinaceum induces the maturation of human DC, which might reinforce the host innate immune system.

  5. Red Blood Cell Supernatant Potentiates LPS-Induced Proinflammatory Cytokine Response From Peripheral Blood Mononuclear Cells

    PubMed Central

    Nydam, Trevor L.; Clarke, Jason H.; Banerjee, Anirban; Silliman, Christopher C.; McCarter, Martin D.

    2009-01-01

    Allogeneic blood transfusion has an immunomodulatory capacity on its recipients through accumulation of immunologically active substances with blood storage, and prestorage leukoreduction reduces many of these mediators. We investigated lipopolysaccharide (LPS)-induced cytokine response of peripheral blood mononuclear cells (PBMCs) exposed to packed red blood cell (PRBC) supernatants from leukoreduced (LR) or non-leukoreduced (NLR) units with variable duration of storage. PRBC units were collected with or without leukoreduction on Day 0 before routine storage. The plasma fraction (supernatant) was isolated from LR and NLR units after 1 day (D1) or 42 days (D42) of storage and exposed to PBMCs versus control media for 24 h, then with LPS for an additional 24 h. Cell supernatants were analyzed for IL-1β, IL-6, IL-8, IL-10, and TNF-α by cytokine bead array. IL-1β, TNF-α, and IL-6 were significantly elevated in PRBC groups versus control. D42 NLR PRBC supernatant significantly increased secretion of IL-1β and IL-6 compared to D1 NLR PRBC supernatant. LR significantly attenuated the cytokine response of IL-1β. Thus, PRBC supernatant potentiates proinflammatory LPS-induced cytokine secretion from PBMCs. This response is accentuated with storage duration and partially attenuated with leukoreduction. These findings may partially explain the immune activation seen clinically after blood transfusion. PMID:19441884

  6. Protective effects of leucine against lipopolysaccharide-induced inflammatory response in Labeo rohita fingerlings.

    PubMed

    Giri, Sib Sankar; Sen, Shib Sankar; Jun, Jin Woo; Sukumaran, Venkatachalam; Park, Se Chang

    2016-05-01

    The present study investigated the protective effects of leucine against lipopolysaccharide (LPS)-induced inflammatory responses in Labeo rohita (rohu) in vivo and in vitro. Primary hepatocytes, isolated from the hepatopancreas, were exposed to different concentrations of LPS for 24 h to induce an inflammatory response, and the protective effects of leucine against LPS-induced inflammation were studied. Finally, we investigated the efficiency of dietary leucine supplementation in attenuating an immune challenge induced by LPS in vivo. Exposure of cells to 10-25 μg mL(-1) of LPS for 24 h resulted in a significant production of nitric oxide and release of lactate dehydrogenase to the medium, whereas cell viability and protein content were reduced (p < 0.05). LPS exposure (10 μg mL(-1)) increased mRNA levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-8 in vitro (p < 0.05). However, pretreatment with leucine prevented the LPS-induced upregulation of TNF-α, IL-1β and IL-8 mRNAs by downregulating TLR4, MyD88, NF-κBp65, and MAPKp38 mRNA expression. Interestingly, mRNA expression of the anti-inflammatory cytokine, IL-10, which was increased by LPS treatment, was further enhanced (p < 0.05) by leucine pretreatment. The enhanced expression of IL-10 might inhibit the production of other pro-inflammatory cytokines. It was found that leucine pretreatment attenuated the excessive activation of LPS-induced TLR4-MyD88 signaling as manifested by lower level of TLR4, MyD88, MAPKp38, NF-κBp65 and increased level of IκB-α protein in leucine pre-treatment group. In vivo experiments demonstrated that leucine pre-supplementation could protect fish against LPS-induced inflammation through an attenuation of TLR4-MyD88 signaling pathway. Taken together, we propose that leucine pre-supplementation decreases LPS-induced immune damage in rohu by enhancing the expression of IL-10 and by regulating the TLR4-MyD88 signaling pathways.

  7. Lipopolysaccharide-Induced Middle Ear Inflammation Disrupts the cochlear Intra-Strial Fluid–Blood Barrier through Down-Regulation of Tight Junction Proteins

    PubMed Central

    Zhang, Jinhui; Chen, Songlin; Hou, Zhiqiang; Cai, Jing; Dong, Mingmin; Shi, Xiaorui

    2015-01-01

    Middle ear infection (or inflammation) is the most common pathological condition that causes fluid to accumulate in the middle ear, disrupting cochlear homeostasis. Lipopolysaccharide, a product of bacteriolysis, activates macrophages and causes release of inflammatory cytokines. Many studies have shown that lipopolysaccharides cause functional and structural changes in the inner ear similar to that of inflammation. However, it is specifically not known how lipopolysaccharides affect the blood-labyrinth barrier in the stria vascularis (intra-strial fluid–blood barrier), nor what the underlying mechanisms are. In this study, we used a cell culture-based in vitro model and animal-based in vivo model, combined with immunohistochemistry and a vascular leakage assay, to investigate lipopolysaccharide effects on the integrity of the mouse intra-strial fluid–blood barrier. Our results show lipopolysaccharide-induced local infection significantly affects intra-strial fluid–blood barrier component cells. Pericytes and perivascular-resident macrophage-like melanocytes are particularly affected, and the morphological and functional changes in these cells are accompanied by substantial changes in barrier integrity. Significant vascular leakage is found in the lipopolysaccharide treated-animals. Consistent with the findings from the in vivo animal model, the permeability of the endothelial cell monolayer to FITC-albumin was significantly higher in the lipopolysaccharide-treated monolayer than in an untreated endothelial cell monolayer. Further study has shown the lipopolysaccharide-induced inflammation to have a major effect on the expression of tight junctions in the blood barrier. Lipopolysaccharide was also shown to cause high frequency hearing loss, corroborated by previous reports from other laboratories. Our findings show lipopolysaccharide-evoked middle ear infection disrupts inner ear fluid balance, and its particular effects on the intra-strial fluid

  8. Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins.

    PubMed

    Zhang, Jinhui; Chen, Songlin; Hou, Zhiqiang; Cai, Jing; Dong, Mingmin; Shi, Xiaorui

    2015-01-01

    Middle ear infection (or inflammation) is the most common pathological condition that causes fluid to accumulate in the middle ear, disrupting cochlear homeostasis. Lipopolysaccharide, a product of bacteriolysis, activates macrophages and causes release of inflammatory cytokines. Many studies have shown that lipopolysaccharides cause functional and structural changes in the inner ear similar to that of inflammation. However, it is specifically not known how lipopolysaccharides affect the blood-labyrinth barrier in the stria vascularis (intra-strial fluid-blood barrier), nor what the underlying mechanisms are. In this study, we used a cell culture-based in vitro model and animal-based in vivo model, combined with immunohistochemistry and a vascular leakage assay, to investigate lipopolysaccharide effects on the integrity of the mouse intra-strial fluid-blood barrier. Our results show lipopolysaccharide-induced local infection significantly affects intra-strial fluid-blood barrier component cells. Pericytes and perivascular-resident macrophage-like melanocytes are particularly affected, and the morphological and functional changes in these cells are accompanied by substantial changes in barrier integrity. Significant vascular leakage is found in the lipopolysaccharide treated-animals. Consistent with the findings from the in vivo animal model, the permeability of the endothelial cell monolayer to FITC-albumin was significantly higher in the lipopolysaccharide-treated monolayer than in an untreated endothelial cell monolayer. Further study has shown the lipopolysaccharide-induced inflammation to have a major effect on the expression of tight junctions in the blood barrier. Lipopolysaccharide was also shown to cause high frequency hearing loss, corroborated by previous reports from other laboratories. Our findings show lipopolysaccharide-evoked middle ear infection disrupts inner ear fluid balance, and its particular effects on the intra-strial fluid-blood barrier

  9. Genetic advances uncover mechanisms of chemotherapy-induced peripheral neuropathy.

    PubMed

    Chua, K C; Kroetz, D L

    2017-04-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity experienced in 30-40% of patients undergoing treatment with various chemotherapeutics, including taxanes, vinca alkaloids, epothilones, proteasome inhibitors, and thalidomide. Importantly, CIPN significantly affects a patient's quality of life. Recent genetic association studies are enhancing our understanding of CIPN pathophysiology and serve as a foundation for identification of genetic biomarkers to predict toxicity risk and for the development of novel strategies for prevention and treatment.

  10. Serotonin induces peripheral mechanical antihyperalgesic effects in mice.

    PubMed

    Diniz, Danielle A; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina G M; Perez, Andrea C; Duarte, Igor D G; Romero, Thiago R L

    2015-11-15

    The role of serotonin (5-HT) in nociception will vary according to the subtypes of receptors activated. When administered peripherally, it induces pain in humans and in rats by activation of 5-HT1, 5-HT2 and 5-HT3 receptors. In addition, endogenous 5-HT produced in situ, is involved in the nociceptive response induced by formalin in rat's paw inflammation, possibly via 5-HT3 receptors. Moreover, it has been shown that 5-HT released in the dorsal horn of the spinal cord by stimulation of the periaqueductal gray causes activation of inhibitory interneurons, resulting in inhibition of spinal neurons. In the present study we evaluated the effect of serotonin and its receptors at peripheral antinociception. The mice paw pressure test was used in animals that had increased sensitivity by an intraplantar injection of PGE2 (2 µg). We used selective antagonists of serotonin receptors (isamoltan 5-HT1B, BRL 15572 5-HT1D, ketanserin 5-HT2A, ondansetron 5-HT3 and SB-269970 5-HT7). Administration of serotonin into the right hind paw (62.5, 125, 250 and 500 ng and 1 µg) produced a dose-dependent peripheral mechanical antihyperalgesic effect of serotonin in mice. Selective antagonists for 5-HT1B, 5-HT2A, 5-HT3 receptors at doses of 0.1, 1 and 10 µg, reversed the antihyperalgesic effect induced by 250 ng serotonin. In contrast, selective antagonists for 5-HT1D and 5-HT7 receptors were unable to reverse the antihyperalgesic effect induced by serotonin. These results demonstrated for the first time, the peripheral mechanical antihyperalgesic effect of serotonin, and participation of 5-HT1B, 5-HT2A and 5-HT3 receptors in this event.

  11. Hepatoprotective effects of erythropoietin on D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice.

    PubMed

    Yang, Xue-Fei; He, Yi; Li, Hai-Yuan; Liu, Xin; Chen, Huan; Liu, Jian-Bang; Ji, Wen-Jun; Wang, Bing; Chen, Li-Na

    2014-07-01

    Fulminant hepatic failure is a severe clinical syndrome associated with a high rate of patient mortality. Recent studies have shown that in addition to its hematopoietic effect, erythropoietin (EPO) has multiple protective effects and exhibits antiapoptotic, antioxidant and anti-inflammatory activities. The present study aimed to determine the hepatoprotective effect of EPO and to elucidate the underlying mechanisms using a D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced model of acute liver injury. Experimental groups of mice were administered with various doses of EPO (1,000, 3,000 or 10,000 U/kg, intraperitoneal) once per day for 3 days, prior to injection with D-GalN (700 mg/kg)/LPS (10 µg/kg). Mice were sacrificed 8 h after treatment with D‑GalN/LPS. Liver function and histopathology, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH‑Px) activities and EPO receptor (EPOR) and phosphatidylinositol 3-kinase (PI3K) mRNA expression were evaluated. D-GalN/LPS administration markedly induced liver injury, as evidenced by elevated levels of serum aminotransferases, as well as histopathological changes. Compared with the D-GalN/LPS group, pretreatment with EPO significantly decreased the levels of aspartate aminotransferase, alanine aminotransferase and MDA, and increased the activities of SOD and GSH-Px. Furthermore, the protective effects of EPO were paralleled by an upregulation in the mRNA expression of EPOR and PI3K. These data suggest that EPO can ameliorate D-GalN/LPS-induced acute liver injury by reducing oxidative stress and upregulating the mRNA expression of EPOR and PI3K.

  12. Praeruptorin D and E attenuate lipopolysaccharide/hydrochloric acid induced acute lung injury in mice.

    PubMed

    Yu, Peng-Jiu; Li, Jing-Rong; Zhu, Zheng-Guang; Kong, Huan-Yu; Jin, Hong; Zhang, Jun-Yan; Tian, Yuan-Xin; Li, Zhong-Huang; Wu, Xiao-Yun; Zhang, Jia-Jie; Wu, Shu-Guang

    2013-06-15

    Acute lung injury is a life-threatening syndrome characterized by overwhelming lung inflammation and increased microvascular permeability, which causes a high mortality rate worldwide. The dry root of Peucedanum praeruptorum Dunn has been long used to treat respiratory diseases in China. In the present study, Praeruptorin A, C, D and E (PA, PC, PD and PE), four pyranocoumarins extracted from this herb, have been investigated for the pharmacological effects in experimental lung injury mouse models. In lipopolysaccharide (LPS) challenged mice, PA and PC did not show protective effect against lung injury at the dose of 80 mg/kg. However, PD and PE significantly inhibited the infiltration of activated polymorphonuclear leukocytes (PMNs) and decreased the levels of TNF-α and IL-6 in bronchoalveolar lavage fluid at the same dose. There was no statistically significant difference between PD and PE group. Further study demonstrated that PD and PE suppressed protein extravasations in bronchoalveolar lavage fluid, attenuated myeloperoxidase (MPO) activity and the pathological changes in the lung. Both PD and PE suppressed LPS induced Nuclear Factor-kappa B (NF-κB) pathway activation in the lung by decreasing the cytoplasmic loss of Inhibitor κB-α (IκB-α) protein and inhibiting the translocation of p65 from cytoplasm to nucleus. We also extended our study to acid-induced acute lung injury and found that these two compounds protected mice from hydrochloric acid (HCl)-induced lung injury by inhibiting PMNs influx, IL-6 release and protein exudation. Taken together, these results suggested that PD and PE might be useful in the therapy of lung injury.

  13. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages.

    PubMed

    Routray, Indusmita; Ali, Shakir

    2016-01-01

    Chemical mediators of inflammation (CMI) are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS)-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO), were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS) in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.

  14. Inhibition of neddylation represses lipopolysaccharide-induced proinflammatory cytokine production in macrophage cells.

    PubMed

    Chang, Fang-Mei; Reyna, Sara M; Granados, Jose C; Wei, Sung-Jen; Innis-Whitehouse, Wendy; Maffi, Shivani K; Rodriguez, Edward; Slaga, Thomas J; Short, John D

    2012-10-12

    Cullin-RING E3 ligases (CRLs) are a class of ubiquitin ligases that control the proteasomal degradation of numerous target proteins, including IκB, and the activity of these CRLs are positively regulated by conjugation of a Nedd8 polypeptide onto Cullin proteins in a process called neddylation. CRL-mediated degradation of IκB, which normally interacts with and retains NF-κB in the cytoplasm, permits nuclear translocation and transactivation of the NF-κB transcription factor. Neddylation occurs through a multistep enzymatic process involving Nedd8 activating enzymes, and recent studies have shown that the pharmacological agent, MLN4924, can potently inhibit Nedd8 activating enzymes, thereby preventing neddylation of Cullin proteins and preventing the degradation of CRL target proteins. In macrophages, regulation of NF-κB signaling functions as a primary pathway by which infectious agents such as lipopolysaccharides (LPSs) cause the up-regulation of proinflammatory cytokines. Here we have analyzed the effects of MLN4924, and compared the effects of MLN4924 with a known anti-inflammatory agent (dexamethasone), on certain proinflammatory cytokines (TNF-α and IL-6) and the NF-κB signaling pathway in LPS-stimulated macrophages. We also used siRNA to block neddylation to assess the role of this molecular process during LPS-induced cytokine responsiveness. Our results demonstrate that blocking neddylation, either pharmacologically or using siRNA, abrogates the increase in certain proinflammatory cytokines secreted from macrophages in response to LPS. In addition, we have shown that MLN4924 and dexamethasone inhibit LPS-induced cytokine up-regulation at the transcriptional level, albeit through different molecular mechanisms. Thus, neddylation represents a novel molecular process in macrophages that can be targeted to prevent and/or treat the LPS-induced up-regulation of proinflammatory cytokines and the disease processes associated with their up-regulation.

  15. The effect of dexmedetomidine post-treatment on the inflammatory response of astrocyte induced by lipopolysaccharide.

    PubMed

    Xie, Cuiying; Wang, Zhenhong; Tang, Jiajia; Shi, Zhiqian; He, Zhenzhou

    2015-01-01

    To explore the effect of dexmedetomidine (DEX) post-treatment on the inflammatory response of astrocyte induced by lipopolysaccharide (LPS). The astrocytes of neonatal mice were primarily cultured in vitro. After purification and identification, the cells were divided into five groups: group C: control group; group L: astrocytes were treated with 1 μg/ml LPS for 24 h; group D1, D2, and D3: astrocytes were pretreated with 1 μg/ml for 24 h LPS, and then cultured with low (0.1 μM), medium (1 μM), high (10 μM) concentration of DEX for 30 min, respectively. The cell survival rate was detected by cell counting kit. The expressions of inducible nitric oxide synthase (iNOS) mRNA, tumor necrosis gactor-α (TNF-α) mRNA, and interleukin-1β (IL-1β) mRNA were measured by RT-PCR in cell lysis solution of every group. The concentration of nitric oxide (NO) was detected by Griess method. The concentrations of IL-1β and TNF-α were measured, respectively, by enzyme-linked immuno sorbent assay. Compared with the group C, the expressions of iNOS mRNA, TNF-α mRNA, and IL-1βm RNA were significantly up-regulated, the release of NO, TNF-α, and IL-1β was significantly increased in group L (P < 0.05). Compared with group L, mRNA levels of inflammation-related factors and release of inflammatory factors were significantly down-regulated in group D2 and D3 (P < 0.05). There was no statistical difference between group D1 and group L. Pre-treatment with medium and high concentration of DEX can inhibit the LPS-induced inflammatory response of astrocyte.

  16. ENDOTHELIAL CELL TOLERANCE TO LIPOPOLYSACCHARIDE CHALLENGE IS INDUCED BY MONOPHOSPHORYL LIPID A

    PubMed Central

    Stark, Ryan J.; Choi, Hyehun; Koch, Stephen R.; Fensterheim, Benjamin A.; Lamb, Fred S.; Sherwood, Edward R.

    2015-01-01

    Prior exposure to lipopolysaccharide (LPS) produces a reduced or “tolerant” inflammatory response to subsequent challenges with LPS, however the potent pro-inflammatory effects of LPS limit its clinical benefit. The adjuvant Monophosphoryl lipid A (MPLA) is a weak toll-like receptor 4 (TLR4) agonist that induces negligible inflammation but retains potent immunomodulatory properties. We postulated that pre-treatment with MPLA would inhibit the inflammatory response of endothelial cells to secondary LPS challenge. Human umbilical vein endothelial cells (HUVECs), were exposed to MPLA (10 µg/ml), LPS (100 ng/ml) or vehicle control. HUVECs were then washed and maintained in culture for 24 hours before being challenged with LPS (100 ng/ml). Supernatants were collected and examined for cytokine production in the presence or absence of siRNA inhibitors of critical TLR4 signaling proteins. Pretreatment with MPLA attenuated IL-6 production to secondary LPS challenge to a similar degree as LPS. The application of MyD88 siRNA dramatically reduced MPLA-induced tolerance while TRIF siRNA had no effect. The tolerant phenotype in endothelial cells was associated with reduced IKK, p38 and JNK phosphorylation and enhanced IRAK-M expression for LPS primed HUVECs, but less so in MPLA primed cells. Instead, MPLA-primed HUVECs demonstrated enhanced ERK phosphorylation. In contrast to leukocytes in which tolerance is largely TRIF-dependent, MyD88 signaling mediated endotoxin tolerance in endothelial cells. Most importantly, MPLA, a vaccine adjuvant with a wide therapeutic window, induced tolerance to LPS in endothelial cells. PMID:26669797

  17. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide.

    PubMed

    Barquero-Calvo, Elías; Mora-Cartín, Ricardo; Arce-Gorvel, Vilma; de Diego, Juana L; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Buret, Andre G; Gorvel, Jean-Pierre; Moreno, Edgardo

    2015-05-01

    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN.

  18. The role of lipopolysaccharide injected systemically in the reactivation of collagen-induced arthritis in mice

    PubMed Central

    Yoshino, Shin; Ohsawa, Motoyasu

    2000-01-01

    We investigated the role of bacterial lipopolysaccharide (LPS) in the reactivation of autoimmune disease by using collagen-induced arthritis (CIA) in mice in which autoimmunity to the joint cartilage component type II collagen (CII) was involved.CIA was induced by immunization with CII emulsified with complete Freund's adjuvant at the base of the tail (day 0) followed by a booster injection on day 21. Varying doses of LPS from E. coli were i.p. injected on day 50.Arthritis began to develop on day 25 after immunization with CII and reached a peak on day 35. Thereafter, arthritis subsided gradually but moderate joint inflammation was still observed on day 50. An i.p. injection of LPS on day 50 markedly reactivated arthritis on a dose-related fashion. Histologically, on day 55, there were marked oedema of synovium which had proliferated by the day of LPS injection, new formation of fibrin, and intense infiltration of neutrophils accompanied with a large number of mononuclear cells. The reactivation of CIA by LPS was associated with increases in anti-CII IgG and IgG2a antibodies as well as various cytokines including IL-12, IFN-γ, IL-1β, and TNF-α. LPS from S. enteritidis, S. typhimurium, and K. neumoniae and its component, lipid A from E. coli also reactivated the disease. Polymyxin B sulphate suppressed LPS- or lipid A-induced reactivation of CIA.These results suggest that LPS may play an important role in the reactivation of autoimmune joint inflammatory diseases such as rheumatoid arthritis in humans. PMID:10742285

  19. Clausena anisata-mediated protection against lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Jeon, Chan-Mi; Shin, In-Sik; Shin, Na-Rae; Hong, Ju-Mi; Kwon, Ok-Kyoung; Kim, Jung-Hee; Oh, Sei-Ryang; Bach, Tran-The; Hai, Do-Van; Quang, Bui-Hong; Choi, Sang-Ho; Lee, Joongku; Myung, Pyung-Keun; Ahn, Kyung-Seop

    2016-04-01

    Clausena anisata (Willd.) Hook.f. ex Benth. (CA), which is widely used in traditional medicine, reportedly exerts antitumor, anti-inflammatory and other important therapeutic effects. The aim of the present study was to investigate the potential therapeutic effects of CA in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) and in LPS-stimulated RAW 264.7 cells. Male C57BL/6 mice were administered treatments for 3 days by oral gavage. On day 3, the mice were instilled intranasally with LPS or PBS followed 3 h later by oral CA (30 mg/kg) or vehicle administration. In vitro, CA decreased nitric oxide (NO) production and pro-inflammatory cytokines, such as interleukin (IL)-6 and prostaglandin E2 (PGE2), in LPS-stimulated RAW 264.7 cells. CA also reduced the expression of pro-inflammatory mediators, such as cyclooxygenase-2. In vivo, CA administration significantly reduced inflammatory cell numbers in the bronchoalveolar lavage fluid (BALF) and suppressed pro-inflammatory cytokine levels, including tumor necrosis factor-α (TNF-α), IL-6, and IL-1β, as well as reactive oxygen species production in the BALF. CA also effectively reduced airway inflammation in mouse lung tissue of an LPS-induced ALI mouse model, in addition to decreasing inhibitor κB (IκB) and nuclear factor-κB (NF-κB) p65 phosphorylation. Taken together, the findings demonstrated that CA inhibited inflammatory responses in a mouse model of LPS-induced ALI and in LPS-stimulated RAW 264.7 cells. Thus, CA is a potential candidate for development as an adjunctive treatment for inflammatory disorders, such as ALI.

  20. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages

    PubMed Central

    Routray, Indusmita; Ali, Shakir

    2016-01-01

    Chemical mediators of inflammation (CMI) are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS)-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO), were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS) in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases. PMID:26934748

  1. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    PubMed Central

    Chiu, Chun-Hung; Chang, Chun-Chao; Lin, Shiang-Ting; Chyau, Charng-Cherng; Peng, Robert Y.

    2016-01-01

    Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity. PMID:27428953

  2. Movement-evoked hyperalgesia induced by lipopolysaccharides is not suppressed by glucocorticoids

    PubMed Central

    Kovács, Katalin J.; Papic, Jonathan C.; Larson, Alice A.

    2008-01-01

    Systemic exposure to lipopolysaccharides (LPS) produces a variety of effects, including movement-evoked hyperalgesia that can be measured using the grip force assay in mice. Because both lethality and enhanced sensitivity to cutaneous pain following exposure to endotoxins have each been attributed to inflammatory mediators, we explored the possibility that LPS-induced movement-evoked hyperalgesia is also sensitive to manipulations of glucocorticoids that regulate these other LPS responses. We found that the hyperalgesic effect of LPS (5 mg/kg s.c.) in mice that were adrenalectomized did not differ from that in control mice that were sham-operated, even though mortality after LPS was potentiated by adrenalectomy. The development of tolerance to the movement-evoked hyperalgesic effect of LPS also did not differ between adrenalectomized and sham-operated control mice. In addition, mifepristone (25 mg/kg s.c.), a glucocorticoid antagonist, did not attenuate the hyperalgesic effect of LPS (2 mg/kg s.c.), yet this dose of mifepristone was sufficient to enhance the incidence of lethality induced by LPS. Enhancement of glucocorticoid activity by two injections of dexamethasone (1 mg/kg s.c.) had no effect on the degree of hyperalgesia in mice injected with LPS (5 mg/kg s.c.), yet this dose of dexamethasone was sufficient to attenuate the incidence of mortality induced by LPS in adrenalectomized mice. Finally, morphine (10 mg/kg i.p.) reversed the decrease in grip force caused by LPS (5 mg/kg i.p.), supporting the interpretation that decreases in grip force produced by LPS reflect muscle hyperalgesia that is not sensitive to glucocorticoids. PMID:17686584

  3. Differential inhibition of lipopolysaccharide-induced granulocyte aggregation and prostanoid production by emoxypin.

    PubMed

    Kubatiev, A; Turgiev, A; Smirnov, L; Pomoynetsky, V; Dumaev, K

    1990-01-01

    Emoxypin is known to be an effective membrane-stabilizing 3-oxy-pyridine derivative. We attempted to evaluate its influence on lipopolysaccharide (LPS)-induced granulocyte aggregation and prostanoid production. Granulocytes isolated from rabbit venous blood by dextran sedimentation and Pezcoll gradient centrifugation were stirred in the aggregometer cuvette with emoxypin (5mM), indomethacin (50 microM) or their solvents at 37 degrees C for 2 min. Then S. typhimurium LPS (200 micrograms/ml) was added and the aggregation was traced for 5 min. Thromboxane B2 (TxB2), prostaglandins (PG) E, F2 alpha and 13,14-dihydro-15-keto-PGF2 alpha were determined in supernatants radioimmunochemically. Indomethacin did not affect the pattern of aggregation, whereas emoxypin virtually precluded the response. Granulocytes incubated with LPS produced by the 15th sec and 5th min 1.3 and 2.5 times as much TxB2 respectively as did the intact cells (p less than 0.01). LPS had no effect on PGE production. Fifteen-sec contact of granulocytes with LPS had no significant influence on the formation of PGF2 alpha and its 13,14-dihydro-15-keto metabolite. The amount of PGF2 alpha released into the medium by the end of the 5th min of incubation with LPS was 1.5 times higher than in the control (p less than 0.05); the level of 13,14-dihydro-15-keto-PGF2 alpha was decreased 1.6 times (p less than 0.01). Emoxypin abolished totally LPS-induced TxB2 and PGF2 alpha production. We conclude that aggregation and eicosanoid production are independent manifestations of LPS-induced rabbit granulocyte activation.

  4. An Analog of the Antimicrobial Peptide CopA5 Inhibits Lipopolysaccharide-Induced Macrophage Activation.

    PubMed

    Yoon, I Na; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Kim, Ho

    2017-02-28

    We previously reported that the CopA3 peptide (LLCIALRKK, D-form) originally isolated from the Korean dung beetle has antimicrobial and immunosuppressive effects. However, the high cost of producing the synthetic peptide, especially the D-form, has limited the development of CopA3 for therapeutic purposes. Here, we investigated whether the CopA3 deletion derivative, CopA5, which is composed of only five amino acids (LLCIA) and has the L-form structure, could inhibit the lipopolysaccharide (LPS)-induced activation of macrophages. Peritoneal exudate macrophages (PEM) were isolated from mice and exposed to LPS in the presence or absence of CopA5, and biomarkers of macrophage activation were measured. Our results revealed that LPS-induced nitric oxide (NO) production, tumor necrosis factor (TNF)-α secretion, and phagocytic activity of PEM were significantly inhibited by CopA5 treatment. Similar to CopA3, the structurally modified CopA5 peptide had no cell toxicity (as assessed by measurement of cell viability loss and apoptosis) in PEM. Moreover, the LPS-induced upregulation of the activating phosphorylation of signal transducer and activator of transcription 1 (STAT1) was markedly inhibited by CopA5 treatment. These results suggest that, similar to CopA3, CopA5 inhibits macrophage activation by inhibiting STAT1 phosphorylation and blocking the release of NO and TNF-α. CopA5 may therefore prove therapeutically useful in the realm of immune suppression.

  5. Lipopolysaccharide-induced memory impairment in rats is preventable using 7-nitroindazole.

    PubMed

    Anaeigoudari, Akbar; Shafei, Mohammad Naser; Soukhtanloo, Mohammad; Sadeghnia, Hamid Reza; Reisi, Parham; Beheshti, Farimah; Mohebbati, Reza; Mousavi, Seyed Mojtaba; Hosseini, Mahmoud

    2015-09-01

    Inflammation and oxidative stress have important roles in memory impairment. The effect of 7-nitroindazole (7NI) on lipopolysaccharide (LPS)-induced memory impairment was investigated. Rats were used, divided into four groups that were treated as follows: (1) control (saline); (2) LPS; (3) 7NI-LPS; and (4) 7NI before passive avoidance (PA). In the LPS group, the latency for entering the dark compartment was shorter than in the controls (p < 0.01 and p < 0.001); while in the 7NI-LPS group, it was longer than in the LPS group (p < 0.01 and p < 0.001). Malondialdehyde (MDA) and nitric oxide (NO) metabolite concentrations in the brain tissues of the LPS group were higher than in the controls (p < 0.001 and p < 0.05); while in the 7NI-LPS group, they were lower than in the LPS group (p < 0.001 and p < 0.05, respectively). The thiol content in the brain of the LPS group was lower than in the controls (p < 0.001); while in the 7NI-LPS group, it was higher than in the LPS group (p < 0.001). It is suggested that brain tissue oxidative damage and NO elevation have a role in the deleterious effects of LPS on memory retention that are preventable using 7NI.

  6. Protective effect of daidzin against D-galactosamine and lipopolysaccharide-induced hepatic failure in mice.

    PubMed

    Kim, Sung-Hwa; Heo, Jeong-Haing; Kim, Yeong Shik; Kang, Sam Sik; Choi, Jae Sue; Lee, Sun-Mee

    2009-05-01

    This study examined the effects of daidzin, a major isoflavone from Puerariae Radix, on D-galactosamine (D-GalN) and lipopolysaccharide (LPS)-induced liver failure. Mice were given an intraperitoneal injection of daidzin (25, 50, 100 and 200 mg/kg) 1 h before receiving an injection of D-GalN (700 mg/kg)/LPS (10 microg/kg). Daidzin markedly reduced the elevated serum aminotransferase activity and the levels of lipid peroxidation and tumor necrosis factor-alpha. The glutathione content was lower in the D-GalN/LPS group, which was attenuated by daidzin. The daidzin pretreatment attenuated the swollen mitochondria observed in the d-GalN/LPS group. Daidzin attenuated the apoptosis of hepatocytes, which was confirmed using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling method and a caspase-3 assay. Overall, these results suggest that the liver protection of daidzin is due to reduced oxidative stress and its antiapoptotic activity.

  7. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells

    PubMed Central

    Kim, Dong-Cheol; Yoon, Chi-Su; Quang, Tran Hong; Ko, Wonmin; Kim, Jong-Su; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation. PMID:26907256

  8. Preferential and non-selective cyclooxygenase inhibitors reduce inflammation during lipopolysaccharide-induced synovitis.

    PubMed

    Morton, Alison J; Campbell, Nigel B; Gayle, J'mai M; Redding, W Rich; Blikslager, Anthony T

    2005-04-01

    Synovitis in horses is frequently treated by administration of non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase isoforms (COX-1 and COX-2). Constitutively expressed COX-1 is involved in physiologic functions such as maintenance of gastric mucosal integrity, whereas COX-2 is up-regulated at sites of inflammation. Thus, COX-2 inhibitors reduce inflammation with reduced gastrointestinal side effects as compared to non-selective COX inhibitors. The objective of the present study was to compare the anti-inflammatory effects of the preferential COX-2 inhibitor etodolac with the non-selective COX inhibitor phenylbutazone in horses with lipopolysaccharide (LPS)-induced synovitis. Three groups of horses (n=6) received no treatment, phenylbutazone (4.4 mg/kg, IV, q12h), or etodolac (23 mg/kg, IV, q12h), respectively, 2-h following injection of LPS into one middle carpal joint. Synovial fluid was analyzed for white blood cell (WBC) count, and TXB2 and PGE2 levels. Phenylbutazone and etodolac significantly reduced WBC count 6 and 24-h following injection of LPS compared to untreated horses. In addition, both drugs significantly reduced PGE2 levels (P<0.05) 6-h following LPS injection, whereas the probable COX-1 prostanoid TXB2 was significantly reduced by phenylbutazone (P<0.05), but not etodolac. Etodolac may serve as a more selective anti-inflammatory agent than phenylbutazone for treatment of equine synovitis.

  9. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice

    PubMed Central

    Ye, Jian-Hong; Liu, Meng-Hua; Zhang, Xu-Lin; He, Jing-Yu

    2015-01-01

    Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography -diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones. PMID:26580602

  10. Therapeutic Effect of the Tuber of Alisma orientale on Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Kwun, Min Jung; Choi, Jun-Yong; Ahn, Kyung-Seop; Oh, Sei-Ryang; Lee, Yong Gyu; Christman, John W.; Sadikot, Ruxana T.

    2013-01-01

    Although Alisma orientale, an ethnic herb, has been prescribed for treating various diseases in Asian traditional medicine, experimental evidence to support its therapeutic effects is lacking. Here, we sought to determine whether A. orientale has a therapeutic effect on acute lung injury (ALI). Ethanol extract of the tuber of A. orientale (EEAO) was prepared and fingerprinted by HPLC for its constituents. Mice received an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) for the induction of ALI. At 2 h after LPS treatment, mice received an intratracheal (i.t.) spraying of various amounts of EEAO to the lung. Bioluminescence imaging of transgenic NF-κB/luciferase reporter mice shows that i.t. EEAO posttreatment suppressed lung inflammation. In similar experiments with C57BL/6 mice, EEAO posttreatment significantly improved lung inflammation, as assessed by H&E staining of lung sections, counting of neutrophils in bronchoalveolar lavage fluid, and semiquantitative RT-PCR analyses of proinflammatory cytokines and Nrf2-dependent genes in the inflamed lungs. Furthermore, EEAO posttreatment enhanced the survival of mice that received a lethal dose of LPS. Together, our results provide evidence that A. orientale has a therapeutic effect on ALI induced by sepsis. PMID:23983806

  11. Lipopolysaccharide-Induced Lung Injury Is Independent of Serum Vitamin D Concentration

    PubMed Central

    Klaff, Lindy S.; Gill, Sean E.; Wisse, Brent E.; Mittelsteadt, Kristen; Matute-Bello, Gustavo; Chen, Peter; Altemeier, William A.

    2012-01-01

    Vitamin D deficiency is increasing in incidence around the world. Vitamin D, a fat-soluble vitamin, has documented effects on the innate and adaptive immune system, including macrophage and T regulatory (Treg) cell function. Since Treg cells are important in acute lung injury resolution, we hypothesized that vitamin D deficiency increases the severity of injury and delays injury resolution in lipopolysaccharide (LPS) induced acute lung injury. Vitamin D deficient mice were generated, using C57BL/6 mice, through diet modification and limited exposure to ultraviolet light. At 8 weeks of age, vitamin D deficient and sufficient mice received 2.5 g/kg of LPS or saline intratracheal. At 1 day, 3 days and 10 days, mice were anesthetized and lung elastance measured. Mice were euthanized and bronchoalveolar lavage fluid, lungs and serum were collected. Ex vivo neutrophil chemotaxis was evaluated, using neutrophils from vitamin D sufficient and deficient mice exposed to the chemoattractants, KC/CXCL1 and C5a, and to bronchoalveolar lavage fluid from LPS-exposed mice. We found no difference in the degree of lung injury. Leukocytes were mildly decreased in the bronchoalveolar fluid of vitamin D deficient mice at 1 day. Ex-vivo, neutrophils from vitamin D deficient mice showed impaired chemotaxis to KC but not to C5a. Vitamin D deficiency modestly impairs neutrophil chemotaxis; however, it does not affect lung injury or its resolution in an LPS model of acute lung injury. PMID:23185294

  12. Nrdp1 is Associated with Neuronal Apoptosis in Lipopolysaccharide-Induced Neuroinflammation.

    PubMed

    Shen, Jianhong; Song, Yan; Shen, Jiabing; Lin, Yuchang; Wu, Xinming; Yan, Yaohua; Niu, Mu; Zhou, Li; Huang, Yuejiao; Gao, Yilu; Liu, Yonghua

    2015-05-01

    Neuregulin receptor degradation protein-1 (Nrdp1), a kind of ring finger E3 ubiquitin ligase, is expressed in several adult tissues, including the heart, testis, prostate and brain. Studies of this molecule have demonstrated its great importance in regulating cell growth, apoptosis and oxidative stress in various cell types. However, information regarding its expression and possible function in the central nervous system is still limited. In this study, we performed a neuroinflammation model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. It was found that the expression of Nrdp1 was significantly increased in cerebral cortex after LPS injection. Immunofluorescence indicated that Nrdp1 was located in the neurons, but not astrocytes or microglia. Furthermore, there was a concomitant up-regulation of active caspase-3 and decreased expression of BRUCE (an inhibitor of apoptosis protein). In addition, decreasing Nrdp1 levels by RNA interference in cortical primary neurons reduced active caspase-3 expression but induced up-regulation of BRUCE. Collectively, all these results suggested that Nrdp1 might play a role in neuronal apoptosis by reducing the expression of BRUCE in neuroinflammation after LPS injection.

  13. [Joint effects of apoptosis induced by microcystins and bacterial lipopolysaccharides on grass carp (Ctenopharyngodon idellus) lymphocytes].

    PubMed

    Fang, Wen-Di; Zhang, Hang-Jun; Wu, Yu-Huan

    2014-02-01

    In this study, grass carp (Ctenopharyngodon idellus) lymphocytes were used as the vitro test object to demonstrate the joint effects of microcystins (MC-LR) and bacterial lipopolysaccharides (LPS) on fish immune system. The results showed that MC-LR and LPS in the single and combined exposure groups could both induce grass carp lymphocytes apoptosis with typical ladder-like DNA electrophoresis characteristics. However, comparing the apoptosis rate of the combined and single exposure groups, it was suggested that bacterial LPS could cooperate with MC-LR causing a higher rate of fish lymphocytes apoptosis (2.1 and 3.3-fold of that for the single exposure group I (MC-LR) and II (LPS), respectively), and there existed a significant dose-response relationship. The MC-LR cooperating with bacterial LPS decreased the activity of glutathione S-transferase (GST), increased the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), resulted in DNA damage and cell arrest in G0 phase, which inhibited cell proliferation and accelerated apoptosis. It was proved that MC-LR exacerbated fish immunotoxicity by collaborating with LPS, which had a serious adverse effect on aquaculture industry.

  14. Protective effects of radix Rosa laevigata against Propionibacterium acnes and lipopolysaccharide-induced liver injury.

    PubMed

    He, Rong-Rong; Yao, Xin-Sheng; Yao, Nan; Wang, Min; Dai, Yi; Gao, Hao; Yu, Yang; Kurihara, Hiroshi

    2009-05-01

    We investigated the effects of an extract of Radix Rosa laevigata (R. R. laevigata) on Propionibacterium acnes (P. acnes) and lipopolysaccharide (LPS)-induced acute liver injury. The plasma alanine aminotransferase (ALT) activity was significantly elevated by an intravenous injection of heat-killed P. acnes at a dose of 0.4 mg/mouse and then with LPS at 0.1 microg/mouse after 5 d. However, the elevated ALT activity was significantly reduced by the administered of R. R. laevigata (125 and 500 mg/kg/d) for 7 d before the LPS injection. In addition, the extract treatment reduced the number of liver mononuclear cells (MNCs), and malondialdehyde (MDA) and nitric oxide (NO) contents, but improved the liver oxygen radical absorbance capacity (ORAC) and mitochondrial membrane potential. Moreover, the chemical profile of R. R. laevigata was performed by high-performance liquid chromatography (HPLC) and the main peaks were identified as a series of polyphenol compounds which had been confirmed as the significantly active components by their anti-oxidative and NO inhibitory effects. These results suggest that the extract of R. R. laevigata offered good efficacy for preventing liver injury.

  15. Lipopolysaccharides induce changes in the visceral pigmentation of Eupemphix nattereri (Anura: Leiuperidae).

    PubMed

    Franco-Belussi, Lilian; de Oliveira, Classius

    2011-10-01

    Amphibians have an extracutaneous pigmentary system composed of melanin-containing cells in various tissues and organs. The functional role of these pigment cells in visceral organs has not yet been determined, although several hypotheses have been proposed. Our aim was to describe the visceral pigmentation in the frog Eupemphix nattereri under conditions of endotoxemia induced experimentally with lipopolysaccharides (LPS) from Escherichia coli and to analyze the pigmentation on the organs' surface. We used 60 adult males of E. nattereri and analyzed the visceral pigmentation 2 (LPS 2h), 6 (LPS 6h), 12 (LPS 12h), 24 (LPS 24h) or 48 h (LPS 48 h) after the LPS inoculation. We observed pigmentation on the surface of several abdominal organs. The highest degree of pigmentation was found only on the testes of the animals in the LPS 2h, LPS 6h and LPS 12h groups. The pigmentation decreased in the animals of the LPS 24h and LPS 48 h groups. The LPS administration produced no changes in the pigmentation of the cardio-respiratory and digestive systems. Thus, the cells appear to have responded to LPS intoxication, producing a rapid increase of pigmentation on the surface of the testes and a subsequent decrease in the pigmentation. These changes are most likely related to the bactericidal role of melanin, which neutralizes the effects of LPS.

  16. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages.

    PubMed

    Whiteman, Matthew; Li, Ling; Rose, Peter; Tan, Choon-Hong; Parkinson, David B; Moore, Philip K

    2010-05-15

    The role of hydrogen sulfide (H(2)S) in inflammation is controversial, with both pro- and antiinflammatory effects documented. Many studies have used simple sulfide salts as the source of H(2)S, which give a rapid bolus of H(2)S in aqueous solutions and thus do not accurately reflect the enzymatic generation of H(2)S. We therefore compared the effects of sodium hydrosulfide and a novel slow-releasing H(2)S donor (GYY4137) on the release of pro- and antiinflammatory mediators in lipopolysaccharide (LPS)-treated murine RAW264.7 macrophages. For the first time, we show that GYY4137 significantly and concentration-dependently inhibits LPS-induced release of proinflammatory mediators such as IL-1beta, IL-6, TNF-alpha, nitric oxide (*NO), and PGE(2) but increased the synthesis of the antiinflammatory chemokine IL-10 through NF-kappaB/ATF-2/HSP-27-dependent pathways. In contrast, NaHS elicited a biphasic effect on proinflammatory mediators and, at high concentrations, increased the synthesis of IL-1beta, IL-6, NO, PGE(2) and TNF-alpha. This study clearly shows that the effects of H(2)S on the inflammatory process are complex and dependent not only on H(2)S concentration but also on the rate of H(2)S generation. This study may also explain some of the apparent discrepancies in the literature regarding the pro- versus antiinflammatory role of H(2)S.

  17. Plasma and tissue disposition of florfenicol in Escherichia coli lipopolysaccharide-induced endotoxaemic sheep.

    PubMed

    Pérez-Fernández, Rubén; Cazanga, Victoria; Jeldres, Jessie Ana; Silva, Pedro P; Riquelme, José; Quiroz, Fernando; Palma, Cristina; Carretta, Maria D; Burgos, Rafael A

    2017-05-01

    1. The purpose of this study was to understand the effects of the acute inflammatory response (AIR) induced by Escherichia coli lipopolysaccharide (LPS) on florfenicol (FFC) and FFC-amine (FFC-a) plasma and tissue concentrations. 2. Ten Suffolk Down sheep, 60.5 ± 4.7 kg, were distributed into two experimental groups: group 1 (LPS) treated with three intravenous doses of 1 μg/kg bw of LPS at 24, 16, and 0.75 h (45 min) before FFC treatment; group 2 (Control) was treated with saline solution (SS) in parallel to group 1. An IM dose of 20 mg FFC/kg was administered at 0.75 h after the last injection of LPS or SS. Blood and tissue samples were taken after FFC administration. 3. The plasma AUC0-4 h values of FFC were higher (p = 0.0313) in sheep treated with LPS (21.8 ± 2.0 μg·min/mL) compared with the control group (12.8 ± 2.3 μg·min/mL). Lipopolysaccharide injections increased FFC concentrations in kidneys, spleen, and brain. Low levels of plasma FFC-a were observed in control sheep (Cmax = 0.14 ± 0.01 μg/mL) with a metabolite ratio (MR) of 4.0 ± 0.87%. While in the LPS group, Cmax increased slightly (0.25 ± 0.01 μg/mL), and MR decreased to 2.8 ± 0.17%. 4. The changes observed in the plasma and tissue concentrations of FFC were attributed to the pathophysiological effects of LPS on renal hemodynamics that modified tissue distribution and reduced elimination of the drug.

  18. Spred-2 Deficiency Exacerbates Lipopolysaccharide-Induced Acute Lung Inflammation in Mice

    PubMed Central

    Xu, Yang; Ito, Toshihiro; Fushimi, Soichiro; Takahashi, Sakuma; Itakura, Junya; Kimura, Ryojiro; Sato, Miwa; Mino, Megumi; Yoshimura, Akihiko; Matsukawa, Akihiro

    2014-01-01

    Background Acute respiratory distress syndrome (ARDS) is a severe and life-threatening acute lung injury (ALI) that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK) pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred)-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK)-MAPK pathway, in lipopolysaccharide (LPS)-induced acute lung inflammation. Methods Wild-type (WT) mice and Spred-2−/− mice were exposed to intratracheal LPS (50 µg in 50 µL PBS) to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2−/− mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells. Results LPS-induced acute lung inflammation was significantly exacerbated in Spred-2−/− mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2−/− mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells. Conclusions The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls the

  19. Bioactive compounds from liverworts: Inhibition of lipopolysaccharide-induced inducible NOS mRNA in RAW 264.7 cells by herbertenoids and cuparenoids.

    PubMed

    Harinantenaina, Liva; Quang, Dang Ngoc; Nishizawa, Takashi; Hashimoto, Toshihiro; Kohchi, Chie; Soma, Gen-Ichiro; Asakawa, Yoshinori

    2007-08-01

    The inhibition of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) by herbertenoids and cuparenoids isolated from liverworts in RAW 264.7 macrophages was evaluated. Among compounds tested, herbertenediol, cuparenediol, 1,2-diacetoxyherbertene and 2-hydroxy-4-methoxycuparene exhibited significant activity. For 2-hydroxy-4-methoxycuparene, chosen as representative compound, the strong inhibitory activity was related to the inhibition on LPS-induced iNOS mRNA. The structure-activity relationship will be discussed.

  20. Evidence for a role of the 5-HT2C receptor in central lipopolysaccharide-, interleukin-1 beta-, and leptin-induced anorexia.

    PubMed

    von Meyenburg, Claudia; Langhans, Wolfgang; Hrupka, Brian J

    2003-03-01

    We examined the role of serotonin (5-HT) and the 5-HT(1A) and 5-HT(2C) receptors in the anorectic effects of centrally administered lipopolysaccharide (LPS), interleukin-1 beta (IL-1 beta), and leptin. Food intake was measured in rats after intracerebroventricular (ICV) injections of LPS (20 ng), IL-1 beta (10 ng), or leptin (1 microg) at lights out, followed by intraperitoneal (IP) injections of either the 5-HT(1A) autoreceptor agonist 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) (125 microg/kg) or the 5-HT(2C) receptor antagonist SB 242084 (0.3 mg/kg) at the onset of anorexia. SB 242084 significantly attenuated the food intake reduction caused by all compounds (all P<.01). IP 8-OH-DPAT attenuated ICV IL-1 beta-induced anorexia (P<.01). We also tested the involvement of the median raphe 5-HT(1A) receptors in peripheral LPS- and IL-1 beta-induced anorexia. Rats were injected intraperitoneally with either LPS (100 microg/kg) or IL-1 beta (2 microg/kg) at lights out, and 8-OH-DPAT (4 nmol) was administered directly into the median raphe nucleus at the onset of anorexia. Median raphe injections of 8-OH-DPAT significantly attenuated both IL-1 beta- and LPS-induced anorexia (both P<.01). These results implicate the 5-HT(2C) receptors in the mediation of central LPS-, IL-1 beta-, and leptin-induced anorexia. Our results also suggest that the midbrain raphe nuclei play a role in mediating the anorectic response to peripheral LPS and IL-1 beta.

  1. Endothelial Nitric Oxide Synthase Deficient Mice Are Protected from Lipopolysaccharide Induced Acute Lung Injury

    PubMed Central

    Gross, Christine M.; Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Ham III, P. Benson; Meadows, Mary Louise; Cherian-Shaw, Mary; Kangath, Archana; Sridhar, Supriya; Lucas, Rudolf; Black, Stephen M.

    2015-01-01

    Lipopolysaccharide (LPS) derived from the outer membrane of gram-negative bacteria induces acute lung injury (ALI) in mice. This injury is associated with lung edema, inflammation, diffuse alveolar damage, and severe respiratory insufficiency. We have previously reported that LPS-mediated nitric oxide synthase (NOS) uncoupling, through increases in asymmetric dimethylarginine (ADMA), plays an important role in the development of ALI through the generation of reactive oxygen and nitrogen species. Therefore, the focus of this study was to determine whether mice deficient in endothelial NOS (eNOS-/-) are protected against ALI. In both wild-type and eNOS-/- mice, ALI was induced by the intratracheal instillation of LPS (2 mg/kg). After 24 hours, we found that eNOS-/-mice were protected against the LPS mediated increase in inflammatory cell infiltration, inflammatory cytokine production, and lung injury. In addition, LPS exposed eNOS-/- mice had increased oxygen saturation and improved lung mechanics. The protection in eNOS-/- mice was associated with an attenuated production of NO, NOS derived superoxide, and peroxynitrite. Furthermore, we found that eNOS-/- mice had less RhoA activation that correlated with a reduction in RhoA nitration at Tyr34. Finally, we found that the reduction in NOS uncoupling in eNOS-/- mice was due to a preservation of dimethylarginine dimethylaminohydrolase (DDAH) activity that prevented the LPS-mediated increase in ADMA. Together our data suggest that eNOS derived reactive species play an important role in the development of LPS-mediated lung injury. PMID:25786132

  2. Iron oxide nanoparticles modulate lipopolysaccharide-induced inflammatory responses in primary human monocytes

    PubMed Central

    Grosse, Susann; Stenvik, Jørgen; Nilsen, Asbjørn M

    2016-01-01

    Co-stimulation of the immune system to more than one agent concomitantly is very common in real life, and considering the increasing use of engineered nanoparticles and nanomaterials, it is highly relevant to assess the ability of these materials to modulate key innate immune responses, which has not yet been studied in detail. We investigated the immunomodulatory effects of 10 nm and 30 nm iron oxide nanoparticles (IONPs) on primary human monocytes in the presence and absence of Toll-like receptor 4 agonist lipopolysaccharide (LPS). Prior to the cell studies, we characterized the physicochemical properties of the nanoparticles in cell culture medium and ensured that the nanoparticles were free from biological contamination. Cellular uptake of the IONPs in monocytes was assessed using transmission electron microscopy. Using enzyme-linked immunosorbent assay, we found that the IONPs per se did not induce the production of proinflammatory cytokines tumor necrosis factor-α, interleukin-6, and interleukin-1β. However, the IONPs had the ability to suppress LPS-induced nuclear factor kappa B activation and production of proinflammatory cytokines in primary human monocytes in an LPS and a particle dose-dependent manner. Using confocal microscopy and fluorescently labeled LPS, we showed that the effects correlated with impaired LPS internalization by monocytes in the presence of IONPs, which could be partly explained by LPS adsorption onto the nanoparticle surface. Additionally, the results from particle pretreatment experiments indicate that other cellular mechanisms might also play a role in the observed effects, which warrants further studies to elucidate the additional mechanisms underlying the capacity of IONPs to alter the reactivity of monocytes to LPS and to mount an appropriate cellular response. PMID:27695322

  3. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway

    PubMed Central

    Dang, Yalong; Mu, Yalin; Wang, Kun; Xu, Ke; Yang, Jing; Zhu, Yu; Luo, Bin

    2016-01-01

    Objective To investigate the effects of papaverine (PAP) on lipopolysaccharide (LPS)-induced microglial activation and its possible mechanisms. Materials and methods BV2 microglial cells were first pretreated with PAP (0, 0.4, 2, 10, and 50 μg/mL) and then received LPS stimulation. Transcription and production of proinflammatory factors (IL1β, TNFα, iNOS, and COX-2) were used to evaluate microglial activation. The transcriptional changes undergone by M1/M2a/M2b markers were used to evaluate phenotype transformation of BV2 cells. Immunofluorescent staining and Western blot were used to detect the location and expression of P65 and p-IKK in the presence or absence of PAP pretreatment. Results Pretreatment with PAP significantly inhibited the expression of IL1β and TNFα, and suppressed the transcription of M1/M2b markers Il1rn, Socs3, Nos2 and Ptgs2, but upregulated the transcription of M2a markers (Arg1 and Mrc1) in a dose-dependent manner. In addition, PAP pretreatment significantly decreased the expression of p-IKK and inhibited the nuclear translocation of P65 after LPS stimulation. Conclusion PAP not only suppressed the LPS-induced microglial activity by inhibiting transcription/production of proinflammatory factors, but also promoted the transformation of activated BV2 cells from cytotoxic phenotypes (M1/M2b) to a neuroprotective phenotype (M2a). These effects were probably mediated by NF-κB signaling pathway. Thus, it would be a promising candidate for the treatment of neurodegenerative diseases. PMID:27013863

  4. Lipopolysaccharide-induced cytokine cascade and lethality in LT alpha/TNF alpha-deficient mice.

    PubMed Central

    Amiot, F.; Fitting, C.; Tracey, K. J.; Cavaillon, J. M.; Dautry, F.

    1997-01-01

    BACKGROUND: Tumor necrosis factor alpha (TNF-alpha) is often considered the main proinflammatory cytokine induced by lipopolysaccharide (LPS) and consequently the critical mediator of the lethality associated with septic shock. MATERIALS AND METHODS: We used mice carrying a deletion of both the lymphotoxin alpha (LT-alpha) and TNF-alpha genes to assess the role of TNF in the cytokine cascade and lethality induced by LPS. RESULTS: Initial production of IL-1 alpha, IL-1 beta, IL-6, and IL-10 is comparable in wild-type and mutant mice. However, at later times, expression of IL-1 alpha, IL-1 beta, and IL-10 is prolonged, whereas that of IL-6 decreases in mutant mice. Expression of IFN-gamma is almost completely abrogated in mutants, which is in agreement with a more significant alteration of the late phase of the cytokine cascade. We measured similar LD50 (600 micrograms) for the intravenous injection of LPS in mice of the three genotypes (+/+, +/-, -/-), demonstrating that the absence of TNF does not confer long-term protection from lethality. However, death occurred much more slowly in mutant mice, who were protected more efficiently from death by CNI 1493, an inhibitor of proinflammatory cytokine production, than were wild-type mice. DISCUSSION: Thus, while TNF-alpha is not required for the induction of these cytokines by LPS, it modulates the kinetics of their expression. The lethality studies simultaneously confirm a role for TNF as a mediator of early lethality and establish that, in the absence of these cytokines, other mediators take over, resulting in the absence of long-term protection from LPS toxicity. Images FIG. 1 FIG. 2 PMID:9440119

  5. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages.

    PubMed

    Sekhon-Loodu, Satvir; Ziaullah; Rupasinghe, H P Vasantha

    2015-03-01

    Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease.

  6. Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide.

    PubMed

    Felts, Paul A; Woolston, Anne-Marie; Fernando, Himali B; Asquith, Stephen; Gregson, Norman A; Mizzi, Oliver J; Smith, Kenneth J

    2005-07-01

    Inflammation is a prominent feature of several disorders characterized by primary demyelination, but it is not clear whether a relationship exists between inflammation and myelin damage. We have found that substantial demyelination results from the focal inflammatory lesion caused by the injection of lipopolysaccharide (LPS; 200 ng) directly into the rat dorsal funiculus. Within 24 h, such injections caused a focal inflammatory response consisting of a substantial number of polymorphonuclear cells and ED1-positive and inducible nitric oxide synthase (iNOS)-positive macrophages/microglia. The number of inflammatory cells was substantially reduced by day 7. OX-52-positive T-cells were less frequently observed but were present in the meninges at 8 h, reached a maximum in the dorsal funiculus at 7 days, and were rare at 14 days. The inflammation was followed by the appearance of a large lesion of primary demyelination that encompassed up to approximately 75% of the cross-sectional area of the dorsal funiculus. Treatment with dexamethasone significantly reduced the number of cells expressing iNOS, but did not prevent the demyelination. By 28 days the lesions were largely remyelinated, usually by Schwann cells. These changes were not observed in control, saline-injected animals. We conclude that the intraspinal injection of LPS results in inflammation and subsequently in prominent demyelination. The mechanisms underlying the demyelination are not clear, but it is notable that it typically begins with disruption of the adaxonal myelin. Indeed, there is an early loss of myelin-associated glycoprotein within the lesion, despite the persistence of proteolipid protein. This combination is a feature of the pattern III lesion recently described in multiple sclerosis (Lucchinetti et al., 2000), and we therefore suggest that LPS-induced demyelination may serve as the first experimental model available for the study of this type of multiple sclerosis lesion.

  7. Effect of acute lipopolysaccharide-induced inflammation in intracerebroventricular-streptozotocin injected rats.

    PubMed

    Murtishaw, Andrew S; Heaney, Chelcie F; Bolton, Monica M; Sabbagh, Jonathan J; Langhardt, Michael A; Kinney, Jefferson W

    2016-02-01

    Lipopolysaccharide (LPS) is often used to investigate the exacerbatory effects of an immune-related challenge in transgenic models of various neurodegenerative diseases. However, the effects of this inflammatory challenge in an insulin resistant brain state, as seen in diabetes mellitus, a major risk factor for both vascular dementia (VaD) and Alzheimer's disease (AD), is not as well characterized. We investigated the effects of an LPS-induced inflammatory challenge on behavioral and biological parameters following intracerebroventricular (ICV) injection of streptozotocin (STZ) in male Sprague-Dawley rats. Subjects received a one-time bilateral ICV infusion of STZ (25 mg/mL, 8 μL per ventricle) or ACSF. One week following ICV infusions, LPS (1 mg/mL, i.p.) or saline was administered to activate the immune system. Behavioral testing began on the 22nd day following STZ-ICV infusion, utilizing the open field and Morris water maze (MWM) tasks. Proteins related to immune function, learning and memory, synaptic plasticity, and key histopathological markers observed in VaD and AD were evaluated. The addition of an LPS-induced immune challenge partially attenuated spatial learning and memory deficits in the MWM in STZ-ICV injected animals. Additionally, LPS administration to STZ-treated animals partially mitigated alterations observed in several protein levels in STZ-ICV alone, including NR2A, GABA(B1), and β-amyloid oligomers. These results suggest that an acute LPS-inflammatory response has a modest protective effect against some of the spatial learning and memory deficits and protein alterations associated with STZ-ICV induction of an insulin resistant brain state.

  8. Zinc Prevents Sickness Behavior Induced by Lipopolysaccharides after a Stress Challenge in Rats

    PubMed Central

    Kirsten, Thiago B.; Galvão, Marcella C.; Reis-Silva, Thiago M.; Queiroz-Hazarbassanov, Nicolle; Bernardi, Maria M.

    2015-01-01

    Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS), an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α), corticosterone, and brain-derived neurotrophic factor (BDNF) plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations. PMID:25775356

  9. Effect of Inulin on Proteome Changes Induced by Pathogenic Lipopolysaccharide in Human Colon

    PubMed Central

    Guarino, Michele Pier Luca; Barera, Simone; Locato, Vittoria; Cocca, Silvia; Franchin, Cinzia; Arrigoni, Giorgio; Vannini, Candida; Grossi, Sarah; Campomenosi, Paola; Pasqualetti, Valentina; Bracale, Marcella; Alloni, Rossana; De Gara, Laura; Cicala, Michele

    2017-01-01

    In the present study, the protective role of inulin against lipopolysaccharide (LPS)-induced oxidative stress was evaluated on human colonic mucosa using a proteomic approach. Human colonic mucosa and submucosa were sealed between two chambers, with the luminal side facing upwards and overlaid with Krebs (control), LPS or LPS+ inulin IQ solution. The solutions on the submucosal side (undernatants) were collected following 30 min of mucosal exposure. iTRAQ based analysis was used to analyze the total soluble proteomes from human colonic mucosa and submucosa treated with different undernatants. Human colonic muscle strips were exposed to the undernatants to evaluate the response to acetylcholine. Inulin exposure was able to counteract, in human colonic mucosa, the LPS-dependent alteration of some proteins involved in the intestinal contraction (myosin light chain kinase (MLCK), myosin regulatory subunit (MYL)), to reduce the up-regulation of two proteins involved in the radical-mediated oxidative stress (the DNA-apurinic or apyrimidinic site) lyase) APEX1 and the T-complex protein 1 subunit eta (CCT7) and to entail a higher level of some detoxification enzymes (the metallothionein-2 MT2A, the glutathione–S-transferase K GSTk, and two UDP- glucuronosyltransferases UGT2B4, UGT2B17). Inulin exposure was also able to prevent the LPS-dependent intestinal muscle strips contraction impairment and the mucosa glutathione level alterations. Exposure of colonic mucosa to inulin seems to prevent LPS-induced alteration in expression of some key proteins, which promote intestinal motility and inflammation, reducing the radical-mediated oxidative stress. PMID:28068390

  10. MyD88 is a key mediator of anorexia, but not weight loss, induced by lipopolysaccharide and interleukin-1 beta.

    PubMed

    Ogimoto, Kayoko; Harris, Marvin K; Wisse, Brent E

    2006-09-01

    Systemic inflammatory signals can disrupt the physiological regulation of energy balance, causing anorexia and weight loss. In the current studies, we investigated whether MyD88, the primary, but not exclusive, intracellular signal transduction pathway for Toll-like receptor 4 and IL-1 receptor I, is necessary for anorexia and weight loss to occur in response to stimuli that activate these key innate immune receptors. Our findings demonstrate that the absence of MyD88 signaling confers complete protection against anorexia induced by either lipopolysaccharide (LPS) (20 h food intake in MyD88-/- mice 5.4 +/- 0.3 vs. 3.3 +/- 0.4 g in MyD88+/+ control mice, P < 0.001) or IL-1 beta (20 h food intake in MyD88-/- mice 4.9 +/- 0.5 vs. 4.0 +/- 0.3 g in MyD88+/+ control mice, P < 0.001). However, absent MyD88 signaling does not prevent these inflammatory mediators from causing weight loss (LPS, -0.4 +/- 0.1 g; IL1 beta, -0.1 +/- 0.1 g, both P < 0.01 vs. vehicle-injected MyD88-/- mice, +0.4 +/- 0.2 g). Furthermore, LPS-induced weight loss occurs in the absence of adipsia, fever, or hypothalamus-pituitary-adrenal axis activation in MyD88-deficient mice. In addition, the peripheral inflammatory response to LPS is surprisingly intact in mice lacking MyD88. Together, these observations indicate that LPS reduces food intake via a mechanism that is dissociated from its effect on peripheral cytokine production, and whereas the presence of circulating proinflammatory cytokines per se is insufficient to cause anorexia in the absence of MyD88 signaling, it may contribute to LPS-induced weight loss.

  11. Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers.

    PubMed

    Sparkman, Nathan L; Buchanan, Jessica B; Heyen, Jonathan R R; Chen, Jing; Beverly, James L; Johnson, Rodney W

    2006-10-18

    Proinflammatory cytokines inhibit learning and memory but the significance of interleukin-6 (IL-6) in acute cognitive deficits induced by the peripheral innate immune system is not known. To examine the functional role of IL-6 in hippocampus-mediated cognitive impairments associated with peripheral infections, C57BL6/J (IL-6(+/+)) and IL-6 knock-out (IL-6(-/-)) mice were trained in a matching-to-place version of the water maze. After an acquisition phase, IL-6(+/+) mice injected intraperitoneally with lipopolysaccharide (LPS) exhibited deficits in working memory. However, IL-6(-/-) mice were refractory to the LPS-induced impairment in working memory. To determine the mechanism by which IL-6 deficiency conferred protection from disruption in working memory, plasma IL-1beta and tumor necrosis factor alpha (TNFalpha), c-Fos immunoreactivity in the nucleus of the solitary tract (NTS), and steady-state levels of IL-1beta and TNFalpha mRNA in neuronal layers of the hippocampus were determined in IL-6(+/+) and IL-6(-/-) mice after injection of LPS. Plasma IL-1beta and TNFalpha and c-Fos immunoreactivity in the NTS were increased similarly in IL-6(+/+) and IL-6(-/-) mice after LPS, indicating high circulating levels of IL-1beta and TNFalpha and activation of vagal afferent pathways were not sufficient to disrupt working memory in the absence of IL-6. However, the LPS-induced upregulation of IL-1beta and TNFalpha mRNA that was evident in hippocampal tissue of IL-6(+/+) mice was greatly attenuated or entirely absent in IL-6(-/-) mice. Collectively, these data suggest that humoral and neural immune-to-brain communication pathways are intact in IL-6-deficient mice but that, in the absence of IL-6, the central cytokine compartment is hyporesponsive.

  12. Vincristine-induced peripheral neuropathy in pediatric cancer patients

    PubMed Central

    Mora, Erika; Smith, Ellen M Lavoie; Donohoe, Clare; Hertz, Daniel L

    2016-01-01

    Vincristine is a chemotherapeutic agent that is a component of many combination regimens for a variety of malignancies, including several common pediatric tumors. Vincristine treatment is limited by a progressive sensorimotor peripheral neuropathy. Vincristine-induced peripheral neuropathy (VIPN) is particularly challenging to detect and monitor in pediatric patients, in whom the side effect can diminish long term quality of life. This review summarizes the current state of knowledge regarding VIPN, focusing on its description, assessment, prediction, prevention, and treatment. Significant progress has been made in our knowledge about VIPN incidence and progression, and tools have been developed that enable clinicians to reliably measure VIPN in pediatric patients. Despite these successes, little progress has been made in identifying clinically useful predictors of VIPN or in developing effective approaches for VIPN prevention or treatment in either pediatric or adult patients. Further research is needed to predict, prevent, and treat VIPN to maximize therapeutic benefit and avoid unnecessary toxicity from vincristine treatment. PMID:27904761

  13. Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats

    PubMed Central

    Fu, Chunlai; Dai, Xingui; Yang, You; Lin, Mengxiang; Cai, Yeping; Cai, Shaoxi

    2016-01-01

    Previous studies have identified that dexmedetomidine (DEX) treatment can ameliorate the acute lung injury (ALI) induced by lipopolysaccharide and ischemia-reperfusion. However, the molecular mechanisms by which DEX ameliorates lung injury remain unclear. The present study investigated whether DEX, which has been reported to exert effects on oxidative stress, mitochondrial permeability transition pores and apoptosis in other disease types, can exert protective effects in lipopolysaccharide (LPS)-induced ALI by inhibiting oxidative stress, mitochondrial dysfunction and mitochondrial-dependent apoptosis. It was revealed that LPS-challenged rats exhibited significant lung injury, characterized by the deterioration of histopathology, vascular hyperpermeability, wet-to-dry weight ratio and oxygenation index (PaO2/FIO2), which was attenuated by DEX treatment. DEX treatment inhibited LPS-induced mitochondrial dysfunction, as evidenced by alleviating the cellular ATP and mitochondrial membrane potential in vitro. In addition, DEX treatment markedly prevented the LPS-induced mitochondrial-dependent apoptotic pathway in vitro (increases of cell apoptotic rate, cytosolic cytochrome c, and caspase 3 activity) and in vivo (increases of |terminal deoxynucleotidyl transferase dUTP nick-end labeling positive cells, cleaved caspase 3, Bax upregulation and Bcl-2 downregulation). Furthermore, DEX treatment markedly attenuated LPS-induced oxidative stress, as evidenced by downregulation of cellular reactive oxygen species in vitro and lipid peroxides in serum. Collectively, the present results demonstrated that DEX ameliorates LPS-induced ALI by reducing oxidative stress, mitochondrial dysfunction and mitochondrial-dependent apoptosis. PMID:27959438

  14. Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats.

    PubMed

    Fu, Chunlai; Dai, Xingui; Yang, You; Lin, Mengxiang; Cai, Yeping; Cai, Shaoxi

    2017-01-01

    Previous studies have identified that dexmedetomidine (DEX) treatment can ameliorate the acute lung injury (ALI) induced by lipopolysaccharide and ischemia-reperfusion. However, the molecular mechanisms by which DEX ameliorates lung injury remain unclear. The present study investigated whether DEX, which has been reported to exert effects on oxidative stress, mitochondrial permeability transition pores and apoptosis in other disease types, can exert protective effects in lipopolysaccharide (LPS)‑induced ALI by inhibiting oxidative stress, mitochondrial dysfunction and mitochondrial‑dependent apoptosis. It was revealed that LPS‑challenged rats exhibited significant lung injury, characterized by the deterioration of histopathology, vascular hyperpermeability, wet‑to‑dry weight ratio and oxygenation index (PaO2/FIO2), which was attenuated by DEX treatment. DEX treatment inhibited LPS‑induced mitochondrial dysfunction, as evidenced by alleviating the cellular ATP and mitochondrial membrane potential in vitro. In addition, DEX treatment markedly prevented the LPS‑induced mitochondrial‑dependent apoptotic pathway in vitro (increases of cell apoptotic rate, cytosolic cytochrome c, and caspase 3 activity) and in vivo (increases of |terminal deoxynucleotidyl transferase dUTP nick‑end labeling positive cells, cleaved caspase 3, Bax upregulation and Bcl‑2 downregulation). Furthermore, DEX treatment markedly attenuated LPS‑induced oxidative stress, as evidenced by downregulation of cellular reactive oxygen species in vitro and lipid peroxides in serum. Collectively, the present results demonstrated that DEX ameliorates LPS‑induced ALI by reducing oxidative stress, mitochondrial dysfunction and mitochondrial-dependent apoptosis.

  15. Bis(bibenzyls) from liverworts inhibit lipopolysaccharide-induced inducible NOS in RAW 264.7 cells: a study of structure-activity relationships and molecular mechanism.

    PubMed

    Harinantenaina, Liva; Quang, Dang Ngoc; Takeshi, Nishizawa; Hashimoto, Toshihiro; Kohchi, Chie; Soma, Gen-Ichiro; Asakawa, Yoshinori

    2005-12-01

    The inhibition of lipopolysaccharide-induced NOS by 19 bis(bibenzyls) isolated from liverworts in RAW 264.7 macrophages was evaluated. The presence of phenolic hydroxyls and saturation at 7,8 and/or 7'/8' are required for inhibition of NO production. Among the compounds tested, marchantin A was the most potent, and its inhibitory activity was consistent with the inhibition of LPS-induced iNOS mRNA.

  16. Lipopolysaccharide-Induced Dynamic Lipid Membrane Reorganization: Tubules, Perforations, and Stacks

    PubMed Central

    Adams, Peter G.; Lamoureux, Loreen; Swingle, Kirstie L.; Mukundan, Harshini; Montaño, Gabriel A.

    2014-01-01

    Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions. PMID:24896118

  17. Epidural analgesia with morphine or buprenorphine in ponies with lipopolysaccharide (LPS)-induced carpal synovitis.

    PubMed

    Freitas, Gabrielle C; Carregaro, Adriano B; Gehrcke, Martielo I; De La Côrte, Flávio D; Lara, Valéria M; Pozzobon, Ricardo; Brass, Karin E

    2011-04-01

    This study evaluated the analgesia effects of the epidural administration of 0.1 mg/kg bodyweight (BW) of morphine or 5 μg/kg BW of buprenorphine in ponies with radiocarpal joint synovitis. Six ponies were submitted to 3 epidural treatments: the control group (C) received 0.15 mL/kg BW of a 0.9% sodium chloride (NaCl) solution; group M was administered 0.1 mg/kg BW of morphine; and group B was administered 5 μg/kg BW of buprenorphine, both diluted in 0.9% NaCl to a total volume of 0.15 mL/kg BW administered epidurally at 10 s/mL. The synovitis model was induced by injecting 0.5 ng of lipopolysaccharide (LPS) in the left or right radiocarpal joint. An epidural catheter was later introduced in the lumbosacral space and advanced up to the thoracolumbar level. The treatment started 6 h after synovitis induction. Lameness, maximum angle of carpal flexion, heart rate, systolic arterial pressure, respiratory rate, temperature, and intestinal motility were evaluated before LPS injection (baseline), 6 h after LPS injection (time 0), and 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20, and 24 h after treatments. Although the model of synovitis produced clear clinical signs of inflammation, the lameness scores in group C were different from the baseline for only up to 12 h. Both morphine and buprenorphine showed a reduction in the degree of lameness starting at 0.5 and 6 h, respectively. Reduced intestinal motility was observed at 0.5 h in group M and at 0.5 to 1 h in group B. Epidural morphine was a more effective analgesic that lasted for more than 12 h and without side effects. It was concluded that morphine would be a valuable analgesic option to alleviate joint pain in the thoracic limbs in ponies.

  18. Epidural analgesia with morphine or buprenorphine in ponies with lipopolysaccharide (LPS)-induced carpal synovitis

    PubMed Central

    Freitas, Gabrielle C.; Carregaro, Adriano B.; Gehrcke, Martielo I.; De La Côrte, Flávio D.; Lara, Valéria M.; Pozzobon, Ricardo; Brass, Karin E.

    2011-01-01

    This study evaluated the analgesia effects of the epidural administration of 0.1 mg/kg bodyweight (BW) of morphine or 5 μg/kg BW of buprenorphine in ponies with radiocarpal joint synovitis. Six ponies were submitted to 3 epidural treatments: the control group (C) received 0.15 mL/kg BW of a 0.9% sodium chloride (NaCl) solution; group M was administered 0.1 mg/kg BW of morphine; and group B was administered 5 μg/kg BW of buprenorphine, both diluted in 0.9% NaCl to a total volume of 0.15 mL/kg BW administered epidurally at 10 s/mL. The synovitis model was induced by injecting 0.5 ng of lipopolysaccharide (LPS) in the left or right radiocarpal joint. An epidural catheter was later introduced in the lumbosacral space and advanced up to the thoracolumbar level. The treatment started 6 h after synovitis induction. Lameness, maximum angle of carpal flexion, heart rate, systolic arterial pressure, respiratory rate, temperature, and intestinal motility were evaluated before LPS injection (baseline), 6 h after LPS injection (time 0), and 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20, and 24 h after treatments. Although the model of synovitis produced clear clinical signs of inflammation, the lameness scores in group C were different from the baseline for only up to 12 h. Both morphine and buprenorphine showed a reduction in the degree of lameness starting at 0.5 and 6 h, respectively. Reduced intestinal motility was observed at 0.5 h in group M and at 0.5 to 1 h in group B. Epidural morphine was a more effective analgesic that lasted for more than 12 h and without side effects. It was concluded that morphine would be a valuable analgesic option to alleviate joint pain in the thoracic limbs in ponies. PMID:21731186

  19. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth.

    PubMed

    Li, Liping; Yang, Jing; Jiang, Yao; Tu, Jiaoqin; Schust, Danny J

    2015-04-01

    Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.

  20. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN)

    PubMed Central

    Han, Yaqin; Smith, Maree T.

    2013-01-01

    Chemotherapy induced peripheral neuropathy (CIPN) is a type of neuropathic pain that is a major dose-limiting side-effect of potentially curative cancer chemotherapy treatment regimens that develops in a “stocking and glove” distribution. When pain is severe, a change to less effective chemotherapy agents may be required, or patients may choose to discontinue treatment. Medications used to alleviate CIPN often lack efficacy and/or have unacceptable side-effects. Hence the unmet medical need for novel analgesics for relief of this painful condition has driven establishment of rodent models of CIPN. New insights on the pathobiology of CIPN gained using these models are discussed in this review. These include mitochondrial dysfunction and oxidative stress that are implicated as key mechanisms in the development of CIPN. Associated structural changes in peripheral nerves include neuronopathy, axonopathy and/or myelinopathy, especially intra-epidermal nerve fiber (IENF) degeneration. In patients with CIPN, loss of heat sensitivity is a hallmark symptom due to preferential damage to myelinated primary afferent sensory nerve fibers in the presence or absence of demyelination. The pathobiology of CIPN is complex as cancer chemotherapy treatment regimens frequently involve drug combinations. Adding to this complexity, there are also subtle differences in the pathobiological consequences of commonly used cancer chemotherapy drugs, viz platinum compounds, taxanes, vincristine, bortezomib, thalidomide and ixabepilone, on peripheral nerves. PMID:24385965

  1. A Mouse Model of Fatigue Induced by Peripheral Irradiation.

    PubMed

    Wolff, Brian S; Renner, Michael A; Springer, Danielle A; Saligan, Leorey N

    2017-03-17

    Cancer-related fatigue (CRF) is a distressing and costly condition that often affects patients receiving cancer treatments, including radiation therapy. Here we describe a method using targeted peripheral irradiation to induce fatigue-like behavior in mice. With appropriate shielding, the irradiation targets the lower abdominal/pelvic region of the mouse, sparing the brain, in an effort to model radiation treatment received by individuals with pelvic cancers. We deliver an irradiation dose that is sufficient to induce fatigue-like behavior in mice, measured by voluntary wheel-running activity (VWRA), without causing obvious morbidity. Since wheel running is a normal, voluntary behavior in mice, its use should have little confounding effect on other behavioral tests or biological measures. Hence, wheel running can be used as a feasible outcome measure in understanding the behavioral and biological correlates of fatigue. CRF is a complex condition with frequent comorbidities, and likely has causes related both to cancer and its various treatments. The methods described in this paper are useful for investigating radiation-induced changes that contribute to the development of CRF and, more generally, to explore the biological networks that can explain the development and persistence of a peripherally-triggered but centrally-driven behavior like fatigue.

  2. Chemotherapy-induced Peripheral Neuropathy | Division of Cancer Prevention

    Cancer.gov

    It usually starts in the hands and/or feet and creeps up the arms and legs. Sometimes it feels like a tingling or numbness. Other times, it’s more of a shooting and/or burning pain or sensitivity to temperature. It can include sharp, stabbing pain, and it can make it difficult to perform normal day-to-day tasks like buttoning a shirt, sorting coins in a purse, or walking. An estimated 30 to 40 percent of cancer patients treated with chemotherapy experience these symptoms, a condition called chemotherapy-induced peripheral neuropathy (CIPN). |

  3. Concomitant lipopolysaccharide-induced transfer of blood-derived components including immunoglobulins into milk.

    PubMed

    Lehmann, M; Wellnitz, O; Bruckmaier, R M

    2013-02-01

    During a mammary immune response, the integrity of the blood-milk barrier is negatively affected and becomes leaky. The aim of the present study was to demonstrate the blood origin, and to investigate changes in the concentration, of various constituents including immunoglobulins in blood and milk during the early phase of lipopolysaccharide (LPS)-induced mastitis. Five lactating dairy cows received continuous β-hydroxybutyrate (BHBA) clamp infusions to maintain elevated BHBA blood concentrations (1.5 to 2.0 mmol/L) from 48 h before and 8h after LPS administration. One udder quarter was infused with 200 μg of Escherichia coli LPS. A second quarter served as control. Milk and blood samples were taken hourly for 8h postchallenge (PC). The somatic cell count in LPS-challenged quarters was increased from 4h PC to the end of the experiment compared with control quarters. In LPS-challenged quarters, l-lactate, BHBA, lactate dehydrogenase (LDH), IgG(1), and IgG(2) were increased at 3h PC and remained elevated until the end of experiment (8h PC) compared with control quarters. In addition, the optical density values in milk in a nonquantitative ELISA for antibodies directed against bluetongue virus (used as a measure of nonspecific antibody transfer; all animals were vaccinated) increased and, thus, indicates an increase in these antibodies in response to LPS treatment. l-Lactate concentration also increased in blood 2h PC and in the milk of control quarters during the experiment from 3h PC. A second experiment was conducted in vitro to investigate a possible contribution from destructed milk cells to l-lactate concentration and activity of LDH in milk. Aliquots of milk samples (n=8) were frozen (-20°C) or disrupted with ultrasound, respectively. Freeze thawing and ultrasound treatment increased LDH in milk samples, but had no effect on l-lactate concentrations. Results suggest that intramammary infusion of LPS induces a systemic response, as evidenced by an elevation

  4. [Role of endogenous hydrogen sulfide in pulmonary hypertension induced by lipopolysaccharide].

    PubMed

    Huang, Xin-Li; Zhou, Xiao-Hong; Wei, Peng; Zhang, Xiao-Jing; Meng, Xiang-Yan; Xian, Xiao-Hui

    2008-04-25

    The purpose of the present study was to explore the role of endogenous hydrogen sulfide (H2S) in pulmonary arterial hypertension induced by endotoxin. Adult male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group (0.5 mL/kg body weight of normal saline, i.v.), lipopolysaccharide (LPS)-treated group (5 mg/kg body weight of LPS, i.v.), LPS + NaHS (5 mg/kg body weight of LPS, i.v., and 28 μmol/kg body weight of NaHS, i.p.) and LPS + PPG group (5 mg/kg body weight of LPS, i.v., and 30 μmol/kg body weight of PPG, i.p.). Rats were anesthetized with 20% urethane (1 g/kg body weight, i.p.). A polyethylene catheter was inserted into the pulmonary artery through the right external jugular vein to measure the mean pulmonary arterial pressure (mPAP) for 7 h, and then the pulmonary artery was isolated rapidly by the method described previously. Pulmonary arterial activity was detected. H2S concentration and cystathionine γ-lyase (CSE) activity in pulmonary artery tissues were determined by biochemical method. CSE mRNA expression was detected by competitive reverse transcriptase-polymerase chain reaction (RT-PCR). Compared with control, LPS significantly increased mPAP [(1.82±0.29) kPa vs (1.43±0.26) kPa, P<0.01], decreased H2S production [(26.33±7.84) vs (42.92±8.73) pmol/g wet tissue per minute, P<0.01), and reduced endothelium-dependent relaxation response [(75.72±7.22)% vs (86.40±4.40) %, P<0.01) induced by ACh (1×10(-6) mol/L). These effects were partly reversed by co-administration of NaHS and enhanced by co-administration of PPG. Both CSE activity and CSE mRNA expression were consistent with H2S production. It is suggested that the inhibitory effect of LPS on endothelium-dependent relaxation results in pulmonary hypertension, which might be mediated through H(2)S.

  5. autoregulatory role of endothelium-derived nitric oxide (NO) on Lipopolysaccharide-induced vascular inducible NO synthase expression and function.

    PubMed

    Vo, Phuong A; Lad, Bhavini; Tomlinson, James A P; Francis, Stephanie; Ahluwalia, Amrita

    2005-02-25

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.

  6. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    PubMed Central

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  7. Effects of 47C allele (rs4880) of the SOD2 gene in the production of intracellular reactive species in peripheral blood mononuclear cells with and without lipopolysaccharides induction.

    PubMed

    Paludo, F J O; Bristot, I J; Alho, C S; Gelain, D P; Moreira, J C F

    2014-02-01

    Challenging of peripheral blood mononuclear cells (PBMCs) with lipopolysaccharides (LPS) has been shown to activate monocytes and macrophages, leading to the production of pro-inflammatory cytokines and reactive oxygen species (ROS). Manganese superoxide dismutase (MnSOD) is an important enzyme that may play a central role in the response to oxidative stress. 47C> T SNP of the SOD2 gene, the -9Val MnSOD is less efficient than the -9Ala version. We have previously characterized the cellular redox status of human PBMCs expressing either -9Ala (CC) or -9Val (TT) SOD2 and analyzed the responses of these cells to oxidative stress induced by LPS. Due to the observed alterations in the activities of these antioxidant enzymes, we decided to investigate their immunocontent and analyze the production of intracellular oxidants, as well as any resulting DNA damage. PBMCs were isolated from the blood of 30 healthy human volunteers (15 volunteers per allele). We then analyzed levels of nitrite, DNA damage by comet assay, TNF-α, carboxymethyl lysine and nitrotyrosine and assessed production of intracellular reactive species by the DCFH-DA-based assay and western blots were used to analyze protein levels. Our results show that there occurs an increase in nitric oxide production in both allele groups after challenge with LPS. A significant increase in DNA damage was observed in PBMCs after an 8-h LPS challenge. Cells expressing the SOD2 47C allele quickly adapt to a more intense metabolism by upregulating cellular detoxification mechanisms. However, when these cells are stressed over a long period, they accumulate a large quantity of toxic metabolic byproducts.

  8. Lipopolysaccharides of Pectobacterium atrosepticum and Pseudomonas corrugata induce different defence response patterns in tobacco, tomato, and potato.

    PubMed

    Desender, S; Klarzynski, O; Potin, P; Barzic, M-R; Andrivon, D; Val, F

    2006-09-01

    Lipopolysaccharides (LPS), ubiquitous cell surface components of Gram-negative bacteria, are directly implicated in plant/pathogen interactions. However, their perception by the plant, the subsequent signal transduction in both compatible and incompatible interactions, as well as the defence reactions induced in compatible interactions are as yet poorly understood. We focused on biochemical and physiological reactions induced in cell suspensions of three Solanaceae species (tobacco, tomato, and potato) by purified lipopolysaccharides from PECTOBACTERIUM ATROSEPTICUM (PA), a pathogen of potato, and PSEUDOMONAS CORRUGATA (PSC), a pathogen of tomato. LPS PA and LPS PSC caused a significant acidification of potato, tomato, and tobacco extracellular media, whereas laminarin (a linear beta-1,3 oligosaccharide elicitor) induced an alkalinisation in tobacco and tomato, but not in potato cell suspensions. None of the two LPS induced the formation of active oxygen species in any of the hosts, while laminarin induced H (2)O (2) production in cells of tobacco but not of tomato and potato. In tomato cells, LPS PA and LPS PSC induced a strong but transitory stimulation of lipoxygenase activity, whereas laminarin induced a stable or slightly increasing LOX activity over the first 24 h of contact. In tobacco, LOX activity was not triggered by either LPS, but significantly increased following treatment with laminarin. In potato, neither LPS nor laminarin induced LOX activity, in contrast with concentrated culture filtrate of PHYTOPHTHORA INFESTANS (CCF). These results demonstrate that LPS, as well as laminarin, are perceived in different ways by SOLANACEAE species, and possibly cultivars. They also suggest that defence responses modulated by LPS depend on plant genotypes rather than on the type of interaction.

  9. Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice

    SciTech Connect

    Arteel, Gavin E. Guo, Luping; Schlierf, Thomas; Beier, Juliane I.; Kaiser, J. Phillip; Chen, Theresa S.; Liu, Marsha; Conklin, Daniel J.; Miller, Heather L.; Montfort, Claudia von; States, J. Christopher

    2008-01-15

    Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.

  10. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse.

    PubMed

    Li, Ling; Bhatia, Madhav; Zhu, Yi Zhun; Zhu, Yi Chun; Ramnath, Raina Devi; Wang, Zhong Jing; Anuar, Farhana Binte Mohammed; Whiteman, Matthew; Salto-Tellez, Manuel; Moore, Philip K

    2005-07-01

    Hydrogen sulfide (H2S) is synthesized in the body from L-cysteine by several enzymes including cystathionine-gamma-lyase (CSE). To date, there is little information about the potential role of H2S in inflammation. We have now investigated the part played by H2S in endotoxin-induced inflammation in the mouse. E. coli lipopolysaccharide (LPS) administration produced a dose (10 and 20 mg/kg ip)- and time (6 and 24 h)-dependent increase in plasma H2S concentration. LPS (10 mg/kg ip, 6 h) increased plasma H2S concentration from 34.1 +/- 0.7 microM to 40.9 +/- 0.6 microM (n=6, P<0.05) while H2S formation from added L-cysteine was increased in both liver and kidney. CSE gene expression was also increased in both liver (94.2+/-2.7%, n=6, P<0.05) and kidney (77.5+/-3.2%, n=6, P<0.05). LPS injection also elevated lung (148.2+/-2.6%, n=6, P<0.05) and kidney (78.8+/-8.2%, n=6, P<0.05) myeloperoxidase (MPO, a marker of tissue neutrophil infiltration) activity alongside histological evidence of lung, liver, and kidney tissue inflammatory damage. Plasma nitrate/nitrite (NOx) concentration was additionally elevated in a time- and dose-dependent manner in LPS-injected animals. To examine directly the possible proinflammatory effect of H2S, mice were administered sodium hydrosulfide (H2S donor drug, 14 micromol/kg ip) that resulted in marked histological signs of lung inflammation, increased lung and liver MPO activity, and raised plasma TNF-alpha concentration (4.6+/-1.4 ng/ml, n=6). In contrast, DL-propargylglycine (CSE inhibitor, 50 mg/kg ip), exhibited marked anti-inflammatory activity as evidenced by reduced lung and liver MPO activity, and ameliorated lung and liver tissue damage. In separate experiments, we also detected significantly higher (150.5+/-43.7 microM c.f. 43.8+/-5.1 microM, n=5, P<0.05) plasma H2S levels in humans with septic shock. These findings suggest that H2S exhibits proinflammatory activity in endotoxic shock and suggest a new approach to the development of

  11. Systemic sclerosis induces pronounced peripheral vascular dysfunction characterized by blunted peripheral vasoreactivity and endothelial dysfunction

    PubMed Central

    Frech, Tracy; Walker, Ashley E.; Barrett-O’Keefe, Zachary; Hopkins, Paul N.; Richardson, Russell S.; Wray, D. Walter; Donato, Anthony J.

    2016-01-01

    Systemic sclerosis (SSc) vasculopathy can result in a digital ulcer (DU) and/or pulmonary arterial hypertension (PAH). We hypothesized that bedside brachial artery flow-mediated dilation (FMD) testing with duplex ultrasound could be used in SSc patients to identify features of patients at risk for DU or PAH. Thirty-eight SSc patients were compared to 52 age-matched healthy controls from the VAMC Utah Vascular Research Laboratory. Peripheral hemodynamics, arterial structure, and endothelial function were assessed by duplex ultrasound. A blood pressure cuff was applied to the forearm and 5-min ischemia was induced. Post-occlusion, brachial artery vascular reactivity (peak hyperemia/area under the curve [AUC]), shear rate, and endothelial function (FMD) were measured. SSc patients had smaller brachial artery diameters (p<0.001) and less reactive hyperemia (p<0.001), peak shear rate (p= 0.03), and brachial artery FMD (p<0.001) compared with healthy controls. Brachial artery FMD was lower (p<0.05) in SSc patients with DU. Tertile analysis suggested the 2 lower FMD tertiles (<5.40 %) had a 40–50 % chance of presenting with DU while the SSc patients with highest FMD tertile (>5.40 %) had less than 15 % chance of DU. All brachial artery FMD measurements were similar between SSc patients with and without PAH (all p>0.05). Compared to healthy controls, SSc patients had significantly smaller brachial artery diameter and blunted peripheral vascular reactivity and endothelial function. SSc patients with DU have even greater impairments in endothelial function compared to those without DU. FMD testing has clinical utility to identify SSc patients at risk for DU. PMID:25511849

  12. Lipopolysaccharide Induces a Significant Increase in Expression of Iron Regulatory Hormone Hepcidin in the Cortex and Substantia Nigra in Rat Brain

    PubMed Central

    Wang, Qin; Du, Fang; Qian, Zhong-Ming; Ge, Xiao Hu; Zhu, Li; Yung, Wing Ho; Yang, Lei; Ke, Ya

    2008-01-01

    Hepcidin plays an essential role in maintaining normal iron homeostasis outside the brain. This recently discovered iron regulation hormone is predominantly expressed in the liver, and regulated by iron and hypoxia. As an antimicrobial peptide, this hormone is also elevated during infections and inflammation. In this study we investigated the expression of hepcidin mRNA and protein in different brain regions, including the cortex, hippocampus, striatum, and substantia nigra, and the effects of lipopolysaccharide (LPS) on the expression of hepcidin using quantitative real-time RT-PCR and immunofluorescence analysis. Our data provided further evidence for the existence of hepcidin in all the regions we examined. We also demonstrated for the first time that LPS administration by iv injection can regulate the expression of hepcidin mRNA and protein not only in peripheral organs such as the liver, but also in the brain. LPS induced a significant increase in the expression of hepcidin mRNA and protein in the cortex and substantia nigra, but not in the hippocampus and striatum, indicating a regionally specific regulation of LPS on hepcidin in the brain. The relevant mechanisms and the functions of hepcidin in the brain remain to be elucidated. PMID:18450970

  13. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2,3-dioxygenase activation.

    PubMed

    André, Caroline; Dinel, Anne-Laure; Ferreira, Guillaume; Layé, Sophie; Castanon, Nathalie

    2014-10-01

    Obesity is associated with a high prevalence of mood symptoms and cognitive dysfunctions that emerges as significant risk factors for important health complications such as cardiovascular diseases and type 2 diabetes. It is therefore important to identify the dynamic of development and the pathophysiological mechanisms underlying these neuropsychiatric symptoms. Obesity is also associated with peripheral low-grade inflammation and increased susceptibility to immune-mediated diseases. Excessive production of proinflammatory cytokines and the resulting activation of the brain tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) have been shown to promote neurobehavioral complications, particularly depression. In that context, questions arise about the impact of diet-induced obesity on the onset of neuropsychiatric alterations and the increased susceptibility to immune-mediated diseases displayed by obese patients, particularly through brain IDO activation. To answer these questions, we used C57Bl/6 mice exposed to standard diet or western diet (WD; consisting of palatable energy-dense food) since weaning and for 20 weeks. We then measured inflammatory and behavioral responses to a systemic immune challenge with lipopolysaccharide (LPS) in experimental conditions known to alter cognitive and emotional behaviors independently of any motor impairment. We first showed that in absence of LPS, 9 weeks of WD is sufficient to impair spatial recognition memory (in the Y-maze). On the other hand, 18 weeks of WD increased anxiety-like behavior (in the elevated plus-maze), but did not affect depressive-like behavior (in the tail-suspension and forced-swim tests). However, 20 weeks of WD altered LPS-induced depressive-like behavior compared to LPS-treated lean mice and exacerbated hippocampal and hypothalamic proinflammatory cytokine expression and brain IDO activation. Taken together, these results show that WD exposure alters cognition and anxiety in unstimulated

  14. Inhibitory effects of Cnidium monnieri fruit extract on pulmonary inflammation in mice induced by cigarette smoke condensate and lipopolysaccharide.

    PubMed

    Kwak, Ho-Geun; Lim, Heung-Bin

    2014-09-01

    The aim of this study was to investigate the inhibitory effect of Cnidium monnieri fruit (CM) extracts on pulmonary inflammation induced in mice by cigarette smoke condensate (CSC) and lipopolysaccharide (LPS). Pulmonary inflammation was induced by intratracheal instillation of LPS and CSC five times within 12 days. CM extract was administered orally at a dose of 50 or 200 mg·kg(-1). The number of inflammatory cells in the bronchoalveolar lavage fluid was counted using a fluorescence activated cell sorter. Inflammatory mediator levels were determined by enzyme-linked immunosorbent assay. The administration of LPS and CSC exacerbated airway hyper-responsiveness (AHR) and induced an accumulation of inflammatory cells and mediators, and led to histological changes. However, these responses are modulated by treatment with CM, and the treatment with CM extract produces similar or more extensive results than the treatment with cyclosporin A (CSA). CM extract may have an inhibitory effect on pulmonary inflammation related with chronic obstructive pulmonary disease.

  15. Functional characterization of tumor necrosis factor superfamily 15 (TNFSF15) induced by lipopolysaccharides and Eimeria infection.

    PubMed

    Park, Soon S; Lillehoj, Hyun S; Hong, Yeong Ho; Lee, Sung Hyen

    2007-01-01

    A full-length cDNA encoding chicken tumor necrosis factor superfamily 15 (TNFSF15) was isolated and its functional role was investigated. TNFSF15 transcripts were primarily expressed in spleen, liver, intestinal intraepithelial lymphocytes (IEL), peripheral blood lymphocytes and bursa. In vitro infection of HTC macrophages with three species of Eimeria sporozoites induced TNFSF15 gene expression. In vivo experiments revealed that TNFSF15 gene was highly increased following primary infections with Eimeria acervulina or Eimeria maxima. In contrast, no consistent changes in transcript levels were seen following primary infection with Eimeria tenella, or following secondary infection with any of the three Eimeria species. Following infection with E. acervulina and E. maxima, TNFSF15 transcripts were primarily expressed in intestinal CD4(+) and TCR2(+) IEL, respectively. A dose-dependent cytotoxic effect of recombinant TNFSF15 protein was observed on HTC and LSCC-RP9 tumor cells. These results indicate that TNFSF15 plays an important role in local inflammatory response to Eimeria.

  16. Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites

    SciTech Connect

    Bonin, Camila P.; Baccarin, Raquel Y.A.; Nostell, Katarina; Nahum, Laila A.; Fossum, Caroline; Camargo, Maristela M. de

    2013-03-08

    Highlights: ► Chimpanzees, horses and humans have regions of similarity on TLR4 and MD2 promoters. ► Rodents have few regions of similarity on TLR4 promoter when compared to primates. ► Conserved NFkB binding sites were found in the promoters of TLR4 and MD2. ► LPS-induced inhibition of TLR4 transcription is reversed by dexamethasone. ► LPS-induced transcription of MD2 is inhibited by dexamethasone. -- Abstract: Engagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explaining these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2.

  17. Lipopolysaccharide of Aggregatibacter actinomycetemcomitans induces the expression of chemokines MCP-1, MIP-1α, and IP-10 via similar but distinct signaling pathways in murine macrophages.

    PubMed

    Park, Ok-Jin; Cho, Min-Kyung; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium frequently isolated from lesions of patients with localized aggressive periodontitis. Lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria, stimulates innate immune cells via Toll-like receptor 4 (TLR4) to initiate inflammatory responses. In this study, we purified LPS from A. actinomycetemcomitans (AaLPS) and investigated its ability to induce the expression of chemokines, which play an important role in recruitment of leukocytes to the infection site. AaLPS induced the expression of chemokines, MCP-1, MIP-1α, and IP-10 in murine macrophages, leading to the infiltration of peripheral blood mononuclear cells in a transwell system. Although TLR4 was essential for the induction of all these chemokines by AaLPS, MCP-1 and MIP-1α expressions were MyD88-dependent, but IP-10 expression was MyD88-independent, as determined using macrophages from mice deficient in TLR4 or MyD88. Furthermore, the activation of ERK and JNK were necessary for the expression of MCP-1 and MIP-1α, whereas p38 MAP kinase and JNK activations were required for IP-10 expression. In addition, IFN-β/STAT1 signaling was exclusively involved in IP-10 expression but not in MCP-1 or MIP-1α expression. AaLPS also activated the transcription factors, NF-κB, AP-1, NF-IL6, and ISRE, all of which are involved in chemokine gene expression. These results suggest that AaLPS induces the expression of chemokines MCP-1, MIP-1α, and IP-10 through TLR4 in murine macrophages. Further, the induction of MCP-1 and MIP-1α requires MyD88, ERK, and JNK, whereas the induction of IP-10 requires JNK, p38 MAP kinase, and IFN-β/STAT1.

  18. Cordycepin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via activating amp-activated protein kinase (AMPK) signaling.

    PubMed

    Zhang, Jian-Li; Xu, Ying; Shen, Jie

    2014-07-08

    Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin alleviated TNFα production in KD patients' PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls' PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK) signaling in both KD patients' PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C) or by siRNA depletion alleviated cordycepin's effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 cells or healthy controls' PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  19. Lysine-specific gingipain promotes lipopolysaccharide- and active-vitamin D3-induced osteoclast differentiation by degrading osteoprotegerin.

    PubMed

    Yasuhara, Rika; Miyamoto, Yoichi; Takami, Masamichi; Imamura, Takahisa; Potempa, Jan; Yoshimura, Kentaro; Kamijo, Ryutaro

    2009-04-01

    Porphyromonas gingivalis is one of the major pathogens of periodontitis, a condition characterized by excessive alveolar bone resorption by osteoclasts. The bacterium produces cysteine proteases called gingipains, which are classified according to their cleavage-site specificity into Kgps (lysine-specific gingipains) and Rgps (arginine-specific gingipains). In the present study we examined the effects of gingipains on osteoclast differentiation. In co-cultures of mouse bone-marrow cells and osteoblasts, formation of multinucleated osteoclasts induced by 1alpha,25(OH)(2)D(3) (1alpha,25-dihydroxyvitamin D(3)) was augmented by Kgp but not by RgpB. A physiological concentration (0.1 nM) of 1alpha,25(OH)(2)D(3) induced the osteoclast formation in the presence of 100 nM Kgp to an extent comparable with that induced by 10 nM 1alpha,25(OH)(2)D(3). Kgp also enhanced osteoclastogenesis induced by various microbial components, including lipopolysaccharide. Combined use of Kgp and 1alpha,25(OH)(2)D(3) or lipopolysaccharide also increased the number of resorption pits developed on dentin slices, indicating that the osteoclasts formed in the presence of Kgp possess bone-resorbing activity. The enhanced osteoclastogenesis by Kgp was correlated with a depletion of osteoprotegerin in co-culture medium and was proteolytic-activity-dependent, since benzyloxycarbonyl-L-phenylalanyl-L-lysylacycloxyketone, an inhibitor of Kgp, completely abolished osteoclastogenesis induced by Kgp. Kgp digested osteoprotegerin, since its recombinant protein was susceptible to degradation by Kgp in the presence of serum. As a result, Kgp did not augment osteoclastogenesis in co-cultures of osteoprotegerin-deficient osteoblasts and bone-marrow cells. In addition, enhanced osteoclastogenesis by Kgp was abolished by an excess amount of recombinant osteoprotegerin. These findings suggest that degradation of osteoprotegerin is one of the mechanisms underlying promotion of osteoclastogenesis by Kgp.

  20. Trans-basement membrane migration of eosinophils induced by LPS-stimulated neutrophils from human peripheral blood in vitro

    PubMed Central

    Nishihara, Fuyumi; Kobayashi, Takehito; Noguchi, Toru; Araki, Ryuichiro; Uchida, Yoshitaka; Soma, Tomoyuki; Nagata, Makoto

    2015-01-01

    In the airways of severe asthmatics, an increase of neutrophils and eosinophils is often observed despite high-dose corticosteroid therapy. We previously reported that interleukin-8-stimulated neutrophils induced trans-basement membrane migration (TBM) of eosinophils, suggesting the link between neutrophils and eosinophils. Concentrations of lipopolysaccharide (LPS) in the airway increase in severe asthma. As neutrophils express Toll-like receptor (TLR)4 and can release chemoattractants for eosinophils, we investigated whether LPS-stimulated neutrophils modify eosinophil TBM. Neutrophils and eosinophils were isolated from peripheral blood of healthy volunteers and severe asthmatics. Eosinophil TBM was examined using a modified Boyden's chamber technique. Eosinophils were added to the upper compartment, and neutrophils and LPS were added to the lower compartment. Migrated eosinophils were measured by eosinophil peroxidase assays. LPS-stimulated neutrophils induced eosinophil TBM (about 10-fold increase), although LPS or neutrophils alone did not. A leukotriene B4 receptor antagonist, a platelet-activating factor receptor antagonist or an anti-TLR4 antibody decreased eosinophil TBM enhanced by LPS-stimulated neutrophils by almost half. Neutrophils from severe asthmatics induced eosinophil TBM and lower concentrations of LPS augmented neutrophil-induced eosinophil TBM. These results suggest that the combination of neutrophils and LPS leads eosinophils to accumulate in the airways, possibly involved the pathogenesis of severe asthma. PMID:27730145

  1. Effect of Tridax procumbens on liver antioxidant defense system during lipopolysaccharide-induced hepatitis in D-galactosamine sensitised rats.

    PubMed

    Ravikumar, Vilwanathan; Shivashangari, Kanchi Subramanian; Devaki, Thiruvengadam

    2005-01-01

    The present study was carried out to assess the effect of chloroform insoluble fraction of ethanolic extract of Tridax procumbens (TP) against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced hepatitis in rats. Induction of rats with D-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight) led to a marked increase in lipid peroxidation as measured by thiobarbituric acid reactive substances (TBARS) in liver. Further there was a decline in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferase and the levels of non-enzymic antioxidants namely reduced glutathione, vitamin C and vitamin E. These biochemical alterations were normalised upon pretreatment with TP extract. Thus, the above results suggest that TP (300 mg/kg body weight orally for 10 days) is very effective in allievating the D-GalN/LPS-induced oxidative stress suggesting its antioxidant property.

  2. Velutin reduces lipopolysaccharide-induced proinflammatory cytokine TNFa and IL-6 production by inhibiting NF-Kappa B activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown that some flavonoids are modulators of proinflammatory cytokine expression. Velutin, an uncommon flavone isolated from acai (Euterpe oleraceas) berry, was tested for the effects in reducing LPS-induced TNFa and IL-6 production in RAW 264.7 peripheral macrophages and periton...

  3. Effects of tylosin, tilmicosin and tulathromycin on inflammatory mediators in bronchoalveolar lavage fluid of lipopolysaccharide-induced lung injury.

    PubMed

    Er, Ayse; Yazar, Enver

    2012-12-01

    The aim of this study was to determine the anti-inflammatory effects of macrolides through kinetic parameters in bronchoalveolar lavage fluid (BALF) of lipopolysaccharide-induced lung injury. Rats were divided into four groups: lipopolysaccharide (LPS), LPS + tylosin, LPS + tilmicosin and LPS + tulathromycin. BALF samples were collected at sampling times. TNF, IL-1β, IL-6, IL-10 and 13,14-dihydro-15-keto-prostaglandin F2α (PGM) and C-reactive protein (CRP) were analysed. Area under the curve (AUC) and maximum plasma concentration (Cmax) values of inflammatory mediators were determined by a pharmacokinetic computer programme. When inflammatory mediator concentrations were compared between the LPS group and other groups for each sampling time, the three macrolides had no pronounced depressor effect on cytokine levels, but they depressed PGM and CRP levels. In addition, tylosin and tilmicosin decreased the AUC0-24 level of TNF, while tilmicosin decreased the AUC0-24 level of IL-10. Tylosin and tulathromycin decreased the AUC0-24 of PGM, and all three macrolides decreased the AUC0-24 of CRP. Especially tylosin and tulathromycin may have more expressed anti-inflammatory effects than tilmicosin, via depressing the production of inflammatory mediators in the lung. The AUC may be used for determining the effects of drugs on inflammation. In this study, the antiinflammatory effects of these antibiotics were evaluated with kinetic parameters as a new and different approach.

  4. IFN-τ Alleviates Lipopolysaccharide-Induced Inflammation by Suppressing NF-κB and MAPKs Pathway Activation in Mice.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Rui, Guangze; Qiu, Changwei; Guo, Mengyao; Deng, Ganzhen

    2016-06-01

    IFN-τ, which is a type I interferon with low cytotoxicity, is defined as a pregnancy recognition signal in ruminants. Type I interferons have been used as anti-inflammatory agents, but their side effects limit their clinical application. The present study aimed to determine the anti-inflammatory effects of IFN-τ in a lipopolysaccharide-stimulated acute lung injury (ALI) model and in RAW264.7 cells and to confirm the mechanism of action involved. The methods used included histopathology, measuring the lung wet/dry ratio, determining the myeloperoxidase activity, ELISA, qPCR, and western blot. The results revealed that IFN-τ greatly ameliorated the infiltration of inflammatory cells and the expression of TNF-α, IL-1β, and IL-6. Further analysis revealed that IFN-τ down-regulated the expression of TLR-2 and TLR-4 mRNA and the activity of the NF-κB and MAPK pathways both in a lipopolysaccharide-induced ALI model and in RAW264.7 cells. The results demonstrated that IFN-τ suppressed the levels of pro-inflammatory cytokines by inhibiting the phosphorylation of the NF-κB and MAPK pathways. Thus, IFN-τ may be an optimal target for the treatment of inflammatory diseases.

  5. 12-oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia.

    PubMed

    Taki-Nakano, Nozomi; Kotera, Jun; Ohta, Hiroyuki

    2016-05-13

    Jasmonates are plant lipid-derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)-induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDA suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling.

  6. Lipopolysaccharide-induced anhedonia is abolished in male serotonin transporter knockout rats: an intracranial self-stimulation study.

    PubMed

    van Heesch, Floor; Prins, Jolanda; Konsman, Jan Pieter; Westphal, Koen G C; Olivier, Berend; Kraneveld, Aletta D; Korte, S Mechiel

    2013-03-01

    A growing body of evidence suggests that pro-inflammatory cytokines contribute to the pathogenesis of depression. Previously, it has been shown that cytokines (e.g. interferon-α therapy) induce major depression in humans. In addition, administration of the cytokine-inducer lipopolysaccharide (LPS) provokes anhedonia (i.e. the inability to experience pleasure) in rodents. Furthermore, serum pro-inflammatory cytokine levels are increased in depressed patients. Nevertheless, the etiology of cytokine-induced depression is largely unknown. Previously, it has been shown that selective serotonin re-uptake inhibitors decrease serum pro-inflammatory cytokine levels and that pro-inflammatory cytokines increase activity of the serotonin transporter (SERT). The purpose of this study was to explore the effect of partial and complete lack of the SERT in LPS-induced anhedonia assessed in the intracranial self-stimulation (ICSS) paradigm. A single intraperitoneal injection of LPS was used to induce a pro-inflammatory immune response in male serotonin transporter wild type (SERT(+/+)), heterozygous (SERT(+/-)) and knockout (SERT(-/-)) rats. Body weight and ICSS thresholds were measured daily. Although LPS reduced body weight in all genotypes, loss of body weight was less pronounced in SERT(-/-) compared to SERT(+/+) rats. Remarkably, LPS-induced anhedonia was totally abolished in SERT(-/-) rats and as expected was still present in SERT(+/+) and to a lesser extent in SERT(+/-) rats. Therefore, it is concluded that an intact SERT function is needed for pro-inflammatory cytokine-induced anhedonia and weight loss in rats.

  7. Ocular inflammation induces trigeminal pain, peripheral and central neuroinflammatory mechanisms.

    PubMed

    Launay, Pierre-Serge; Reboussin, Elodie; Liang, Hong; Kessal, Karima; Godefroy, David; Rostene, William; Sahel, Jose-Alain; Baudouin, Christophe; Melik Parsadaniantz, Stéphane; Reaux Le Goazigo, Annabelle

    2016-04-01

    Ocular surface diseases are among the most frequent ocular pathologies, with prevalence ranging from 20% of the general population. In addition, ocular pain following corneal injury is frequently observed in clinic. The aim of the study was to characterize the peripheral and central neuroinflammatory process in the trigeminal pathways in response to cornea alteration induced by chronic topical instillations of 0.2% benzalkonium chloride (BAC) in male C57BL/6J mice. In vitro BAC induced neurotoxicity and increases neuronal (FOS, ATF3) and pro-inflammatory (IL-6) markers in primary mouse trigeminal ganglion culture. BAC-treated mice exhibited 7days after the treatment reduced aqueous tear production and increased inflammatory cell infiltration in the cornea. Hypertonic saline-evoked eye wipe behavior was enhanced in BAC-treated animals that exhibited increased FOS, ATF3 and Iba1 immunoreactivity in the trigeminal ganglion. Ocular inflammation is associated with a significant increase in IL-6 and TNF-α mRNA expression in the trigeminal ganglion. We reported a strong increase in FOS and Iba1 positive cells in particular in the sensory trigeminal complex at the ipsilateral interpolaris/caudalis (Vi/Vc) transition and Vc/upper cervical cord (Vc/C1) regions. In addition, activated microglial cells were tightly wrapped around activated FOS neurons in both regions and phosphorylated p38 mitogen-activated protein kinase was markedly enhanced specifically in microglial cells during ocular inflammation. Similar data were obtained in the facial motor nucleus. These neuroanatomical data correlated with the increase in mRNA expression of pro-inflammatory (TNF-α, IL-6, CCL2) and neuronal (FOS and ATF3) markers. Interestingly, the suppression of corneal inflammation 10days following the end of BAC treatment resulted in a marked attenuation of peripheral and central changes observed in pathological conditions. This study provides the first demonstration that corneal inflammation

  8. Lipopolysaccharide-induced brain activation of the indoleamine 2,3-dioxygenase and depressive-like behavior are impaired in a mouse model of metabolic syndrome.

    PubMed

    Dinel, Anne-Laure; André, Caroline; Aubert, Agnès; Ferreira, Guillaume; Layé, Sophie; Castanon, Nathalie

    2014-02-01

    Although peripheral low-grade inflammation has been associated with a high incidence of mood symptoms in patients with metabolic syndrome (MetS), much less is known about the potential involvement of brain activation of cytokines in that context. Recently we showed in a mouse model of MetS, namely the db/db mice, an enhanced hippocampal inflammation associated with increased anxiety-like behavior (Dinel et al., 2011). However, depressive-like behavior was not affected in db/db mice. Based on the strong association between depressive-like behavior and cytokine-induced brain activation of indoleamine 2,3-dioxygenase (IDO), the enzyme that metabolizes tryptophan along the kynurenine pathway, these results may suggest an impairment of brain IDO activation in db/db mice. To test this hypothesis, we measured the ability of db/db mice and their healthy db/+ littermates to enhance brain IDO activity and depressive-like behavior after a systemic immune challenge with lipopolysaccharide (LPS). Here we show that LPS (5 μg/mouse) significantly increased depressive-like behavior (increased immobility time in a forced-swim test, FST) 24h after treatment in db/+ mice, but not in db/db mice. Interestingly, db/db mice also displayed after LPS treatment blunted increase of brain kynurenine/tryptophan ratio compared to their db/+ counterparts, despite enhanced induction of hippocampal cytokine expression (interleukin-1β, tumor necrosis factor-α). Moreover, this was associated with an impaired effect of LPS on hippocampal expression of the brain-derived neurotrophic factor (BDNF) that contributes to mood regulation, including under inflammatory conditions. Collectively, these data indicate that the rise in brain tryptophan catabolism and depressive-like behavior induced by innate immune system activation is impaired in db/db mice. These findings could have relevance in improving the management and treatment of inflammation-related complications in MetS.

  9. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells.

    PubMed

    Yoshioka, Yasuhiro; Sugino, Yuta; Tozawa, Azusa; Yamamuro, Akiko; Kasai, Atsushi; Ishimaru, Yuki; Maeda, Sadaaki

    2016-02-01

    Dopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208-243) and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ), accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  10. The dental monomer hydroxyethyl methacrylate (HEMA) counteracts lipopolysaccharide-induced IL-1β release-Possible role of glutathione.

    PubMed

    Bolling, Anette Kocbach; Solhaug, Anita; Morisbak, Else; Holme, Jørn A; Samuelsen, Jan Tore

    2017-02-07

    Methacrylate monomers, like 2-hydroxyethyl methacrylate (HEMA), are common components of resin based dental materials. Leakage of unpolymerized monomers after placement and curing leads to human exposure. HEMA is known to inhibit lipopolysaccharide (LPS) induced cytokine release. In this study we explore a possible role of the antioxidant glutathione (GSH) in this effect. In the RAW 264.7 murine macrophage cell line, HEMA (<2mM) did not induce cell death, but reduced cellular GSH levels, increased cellular ROS and decreased the IL-1β release from LPS-stimulated cells. Moreover, the IL-1β mRNA levels were reduced after 3-6h exposure, suggesting transcriptional effects of HEMA. The GSH modulators butylsulfoximine (BSO; inhibitor of GSH synthesis) and 2-oxothiazolidine-4-carboxylate (OTC; Cysteine precursor) caused a decrease and increase in the LPS-induced IL-1β release, respectively, suggesting a role for GSH in negative regulation of LPS-induced IL-1β release. However, the magnitude and dynamics of the effects of HEMA and BSO on LPS-induced IL-1β release and GSH depletion differed considerably. Thus, GSH depletion alone could not explain the strong attenuation of LPS-induced IL-1β release caused by HEMA. Formation of HEMA-protein conjugates due to the thiol reactivity of HEMA emerges as a likely candidate for the molecular mechanism accounting for this effect.

  11. Chlorogenic acid attenuates lipopolysaccharide-induced mice mastitis by suppressing TLR4-mediated NF-κB signaling pathway.

    PubMed

    Ruifeng, Gao; Yunhe, Fu; Zhengkai, Wei; Ershun, Zhou; Yimeng, Li; Minjun, Yao; Xiaojing, Song; Zhengtao, Yang; Naisheng, Zhang

    2014-04-15

    Chlorogenic acid (CGA), one of the most abundant polyphenols in the diet, has been reported to have potent anti-inflammatory properties. However, the effect of CGA on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The purpose of the present study was to elucidate whether CGA could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. CGA was administered intraperitoneally with the dose of 12.5, 25, and 50mg/kg respectively 1h before and 12h after induction of LPS. In this study, the effect of CGA on LPS-induced mice mastitis was assessed through histopathological examination, ELISA assay, and western blot analysis. The results showed that CGA significantly reduced TNF-α, IL-1β, and IL-6 production compared with LPS group. Besides, western blot analysis showed that CGA could inhibit the expression of TLR4 and the phosphorylation of NF-κB and IκB induced by LPS. These results suggested that anti-inflammatory effects of CGA against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathway. Therefore, CGA may be a potent therapeutic reagent for the prevention of the immunopathology encountered during Escherichia coli elicited mastitis.

  12. Involvement of a capsaicin-sensitive TRPV1-independent mechanism in lipopolysaccharide-induced fever in chickens.

    PubMed

    Mahmoud, Motamed Elsayed; Shimizu, Yasutake; Shiina, Takahiko; Nikami, Hideki; Dosoky, Reem Mahmoud; Ahmed, Moustafa Mohamed; Takewaki, Tadashi

    2007-11-01

    It has been demonstrated that capsaicin blocks lipopolysaccharide (LPS)-induced fever in mammals. In this study, we investigated TRPV1 (transient receptor potential ion channel of vanilloid subtype-1)-independent action of capsaicin on LPS-induced fever in chickens. The chicken is a valuable model for this purpose because chicken TRPV1 has been shown to be insensitive to capsaicin and thus the effects of capsaicin can be attributed to TRPV1-independent mechanisms. Administration of capsaicin (10 mg/kg, iv) to conscious unrestrained chicks at 5 days of age caused a transient decrease in body temperature. This effect of capsaicin was not observed in chicks that had been pretreated twice with capsaicin, indicating that the capsaicin-sensitive pathway can be desensitized. LPS (2 mg/kg, ip) induced fever that lasted for about 2.5 h, but fever was not induced in chicks that had been pretreated with capsaicin for 2 days. The preventive effect of capsaicin on LPS-induced fever was not blocked by capsazepine, an antagonist for TRPV1, but the antagonist per se blocked the febrile response to LPS. These findings suggest that a capsaicin-sensitive TRPV1-independent mechanism may be involved in LPS-induced fever.

  13. Dissociation of lipopolysaccharide (LPS)-inducible gene expression in murine macrophages pretreated with smooth LPS versus monophosphoryl lipid A.

    PubMed Central

    Henricson, B E; Manthey, C L; Perera, P Y; Hamilton, T A; Vogel, S N

    1993-01-01

    Lipopolysaccharide (LPS) and the nontoxic derivative of lipid A, monophosphoryl lipid A (MPL), were employed to assess the relationship between expression of LPS-inducible inflammatory genes and the induction of tolerance to LPS in murine macrophages. Both LPS and MPL induced expression (as assessed by increased steady-state mRNA levels) of a panel of seven "early" inflammatory genes including the tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta, type 2 TNF receptor (TNFR-2), IP-10, D3, D8, and D2 genes (the last four represent LPS-inducible early genes whose functions remain unknown). In addition, LPS and MPL were both capable of inducing tolerance to LPS. The two stimuli differed in the relative concentration required to induce various outcome measures, with LPS being 100- to 1,000-fold more potent on a mass concentration basis. Characterization of the tolerant state identified three distinct categories of responsiveness. Two genes (IP-10 and D8) exhibited strong desensitization in macrophages pretreated with tolerance-inducing concentrations of either LPS or MPL. In macrophages rendered tolerant by pretreatment with LPS or MPL, a second group of inducible mRNAs (TNF-alpha, interleukin-1 beta, and D3) showed moderate suppression of response to secondary stimulation by LPS. The third category of inducible genes (TNFR-2 and D2) showed increased expression in macrophages pretreated with tolerance-inducing concentrations of either LPS or MPL. All of the LPS-inducible genes examined exhibited modest superinduction with less than tolerance-inducing concentrations of either stimulus, suggesting a priming effect of these adjuvants at low concentration. The differential behavior of the members of this panel of endotoxin-responsive genes thus offers insight into molecular events associated with acquisition of transient tolerance to LPS. PMID:8388859

  14. Protective effects of a phosphatidylcholine-enriched diet in lipopolysaccharide-induced experimental neuroinflammation in the rat.

    PubMed

    Tokés, Tünde; Eros, Gábor; Bebes, Attila; Hartmann, Petra; Várszegi, Szilvia; Varga, Gabriella; Kaszaki, József; Gulya, Károly; Ghyczy, Miklós; Boros, Mihály

    2011-11-01

    Our goal was to characterize the neuroprotective properties of orally administered phosphatidylcholine (PC) in a rodent model of systemic inflammation. Sprague-Dawley rats were killed at 3 h, 1 day, 3 days, or 7 days after i.p. administration of lipopolysaccharide (LPS) to determine the plasma levels of tumor necrosis factor α (TNF-α) and interleukin 6 cytokines. The control group and one group of LPS-treated animals were nourished with standard laboratory chow, whereas another LPS-treated group received a special diet enriched with 1% PC for 5 days before the administration of LPS and thereafter during the 7-day observation period. Immunohistochemistry was performed to visualize the bromodeoxyuridine and doublecortin-positive neuroprogenitor cells and Iba1-positive microglia in the hippocampus, whereas the degree of mucosal damage was evaluated on ileal and colon biopsy samples after hematoxylin-eosin staining. The activities of proinflammatory myeloperoxidase and xanthine-oxidoreductase and the tissue nitrite/nitrate (NOx) level were additionally determined, and the cognitive functions were monitored via Morris water maze testing. The inflammatory challenge transiently increased the hippocampal NOx level and led to microglia accumulation and decreased neurogenesis. The intestinal damage, mucosal myeloperoxidase, xanthine-oxidoreductase, and NOx changes were less pronounced, and long-lasting behavioral alterations were not observed. Phosphatidylcholine pretreatment reduced the plasma TNF-α and hippocampal NOx changes and prevented the decreased neurogenesis. These data demonstrated the relative susceptibility of the brain to the consequences of transient peripheral inflammatory stimuli. Phosphatidylcholine supplementation did not reduce the overall extent of peripheral inflammatory activation, but efficiently counteracted the disturbed hippocampal neurogenesis by lowering circulating TNF-α concentrations.

  15. Amomum tsao-ko fruit extract suppresses lipopolysaccharide-induced inducible nitric oxide synthase by inducing heme oxygenase-1 in macrophages and in septic mice.

    PubMed

    Shin, Ji-Sun; Ryu, Suran; Jang, Dae Sik; Cho, Young-Wuk; Chung, Eun Kyung; Lee, Kyung-Tae

    2015-12-01

    Amomum tsao-ko Crevost et Lemarié (Zingiberaceae) has traditionally been used to treat inflammatory and infectious diseases, such as throat infections, malaria, abdominal pain and diarrhoea. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms of the methanol extract of A. tsao-ko (AOM) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in a murine model of sepsis. In LPS-induced RAW 264.7 macrophages, AOM reduced the production of nitric oxide (NO) by inhibiting inducible nitric oxide synthase (iNOS) expression, and increased heme oxygenase-1 (HO-1) expression at the protein and mRNA levels. Pretreatment with SnPP (a selective inhibitor of HO-1) and silencing HO-1 using siRNA prevented the AOM-mediated inhibition of NO production and iNOS expression. Furthermore, AOM increased the expression and nuclear accumulation of NF-E2-related factor 2 (Nrf2), which enhanced Nrf2 binding to antioxidant response element (ARE). In addition, AOM induced the phosphorylation of extracellular regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and generated reactive oxygen species (ROS). Furthermore, pretreatment with N-acetyl-l-cysteine (NAC; a ROS scavenger) diminished the AOM-induced phosphorylation of ERK and JNK and AOM-induced HO-1 expression, suggesting that ERK and JNK are downstream mediators of ROS during the AOM-induced signalling of HO-1 expression. In LPS-induced endotoxaemic mice, pretreatment with AOM reduced NO serum levels and liver iNOS expression and increased HO-1 expression and survival rates. These results indicate that AOM strongly inhibits LPS-induced NO production by activating the ROS/MAPKs/Nrf2-mediated HO-1 signalling pathway, and supports its pharmacological effects on inflammatory diseases.

  16. THE EMBRYOLETHALITY OF LIPOPOLYSACCHARIDE IN CD-1 AND METALLOTHIONEIN I-II NULL MICE: LACK OF A ROLE FOR INDUCED ZINC DEFICIENCY OR METALLOTHIONEIN INDUCTION

    EPA Science Inventory

    ABSTRACT

    Lipopolysaccharide (LPS) is embryolethal in CD-1 mice. LPS induces metallothionein (MT) via cytokines, including TNF-, IL-1 and IL-6, which initiate and maintain the acute phase response. Maternal hepatic MT induction in pregnant rats, by diverse toxicants, can ...

  17. Bowman-Birk inhibitor and genistein among soy compounds that synergistically inhibit nitric oxide and prostaglandin E2 pathways in lipopolysaccharide-induced macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation has an important role in the development of chronic diseases. In this study, we evaluated the anti-inflammatory properties of eight soybean bioactive compounds using lipopolysaccharide-induced RAW 264.7 macrophages. Genistein, daidzein, mix isoflavone glucosides, saponin A group glyco...

  18. Evaluation of an Aqueous Extract from Horseradish Root (Armoracia rusticana Radix) against Lipopolysaccharide-Induced Cellular Inflammation Reaction

    PubMed Central

    Herz, Corinna; Tran, Hoai Thi Thu; Márton, Melinda-Rita; Maul, Ronald; Schreiner, Monika

    2017-01-01

    Horseradish (Armoracia rusticana) is a perennial crop and its root is used in condiments. Traditionally, horseradish root is used to treat bacterial infections of the respiratory tract and urinary bladder. The antiphlogistic activity, determined in activated primary human peripheral blood mononuclear cells (PBMC), was evaluated for an aqueous extract and its subfractions, separated by HPLC. Compound analysis was done by UHPLC-QToF/MS and GC-MS. The aqueous extract concentration-dependently inhibited the anti-inflammatory response to lipopolysaccharide (LPS) in terms of TNF-α release at ≥37 μg/mL. Further, the cyclooxygenase as well as lipoxygenase pathway was blocked by the extract as demonstrated by inhibition of COX-2 protein expression and PGE2 synthesis at ≥4 μg/mL and leukotriene LTB4 release. Mechanistic studies revealed that inhibition of ERK1/2 and c-Jun activation preceded COX-2 suppression upon plant extract treatment in the presence of LPS. Chemical analysis identified target compounds with a medium polarity as relevant for the observed bioactivity. Importantly, allyl isothiocyanate, which is quite well known for its anti-inflammatory capacity and as the principal pungent constituent in horseradish roots, was not relevant for the observations. The results suggest that horseradish root exerts an antiphlogistic activity in human immune cells by regulation of the COX and LOX pathway via MAPK signalling. PMID:28182113

  19. Lipopolysaccharide Endotoxins

    PubMed Central

    Raetz, Christian R. H.; Whitfield, Chris

    2008-01-01

    Summary Since lipopolysaccharide endotoxins of Gram-negative bacteria were last reviewed in this series in 1990, much has been learned about the assembly and signaling functions of these remarkable glycoconjugates. Lipopolysaccharides typically consist of a hydrophobic domain known as lipid A (or endotoxin), a non-repeating “core” oligosaccharide, and a distal polysaccharide (or O-antigen). The flood of recent genomic data has made it possible to study lipopolysaccharide assembly in diverse Gram-negative bacteria, many of which are human or plant pathogens, and to create mutants or hybrid constructs with novel properties. Unexpectedly, key genes for lipid A biosynthesis have also been found in higher plants, indicating that eucaryotic lipid A-like molecules may exist. The carbohydrate diversity of lipopolysaccharides is better appreciated now than ten years ago, but much remains to be learned about function. Sequence comparisons suggest that extensive lateral transfer of genes for the assembly of O-antigens has occurred among bacteria. The most significant finding in the field of endotoxin biology since 1990 has been the identification of the plasma membrane protein TLR4 as the lipid A signaling receptor of animal cells. The latter belongs to a family of innate immunity receptors, all of which possess a large extracellular domain of leucine-rich repeats, a single trans-membrane segment and a smaller cytoplasmic signaling region that engages the adaptor protein MyD88. The expanding knowledge of TLR4 specificity and its downstream signaling pathways should provide new opportunities for blocking the inflammatory side effects of sepsis. Future progress will require insights into lipopolysaccharide-protein recognition at the atomic level, greater understanding of intra- and inter-cellular lipopolysaccharide trafficking, and incisive biological approaches that combine the tools of bacterial and animal genetics. PMID:12045108

  20. Protective Effects of Edaravone in Adult Rats with Surgery and Lipopolysaccharide Administration-Induced Cognitive Function Impairment

    PubMed Central

    Liu, Na; Ma, Li; Zhou, Xueyue; Zhang, Hong; Wang, Yongan

    2016-01-01

    Postoperative cognitive dysfunction (POCD) is a clinical syndrome characterized by cognitive declines in patients after surgery. Previous studies have suggested that surgery contributed to such impairment. It has been proven that neuroinflammation may exacerbate surgery-induced cognitive impairment in aged rats. The free radical scavenger edaravone has high blood brain barrier permeability, and was demonstrated to effectively remove free radicals from the brain and alleviate the development of POCD in patients undergoing carotid endarterectomy, suggesting its potential role in preventing POCD. For this reason, this study was designed to determine whether edaravone is protective against POCD through its inhibitory effects on inflammatory cytokines and oxidative stress. First, Sprague Dawley adult male rats were administered 3 mg/kg edaravone intraperitoneally after undergoing a unilateral nephrectomy combined with lipopolysaccharide injection. Second, behavioral parameters related to cognitive function were recorded by fear conditioning and Morris Water Maze tests. Last, superoxide dismutase activities and malondialdehyde levels were measured in the hippocampi and prefrontal cortex on postoperative days 3 and 7, and microglial (Iba1) activation, p-Akt and p-mTOR protein expression, and synaptic function (synapsin 1) were also examined 3 and 7 days after surgery. Rats that underwent surgery plus lipopolysaccharide administration showed significant impairments in spatial and working memory, accompanied by significant reductions in hippocampal-dependent and independent fear responses. All impairments were attenuated by treatment with edaravone. Moreover, an abnormal decrease in superoxide dismutase activation, abnormal increase in malondialdehyde levels, significant increase in microglial reactivity, downregulation of p-Akt and p-mTOR protein expression, and a statistically significant decrease in synapsin-1 were observed in the hippocampi and prefrontal cortices of

  1. Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage and oxidative stress in a rat model of Parkinson's disease.

    PubMed

    Wang, Jun; He, Can; Wu, Wang-Yang; Chen, Feng; Wu, Yang-Yang; Li, Wei-Zu; Chen, Han-Qing; Yin, Yan-Yan

    2015-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Accumulated evidences have suggested that oxidative stress is closely associated with the dopaminergic neurodegeneration of PD that can be protected by antioxidants. Biochanin A that is an O-methylated isoflavone in chickpea is investigated to explore its protective mechanism on dopaminergic neurons of the unilateral lipopolysaccharide (LPS)-injected rat. The results showed that biochanin A significantly improved the animal model's behavioral symptoms, prevented the loss of dopaminergic neurons and inhibited the deleterious microglia activation in the LPS-induced rats. Moreover, biochanin A inhibited nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) activation and malondialdehyde (MDA) production, increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the rat brain. These results suggested that biochanin A might be a natural candidate with protective properties on dopaminergic neurons against the PD.

  2. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory.

    PubMed

    Yoshida, Keisuke; Maekawa, Toshio; Zhu, Yujuan; Renard-Guillet, Claire; Chatton, Bruno; Inoue, Kentaro; Uchiyama, Takeru; Ishibashi, Ken-ichi; Yamada, Takuji; Ohno, Naohito; Shirahige, Katsuhiko; Okada-Hatakeyama, Mariko; Ishii, Shunsuke

    2015-10-01

    Immunological memory is thought to be mediated exclusively by lymphocytes. However, enhanced innate immune responses caused by a previous infection increase protection against reinfection, which suggests the presence of innate immunological memory. Here we identified an important role for the stress-response transcription factor ATF7 in innate immunological memory. ATF7 suppressed a group of genes encoding factors involved in innate immunity in macrophages by recruiting the histone H3K9 dimethyltransferase G9a. Treatment with lipopolysaccharide, which mimics bacterial infection, induced phosphorylation of ATF7 via the kinase p38, which led to the release of ATF7 from chromatin and a decrease in repressive histone H3K9me2 marks. A partially disrupted chromatin structure and increased basal expression of target genes were maintained for long periods, which enhanced resistance to pathogens. ATF7 might therefore be important in controlling memory in cells of the innate immune system.

  3. Impact of bone marrow-derived mesenchymal stem cells on remodeling the lung injury induced by lipopolysaccharides in mice

    PubMed Central

    Mohi El-Din, Mouchira M; Rashed, Laila A; Mahmoud Haridy, Mohi A; Khalil, Atef Mohamed; Mohamed Albadry, Mohamed A

    2017-01-01

    Aim: This study evaluated the potential of bone marrow derived mesenchymal stem cells (MSCs) to regulate cytokines and remodel the lung induced by lipopolysaccharide (LPS; O-antigen). Materials & methods: A group of mice (n = 21) was inoculated intraperitoneally with one dose 0.1 ml containing 0.025 mg LPS/mouse, and another treated intravenously with one dose of labeling bone marrow derived MSCs at 7.5 × 105 cell/mouse 4 h after LPS injection. All animals were sacrificed on the 1st, 7th and 14th days post-injection. Results: MSCs increased the level of IL-10 with suppression of TNF-α, decrease of collagen fibers and renewal of alveolar type I cells, together with lung tissue remodeling. Conclusion: MSCs were shown to modulate inflammatory cytokines (TNF-α and IL-10) and to differentiate into alveolar type I cells, which prevented fibrosis in lung tissue from LPS-treated mice. PMID:28344826

  4. Protective effect of magnolol-loaded polyketal microparticles on lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Tsai, Tsuimin; Kao, Chen-Yu; Chou, Chun-Liang; Liu, Lu-Chun; Chou, Tz-Chong

    2016-08-01

    Magnolol has shown inhibitory effects on NO production and TNF-alpha production in lipopolysaccharide (LPS)-activated macrophages and LPS-induced acute lung injury; however, the poor solubility of magnolol has hindered its clinical success. In this study, magnolol-loaded microparticles were prepared via single emulsion method from a polyketal polymer, termed PK3. The particle sizes of magnolol-loaded PK3 microparticle is 3.73 ± 0.41 μm, and was suitable for phagocytosis by macrophages and pulmonary drug delivery. PK3 microparticles exhibited excellent biocompatibility both in vitro and in vivo. More importantly, intratracheal delivery of these magnolol-loaded microparticles significantly reduced the lung inflammatory responses at low dosage of magnolol (0.5 mg/kg), and have great clinical potential in treating acute lung injury.

  5. Protective effect of zerumbone reduces lipopolysaccharide-induced acute lung injury via antioxidative enzymes and Nrf2/HO-1 pathway.

    PubMed

    Leung, Wai-Shing; Yang, Ming-Ling; Lee, Shiuan-Shinn; Kuo, Chi-Wen; Ho, Yung-Chyuan; Huang-Liu, Rosa; Lin, Hui-Wen; Kuan, Yu-Hsiang

    2017-05-01

    Acute lung injury (ALI) is a serious disease with high morbidity and mortality rate. Although there are effective strategies for treatment of ALI; a widely accepted specific pharmacotherapy has not yet established. Zerumbone, the major active phytochemical compound from Zingiber zerumbet Smith, exhibits various beneficial biological and pharmacological activities, such as antioxidation, anti-inflammation, immunomodulation, and anti-cancer. We aimed to study the potential protective effects and mechanisms of zerumbone in mouse model of lipopolysaccharide (LPS)-induced ALI. Pretreatment with zerumbone inhibited the histopatholgical changes such as neutrophils infiltration, increased in alveolar barrier thickness, hemorrhage, and hyaline membrane formation occurred in lungs in LPS-induced ALI. In addition, not only LPS-induced activation of myeloperoxidase (MPO) and metallopeptidase-9 (MMP-9) was suppressed by zerumbone, but also lipid peroxidation in lungs was inhibited as well. Moreover, pretreatment with zerumbone reversed the antioxidative enzymes activities, including superoxide dismutase, catalase, and glutathione peroxidase, decreased by LPS and enhanced the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase (HO-1) induced by LPS. These results from present study suggested that the protective mechanisms of zerumbone on LPS-induced ALI were via up-regulation of antioxidative enzymes and Nrf2/HO-1 pathway.

  6. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    PubMed

    Feng, Guang; Jiang, Ze-yu; Sun, Bo; Fu, Jie; Li, Tian-zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  7. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    SciTech Connect

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani . E-mail: chandraseka@uthscsa.edu

    2006-09-08

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-{kappa}B (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.

  8. Anti-inflammatory and Anti-oxidative Effects of Dexpanthenol on Lipopolysaccharide Induced Acute Lung Injury in Mice.

    PubMed

    Li-Mei, Wan; Jie, Tan; Shan-He, Wan; Dong-Mei, Meng; Peng-Jiu, Yu

    2016-10-01

    The aim of this study is to investigate the effects of dexpanthenol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). Lung injury was induced by exposure to atomized LPS. Mice were randomly divided into four groups: control group; Dxp (500 mg/kg) group; LPS group; LPS + Dxp (500 mg/kg) group. The effects of dexpanthenol on LPS-induced neutrophil recruitment, cytokine levels, total protein concentration, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) contents were examined. Additionally, lung tissue was examined by histology to investigate the changes in pathology in the presence and absence of dexpanthenol. In LPS-challenged mice, dexpanthenol significantly improved lung edema. Dexpanthenol also markedly inhibited the LPS-induced neutrophiles influx, protein leakage, and release of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Furthermore, dexpanthenol attenuated MPO activity and MDA contents and increased SOD and GSH activity in the LPS-challenged lung tissue. These data suggest that dexpanthenol protects mice from LPS-induced acute lung injury by its anti-inflammatory and anti-oxidative activities.

  9. Zingerone ameliorates lipopolysaccharide-induced acute kidney injury by inhibiting Toll-like receptor 4 signaling pathway.

    PubMed

    Song, Jie; Fan, Hao-jun; Li, Hui; Ding, Hui; Lv, Qi; Hou, Shi-ke

    2016-02-05

    Acute kidney injury (AKI) is a serious complication of sepsis. Zingerone, a phenolic alkanone isolated from ginger, has been reported to have anti-inflammatory effect. The aim of this study was to investigate the therapeutic effects of zingerone on lipopolysaccharide (LPS)-induced AKI in mice. Zingerone was administrated 1h after LPS challenge. The production of blood urea nitrogen (BUN) and creatinine were measured in this study. The expressions of inflammatory cytokines in serum and kidney tissues were detected by ELISA. The expressions of Toll-like receptor 4 (TLR4), MyD88, TRIF, Nuclear factor Kappa B (NF-κB) and IκB were measured by Western blotting. The results showed that zingerone suppressed LPS-induced BUN, creatinine, and inflammatory cytokines TNF-α, IL-6 and IL-1β levels in a dose-dependent manner. Zingerone also attenuated LPS-induced kidney histopathologic changes. Furthermore, zingerone was found to inhibit LPS-induced TLR4, MyD88, TRIF expression and NF-κB activation. In conclusion, the current study demonstrated that zingerone inhibited LPS-induced AKI by suppressing TLR4/NF-κB signaling pathway.

  10. Chemotherapy-induced peripheral neuropathy: an update on the current understanding.

    PubMed

    Addington, James; Freimer, Miriam

    2016-01-01

    Chemotherapy-induced peripheral neuropathy is a common side effect of selected chemotherapeutic agents. Previous work has suggested that patients often under report the symptoms of chemotherapy-induced peripheral neuropathy and physicians fail to recognize the presence of such symptoms in a timely fashion. The precise pathophysiology that underlies chemotherapy-induced peripheral neuropathy, in both the acute and the chronic phase, remains complex and appears to be medication specific. Recent work has begun to demonstrate and further clarify potential pathophysiological processes that predispose and, ultimately, lead to the development of chemotherapy-induced peripheral neuropathy. There is increasing evidence that the pathway to neuropathy varies with each agent. With a clearer understanding of how these agents affect the peripheral nervous system, more targeted treatments can be developed in order to optimize treatment and prevent long-term side effects.

  11. Chemotherapy-induced peripheral neuropathy: an update on the current understanding

    PubMed Central

    Addington, James; Freimer, Miriam

    2016-01-01

    Chemotherapy-induced peripheral neuropathy is a common side effect of selected chemotherapeutic agents. Previous work has suggested that patients often under report the symptoms of chemotherapy-induced peripheral neuropathy and physicians fail to recognize the presence of such symptoms in a timely fashion. The precise pathophysiology that underlies chemotherapy-induced peripheral neuropathy, in both the acute and the chronic phase, remains complex and appears to be medication specific. Recent work has begun to demonstrate and further clarify potential pathophysiological processes that predispose and, ultimately, lead to the development of chemotherapy-induced peripheral neuropathy. There is increasing evidence that the pathway to neuropathy varies with each agent. With a clearer understanding of how these agents affect the peripheral nervous system, more targeted treatments can be developed in order to optimize treatment and prevent long-term side effects. PMID:27408692

  12. Lipopolysaccharide can induce errors in anatomical measures of neuronal plasticity by increasing tracing efficacy.

    PubMed

    Weishaupt, Nina; Krajacic, Aleksandra; Fouad, Karim

    2013-11-27

    Evidence suggests that activating certain components of the immune system may increase regeneration and plasticity in the injured central nervous system. Investigating the effect of lipopolysaccharide (LPS), a potent endotoxin and immune activator, on neuronal plasticity in rat models of spinal cord injury, we discovered that systemic administration of LPS can increase the number of descending motor axons that transport neuronal tracers anterogradely to the spinal cord. This effect of LPS was not observed across all motor tracts traced in two different experiments, but was significant for two different tracers administered to corticospinal tract neurons. Densitometry measurement of traced corticospinal axons within the cervical gray matter revealed that normalization to the number of traced axons is crucial to avoid false-positive reports of increased plasticity following LPS injection. These findings indicate that assessments of neuronal growth based on neuronal tracing techniques should be normalized when inflammation or immune activation is an experimental variable.

  13. Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia.

    PubMed

    Lee, Seung Young; Moon, Eunjung; Kim, Sun Yeou; Lee, Kang Ro

    2013-04-01

    Five new quinic acid derivatives (1-5), together with 10 known quinic acid derivatives (6-15), were isolated from the MeOH extract of Pimpinella brachycarpa (Umbelliferae). Their structures were established on the basis of spectroscopic analyses including extensive 2D NMR studies (COSY, HMQC and HMBC). Isolated compounds 1-15 were evaluated for their inhibitory activities on nitric oxide (NO) production in an activated murine microglial cell line. Compounds 2, 3, 8 and 11 significantly inhibited NO production without high cell toxicity in lipopolysaccharide (LPS)-activated BV-2 cells, a microglia cell line (IC50=4.66, 12.52, 9.04 and 12.11 μM, respectively).

  14. Treatment of oxaliplatin-induced peripheral neuropathy by intravenous mangafodipir

    PubMed Central

    Coriat, Romain; Alexandre, Jérôme; Nicco, Carole; Quinquis, Laurent; Benoit, Evelyne; Chéreau, Christiane; Lemaréchal, Hervé; Mir, Olivier; Borderie, Didier; Tréluyer, Jean-Marc; Weill, Bernard; Coste, Joel; Goldwasser, François; Batteux, Frédéric

    2013-01-01

    Background. The majority of patients receiving the platinum-based chemotherapy drug oxaliplatin develop peripheral neurotoxicity. Because this neurotoxicity involves ROS production, we investigated the efficacy of mangafodipir, a molecule that has antioxidant properties and is approved for use as an MRI contrast enhancer. Methods. The effects of mangafodipir were examined in mice following treatment with oxaliplatin. Neurotoxicity, axon myelination, and advanced oxidized protein products (AOPPs) were monitored. In addition, we enrolled 23 cancer patients with grade ≥2 oxaliplatin-induced neuropathy in a phase II study, with 22 patients receiving i.v. mangafodipir following oxaliplatin. Neuropathic effects were monitored for up to 8 cycles of oxaliplatin and mangafodipir. Results. Mangafodipir prevented motor and sensory dysfunction and demyelinating lesion formation. In mice, serum AOPPs decreased after 4 weeks of mangafodipir treatment. In 77% of patients treated with oxaliplatin and mangafodipir, neuropathy improved or stabilized after 4 cycles. After 8 cycles, neurotoxicity was downgraded to grade ≥2 in 6 of 7 patients. Prior to enrollment, patients received an average of 880 ± 239 mg/m2 oxaliplatin. Patients treated with mangafodipir tolerated an additional dose of 458 ± 207 mg/m2 oxaliplatin despite preexisting neuropathy. Mangafodipir responders managed a cumulative dose of 1,426 ± 204 mg/m2 oxaliplatin. Serum AOPPs were lower in responders compared with those in nonresponders. Conclusion. Our study suggests that mangafodipir can prevent and/or relieve oxaliplatin-induced neuropathy in cancer patients. Trial registration. Clinicaltrials.gov NCT00727922. Funding. Université Paris Descartes, Ministère de la Recherche et de l’Enseignement Supérieur, and Assistance Publique-Hôpitaux de Paris. PMID:24355920

  15. Water-soluble polysaccharide from Eleutherococcus senticosus stems attenuates fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice.

    PubMed

    Park, Eun-Jeon; Nan, Ji-Xing; Zhao, Yu-Zhe; Lee, Sung Hee; Kim, Young Ho; Nam, Jeong Bum; Lee, Jung Joon; Sohn, Dong Hwan

    2004-06-01

    The aim of this study was to investigate whether Eleutherococcus senticosus stems could attenuate D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice. E. senticosus, known as Siberian ginseng, is a popular folk medicine used as a tonic in Asia. Preparations of E. senticosus used in this study were as follows; (i) 70% ethanol extract (ii) water extract (iii) ethanol-soluble part of the water extract (iv) polysaccharide obtained as an 80% ethanol insoluble of the water extract. Preparations were given by intraperitoneal (300 mg/kg and 50 mg/kg) or oral (300 mg/kg) injection at 12 hr and 1 hr before a D-galactosamine/lipopolysaccharide injection. The intraperitoneal injection of water extract and polysaccharide significantly lowered serum levels of tumour necrosis factor-alpha, aspartate transaminase and alanine transaminase, improved the histologic changes in liver, inhibited hepatocyte apoptosis confirmed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling method and DNA fragmentation assay, and suppressed the lethality induced by D-galactosamine/lipopolysaccharide. The oral administration of water extract and polysaccharide also reduced serum aspartate transaminase, alanine transaminase and tumour necrosis factor-alpha levels. In contrast 70% ethanol extract and ethanol-soluble part of the water extract had no protective effect when treated intraperitoneally or orally. These results indicate E. senticosus stems attenuate fulminant hepatic failure induced by D-galactosamine/lipopolysaccharide in mice and the protective effect is due to water-soluble polysaccharides in E. senticosus stems.

  16. Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide

    PubMed Central

    Wu, Tianyou; Wang, Chao; Ding, Luoyang; Shen, Yizhao; Cui, Huihui; Wang, Mengzhi; Wang, Hongrong

    2016-01-01

    As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 μg/mL) and treated with or without arginine (100 μg/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1β, IL-6, TNF-α, and iNOS. Though the expression of NF-κB was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of β-casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of β-casein and the total casein in bovine mammary epithelial cells. PMID:27110069

  17. Mechanisms of anti-inflammatory property of conserved dopamine neurotrophic factor: inhibition of JNK signaling in lipopolysaccharide-induced microglia.

    PubMed

    Zhao, Hua; Cheng, Lei; Liu, Yi; Zhang, Wen; Maharjan, Sailendra; Cui, Zhaoqiang; Wang, Xingli; Tang, Dongqi; Nie, Lin

    2014-02-01

    Microglia are important resident immune cells in the central nervous system (CNS) and involved in the neuroinflammation caused by CNS disorders, including brain trauma, ischemia, stroke, infections, inflammation, and neurodegenerative diseases. Our study explores the hypothesis that conserved dopamine neurotrophic factor (CDNF), a secretory neurotrophic factor, may provide a novel therapy for associated with neuroinflammation related to the microglia. We observed that CDNF was upregulated in rat primary microglia treated with 1 μg/mL lipopolysaccharide, an inflammatory inducer, for 24 h. Thus, we hypothesize that CDNF may play a role, mediator or inhibitor, in regulating the inflammation in microglial cells induced by LPS. Finally, our data showed that CDNF significantly attenuated the production of proinflammatory cytokines (PGE2 and IL-1β) and remarkably alleviated the cytotoxicity (percentage of lactate dehydrogenase released) in the LPS-induced microglia by suppressing the phosphorylation of JNK, but not the P38 or ERK pathways. These results demonstrate the anti-inflammatory property of CDNF by inhibition of JNK signaling in LPS-induced microglia, suggesting that CDNF may be a potential novel agent for the treatment of neuroinflammation in the CNS disorders.

  18. Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide induced acute lung injury via reducing inflammatory response.

    PubMed

    Liu, Tian-Yin; Chen, Shi-Biao

    2016-12-01

    Sarcandra glabra (Chinese name, Zhongjiefeng) is an important herb widely used in traditional Chinese medicine. Lycopene has been shown to be a powerful antioxidant. This study aims to test the hypothesis that Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide (LPS) induced acute lung injury (ALI). Metabolomics approach combined with pathological inspection, serum biochemistry examination, enzyme-linked immunosorbent assay and western blotting were used to explore the protective effects of Sarcandra glabra and lycopene on LPS-induced ALI, and to elucidate the underlying mechanisms. Results showed that Sarcandra glabra and lycopene could significantly ameliorate LPS-induced histopathological injuries, improve the anti-oxidative activities of rats, decrease the levels of TNF-α and IL-6, suppress the activations of MAPK and transcription factor NF-κB and reverse the disturbed metabolism towards the normal status. Taken together, this integrated study revealed that Sarcandra glabra combined with lycopene had great potential in protecting rats from LPS-induced ALI, which would be helpful to guide the clinical medication.

  19. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells

    PubMed Central

    Lai, Jin-lun; Liu, Yu-hui; Peng, Yong-chong; Ge, Pan; He, Chen-fei; Liu, Chang; Chen, Ying-yu; Guo, Ai-zhen

    2017-01-01

    Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF-κB) P65 protein and inhibitor of kappa B. In addition to its effect on the NF-κB signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF-κB and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases. PMID:28255203

  20. Supplementation with vitamin D3 during pregnancy protects against lipopolysaccharide-induced neural tube defects through improving placental folate transportation.

    PubMed

    Chen, Yuan-Hua; Yu, Zhen; Fu, Lin; Xia, Mi-Zhen; Zhao, Mei; Wang, Hua; Zhang, Cheng; Hu, Yong-Fang; Tao, Fang-Biao; Xu, De-Xiang

    2015-05-01

    Several reports demonstrated that maternal lipopolysaccharide (LPS) exposure at middle gestational stage caused neural tube defects (NTDs). This study investigated the effects of supplementation with vitamin D3 (VitD3) during pregnancy on LPS-induced NTDs. Pregnant mice except controls were ip injected with LPS (25 μg/kg) daily from gestational day (GD)8 to GD12. In LPS+VitD3 group, pregnant mice were orally administered with VitD3 (25 μg/kg) before LPS injection. As expected, a 5-day LPS injection resulted in 62.5% (10/16) of dams and 20.3% of fetuses with NTDs. Additional experiment showed that a 5-day LPS injection downregulated placental proton-coupled folate transporter (pcft) and reduced folate carrier 1 (rfc1), 2 major folate transporters in placentas. Consistent with downregulation of placental folate transporters, folate transport from maternal circulation into embryos was disturbed in LPS-treated mice. Interestingly, VitD3 not only inhibited placental inflammation but also attenuated LPS-induced downregulation of placental folate transporters. Correspondingly, VitD3 markedly improved folate transport from maternal circulation into the embryos. Importantly, supplementation with VitD3 during pregnancy protected mice from LPS-induced NTDs. Taken together, these results suggest that supplementation with VitD3 during pregnancy prevents LPS-induced NTDs through inhibiting placental inflammation and improving folate transport from maternal circulation into the embryos.

  1. Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice.

    PubMed

    Hou, Yue; Xie, Guanbo; Miao, Fengrong; Ding, Lingling; Mou, Yanhua; Wang, Lihui; Su, Guangyue; Chen, Guoliang; Yang, Jingyu; Wu, Chunfu

    2014-10-03

    The present study aims to evaluate the effects of pterostilbene on lipopolysaccharide (LPS)-induced learning and memory impairment as well as the possible changes of microglia and neurons. Firstly, learning and memory function was investigated by behavioral tests. Pterostilbene attenuated LPS-induced learning and memory impairment tested by Y-maze and Morris water maze. Secondly, immunohistochemical method was used to study the changes of microglia and neurons. The results showed that pterostilbene produced a significant decrease in the number of Iba-1 and Doublecortin (DCX) positive cells and a significant increase in neuronal nuclear antigen (NeuN)-stained area of neurons in mouse hippocampal compared to the LPS group. Finally, an in vitro study was performed to further confirm the inhibitory effect on microglia activation and protective effect on neurons exerted by pterostilbene. The results demonstrated that pterostilbene significantly inhibited microglia activation, showing the obvious decrease of LPS-induced production of NO, TNF-α and IL-6 in N9 microglial cells. In addition, the viability of SH-SY5Y cells decreased by conditioned media of LPS-activated N9 microglial cells was remarkably recovered by pterostilbene. In summary, the present study demonstrated for the first time that pterostilbene attenuated LPS-induced learning and memory impairment, which may be associated with its inhibitory effect on microglia activation and protective effect on neuronal injury.

  2. BGP-15 Protects against Oxidative Stress- or Lipopolysaccharide-Induced Mitochondrial Destabilization and Reduces Mitochondrial Production of Reactive Oxygen Species

    PubMed Central

    Sumegi, Katalin; Fekete, Katalin; Antus, Csenge; Debreceni, Balazs; Hocsak, Eniko; Gallyas, Ferenc; Sumegi, Balazs; Szabo, Aliz

    2017-01-01

    Reactive oxygen species (ROS) play a critical role in the progression of mitochondria-related diseases. A novel insulin sensitizer drug candidate, BGP-15, has been shown to have protective effects in several oxidative stress-related diseases in animal and human studies. In this study, we investigated whether the protective effects of BGP-15 are predominantly via preserving mitochondrial integrity and reducing mitochondrial ROS production. BGP-15 was found to accumulate in the mitochondria, protect against ROS-induced mitochondrial depolarization and attenuate ROS-induced mitochondrial ROS production in a cell culture model, and also reduced ROS production predominantly at the complex I-III system in isolated mitochondria. At physiologically relevant concentrations, BGP-15 protected against hydrogen peroxide-induced cell death by reducing both apoptosis and necrosis. Additionally, it attenuated bacterial lipopolysaccharide (LPS)-induced collapse of mitochondrial membrane potential and ROS production in LPS-sensitive U-251 glioma cells, suggesting that BGP-15 may have a protective role in inflammatory diseases. However, BGP-15 did not have any antioxidant effects as shown by in vitro chemical and cell culture systems. These data suggest that BGP-15 could be a novel mitochondrial drug candidate for the prevention of ROS-related and inflammatory disease progression. PMID:28046125

  3. Epigallocatechin-3-gallate attenuates lipopolysaccharide-induced mastitis in rats via suppressing MAPK mediated inflammatory responses and oxidative stress.

    PubMed

    Chen, Jinglou; Xu, Jun; Li, Jingjing; Du, Lifen; Chen, Tao; Liu, Ping; Peng, Sisi; Wang, Mingwei; Song, Hongping

    2015-05-01

    Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses.

  4. Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice.

    PubMed

    Ge, Li; Liu, Liwei; Liu, Hansen; Liu, Song; Xue, Hao; Wang, Xueer; Yuan, Lin; Wang, Zhen; Liu, Dexiang

    2015-12-05

    Current evidence supports that depression is accompanied by the activation of the inflammatory-response system, and overproduction of pro-inflammatory cytokines may play a role in the pathophysiology of depressive disorders. Resveratrol has anti-inflammatory, antioxidant and anti-depressant-like properties. Using an animal model of depression induced by a single administration of lipopolysaccharide (LPS), the present study investigated the effects of resveratrol on LPS-induced depressive-like behavior and inflammatory-response in adult mice. Our results showed that pretreatment with resveratrol (80mg/kg, i.p.) for 7 consecutive days reversed LPS-increased the immobility time in the forced swimming test and tail suspension test, and LPS-reduced sucrose preference test. Moreover, the antidepressant action of resveratrol was paralleled by significantly reducing the expression levels of pro-inflammatory cytokines, and up-regulating phosphorylated cAMP response-element-binding protein (pCREB)/brain-derived neurotrophic factor (BDNF) expression in prefrontal cortex (PFC) and hippocampus. In addition, resveratrol ameliorated LPS-induced NF-κB activation in the PFC and hippocampus. The results demonstrate that resveratrol may be an effective therapeutic agent for LPS-induced depressive-like behavior, partially due to its anti-inflammatory aptitude and by modulating pCREB and BDNF expression in the brain region of mice.

  5. Erythropoietin against cisplatin-induced peripheral neurotoxicity in rats.

    PubMed

    Orhan, Bulent; Yalcin, Suayib; Nurlu, Gulay; Zeybek, Dilara; Muftuoglu, Sevda

    2004-01-01

    it is an active agent in protection against CDDP-induced peripheral neuropathy, warranting further clinical studies.

  6. Nickel Ions Selectively Inhibit Lipopolysaccharide-Induced Interleukin-6 Production by Decreasing Its mRNA Stability

    PubMed Central

    Asakawa, Sanki; Kishimoto, Yu; Takano, Takayuki; Okita, Kiyuki; Takakuwa, Shiho; Sato, Taiki; Hiratsuka, Masahiro; Takeuchi, Osamu; Hirasawa, Noriyasu

    2015-01-01

    Nickel (Ni) ions easily elute from many alloys and elicit inflammation and allergies. Previous studies have shown that infections due to the implantation of medical devices cause inflammation and enhance the elution of Ni ions (Ni2+). However, cross-talk between infection- and Ni2+-induced signaling pathways has not yet been elucidated in detail. In the present study, we investigated the effects of Ni2+ on the lipopolysaccharide (LPS)-induced production of cytokines in a LPS-induced air pouch-type inflammation model in BALB/c mice and the murine macrophage cell line RAW264. We demonstrated that Ni2+ inhibited the LPS-induced production of interleukin (IL)-6, but not that of tumor necrosis factor (TNF)-α both in vivo and in vitro. This inhibitory effect was also observed with cobalt ion (Co2+), but not with chloride ion (Cl-), zinc ion (Zn2+), or palladium ion (Pd2+), and was highly selective to the production of IL-6. Ni2+ did not inhibit the activation of ERK1/2, p38 MAPK, or JNK. Although Ni2+ decreased IL-6 mRNA levels, it failed to inhibit the LPS-induced activation of the IL-6 promoter. An experiment using actinomycin D, a transcription inhibitor, revealed that Ni2+ decreased the stability of IL-6 mRNA. Moreover, Ni2+ inhibited the LPS-induced expression of Arid5a, but not regnase-1. These results demonstrated that Ni2+ may have selectively inhibited the LPS-induced production of IL-6 by decreasing the Arid5a-dependent stabilization of IL-6 mRNA. PMID:25742007

  7. Antrodia camphorata suppresses lipopolysaccharide-induced nuclear factor-kappaB activation in transgenic mice evaluated by bioluminescence imaging.

    PubMed

    Hseu, You-Cheng; Huang, Hui-Chi; Hsiang, Chien-Yun

    2010-01-01

    In an earlier study, we found that Antrodia camphorata inhibited the production of lipopolysaccharide (LPS)-induced cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 by blocking nuclear factor-kappaB (NF-kappaB) activation in cultured RAW 264.7 macrophages. This study was aimed at evaluating the inhibitory effects of the fermented culture broth of A. camphorata in terms of LPS-induced NF-kappaB activation in transgenic mice by using a non-invasive, real-time NF-kappaB bioluminescence imaging technique. Transgenic mice carrying the luciferase gene under the control of NF-kappaB were given A. camphorata (570 mg/kg, p.o.) for three consecutive days and then injected with LPS (4 mg/kg, i.p.). In vivo imaging showed that treatment with LPS increased the luminescent signal, whereas A. camphorata suppressed the LPS-induced inflammatory response significantly. Ex vivo imaging showed that A. camphorata suppressed LPS-induced NF-kappaB activity in the small intestine, mesenteric lymph nodes, liver, spleen, and kidney. Immunohistochemical staining revealed that A. camphorata suppressed production of the LPS-induced tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and NF-kappaB p65 subunit in these organs. Furthermore, A. camphorata attenuated the productions of LPS-induced TNF-alpha and IL-1beta in serum from transgenic mice. We report the first confirmation of the anti-inflammatory action in vivo of this potentially beneficial mushroom.

  8. Inhibitory effect of BMAP-28 on Leptospiral Lipopolysaccharide-Induced TLR2-Dependent Immune Response in Bovine Cells

    PubMed Central

    GUO, Yijie; Ding, Cuiping; Zhang, Bo; XU, Jun; XUN, Meng; XU, Jiru

    2016-01-01

    Background Bovine leptospirosis is a widespread zoonotic disease, leading to serious economic losses in animal production and causing potential hazards to human health. Leptospiral lipopolysaccharide (L-LPS) plays an important role in leptospirosis pathogenicity. Objectives With respect to L-LPS endotoxin-like activity, we examined bovine immune response to L-LPS and the inhibitory ability of bovine myeloid antimicrobial peptide-28 (BMAP-28) against L-LPS-induced immune activation in bovine cells. Materials and Methods In this study, L-LPS-induced proinflammatory cytokine production in bovine cells was quantitatively measured with real-time PCR and ELISA, and we determined which cell membrane receptors (toll-like receptor [TLR]2 and TLR4) played a major role. In addition, the ability of BMAP-28 to inhibit L-LPS-induced endotoxin-like immune activation in bovine cells was determined by the decrease in cytokine secretion. Results L-LPS showed the ability to induce cytokine production in bovine cells, and its induction was TLR2-dependent. BMAP-28 was used to inhibit L-LPS-induced endotoxin-like activity. The function of BMAP-28 was to inhibit LPS-induced TLR2 expression and cytokine production. Conclusions In this study, the L-LPS immune response of bovine cells was significant, indicating that TLR2 is the predominant receptor for L-LPS. Due to L-LPS endotoxin-like activity, we found a strategy through using BMAP-28 to prevent L-LPS-induced TLR2-dependent immune activation in bovine cells. PMID:27635213

  9. Different contributions of clathrin- and caveolae-mediated endocytosis of vascular endothelial cadherin to lipopolysaccharide-induced vascular hyperpermeability.

    PubMed

    Zhang, Ye; Zhang, Lianyang; Li, Yang; Sun, Shijin; Tan, Hao

    2014-01-01

    Vascular hyperpermeability induced by lipopolysaccharide (LPS) is a common pathogenic process in cases of severe trauma and sepsis. Vascular endothelial cadherin (VE-cad) is a key regulatory molecule involved in this process, although the detailed mechanism through which this molecule acts remains unclear. We assessed the role of clathrin-mediated and caveolae-mediated endocytosis of VE-cad in LPS-induced vascular hyperpermeability in the human vascular endothelial cell line CRL-2922 and determined that vascular permeability and VE-cad localization at the plasma membrane were negatively correlated after LPS treatment. Additionally, the loss of VE-cad at the plasma membrane was caused by both clathrin-mediated and caveolae-mediated endocytosis. Clathrin-mediated endocytosis was dominant early after LPS treatment, and caveolae-mediated endocytosis was dominant hours after LPS treatment. The caveolae-mediated endocytosis of VE-cad was activated through the LPS-Toll-like receptor 4 (TLR4)-Src signaling pathway. Structural changes in the actin cytoskeleton, specifically from polymerization to depolymerization, were important reasons for the switching of the VE-cad endocytosis pathway from clathrin-mediated to caveolae-mediated. Our findings suggest that clathrin-mediated and caveolae-mediated endocytosis of VE-cad contribute to LPS-induced vascular hyperpermeability, although they contribute via different mechanism. The predominant means of endocytosis depends on the time since LPS treatment.

  10. Ginsenoside Rg3 Alleviates Lipopolysaccharide-Induced Learning and Memory Impairments by Anti-Inflammatory Activity in Rats

    PubMed Central

    Lee, Bombi; Sur, Bongjun; Park, Jinhee; Kim, Sung-Hun; Kwon, Sunoh; Yeom, Mijung; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2013-01-01

    The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer’s disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain. PMID:24244826

  11. Anti-inflammatory effect of Heliotropium indicum Linn on lipopolysaccharide-induced uveitis in New Zealand white rabbits

    PubMed Central

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Ameyaw, Elvis Ofori; Asiamah, Emmanuel Akomanin

    2016-01-01

    AIM To investigate the anti-inflammatory effect of an aqueous whole plant extract of Heliotropium indicum (HIE) on endotoxin-induced uveitis in New Zealand white rabbits. METHODS Clinical signs of uveitis including flares, iris hyperemia and miosis, were sought for and scored in 1.0 mg/kg lipopolysaccharide (LPS) -induced uveitic rabbits treated orally with HIE (30-300 mg/kg), prednisolone (30 mg/kg), or normal saline (10 mL/kg). The number of polymorphonuclear neutrophils infiltrating, the protein concentration, as well as levels of tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), and monocyte chemmoattrant protein-1 (MCP-1) in the aqueous humor after the various treatments were also determined. A histopathological study of the anterior uveal was performed. RESULTS The extract and prednisolone-treatment significantly reduced (P≤0.001) both the clinical scores of inflammation (1.0-1.8 compared to 4.40±0.40 in the normal saline-treated rabbits) and inflammatory cells infiltration. The level of protein, and the concentrations of TNF-α, PGE2 and MCP-1 in the aqueous humor were also significantly reduced (P≤0.001). Histopathological studies showed normal uveal morphology in the HIE and prednisolone-treated rabbits while normal saline-treated rabbits showed marked infiltration of inflammatory cells. CONCLUSION The HIE exhibits anti-inflammatory effect on LPS-induced uveitis possibly by reducing the production of pro-inflammatory mediators. PMID:27162723

  12. Tim-4 protects mice against lipopolysaccharide-induced endotoxic shock by suppressing the NF-κB signaling pathway.

    PubMed

    Xu, Liyun; Zhao, Peiqing; Xu, Yong; Gao, Lishuang; Wang, Hongxing; Jia, Xiaoxia; Ma, Hongxin; Liang, Xiaoxong; Ma, Chunxong; Gao, Lifen

    2016-11-01

    Endotoxic shock is the primary cause of morbidity and mortality in hospital patients, creating an urgent need to explore the mechanisms involved in sepsis. Our previous studies showed that T-cell immunoglobulin- and mucin-domain-containing molecule-4 (Tim-4) attenuated the inflammatory response through regulating the functions of macrophages. However, the mechanism by which Tim-4 does this has not been fully elucidated. In this study, we found that Tim-4 expression was increased in lipopolysaccharide (LPS)-induced endotoxic shock. Interestingly, the survival rate of mice in the Tim-4 overexpression group was higher than that of the control group after LPS administration. To investigate the function of Tim-4 in LPS-induced inflammation, we further demonstrated that Tim-4 attenuated LPS-induced endotoxic shock by inhibiting cytokine production by macrophages. Blocking expression of Tim-4 and nuclear factor-kappa B (NF-κB) signal inhibition showed that Tim-4 inhibited cytokine production via NF-κB signaling pathway. This study indicates that Tim-4 may exert its immune modulation by regulating inflammatory factor secretion and might act as a novel potential target for inflammatory diseases, especially endotoxic shock.

  13. Antihepatotoxic activity of Saussurea lappa extract on D-galactosamine and lipopolysaccharide-induced hepatitis in mice.

    PubMed

    Yaeesh, Sheikh; Jamal, Qamar; Shah, Abdul Jabbar; Gilani, Anwarul Hassan

    2010-06-01

    The effects of aqueous-methanol extract of Saussurea lappa Clarke root (Sl.Cr) was investigated against D-galactosamine (D-GalN) and lipopolysaccharide (LPS)-induced hepatitis in mice. Co-administration of D-GalN (700 mg/kg) and LPS (1 microg/kg) significantly raised the plasma transaminase levels (ALT/AST) as compared to the control group (p < 0.05). Pretreatment of mice with different doses of Sl.Cr (150, 300 and 600 mg/kg) significantly prevented the D-GalN and LPS-induced rise in plasma levels of ALT and AST in a dose-dependent manner (p < 0.05). Post-treatment with Sl.Cr (600 mg/kg) significantly restricted the progression of hepatic damage induced by D-GalN and LPS (p < 0.05). The improvement in plasma enzyme levels was further verified by histopathology of the liver, which showed improved architecture, absence of parenchyma congestion, decreased cellular swelling and apoptotic cells in treatment groups as compared to the toxin group of animals. These data indicate that the Sl.Cr exhibits hepatoprotective effect in mice and this study rationalize the traditional use of this plant in liver disorders.

  14. Piperine Augments the Protective Effect of Curcumin Against Lipopolysaccharide-Induced Neurobehavioral and Neurochemical Deficits in Mice.

    PubMed

    Jangra, Ashok; Kwatra, Mohit; Singh, Tavleen; Pant, Rajat; Kushwah, Pawan; Sharma, Yogita; Saroha, Babita; Datusalia, Ashok Kumar; Bezbaruah, Babul Kumar

    2016-06-01

    The aim of the present study was to investigate the protective effects of curcumin alone and in combination with piperine against lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical deficits in the mice hippocampus. Mice were treated with curcumin (100, 200, and 400 mg/kg, p.o.) and piperine (20 mg/kg, p.o.) for 7 days followed by LPS (0.83 mg/kg, i.p.) administration. Animals exhibited anxiety and depressive-like phenotype after 3 and 24 h of LPS exposure, respectively. LPS administration increased the oxido-nitrosative stress as evident by elevated levels of malondialdehyde, nitrite, and depletion of glutathione level in the hippocampus. Furthermore, we found raised level of pro-inflammatory cytokines (IL-1β and TNF-α) in the hippocampus of LPS-treated mice. Pretreatment with curcumin alleviated LPS-induced neurobehavioral and neurochemical deficits. Furthermore, co-administration of curcumin with piperine significantly potentiated the neuroprotective effect of curcumin. These results demonstrate that piperine enhanced the neuroprotective effect of curcumin against LPS-induced neurobehavioral and neurochemical deficits.

  15. Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-gamma.

    PubMed

    Zhang, X; Laubach, V E; Alley, E W; Edwards, K A; Sherman, P A; Russell, S W; Murphy, W J

    1996-04-01

    The work reported here resolves, at the level of gene regulation, the controversy as to whether or not human monocytes/macrophages can produce nitric oxide (NO) when stimulated with lipopolysaccharide (LPS), with or without co-stimulation by interferon-gamma (IFN-gamma). Studies included structural comparison of the promoters for human and mouse inducible NO synthase (iNOS) genes, transfection and assay of human and mouse iNOS promoter regions in response to LPS +/- IFN-gamma, and electrophoretic mobility shift assays of kappa B response elements. Two explanations for hyporesponsiveness of the human iNOS promoter to LPS +/- IFN-gamma were found: (1) multiple inactivating nucleotide substitutions in the human counterpart of the enhancer element that has been shown to regulate LPS/IFN-gamma induced expression of the mouse iNOS gene; and (2) and absence of one or more nuclear factors in human macrophages (e.g., an LPS-inducible nuclear factor-kappa B/Rel complex), that is (are) required for maximal expression of the gene. The importance of resolution of this controversy is that future research in this area should be directed toward the understanding of alternative mechanisms that can result in the successful production of NO.

  16. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model

    PubMed Central

    YANG, ZHAI; JIANG, QIONG; CHEN, SHUANG-XI; HU, CHENG-LIANG; SHEN, HUI-FAN; HUANG, PEI-ZHI; XU, JUN-PING; MEI, JIN-PING; ZHANG, BEN-PING; ZHAO, WEI-JIANG

    2016-01-01

    Neuregulin 1 (Nrg1) is involved in multiple biological processes in the nervous system. The present study investigated changes in Nrg1 signaling in the major brain regions of mice subjected to lipopolysaccharide (LPS)-induced neuroinflammation. At 24 h post-intraperitoneal injection of LPS, mouse brain tissues, including tissues from the cortex, striatum, hippocampus and hypothalamus, were collected. Reverse transcription-polymerase chain reaction was used to determine the expression of Nrg1 and its receptors, Neu and ErbB4, at the mRNA level. Western blotting was performed to determine the levels of these proteins and the protein levels of phosphorylated extracellular signal-regulated kinases (Erk)1/2 and Akt1. Immunohistochemical staining was utilized to detect the levels of pNeu and pErbB4 in these regions. LPS successfully induced sites of neuroinflammation in these regions, in which changes in Nrg1, Neu and ErbB4 at the mRNA and protein levels were identified compared with controls. LPS induced a reduction in pNeu and pErbB4 in the striatum and hypothalamus, although marginally increased pErbB4 levels were found in the hippocampus. LPS increased the overall phosphorylation of Src but this effect was reduced in the hypothalamus. Moreover, increased phosphorylation of Akt1 was found in the striatum and hippocampus. These data suggest diverse roles for Nrg1 signaling in these regions during the process of neuroinflammation. PMID:27220549

  17. Inhibition of leukotriene B4 receptor 1 attenuates lipopolysaccharide-induced cardiac dysfunction: role of AMPK-regulated mitochondrial function

    PubMed Central

    Sun, Meng; Wang, Rui; Han, Qinghua

    2017-01-01

    Leukotriene B4 (LTB4)-mediated leukocyte recruitment and inflammatory cytokine production make crucial contributions to chronic inflammation and sepsis; however, the role of LTB4 in lipopolysaccharide (LPS)-induced cardiac dysfunction remains unclear. Therefore, the present study addressed this issue using an LTB4 receptor 1 (BLT1) inhibitor. Administration of LPS to mice resulted in decreased cardiovascular function. Inhibition of LTB4/BLT1 with the BLT1 inhibitor U75302 significantly improved survival and attenuated the LPS-induced acute cardiac dysfunction. During LPS challenge, the phosphorylated AMPK/ACC signaling pathway was slightly activated, and this effect was enhanced by U75302. Additionally, pNF-κB, Bax and cleaved caspase-3 were upregulated by LPS, and Bcl-2, IκB-α, mitochondrial complex I, complex II, and OPA1 were downregulated; however, these effects were reversed by U75302. The results indicated that the BLT1 antagonist suppressed cardiac apoptosis, inflammation, and mitochondrial impairment. Furthermore, the protection provided by the BLT1 inhibitor against LPS-induced cardiac dysfunction was significantly reversed by the AMPK inhibitor Compound C. In conclusion, inhibiting the LTB4/BLT1 signaling pathway via AMPK activation is a potential treatment strategy for septic cardiac dysfunction because it efficiently attenuates cardiac apoptosis, which may occur via the inhibition of inflammation and mitochondrial dysfunction. PMID:28290498

  18. Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF-kappa B activation.

    PubMed

    Huang, Tom Hsun-Wei; Tran, Van H; Duke, Rujee K; Tan, Sharon; Chrubasik, Sigrun; Roufogalis, Basil D; Duke, Colin C

    2006-03-08

    Preparations of Harpagophytum procumbens, known as devil's claw, are used as an adjunctive therapy for the treatment of pain and osteoarthritis. Pharmacological evaluations have proven the effectiveness of this herbal drug as an anti-inflammatory and analgesic agent. The present study has investigated the mechanism of action of harpagoside, one of the major components of Harpagophytum procumbens, using human HepG2 hepatocarcinoma and RAW 264.7 macrophage cell lines. Harpagoside inhibited lipopolysaccharide-induced mRNA levels and protein expression of cyclooxygenase-2 and inducible nitric oxide in HepG2 cells. These inhibitions appeared to correlate with the suppression of NF-kappaB activation by harpagoside, as pre-treating cells with harpagoside blocked the translocation of NF-kappaB into the nuclear compartments and degradation of the inhibitory subunit IkappaB-alpha. Furthermore, harpagoside dose-dependently inhibited LPS-stimulated NF-kappaB promoter activity in a gene reporter assay in RAW 264.7 cells, indicating that harpagoside interfered with the activation of gene transcription. These results suggest that the inhibition of the expression of cyclooxygenase-2 and inducible nitric oxide by harpagoside involves suppression of NF-kappaB activation, thereby inhibiting downstream inflammation and subsequent pain events.

  19. D-galactosamine/lipopolysaccharide-induced hepatotoxicity downregulates sirtuin 1 in rat liver: role of sirtuin 1 modulation in hepatoprotection.

    PubMed

    Kemelo, M K; Wojnarová, L; Kutinová Canová, N; Farghali, H

    2014-01-01

    D-Galactosamine/Lipopolysaccharide (D-GalN/LPS) is a well known model of hepatotoxicity that closely resembles acute liver failure (ALF) seen clinically. The role of sirtuin 1 in this model has not yet been documented. However, there have been a number of studies about the cytoprotective effects of resveratrol, a SIRT1 activator, in the liver. This study was aimed at elucidating the roles of SIRT1 protein expression or catalytic activity in D-GalN/LPS model of hepatotoxicity. ALF was induced in male Wistar rats by intraperitoneal injection of D-GalN and LPS. Some groups of animals were pretreated with resveratrol and/or EX-527 (SIRT1 inhibitor). The effects of these treatments were evaluated by biochemical and Western blot studies. D-GalN/LPS treatment was able to induce hepatotoxicity and significantly increase all markers of liver damage and lipid peroxidation. A dramatic decrease of SIRT1 levels in response to D-GalN/LPS treatment was also documented. Resveratrol pretreatment attenuated D-GalN/LPS-induced hepatotoxicity. EX-527 blocked the cytoprotective effects of resveratrol. However, both resveratrol and EX-527 pretreatments did not exhibit any significant effect on SIRT1 protein expression. Collectively, these results suggest that downregulation of SIRT1 expression is involved in the cytotoxic effects of D-GalN/LPS model and SIRT1 activity contributes to the cytoprotective effects of resveratrol in the liver.

  20. PKC412 (CGP41251) modulates the proliferation and lipopolysaccharide-induced inflammatory responses of RAW 264.7 macrophages

    SciTech Connect

    Miyatake, Katsutoshi; Inoue, Hiroshi . E-mail: hinoue@genome.tokushima-u.ac.jp; Hashimoto, Kahoko; Takaku, Hiroshi; Takata, Yoichiro; Nakano, Shunji; Yasui, Natsuo; Itakura, Mitsuo

    2007-08-17

    PKC412 (CGP41251) is a multitarget protein kinase inhibitor with anti-tumor activities. Here, we investigated the effects of PKC412 on macrophages. PKC412 inhibited the proliferation of murine RAW 264.7 macrophages through induction of G2/M cell cycle arrest and apoptosis. At non-toxic drug concentrations, PKC412 significantly suppressed the lipopolysaccharide (LPS)-induced release of TNF-{alpha} and nitric oxide, while instead enhancing IL-6 secretion. PKC412 attenuated LPS-induced phosphorylations of MKK4 and JNK, as well as AP-1 DNA binding activities. Furthermore, PKC412 suppressed LPS-induced Akt and GSK-3{beta} phosphorylations. These results suggest that the anti-proliferative and immunomodulatory effects of PKC412 are, at least in part, mediated through its interference with the MKK4/JNK/AP-1 and/or Akt/GSK-3{beta} pathways. Since macrophages contribute significantly to the development of both acute and chronic inflammation, PKC412 may have therapeutic potential and applications in treating inflammatory and/or autoimmune diseases.

  1. Depression-like behaviors and heme oxygenase-1 are regulated by Lycopene in lipopolysaccharide-induced neuroinflammation.

    PubMed

    Zhang, Fang; Fu, Yanyan; Zhou, Xiaoyan; Pan, Wei; Shi, Yue; Wang, Mei; Zhang, Xunbao; Qi, Dashi; Li, Lei; Ma, Kai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2016-09-15

    Previous studies have demonstrated that lycopene possesses anti-inflammatory properties in the central nervous system. However, the potential role and the molecular mechanisms of lycopene in lipopolysaccharide (LPS)-challenge inflammation and depression-like behaviors has not been clearly investigated. The present study aimed to assess the effects and the potential mechanisms of lycopene on LPS-induced depression-like behaviors. Lycopene was orally administered (60mg/kg) every day for seven days followed by intraperitoneal LPS injection (1mg/kg). The Forced swim test and tail suspension test were used to detect changes in the depression-like behaviors. ELISA was used to measure the expression of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) in the plasma. Immunoblotting was performed to measure the expression of interleukin-1β (IL-1β) and heme oxygenase-1 (HO-1) in the hippocampus. The results showed that pretreatment with lycopene could ameliorate depression-like behaviors. Moreover, lycopene relieved neuronal cell injury in hippocampal CA1 regions. Furthermore, lycopene decreased LPS-induced expression of IL-1β and HO-1 in the hippocampus together with decreasing level of IL-6 and TNF-α in the plasma. Taken together, these results suggest that lycopene can attenuate LPS-induced inflammation and depression-like behaviors, which may be involved in regulating HO-1 in the hippocampus.

  2. Neutrophil elastase inhibitor (ONO-5046) prevents lung hemorrhage induced by lipopolysaccharide in rat model of cerulein pancreatitis.

    PubMed

    Guo, L; Yamaguchi, Y; Ikei, S; Sugita, H; Ogawa, M

    1995-10-01

    The protective effects of a neutrophil elastase inhibitor (ONO-5046) on cerulein-induced pancreatitis followed by a septic challenge with intraperitoneal lipopolysaccharide (LPS) were studied in a rat model. Pancreatitis was induced by four intramuscular injections of cerulein (50 micrograms/kg at 1-hr intervals). ONO-5046 was administered by continuous intravenous infusion via the right jugular vein (50 mg/kg/hr, 30 min prior to the first cerulein injection to 20 hr following the last cerulein injection). Significant differences in serum amylase and pancreatic wet weight ratio were not observed between the animals with pancreatitis treated with or without ONO-5046. There was no significant difference in the in vitro tumor necrosis factor-alpha (TNF-alpha) production by peritoneal macrophages from rats with pancreatitis treated with or without ONO-5046. In a second experiment, LPS (10 mg/kg) was administered intraperitoneally as the septic challenge 6 hr following the first cerulein injection. Lung hemorrhage was seen in the animals with pancreatitis untreated with ONO-5046 24 hr following the first cerulein injection. No significant lung hemorrhage was observed in the animals with pancreatitis treated with ONO-5046 administering 30 min prior to the first cerulein injection. These results suggest that lung hemorrhage in cerulein-induced pancreatitis that follows a septic challenge with LPS can be prevented by the intravenous administration of ONO-5046. Thus there is a significant role for neutrophil elastase in pancreatitis-associated lung injury.

  3. Indenes and tetralenes analogues attenuates lipopolysaccharide-induced inflammation: An in-vitro and in-vivo study.

    PubMed

    Mohanty, Shilpa; Gautam, Yashveer; Maurya, Anil Kumar; Negi, Arvind S; Prakash, Om; Khan, Feroz; Bawankule, Dnyaneshwar Umrao

    2016-02-05

    In an effort to evaluate novel pharmacological activity of 1-chloro-2-formyl indene and tetralene analogues possessing potential antitubercular and antistaphylococcal agents, we explored its anti-inflammatory potential against lipopolysaccharide(LPS)-induced inflammation using in-vitro and in-vivo bioassay. Synthesized analogues significantly inhibited the production and expression of pro-inflammatory cytokines against LPS-induced inflammation in macrophages isolated from mice. Among all the analogues, TAF-5 (1-Chloro-2-formyl-1-tetralene) exhibited most potent anti-inflammatory activity without any cytotoxic effect. We have further evaluated the therapeutic efficacy and safety of TAF-5 in in-vivo system using LPS-induced sepsis, a systemic inflammation model and acute oral toxicity respectively in mice. Oral administration of TAF-5 inhibited the pro-inflammatory cytokines in serum, attenuated the organs injuries and improved host survival in dose dependent manner. Acute oral toxicity study showed TAF-5 is non-toxic at higher dose in mice. These results suggest the suitability of indene and tetralene analogues as new chemical entities for further investigation towards the management of inflammation related diseases.

  4. Amla (Emblica officinalis Gaertn.) extract inhibits lipopolysaccharide-induced procoagulant and pro-inflammatory factors in cultured vascular endothelial cells.

    PubMed

    Rao, Theertham Pradyumna; Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Kato-Yasuda, Naomi; Suzuki, Koji

    2013-12-01

    Amla (Emblica officinalis Gaertn.) has been used for many centuries in traditional Indian Ayurvedic formulations for the prevention and treatment of many inflammatory diseases. The present study evaluated the anti-inflammatory and anticoagulant properties of amla fruit extract. The amla fruit extract potentially and significantly reduced lipopolysaccharide (LPS)-induced tissue factor expression and von Willebrand factor release in human umbilical vein endothelial cells (HUVEC) in vitro at clinically relevant concentrations (1-100 μg/ml). In a leucocyte adhesion model of inflammation, it also significantly decreased LPS-induced adhesion of human monocytic cells (THP-1) to the HUVEC, as well as reduced the expression of endothelial-leucocyte adhesion molecule-1 (E-selectin) in the target cells. In addition, the in vivo anti-inflammatory effects were evaluated in a LPS-induced endotoxaemia rat model. Oral administration of the amla fruit extract (50 mg/kg body weight) significantly decreased the concentrations of pro-inflammatory cytokines, TNF-α and IL-6 in serum. These results suggest that amla fruit extract may be an effective anticoagulant and anti-inflammatory agent.

  5. Lipoxin A4 protects against lipopolysaccharide-induced sepsis by promoting innate response activator B cells generation.

    PubMed

    Cheng, Qiong; Wang, Zheng; Ma, Ruihua; Chen, Yongtao; Yan, Yan; Miao, Shuo; Jiao, Jingyu; Cheng, Xue; Kong, Lingfei; Ye, Duyun

    2016-10-01

    Sepsis is a serious disease that leads to severe inflammation, dysregulation of immune system, multi-organ failure and death. Innate response activator (IRA) B cells, which produce granulocyte-macrophage colony-stimulating factor (GM-CSF), protect against microbial sepsis. Lipid mediator lipoxin A4 (LXA4) exerts anti-inflammatory and immunoregulatory effects, and it has been reported that LXA4 receptor ALX/FPR2 is expressed on B cells. Here, we investigated the potential role of LXA4 on IRA B cells in lipopolysaccharide (LPS)-induced sepsis. We found that LXA4 significantly promoted the expansion of splenic IRA B cells and increased GM-CSF expression in splenic B cells with LPS stimulation. After splenectomy, LXA4 treatment did not change the serum or peritoneal IL-1β, IL-6 and TNF-α levels in LPS-induced sepsis. LXA4 accelerated the migration of peritoneal B cells to spleen for their differentiation into IRA B cells, whereas this effect was independent of peritoneal macrophage. Furthermore, LXA4 enhanced the phosphorylation level of signal transducer and activator of transcription 5 (STAT5) in splenic B cells. These results suggest that LXA4 protects against LPS-induced sepsis by promoting the generation and migration of splenic IRA B cells, and the underlying molecular mechanism may be related to STAT5 activation. It might provide new insights and therapeutic approaches for treating sepsis.

  6. Alterations of Thymic Epithelial Cells in Lipopolysaccharide-induced Neonatal Thymus Involution

    PubMed Central

    Zhou, Yong-Jie; Peng, Hua; Chen, Yan; Liu, Ya-Lan

    2016-01-01

    Background: Vascular endothelial growth factor (VEGF) in the thymus was mainly produced by the thymic epithelial cells (TECs), the predominant component of the thymic microenvironment. The progression of TECs and the roles of VEGF in the neonatal thymus during sepsis have not been reported. This study aimed to explore the alterations of TECs and VEGF level in the neonatal thymus involution and to explore the possible mechanisms at the cellular level. Methods: By establishing a model of clinical sepsis, the changes of TECs were measured by hematoxylin-eosin staining, confocal microscopy, and flow cytometry. Moreover, the levels of VEGF in serum and thymus were assessed based on enzyme-linked immunosorbent assay and Western blotting. Results: The number of thymocytes and TECs was significantly decreased 24 h after lipopolysaccharide (LPS) challenge, (2.40 ± 0.46)×107 vs. (3.93 ± 0.66)×107 and (1.16 ± 0.14)×105 vs. (2.20 ± 0.19)×105, P < 0.05, respectively. Cortical TECs and medullary TECs in the LPS-treated mice were decreased 1.5-fold and 3.9-fold, P < 0.05, respectively, lower than those in the controls. The number of thymic epithelial progenitors was also decreased. VEGF expression in TECs was down-regulated in a time-dependent manner. Conclusion: VEGF in thymic cells subsets might contribute to the development of TECs in neonatal sepsis. PMID:26712434

  7. Interactions of tachykinin receptor antagonists with lipopolysaccharide-induced airway inflammation in mice.

    PubMed

    Veron, M; Guenon, I; Nenan, S; Emonds-Alt, X; Advenier, C; Lagente, V; Boichot, E

    2004-09-01

    1. Several observations suggest that tachykinins are involved in the pathogenesis of bronchopulmonary alterations. We have investigated the effect of antagonists for tachykinin NK1 (SR 140333), NK2 (SR 48968) or NK3 (SR 142801) receptors on inflammatory cell recruitment, tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 release and matrix metalloproteinase (MMP)-9 activity in the bronchoalveolar lavage fluid (BALF) of mice exposed to lipopolysaccharide (LPS; 100 microg/mL aerosol for 30 min). 2. Treatment of mice with a combination of SR 140333 and SR 48968 (10(-6) mol/L, aerosol) significantly reduced the increase in the number of total cells and neutrophils and MMP-9 activity in the BALF of mice 2.5 h after LPS exposure. Treatment with the NK3 antagonist SR 142801 (10(-6) mol/L, aerosol) did not inhibit the influx of neutrophils, but markedly reduced the increase in TNF-alpha and IL-6 levels at 2.5 h and MMP-9 activity at 20 h. 3. These results show that the three tachykinin receptor antagonists may interfere with the development of airway inflammation, namely neutrophilia, TNF-alpha release or MMP-9 activity in the BALF of mice exposed to LPS and suggest that not only NK1 and NK2 receptors, but also NK3 receptors are involved in the modulation of the inflammatory response and airway remodelling.

  8. Selective modulation of lipopolysaccharide-induced death and cytokine production by various muramyl peptides.

    PubMed Central

    Parant, M A; Pouillart, P; Le Contel, C; Parant, F J; Chedid, L A; Bahr, G M

    1995-01-01

    Pretreatment of animals with the adjuvant muramyl dipeptide enhances both the production of circulating tumor necrosis factor and the sensitivity to the lethal effect of a lipopolysaccharide (LPS) challenge. The present study examined the capacity of various adjuvant muramyl dipeptide derivatives to potentiate responsiveness to LPS administration. Cytokine levels in serum were determined at various time intervals after LPS administration by bioassays and immunoassays; the cytokines examined were tumor necrosis factor, interleukin-1, interleukin-6, and gamma interferon. The time course of cytokine response was not modified by the pretreatment, but most of the levels were strongly enhanced. However, of the four compounds which were found to be potent priming agents, only two caused an increased sensitivity to LPS lethality, showing that elevated titers of cytokines in serum were not correlated with host sensitization. Interestingly, previous studies have shown that these two compounds also display neurobiological properties, implying a possible role of the central nervous system in LPS lethality. However, two hydrophilic derivatives with low activity as priming agents were capable of decreasing the toxicity of LPS when given after the challenge in galactosamine-sensitized mice. These results illustrate the diversity of responses elicited by immunological priming. They raise unanswered questions on the importance of endogenous mediators in the pathophysiological alterations during toxic shock. PMID:7806345

  9. Aminothiol WR-1065 protects endothelial cell morphology against alterations induced by lipopolysaccharide.

    PubMed

    Podolski, J L; Mooteri, S N; Drab-Weiss, E A; Onoda, J M; Saclarides, T J; Rubin, D B

    1998-12-01

    In septic patients, lipopolysaccharide (LPS) damages the vascular endothelium, which manifests as tissue edema and impaired healing. This pathology occurs when LPS distorts endothelial cell morphology partly by generating free radicals. A radioprotector that scavenges free radicals, the aminothiol WR-1065 ([N-2-mercaptoethyl]-1-3-diaminopropane) was found in a prior study to normalize the morphology of irradiated endothelial cells (Mooteri SN, Podolski JL, Drab EA, et al: Radiat Res 145:217-224, 1996). The aim of this study was to determine whether WR-1065 also normalized endothelial cell morphology following exposure to LPS. For this aim, portions of bovine aortic endothelial cell cultures were denuded and exposed to LPS at 1 ng/mL. After 30 min, the apical membrane expressed increased integrin receptor to fibronectin, alpha5beta1. After 5 h, the morphology of the cells at the leading edge was distorted, and cell-cell contact was lessened. Also, filamentous actin-containing stress fibers were dissipated; however, filamentous actin content per cell was unchanged. Treatment with 2 mM WR-1065 for 2 h prior to LPS exposure attenuated the increased expression of alpha5beta1 and promoted cell-cell contact in the migrating endothelial cells. WR-1065 also promoted the retention of stress fibers and actin cytoskeletal shape in cells treated with LPS. Thus, LPS distorted endothelial cell morphology after increasing apical membrane expression of alpha5beta1 and dissipating stress fibers, effects prevented by WR-1065.

  10. Ethanol extract of Elaeocarpus petiolatus inhibits lipopolysaccharide-induced inflammation in macrophage cells.

    PubMed

    Kwon, Ok-Kyoung; Ahn, Kyung-Seop; Park, Ji-Won; Jang, Ha-Young; Joung, Hyouk; Lee, Hyeong-Kyu; Oh, Sei-Ryang

    2012-04-01

    Elaeocarpus petiolatus is known to exert active oxygen scavenging, anti-aging, and whitening actions. However, the biological effects of E. petiolatus on inflammation and the underlying mechanisms are yet to be established. In the present study, we investigated the anti-inflammatory effects of the ethanol extract from E. petiolatus (EPE) bark in murine Raw264.7 macrophages stimulated with lipopolysaccharide (LPS). EPE inhibited the production of PGE(2), TNF-α, and IL-1β in a dose-dependent manner in Raw264.7 cells stimulated with LPS. The decrease in PGE(2) production was correlated with reduced COX-2 expression. Furthermore, EPE suppressed the phosphorylation of extracellular signal-related kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 as well as translocation of the NF-κB p65 subunit from the cytosol to nucleus. Our results suggest that EPE exerts anti-inflammatory activity through inhibition of inflammatory mediators, such as PGE(2), TNF-α, and IL-1β, and downregulation of COX-2 via suppression of NF-κB translocation and phosphorylation of ERK, JNK, and p38 in LPS-stimulated Raw264.7 cells.

  11. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide.

    PubMed

    Gong, Yu; Ji, Yuejia; Liu, Fang; Li, Juan; Cao, Yi

    2016-11-15

    Recent studies showed that ZnO nanoparticles (NPs) might induce the toxicity to human endothelial cells. However, little is known about the interaction between ZnO NPs and circulatory components, which is likely to occur when NPs enter the blood. In this study, we evaluated ZnO NP-induced cytotoxicity, oxidative stress and inflammation in human umbilical vein endothelial cells (HUVECs), with the emphasis on the interaction with palmitate (PA) or lipopolysaccharide (LPS), because PA and LPS are normal components in human blood that increase in metabolic diseases. Overall, ZnO NPs induced cytotoxicity and intracellular reactive oxygen species (ROS) at a concentration of 32 μg ml(-1) , but did not significantly affect the release of inflammatory cytokines or adhesion of THP-1 monocytes to HUVECs. In addition, exposure to ZnO NPs dose-dependently promoted intracellular Zn ions in HUVECs. PA and LPS have different effects. Two hundred μm PA significantly induced cytotoxicity and THP-1 monocyte adhesion, but did not affect ROS or release of inflammatory cytokines. In contrast, 1 μg ml(-1) LPS significantly induced ROS, release of inflammatory cytokines and THP-1 monocyte adhesion, but not cytotoxicity. The presence of ZnO NPs did not significantly affect the toxicity induced by PA or LPS. In addition, the accumulation of Zn ions after ZnO NP exposure was not significantly affected by the presence of PA or LPS. We concluded that there was no interaction between ZnO NPs and PA or LPS on toxicity to HUVECs in vitro. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells.

    PubMed

    Im, Jintaek; Baik, Jung Eun; Kim, Kyoung Whun; Kang, Seok-Seong; Jeon, Jun Ho; Park, Ok-Jin; Kim, Hyun Young; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2015-08-01

    Periodontitis is caused by multi-bacterial infection and Aggregatibacter actinomycetemcomitans and Enterococcus faecalis are closely associated with inflammatory periodontal diseases. Although lipopolysaccharide (LPS) of A. actinomycetemcomitans (Aa.LPS) and lipoteichoic acid of E. faecalis (Ef.LTA) are considered to be major virulence factors evoking inflammatory responses, their combinatorial effect on the induction of chemokines has not been investigated. In this study, we investigated the interaction between Aa.LPS and Ef.LTA on IL-8 expression in human periodontal ligament (PDL) cells. Aa.LPS, but not Ef.LTA, substantially induced IL-8 expression at the protein and mRNA levels. Interestingly, Ef.LTA suppressed Aa.LPS-induced IL-8 expression without affecting the binding of Aa.LPS to Toll-like receptor (TLR) 4. Ef.LTA reduced Aa.LPS-induced phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38 kinase. Furthermore, Ef.LTA inhibited the Aa.LPS-induced transcriptional activities of the activating protein 1, CCAAT/enhancer-binding protein and nuclear factor-kappa B transcription factors, all of which are known to regulate IL-8 gene expression. Ef.LTA augmented the expression of IL-1 receptor-associated kinase-M (IRAK-M), a negative regulator of TLR intracellular signaling pathways, in the presence of Aa.LPS at both the mRNA and protein levels. Small interfering RNA silencing IRAK-M reversed the attenuation of Aa.LPS-induced IL-8 expression by Ef.LTA. Collectively, these results suggest that Ef.LTA down-regulates Aa.LPS-induced IL-8 expression in human PDL cells through up-regulation of the negative regulator IRAK-M.

  13. Propentofylline Prevents Sickness Behavior and Depressive-Like Behavior Induced by Lipopolysaccharide in Rats via Neuroinflammatory Pathway

    PubMed Central

    Cabral, Danilo; Coelho, Cideli P.; Queiroz-Hazarbassanov, Nicolle; Martins, Maria F. M.; Bondan, Eduardo F.; Bernardi, Maria M.; Kirsten, Thiago Berti

    2017-01-01

    Recent studies have demonstrated the intimate relationship between depression and immune disturbances. Aware of the efficacy limits of existing antidepressant drugs and the potential anti-inflammatory properties of propentofylline, we sought to evaluate the use of propentofylline as a depression treatment. We used a rat model of depression induced by repetitive lipopolysaccharide (LPS) administrations. We have studied sickness behavior, by assessing daily body weight, open field behavior, and TNF-α plasmatic levels. Anxiety-like behavior (light-dark test), depressive-like behavior (forced swim test), plasmatic levels of the brain-derived neurotrophic factor (BDNF, depression biomarker), and central glial fibrillary acidic protein (GFAP) expression (an astrocyte biomarker) were also evaluated. LPS induced body weight loss, open field behavior impairments (decreased locomotion and rearing, and increased immobility), and increased TNF-α levels in rats, compared with control group. Thus, LPS induced sickness behavior. LPS also increased the immobility and reduced climbing in the forced swim test, when compared with the control group, i.e., LPS induced depressive-like behavior in rats. Propentofylline prevented sickness behavior after four days of consecutive treatment, as well as prevented the depressive-like behavior after five days of consecutive treatments. Propentofylline also prevented the increase in GFAP expression induced by LPS. Neither LPS nor propentofylline has influenced the anxiety and BDNF levels of rats. In conclusion, repetitive LPS administrations induced sickness behavior and depressive-like behavior in rats. Propentofylline prevented both sickness behavior and depressive-like behavior via neuroinflammatory pathway. The present findings may contribute to a better understanding and treatment of depression and associated diseases. PMID:28056040

  14. Effect of D-003, a Mixture of High Molecular Weight Aliphatic Acids, on Glucocorticoid- and Lipopolysaccharides (LPS)-Induced Osteonecrosis.

    PubMed

    Noa, Miriam; Más, Rosa; Valle, Maikel; Mendoza, Sarahí; Mendoza, Nilda

    2012-01-01

    Osteonecrosis (ON) is characterized through the impairment of osseous blood flow that leads to the collapse of femur head. Corticoid-induced ON in rats and lipopolysaccharide (LPS)-induced in rabbits are useful models to assess the efficacy of potential treatments on this disease. D-003 inhibits the mevalonate pathway, lipid peroxidation and prevents osteoporosis in rats through increasing the osteoclast apoptosis. This study investigated the effects of D-003 on corticoid- and LPS-induced ON in rats and rabbits. Corticoid-induced ON: Rats were randomized into five groups. A negative control and four groups treated with prednisolone 6 mg/Kg: a positive control and three treated with D-003 (5, 25 and 200 mg/Kg) for 80 days. All positive controls presented ON areas. D-003 significantly reduced the numbers and proportions of ON lesions, as compared to the positive control group. LPS-induced ON in rabbits: Rabbits were randomized into five groups: a negative control and four injected with a single intra-venous injection of LPS (10 μg/Kg) including a positive control and three with D-003 (5, 25 and 200 mg/Kg) for 30 days. ON was seen in all positive controls. The incidence of ON and the number of ON lesions in the groups treated with D-003 (25 and 200 mg/Kg) was significantly lower compared to the positive controls. LPS injection significantly increased the size of bone marrow fat cells in positive controls and such increase was significantly decreased by D-003. In conclusion, D-003 reduced ON lesions in corticoid-and LPS-induced ON and also the size of bone marrow fat cells in rabbits with LPS.

  15. Inhibitory effects of coumarin and acetylene constituents from the roots of Angelica furcijuga on D-galactosamine/lipopolysaccharide-induced liver injury in mice and on nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages.

    PubMed

    Yoshikawa, Masayuki; Nishida, Norihisa; Ninomiya, Kiyofumi; Ohgushi, Teruki; Kubo, Mizuho; Morikawa, Toshio; Matsuda, Hisashi

    2006-01-15

    The methanolic extract (200 mg/kg, p.o. and i.p.), principal coumarin constituents (isoepoxypteryxin, anomalin, and praeroside IV), and a polyacetylene constituent (falcarindiol) (25 mg/kg, i.p.) from the roots of Angelica furcijuga protected the liver injury induced by D-galactosamine (D-GalN)/lipopolysaccharide (LPS) in mice. In in vitro experiments, coumarin constituents (hyuganins A-D, anomalin, pteryxin, isopteryxin, and suksdorfin) and polyacetylene constituents [(-)-falcarinol and falcarindiol] substantially inhibited LPS-induced NO and/or TNF-alpha production in mouse peritoneal macrophages, and isoepoxypteryxin inhibited D-GalN-induced cytotoxicity in primary cultured rat hepatocytes. Furthermore, hyuganin A, anomalin, and isopteryxin inhibited the decrease in cell viability by TNF-alpha in L929 cells.

  16. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    SciTech Connect

    Zhang, Ying; Li, Jianguo

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  17. Lipopolysaccharide induces apoptosis in Carassius auratus lymphocytes, a possible role in pathogenesis of bacterial infection in fish.

    PubMed

    Xiang, Li-Xin; Peng, Bo; Dong, Wei-Ren; Yang, Zai-Feng; Shao, Jian-Zhong

    2008-01-01

    Lipopolysaccharide (LPS), the endotoxin of Gram-negative bacteria, is capable of eliciting a wide variety of pathophysiological effects, including endotoxin shock, tissue injury and lethality in both humans and animals. It is also a potent stimulant to initiate the proliferation, differentiation and activation of B lymphocytes and macrophages, resulting in changes of inflammatory cytokines, such as TNF-alpha, IL1-beta, IL6, IL-8 and IL-12, and enhancement of immune responses. However, little is known about its effect on the induction of apoptosis in lymphocytes. In the present study, the lymphocytes from Carassius auratus were employed for this purpose. The cells were exposed to LPS at various doses for different time periods. By careful apoptotic characteristic analysis, such as condensation of nuclear chromatin, fragmentation of genomic DNA and formation of apoptotic bodies, it provided the first evidence that LPS had apoptotic-inducing effect on fish lymphocytes in a time- and dose-dependent manner. LPS exposure induced significant increase of intracellular reactive oxygen species (ROS), loss of mitochondrial transmembrane potential (DeltaPsi), depletion of ATP production, down-regulation of Bcl-2 expression, up-regulation of Bax and mitochondrial NO-synthase (mNOS) expression, and selective activation of caspase-9 rather than caspase-8. Each of these observations suggests that the LPS-induced apoptosis in C. auratus lymphocytes occurs largely via the mitochondrial apoptotic pathway. This observation was different from the mechanism behind the LPS-induced apoptosis in mammalian macrophages/thymocytes that occurs via the TNF-alpha-mediated death-receptor pathway. Our study suggested the existence of a possible novel role in the pathogenesis of Gram-negative bacterial infection in fish and even in mammals, which may contribute to the therapy of bacterial diseases. Also, it will help to gain more insights into the mechanisms of septic shock and of LPS-induced

  18. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells.

    PubMed

    Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2012-01-01

    Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.

  19. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells

    PubMed Central

    Luo, Yunpeng; Che, Wen; Zhao, Mingyan

    2017-01-01

    Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, plays a key role in the development of ALI. The aim of this study was to investigate whether UTI attenuates ALI through the inhibition of HMGB1 expression and to elucidate the underlying molecular mechanisms. ALI was induced in male rats by the intratracheal instillation of LPS (5 mg/kg). UTI was administered intraperitoneally 30 min following exposure to LPS. A549 alveolar epithelial cells were incubated with LPS in the presence or absence of UTI. An enzyme-linked immunosorbent assay was used to detect the levels of inflammatory cytokines. Western blot analysis was performed to detect the changes in the expression levels of Toll-like receptor 2/4 (TLR2/4) and the activation of nuclear factor-κB (NF-κB). The results revealed that UTI significantly protected the animals from LPS-induced ALI, as evidenced by the decrease in the lung wet to dry weight ratio, total cells, neutrophils, macrophages and myeloperoxidase activity, associated with reduced lung histological damage. We also found that UTI post-treatment markedly inhibited the release of HMGB1 and other pro-inflammatory cytokines. Furthermore, UTI significantly inhibited the LPS-induced increase in TLR2/4 protein expression and NF-κB activation in lung tissues. In vitro, UTI markedly inhibited the expression of TLR2/4 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. The findings of our study indicate that UTI attenuates LPS-induced ALI through the inhibition of HMGB1 expression in rats. These benefits are associated with the inhibition of the activation of the TLR2/4-NF-κB pathway by UTI. PMID:27959396

  20. Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: Oxidative stress acts through control of inflammation

    SciTech Connect

    Kim, Ohn Soon; Lee, Chang Seok; Joe, Eun-hye; Jou, Ilo . E-mail: jouilo@ajou.ac.kr

    2006-03-31

    Low density lipoprotein (LDL) is readily oxidized under certain conditions, resulting in the formation of oxidized LDL (oxLDL). Despite numerous in vitro reports that reveal the pathogenic role of oxidative stress, anti-oxidative strategies have underperformed in the clinic. In this study, we examine the role of oxLDL in brain inflammatory responses using cultured rat brain microglia. We demonstrate that oxLDL inhibits lipopolysaccharide (LPS)-induced inflammatory responses in these cells. It also decreases LPS-induced expression of inducible nitric oxide synthase and production of nitric oxide, and reduces LPS-induced secretion of tumor necrosis factor-{alpha} and monocyte chemoattractant protein-1. Oxysterols, known components of oxLDL and endogenous agonists of liver X receptor, can simulate the inhibitory effects of oxLDL in LPS-activated microglia. In addition, their inhibitory effects were mimicked by liver X receptor (LXR) agonists and potentiated by a retinoid X receptor agonist, suggesting these molecules heterodimerize to function as oxysterol receptors. Taken together, our results demonstrate that oxLDL inhibits LPS-induced inflammatory responses in brain microglia and that these inhibitory effects are mediated by oxysterols and, at least in part, by the nuclear receptor LXR. Our results suggest an additional mechanism of action for oxidative stress that acts indirectly via modulation of inflammatory responses. Although further studies are needed, these results answer in part the question of why anti-oxidative strategies have not been successful in clinical situations. Moreover, as brain inflammation participates in the initiation and progression of several neurodegenerative disorders, the present data provide information that should prove a useful guide for designing therapeutic strategies to combat oxidative brain diseases.

  1. Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin.

    PubMed

    Sulakhiya, Kunjbihari; Keshavlal, Gohil Pratik; Bezbaruah, Babul B; Dwivedi, Shubham; Gurjar, Satendra Singh; Munde, Nitin; Jangra, Ashok; Lahkar, Mangala; Gogoi, Ranadeep

    2016-01-12

    Inflammation and oxidative stress are involved in the pathophysiology of anxiety and depression. Esculetin (ESC), a coumarin derived potent antioxidant, also possessing anti-inflammatory and neuroprotective activity. This study investigated the effect of ESC in lipopolysaccharide (LPS)-induced anxiety- and depressive-like behaviour in mice. ESC (25 and 50mg/kg, p.o.) was administered daily for 14 days, and challenged with saline or LPS (0.83mg/kg; i.p.) on the 15th day. Behavioural paradigms such as elevated plus maze (EPM), open field test (OFT), forced swim test (FST) and tail suspension test (TST) were employed to assess anxiety- and depressive-like behaviour in mice post-LPS injection. Hippocampal cytokines, MDA and GSH level, and plasma corticosterone (CORT) were measured. ESC pre-treatment significantly (P<0.05) attenuated LPS-induced anxiety-like behaviour by modulating EPM and OFT parameters. Moreover, LPS-induced increase in immobility time in FST and TST were also prevented significantly (P<0.05) by ESC (50mg/kg). ESC pre-treatment ameliorated LPS-induced neuroinflammation by attenuating brain IL-1β, IL-6, TNF-α level, and oxidative stress as well as plasma CORT level. In conclusion, the results suggest that ESC prevented LPS-induced anxiety- and depressive-like behaviour which may be governed by inhibition of cytokine production, oxidative stress and plasma CORT level. The results support the potential usefulness of ESC in the treatment of psychiatric disorders associated with inflammation and oxidative stress.

  2. Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure.

    PubMed

    Kirsten, Thiago B; Queiroz-Hazarbassanov, Nicolle; Bernardi, Maria M; Felicio, Luciano F

    2015-06-01

    Aims: Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS),which mimics infections by Gram-negative bacteria, induced autistic-like behavior. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism.We selected zinc as the prenatal treatment to prevent or ease the impairments induced by LPS because LPS induces hypozincaemia.Materials and methods:We evaluated the effects of LPS and zinc on female reproductive performance. Communication,which is impaired in autism,was tested in pups by ultrasonic vocalizations. Plasma levels of brain-derived neurotrophic factor (BDNF) were determined because it has been considered an autism important biomarker.Key findings: Prenatal LPS exposure reduced offspring number and treatment with zinc prevented this reduction.Moreover, pups that were prenatally exposed to LPS spent longer periods without calling their mothers, and posttreatment with zinc prevented this impairment induced by LPS to the same levels as controls. Prenatal LPS also increased BDNF levels in adult offspring, and posttreatment with zinc reduced the elevation of BDNF to the same levels as controls.Significance: BDNF hyperactivity was also found in several studies of autistic patients. Together with our previous studies, our model of prenatal LPS induced autistic-like behavioral, brain, and immune disturbances. This suggests that it is a valid rat model of autism. Prenatal zinc prevented reproductive, communication, and BDNF impairments.The present study revealed a potential beneficial effect of prenatal zinc administration for the prevention of autism with regard to the BDNF pathway.

  3. Protective Effects of Dioscin against Lipopolysaccharide-Induced Acute Lung Injury through Inhibition of Oxidative Stress and Inflammation

    PubMed Central

    Yao, Hong; Sun, Yiping; Song, Shasha; Qi, Yan; Tao, Xufeng; Xu, Lina; Yin, Lianhong; Han, Xu; Xu, Youwei; Li, Hua; Sun, Huijun; Peng, Jinyong

    2017-01-01

    The protective effects of dioscin, a natural steroidal saponin from some medicinal plants including Dioscorea nipponica Makino, against lipopolysaccharide (LPS)- induced acute liver and renal damages have been reported in our previous works. However, the actions of dioscin against LPS-induced acute lung injury (ALI) is still unknown. In the present study, we investigated the effects and mechanisms of dioscin against LPS-induced ALI in vitro and in vivo. The results showed that dioscin obviously inhibited cell proliferation and markedly decreased reactive oxidative species level in 16HBE cells treated by LPS. In addition, dioscin significantly protected LPS-induced histological changes, inhibited the infiltration of inflammatory cells, as well as decreased the levels of MDA, SOD, NO and iNOS in mice and rats (p < 0.05). Mechanistically, dioscin significantly decreased the protein levels of TLR4, MyD88, TRAF6, TKB1, TRAF3, phosphorylation levels of PI3K, Akt, IκBα, NF-κB, and the mRNA levels of IL-1β, IL-6, and TNF-α against oxidative stress and inflammation (p < 0.05). Dioscin significantly reduced the overexpression of TLR4, and obviously down-regulated the levels of MyD88, TRAF6, TKB1, TRAF3, p-PI3K, p-Akt, p-IκBα, and p-NF-κB. These findings provide new perspectives for the study of ALI. Dioscin has protective effects on LPS-induced ALI via adjusting TLR4/MyD88- mediated oxidative stress and inflammation, which should be a potent drug in the treatment of ALI. PMID:28377715

  4. Secretoglobin 3A2 attenuates lipopolysaccharide-induced inflammation through inhibition of ERK and JNK pathways in bronchial epithelial cells.

    PubMed

    Wang, Xintao; Tanino, Yoshinori; Sato, Suguru; Nikaido, Takefumi; Misa, Kenichi; Fukuhara, Naoko; Fukuhara, Atsuro; Saito, Junpei; Yokouchi, Hiroshi; Ishida, Takashi; Fujita, Teizo; Munakata, Mitsuru

    2015-04-01

    Secretoglobin (SCGB) 3A2, previously known as uteroglobin-related protein 1, is a secreted protein highly expressed in the epithelial cells of the airways. It has been demonstrated that SCGB3A2 is involved in allergic airway inflammation such as bronchial asthma. However, the role of SCGB3A2 in lipopolysaccharide (LPS)-induced airway inflammation has yet to be reported. The goal of this study was therefore to clarify the role of SCGB3A2 in LPS-induced airway inflammation. We stimulated BEAS-2B, human bronchial epithelial cells, with LPS and analyzed messenger RNA (mRNA) expression of tumor necrosis factor (TNF)-α and CXCL8 with or without pre-incubation of SCGB3A2. The mRNA expression of TNF-α and CXCL8 was clearly upregulated 3 h after LPS stimulation, and pre-incubation of SCGB3A2 significantly inhibited the upregulation of the mRNA expression. The pre-incubation of SCGB3A2 also inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase in BEAS-2B cells. Furthermore, PD98059, a specific inhibitor for ERK, as well as SP600125, a specific inhibitor for JNK, inhibited LPS-induced mRNA upregulation of inflammatory mediators. These results demonstrate the novel biological activity of SCGB3A2, which is that it attenuates LPS-induced inflammation in bronchial epithelial cells through inhibition of ERK and JNK activation.

  5. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia.

    PubMed

    Hu, Li-Fang; Wong, Peter T-H; Moore, Philip K; Bian, Jin-Song

    2007-02-01

    The present study attempts to investigate the effect of H(2)S on lipopolysaccharide (LPS)-induced inflammation in both primary cultured microglia and immortalized murine BV-2 microglial cells. We found that exogenous application of sodium hydrosulfide (NaHS) (a H(2)S donor, 10-300 micro mol/L) attenuated LPS-stimulated nitric oxide (NO) in a concentration-dependent manner. Stimulating endogenous H(2)S production decreased LPS-stimulated NO production, whereas lowering endogenous H(2)S level increased basal NO production. Western blot analysis showed that both exogenous and endogenous H(2)S significantly attenuated the stimulatory effect of LPS on inducible nitric oxide synthase expression, which is mimicked by SB 203580, a specific p38 mitogen-activated protein kinase (MAPK) inhibitor. Exogenously applied NaHS significantly attenuated LPS-induced p38 MAPK phosphorylation in BV-2 microglial cells. Moreover, both NaHS (300 micro mol/L) and SB 203580 (1 micro mol/L) significantly attenuated LPS-induced tumor necrosis factor-alpha secretion, another inflammatory indicator. In addition, NaHS (10-300 micro mol/L) dose-dependently decreased LPS-stimulated NO production in primary cultured astrocytes, suggesting that the anti-neuroinflammatory effect of H(2)S is not specific to microglial cells alone. Taken together, H(2)S produced an anti-inflammatory effect in LPS-stimulated microglia and astrocytes, which may be due to inhibition of inducible nitric oxide synthase and p38 MAPK signaling pathways. These findings may have important implications in the treatment of neuroinflammation-related diseases.

  6. Expression of IP-10, a lipopolysaccharide- and interferon-gamma-inducible protein, in murine mesangial cells in culture.

    PubMed Central

    Gómez-Chiarri, M.; Hamilton, T. A.; Egido, J.; Emancipator, S. N.

    1993-01-01

    IP-10 is an early gene induced in multiple cell types by a variety of proinflammatory agents, notably interferons (IFNs) and lipopolysaccharide (LPS). To determine whether this protein might play a role in amplifying immune-mediated glomerular injury, we cultured mouse mesangial cells with several stimuli for various times. Increasing amounts of IFN-gamma (to 100 units/ml) elicited increasing levels of IP-10 messenger RNA (mRNA), sustained to 24 hours, but had no effect on tumor necrosis factor-alpha (TNF-alpha) mRNA. LPS induced transient IP-10 mRNA expression that peaked at 8 hours; TNF-alpha mRNA was also increased. TNF-alpha at doses up to 10 ng/ml and soluble immune complexes up to 150 micrograms/ml antibody evoked 3- to 5-fold increases in IP-10 mRNA expression, much less than the 30- to 70-fold increases seen with IFN-gamma and LPS. We conclude that IFN-gamma, LPS, and other agonists can amplify glomerular immune injury, perhaps via elevated expression of IP-10. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8434640

  7. Decreased severity of collagen antibody and lipopolysaccharide-induced arthritis in human IL-32β overexpressed transgenic mice.

    PubMed

    Park, Mi Hee; Yoon, Do-Young; Ban, Jung Ok; Kim, Dae Hwan; Lee, Dong Hun; Song, Sukgil; Kim, Youngsoo; Han, Sang-Bae; Lee, Hee Pom; Hong, Jin Tae

    2015-11-17

    Interleukin (IL)-32, mainly produced by T-lymphocytes, natural killer cells, epithelial cells, and blood monocytes, is dominantly known as a pro-inflammatory cytokine. However, the role of IL-32 on inflammatory disease has been doubtful according to diverse conflicting results. This study was designed to examine the role of IL-32β on the development of collagen antibody (CAIA) and lipopolysaccharide (LPS)-induced inflammatory arthritis. Our data showed that the paw swelling volume and clinical score were significantly reduced in the CAIA and LPS-treated IL-32β transgenic mice compared with non-transgenic mice. The populations of cytotoxic T, NK and dendritic cells was inhibited and NF-κB and STAT3 activities were significantly lowered in the CAIA and LPS-treated IL-32β transgenic mice. The expression of pro-inflammatory proteins was prevented in the paw tissues of CAIA and LPS-treated IL-32β transgenic mice. In addition, IL-32β altered several cytokine levels in the blood, spleen and paw joint. Our data indicates that IL-32β comprehensively inhibits the inflammation responses in the CAIA and LPS-induced inflammatory arthritis model.

  8. The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways

    PubMed Central

    Finnegan, Tarryn; Steenkamp, Paul A.; Piater, Lizelle A.

    2016-01-01

    Lipopolysaccharides (LPSs), as MAMP molecules, trigger the activation of signal transduction pathways involved in defence. Currently, plant metabolomics is providing new dimensions into understanding the intracellular adaptive responses to external stimuli. The effect of LPS on the metabolomes of Arabidopsis thaliana cells and leaf tissue was investigated over a 24 h period. Cellular metabolites and those secreted into the medium were extracted with methanol and liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. Multivariate statistical data analyses were used to extract interpretable information from the generated multidimensional LC-MS data. The results show that LPS perception triggered differential changes in the metabolomes of cells and leaves, leading to variation in the biosynthesis of specialised secondary metabolites. Time-dependent changes in metabolite profiles were observed and biomarkers associated with the LPS-induced response were tentatively identified. These include the phytohormones salicylic acid and jasmonic acid, and also the associated methyl esters and sugar conjugates. The induced defensive state resulted in increases in indole—and other glucosinolates, indole derivatives, camalexin as well as cinnamic acid derivatives and other phenylpropanoids. These annotated metabolites indicate dynamic reprogramming of metabolic pathways that are functionally related towards creating an enhanced defensive capacity. The results reveal new insights into the mode of action of LPS as an activator of plant innate immunity, broadens knowledge about the defence metabolite pathways involved in Arabidopsis responses to LPS, and identifies specialised metabolites of functional importance that can be employed to enhance immunity against pathogen infection. PMID:27656890

  9. Preventive effect of Hochu-ekki-to on lipopolysaccharide-induced acute lung injury in BALB/c mice.

    PubMed

    Tajima, Shunji; Bando, Masashi; Yamasawa, Hideaki; Ohno, Shoji; Moriyama, Hiroshi; Takada, Toshinori; Suzuki, Eiichi; Gejyo, Fumitake; Sugiyama, Yukihiko

    2006-01-01

    This study was designed to investigate the effect of Hochu-ekki-to (TJ-41), a Japanese herbal medicine, on the development of lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in female BALB/c mice by the intranasal administration of 0.1 mg/kg LPS. The mice were divided into a group receiving normal feed and another group receiving feed mixed with TJ-41 at a dose of 1 g/kg/day for 8 weeks before LPS challenge. In the bronchoalveolar lavage fluid, the preadministration of TJ-41 caused significant reduction in the absolute number of total cells, neutrophils, and macrophages. The preadministration of TJ-41 significantly inhibited increases in the serum level of keratinocyte chemoattractant (KC), which is a murine chemotaxin for neutrophils that corresponds to human interleukin-8, with respect to its concentration at 24 h after LPS challenge. Furthermore, the histopathologic findings indicated that alveolitis with leukocyte infiltration in the alveolar space was less severe in the TJ-41-treated mice than in the control mice. These findings indicated that the preadministration of TJ-41 could show an inhibitory effect on ALI in this experimental murine system associated with the suppression of chemokine production.

  10. [Create the mouse model of severe acute pancreatitis induced by caerulein plus lipopolysaccharide and study on its pathogenesis].

    PubMed

    Jin, Chang; Li, Ji Cheng

    2003-04-01

    To set up a nontraumatic and convenient mouse model of severe acute pancreatitis (SAP). Caerulein(Cn) was injected the mice intraperitonealy with lipopolysaccharide(LPS). Serum amylase and pancreas weight were measured in experiment. The pathological changes of pancreas and other organs were observed under light microscope. The ultrastructure of acini were observed under transmission electron microscope (TEM). Serum NO concentration were measured and the SOD and MDA in pancreas were examined. The results in Cn + LPS group were showed that serum amylase, NO concentration and pancreas weight were increased, SOD deduced and MDA increased. Severe edema, inflammation infiltration, necrosis and different extent of hemorrhage were showed. The acini were damaged severely. And the lesion of other organs were also happened. In Cn group, there were only pancreatic interstitial edema but no parenchmal necrosis or hemorrhage, and the other organs were normal. In LPS group, pancreas were almost normal and the organs besides pancreas were only showed light inflammation infiltration. The SAP mouse model induced by caerulein plus LPS has the same pathological characteristics of human SAP, which can be used in human SAP research. The unbalance of oxygen free radical release-elimination and oxidation-antioxidation mechanisms might be involved in the pathogenesis of mouse model of severe acute pancreatitis induced by intraperitoneal injection of caerulein plus LPS.

  11. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

    PubMed Central

    2016-01-01

    Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs. PMID:27382348

  12. Neonatal Bacillus Calmette-Guérin vaccination alleviates lipopolysaccharide-induced neurobehavioral impairments and neuroinflammation in adult mice

    PubMed Central

    Yang, Junhua; Qi, Fangfang; Yao, Zhibin

    2016-01-01

    The Bacillus Calmette-Guérin (BCG) vaccine is routinely administered to human neonates worldwide. BCG has recently been identified as a neuroprotective immune mediator in several neuropathological conditions, exerting neuroprotection in a mouse model of Parkinson's disease and slowing the progression of clinically isolated syndrome in patients with multiple sclerosis. The immune system is significantly involved in brain development, and several types of neonatal immune activations exert influences on the brain and behavior following a secondary immune challenge in adulthood. However, whether the neonatal BCG vaccination affects the brain in adulthood remains to be elucidated. In the present study, newborn C57BL/6 mice were injected subcutaneously with BCG (105 colony forming units) or phosphate-buffered saline (PBS). A total of 12 weeks later, the mice were injected intraperitoneally with 330 µg/kg lipopolysaccharide (LPS) or PBS. The present study reported that the neonatal BCG vaccination alleviated sickness, anxiety and depression-like behavior, lessened the impairments in hippocampal cell proliferation and downregulated the proinflammatory responses in the serum and brain that were induced by the adult LPS challenge. However, BCG vaccination alone had no evident influence on the brain and behavior in adulthood. In conclusion, the neonatal BCG vaccination alleviated the neurobehavioral impairments and neuroinflammation induced by LPS exposure in adult mice, suggesting a potential neuroprotective role of the neonatal BCG vaccination in adulthood. PMID:27357155

  13. Apigenin Protects Endothelial Cells from Lipopolysaccharide (LPS)-Induced Inflammation by Decreasing Caspase-3 Activation and Modulating Mitochondrial Function

    PubMed Central

    Duarte, Silvia; Arango, Daniel; Parihar, Arti; Hamel, Patrice; Yasmeen, Rumana; Doseff, Andrea I.

    2013-01-01

    Acute and chronic inflammation is characterized by increased reactive oxygen species (ROS) production, dysregulation of mitochondrial metabolism and abnormal immune function contributing to cardiovascular diseases and sepsis. Clinical and epidemiological studies suggest potential beneficial effects of dietary interventions in inflammatory diseases but understanding of how nutrients work remains insufficient. In the present study, we evaluated the effects of apigenin, an anti-inflammatory flavonoid abundantly found in our diet, in endothelial cells during inflammation. Here, we show that apigenin reduced lipopolysaccharide (LPS)-induced apoptosis by decreasing ROS production and the activity of caspase-3 in endothelial cells. Apigenin conferred protection against LPS-induced mitochondrial dysfunction and reestablished normal mitochondrial complex I activity, a major site of electron leakage and superoxide production, suggesting its ability to modulate endothelial cell metabolic function during inflammation. Collectively, these findings indicate that the dietary compound apigenin stabilizes mitochondrial function during inflammation preventing endothelial cell damage and thus provide new translational opportunities for the use of dietary components in the prevention and treatment of inflammatory diseases. PMID:23989609

  14. Upregulation of MKP-7 in response to rosiglitazone treatment ameliorates lipopolysaccharide-induced destabilization of SIRT1 by inactivating JNK.

    PubMed

    Hwang, Jung Seok; Ham, Sun Ah; Yoo, Taesik; Lee, Won Jin; Paek, Kyung Shin; Kim, Jae-Hwan; Lee, Chi-Ho; Seo, Han Geuk

    2016-12-01

    Silent mating type information regulation 2 homolog 1 (SIRT1), a NAD-dependent deacetylase, mediates cellular processes involved in gene silencing and aging. The regulation of lifespan by SIRT1 has been extensively investigated, but less is known about the mechanisms associated with its cellular turnover during inflammatory responses. In this study, we found that peroxisome proliferator-activated receptor (PPAR) γ is associated with SIRT1 stability in murine macrophage RAW 264.7 cells exposed to lipopolysaccharide (LPS). Activation of PPARγ by rosiglitazone, a specific ligand of PPARγ, rescues LPS-induced destabilization of SIRT1, with a concomitant decrease in phosphorylation of residue Ser-46, which is targeted by JNK-1 to promote proteasome-mediated degradation of SIRT1. The rosiglitazone-mediated increase in SIRT1 stability is accompanied by upregulation of mitogen-activated protein kinase phosphatase (MKP)-7, a JNK-specific phosphatase. These effects are significantly influenced by ablation or ectopic expression of PPARγ, indicating that PPARγ is directly involved in the regulation of SIRT1 stability. Furthermore, gain of MKP-7 function mimicked the effect of rosiglitazone on LPS-induced destabilization and ubiquitination of SIRT1. These results indicate that PPARγ-dependent upregulation of MKP-7 improves the stability of SIRT1 by inactivating JNK during inflammatory responses of LPS-activated macrophages.

  15. Heat shock protein 72 enhances autophagy as a protective mechanism in lipopolysaccharide-induced peritonitis in rats.

    PubMed

    Li, Shu; Zhou, Yi; Fan, Jinjin; Cao, Shirong; Cao, Tao; Huang, Fengxian; Zhuang, Shougang; Wang, Yihan; Yu, Xueqing; Mao, Haiping

    2011-12-01

    Peritoneal dialysis-related peritonitis causes the denudation of mesothelial cells and, ultimately, membrane integrity alterations and peritoneal dysfunction. Because heat shock protein 72 (HSP72) confers protection against apoptosis and because autophagy mediates survival in response to cellular stresses, we examined whether autophagy contributes to HSP72-mediated cytoprotection in lipopolysaccharide (LPS)-induced peritonitis. Exposure of cultured peritoneal mesothelial cells to LPS resulted first in autophagy and later, apoptosis. Inhibition of autophagy by 3-methyladenine or Beclin-1 small-interfering RNA sensitized cells to apoptosis and abolished the antiapoptotic effect of HSP72, suggesting that autophagy activation acts as a prosurvival mechanism. Overexpression of HSP72 augmented autophagy through c-Jun N-terminal kinase (JNK) phosphorylation and Beclin-1 up-regulation. Suppression of JNK activity reversed HSP72-mediated Beclin-1 up-regulation and autophagy, indicating that HSP72-mediated autophagy is JNK dependent. In a rat model of LPS-associated peritonitis, autophagy occurred before apoptosis in peritoneum. Up-regulation of HSP72 by geranylgeranylacetone increased autophagy, inhibited apoptosis, and attenuated peritoneal injury, and these effects were blunted by down-regulation of HSP72 with quercetin. Additionally, blocking autophagy by chloroquine promoted apoptosis and aggravated LPS-associated peritoneal dysfunction. Thus, HSP72 protects peritoneum from LPS-induced mesothelial cells injury, at least in part by enhancing JNK activation-dependent autophagy and inhibiting apoptosis. These findings imply that HSP72 induction might be a potential therapy for peritonitis.

  16. Protective effect of the methanol extract from Cryptotaenia japonica Hassk. against lipopolysaccharide-induced inflammation in vitro and in vivo

    PubMed Central

    2012-01-01

    Background In folk medicine, the aerial part of Crytotaenia japonica Hassk. (CJ), is applied for treatment of the common cold, cough, urinary problems, pneumonia, and skin rashes. In this paper, the in vitro and in vivo anti-inflammatory activity of CJ methanol extract was tested using lipopolysaccharide (LPS)-induced inflammatory models. Methods We measured nitric oxide (NO), inducible NO synthase (iNOS), and inflammatory cytokine levels from LPS-stimulated mouse peritoneal macrophages. Also, several cellular signaling molecules which regulate the expressions of these inflammatory markers were examined. Finally, we tested whether oral administration of CJ methanol extract might affect the serum cytokine levels in LPS-injected mice. Results CJ methanol extract reduced NO release via iNOS protein inhibition. The extract was also shown to decrease the secretions of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-12. Analysis of signaling molecules showed that CJ inhibited the phosphorylation of STAT1, p38, JNK and ERK1/2 as well as IκBα degradation. Finally, CJ decreased the serum levels of TNF-α and IL-6 in LPS-injected mice. Conclusions Our results demonstrated the anti-inflammatory activity of CJ methanol extract and its possible underlying mechanisms that involve modulation of IκBα, MAPK, and STAT1 activities. PMID:23110456

  17. Metabolomic Analysis Reveals Cyanidins in Black Raspberry as Candidates for Suppression of Lipopolysaccharide-Induced Inflammation in Murine Macrophages.

    PubMed

    Jo, Young-Hee; Park, Hyun-Chang; Choi, Seulgi; Kim, Sugyeong; Bao, Cheng; Kim, Hyung Woo; Choi, Hyung-Kyoon; Lee, Hong Jin; Auh, Joong-Hyuck

    2015-06-10

    The extracts produced by multisolvent extraction and subfractionation with preparative liquid chromatography of black raspberry (Rubus coreanus Miquel) cultivated in Gochang, South Korea, were tested for their anti-inflammatory effects. The metabolomic profiling and analysis by orthogonal partial least-squares discriminant analysis (OLPS-DA) suggested that cyanidin, cyanidin-3-glucoside (C3G), and cyanidin-3-rutinoside (C3R) were key components for the anti-inflammatory responses in the most active fraction BF3-1, where they were present at 0.44, 1.26, and 0.56 μg/mg of BF3-1, respectively. Both BF3-1 and mixture of these cyanidins at the same ratio reduced lipopolysaccharide (LPS)-induced protein level of iNOS expression and suppressed mRNA and protein expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β through inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs) and STAT3 in murine macrophage RAW264.7 cells. Overall, the results suggested that co-administration of cyanidin, C3G, and C3R is more effective than that of cyanidin alone and that the coexistence of these anthocyanin components in black raspberry plays a vital role in regulating LPS-induced inflammation even at submicromolar concentrations, making it possible to explain the health beneficial activity of its extracts.

  18. Differential regulation of resolution in inflammation induced by amyloid-β42 and lipopolysaccharides in human microglia.

    PubMed

    Zhu, Mingqin; Wang, Xiuzhe; Schultzberg, Marianne; Hjorth, Erik

    2015-01-01

    Resolution of inflammation terminates the inflammatory response in physiological conditions and promotes restoration and healing of the tissue; however, failure in resolution results in chronic inflammation that may lead to disease. Chronic inflammation mediated by microglia is a feature of Alzheimer's disease (AD) and can be a pathogenic factor in which both treatment targets and diagnostic markers may be found. In addition, there is evidence that the resolution pathway is altered in AD. It is therefore relevant to investigate whether amyloid-β (Aβ) peptide, the major component of senile plaque in AD brain, may have a negative influence on components of the resolution cascade. In this pursuit, we exposed microglia to Aβ42, and with bacterial lipopolysaccharides (LPS) for comparison with a general infectious stimulus. Differential effects were observed: LPS upregulated components of the resolution pathway including the LXA4 receptor/formyl peptide receptor 2 (ALX/FPR2) and phosphorylated 5-lipoxygenase (p-5-LOX), as well as cholinergic alpha 7 nicotinic receptor (α7nAChR) and peroxisome proliferator-activated receptor (PPAR)-δ whereas Aβ42 had an opposite or insignificant effect. Our results indicate that LPS-induced changes in the microglia were conducive for resolution of inflammation, whereas these responses were absent or suppressed in microglia treated with Aβ42. Further studies may prove if Aβ42-induced dysfunction of resolution in microglia contributes to the impaired resolution in the AD brain, and if stimulation of microglial resolution constitutes a treatment strategy for AD.

  19. Protective effects of ethyl pyruvate on lipopolysaccharide-induced acute lung injury through inhibition of autophagy in neutrophils

    PubMed Central

    Zhu, Qingteng; Wang, Hui; Wang, Hairong; Luo, Yong; Yu, Yang; Du, Qirong; Fei, Aihua; Pan, Shuming

    2017-01-01

    Among a number of clinical factors, bacterial infection is one of the most common causes of acute lung injury (ALI), a serious complication that carries a high risk of mortality (~40%). During the process of ALI, intense local and systemic inflammation is elicited, which exacerbates the injury. Neutrophil infiltration into airspace is observed in early stage of ALI, and is required for the full development of ALI through an array of mechanisms, including the release of granule contents and the production of pro-inflammatory cytokines, due to the overactivation of complement and cytokines. The present study noted that ethyl pyruvate alleviated ALI in lipopolysaccharide (LPS)-induced ALI mice. Increased autophagy in neutrophils from ALI mice was observed, while ethyl pyruvate diminished autophagy in neutrophils and constrained granule release, and therefore myeloperoxidase (MPO) in bronchoalveolar lavage fluid and the production of proinflammatory cytokines. Using neutrophil cells, it was identified that autophagy was required for neutrophil activation and granule release, and that ethyl pyruvate caused neutrophil autophagy, leading to the restriction of granule release, and thus contributing to the mitigation of ALI. If autophagy was obviated through knockdown of key regulator of autophagy Atg5, the effects of ethyl pyruvate on granule release by neutrophils disappeared. Taken together, the results demonstrated that ethyl pyruvate alleviates ALI through inhibition of autophagy-induced granule release by neutrophils, and this mechanism suggested a novel potential therapeutic target in autophagy regulation for ALI. PMID:28098908

  20. TRAIL administration down-modulated the acute systemic inflammatory response induced in a mouse model by muramyldipeptide or lipopolysaccharide.

    PubMed

    Marcuzzi, Annalisa; Secchiero, Paola; Crovella, Sergio; Zauli, Giorgio

    2012-10-01

    The potent inducer of apoptosis TRAIL/Apo2 ligand is now under considerations in clinical trials for the treatment of different types of cancer. Since the natural history of cancer is often characterized by microbial infections, we have investigated the effect of recombinant human TRAIL in a mouse model of systemic acute inflammation of microbial origin represented by BALB/c mice treated with either bacterial muramyldipeptide (MDP) or lipopolysaccharide (LPS). When administered intraperitoneally (i.p.), these inflammatory bacterial compounds triggered a severe systemic inflammatory response within 2h, represented by body temperature elevation, increase of circulating serum amyloid-A (SAA) and of the number of leukocytes in the peritoneal cavity. Moreover, both MDP and LPS induced a significant elevation of the circulating levels of several inflammatory cytokines and chemokines. Noteworthy, pre-treatment with recombinant human TRAIL 48 and 72 h before administration of either MDP or LPS, significantly counteracted all acute inflammatory responses, including the elevation of key pro-inflammatory cytokines/chemokines such as IL-1α, IL-6, G-CSF, MCP-1. These data demonstrate for the first time that TRAIL has a potent anti-inflammatory activity, which might be beneficial for the anti-tumoral activity of TRAIL.

  1. Trans-resveratrol induces a potential anti-lipogenic effect in lipopolysaccharide-stimulated enterocytes.

    PubMed

    Etxeberria, U; Castilla-Madrigal, R; Lostao, M P; Martínez, J A; Milagro, F I

    2015-12-09

    A DNA microarray analysis was conducted in Caco-2 cells to analyse the protective effects of trans-resveratrol on enterocyte physiology and metabolism in pro-inflammatory conditions. Cells were pre-treated with 50 μΜ of trans-resveratrol and, subsequently, lipopolysaccharide (LPS) was added for 48 h. The microarray analysis revealed 121 genes differentially expressed between resveratrol-treated and non-treated cells (B> 0, is the odd thatthe gene is differentially expressed). Inhibitor of DNA binding 1 (ID1), histidine-rich glycoprotein (HRG), NADPH oxidase (NOX1) and sprouty homolog 1 (SPRY), were upregulated by LPS treatment, but significantly blocked by trans-resveratrol pre-treatment (padj< 0.05, after adjusting for Benjamini-Hocheberg procedure). Moreover, genes implicated in synthesis of lipids (z-score= -1.195) and concentration of cholesterol (z-score= -0.109), were markedly downregulated by trans-resveratrol. Other genes involved in fat turnover, but also in cell death and survival function, such as transcription factors Krüppel-like factor 5 (KLF5) and amphiregulin (AREG), were also significantly inhibited by trans-resveratrol pre-treatment. RT-qPCR-data confirmed the microarray results. Special mention deserves acyl-CoA synthetase long-chain family member 3 (ACSL3) and endothelial lipase (LIPG), which were downregulated by this stilbene and have been previously associated with fatty acid synthesis and obesity in other tissues. This study envisages that trans-resveratrol might exert an important anti-lipogenic effect at intestinal level under pro-inflammatory conditions, which has not been previously described.

  2. Previous burn injury predisposes mice to lipopolysaccharide-induced changes in glucose metabolism.

    PubMed

    Carter, Edward A; Paul, Kasie W; Barrow, Sandra A; Fischman, Alan J; Tompkins, Ronald G

    2012-01-01

    In mice, it has been demonstrated that at 7 days after burn injury, injection of lipopolysaccharide (LPS) is more lethal than the same dose at 1 day after injury. In the present study, we examined the effect of LPS injection to mice burned 7 days previously on glucose metabolism ([(18)F] 2-fluoro-2-deoxy-D-glucose [(18)FDG] uptake) in vivo. CD-1 male mice (25-28 g, Charles River Breeding Laboratories, Wilmington, MA) were anesthetized, backs shaven, and subjected to dorsal full thickness burn on 25% TBSA. Sham-treated animals were used as controls. Six days after burn injury, all mice were fasted overnight. One half of the burned and sham controls were subsequently injected IP with LPS (10 mg/kg; Escherichia coli). The remaining animals were injected with saline IP. Two hours later, all mice were injected IV with 50 μCi of (18)F FDG. One hour later, the animals were euthanized, and biodistribution was measured. Tissues were weighed, and radioactivity was measured with a well-type γ counter. Results were expressed as %dose/g tissue, mean ± SEM. The combination of burn 7 days previously and LPS significantly increased mortality compared to animals with burn alone, LPS alone, or sham controls. Burn injury 7 days previously caused a significant decrease in (18)FDG uptake by the brain compared to sham controls. The combination of LPS and burn injury 7 days previously produced a significant increase in (18)FDG uptake by brown adipose tissue and heart compared with either treatment separately. LPS produced a significant increase in (18)FDG uptake by lung, spleen, and gastrointestinal tract of the sham animals, changes that were different in mice burned 7 days previously and injected with LPS. The present results suggest that burn injury 7 days previously predisposes mice to alterations in (18)FDG uptake produced by LPS. These changes may relate, in part, to the increased lethality of LPS injection in previously burned mice.

  3. Lipopolysaccharide induces the expression of an autocrine prolactin loop enhancing inflammatory response in monocytes

    PubMed Central

    2013-01-01

    Background Prolactin from pituitary gland helps maintain homeostasis but it is also released in immune cells where its function is not completely understood. Pleiotropic functions of prolactin (PRL) might be mediated by different isoforms of its receptor (PRLr). Methods The aim of this study was to investigate the relationship between the eventual synthesis of PRL and PRLr isoforms with the inflammatory response in monocytes. We used THP-1 and monocytes isolated from healthy subjects stimulated with lipopolysaccharide (LPS). Western blot, real time PCR and immunocytochemistry were performed to identify both molecules. The bioactivity of the PRL was assessed using a bioassay and ELISA to detect pro inflammatory cytokines. Results PRLr mRNA and PRL mRNA were synthesized in THP-1 monocytes activated with LPS with peaks of 300-fold and 130-fold, respectively. The long (100 kDa) and the intermediate (50 kDa) isoforms of PRLr and big PRL (60 kDa) were time-dependent upregulated for monocytes stimulated with LPS. This expression was confirmed in monocytes from healthy subjects. The PRLr intermediate isoform and the big PRL were found soluble in the culture media and later in the nucleus in THP-1 monocytes stimulated with LPS. Big PRL released by monocytes showed bioactivity in Nb2 Cells, and both PRL and PRLr, synthesized by monocytes were related with levels of nitrites and proinflammatory citokines. Conclusions Our results suggest the expression of a full-autocrine loop of PRL enhances the inflammatory response in activated monocytes. This response mediated by big PRL may contribute to the eradication of potential pathogens during innate immune response in monocytes but may also contribute to inflammatory disorders. PMID:23731754

  4. Sesamin Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibition of TLR4 Signaling Pathways.

    PubMed

    Qiang, Li; Yuan, Jiang; Shouyin, Jiang; Yulin, Li; Libing, Jiang; Jian-An, Wang

    2016-02-01

    Recent studies suggested that TLR4 signaling pathways played an important role in the development of LPS-induced acute lung injury (ALI). Sesamin, a sesame lignan exacted from sesame seeds, has been shown to exhibit significant anti-inflammatory activity. The purpose of this study was to investigate the anti-inflammatory effects of sesamin on LPS-induced ALI in mice. Mice ALI model was induced by intratracheal instillation of LPS. Sesamin was given 1 h after LPS challenge. Our results showed that sesamin inhibited LPS-induced lung pathological change, edema, and myeloperoxidase (MPO) activity. Sesamin suppressed LPS-induced inflammatory cytokines TNF-α, IL-6, and IL-1β production. Furthermore, sesamin inhibited LPS-induced TLR4 expression and NF-κB activation. In conclusion, the results of this study indicated that sesamin protected against LPS-induced ALI by inhibition of TLR4 signaling pathways.

  5. Poly (ADP-ribose) polymerase-1 inhibitor, 3-aminobenzamide pretreatment ameliorates lipopolysaccharide-induced neurobehavioral and neurochemical anomalies in mice.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Hussain, Md Iftikar; Borah, Probodh; Lahkar, Mangala; Mohan, Pritam; Bezbaruah, Babul Kumar

    2015-06-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) functions at the center of cellular stress and sways the immune system at several key points, thus modulates inflammatory diseases. The antiinflammatory properties of PARP-1 inhibitors have been demonstrated ameliorating effect in various neuroinflammatory disorders. It has been reported that there is a close relationship between the inflammatory processes and major depressive disorder. In the present study, we have elucidated the role of oxidative-nitrosative stress-PARP-1 pathway in lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical alterations in mice. 3-Aminobenzamide (10 and 30mg/kg) and imipramine (10 and 30mg/kg) were administered once daily for 14days. Mice were challenged with LPS (1mg/kg, i.p.) 30min after drug administration on the 14th day. The mRNA expression level of PARP-1 (12h after LPS injection) in the hippocampus was measured through quantitative real-time PCR. All the behavioral and biochemical parameters were assessed at 24h after LPS injection. The expression level of PARP-1mRNA was found significantly up-regulated in the hippocampus at 12h after LPS administration. Results showed that the LPS-challenged mice exhibited an increase in immobility time seen in forced swimming test and tail suspension test. LPS increased the levels of proinflammatory cytokines and oxido-nitrosative stress parameters in the hippocampus. However, pretreatment with 3-aminobenzamide (30mg/kg) significantly reversed the LPS-induced alterations in behavioral parameters, proinflammatory cytokines, oxidative-nitrosative stress and PARP-1 mRNA levels. Imipramine failed to prevent the up-regulation of PARP-1 induced by LPS administration. Our results emphasized that oxidative-nitrosative stress-PARP-1 cascade can play a key role in LPS-induced neurobehavioral and neurochemical anomalies.

  6. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF.

  7. Rubicon deficiency enhances cardiac autophagy and protects mice from lipopolysaccharide-induced lethality and reduction in stroke volume.

    PubMed

    Zi, Zhenguo; Song, Zongpei; Zhang, Shasha; Ye, Yong; Li, Can; Xu, Mingqing; Zou, Yunzeng; He, Lin; Zhu, Hongxin

    2015-03-01

    : Rubicon has been suggested to suppress autophagosome maturation by negatively regulating PI3KC3/Vps34 activity. However, the physiological function of Rubicon remains elusive. We hypothesized that Rubicon deficiency enhances autophagic flux in the heart and affects cardiac function. Rubicon knockout (KO) mice were generated by piggyBac transposition. Loss of Rubicon was demonstrated at both mRNA and protein levels. Rubicon KO mice were born in Mendelian ratios. Autophagic flux, assessed by bafilomycin A1-induced changes in LC3 II protein abundance, was enhanced in the heart of Rubicon KO mice compared with wild-type (WT) controls. Hematoxylin-eosin staining and picrosirius red staining showed that Rubicon KO mice exhibited normal baseline cardiac morphology. Echocardiography revealed that ejection fraction and fractional shortening, 2 indices of cardiac function, were comparable between Rubicon KO mice at 2, 8, and 12 months of age (n = 6-8 for each age group) and the corresponding WT controls (n = 6-8 for each age group). In a mouse model of lipopolysaccharide (LPS)-induced sepsis, the survival time of LPS-treated Rubicon KO mice (n = 10) was prolonged compared with LPS-treated WT controls (n = 11). Echocardiography revealed that Rubicon deficiency partially normalized LPS-induced reduction in stroke volume and cardiac output 12 hours after LPS administration compared with LPS-treated WT controls (n = 6 for each group). Autophagic flux was enhanced in Rubicon-deficient hearts 12 hours after LPS treatment compared with LPS-treated WT controls. Real-time quantitative polymerase chain reaction suggested that proinflammatory cytokine expression was not significantly different between LPS-treated Rubicon KO mice and WT controls (n = 3 for each group). Our data demonstrate for the first time that Rubicon deficiency enhances autophagic flux in the heart and protects mice from lethality and reduction in stroke volume induced by LPS.

  8. Resveratrol Prevented Lipopolysaccharide-Induced Endothelial Dysfunction in Rat Thoracic Aorta Through Increased eNOS Expression

    PubMed Central

    Uğurel, Seda Sultan; Kuşçu, Nilay; Özenci, Çiler Çelik; Dalaklıoğlu, Selvinaz; Taşatargil, Arda

    2016-01-01

    Background: The cardiovascular benefits of Resveratrol (RVT) have been well established by previous experimental and clinical studies. Aims: The goal of this study was to test the effectiveness of RVT administration on the impaired endothelial function induced by lipopolysaccharide (LPS), and to elucidate the role of endothelial nitric oxide synthase (eNOS)/Sirtuin 1 (SIRT1) pathway. Study Design: Animal experiment. Methods: Endotoxemia was induced by intraperitoneal injection of 10 mg/kg LPS, and the thoracic aorta was isolated six hours later. RVT was injected intraperitoneally 15 minutes before LPS administration. Six hours after LPS injection, potassium chloride (KCl), phenylephrine (Phe), acetylcholine (ACh), and sodium nitroprusside (SNP) were used to examine to vascular reactivity and endothelial function. eNOS, phospho-eNOS (p-eNOS) (Ser 1177), and SIRT1 expressions in thoracic aorta were evaluated by Western blot. Results: LPS administration significantly inhibited the relaxation response induced by ACh, while the relaxation to SNP was not significantly altered. Phe- and KCl-induced contractile responses in the thoracic aorta significantly decreased in LPS-injected group. eNOS and p-eNOS expression decreased significantly in arteries obtained from LPS group rats. The impaired vasoreactivity as well as decreased expressions of eNOS, p-eNOS, and SIRT1 in vessels from LPS-injected rats were improved by RVT treatment. Conclusion: The endothelium-dependent vasodilatation of the thoracic aorta was significantly inhibited by LPS administration, and RVT treatment may improve vascular endothelial function. The protective effect of RVT might be associated with increased eNOS expression and activity. PMID:27403381

  9. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior.

    PubMed

    Townsend, Brigitte E; Chen, Yung-Ju; Jeffery, Elizabeth H; Johnson, Rodney W

    2014-11-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. Sulforaphane increases antioxidant enzymes including NAD(P)H quinone oxidoreductase and heme oxygenase I and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide (LPS)-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days before an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 hours after LPS, and mRNA was quantified in liver and brain at 24 hours. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin-1β (IL-1β) expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. In addition, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS.

  10. Anti-inflammatory effect of Taraxacum officinale leaves on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells.

    PubMed

    Koh, Yoon-Jeoung; Cha, Dong-Soo; Ko, Je-Sang; Park, Hyun-Jin; Choi, Hee-Don

    2010-08-01

    To investigate the efficacy and the mechanism of the anti-inflammatory effect of Taraxacum officinale leaves (TOLs), the effect of a methanol extract and its fractions recovered from TOLs on lipopolysaccharide (LPS)-induced responses was studied in the mouse macrophage cell line, RAW 264.7. Cells were pretreated with various concentrations of the methanol extract and its fractions and subsequently incubated with LPS (1 microg/mL). The levels of nitric oxide (NO), prostaglandin (PG) E(2), and pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were determined using enzyme-linked immunosorbent assays. Expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and activation of mitogen-activated protein (MAP) kinases were analyzed using western blotting. The methanol extract and its fractions inhibited LPS-induced production of NO, pro-inflammatory cytokines, and PGE(2) in a dose-dependent manner. The chloroform fraction significantly suppressed production of NO, PGE(2), and two pro-inflammatory cytokines (TNF-alpha and IL-1beta) in a dose-dependent manner with 50% inhibitory concentration values of 66.51, 90.96, 114.76, and 171.06 microg/mL, respectively. The ethyl acetate fraction also inhibited production of the inflammatory molecules. The chloroform and ethyl acetate fractions reduced LPS-induced expressions of iNOS and COX-2 and activation of MAP kinases in a dose-dependent manner. Among the fractions of the methanol extract, the chloroform and ethyl acetate fractions exhibited the most effective anti-inflammatory activities. These results show that the anti-inflammatory effects of TOLs are probably due to down-regulation of NO, PGE(2), and pro-inflammatory cytokines and reduced expressions of iNOS and COX-2 via inactivation of the MAP kinase signal pathway.

  11. Curcumin protects against lipopolysaccharide-induced vasoconstriction dysfunction via inhibition of thrombospondin-1 and transforming growth factor-β1

    PubMed Central

    LU, WEI; JIANG, JIAN-PING; HU, JUE; WANG, JUE; ZHENG, MING-ZHI

    2015-01-01

    Sepsis is a complex syndrome characterized by the development of progressive dysfunction in multiple organs. The aim of the present study was to investigate the protective effect of curcumin against lipopolysaccharide (LPS)-induced vasoconstrictive dysfunction, and to investigate the possible underlying mechanism. Male Sprague-Dawley rats were randomly divided into the following groups: Control, sepsis and curcumin. A sepsis model was established by an intraperitoneal (i.p.) injection of 5 mg/kg LPS. Thoracic aortic rings obtained from the rats were mounted in an organ bath and the vasoconstriction of the rings was recorded. In addition, the serum E-selectin levels were determined by an enzyme-linked immunosorbent assay. The expression levels of thrombospondin (TSP)-1 and transforming growth factor (TGF)-β1 in the aortic tissue were detected by immunohistochemistry. Vasoconstriction of the aortic rings was found to significantly decrease in the sepsis rats when compared with the control group. However, curcumin (10 or 20 mg/kg, i.p.) prevented the vasoconstrictive dysfunction induced by LPS. The serum level of E-selectin and the expression levels of TSP-1 and TGF-β1 significantly increased in the sepsis rats when compared with the control group rats; however, the levels decreased significantly following treatment with curcumin (10 or 20 mg/kg). Furthermore, hematoxylin and eosin staining revealed that curcumin alleviated the LPS-induced damage in the aortic tunica intima and tunica media. Therefore, the results indicated that curcumin alleviates LPS-induced vasoconstrictive dysfunction in the thoracic aorta of rats. In addition, the inhibition of TSP-1 and TGF-β1 expression may be involved in the mechanism underlying this protective effect. PMID:25574201

  12. OSTEOPONTIN BINDING TO LIPOPOLYSACCHARIDE LOWERS TUMOR NECROSIS FACTOR-α AND PREVENTS EARLY ALCOHOL-INDUCED LIVER INJURY IN MICE

    PubMed Central

    Ge, Xiaodong; Leung, Tung-Ming; Arriazu, Elena; Lu, Yongke; Urtasun, Raquel; Christensen, Brian; Fiel, Maria Isabel; Mochida, Satoshi; Sørensen, Esben S.; Nieto, Natalia

    2013-01-01

    Rationale: Although osteopontin (OPN) is induced in alcoholic patients, its role in the pathophysiology of alcoholic liver disease (ALD) remains unclear. Increased translocation of lipopolysaccharide (LPS) from the gut is key for the onset of ALD since it promotes macrophage infiltration and activation, tumor necrosis factor-α (TNFα) production and liver injury. Since OPN is protective for the intestinal mucosa, we postulated that enhancing OPN expression in the liver and consequently in the blood and/or in the gut could protect from early alcohol-induced liver injury. Results: Wild-type (WT), OPN knockout (Opn−/−) and transgenic mice overexpressing OPN in hepatocytes (OpnHEP Tg) were chronically fed either the control or the ethanol Lieber-DeCarli diet. Ethanol increased hepatic, plasma, biliary and fecal OPN more in OpnHEP Tg than in WT mice. Steatosis was lesser in ethanol-treated OpnHEP Tg mice as shown by decreased liver-to-body weight ratio, hepatic triglycerides, the steatosis score, oil red-O staining and lipid peroxidation. There was also less inflammation and liver injury as demonstrated by lower ALT activity, hepatocyte ballooning degeneration, LPS levels, the inflammation score and the number of macrophages and TNFα+ cells. To establish if OPN could limit LPS availability and its noxious effects in the liver, binding studies were performed. OPN showed affinity for LPS and the binding prevented macrophage activation, reactive oxygen and nitrogen species generation and TNFα production. Treatment with milk OPN (m-OPN) blocked LPS translocation in vivo and protected from early alcohol-induced liver injury. Conclusion: Natural induction plus forced overexpression of OPN in the liver and treatment with m-OPN protect from early alcohol-induced liver injury by blocking the gut-derived LPS and TNFα effects in the liver. PMID:24214181

  13. Tyrosol ameliorates lipopolysaccharide-induced ocular inflammation in rats via inhibition of nuclear factor (NF)-κB activation

    PubMed Central

    SATO, Kazuaki; MIHARA, Yuko; KANAI, Kazutaka; YAMASHITA, Yohei; KIMURA, Yuya; ITOH, Naoyuki

    2016-01-01

    We evaluated the anti-inflammatory effect of tyrosol (Tyr) on endotoxin-induced uveitis (EIU) in rats. EIU was induced in male Lewis rats by subcutaneous injection of lipopolysaccharide (LPS). Tyr (10, 50 or 100 mg/kg) was intravenously injected 2 hr before, simultaneously and 2 hr after LPS injection. The aqueous humor (AqH) was collected 24 hr after LPS injection; the infiltrating cell number, protein concentration, and tumor necrosis factor (TNF)-α, prostaglandin (PG)-E2 and nitric oxide (NO) levels were determined. Histopathologic examination and immunohistochemical studies for nuclear factor (NF)-κB, inhibitor of κB (IκB)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in the iris–ciliary body (ICB) were performed at 3 or 24 hr after LPS injection. To further clarify the anti-inflammatory effects, RAW264.7 macrophages were stimulated with LPS in the presence or absence of Tyr. Tyr reduced, in a dose-dependent manner, the infiltrating cell number, protein concentration, and TNF-α, PGE2 and NO levels in AqH and improved histopathologic scores of EIU. Tyr also inhibited LPS-induced COX-2 and iNOS expression, IκB-α degradation and nuclear translocation of activated NF-κB in ICB. Tyr significantly suppressed inflammatory mediator production in the culture medium and COX-2 and iNOS expression and activated NF-κB translocation in LPS-stimulated RAW264.7 cells. These results suggest that Tyr suppresses ocular inflammation of EIU by inhibiting NF-κB activation and subsequent proinflammatory mediator production. PMID:27238160

  14. CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis

    PubMed Central

    Affò, Silvia; Morales-Ibanez, Oriol; Rodrigo-Torres, Daniel; Altamirano, José; Blaya, Delia; Dapito, Dianne H; Millán, Cristina; Coll, Mar; Caviglia, Jorge M; Arroyo, Vicente; Caballería, Juan; Schwabe, Robert F; Ginès, Pere; Bataller, Ramón; Sancho-Bru, Pau

    2014-01-01

    Objective Chemokines are known to play an important role in the pathophysiology of alcoholic hepatitis (AH), a form of acute-on-chronic liver injury frequently mediated by gut derived lipopolysaccharide (LPS). In our study, we hypothesise that chemokine CCL20, one of the most upregulated chemokines in patients with AH, is implicated in the pathogenesis of AH by mediating LPS induced liver injury. Design CCL20 gene expression and serum levels and their correlation with disease severity were assessed in patients with AH. Cellular sources of CCL20 and its biological effects were evaluated in vitro and in vivo in chronic, acute and acute-on-chronic experimental models of carbon tetrachloride and LPS induced liver injury. RNA interference technology was used to knockdown CCL20 in vivo. Results CCL20 hepatic and serum levels were increased in patients with AH and correlated with the degree of fibrosis, portal hypertension, endotoxaemia, disease severity scores and short term mortality. Moreover, CCL20 expression was increased in animal models of liver injury and particularly under acute-on-chronic conditions. Macrophages and hepatic stellate cells (HSCs) were identified as the main CCL20 producing cell types. Silencing CCL20 in vivo reduced LPS induced aspartate aminotransferase and lactate dehydrogenase serum levels and hepatic proinflammatory and profibrogenic genes. CCL20 induced proinflammatory and profibrogenic effects in cultured primary HSCs. Conclusions Our results suggest that CCL20 upregulation is strongly associated with LPS and may not only represent a new potential biomarker to predict outcome in patients with AH but also an important mediator linking hepatic inflammation, injury and fibrosis in AH. PMID:24415562

  15. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-κB and MAPKs signal pathways.

    PubMed

    Li, Depeng; Zhang, Naisheng; Cao, Yongguo; Zhang, Wen; Su, Gaoli; Sun, Yong; Liu, Zhicheng; Li, Fengyang; Liang, Dejie; Liu, Bo; Guo, Mengyao; Fu, Yunhe; Zhang, Xichen; Yang, Zhengtao

    2013-04-05

    Emodin is an anthraquinone derivative from the Chinese herb Radix et Rhizoma Rhei. It has been reported that emodin possesses a number of biological properties, such as anti-inflammatory, anti-virus, anti-bacteria, anti-tumor, and immunosuppressive properties. However, the effect of emodin on mastitis is not yet known. The aim of this study was to investigate whether emodin has protective effect against lipopolysaccharide (LPS)-induced mastitis in a mouse model. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Emodin was administered intraperitoneally with the dose of 1, 2, and 4 mg/kg respectively 1h before and 12h after induction of LPS. Emodin significantly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), concentration of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), mRNA expression levels of TNF-α, IL-1β and IL-6, which were increased in LPS-induced mouse mastitis. In addition, emodin influenced nuclear factor kappa-B signal transduction pathway by inhibiting activation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κB α (IκBα), and emodin also influenced mitogen activated protein kinases signal transduction pathway by depression activation of p38, extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). In conclusion, these results indicated that emodin could exert beneficial effects on experimental mastitis induced by LPS and may represent a novel treatment strategy for mastitis.

  16. Sodium hydrogen sulfide inhibits nicotine and lipopolysaccharide-induced osteoclastic differentiation and reversed osteoblastic differentiation in human periodontal ligament cells.

    PubMed

    Lee, Sun-Kyung; Chung, Jong-Hyuk; Choi, Sung-Chul; Auh, Q-Schick; Lee, Young-Man; Lee, Sang-Im; Kim, Eun-Cheol

    2013-05-01

    Although previous studies have demonstrated that hydrogen sulfide (H(2)S) stimulated or inhibited osteoclastic differentiation, little is known about the effects of H(2)S on the differentiation of osteoblasts and osteoclasts. To determine the possible bioactivities of H(2)S on bone metabolism, we investigated the in vitro effects of H(2)S on cytotoxicity, osteoblastic, and osteoclastic differentiation as well as the underlying mechanism in lipopolysaccharide (LPS) and nicotine-stimulated human periodontal ligament cells (hPDLCs). The H(2)S donor, NaHS, protected hPDLCs from nicotine and LPS-induced cytotoxicity and recovered nicotine- and LPS-downregulated osteoblastic differentiation, such as alkaline phosphatase (ALP) activity, mRNA expression of osteoblasts, including ALP, osteopontin (OPN), and osteocalcin (OCN), and mineralized nodule formation. Concomitantly, NaHS inhibited the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in mouse bone marrow cells and blocked nicotine- and LPS-induced osteoclastogenesis regulatory molecules, such as RANKL, OPG, M-CSF, MMP-9, TRAP, and cathepsin K mRNA. NaHS blocked nicotine and LPS-induced activation of p38, ERK, MKP-1, PI3K, PKC, and PKC isoenzymes, and NF-κB. The effects of H(2)S on nicotine- and LPS-induced osteoblastic and osteoclastic differentiation were remarkably reversed by MKP-1 enzyme inhibitor (vanadate) and expression inhibitor (triptolide). Taken together, we report for the first time that H(2)S inhibited cytotoxicity and osteoclastic differentiation and recovered osteoblastic differentiation in a nicotine- and periodontopathogen-stimulated hPDLCs model, which has potential therapeutic value for treatment of periodontal and inflammatory bone diseases.

  17. Inhibition of the mitochondrial permeability transition by cyclosporin A prevents pyrazole plus lipopolysaccharide-induced liver injury in mice.

    PubMed

    Zhuge, Jian; Cederbaum, Arthur I

    2009-02-01

    Previous results showed that pyrazole potentiates lipopolysaccharide (LPS)-induced liver injury in mice. Mechanisms involved the overexpression of cytochrome P450 2E1 (CYP2E1), oxidative stress, and activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). The current study was carried out to test the hypothesis that the mitochondria permeability transition (MPT) plays a role in this pyrazole plus LPS toxicity. Mice were injected intraperitoneally with pyrazole for 2 days, followed by a challenge with LPS with or without treatment with cyclosporin A (CsA), an inhibitor of the MPT. Serum alanine aminotransferase and aspartate aminotransferase were increased by pyrazole plus LPS treatment, and CsA treatment could attenuate these increases. CsA also prevented pyrazole plus LPS-induced hepatocyte necrosis. Formation of 4-hydroxynonenal protein adducts and 3-nitrotyrosine protein adducts in liver tissue was increased by the pyrazole plus LPS treatment, and CsA treatment blunted these increases. Swelling, cytochrome c release from mitochondria to the cytosol, and lipid peroxidation were increased in mitochondria isolated from the pyrazole plus LPS-treated mice, and CsA treatment prevented these changes. CsA did not prevent the increased levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha), pp38 MAPK, and p-JNK2. In conclusion, although CsA does not prevent elevations in upstream mediators of the pyrazole plus LPS toxicity (iNOS, TNF-alpha, CYP2E1, MAPK), it does protect mice from the pyrazole plus LPS-induced liver toxicity by preventing the MPT and release of cytochrome c and decreasing mitochondrial oxidative stress. These results indicate that mitochondria are the critical targets of pyrazole plus LPS in mediating liver injury.

  18. Effect of N-acetylcysteine on blood and tissue lipid peroxidation in lipopolysaccharide-induced obstructive jaundice.

    PubMed

    Caglikulekci, Mehmet; Dirlik, Musa; Pata, Cengiz; Plasse, Marylene; Tamer, Lulufer; Ogetman, Zekai; Ercan, Bahadir

    2006-01-01

    In obstructive jaundice, free radical production is increased and antioxidative activity is reduced. N-Acetylcysteine (NAC) has a beneficial effect with anti-inflammatory and antioxidant activity, acting as a free radical scavenger. NAC inhibits inducible nitric oxide synthase, suppresses cytokine expression/release, and inhibits adhesion molecule expression and nuclear factor kappa B. The aim of this study was to investigate the effects of NAC on liver/renal tissue and serum lipid peroxidation in lipopolysaccharide (LPS)-induced obstructive jaundice. We randomized 60 rats into 6 groups: group 1, Sham; group 2, obstructive jaundice (OJ) induced after bile-duct ligation; group 3, OJ + NAC (100 mg kg- 1 subcutaneously); group 4, OJ + LPS (10 mg kg-1); group 5, OJ + NAC + LPS; and group 6, OJ + LPS + NAC. For each group, the biochemical markers of lipid peroxidation and the antioxidant products were measured in serum and liver/renal tissue after sacrifice. Almost all lipid peroxidation products levels were increased and antioxidant products levels were decreased in groups who received LPS (groups 4, 5, and 6), but the effect was less remarkable when NAC was administered before LPS (group 5). The same trend was seen for groups with OJ +/- LPS who did not received NAC or received it after induced toxemia (groups 2, 4, and 6) as compared to groups 1 and 3. Moreover, in the case of OJ + LPS, rats treated with NAC before LPS (group 5) had lower lipid peroxidation products levels and higher antioxidant products levels as compared to those who did not received NAC (group 4). This phenomenon was not reproducible with NAC administered after LPS (group 6). Thus, results of this study showed that NAC prevents the deleterious effects of LPS in obstructive jaundice by reducing lipid peroxidation in serum and liver/renal tissue if administered before LPS. Nonetheless, NAC failed to prevent the lipid peroxidation in the case of established endotoxemia in obstructive jaundice.

  19. AP-1-Targeted Inhibition of Macrophage Function and Lipopolysaccharide/D-Galactosamine-Induced Hepatitis by Phyllanthus acidus Methanolic Extract.

    PubMed

    Hossen, Muhammad Jahangir; Kim, Mi-Yeon; Kim, Jong-Hoon; Cho, Jae Youl

    2015-01-01

    Traditionally, Phyllanthus acidus (Phyllanthaceae) has been used for the treatment of rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Recently, we showed that a methanol extract of Phyllanthaceae (Pa-ME) has a potent anti-inflammatory activity in RAW264.7 cells and strongly ameliorates HCl / EtOH -induced gastric ulcers in mice by targeting the Src/Syk of NF-κB. In the present study, we explored the molecular mechanism of Pa-ME on the AP-1 activation pathway and evaluated its potential hepatoprotective effects. To do this, we employed lipopolysaccharide (LPS)-stimulated RAW264.7 cells and U937 cells and an LPS/D-galactosamine (D- GaIN )-induced acute hepatitis mouse model. We utilized a multitude of assays, including immunoblotting analysis, reporter gene assays, and mRNA expression analysis, to determine the effect of Pa-ME on the AP-1 pathway. Pa-ME strikingly suppressed the production of LPS-induced pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, Pa-ME also strongly inhibited activator protein-1 (AP-1) activation and mitogen-activated protein kinase (MAPK) phosphorylation in LPS-stimulated RAW264.7 macrophages cells and the U937 monocyte like human cell line. Moreover, pre-treatment with Pa-ME exhibited strong hepatoprotective and curative effects in an LPS/D-Gal-induced mouse hepatitis model as evidenced by a decrease in elevated serum AST and ALT levels and the amelioration of histological damage. Taken together, our data suggest that Pa-ME might play a crucial ethnopharmacological role as a hepatoprotective herbal remedy by suppressing MAPK signaling and the activity of the downstream transcription factor AP-1.

  20. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice.

    PubMed

    Walker, Adam K; Budac, David P; Bisulco, Stephanie; Lee, Anna W; Smith, Robin A; Beenders, Brent; Kelley, Keith W; Dantzer, Robert

    2013-08-01

    We have previously demonstrated that lipopolysaccharide (LPS) induces depressive-like behavior by activating indoleamine 2,3 dioxygenase (IDO; O'Connor et al, 2009c). IDO degrades tryptophan along the kynurenine pathway. Using mass-spectrometry (LC-MS) analysis of kynurenine metabolites in the brain of mice injected at the periphery with 1 mg/kg LPS, we show that LPS activates the kynurenine 3-monooxygenase pathway that ultimately degrades kynurenine into quinolinic acid. As quinolinic acid acts as an N-methyl-D-aspartate (NMDA) receptor agonist, we used the NMDA receptor antagonist ketamine to assess the role of NMDA receptor activation in LPS-induced depressive-like behavior. Here, we report that a low dose of ketamine (6 mg/kg, intraperitoneally) immediately before administration of LPS (0.83 mg/kg, intraperitoneally) in C57Bl/6 J mice abrogated the development of LPS-induced depressive-like behavior, without altering LPS-induced sickness measured by body weight loss, decreased motor activity, and reduced food intake. Depressive-like behavior was measured 24 h after LPS by decreased sucrose preference and increased immobility in the forced swim test (FST). Ketamine had no effect on LPS-induced cytokine expression in the liver and brain, IDO activation, and brain-derived neurotrophic factor (BDNF) transcripts. The ability of ketamine to abrogate LPS-induced depressive-like behavior independently of a possible interference with LPS-induced inflammatory signaling was confirmed when ketamine was administered 10 h after LPS instead of immediately before LPS. In contrast, ketamine had no effect when administered 24 h before LPS. To confirm that NMDA receptor antagonism by ketamine mediates the antidepressant-like activity of this compound in LPS-treated mice, mice were pretreated with the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione (NBQX) to block enhanced AMPA

  1. Lipopolysaccharide-Induced Differential Expression of miRNAs in Male and Female Rhipicephalus haemaphysaloides Ticks

    PubMed Central

    Zhang, Houshuang; Zhou, Yongzhi; Cao, Jie; Zhou, Jinlin

    2015-01-01

    Lipopolysaccharide (LPS) stimulates the innate immune response in arthropods. In tick vectors, LPS activates expression of immune genes, including those for antibacterial peptides. miRNAs are 21–24 nt non-coding small RNAs that regulate target mRNAs at the post-transcriptional level. However, our understanding of tick innate immunity is limited to a few cellular immune reactions and some characterized immune molecules. Moreover, there is little information on the regulation of the immune system in ticks by miRNA. Therefore, this study aimed to analyze the differential expression of miRNAs in male and female ticks after LPS injection. LPS was injected into male and female Rhipicephalus haemaphysaloides ticks to stimulate immune response, with phosphate buffered saline (PBS)-injected ticks as negative controls. miRNAs from each group were sequenced and analyzed. In the PBS- and LPS-injected female ticks, 11.46 and 12.82 million reads of 18–30 nt were obtained respectively. There were 13.92 and 15.29 million reads of 18–30 nt obtained in the PBS- and LPS-injected male ticks, respectively. Expression of miRNAs in male ticks was greater than that in female ticks. There were 955 and 984 conserved miRNA families in the PBS- and LPS-injected female ticks, respectively, and correspondingly 1684 and 1552 conserved miRNA families in male ticks. Nine novel miRNAs were detected as common miRNAs in two or more tested samples. There were 37 known miRNAs up-regulated >10-fold and 33 down-regulated >10-fold in LPS-injected female ticks; and correspondingly 52 and 59 miRNAs in male ticks. Differential expression of miRNAs in PBS- and LPS-injected samples supports their involvement in the regulation of innate immunity. These data provide an important resource for more detailed functional analysis of miRNAs in this species. PMID:26430879

  2. Dietary copper level affects copper metabolism during lipopolysaccharide-induced immunological stress in chicks.

    PubMed

    Koh, T S; Peng, R K; Klasing, K C

    1996-07-01

    Two experiments were conducted to examine the effect of dietary Cu level on Cu metabolism during the acute phase response in broiler chicks with adequate (Experiment 1) or deficient (Experiment 2) Cu. Diets based on cornstarch and isolated soybean protein were used to formulate a basal diet, and basal diet plus either 5, 10, or 15 mg/kg additional Cu as either CuO or CuSO4. Each diet was fed to six pens of five chicks per pen (Experiment 1) or eight pens of five chicks (Experiment 2). Half of the chicks on each diet were injected with Salmonella typhymurium lipopolysaccharide (LPS) on alternate days. In Experiment 1, LPS significantly decreased daily gain, feed intake, and feed efficiency (P < 0.01) and increased the concentration of Cu in blood plasma (P < 0.01). In the uninjected birds, adding 5, 10, or 15 mg/kg Cu as CuO or 15 mg/kg Cu as CuSO4 increased the rate of gain over that of chicks fed the basal diet. In the birds challenged with LPS, 10 mg/kg Cu as CuO increased the rate of gain and efficiency compared to those of chicks fed the basal diet. Addition of CuSO4 to the diet of chicks challenged with LPS did not affect gain, intake, or feed efficiency compared to those of chicks fed the basal diet. Ceruloplasmin levels were higher in chicks challenged with LPS than in control chicks (P = 0.03), and this difference tended to be greater in chickens fed CuO than in chickens fed CuSO4 (P = 0.07). In chicks challenged with LPS, feeding CuO at all levels and feeding CuSO4 to give 10 or 15 mg/kg Cu increased ceruloplasmin levels above that of chicks fed the basal diet. Hepatic Mn superoxide dismutase (SOD) and Cu/Zn SOD were not influenced by dietary Cu level or source or LPS. Results of Experiment 2 were similar to those of Experiment 1 except that supplemental CuSO4 and CuO gave similar increases in gain and CuSO4 was more effective at increasing ceruloplasmin levels. Chicks given supplemental Cu had higher ceruloplasmin levels following challenge with LPS than

  3. Transcriptional profiles of Rel/NF-κB, inhibitor of NF-κB (IκB), and lipopolysaccharide-induced TNF-α factor (LITAF) in the lipopolysaccharide (LPS) and two Vibrio sp.-exposed intertidal copepod, Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Jeong, Chang-Bum; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-02-01

    The immune system and the role of immunity-related genes have rarely been studied in copepods, even though copepods have a primitive immune response system and also have a potential in pathogen transport higher trophic levels. In this study, we firstly cloned and characterized three core immune genes such as nuclear factor κB (NF-κB), inhibitor of NF-κB (IκB), and lipopolysaccharide-induced TNF-α factor (LITAF) genes in the intertidal copepod Tigriopus japonicus. Several in silico analyses based on conserved domains, motifs, and phylogenetic relationships were supporting their annotations. To investigate the immune-related role of three genes, we exposed lipopolysaccharide (LPS) and two Vibrio sp. to T. japonicus. After exposure of different concentrations of LPS and two Vibrio sp., transcripts of TJ-IκB and TJ-LITAF genes were significantly elevated during the time course in a dose-dependent manner, while TJ-NF-κB transcripts were not significantly changed during exposure. These findings demonstrated that the copepod T. japonicus has a conserved immunity against infection.

  4. A novel CC chemokine receptor 4 antagonist RS-1269 inhibits ovalbumin-induced ear swelling and lipopolysaccharide-induced endotoxic shock in mice.

    PubMed

    Nakagami, Yasuhiro; Kawashima, Kayo; Etori, Maki; Yonekubo, Kazuki; Suzuki, Chie; Jojima, Takaaki; Kuribayashi, Takeshi; Nara, Futoshi; Yamashita, Makoto

    2010-10-01

    There is growing evidence that chemokines recruit leukocytes in allergic, inflammatory and immune responses. CC chemokine receptor 4 (CCR4) is implicated as a preferential marker for T helper 2 cells, and the cells selectively respond to CC chemokine ligand 17 (CCL17) and CCL22. We searched for compounds having a profile as a CCR4 antagonist from an in-house library and have previously reported that 3-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}quinazoline-2,4(1H,3H)-dione (named RS-1154) was capable of significantly inhibiting the binding of [(125) I]CCL17 to human CCR4-expressing CHO cells. From further synthesis of its derivatives, we newly focused on 3-(isobutyrylamino)-N-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}benzamide (RS-1269), which showed potency comparable to RS-1154 in inhibiting CCL17-induced migration of DO11.10 mice-derived T helper 2 cells with an IC(50) value of 5.5 nM in vitro. We then investigated the pharmacological effects of RS-1269 on ovalbumin-induced ear swelling and lipopolysaccharide-induced endotoxic shock in mice. The ear thickness was significantly decreased by oral administration of RS-1269 at the dose of 30 mg/kg. Treatment with lipopolysaccharide significantly increased the serum level of tumour necrosis factor-α. Compared with an anti-CCL17 antibody, RS-1269 significantly inhibited the production at the dose of 100 mg/kg. These results raise the possibility that RS-1269 or one of its derivatives has potential to serve as a prototype compound to develop therapeutic agents for atopic dermatitis and inflammatory diseases.

  5. Mechanisms of increased survival after lipopolysaccharide-induced endotoxic shock in mice consuming olive oil-enriched diet.

    PubMed

    Leite, Milane S; Pacheco, Patrícia; Gomes, Rachel N; Guedes, Alexandre T; Castro-Faria-Neto, Hugo C; Bozza, Patrícia T; Koatz, Vera Lúcia G

    2005-02-01

    We examined the impact of dietary fatty acid intake on lipopolysaccharide (LPS)-induced endotoxic shock. C57Bl/6J mice were fed for 6 weeks with a commercial laboratory chow (CC) or with test chows containing 7% (w/w) canola oil (CO), sesame oil (SeO), soybean oil (SO), or virgin olive oil (OO). The increase in body weight and energy consumption were similar for all diets tested. In the sixth week, mice were injected intraperitoneally with 400 microg of bacterial LPS to induce endotoxic shock. LPS induced a massive neutrophil infiltration into the peritoneal cavity and an increase in lipid body (LB) formation in leukocytes recovered from the peritoneal fluid of mice fed with CC, CO, SeO, or SO. In addition, there were increases in prostaglandin E(2) (PGE(2)), leukotriene B4 (LTB(4)), and cytokines IL-6, IL-10, and MCP-1 in peritoneal lavage, as well as in plasma TNF-alpha. In contrast, mice fed with OO exhibited reduced neutrophil accumulation and LB formation, and also had lower levels of PGE(2), LTB(4), MCP-1, and TNF-alpha. All mice fed with CC, CO, SeO, or SO died within 48 to 72 h after LPS injection. Interestingly, mice fed with the OO diet were resistant to endotoxic shock, with 60% survival at 168 h. These data indicate that intake of OO may have a beneficial role, reducing the magnitude of the inflammatory process triggered by endotoxic shock through modulation of LB formation and of the production of inflammatory mediators.

  6. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation.

    PubMed

    Herzmann, Nicole; Salamon, Achim; Fiedler, Tomas; Peters, Kirsten

    2017-01-01

    Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation of adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.

  7. Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice.

    PubMed

    Robertson, Sarah A; Care, Alison S; Skinner, Rebecca J

    2007-05-01

    Interleukin 10 (IL10) is a potent immune-regulating cytokine and inhibitor of inflammatory cytokine synthesis. To evaluate the anti-inflammatory role of IL10 in pregnancy, the response of genetically IL10-deficient mice to low-dose lipopolysaccharide (LPS)-induced abortion was examined. When IL10-null mutant C57Bl/6 (Il10(-/-)) and control (Il10(+/+)) mice were administered low-dose LPS on Day 9.5 of gestation, IL10 deficiency predisposed to fetal loss accompanied by growth restriction in remaining viable fetuses, with an approximately 10-fold reduction in the threshold dose for 100% abortion. After LPS administration, inflammatory cytokines tumor necrosis factor-alpha (TNFA) and IL6 were markedly increased in serum, uterine, and conceptus tissues in Il10(-/-) mice compared with Il10(+/+) mice, with elevated local synthesis of Tnfa and Il6 mRNAs in the gestational tissues. IL1A and IL12p40 were similarly elevated in serum and gestational tissues, whereas interferon gamma (IFNG) and soluble TNFRII content were unchanged in the absence of IL10. Recombinant IL10 rescued the increased susceptibility to LPS-induced fetal loss in Il10(-/-) mice but did not improve outcomes in Il10(+/+) mice. IL10 genotype also influenced the responsiveness of mice to a TNFA antagonist, etanercept. Fetal loss in Il10(-/-) mice was partly alleviated by moderate or high doses of etanercept, whereas Il10(+/+) mice were refractory to high-dose etanercept, consistent with attenuation by IL10 status of TNFA bioavailability after etanercept treatment. These data show that IL10 modulates resistance to inflammatory stimuli by downregulating expression of proinflammatory cytokines TNFA, IL6, IL1A, and IL12, acting to protect against inflammation-induced pathology in the implantation site.

  8. Protective effects of melatonin against the damages of neuroendocrine-immune induced by lipopolysaccharide in diabetic rats.

    PubMed

    Zhong, L-Y; Yang, Z-H; Li, X-R; Wang, H; Li, L

    2009-10-01

    The present study was to determine the protective effects of melatonin (MLT) against the damages of neuroendocrine-immune induced by lipopolysaccharide (LPS) in streptozotocin (STZ)-induced diabetic rats, and to analyze the parameters related to diabetes and oxidative stress. A total of 70 male Sprague-Dawley rats were assigned to this experiment. 10 of rats received STZ intraperitoneally (i.p.) alone as diabetic control; 40 of rats as the Diabetes+LPS received STZ plus LPS i.p. after induction of diabetes with STZ, then assigned to sub-groups as MLT (0.1) (mg), MLT (1) (mg), and Vehicle group, received two doses MLT and vehicle, i.p., respectively, q6 h for 12 h after LPS administration; and the remaining served as normal and LPS control. LPS significantly increased the serum levels of TNF-alpha and IL-6 in normal and diabetic rats; LPS also dramatically increased the plasma concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone. Both 0.1 and 1 mg/kg MLT doses significantly decreased the serum levels of TNF-alpha and IL-6. Significant inhibitory effects of MLT (1 mg/kg) were observed on the plasma concentrations of CRH, ACTH, and corticosterone of the HPA axis. The beneficial effects of MLT, such as the antioxidant activity and maintaining glucose homoeostasis, were also observed in this study, this resulted in a protective effect against the damages caused by LPS in STZ-induced diabetic rats. This finding probably provides a new approach for preventing the undesirable effects of the vicious cycle of hyperglycemia and stress factors such as severe infection in diabetic patients.

  9. Inhibitory effects of cyclic AMP elevating agents on lipopolysaccharide (LPS)-induced microvascular permeability change in mouse skin.

    PubMed

    Irie, K; Fujii, E; Ishida, H; Wada, K; Suganuma, T; Nishikori, T; Yoshioka, T; Muraki, T

    2001-05-01

    Anti-inflammatory effects of cyclic AMP elevating agents were examined in a mouse model of lipopolysaccharide (LPS)-induced microvascular permeability change. Vascular permeability on the back skin was measured by the local accumulation of Pontamine sky blue (PSB) after subcutaneous injection of LPS (400 microg site-1) from Salmonella typhimurium. Dye leakage in the skin was significantly increased 2 h after injection of LPS. This LPS-induced dye leakage was suppressed by phosphodiesterase inhibitors, including pentoxifylline (160 mg kg-1), milrinone (5 - 10 mg kg-1), rolipram (0.5 - 10 mg kg-1) and zaprinast (5 - 10 mg kg-1). The dye leakage was also inhibited by beta-adrenoceptor agonists, including isoproterenol (0.5 - 5 mg kg-1) and salbutamol (0.05 - 5 mg kg-1), an adenylate cyclase activator, forskolin (5 mg kg-1), and a cell permeable cyclic AMP analogue, 8-bromo-cyclic AMP (8-Br-cAMP, 10 mg kg-1). LPS caused a transient increase in serum TNF-alpha level peaking at 1 h after the injection. This increase in serum TNF-alpha was completely blocked by a pretreatment with pentoxifylline (160 mg kg-1), milrinone (5 mg kg-1), rolipram (1 mg kg-1), zaprinast (10 mg kg-1), salbutamol (0.5 mg kg-1), forskolin (1 mg kg-1) and 8-Br-cAMP (10 mg kg-1). LPS caused an increase in serum IL-1alpha level peaking at 3 h after injection. This increase in serum IL-1alpha was not significantly suppressed by the cyclic AMP elevating agents. Our study suggests that cyclic AMP elevating agents attenuate LPS-induced microvascular permeability change by suppressing TNF-alpha up regulation.

  10. Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen.

    PubMed

    Kees, Martin G; Pongratz, Georg; Kees, Frieder; Schölmerich, Jürgen; Straub, Rainer H

    2003-12-01

    Using a spleen slice microsuperfusion technique in mice, we have previously characterized the role of norepinephrine (NE) and other neurotransmitters for sympathetic modulation of IL-6 and TNF secretion of splenic macrophages. Since experiments in spleen slices do not reflect the situation of an entire perfused organ, we investigated sympathetic modulation of lipopolysaccharide (LPS)-induced secretion of IL-6 and TNF in perfusion experiments of rat spleen. In an organ bath, perfusion was performed in explanted whole spleens, and catecholamines and cytokines were measured by HPLC and ELISA, respectively. Release of NE depended on stimulation frequency (maximum at 10 Hz). Apart from NE, perfusates also contained significant amounts of dopamine and epinephrine. Furthermore, perfusate epinephrine levels correlated positively with perfusate NE levels (RRank=0.750, p<0.001) but not with plasma epinephrine concentrations. This indicates that epinephrine is a conversion product of sympathetically released NE. Early electrical stimulation of extrasplenic splenic nerves, 20 min after administration of LPS, significantly inhibited TNF secretion. This electrically induced effect was abrogated by simultaneous administration of propranolol (10(-6) M) but it was not influenced by administration of either an alpha1- or alpha2-adrenergic antagonist. Late electrical stimulation of splenic nerves, 2.5 h after administration of LPS, did not change TNF secretion. Interestingly, no influence of early or late sympathetic nerve fiber stimulation on IL-6 secretion was observed. In conclusion, this is the first perfusion study of the entire spleen that demonstrates that early electrical stimulation of sympathetic splenic nerve fibers directly inhibits LPS-induced TNF secretion. This study corroborates the idea that splenic sympathetic nerves are able to inhibit important activators of the innate immune system when stimulation happens very early or even prior to their induction by LPS.

  11. Ribozyme modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by peritoneal cells in vitro and in vivo.

    PubMed

    Sioud, M

    1996-05-01

    We have utilized synthetic ribozymes to modulate the lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-alpha) by peritoneal cells. Two hammerhead ribozymes (mRz1 and mRz2) were prepared by transcription in vitro and their activities in vitro and in vivo were investigated. Both ribozymes cleaved their RNA target with an apparent turnover number (kcat) of 2 min(-1), and inhibited TNF-alpha gene expression in vitro by 50% and 70%, respectively. When mRz1 and mRz2, entrapped in liposomes, were delivered into mice by intraperitoneal injection, they inhibited LPS-induced TNF-alpha gene expression in vivo with mRz2 being the most effective. This enhanced activity could result from the facilitation of catalysis by cellular endogenous proteins, since they specifically bind to mRz2 as compared to mRz1. Furthermore, a significant mRz2 activity can be recovered from peritoneal cells 2 days post-administration in vivo. The anti-TNF-alpha ribozyme treatment in vivo resulted in a more significant reduction of LPS-induced IFN-gamma protein secretion compared to IL-10. In contrast to this pleiotropic effect, the anti-TNF-alpha ribozyme treatment did not affect the heterogenous expression of Fas ligand by peritoneal cells, indicating the specificity of the treatment. Taken together, the present data indicate that the biological effects of TNF-alpha can be modulated by ribozymes. In addition, the data suggest that ribozymes can be administered in a drug-like manner, and therefore indicate their potential in clinical applications.

  12. Effect of Egg White Combined with Chalcanthite on Lipopolysaccharide induced Inflammatory Cytokine Expression in RAW 264.7 cells

    PubMed Central

    Choi, Eun-A; Yoon, Jeung-Won; Choi, Hak-Joo; Kim, Dong-Hee; Yoo, Hwa-Seung

    2012-01-01

    Aim: Historically, mineral compound herbal medicines have long been used in treatments of immune-related diseases in Korea, China and other Asian countries. In this study, we investigated the anti-inflammatory effect of egg white combined with chalcanthite (IS4) on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: RAW 264.7 cells cultured with LPS and various concentrations of IS4 were analyzed to determine the production of pro-inflammatory cytokines and mediators by using enzyme-linked immune sorbent assays (ELISAs). Results: IS4 concentration inhibited the production of interleukin-1beta (IL-1 β), interleukin-6 (IL-6), and granulocyte -macrophage colony-stimulating factor (GM-CSF) induced by LPS. IS4 at high concentrations (25 and 50㎍/ml) inhibited, in concentration-dependent manner, the expression of tumor necrosis factor-alpha (TNF– α) stimulated by LPS. Conclusion: IS4 has shown an anti-inflammatory effect in RAW 264.7 cells. PMID:25780629

  13. A framework to identify gene expression profiles in a model of inflammation induced by lipopolysaccharide after treatment with thalidomide

    PubMed Central

    2012-01-01

    Background Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS) stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. Results We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. Conclusions The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis. PMID:22695124

  14. Ilex kaushue and Its Bioactive Component 3,5-Dicaffeoylquinic Acid Protected Mice from Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Chen, Yu-Li; Hwang, Tsong-Long; Yu, Huang-Ping; Fang, Jia-You; Chong, Kowit Yu; Chang, Yao-Wen; Chen, Chun-Yu; Yang, Hsuan-Wu; Chang, Wen-Yi; Hsieh, Pei-Wen

    2016-01-01

    Acute lung injury (ALI) is a severe respiratory disease with high mortality rates worldwide. Recent reports suggest that human neutrophil elastase (HNE) plays a key role in the inflammatory response that is characteristic of ALI, which indicates that the development of HNE inhibitors could be an efficient treatment strategy. In the current study, an enzyme-based screening assay was used to identify effective HNE inhibitors from a number of traditional Chinese medicines (TCMs). Among them, a water extract of Ilex kaushue (IKWE) effectively inhibited HNE activity (IC50, 11.37 ± 1.59 μg/mL). Using bioactivity-guided fractionation, one new compound and 23 known compounds were identified. Compound 6 (identified as 3,5-dicaffeoylquinic acid; 3,5-DCQA) exerted the most potent and selective inhibitory effect on HNE activity (IC50, 1.86 ± 0.06 μM). In a cell-based assay, 3,5-DCQA not only directly reduced superoxide generation and elastase activity but also attenuated the Src family kinase (SRKs)/Vav signaling pathway in N-formyl-L-Met-L-Leu-L-Phe (fMLF)-stimulated human neutrophils. In an animal disease model, both 3,5-DCQA and standardized IKWE protected against lipopolysaccharide-induced ALI in mice, which provides support for their potential as candidates in the development of new therapeutic agents for neutrophilic inflammatory diseases. PMID:27681838

  15. Acute parietal and chief cell changes induced by a lethal dose of lipopolysaccharide in mouse stomach before thrombus formation.

    PubMed

    Ito, K; Ishida, K; Shishido, T; Tabata, H; Miura, H; Okamiya, H; Hanada, T

    2000-01-01

    The common lipopolysaccharide (LPS)-induced gastric lesions, such as erosions or ulcers, have been investigated in depth. Little is known, however, about the acute gastric lesions following a high dose of LPS. In a time-course study, ICR female mice were given a high subcutaneous dose of LPS (50 mg/kg). Mice were sacrificed at 4, 6, 12, and 24 hours after dosing and were assessed histopathologically for acute gastric lesions. The major gastric changes were seen in the fundic region and included vacuolar degeneration of parietal cells and apoptosis of chief cells. The vacuole in parietal cells was apparent as early as 4 hours postinjection (PI), and apoptosis of chief cells was apparent at 12 hours PI. Thrombus formation, in contrast, was not seen until 24 hours PI. No erosion, ulcer, or hemorrhage was seen in any gastric region in any of the treated animals at 24 hours PI. These results indicate that a subcutaneous high dose of LPS in mice causes vacuolar degeneration of parietal cells and apoptosis of chief cells before thrombus formation or subsequent ulcerative lesions.

  16. Sinomenine Protects against Lipopolysaccharide-Induced Acute Lung Injury in Mice via Adenosine A2A Receptor Signaling

    PubMed Central

    Li, Jun; Zhao, Li; He, Xie; Zeng, Yi-Jun; Dai, Shuang-Shuang

    2013-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, which is widely used in the clinical treatment of rheumatoid arthritis (RA). However, its role in acute lung injury (ALI) is unclear. In this study, we investigate the role of SIN in lipopolysaccharide (LPS)-induced ALI in mice. After ALI, lung water content and histological signs of pulmonary injury were attenuated, whereas the PaO2/FIO2 (P/F) ratios were elevated significantly in the mice pretreated with SIN. Additionally, SIN markedly inhibited inflammatory cytokine TNF-α and IL-1β expression levels as well as neutrophil infiltration in the lung tissues of the mice. Microarray analysis and real-time PCR showed that SIN treatment upregulated adenosine A2A receptor (A2AR) expression, and the protective effect of SIN was abolished in A2AR knockout mice. Further investigation in isolated mouse neutrophils confirmed the upregulation of A2AR by SIN and showed that A2AR-cAMP-PKA signaling was involved in the anti-inflammatory effect of SIN. Taken together, these findings demonstrate an A2AR-associated anti-inflammatory effect and the protective role of SIN in ALI, which suggests a potential novel approach to treat ALI. PMID:23555007

  17. Sinomenine protects against lipopolysaccharide-induced acute lung injury in mice via adenosine A(2A) receptor signaling.

    PubMed

    Li, Jun; Zhao, Li; He, Xie; Zeng, Yi-Jun; Dai, Shuang-Shuang

    2013-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, which is widely used in the clinical treatment of rheumatoid arthritis (RA). However, its role in acute lung injury (ALI) is unclear. In this study, we investigate the role of SIN in lipopolysaccharide (LPS)-induced ALI in mice. After ALI, lung water content and histological signs of pulmonary injury were attenuated, whereas the PaO2/FIO2 (P/F) ratios were elevated significantly in the mice pretreated with SIN. Additionally, SIN markedly inhibited inflammatory cytokine TNF-α and IL-1β expression levels as well as neutrophil infiltration in the lung tissues of the mice. Microarray analysis and real-time PCR showed that SIN treatment upregulated adenosine A(2A) receptor (A(2A)R) expression, and the protective effect of SIN was abolished in A(2A)R knockout mice. Further investigation in isolated mouse neutrophils confirmed the upregulation of A(2A)R by SIN and showed that A(2A)R-cAMP-PKA signaling was involved in the anti-inflammatory effect of SIN. Taken together, these findings demonstrate an A(2A)R-associated anti-inflammatory effect and the protective role of SIN in ALI, which suggests a potential novel approach to treat ALI.

  18. Innate immune activation by inhaled lipopolysaccharide, independent of oxidative stress, exacerbates silica-induced pulmonary fibrosis in mice.

    PubMed

    Brass, David M; Spencer, Jennifer C; Li, Zhuowei; Potts-Kant, Erin; Reilly, Sarah M; Dunkel, Mary K; Latoche, Joseph D; Auten, Richard L; Hollingsworth, John W; Fattman, Cheryl L

    2012-01-01

    Acute exacerbations of pulmonary fibrosis are characterized by rapid decrements in lung function. Environmental factors that may contribute to acute exacerbations remain poorly understood. We have previously demonstrated that exposure to inhaled lipopolysaccharide (LPS) induces expression of genes associated with fibrosis. To address whether exposure to LPS could exacerbate fibrosis, we exposed male C57BL/6 mice to crystalline silica, or vehicle, followed 28 days later by LPS or saline inhalation. We observed that mice receiving both silica and LPS had significantly more total inflammatory cells, more whole lung lavage MCP-1, MIP-2, KC and IL-1β, more evidence of oxidative stress and more total lung hydroxyproline than mice receiving either LPS alone, or silica alone. Blocking oxidative stress with N-acetylcysteine attenuated whole lung inflammation but had no effect on total lung hydroxyproline. These observations suggest that exposure to innate immune stimuli, such as LPS in the environment, may exacerbate stable pulmonary fibrosis via mechanisms that are independent of inflammation and oxidative stress.

  19. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes.

    PubMed

    Nagy, István; Pivarcsi, Andor; Kis, Kornélia; Koreck, Andrea; Bodai, László; McDowell, Andrew; Seltmann, Holger; Patrick, Sheila; Zouboulis, Christos C; Kemény, Lajos

    2006-07-01

    Acne is a common skin disorder of the pilosebaceous unit. In addition to genetic, hormonal and environmental factors, abnormal colonization by Propionibacterium acnes has been implicated in the occurrence of acne via the induction of inflammatory mediators. To gain more insight into the role that sebocytes play in the innate immune response of the skin, particularly in acne, we compared the antimicrobial peptide and proinflammatory cytokine/chemokine expression at mRNA and protein levels, as well as the viability and differentiation of SZ95 sebocytes in response to co-culture with representative isolates of P. acnes type IA and type IB as well as Escherichia coli-derived lipopolysaccharide (LPS). We found that, in vitro, P. acnes type IA and IB isolates and LPS induced human beta-defensin-2 and proinflammatory cytokine/chemokine expression, and influenced sebocyte viability and differentiation. Our results provide evidence that sebocytes are capable of producing proinflammatory cytokines/chemokines and antimicrobial peptides, which may have a role in acne pathogenesis. Furthermore, since P. acnes types IA and IB differentially affect both the differentiation and viability of sebocytes, our data demonstrate that different strains of P. acnes vary in their capacity to stimulate an inflammatory response within the pilosebaceous follicle.

  20. Evidence that polyhydroxylated C60 fullerenes (fullerenols) amplify the effect of lipopolysaccharides to induce rapid leukocyte infiltration in vivo.

    PubMed

    Gonçalves, D M; Girard, D

    2013-12-16

    Fullerenols C60(OH) have therapeutic potential, but there is debate regarding their toxicity. Here, we tested the hypothesis that C60(OH)n possesses a pro-inflammatory effect in vivo. Kinetic and dose-dependent experiments performed with the murine air pouch model of acute inflammation revealed that, unlike TiO2 used as a positive control in this model, C60(OH)n NPs were not pro-inflammatory in CD-1, C57BL/6, and BALB/c mice. However, after 3 h of treatment, C60(OH)n NPs were found to amplify the effect of lipopolysaccharides (LPS) causing a rapid leukocyte influx in which the major cells observed are neutrophils. The use of an antibody array assay to detect different analytes simultaneously indicates that the amplification effect is, at least partially, explained by an increased local production of several cytokines/chemokines in the exudates, including the pro-inflammatory cytokine IL-6. Using an ELISA to quantify the amount of IL-6 produced into air pouch exudates, we demonstrated that C60(OH)n increases the LPS-induced local production of this cytokine. Therefore, although C60(OH)n NPs alone do not exert proinflammatory activity under certain conditions, they can act in concert with other agents to cause inflammation, a situation that is likely to occur in vivo.

  1. Metabotropic glutamate receptor 5 modulates calcium oscillation and innate immune response induced by lipopolysaccharide in microglial cell.

    PubMed

    Liu, F; Zhou, R; Yan, H; Yin, H; Wu, X; Tan, Y; Li, L

    2014-12-05

    Microglia, the primary immune cells in the brain, have been implicated as the predominant cells governing inflammation-mediated neuronal damage. In response to immunological challenges such as lipopolysaccharide (LPS), microglia are activated and subsequently inflammatory process is initiated as evidenced by the release of pro-inflammatory chemokines and cytokines. Here we show that Group I metabotropic glutamate receptor 5 (mGluR5) is involved in LPS-induced microglia activation. LPS triggered a similar pattern of [Ca2+]i oscillation in N9, Toll-like receptor 4 (TLR4)-mutant EOC 20, TLR4-wild-type and TLR4-deficient primary mouse microglia, suggesting that LPS-induced [Ca2+]i oscillation is independent of TLR4. The characteristics of [Ca2+]i oscillation induced by LPS are consistent with those observed in mGluR5 activation. In addition, mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) abolished LPS-induced [Ca2+]i oscillation. Immunocytochemistry demonstrated that LPS colocalizes with mGluR5 in microglia and the direct binding of LPS and mGluR5 was further validated by antibody-based fluorescence resonance energy transfer (FRET) technology. Activation of mGluR5 using a selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) significantly expanded LPS-induced nuclear factor-kappa B (NF-κB) activity and CHPG alone increased NF-κB activity as well. But, mGluR5 antagonist MTEP attenuated the actions of LPS, CHPG and the additive effect of LPS and CHPG in microglia. LPS induced tumor necrosis factor-α (TNF-α) secretion in N9 microglia, but not in TLR4-mutant EOC 20 and TLR4-deficient primary mouse microglia. CHPG reduced LPS-caused TNF-α production, but MTEP increased LPS-induced TNF-α production and blocked the effect of CHPG in N9 microglia. These data demonstrate that mGluR5 and TLR4 are two critical receptors that mediate microglia activation in response to LPS, suggesting that mGluR5 may represent a novel target for modulating

  2. Phytohemagglutinin-induced IL2 mRNA in whole blood can predict bortezomib-induced peripheral neuropathy for multiple myeloma patients

    PubMed Central

    Watanabe, T; Mitsuhashi, M; Sagawa, M; Ri, M; Suzuki, K; Abe, M; Ohmachi, K; Nakagawa, Y; Nakamura, S; Chosa, M; Iida, S; Kizaki, M

    2013-01-01

    The proteasome inhibitor bortezomib has revolutionized the treatment of multiple myeloma. However, bortezomib-induced peripheral neuropathy (BiPN) is a serious complication that compromises clinical outcome. If patients with a risk of developing BiPN could be predicted, physicians might prefer weekly, reduced-dose, or subcutaneous approaches. To seek biomarkers for BiPN, we conducted a multicenter prospective study using a simple and unique system. Multiple myeloma patients received twice-weekly or weekly 1.3 mg/m2 bortezomib intravenously, and a 2-ml sample of whole blood was obtained before treatment and 2–3 days and 1–3 weeks after the first dose. Induction of gene expression was then quantified by real-time PCR. Of a total of 64 enrolled patients, 53 patient samples qualified for mRNA analysis. The BiPN grade was associated with phytohemagglutinin-induced IL2, IFNG and TNFSF2, as well as with lipopolysaccharide-induced IL6 levels. More importantly, of the 19 patients showing a ⩾3-fold increase in phytohemagglutinin-induced IL2, 14 did not suffer from BiPN (73.7% prediction), whereas of the 34 patients with a <3-fold increase, 23 experienced BiPN (67.6% prediction). Therefore, we concluded that pretreatment of phytohemagglutinin-induced IL2 mRNA levels in whole blood serve as a promising biomarker for predicting BiPN, and this finding warrants validation in a larger study. PMID:24096714

  3. [Role of Transient Receptor Potential Channels in Paclitaxel- and Oxaliplatin-induced Peripheral Neuropathy].

    PubMed

    Taguchi, Kyoji

    2016-01-01

    Peripheral neuropathy is a common adverse effect of paclitaxel and oxaliplatin treatment. The major dose-limiting side effect of these drugs is peripheral sensory neuropathy. The symptoms of paclitaxel-induced neuropathy are mostly sensory and peripheral in nature, consisting of mechanical allodynia/hyperalgesia, tingling, and numbness. Oxaliplatin-induced neurotoxicity manifests as rapid-onset neuropathic symptoms that are exacerbated by cold exposure and as chronic neuropathy that develops after several treatment cycles. Although many basic and clinical researchers have studied anticancer drug-induced peripheral neuropathy, the mechanism is not well understood. In this review, we focus on (1) analysis of transient receptor potential vanilloid 1 (TRPV1) channel expression in the rat dorsal root ganglion (DRG) after paclitaxel treatment and (2) analysis of transient receptor potential ankyrin 1 (TRPA1) channel in the DRG after oxaliplatin treatment. This review describes that (1) paclitaxel-induced neuropathic pain may be the result of up-regulation of TRPV1 in small- and medium-diameter DRG neurons. In addition, paclitaxel treatment increases the release of substance P, but not calcitonin gene-related peptide, in the superficial layers of the spinal dorsal horn. (2) TRPA1 expression via activation of p38 mitogen-activated protein kinase in small-diameter DRG neurons, at least in part, contributes to the development of oxaliplatin-induced acute cold hyperalgesia. We suggest that TRPV1 or TRPA1 antagonists may be potential therapeutic lead compounds for treating anticancer drug-induced peripheral neuropathy.

  4. Uncoupling Protein 2 Increases Susceptibility to Lipopolysaccharide-Induced Acute Lung Injury in Mice

    PubMed Central

    Wang, Qin; Wang, Jianchun; Hu, Mingdong; Yang, Yu; Guo, Liang; Xu, Jing; Lei, Chuanjiang; Jiao, Yan; Xu, JianCheng

    2016-01-01

    Uncoupling protein 2 (UCP2) is upregulated in patients with systemic inflammation and infection, but its functional role is unclear. We up- or downregulated UCP2 expression using UCP2 recombinant adenovirus or the UCP2 inhibitor, genipin, in lungs of mice, and investigated the mechanisms of UCP2 in ALI. UCP2 overexpression in mouse lungs increased LPS-induced pathological changes, lung permeability, lung inflammation, and lowered survival rates. Furthermore, ATP levels and mitochondrial membrane potential were decreased, while reactive oxygen species production was increased. Additionally, mitogen-activated protein kinases (MAPKs) activity was elevated, which increased the sensitivity to LPS-induced apoptosis and inflammation. LPS-induced apoptosis and release of inflammatory factors were alleviated by pretreatment of the Jun N-terminal kinase (JNK) inhibitor SP600125 or the p38 MAPK inhibitor SB203580, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 in UCP2-overexpressing mice. On the other hand, LPS-induced alveolar epithelial cell death and inflammation were attenuated by genipin. In conclusion, UCP2 increased susceptibility to LPS-induced cell death and pulmonary inflammation, most likely via ATP depletion and activation of MAPK signaling following ALI in mice. PMID:27057102

  5. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway.

    PubMed

    Zhang, Tianzhu; Yan, Tianhua; Du, Juan; Wang, Shumin; Yang, Huilin

    2015-05-25

    Sepsis is a cluster of heterogeneous syndromes associated with progressive endotoxemic developments, ultimately leading to damage of multiple organs, including the heart. This study is to investigate the effects of apigenin on heart injury in lipopolysaccharide-induced endotoxemic rat model. Normal Wistar rats were randomly divided into four groups: control group, LPS group (15 mg/kg), LPS plus apigenin groups with different apigenin doses (50 mg/kg, 100 mg/kg). Serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) were measured after the rats were sacrificed. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax and Bcl-2 in heart were measured by Western blot. In vitro, we evaluated the protective effect of apigenin on rat embryonic heart-derived myogenic cell line H9c2 induced by LPS. Apigenin decreased serum levels of CK-MB, LDH, TNF-α, IL-6, IL-1β. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax in heart were found inhibited and Bcl-2 increased in the apigenin groups in vivo. In addition, apigenin inhibited intracellular calcium, the MAPK pathway and SphK1/S1P signaling pathway in vitro. Apigenin exerts pronounced cardioprotection in rats subjected to LPS likely through suppressing myocardial apoptosis and inflammation by inhibiting the SphK1/S1P signaling pathway.

  6. Naturally occurring hypothermia is more advantageous than fever in severe forms of lipopolysaccharide- and Escherichia coli-induced systemic inflammation

    PubMed Central

    Liu, Elaine; Lewis, Kevin; Al-Saffar, Hiba; Krall, Catherine M.; Singh, Anju; Kulchitsky, Vladimir A.; Corrigan, Joshua J.; Simons, Christopher T.; Petersen, Scott R.; Musteata, Florin M.; Bakshi, Chandra S.; Romanovsky, Andrej A.; Sellati, Timothy J.

    2012-01-01

    The natural switch from fever to hypothermia observed in the most severe cases of systemic inflammation is a phenomenon that continues to puzzle clinicians and scientists. The present study was the first to evaluate in direct experiments how the development of hypothermia vs. fever during severe forms of systemic inflammation impacts the pathophysiology of this malady and mortality rates in rats. Following administration of bacterial lipopolysaccharide (LPS; 5 or 18 mg/kg) or of a clinical Escherichia coli isolate (5 × 109 or 1 × 1010 CFU/kg), hypothermia developed in rats exposed to a mildly cool environment, but not in rats exposed to a warm environment; only fever was revealed in the warm environment. Development of hypothermia instead of fever suppressed endotoxemia in E. coli-infected rats, but not in LPS-injected rats. The infiltration of the lungs by neutrophils was similarly suppressed in E. coli-infected rats of the hypothermic group. These potentially beneficial effects came with costs, as hypothermia increased bacterial burden in the liver. Furthermore, the hypotensive responses to LPS or E. coli were exaggerated in rats of the hypothermic group. This exaggeration, however, occurred independently of changes in inflammatory cytokines and prostaglandins. Despite possible costs, development of hypothermia lessened abdominal organ dysfunction and reduced overall mortality rates in both the E. coli and LPS models. By demonstrating that naturally occurring hypothermia is more advantageous than fever in severe forms of aseptic (LPS-induced) or septic (E. coli-induced) systemic inflammation, this study provides new grounds for the management of this deadly condition. PMID:22513748

  7. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats

    PubMed Central

    Pang, Yi; Bhatt, Abhay J.; Fan, Lir-Wan

    2015-01-01

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an antiinflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist. PMID:25665855

  8. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats.

    PubMed

    Lan, Kuo-Mao; Tien, Lu-Tai; Pang, Yi; Bhatt, Abhay J; Fan, Lir-Wan

    2015-04-02

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an anti-inflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist.

  9. Proton magnetic resonance spectroscopy of brain metabolic shifts induced by acute administration of 2-deoxy-d-glucose and lipopolysaccharides.

    PubMed

    Moshkin, Mikhail P; Akulov, Andrey E; Petrovski, Dmitriy V; Saik, Olga V; Petrovskiy, Evgeny D; Savelov, Andrey A; Koptyug, Igor V

    2014-04-01

    In vivo proton magnetic resonance spectroscopy ((1) H MRS) of outbred stock ICR male mice (originating from the Institute of Cancer Research) was used to study the brain (hippocampus) metabolic response to the pro-inflammatory stimulus and to the acute deficiency of the available energy, which was confirmed by measuring the maximum oxygen consumption. Inhibition of glycolysis by means of an injection with 2-deoxy-d-glucose (2DG) reduced the levels of gamma-aminobutyric acid (GABA, p < 0.05, in comparison with control, least significant difference (LSD) test), N-acetylaspartate (NAA, p < 0.05, LSD test) and choline compounds, and at the same time increased the levels of glutamate and glutamine. An opposite effect was found after injection with bacterial lipopolysaccharide (LPS) - a very common pro-inflammatory inducer. An increase in the amounts of GABA, NAA and choline compounds in the brain occurred in mice treated with LPS. Different metabolic responses to the energy deficiency and the pro-inflammatory stimuli can explain the contradictory results of the brain (1) H MRS studies under neurodegenerative pathology, which is accompanied by both mitochondrial dysfunction and inflammation. The prevalence of the excitatory metabolites such as glutamate and glutamine in 2DG treated mice is in good agreement with excitation observed during temporary reduction of the available energy under acute hypoxia or starvation. In turn, LPS, as an inducer of the sickness behavior, which was manifested as depression, sleepiness, loss of appetite etc., shifts the brain metabolic pattern toward the prevalence of the inhibitory neurotransmitter GABA.

  10. [Hydrogen sulfide reduces lipopolysaccharide-induced acute lung injury and inhibits expression of phosphorylated p38 MAPK in rats].

    PubMed

    Fan, Ya-Min; Huang, Xin-Li; Dong, Ze-Fei; Ling, Yi-Ling

    2012-12-25

    To investigate the influence of hydrogen sulfide (H₂S) on p38 MAPK signaling pathway during acute lung injury (ALI) caused by lipopolysaccharide (LPS), the rats were randomly divided into six groups: control group, LPS group, LPS + NaHS group, LPS + PPG (cystathionine-γ-lyase inhibitor) group, NaHS group and PPG group. The rats were sacrificed 6 h after injection and lung tissues were obtained. The structure of lung tissues and the number of polymorphonuclear leucocyte (PMN) was observed under optical microscope; the lung myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were tested; intercellular adhesion molecule-1 (ICAM-1) protein expression changes were detected by immunohistochemical staining; phosphorylated p38 MAPK (p-p38 MAPK) protein expression was detected by Western blotting. The results showed that the lung injury in LPS group was observed, at the same time the MPO activity, the content of MDA, ICAM-1 and p-p38 MAPK protein expressions, the number of PMN were all higher than those in control group (all P < 0.05). Pre-injection of NaHS alleviated the changes induced by LPS, while pre-injection of PPG aggravated those alterations (all P < 0.05). ICAM-1 and p-p38 MAPK protein expressions in lung tissue were positively correlated (r = 0.923, P < 0.01). The results suggest that H2S may reduce LPS-induced ALI through inhibiting the conjugation of p38 MAPK and reducing the expression of ICAM-1.

  11. MyD88 is essential for alveolar bone loss induced by Aggregatibacter actinomycetemcomitans lipopolysaccharide in mice.

    PubMed

    Madeira, M F M; Queiroz-Junior, C M; Cisalpino, D; Werneck, S M C; Kikuchi, H; Fujise, O; Ryffel, B; Silva, T A; Teixeira, M M; Souza, D G

    2013-12-01

    Aggregatibacter actinomycetemcomitans is a Gram-negative bacteria highly associated with localized aggressive periodontitis. The recognition of microbial factors, such as lipopolysaccharide from A. actinomycetemcomitans ((Aa)LPS), in the oral environment is made mainly by surface receptors known as Toll-like receptors (TLR). TLR4 is the major LPS receptor. This interaction leads to the production of inflammatory cytokines by myeloid differentiation primary-response protein 88 (MyD88) -dependent and -independent pathways, which may involve the adaptor Toll/interleukin-1 receptor-domain-containing adaptor inducing interferon-β (TRIF). The aim of this study was to assess the involvement of MyD88 in alveolar bone loss induced by (Aa)LPS in mice. C57BL6/J wild-type (WT) mice, MyD88, TRIF or TRIF/MyD88 knockout mice received 10 injections of Aa LPS strain FDC Y4 (5 μg in 3 μl), in the palatal gingival tissue of the right first molar, every 48 h. Phosphate-buffered saline was injected in the opposite side and used as control. Animals were sacrificed 24 h after the 10th injection and the maxillae were removed for macroscopic and biochemical analyses. The injections of Aa LPS induced significant alveolar bone loss in WT mice. In the absence of MyD88 or TRIF/MyD88 no bone loss induced by (Aa)LPS was observed. In contrast, responses in TRIF(-/-) mice were similar to those in WT mice. Diminished bone loss in the absence of MyD88 was associated with fewer TRAP-positive cells and increased expression of osteoblast markers, RUNX2 and osteopontin. There was also reduced tumor necrosis factor-α production in MyD88(-/-) mice. There was less osteoclast differentiation of hematopoietic bone marrow cells from MyD88(-/-) mice after (Aa)LPS stimulation. Hence, the signaling through MyD88 is pivotal for (Aa)LPS-induced osteoclast formation and alveolar bone loss.

  12. Thymoquinone inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells.

    PubMed

    Wang, Yanan; Gao, Hongmei; Zhang, Weina; Zhang, Wenjie; Fang, Liqun

    2015-05-01

    Thymoquinone, the major active compound isolated from the medicinal Nigella sativa, has been demonstrated to have anti-inflammatory activity. The aim of this study was to investigate the anti-inflammatory effects and mechanisms of thymoquinone on LPS-stimulated BV2 microglial cells. The effects of thymoquinone on inflammatory mediators TNF-α, IL-1β, NO and PGE2 production were detected by ELISA. The effects of thymoquinone on PI3K, Akt phosphorylation, and NF-κB activation were detected by western blot analysis. Our results showed that thymoquinone dose-dependently inhibited LPS-induced TNF-α, IL-1β, NO and PGE2 production. Thymoquinone also inhibited LPS-induced NF-κB activation. Furthermore, thymoquinone was found to inhibit LPS-induced PI3K and Akt phosphorylation, which were upstream molecules of NF-κB. In conclusion, our data demonstrated that thymoquinone might inhibit LPS-induced PI3K and Akt phosphorylation, which leading to the inhibition of NF-κB activation and inflammatory mediator production in BV2 microglia cells.

  13. Pretreatment with wortmannin alleviates lipopolysaccharide/d-galactosamine-induced acute liver injury.

    PubMed

    Li, Yan; Wang, Xiaoyan; Wei, Zengtao; Mao, Hongju; Gao, Meng; Liu, Yanping; Ma, Yanyan; Liu, Xingli; Guo, Chun; Zhang, Lining; Wang, Xiaoyan

    2014-12-12

    Intestinal endotoxemia-induced liver injury is a common clinical disease which leads to liver failure and death. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, could be used for suppressing autophagy in vitro and in vivo. Autophagy is an evolutionarily conserved and lysosome dependent protein degradation pathway, which participates in various physiological and pathological processes. The present study aims to explore the effect of pretreatment with wortmannin on acute liver injury and the autophagy in acute liver injury. We demonstrated that wortmannin could downregulate the expression of phosphorylated extracellular regulated protein kinase and p65, decrease the production and release of hepatic inflammatory cytokines, and then reduce hepatocytes apoptosis and necrosis. More importantly, we found that autophagy was induced to increase in LPS/D-GalN-induced acute liver injury, and pretreatment with wortmannin could effectively inhibit increased autophagy in acute liver injury. In conclusion, these results indicate that wortmannin plays a protective role in LPS/D-GalN induced hepatocytotoxity maybe by inhibiting autophagy and could be acted as a target for the treatment of acute liver injury.

  14. Lipopolysaccharides from Distinct Pathogens Induce Different Classes of Immune Responses In Vivo1

    PubMed Central

    Pulendran, Bali; Kumar, Padmasini; Cutler, Christopher W.; Mohamadzadeh, Mansour; Van Dyke, Thomas; Banchereau, Jacques

    2013-01-01

    The adaptive immune system has evolved distinct responses against different pathogens, but the mechanism(s) by which a particular response is initiated is poorly understood. In this study, we investigated the type of Ag-specific CD4+ Th and CD8+ T cell responses elicited in vivo, in response to soluble OVA, coinjected with LPS from two different pathogens. We used Escherichia coli LPS, which signals through Toll-like receptor 4 (TLR4) and LPS from the oral pathogen Porphyromonas gingivalis, which does not appear to require TLR4 for signaling. Coinjections of E. coli LPS + OVA or P. gingivalis LPS + OVA induced similar clonal expansions of OVA-specific CD4+ and CD8+ T cells, but strikingly different cytokine profiles. E. coli LPS induced a Th1-like response with abundant IFN-γ, but little or no IL-4, IL-13, and IL-5. In contrast, P. gingivalis LPS induced Th and T cell responses characterized by significant levels of IL-13, IL-5, and IL-10, but lower levels of IFN-γ. Consistent with these results, E. coli LPS induced IL-12(p70) in the CD8α+ dendritic cell (DC) subset, while P. gingivalis LPS did not. Both LPS, however, activated the two DC subsets to up-regulate costimulatory molecules and produce IL-6 and TNF-α. Interestingly, these LPS appeared to have differences in their ability to signal through TLR4; proliferation of splenocytes and cytokine secretion by splenocytes or DCs from TLR4-deficient C3H/HeJ mice were greatly impaired in response to E. coli LPS, but not P. gingivalis LPS. Therefore, LPS from different bacteria activate DC subsets to produce different cytokines, and induce distinct types of adaptive immunity in vivo. PMID:11673516

  15. Ceramide-CD300f Binding Inhibits Lipopolysaccharide-induced Skin Inflammation.

    PubMed

    Shiba, Emiko; Izawa, Kumi; Kaitani, Ayako; Isobe, Masamichi; Maehara, Akie; Uchida, Koichiro; Maeda, Keiko; Nakano, Nobuhiro; Ogawa, Hideoki; Okumura, Ko; Kitamura, Toshio; Shimizu, Toshiaki; Kitaura, Jiro

    2017-02-17

    LPS triggers inflammatory responses; however, the negative regulation of LPS responses in vivo remains poorly understood. CD300f is an inhibitory receptor among the CD300 family of paired activating and inhibitory receptors. We have previously identified ceramide as a ligand for CD300f and shown that the binding of ceramide to CD300f inhibits IgE-mediated mast cell activation and allergic responses in mouse models. Here we identify the critical role of CD300f in inhibiting LPS-induced skin inflammation. CD300f deficiency remarkably enhanced LPS-induced skin edema and neutrophil recruitment in mice. Higher levels of factors that increase vascular permeability and of factors that induce neutrophil recruitment were detected in LPS-injected skin pouch exudates of CD300f(-/-) mice as compared with wild-type mice. CD300f was highly expressed in mast cells and recruited neutrophils, but not in macrophages, among skin myeloid cells. CD300f deficiency failed to influence the intrinsic migratory ability of neutrophils. Ceramide-CD300f binding suppressed the release of chemical mediators from mast cells and from neutrophils in response to LPS. Adoptive transfer experiments indicated that mast cells mediated enhanced edema in LPS-stimulated skin of CD300f(-/-) mice, whereas mast cells together with recruited neutrophils mediated robust neutrophil accumulation. Importantly, administering a ceramide antibody or ceramide-containing vesicles enhanced or suppressed LPS-induced skin inflammation of wild-type mice, respectively. Thus, ceramide-CD300f binding inhibits LPS-induced skin inflammation, implicating CD300f as a negative regulator of Toll-like receptor 4 (TLR4) signaling in vivo.

  16. Ceramide-CD300f Binding Inhibits Lipopolysaccharide-induced Skin Inflammation*

    PubMed Central

    Shiba, Emiko; Izawa, Kumi; Kaitani, Ayako; Isobe, Masamichi; Maehara, Akie; Uchida, Koichiro; Maeda, Keiko; Nakano, Nobuhiro; Ogawa, Hideoki; Okumura, Ko; Kitamura, Toshio; Shimizu, Toshiaki; Kitaura, Jiro

    2017-01-01

    LPS triggers inflammatory responses; however, the negative regulation of LPS responses in vivo remains poorly understood. CD300f is an inhibitory receptor among the CD300 family of paired activating and inhibitory receptors. We have previously identified ceramide as a ligand for CD300f and shown that the binding of ceramide to CD300f inhibits IgE-mediated mast cell activation and allergic responses in mouse models. Here we identify the critical role of CD300f in inhibiting LPS-induced skin inflammation. CD300f deficiency remarkably enhanced LPS-induced skin edema and neutrophil recruitment in mice. Higher levels of factors that increase vascular permeability and of factors that induce neutrophil recruitment were detected in LPS-injected skin pouch exudates of CD300f−/− mice as compared with wild-type mice. CD300f was highly expressed in mast cells and recruited neutrophils, but not in macrophages, among skin myeloid cells. CD300f deficiency failed to influence the intrinsic migratory ability of neutrophils. Ceramide-CD300f binding suppressed the release of chemical mediators from mast cells and from neutrophils in response to LPS. Adoptive transfer experiments indicated that mast cells mediated enhanced edema in LPS-stimulated skin of CD300f−/− mice, whereas mast cells together with recruited neutrophils mediated robust neutrophil accumulation. Importantly, administering a ceramide antibody or ceramide-containing vesicles enhanced or suppressed LPS-induced skin inflammation of wild-type mice, respectively. Thus, ceramide-CD300f binding inhibits LPS-induced skin inflammation, implicating CD300f as a negative regulator of Toll-like receptor 4 (TLR4) signaling in vivo. PMID:28073916

  17. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats.

    PubMed

    Wang, Wen; Liu, Zhi; Su, Jie; Chen, Wen-Sheng; Wang, Xiao-Wu; Bai, San-Xing; Zhang, Jin-Zhou; Yu, Shi-Qiang

    2016-08-01

    Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.

  18. Sulodexide prevents peripheral nerve damage in streptozotocin induced diabetic rats.

    PubMed

    Jin, Heung Yong; Lee, Kyung Ae; Song, Sun Kyung; Liu, Wei Jing; Choi, Ji Hae; Song, Chang Ho; Baek, Hong Sun; Park, Tae Sun

    2012-01-15

    We investigated whether sulodexide has additional protective effects against peripheral nerve damage caused by microvascular dysfunction in a rat model of diabetes. Female Sprague-Dawley (SD) rats were divided into the following 4 groups (n=7-9/group): Normal, Normal+Sulodexide (sulodexide 10mg/kg), diabetic group, and diabetic+Sulodexide (sulodexide 10mg/kg). We assessed current perception threshold, skin blood flow, superoxide dismutase, and proteinuria in experimental rats after oral administration of sulodexide for 20 weeks. We also performed morphometric analysis of sciatic nerves and intraepidermal nerve fibers of the foot. Superoxide dismutase activity in the blood and sciatic nerve were increased significantly after sulodexide treatment in the diabetic group. Current perception threshold was reduced at 2000 Hz (633.3 ± 24.15 vs 741.2 ± 23.5 μA, P<0.05) and skin blood flow was improved (10.90 ± 0.67 vs 8.85 ± 0.49 TPU, P<0.05) in the diabetic+Sulodexide group compared with the diabetic group. The mean myelinated axon area was significantly larger (56.6 ± 2.2 vs 49.8 ± 2.7 μm(2), P<0.05) and the intraepidermal nerve fiber density was significantly less reduced (6.27 ± 0.24 vs 5.40 ± 0.25/mm, P<0.05) in the diabetic+Sulodexide group compared to the diabetic group. Our results demonstrate that sulodexide exhibits protective effects against peripheral nerve damage in a rat experimental model of diabetes. Therefore, these findings suggest that sulodexide is a potential new therapeutic agent for diabetic peripheral neuropathy.

  19. Inhibitory effect of amygdalin on lipopolysaccharide-inducible TNF-alpha and IL-1beta mRNA expression and carrageenan-induced rat arthritis.

    PubMed

    Hwang, Hye-Jeong; Lee, Hye-Jung; Kim, Chang-Ju; Shim, Insop; Hahm, Dae-Hyun

    2008-10-01

    Amygdalin is a cyanogenic glycoside plant compound found in the seeds of rosaceous stone fruits. We evaluated the antiinflammatory and analgesic activities of amygdalin, using an in vitro lipopolysaccharide (LPS)-induced cell line and a rat model with carrageenan-induced ankle arthritis. One mM amygdalin significantly inhibited the expression of TNF-alpha and IL-1beta mRNAs in LPS-treated RAW 264.7 cells. Amygdalin (0.005, 0.05, and 0.1 mg/kg) was intramuscularly injected immediately after the induction of carrageenan-induced arthritic pain in rats, and the anti-arthritic effect of amygdalin was assessed by measuring the weight distribution ratio of the bearing forces of both feet and the ankle circumference, and by analyzing the expression levels of three molecular markers of pain and inflammation (c-Fos, TNF-alpha, and IL-1beta) in the spinal cord. The hyperalgesia of the arthritic ankle was alleviated most significantly by the injection of 0.005 mg/kg amygdalin. At this dosage, the expressions of c-Fos, TNF-alpha, and IL-1beta in the spinal cord were significantly inhibited. However, at dosage greater than 0.005 mg/kg, the painrelieving effect of amygdalin was not observed. Thus, amygdalin treatment effectively alleviated responses to LPStreatment in RAW 264.7 cells and carrageenan-induced arthritis in rats, and may serve as an analgesic for relieving inflammatory pain.

  20. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice

    PubMed Central

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice (n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD. PMID:28217289

  1. HYDROGEN-RICH MEDIUM AMELIORATES LIPOPOLYSACCHARIDE-INDUCED BARRIER DYSFUNCTION VIA RHOA-MDIA1 SIGNALING IN CACO-2 CELLS.

    PubMed

    Yang, Tao; Wang, Lu; Sun, Ruiqiang; Chen, Hongguang; Zhang, Hongtao; Yu, Yang; Wang, Yanyan; Wang, Guolin; Yu, Yonghao; Xie, Keliang

    2016-02-01

    Gastrointestinal barrier dysfunction is associated with the severity and prognosis of sepsis. Hydrogen gas (H2) can ameliorate multiple organ damage in septic animals. Ras homolog gene family member A (RhoA) and mammalian diaphanous-related formin 1 (mDia1) are important to regulate tight junction (TJ) and adherens junction (AJ), both of which determine the integrity of the intestinal barrier. This study was aimed to investigate whether H2 could modulate lipopolysaccharide (LPS)-stimulated dysfunction of the intestinal barrier and whether RhoA-mDia1 signaling is involved. Caco-2 cells were exposed to different concentrations of LPS (1 μg/mL-1 mg/mL). The permeability of the intestinal barrier was evaluated by transepithelial resistance (TER) and fluorescein-isothiocyanate-dextran flux. Expression and distribution of occludin and E-cadherin were analyzed by Western blot and immunofluorescence. RhoA activity was measured by G-Lisa assay, and mDia1 expression was assessed by Western blot. LPS (100 μg/mL) decreased TER and increased fluorescein-isothiocyanate-dextran flux, which were alleviated by H2-rich medium. Also, H2 down-regulated LPS-induced oxidative stress. Moreover, H2 improved the down-regulated expression and redistribution of occludin and E-cadherin caused by LPS. Additionally, H2 alleviated LPS-caused RhoA activation, and the beneficial effects of H2 on barrier were counteracted by RhoA agonist CN03. Rho inhibitor C3 exoenzyme mitigated LPS-induced barrier breakdown. Furthermore, H2-rich medium increased mDia1 expression, and mDia1 knockdown abolished protections of H2 on barrier permeability. mDia1 knockdown eliminated H2-induced benefits for occludin and E-cadherin. These findings suggest that H2 improves LPS-induced hyperpermeability of the intestinal barrier and disruptions of TJ and AJ by moderating RhoA-mDia1 signaling.

  2. Synthesis and effects of new caffeic acid derivatives on nitric oxide production in lipopolysaccharide-induced RAW 264.7 macrophages

    PubMed Central

    Zhang, Jie; Xu, Liu-Xin; Xu, Xu-Sheng; Li, Bo-Wei; Wang, Rui; Fu, Jian-Jun

    2014-01-01

    In this study, 20 new derivatives of caffeic acid esters were synthesized and their inhibitory activities against the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages were determined. Compounds 3l, 3r, 3s and 3t were found to decrease nitrite levels in a dose-dependent manner in LPS-induced cells and showed potent inhibitory activities against the NO production in RAW264.7 macrophages with IC50 values of 7.4, 5.9, 3.3 and 2.2 μM, respectively. They could be selected as compromising compounds for the later pharmacological study. PMID:24955176

  3. Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide.

    PubMed

    Józefowski, Szczepan; Czerkies, Maciej; Łukasik, Anna; Bielawska, Alicja; Bielawski, Jacek; Kwiatkowska, Katarzyna; Sobota, Andrzej

    2010-12-01

    LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.

  4. Early In Vitro Lipopolysaccharide-Induced Serum Protein Aggregation in Tolerant Serum

    DTIC Science & Technology

    1992-07-21

    Induced activation of human monocytes by human lipoproteins. Infect. immun. 57(7):2237-2245, 1989. Fox, E . S., Broitman , S. A., Thomas, P. Biology of...public release: distribution Is unlimited S92-29804 11 1 " = ; , 1 !:;1ý9 N 1 1111111 l,[ 11 ! I S- e 1A NOTICES The opinions and assertions...CLASSIFICATION OUNCLASSIFIEDA.jNUMITEO 0 SAME AS RPT. QorIC USERS Unclassi fied 22a. NAME OF RESPONSIBLE II.O’vIOIUAL 22b. TELEPHCNE Onju< e Area Code) 22c. OFFICE

  5. Protein Kinase C is a Mediator of Lipopolysaccharide-Induced Vascular Suppression in the Rat Aorta

    DTIC Science & Technology

    1994-01-01

    28). A possible require- 0 ,] ment for multiple LPS-stimulated mediators to full\\ induce300o •"NOS activity in VSM can explain the apparent paradox...A D - A 286 074 )AGE 0704-0pprove IIIo- 1 DC 199 AGENC U EPORT TYPE AND DATES COVERED 1994L N S-TIL Journal article 4. ITE ND UBITES. Fý;.:DlNG...ADDRESS(ES) 110. SAPOENSCOYRINEGO/RMONNITNOR~ING Naval Medical Research and Development Command AEC EOTNME National Naval Medical Center Building 1 , Towver

  6. Coumarins from Angelica decursiva inhibit lipopolysaccharide-induced nitrite oxide production in RAW 264.7 cells.

    PubMed

    Ishita, Ishrat Jahan; Nurul Islam, Md; Kim, Yeong Shik; Choi, Ran Joo; Sohn, Hee Sook; Jung, Hyun Ah; Choi, Jae Sue

    2016-01-01

    Angelica decursiva has long been used in Korean traditional medicine as an antitussive, analgesic, antipyretic, and cough remedy. In this study, the anti-inflammatory activity of 9 coumarin derivatives isolated from a 90 % methanol fraction was evaluated via inhibition of production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Among the tested compounds, edulisin II (1) exhibited the most potent NO production inhibitory activity, followed by decursidin (2), Pd-C-III (3), 4-hydroxy Pd-C-III (4), Pd-C-I (5), and Pd-C-II (6). In contrast, (+)-trans-decursidinol (7) did not exhibit NO suppressive effects on LPS-stimulated RAW 264.7 cells. Structure-activity relationships revealed that esterification of the hydroxyl at C-3' or C-4' of 7 with an angeloyl/senecioyl/acetyl group is essential for its inhibitory activity against NO production, while the number of angeloyl or senecioyl groups, and their positions greatly affect the potency of these coumarins. Coumarins 1-6 also inhibited TNF-α production and iNOS protein expression, while compounds 1-4 inhibited COX-2 protein expression in LPS-stimulated RAW 264.7 cells. These results suggest that coumarins isolated from A. decursiva might be used as potential leads for the development of therapeutic agents for inflammation-associated disorders.

  7. Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis?

    PubMed Central

    Durosier, Lucien D; Herry, Christophe L; Cortes, Marina; Cao, Mingju; Burns, Patrick; Desrochers, André; Fecteau, Gilles; Seely, Andrew J E; Frasch, Martin G

    2017-01-01

    Fetal inflammatory response occurs during chorioamnionitis, a frequent and often subclinical inflammation associated with increased risk for brain injury and life-lasting neurologic deficits. No means of early detection exist. We hypothesized that systemic fetal inflammation without septic shock will be reflected in alterations of fetal heart rate (FHR) variability (fHRV) distinguishing baseline versus inflammatory response states. In chronically instrumented near-term fetal sheep (n = 24), we induced an inflammatory response with lipopolysaccharide (LPS) injected intravenously (n = 14). Ten additional fetuses served as controls. We measured fetal plasma inflammatory cytokine IL-6 at baseline, 1, 3, 6, 24 and 48 h. 44 fHRV measures were determined continuously every 5 min using continuous individualized multi-organ variability analysis (CIMVA). CIMVA creates an fHRV measures matrix across five signal-analytical domains, thus describing complementary properties of fHRV. Using principal component analysis (PCA), a widely used technique for dimensionality reduction, we derived and quantitatively compared the CIMVA fHRV PCA signatures of inflammatory response in LPS and control groups. In the LPS group, IL-6 peaked at 3 h. In parallel, PCA-derived fHRV composite measures revealed a significant difference between LPS and control group at different time points. For the LPS group, a sharp increase compared to baseline levels was observed between 3 h and 6 h, and then abating to baseline levels, thus tracking closely the IL-6 inflammatory profile. This pattern was not observed in the control group. We also show that a preselection of fHRV measures prior to the PCA can potentially increase the difference between LPS and control groups, as early as 1 h post LPS injection. We propose a fHRV composite measure that correlates well with levels of inflammation and tracks well its temporal profile. Our results highlight the potential role of HRV to study and monitor the

  8. Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice.

    PubMed

    Sompamit, Kwanjit; Kukongviriyapan, Upa; Nakmareong, Saowanee; Pannangpetch, Patchareewan; Kukongviriyapan, Veerapol

    2009-08-15

    Oxidative stress is implicated in various pathological conditions, including septic shock, and other diseases associated with local or systemic inflammation. Curcumin, a major component from turmeric (Curcuma longa), possesses diverse anti-inflammatory, anti-tumour and antioxidant properties. The aim of this study was to investigate the effect of curcumin on modulation of vascular dysfunction and oxidative stress induced by lipopolysaccharide (LPS) in mice. Male ICR mice were treated with curcumin (50 or 100 mg/kg), administered intragastrically, either before or after intraperitoneal injection of LPS (10 mg/kg). Fifteen hours after LPS administration, arterial blood pressure was measured and vascular response to vasoactive agents were assessed. Aortic tissues and blood samples were taken for assays of antioxidant and oxidative stress markers. LPS caused marked hypotension, tachycardia and vascular hyporeactivity. The mean arterial pressures in responses to phenylephrine, acetylcholine, and sodium nitroprusside of LPS-treated mice were significantly decreased when compared with the untreated controls. Curcumin modulated heart rate and restored arterial blood pressure in a dose-dependent manner in both protectively- and therapeutically-treated regimens. Furthermore, the vascular responsiveness of LPS-treated mice was improved by curcumin. Interestingly, the improvements of haemodynamics and vascular response during endotoxaemia were related to alleviation of oxidative stress by reducing aortic-derived superoxide production, suppression of lipid peroxidation and protein oxidation, and decrease in urinary nitric oxide metabolites with preservation of the ratio of glutathione/glutathione disulfide. This study provides the first evidence for the potential role of curcumin in prevention and treatment of vascular dysfunction in mice with endotoxaemia elicited by LPS.

  9. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates.

    PubMed

    Al-Tahhan, R A; Sandrin, T R; Bodour, A A; Maier, R M

    2000-08-01

    Little is known about the interaction of biosurfactants with bacterial cells. Recent work in the area of biodegradation suggests that there are two mechanisms by which biosurfactants enhance the biodegradation of slightly soluble organic compounds. First, biosurfactants can solubilize hydrophobic compounds within micelle structures, effectively increasing the apparent aqueous solubility of the organic compound and its availability for uptake by a cell. Second, biosurfactants can cause the cell surface to become more hydrophobic, thereby increasing the association of the cell with the slightly soluble substrate. Since the second mechanism requires very low levels of added biosurfactant, it is the more intriguing of the two mechanisms from the perspective of enhancing the biodegradation process. This is because, in practical terms, addition of low levels of biosurfactants will be more cost-effective for bioremediation. To successfully optimize the use of biosurfactants in the bioremediation process, their effect on cell surfaces must be understood. We report here that rhamnolipid biosurfactant causes the cell surface of Pseudomonas spp. to become hydrophobic through release of lipopolysaccharide (LPS). In this study, two Pseudomonas aeruginosa strains were grown on glucose and hexadecane to investigate the chemical and structural changes that occur in the presence of a rhamnolipid biosurfactant. Results showed that rhamnolipids caused an overall loss in cellular fatty acid content. Loss of fatty acids was due to release of LPS from the outer membrane, as demonstrated by 2-keto-3-deoxyoctonic acid and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and further confirmed by scanning electron microscopy. The amount of LPS loss was found to be dependent on rhamnolipid concentration, but significant loss occurred even at concentrations less than the critical micelle concentration. We conclude that rhamnolipid-induced LPS release is the probable

  10. Effects of coenzyme Q10 on the antioxidant system in SD rats exposed to lipopolysaccharide-induced toxicity

    PubMed Central

    Song, Min-Hae; Kim, Ha-Na; Lim, Yong

    2017-01-01

    The study was performed to see the effects of coenzyme Q10 (CoQ10) on blood biochemical components and hepatic antioxidant system in rats exposed to lipopolysaccharide (LPS)-induced toxicity. A total of 24 rats were allocated to four groups: control (CON), 100 mg/kg BW of LPS (LPS), 100 mg of CoQ10/kg BW with LPS (LCQI) and 300 mg of CoQ10/kg BW with LPS (LCQII). The LPS and LCQI groups showed a significant (P<0.05) increase in the relative spleen weight compared with the CON group without affecting body and liver weights. The blood alanine aminotransferase (ALT) level in the LPS group was significantly (P<0.05) greater than that in the CON group, while supplementation with 100 or 300 mg CoQ10 to rats injected with LPS normalized the ALT level in the CON group. In antioxidant systems, the LPS group showed a significantly (P<0.05) higher mRNA and activity of superoxide dismutase (SOD) than the CON group. The supplementation with CoQ10 to the LPS-treated group normalized the level of SOD, which was comparable to the level of the CON group. Both the mRNA expression and activity of glutathione peroxidase in the LCQI and LCQII groups were higher (P<0.05) than that of the LPS group. However, administration of LPS or CoQ10 unaffected the level of catalase and total antioxidant power. The level of lipid peroxidation in the LCQII group was lower (P<0.05) than that in the LPS group. In conclusion, CoQ10 exerted its favorable effect against liver damage by modulation of antioxidant enzymes in LPS treated rats.

  11. Lutein derived fragments exhibit higher antioxidant and anti-inflammatory properties than lutein in lipopolysaccharide induced inflammation in rats.

    PubMed

    Nidhi, Bhatiwada; Sharavana, Gurunathan; Ramaprasad, Talahalli R; Vallikannan, Baskaran

    2015-02-01

    In the present study, we appraise the anti-inflammatory efficacy of lutein oxidative degradation derivatives mediated through UV-irradiation over lutein in counteracting the inflammation induced by lipopolysaccharide (LPS) in rats (n = 5 per group). UV-irradiated lutein fragments were identified as anhydrolutein (B, C40H54O), 2,6,6-trimethylcyclohexa-1,4-dienylium (M1, C9H13), (2E,4E,6E,8E)-9-(4-hydroxy-2,6,6-trimethylcyclohex-1-1en-1-yl)-3,7-dimethylnona-2,4,6,8-tetraen-1-ylium (M2, C20H29O), 4-[(1E,3E,5E,7E)-3,7,-dimethyldeca-1,3,5,7-tetraen-1-yl]-3,5,5-methylcyclohex-3-en-1-ol (M3, C21H30O) and zeaxanthin (M4, C40H56O) and its isomers as 13'-Z zeaxanthin, 13'-Z lutein, all-trans zeaxanthin, and 9-Z lutein. Induction of inflammation by LPS significantly increased the production of nitrites (3.3 fold in the serum and 2.6 fold in the liver), prostaglandin E2 (26 fold in the serum), and pro-inflammatory cytokines like tumor necrosis factor-α (6.6 fold in the serum), and interleukin-6 (4.8 fold in the serum). Oxidative derivatives of lutein, especially M1, M2 and M3, ameliorated acute inflammation in rats by inhibiting the production of nitrites, malondialdehyde (MDA), PGE2, TNF-α, and IL-6 cytokines more efficiently than lutein in rats. The anti-inflammatory mechanism of derivatives might be related to the decrease of inflammatory cytokines and the increase of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S transferase, glutathione reductase), which would result in the reduction of iNOS, COX-2 and MDA and subsequently inflammatory responses.

  12. Toll-like receptor 4 regulates lipopolysaccharide-induced inflammation and lactation insufficiency in a mouse model of mastitis.

    PubMed

    Glynn, Danielle J; Hutchinson, Mark R; Ingman, Wendy V

    2014-05-01

    Lactation mastitis is a debilitating inflammatory breast disease in postpartum women. Disease severity is associated with markers of inflammation rather than bacterial load, suggesting that immune-signaling pathways activated in the host are important in the disease pathology. The role of the innate pattern recognition receptor toll-like receptor 4 (TLR4) in progression and resolution of mastitislike disease was investigated in a mouse model. Lipopolysaccharide in Matrigel (10 μg/10 μl) was administered into the teat canal of lactating Tlr4 null mutant and wild-type mice to induce a localized area of inflammation. Mastitis induction resulted in a marked influx of RB6-positive neutrophils and F4/80-positive macrophages, which was higher in Tlr4(-/-) mice compared to wild-type mice. Tlr4 null mutation resulted in an altered immune-signaling fingerprint following induction of mastitis, with attenuated serum cytokines, including CXCL1, CCL2, interleukin 1 beta, and tumor necrosis factor alpha compared to wild-type mice. In both genotypes, the localized area of inflammation had resolved after 7 days, and milk protein was evident. However, the mammary glands of wild-type mice exhibited reduced capacity for milk production, with decreased percent area populated with glandular epithelium and decreased abundance of nuclear phosphorylated signal transducer and activator of transcription 5 compared to Tlr4 null mice. This study demonstrates that inflammatory pathways activated in the host are critically important in mastitis disease progression and suggests that lactation insufficiency associated with mastitis may be a consequence of TLR4-mediated inflammation, rather than the bacterial infection itself.

  13. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice.

    PubMed

    Dong, Hai-Ying; Xu, Min; Ji, Zhen-Yu; Wang, Yan-Xia; Dong, Ming-Qing; Liu, Man-Ling; Xu, Dun-Quan; Zhao, Peng-Tao; Liu, Yi; Luo, Ying; Niu, Wen; Zhang, Bo; Ye, Jing; Li, Zhi-Chao

    2013-12-01

    Leptin is reported to be involved in acute lung injury (ALI). However, the role and underlying mechanisms of leptin in ALI remain unclear. The aim of this study was to determine whether leptin deficiency promoted the development of ALI. LPS or oleic acid (OA) were administered to wild-type and leptin deficient (ob/ob) mice to induce ALI. Leptin level, survival rate, and lung injury were examined. Results showed that leptin levels were predominantly increased in the lung, but also in the heart, liver, kidney, and adipose tissue after LPS adminiatration. Compared with wild-type mice, LPS- or OA-induced lung injury was worse and the survival rate was lower in ob/ob mice. Moreover, leptin deficiency promoted the release of proinflammatory cytokines. Exogenous administration of leptin reduced lethality in ob/ob mice and ameliorated lung injury partly through inhibiting the activation of NF-κB, p38, and ERK pathways. These results indicated that leptin deficiency contributed to the development of lung injury by enhancing inflammatory response, and a high level of leptin improved survival and protected against ALI.

  14. Red cabbage anthocyanins as inhibitors of lipopolysaccharide-induced oxidative stress in blood platelets.

    PubMed

    Saluk, Joanna; Bijak, Michal; Posmyk, Malgorzata M; Zbikowska, Halina M

    2015-09-01

    LPS is a Gram-negative bacteria endotoxin, which is an important pro-inflammatory agent. Blood platelets take part both in inflammatory processes and in pathogenesis of septic shock following accumulation of LPS. As a platelet agonist LPS causes the intraplatelet overproduction of ROS/RNS that are responsible for adverse modifications in the structure of platelet compounds being associated with a development of platelet-dependent diseases. Existing evidence suggests that anthocyanins (ATH) are able to protect the circulatory system. The antioxidative properties of ATH are believed to be mainly responsible for their positive health effects. The main goal of the present in vitro study was to investigate the potential protective properties of red cabbage ATH against oxidative damage induced by LPS in blood platelets. Exposure of platelets to LPS resulted in carbonyl group increase, 3-nitrotyrosine formation, lipid peroxidation and O2(•-) generation. We have shown that ATH extract effectively decreased oxidative stress induced by LPSs. The in silico analysis demonstrated that both cyanin and LPS were located at the same region of human TLR4-MD-2 complex. Our findings suggest that there could be two-way ATH platelet protection mechanism, by their antioxidant properties and directly by binding with TLRs.

  15. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats.

    PubMed

    Gong, Qi-Hai; Wang, Qian; Pan, Li-Long; Liu, Xin-Hua; Huang, Hui; Zhu, Yi-Zhun

    2010-07-01

    The present study investigated the effect of sodium hydrosulfide (NaHS), a H(2)S donor, on cognitive impairment and neuroinflammatory changes induced by bilateral intracerebroventricular injections of LPS at a dose of 10mug/rat. Rats received 5mg/kg NaHS or volume-matched vehicle administration by intraperitoneal injection 3days before LPS injection then for 9days once daily. Morris water maze was used to detect the cognitive function. Compared to the sham-treated rats, LPS injection significantly prolonged the mean escape latency in the navigation test (P<0.05) and shortened the adjusted escape latency by approximately 30% (P<0.05). Meanwhile, LPS injection decreased H(2)S level but increased pro-inflammatory mediators (i.e., TNF-alpha, TNFR1, degradation of IkappaB-alpha and thereafter activation of NF-kappaB) in hippocampus. However, these effects of LPS were significantly ameliorated with NaHS treatment (P<0.05 vs vehicle-treated group). The present data suggest that H(2)S attenuates LPS-induced cognitive impairment through reducing the overproduction of pro-inflammatory mediators via inhibition of NF-kappaB pathways in rats. This study sets the stage for exploring a novel H(2)S releasing agent for preventing or retarding the development or progression of neurological disorders such as Alzheimer's disease.

  16. Ethanol extract of Inonotus obliquus inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells.

    PubMed

    Kim, Ho-Gyoung; Yoon, Deok-Hyo; Kim, Chun-Hoi; Shrestha, Bhushan; Chang, Woo-Chul; Lim, So-Yeon; Lee, Won-Ho; Han, Sang-Guk; Lee, Je-O; Lim, Mi-Hee; Kim, Geun-Young; Choi, Sunga; Song, Won O; Sung, Jae-Mo; Hwang, Ki-Chul; Kim, Tae-Woong

    2007-03-01

    Inonotus obliquus (Pers.:Fr.) Pil. is a white rot fungus that belongs to the family Hymenochaetaceae of Basidiomycetes. Extracts and fractions of this fungus have been known to have biological activities, including antimutagenic, anticancer, antioxidative, and immunostimulating effects. Recently, there have been reports that the anti-inflammatory and antinociceptive properties of the methanol extract of I. obliquus may be due to the inhibition of inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) expression via the down-regulation of nuclear factor kappaB (NF-kappaB) binding activity. However, the effects of I. obliquus on Akt and mitogen-activated protein kinase (MAPK) activation of inflammatory mediator production have not yet been elucidated. In the present study, a 70% ethanol extract of I. obliquus (IOE70) showed antioxidative effects. We also tested the ability of the I. obliquus extract to inhibit the inflammatory cascades in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells. The NO inhibition of IOE70 was better than that of other ethanol extracts from I. obliquus. To investigate the mechanism by which IOE 70 inhibits NO production and iNOS and COX-2 expression, we examined the activations of IkappaBalpha, Akt, and c-Jun NH(2) -terminal kinase (JNK) in LPS-activated macrophages. IOE70 markedly inhibited the phosphorylation of IkappaBalpha, Akt, and MAPKs in dose-dependent manners in LPS-activated macrophages. Taken together, these experiments demonstrated that IOE70 inhibition of LPS-induced expression of iNOS and COX-2 protein is mediated by Akt and JNK. Based on our findings, the most likely mechanism that can account for this biological effect of IOE70 involves the inhibition of NF-kappaB through the phosphatidylinositol 3-kinase/Akt/IkappaB pathway and the inhibition of JNK activation. Thus, IOE70 might have useful clinical applications in the management of inflammatory diseases and may also be useful as a medicinal food.

  17. Single-wall carbon nanohorns inhibited activation of microglia induced by lipopolysaccharide through blocking of Sirt3

    NASA Astrophysics Data System (ADS)

    Li, Lihong; Zhang, Jinqian; Yang, Yang; Wang, Qiang; Gao, Li; Yang, Yanlong; Chang, Tao; Zhang, Xingye; Xiang, Guoan; Cao, Yongmei; Shi, Zujin; Zhao, Ming; Gao, Guodong

    2013-02-01

    Single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate in cytotoxic levels within organs of various animal models and cell types, which emerge as a wide range of promising biomedical imaging. Septic encephalopathy (SE) is an early sign of sepsis and associated with an increased rate of morbidity and mortality. Microglia activation plays an important role in neuroinflammation, which contributes to neuronal damage. Inhibition of microglia activation may have therapeutic benefits, which can alleviate the progression of neurodegeneration. Therefore, we investigated the functional changes of mice microglia cell lines pre-treated with or without lipopolysaccharide (LPS) induced by SWNHs. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of microglia cell lines in mice (N9 and BV2) pre-treated with or without LPS had been performed. Our results indicate that the particle diameter of SWNHs in water is between 342 to 712 nm. The images in scanning electron microscope showed that SWNHs on polystyrene surface are individual particles. LPS induced activation of mice microglia, promoted its growth and proliferation, and inhibited its apoptosis. SWNHs inhibited proliferation, delayed mitotic entry, and promoted apoptosis of mice microglia cells. The effects followed gradually increasing cultured time and concentrations of SWNHs, especially in cells pre-treated with LPS. SWNHs induced a significantly increase in G1 phase and inhibition of S phase of mice microglia cells in a dose-manner dependent of SWNHs, especially in cells pre-treated with LPS. The transmission electron microscope images showed that individual spherical SWNH particles smaller than 100 nm in diameters were localized inside lysosomes of mice microglia cells. SWNHs inhibited mitotic entry, growth and proliferation of mice microglia cells, and promoted its apoptosis, especially in cells pre-treated with LPS. SWNHs inhibited expression

  18. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells.

    PubMed

    Park, Sun Young; Seetharaman, Rajasekar; Ko, Min Jung; Kim, Do Yeon; Kim, Tae Hoon; Yoon, Moo Kyoung; Kwak, Jung Ho; Lee, Sang Joon; Bae, Yoe Sik; Choi, Young Whan

    2014-04-01

    In the present study, an essential fatty acid, ethyl linoleate (ELA), was isolated from the cloves of Allium sativum, and its structure was elucidated by NMR and GC-MS analyses. In vitro systems were used to evaluate the anti-inflammatory activity of ELA. Our results indicate that ELA down-regulates inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and thereby reduces nitric oxide (NO) and prostaglandin E2 production in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Immunofluorescent microscopy and western blot analyses revealed that these effects were mediated by impaired translocation of nuclear factor (NF)-κB and inhibition of phosphorylation of mitogen activated protein kinases. Furthermore, ELA exerted its anti-inflammatory activity by inducing heme oxygenase-1 (HO-1) expression, as determined by HO-1 small interfering (Si) RNA system. Si RNA-mediated knock-down of HO-1 abrogated the inhibitory effects of ELA on the production of NO, TNF-α, IL-1β, and IL-6 in LPS-induced macrophages. These findings indicate the potential therapeutic use of ELA as an anti-inflammatory agent.

  19. Protective effect of erdosteine against hypochlorous acid-induced acute lung injury and lipopolysaccharide-induced neutrophilic lung inflammation in mice.

    PubMed

    Hayashi, K; Hosoe, H; Kaise, T; Ohmori, K

    2000-11-01

    The effect of erdosteine, a mucoactive drug, on hypochlorous acid (HOCl)-induced lung injury, and the lipopolysaccharide (LPS)-induced increase in tumour necrosis factor-alpha (TNF-alpha) production and neutrophil recruitment into the airway, was investigated. Male BALB/c mice were orally administered erdosteine (3-100 mgkg(-1)), ambroxol hydrochloride (ambroxol) (3-30 mgkg(-1)), S-carboxymethyl-L-cysteine (S-CMC) (100-600 mgkg(-1)) or prednisolone (10 mgkg(-1)), 1 h before intratracheal injection of HOCl or LPS. In the HOCl-injected mice, erdosteine markedly suppressed increases in the ratios of lung wet weight to bodyweight and lung dry weight to bodyweight, whereas the other mucoactive drugs ambroxol and S-CMC had little effect. Erdosteine also inhibited the LPS-induced neutrophil influx, although it did not affect the increased level of TNF-alpha in the bronchoalveolar lavage fluid. The results suggest that attenuation of reactive oxygen species and neutrophil recruitment is involved in the clinical efficacy of erdosteine in the treatment of chronic bronchitis.

  20. Transcription factor Fli-1 positively regulates lipopolysaccharide-induced interleukin-27 production in macrophages.

    PubMed

    Gao, Peng; Yuan, Ming; Ma, Xianwei; Jiang, Wei; Zhu, Lingxi; Wen, Mingyue; Xu, Jing; Liu, Qiuyan; An, Huazhang

    2016-03-01

    IL-27 is an important regulator of TLR4-activated innate immune. The mechanism by which IL-27 production is regulated in TLR4-activated innate immune remains largely unclear. Here we show that expression of transcription factor Fli-1 at protein level is increased in macrophages following LPS stimulation. Fli-1 overexpression increases LPS-activated IL-27 production in macrophages. Consistently, Fli-1 knockdown inhibits LPS-induced IL-27 production in macrophages. Chromatin immunoprecipitation (ChIP) assay reveals that Fli-1 binds the promoter of IL-27 p28 subunit. Further experiments manifest that Fli-1 binds the region between -250 and -150 bp upstream of the transcriptional start site of p28 gene and increases p28 gene promoter-controlled transcription. These results demonstrate that Fli-1 positively regulates IL-27 production in TLR4-activated immune response by promoting transcription of IL-27 p28 gene.

  1. Adult Lysophosphatidic Acid Receptor 1-Deficient Rats with Hyperoxia-Induced Neonatal Chronic Lung Disease Are Protected against Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Chen, Xueyu; Walther, Frans J.; Laghmani, El H.; Hoogeboom, Annemarie M.; Hogen-Esch, Anne C. B.; van Ark, Ingrid; Folkerts, Gert; Wagenaar, Gerry T. M.

    2017-01-01

    Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg−1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this “second hit” with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated “second hit” than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic

  2. Exercise induces autophagy in peripheral tissues and in the brain.

    PubMed

    He, Congcong; Sumpter, Rhea; Levine, Beth

    2012-10-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.

  3. Magnesium Isoglycyrrhizinate attenuates lipopolysaccharide-induced depressive-like behavior in mice.

    PubMed

    Jiang, Wenjiao; Chen, Qianying; Li, Peijin; Lu, Qianfeng; Pei, Xue; Sun, Yilin; Wang, Guangji; Hao, Kun

    2017-02-01

    Magnesium Isoglycyrrhizinate (MI) is a magnesium salt of 18α-GA stereoisomer which has been reported to exert hepatoprotective activity. The aim of the present study was to ascertain the underlying mechanisms behind the action of Magnesium Isoglycyrrhizinate on neuroinflammatation and oxidative stress in LPS-stimulated mice. Mice were pretreated with Magnesium Isoglycyrrhizinate (MI, 25, 50mg/kg) as well as fluoxetine (Flu, positive control, 20mg/kg) once daily for one week before intraperitoneal injection of LPS (0.83mg/kg). Pretreatments with MI and Flu significantly improved immobility time in tail suspension test (TST) and forced swim test (FST) as well as locomotor activity in open-field test (OFT). In addition, the levels of pro-inflammatory cytokines and oxidative stress in serum and hippocampus were also suppressed effectively by MI and Flu administrations. Western blot analysis showed the up-regulated levels of p-Jak3, p-STAT3, p-NF-κBp65, and p-IκBα in mice exposed to LPS, while different degrees of down-regulation in these expression were observed in MI (25, 50mg/kg) and Flu (20mg/kg) groups respectively. Taken together, our obtained results demonstrated that Magnesium Isoglycyrrhizinate (MI) exhibited an antidepressant-like effect in LPS-induced mice, which might be mediated by JAK/STAT/NF-κB signaling pathway.

  4. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation.

    PubMed

    Nam, Hyo Jung; Oh, Ah Reum; Nam, Seung Taek; Kang, Jin Ku; Chang, Jong Soo; Kim, Dae Hong; Lee, Ji Hye; Hwang, Jae Sam; Shong, Ko Eun; Park, Mi Jung; Seok, Heon; Kim, Ho

    2012-10-01

    We recently demonstrated that the insect peptide CopA3 (LLCIALRKK), a disulfide-linked dimeric peptide, exerts antimicrobial and anti-inflammatory activities in a mouse colitis model. Here, we examined whether CopA3 inhibited activation of macrophages by LPS. Exposure of an unseparated mouse peritoneal cell population or isolated peritoneal macrophages to LPS markedly increased secretion of IL-6 and TNF-α; these effects were significantly inhibited by CopA3 treatment. The inhibitory effect of CopA3 was also evident in murine macrophage cell line, RAW 264.7. Western blotting revealed that LPS-induced activation of STAT1 and STAT5 in macrophages was significantly inhibited by CopA3. Inhibition of JAK (STAT1/STAT5 kinase) with AG490 markedly reduced the production of IL-6 and TNF-α in macrophages. Collectively, these observations suggest that CopA3 inhibits macrophage activation by inhibiting activating phosphorylations of the transcription factors, STAT1 and STAT5, and blocking subsequent production of IL-6 and TNF-α and indicate that CopA3 may be useful as an immune-modulating agent.

  5. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation

    PubMed Central

    Clarke, Julia R; Lyra e Silva, Natalia M; Figueiredo, Claudia P; Frozza, Rudimar L; Ledo, Jose H; Beckman, Danielle; Katashima, Carlos K; Razolli, Daniela; Carvalho, Bruno M; Frazão, Renata; Silveira, Marina A; Ribeiro, Felipe C; Bomfim, Theresa R; Neves, Fernanda S; Klein, William L; Medeiros, Rodrigo; LaFerla, Frank M; Carvalheira, Jose B; Saad, Mario J; Munoz, Douglas P; Velloso, Licio A; Ferreira, Sergio T; De Felice, Fernanda G

    2015-01-01

    Alzheimer's disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD-associated Aβ oligomers (AβOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AβOs failed to induce glucose intolerance, suggesting AβOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AβOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2α phosphorylation (eIF2α-P). AβOs further induced eIF2α-P and activated pro-inflammatory IKKβ/NF-κB signaling in the hypothalamus of mice and macaques. AβOs failed to trigger peripheral glucose intolerance in tumor necrosis factor-α (TNF-α) receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AβOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AβOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD. PMID:25617315

  6. Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2

    PubMed Central

    Zhang, Qichun; Lu, Ying; Bian, Huimin; Guo, Liwei; Zhu, Huaxu

    2017-01-01

    The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR) plays an essential role in the cholinergic anti-inflammatory pathway that regulates macrophage/microglia function in inflammation. Similar to M1 and M2 macrophages, M1 and M2 microglia exhibit pro-inflammation and anti-inflammation properties, respectively. In the present study, we analyzed function-associated phenotypes to detect the transformation of microglia with activation of α7 nAChRs. We used lentivirus-mediated shRNA to knockdown the expression of α7 nAChR in BV-2 microglia incubated with lipopolysaccharides (LPS, 0.1 μg/mL) and measured the acetylcholine (Ach, 1 μg/mL)-mediated release of cytokines, such as IL-1β, IL-4, IL-6, and IL-10, in the culture supernatant via radioimmunoassay. After stimulation with Ach, the expression of typical biomarkers for different microglia phenotypes, Iba-1 and Arg-1, was determined by cellular immunofluorescence. Furthermore, the expression of signaling molecules, including p38, JAK2/STAT3, PI3K/Akt and miR-124, was analyzed via western blotting and real-time PCR. We found that Ach inhibited LPS-induced IL-1β and IL-6 elevation and promoted IL-4 and IL-10 production and that knockd