Science.gov

Sample records for peripheral myelinated axons

  1. Involvement of ADAM10 in axonal outgrowth and myelination of the peripheral nerve.

    PubMed

    Jangouk, Parastoo; Dehmel, Thomas; Meyer Zu Hörste, Gerd; Ludwig, Andreas; Lehmann, Helmar C; Kieseier, Bernd C

    2009-12-01

    The disintegrin and metalloproteinase 10 (ADAM10) is a membrane-anchored metalloproteinase with both proteolytic and disintegrin characteristics. Here, we investigate the expression, regulation, and functional role of ADAM10 in axonal outgrowth and myelination of the peripheral nerve. Expression pattern analysis of 11 ADAM family members in co-cultures of rat dorsal root ganglia (DRG) neurons and Schwann cells (SCs) demonstrated the most pronounced mRNA expression for ADAM10. In further studies, ADAM10 was found to be consistently upregulated in DRG-SC co-cultures before the induction of myelination. Neurons as well as SCs widely expressed ADAM10 at the protein level. In neurons, the expression of ADAM10 was exclusively limited to the axons before the induction of myelination. Inhibition of ADAM10 activity by the hydroxamate-based inhibitors GI254023X and GW280264X resulted in a significant decrease in the mean axonal length. These data suggest that ADAM10 represents a prerequisite for myelination, although its activity is not required during the process of myelination itself as demonstrated by expression analysis of myelin protein zero (P0) and Sudan black staining. Hence, during the process of myelin formation, ADAM10 is highly upregulated and appears to be critically involved in axonal outgrowth that is a requirement for myelination in the peripheral nerve.

  2. Neuronal ADAM10 Promotes Outgrowth of Small-Caliber Myelinated Axons in the Peripheral Nervous System.

    PubMed

    Meyer zu Horste, Gerd; Derksen, Angelika; Stassart, Ruth; Szepanowski, Fabian; Thanos, Melissa; Stettner, Mark; Boettcher, Christina; Lehmann, Helmar C; Hartung, Hans-Peter; Kieseier, Bernd C

    2015-11-01

    The regulation of myelination and axonal outgrowth in the peripheral nervous system is controlled by a complex signaling network involving various signaling pathways. Members of the A Disintegrin And Metalloproteinase (ADAM) family are membrane-anchored proteinases with both proteolytic and disintegrin characteristics that modulate the function of signaling molecules. One family member, ADAM17, is known to influence myelination by cleaving and thus regulating one of the key signals, neuregulin-1, which controls peripheral nervous system myelination. A similar function for ADAM10 had been suggested by previous in vitro studies. Here, we assessed whether ADAM10 exerts a similar function in vivo and deleted ADAM10 in a cell type-specific manner in either neurons or Schwann cells. We found that ADAM10 is not required in either Schwann cells or neurons for normal myelination during development or for remyelination after injury. Instead, ADAM10 is required specifically in neurons for the outgrowth of myelinated small-fiber axons in vitro and after injury in vivo. Thus, we report for the first time a neuron-intrinsic function of ADAM10 in axonal regeneration that is distinct from that of the related protein family member ADAM17 and that may have implications for targeting ADAM function in nervous system diseases.

  3. Peripheral Nerve Diffusion Tensor Imaging: Assessment of Axon and Myelin Sheath Integrity.

    PubMed

    Heckel, A; Weiler, M; Xia, A; Ruetters, M; Pham, M; Bendszus, M; Heiland, S; Baeumer, P

    2015-01-01

    To investigate the potential of diffusion tensor imaging (DTI) parameters as in-vivo biomarkers of axon and myelin sheath integrity of the median nerve in the carpal tunnel as validated by correlation with electrophysiology. MRI examinations at 3T including DTI were conducted on wrists in 30 healthy subjects. After manual segmentation of the median nerve quantitative analysis of fractional anisotropy (FA) as well as axial, radial and mean diffusivity (AD, RD, and MD) was carried out. Pairwise Pearson correlations with electrophysiological parameters comprising sensory nerve action potential (SNAP) and compound muscle action potential (CMAP) as markers of axon integrity, and distal motor latency (dml) and sensory nerve conduction velocity (sNCV) as markers of myelin sheath integrity were computed. The significance criterion was set at P=0.05, Bonferroni corrected for multiple comparisons. DTI parameters showed a distinct proximal-to-distal profile with FA, MD, and RD extrema coinciding in the center of the carpal tunnel. AD correlated with CMAP (r=0.50, p=0.04, Bonf. corr.) but not with markers of myelin sheath integrity. RD correlated with sNCV (r=-0.53, p=0.02, Bonf. corr.) but not with markers of axon integrity. FA correlated with dml (r=-0.63, p=0.002, Bonf. corr.) and sNCV (r=0.68, p=0.001, Bonf. corr.) but not with markers of axon integrity. AD reflects axon integrity, while RD (and FA) reflect myelin sheath integrity as validated by correlation with electrophysiology. DTI parameters consistently indicate a slight decrease of structural integrity in the carpal tunnel as a physiological site of median nerve entrapment. DTI is particularly sensitive, since these findings are observed in healthy participants. Our results encourage future studies to evaluate the potential of DTI in differentiating axon from myelin sheath injury in patients with manifest peripheral neuropathies.

  4. Peripheral Nerve Diffusion Tensor Imaging: Assessment of Axon and Myelin Sheath Integrity

    PubMed Central

    Heckel, A.; Weiler, M.; Xia, A.; Ruetters, M.; Pham, M.; Bendszus, M.; Heiland, S.; Baeumer, P.

    2015-01-01

    Purpose To investigate the potential of diffusion tensor imaging (DTI) parameters as in-vivo biomarkers of axon and myelin sheath integrity of the median nerve in the carpal tunnel as validated by correlation with electrophysiology. Methods MRI examinations at 3T including DTI were conducted on wrists in 30 healthy subjects. After manual segmentation of the median nerve quantitative analysis of fractional anisotropy (FA) as well as axial, radial and mean diffusivity (AD, RD, and MD) was carried out. Pairwise Pearson correlations with electrophysiological parameters comprising sensory nerve action potential (SNAP) and compound muscle action potential (CMAP) as markers of axon integrity, and distal motor latency (dml) and sensory nerve conduction velocity (sNCV) as markers of myelin sheath integrity were computed. The significance criterion was set at P=0.05, Bonferroni corrected for multiple comparisons. Results DTI parameters showed a distinct proximal-to-distal profile with FA, MD, and RD extrema coinciding in the center of the carpal tunnel. AD correlated with CMAP (r=0.50, p=0.04, Bonf. corr.) but not with markers of myelin sheath integrity. RD correlated with sNCV (r=-0.53, p=0.02, Bonf. corr.) but not with markers of axon integrity. FA correlated with dml (r=-0.63, p=0.002, Bonf. corr.) and sNCV (r=0.68, p=0.001, Bonf. corr.) but not with markers of axon integrity. Conclusion AD reflects axon integrity, while RD (and FA) reflect myelin sheath integrity as validated by correlation with electrophysiology. DTI parameters consistently indicate a slight decrease of structural integrity in the carpal tunnel as a physiological site of median nerve entrapment. DTI is particularly sensitive, since these findings are observed in healthy participants. Our results encourage future studies to evaluate the potential of DTI in differentiating axon from myelin sheath injury in patients with manifest peripheral neuropathies. PMID:26114630

  5. Spatiotemporal gradients of intra-axonal [Na+] after transection and resealing in lizard peripheral myelinated axons.

    PubMed Central

    David, G; Barrett, J N; Barrett, E F

    1997-01-01

    1. Post-transection changes in intracellular Na+ ([Na+]i) were measured in lizard peripheral axons ionophoretically injected with the Na(+)-sensitive ratiometric dye, sodium-binding benzofuran isophthalate (SBFI). 2. Following axonal transection in physiological saline [Na+]i increased to more than 100 mM in a region that quickly extended hundreds of micrometers from the transection site. This post-transection increase in [Na+]i was similar when the bath contained 5 microM tetrodotoxin, but was absent in Na(+)-free solution. Depolarization of uncut axons in 50 mM K+ produced little or no elevation of [Na+]i until veratridine was added. These results suggest that the post-transection increase in [Na+]i was due mainly to Na+ entry via the cut end, rather than via depolarization-activated Na+ channels. 3. The spatiotemporal profile of the post-transection increase in [Na+]i could be accounted for by movement of Na+ from the cut end with an apparent diffusion coefficient of 1.3 x 10(-5) cm2 s-1. 4. [Na+]i began to decline toward resting levels by 20 +/- 15 min (mean +/- S.D.) post-transection, except in regions of the axon within 160 +/- 85 microns of the transection site, where [Na+]i remained high. The boundary between axonal regions in which [Na+]i did or did not recover probably defines a locus of resealing of the axonal membrane. 5. [Na+]i returned to resting values within about 1 h after resealing, even in axonal regions where the normal transmembrane [Na+] gradient had completely dissipated. The recovery of [Na+]i was faster and reached lower levels than expected by diffusional redistribution of Na+ along the axon. Partial recovery occurred even in an isolated internode, indicating that the internodal axolemma can actively extrude Na+. Images Figure 2 Figure 4 Figure 6 PMID:9032679

  6. Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system

    PubMed Central

    Farah, Mohamed H.; Pan, Bao Han; Hoffman, Paul N.; Ferraris, Dana; Tsukamoto, Takashi; Nguyen, Thien; Wong, Philip C.; Price, Donald L.; Slusher, Barbara S.; Griffin, John W.

    2012-01-01

    β- site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is an aspartyl protease best known for its role in generating the amyloid β peptides that are present in plaques of Alzheimer's Disease. BACE1 has been an attractive target for drug development. In cultured embryonic neurons BACE1-cleaved N-terminal APP is further processed to generate a fragment that can trigger axonal degeneration, suggesting a vital role for BACE1 in axonal health. In addition, BACE1 cleaves neuregulin 1 type III, a protein critical for myelination of peripheral axons by Schwann cells during development. Here, we asked if axonal degeneration or axonal regeneration in adult nerves might be affected by inhibition or elimination of BACE1. We report that BACE1 knockout and wild-type nerves degenerated at a similar rate after axotomy and to a similar extent in the experimental neuropathies produced by administration of paclitaxel and acrylamide. These data indicate N-APP is not the sole culprit in axonal degeneration in adult nerves. Unexpectedly, however, we observed that BACE1 knockout mice had markedly enhanced clearance of axonal and myelin debris from degenerated fibers, accelerated axonal regeneration, and earlier reinnervation of neuromuscular junctions, compared to littermate controls. These observations were reproduced in part by pharmacological inhibition of BACE1. These data suggest BACE1 inhibition as a therapeutic approach to accelerate regeneration and recovery after peripheral nerve damage. PMID:21490216

  7. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    NASA Technical Reports Server (NTRS)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  8. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    NASA Technical Reports Server (NTRS)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  9. Deletion of Nrf2 impairs functional recovery, reduces clearance of myelin debris and decreases axonal remyelination after peripheral nerve injury

    PubMed Central

    Zhang, Linxia; Johnson, Delinda; Johnson, Jeffrey A.

    2013-01-01

    Oxidative stress is generated in several peripheral nerve injury models. In response to oxidative stress, the transcription factor Nrf2 is activated to induce expression of antioxidant responsive element (ARE) genes. The role of Nrf2 in peripheral nerve injury has not been studied to date. In this study, we used a sciatic nerve crush model to examine how deletion of Nrf2 affects peripheral nerve degeneration and regeneration. Our study demonstrated that functional recovery in the Nrf2-/- mice were impaired compared to the wild type mice after sciatic nerve crush. Larger myelin debris were present in the distal nerve stump of the Nrf2-/- mice than in the wild type mice. The presence of larger myelin debris in the Nrf2-/- mice coincides with less macrophages accumulation in the distal nerve stump. Less accumulation of macrophages may have contributed to slower clearance of myelin and thus resulted in the presence of larger myelin debris. Meanwhile, axonal regeneration is comparatively lower in the Nrf2-/- mice than in the wild type mice. Even after 3 months post the injury, more thinly myelinated axon fibers were present in the Nrf2-/- mice than in the wild type mice. Taken collectively, these data support the concept of therapeutic intervention with Nrf2 activators following nerve injury. PMID:23328769

  10. Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve.

    PubMed

    Chen, Zu-Lin; Strickland, Sidney

    2003-11-24

    Laminins are heterotrimeric extracellular matrix proteins that regulate cell viability and function. Laminin-2, composed of alpha2, beta1, and gamma1 chains, is a major matrix component of the peripheral nervous system (PNS). To investigate the role of laminin in the PNS, we used the Cre-loxP system to disrupt the laminin gamma1 gene in Schwann cells. These mice have dramatically reduced expression of laminin gamma1 in Schwann cells, which results in a similar reduction in laminin alpha2 and beta1 chains. These mice exhibit motor defects which lead to hind leg paralysis and tremor. During development, Schwann cells that lack laminin gamma1 were present in peripheral nerves, and proliferated and underwent apoptosis similar to control mice. However, they were unable to differentiate and synthesize myelin proteins, and therefore unable to sort and myelinate axons. In mutant mice, after sciatic nerve crush, the axons showed impaired regeneration. These experiments demonstrate that laminin is an essential component for axon myelination and regeneration in the PNS.

  11. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve.

    PubMed

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-09-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff electrodes. The timing of laminectomy was based on the presence of regenerating fibres along the nerve within the tibial cuff. Stimulation of unlesioned tibial nerves (n = 6) evoked the largest motor response in S1 ventral root and the largest sensory response in L7 dorsal root. Growth rates were compared by mapping the regenerating nerve fibres within the tibial nerve cuff to all ventral or dorsal roots and, regardless of the lesion type, the fastest growth was similar in sensory and motor fibres. Maturation was assessed as recovery of the maximum motor and sensory conduction velocities (CVs) within the tibial nerve cuff. Throughout the observation period the CV was approximately 14% faster in regenerated sensory fibres than in motor fibres in accordance with the difference observed in control nerves. Recovery of amplitude was only partial after section, whereas the root distribution pattern was restored. Our data suggest that the fastest growth and maturation rates that can be achieved during regeneration are similar for motor and sensory myelinated fibres.

  12. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  13. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  14. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    PubMed Central

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  15. Interspecies variation in axon-myelin relationships.

    PubMed

    Fraher, J P; O'Sullivan, A W

    2000-01-01

    The primary objective of this paper was to determine the extent and nature of interspecies differences in axon calibre and myelin sheath thickness and in the various relationships between these. Morphometric analysis of the axon perimeter-myelin sheath thickness relationship was performed on an equivalent nerve fibre population in a mammal, the rat, a bird, the chicken, an amphibian, the frog, a bony fish, the trout, and a cartilaginous fish, the dogfish. The abducent nerve was studied. It is especially suitable for this purpose because its fibres are closely similar in type and in peripheral distribution across the species studied. The relationship differed substantially between species. Differences were present in its setting, as described by the positions of the scatterplots, in the g ratio and in the regression and correlation data relating the parameters. Both parameters were markedly larger in the fish species than in all of the others. In addition, in rat, chicken, frog and trout, where large and small fibre classes could be differentiated clearly, the setting of the relationship between the two parameters was different for the two classes. In the main, variation in each of the parameters was greater between than within species. The larger fibres in the fish species were closely similar in axon perimeter and sheath thickness despite their long evolutionary separation. From this study and from others in the series, it may be concluded that there is no fixed or constant relationship between axon calibre and the thickness of the surrounding myelin sheath. Each nerve tends to have its own particular relationship and this differs between species.

  16. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis

    PubMed Central

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg. PMID:27594833

  17. Neuronal activity biases axon selection for myelination in vivo

    PubMed Central

    Hines, Jacob H.; Ravanelli, Andrew M.; Schwindt, Rani; Scott, Ethan K.; Appel, Bruce

    2015-01-01

    An essential feature of vertebrate neural development is ensheathment of axons with myelin, an insulating membrane formed by oligodendrocytes. Not all axons are myelinated, but mechanisms directing myelination of specific axons are unknown. Using zebrafish we show that activity-dependent secretion stabilizes myelin sheath formation on select axons. When VAMP2-dependent exocytosis is silenced in single axons, oligodendrocytes preferentially ensheath neighboring axons. Nascent sheaths formed on silenced axons are shorter in length, but when activity of neighboring axons is also suppressed, inhibition of sheath growth is relieved. Using in vivo time-lapse microscopy, we show that only 25% of oligodendrocyte processes that initiate axon wrapping are stabilized during normal development, and that initiation does not require activity. Instead, oligodendrocyte processes wrapping silenced axons are retracted more frequently. We propose that axon selection for myelination results from excessive and indiscriminate initiation of wrapping followed by refinement that is biased by activity-dependent secretion from axons. PMID:25849987

  18. Whirlin, a cytoskeletal scaffolding protein, stabilizes the paranodal region and axonal cytoskeleton in myelinated axons.

    PubMed

    Green, James A; Yang, Jun; Grati, M'hamed; Kachar, Bechara; Bhat, Manzoor A

    2013-09-06

    Myelinated axons are organized into distinct subcellular and molecular regions. Without proper organization, electrical nerve conduction is delayed, resulting in detrimental physiological outcomes. One such region is the paranode where axo-glial septate junctions act as a molecular fence to separate the sodium (Na+) channel-enriched node from the potassium (K+) channel-enriched juxtaparanode. A significant lack of knowledge remains as to cytoskeletal proteins which stabilize paranodal domains and underlying cytoskeleton. Whirlin (Whrn) is a PDZ domain-containing cytoskeletal scaffold whose absence in humans results in Usher Syndromes or variable deafness-blindness syndromes. Mutant Whirlin (Whrn) mouse model studies have linked such behavioral deficits to improper localization of critical transmembrane protein complexes in the ear and eye. Until now, no reports exist about the function of Whrn in myelinated axons. RT-PCR and immunoblot analyses revealed expression of Whrn mRNA and Whrn full-length protein, respectively, in several stages of central and peripheral nervous system development. Comparing wild-type mice to Whrn knockout (Whrn-/-) mice, we observed no significant differences in the expression of standard axonal domain markers by immunoblot analysis but observed and quantified a novel paranodal compaction phenotype in 4 to 8 week-old Whrn-/- nerves. The paranodal compaction phenotype and associated cytoskeletal disruption was observed in Whrn-/- mutant sciatic nerves and spinal cord fibers from early (2 week-old) to late (1 year-old) stages of development. Light and electron microscopic analyses of Whrn knockout mice reveal bead-like swellings in cerebellar Purkinje axons containing mitochondria and vesicles by both. These data suggest that Whrn plays a role in proper cytoskeletal organization in myelinated axons. Domain organization in myelinated axons remains a complex developmental process. Here we demonstrate that loss of Whrn disrupts proper axonal

  19. Mechanisms for differential block among single myelinated and non-myelinated axons by procaine

    PubMed Central

    Franz, Donald N.; Perry, Roger S.

    1974-01-01

    1. The differential sensitivity of saphenous nerve fibres in the cat to block by procaine HCl was re-examined by recording identifiable unit action potentials from small nerve filaments. 2. Small myelinated axons were blocked more quickly than large myelinated axons, but this differential effect could not be accounted for by differences in anaesthetic concentration requirements. 3. The onset of block in non-myelinated axons was slower than or equal to that of small myelinated axons depending on anaesthetic concentration. 4. Absolute differential block of non-myelinated and small myelinated axons was obtained by limiting the length of axons exposed to procaine to 2 mm. 5. Differential rates of blocking among myelinated axons appear to depend on differences in the length of axons that must be exposed to blocking concentrations of procaine and to arise from the irregular distribution of such concentrations within an exposed nerve. PMID:4818493

  20. FAK Is Required for Schwann Cell Spreading on Immature Basal Lamina to Coordinate the Radial Sorting of Peripheral Axons with Myelination

    PubMed Central

    Grove, Matthew

    2014-01-01

    Without Focal Adhesion Kinase (FAK), developing murine Schwann cells (SCs) proliferate poorly, sort axons inefficiently, and cannot myelinate peripheral nerves. Here we show that FAK is required for the development of SCs when their basal lamina (BL) is fragmentary, but not when it is mature in vivo. Mutant SCs fail to spread on fragmentary BL during development in vivo, and this is phenocopied by SCs lacking functional FAK on low laminin (LN) in vitro. Furthermore, SCs without functional FAK initiate differentiation prematurely, both in vivo and in vitro. In contrast to their behavior on high levels of LN, SCs lacking functional FAK grown on low LN display reduced spreading, proliferation, and indicators of contractility (i.e., stress fibers, arcs, and focal adhesions) and are primed to differentiate. Growth of SCs lacking functional FAK on increasing LN concentrations in vitro revealed that differentiation is not regulated by G1 arrest but rather by cell spreading and the level of contractile actomyosin. The importance of FAK as a critical regulator of the specific response of developing SCs to fragmentary BL was supported by the ability of adult FAK mutant SCs to remyelinate demyelinated adult nerves on mature BL in vivo. We conclude that FAK promotes the spreading and actomyosin contractility of immature SCs on fragmentary BL, thus maintaining their proliferation, and preventing differentiation until they reach high density, thereby promoting radial sorting. Hence, FAK has a critical role in the response of SCs to limiting BL by promoting proliferation and preventing premature SC differentiation. PMID:25274820

  1. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    NASA Technical Reports Server (NTRS)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  2. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    NASA Technical Reports Server (NTRS)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  3. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons

    PubMed Central

    Wake, Hiroaki; Ortiz, Fernando C.; Woo, Dong Ho; Lee, Philip R.; Angulo, María Cecilia; Fields, R. Douglas

    2015-01-01

    The myelin sheath on vertebrate axons is critical for neural impulse transmission, but whether electrically active axons are preferentially myelinated by glial cells, and if so, whether axo-glial synapses are involved, are long-standing questions of significance to nervous system development, plasticity and disease. Here we show using an in vitro system that oligodendrocytes preferentially myelinate electrically active axons, but synapses from axons onto myelin-forming oligodendroglial cells are not required. Instead, vesicular release at nonsynaptic axo-glial junctions induces myelination. Axons releasing neurotransmitter from vesicles that accumulate in axon varicosities induces a local rise in cytoplasmic calcium in glial cell processes at these nonsynaptic functional junctions, and this signalling stimulates local translation of myelin basic protein to initiate myelination. PMID:26238238

  4. Electromagnetic induction between axons and their schwann cell myelin-protein sheaths.

    PubMed

    Goodman, G; Bercovich, D

    2013-12-01

    Two concepts have long dominated vertebrate nerve electrophysiology: (a) Schwann cell-formed myelin sheaths separated by minute non-myelinated nodal gaps and spiraling around axons of peripheral motor nerves reduce current leakage during propagation of trains of axon action potentials; (b) "jumping" by action potentials between successive nodes greatly increases signal conduction velocity. Long-held and more recent assumptions and issues underlying those concepts have been obscured by research emphasis on axon-sheath biochemical symbiosis and nerve regeneration. We hypothesize: mutual electromagnetic induction in the axon-glial sheath association, is fundamental in signal conduction in peripheral and central myelinated axons, explains the g-ratio and is relevant to animal navigation.

  5. THEORETICAL PRINCIPLES UNDERLYING OPTICAL STIMULATION OF MYELINATED AXONS EXPRESSING CHANNELRHODOPSIN-2

    PubMed Central

    ARLOW, R. L.; FOUTZ, T. J.; MCINTYRE, C. C.

    2013-01-01

    Numerous clinical conditions can be treated by neuromodulation of the peripheral nervous system (PNS). Typical electrical PNS therapies activate large diameter axons at lower electrical stimulus thresholds than small diameter axons. However, recent animal experiments with peripheral optogenetic neural stimulation (PONS) of myelinated axons expressing channelrhodopsin-2 (ChR2) have shown that this technique activates small diameter axons at lower irradiances than large diameter axons. We hypothesized that the small-to-large diameter recruitment order primarily arises from the internodal spacing relationship of myelinated axons. Small diameter axons have shorter distances between their nodes of Ranvier, which increases the number of nodes of Ranvier directly illuminated relative to larger diameter axons. We constructed “light-axon” PONS models that included multi-compartment, double cable, myelinated axon models embedded with ChR2 membrane dynamics, coupled with a model of blue light dynamics in the tissue medium from a range of different light sources. The light-axon models enabled direct calculation of threshold irradiance for different diameter axons. Our simulations demonstrate that illumination of multiple nodal sections reduces the threshold irradiance and enhances the small-to-large diameter recruitment order. In addition to addressing biophysical questions, our light-axon model system could also be useful in guiding the engineering design of optical stimulation technology that could maximize the efficiency and selectivity of PONS. PMID:23811392

  6. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo

    PubMed Central

    Almeida, Rafael G.; Czopka, Tim; ffrench-Constant, Charles; Lyons, David A.

    2011-01-01

    The majority of axons in the central nervous system (CNS) are eventually myelinated by oligodendrocytes, but whether the timing and extent of myelination in vivo reflect intrinsic properties of oligodendrocytes, or are regulated by axons, remains undetermined. Here, we use zebrafish to study CNS myelination at single-cell resolution in vivo. We show that the large caliber Mauthner axon is the first to be myelinated (shortly before axons of smaller caliber) and that the presence of supernumerary large caliber Mauthner axons can profoundly affect myelination by single oligodendrocytes. Oligodendrocytes that typically myelinate just one Mauthner axon in wild type can myelinate multiple supernumerary Mauthner axons. Furthermore, oligodendrocytes that exclusively myelinate numerous smaller caliber axons in wild type can readily myelinate small caliber axons in addition to the much larger caliber supernumerary Mauthner axons. These data indicate that single oligodendrocytes can myelinate diverse axons and that their myelinating potential is actively regulated by individual axons. PMID:21880787

  7. Minimizing the caliber of myelinated axons by means of nodal constrictions

    PubMed Central

    Johnson, Christopher; Holmes, William R.; Brown, Anthony

    2015-01-01

    In myelinated axons, most of the voltage-gated ion channels are concentrated at the nodes of Ranvier, which are short gaps in the myelin sheath. This arrangement leads to saltatory conduction and a larger conduction velocity than in nonmyelinated axons. Intriguingly, axons in the peripheral nervous system that exceed about 2 μm in diameter exhibit a characteristic narrowing of the axon at nodes that results in a local reduction of the axonal cross-sectional area. The extent of constriction increases with increasing internodal axonal caliber, reaching a threefold reduction in diameter for the largest axons. In this paper, we use computational modeling to investigate the effect of nodal constrictions on axonal conduction velocity. For a fixed number of ion channels, we find that there is an optimal extent of nodal constriction which minimizes the internodal axon caliber that is required to achieve a given target conduction velocity, and we show that this is sensitive to the precise geometry of the axon and myelin sheath in the flanking paranodal regions. Thus axonal constrictions at nodes of Ranvier appear to be a biological adaptation to minimize axonal volume, thereby maximizing the spatial and metabolic efficiency of these processes, which can be a significant evolutionary constraint. We show that the optimal nodal morphologies are relatively insensitive to changes in the number of nodal sodium channels. PMID:26224772

  8. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway

    PubMed Central

    Fernando, Ruani N.; Cotter, Laurent; Perrin-Tricaud, Claire; Berthelot, Jade; Bartolami, Sylvain; Pereira, Jorge A.; Gonzalez, Sergio; Suter, Ueli; Tricaud, Nicolas

    2016-01-01

    Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry—diameter and length—is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy2j/2j mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments. PMID:27435623

  9. Recovery of axonal myelination sheath and axonal caliber in the mouse corpus callosum following damage induced by N,N-diethyldithiocarbamate.

    PubMed

    Utrera, Juana; Romero, Rafael; Verdaguer, Ester; Junyent, Fèlix; Auladell, Carme

    2011-12-01

    Disulfiram is an aldehyde dehydrogenase inhibitor used for the treatment of alcohol dependence and of cocaine addiction. It has been demonstrated that subchronic administration of disulfiram or N,N-diethyldithiocarbamate (DEDTC), the main derivative of disulfiram, to rats can produce central-peripheral distal axonopathy. However, few data regarding the axonal effects of these compounds in the central nervous system exist. Our previous studies have revealed DEDTC-induced axonal damage in the mouse brain during the course of postnatal development, together with alterations in axonal pathfinding and in the myelination process, with partial recovery during the post-treatment period. In order to gather new data about how this axonal damage and recovery occurs in the central nervous system, we performed an ultrastructural analysis of the axons located in the corpus callosum from mice treated with DEDTC during postnatal development. The axonal caliber throughout the axonal area, the maximum axonal diameter, the maximum fiber diameter, and the axonal circularity, at different postnatal stages [from postnatal day (P)9 to P30], were analyzed. In addition, parameters related to the myelinization process (number of myelinated axons, sheath thickness, and the ratio of myelinated axons to total axons) were evaluated. A reduction in the average value of axonal caliber during treatment and a delay in the axonal myelination process were detected. Whereas early recovery of individual axons occurred after treatment (P22), complete recovery of myelinated axons occurred at late postnatal stages (P42). Therefore, chronic treatment with dithiocarbamates requires periods of rest to encourage the recovery of myelinated axons.

  10. Myelin vs Axon Abnormalities in White Matter in Bipolar Disorder

    PubMed Central

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-01-01

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ. PMID:25409595

  11. Myelin vs axon abnormalities in white matter in bipolar disorder.

    PubMed

    Lewandowski, Kathryn E; Ongür, Dost; Sperry, Sarah H; Cohen, Bruce M; Sehovic, Selma; Goldbach, Jacqueline R; Du, Fei

    2015-03-13

    White matter (WM) abnormalities are among the most commonly reported neuroimaging findings in bipolar disorder. Nonetheless, the specific nature and pathophysiology of these abnormalities remain unclear. Use of a combination of magnetization transfer ratio (MTR) and diffusion tensor spectroscopy (DTS) permits examination of myelin and axon abnormalities separately. We aimed to examine myelination and axon geometry in euthymic patients with bipolar disorder with psychosis (BDP) by combining these two complementary noninvasive MRI techniques. We applied a combined MRI approach using MTR to study myelin content and DTS to study metabolite (N-acetylaspartate, NAA) diffusion within axons in patients with BDP (n=21) and healthy controls (n=24). Data were collected from a 1 × 3 × 3-cm voxel within the right prefrontal cortex WM at 4 Tesla. Clinical and cognitive data were examined in association with MTR and DTS data. MTR was significantly reduced in BDP, suggesting reduced myelin content. The apparent diffusion coefficient of NAA did not differ from healthy controls, suggesting no changes in axon geometry in patients with BDP. These findings suggest that patients with BDP exhibit reduced myelin content, but no changes in axon geometry compared with controls. These findings are in contrast with our recent findings, using the same techniques, in patients with schizophrenia (SZ), which suggest both myelination and axon abnormalities in SZ. This difference may indicate that alterations in WM in BDP may have unique causes and may be less extensive than WM abnormalities seen in SZ.

  12. Internodal myelin volume and axon surface area. A relationship determining myelin thickness?

    PubMed

    Smith, K J; Blakemore, W F; Murray, J A; Patterson, R C

    1982-08-01

    Internodes from normal, remyelinated and regenerated nerve fibres have been isolated from rat spinal roots and sciatic nerve. The internodes have been examined quantitatively by light and electron microscopy to determine their internodal length, myelin thickness, and the circumference and cross-sectional area of both the axons and fibre. Comparison of these measurements of the axon and myelin sheath has revealed a close relationship between the volume of myelin comprising the internode and the area over which the Schwann cell and axon are in close proximity, i.e. the surface area of the axolemma beneath the internodal myelin sheath. The same relationship described not only the internodes on normal nerve fibres, where internodal length is proportional to axon diameter, but also the short and thinly myelinated internodes formed in the adult animal on remyelinated and on regenerated axons. Examination of data presented by Berthold (1978) revealed that a closely similar relationship is also present in feline nerve fibres. In view of the constancy of the relationship between such different types of internode it is suggested that the regulation of myelin volume, and thereby of myelin thickness, may be mediated via the area of the axolemma or of the Schwann cell membrane beneath the myelin sheath.

  13. Dicer in Schwann cells is required for myelination and axonal integrity.

    PubMed

    Pereira, Jorge A; Baumann, Reto; Norrmén, Camilla; Somandin, Christian; Miehe, Michaela; Jacob, Claire; Lühmann, Tessa; Hall-Bozic, Heike; Mantei, Ned; Meijer, Dies; Suter, Ueli

    2010-05-12

    Dicer is responsible for the generation of mature micro-RNAs (miRNAs) and loading them into RNA-induced silencing complex (RISC). RISC functions as a probe that targets mRNAs leading to translational suppression and mRNA degradation. Schwann cells (SCs) in the peripheral nervous system undergo remarkable differentiation both in morphology and gene expression patterns throughout lineage progression to myelinating and nonmyelinating phenotypes. Gene expression in SCs is particularly tightly regulated and critical for the organism, as highlighted by the fact that a 50% decrease or an increase to 150% of normal gene expression of some myelin proteins, like PMP22, results in peripheral neuropathies. Here, we selectively deleted Dicer and consequently gene expression regulation by mature miRNAs from Mus musculus SCs. Our results show that in the absence of Dicer, most SCs arrest at the promyelinating stage and fail to start forming myelin. At the molecular level, the promyelinating transcription factor Krox20 and several myelin proteins [including myelin associated glycoprotein (MAG) and PMP22] were strongly reduced in mutant sciatic nerves. In contrast, the myelination inhibitors SOX2, Notch1, and Hes1 were increased, providing an additional potential basis for impaired myelination. A minor fraction of SCs, with some peculiar differences between sensory and motor fibers, overcame the myelination block and formed unusually thin myelin, in line with observed impaired neuregulin and AKT signaling. Surprisingly, we also found signs of axonal degeneration in Dicer mutant mice. Thus, our data indicate that miRNAs critically regulate Schwann cell gene expression that is required for myelination and to maintain axons via axon-glia interactions.

  14. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system

    PubMed Central

    Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D.; Baba, Hiroko; Ikenaka, Kazuhiro

    2017-01-01

    Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy. PMID:28186137

  15. Myelin-axon relationships established by rat vagal Schwann cells deep to the brainstem surface.

    PubMed

    Fraher, J P; Rossiter, J P

    1991-02-08

    The central-peripheral transitional zones of rat dorsolateral vagal rootlets are highly complex. Peripheral nervous tissue extends centrally for up to several hundred micrometers deep to the brainstem surface along these rootlets. In some instances this peripheral nervous tissue lacks continuity with the peripheral nervous system (PNS) and so forms an island within the central nervous system (CNS). In conformity with the resulting complexity of the CNS-PNS interface, segments of vagal axons lying deep to the brainstem surface are myelinated by one or more intercalated Schwann cells, contained in peripheral tissue insertions or islands, at either end of which they traverse an astroglial barrier. Intercalated Schwann cells are thus isolated from contact or contiguity with the Schwann cells of the PNS generally. They are short, having a mean internodal length of around 60% of that of the most proximal Schwann cells of the PNS proper, which lie immediately distal to the CNS-PNS interface and which are termed transitional Schwann cells. The thickness of the myelin sheaths produced by intercalated Schwann cells is intermediate between that of transitional Schwann cells and that of oligodendrocytes myelinating vagal axons of the same calibre distribution. This is not due to limited blood supply or to insufficient numbers of intercalated Schwann cells, the density of which is greater than that of transitional Schwann cells. These factors are unlikely to restrict expression of their myelinogenic potential. Nevertheless, the regression data show that the setting of the myelin-axon relationship differs significantly between the two categories of Schwann cell. Thus, the myelinogenic response of Schwann cells to stimuli emanating from the same axons may differ between levels along one and the same nerve bundle. Mean myelin periodicity was found to differ between sheaths produced by intercalated and by transitional Schwann cells.

  16. Axonal Transport and Morphology: How Myelination gets Nerves into Shape

    NASA Astrophysics Data System (ADS)

    Jung, Peter; Zhao, Peng; Monsma, Paula; Brown, Tony

    2011-03-01

    The local caliber of mature axons is largely determined by neurofilament (NF) content. The axoskeleton, mainly consisting of NFs, however, is dynamic. NFs are assembled in the cell body and are transported by molecular motors on microtubule tracks along the axon at a slow rate of fractions of mm per day. We combine live cell fluorescent imaging techniques to access NF transport in myelinated and non-myelinated segments of axons with computational modeling of the active NF flow to show that a), myelination locally slows NF transport rates by regulating duty ratios and b), that the predicted increase in axon caliber agrees well with experiments. This study, for the first time, links NF kinetics directly to axonal morphology, providing a novel conceptual framework for the physical understanding of processes leading to the formation of axonal structures such as the ``Nodes of Ranvier'' as well as abnormal axonal swellings associated with neurodegenerative diseases like Amyotrophic lateral sclerosis (ALS). NSF grants # IOS-0818412(PJ) and IOS-0818653 (AB).

  17. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration

    PubMed Central

    Rao, Sudheendra N. R.; Pearse, Damien D.

    2016-01-01

    Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI. PMID:27375427

  18. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors

    PubMed Central

    Verdiyan, Ekaterina E.; Allakhverdiev, Elvin S.; Maksimov, Georgy V.

    2016-01-01

    In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh) regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC) acetylcholine receptors (AChRs) and the axon excitation (different intervals between action potentials (APs)). Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the “axon-SC” interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+—influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization. PMID:27455410

  19. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury

    PubMed Central

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David LH

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. DOI: http://dx.doi.org/10.7554/eLife.12661.001 PMID:27033551

  20. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury.

    PubMed

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David L H

    2016-04-19

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury.

  1. Peripheral Axons of the Adult Zebrafish Maxillary Barbel Extensively Remyelinate During Sensory Appendage Regeneration

    PubMed Central

    Moore, Alex C.; Mark, Tiffany E.; Hogan, Ann K.; Topczewski, Jacek; LeClair, Elizabeth E.

    2013-01-01

    Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ~180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ~85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate. PMID:22592645

  2. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  3. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  4. Local erythropoietin signaling enhances regeneration in peripheral axons.

    PubMed

    Toth, C; Martinez, J A; Liu, W Q; Diggle, J; Guo, G F; Ramji, N; Mi, R; Hoke, A; Zochodne, D W

    2008-06-23

    Erythropoietin (EPO) and its receptor (EPO-R), mediate neuroprotection from axonopathy and apoptosis in the peripheral nervous system (PNS). We examined the impact and potential mechanisms of local EPO signaling on regenerating PNS axons in vivo and in vitro. As a consequence of injury, peripheral nerve axons and DRG neurons have a marked increase in the expression of EPO and EPO-R. Local delivery of EPO via conduit over 2 weeks to rat sciatic nerve following crush injury increased the density and maturity of regenerating myelinated axons growing distally from the crush site. In addition, EPO also rescued retrograde degeneration and atrophy of axons. EPO substantially increased the density and intensity of calcitonin gene-related peptide (CGRP) expression within outgrowing axons. Behavioral improvements in sensorimotor function also occurred in rats exposed to near nerve EPO delivery. EPO delivery led to decreased nuclear factor kappaB (NFkB) activation but increased phosphorylation of Akt and STAT3 within nerve and dorsal root ganglia neurons indicating rescue from an injury phenotype. Spinal cord explant studies also demonstrated a similar dose-dependent effect of EPO upon motor axonal outgrowth. Local EPO signaling enhances regenerating peripheral nervous system axons in addition to its known neuroprotection. Exogenous EPO may have a therapeutic role in a large number of peripheral nerve diseases through its impact on regeneration.

  5. Strength of ERK1/2 MAPK Activation Determines Its Effect on Myelin and Axonal Integrity in the Adult CNS

    PubMed Central

    Ishii, Akihiro; Furusho, Miki; Dupree, Jeffrey L

    2016-01-01

    Myelin growth is a tightly regulated process driven by multiple signals. ERK1/2-MAPK signaling is an important regulator of myelin thickness. Because, in demyelinating diseases, the myelin formed during remyelination fails to achieve normal thickness, increasing ERK1/2 activity in oligodendrocytes is of obvious therapeutic potential for promoting efficient remyelination. However, other studies have suggested that increased levels of ERK1/2 activity could, in fact, have detrimental effects on myelinating cells. Because the strength, duration, or timing of ERK1/2 activation may alter the biological outcomes of cellular responses markedly, here, we investigated the effect of modulating ERK1/2 activity in myelinating cells using transgenic mouse lines in which ERK1/2 activation was upregulated conditionally in a graded manner. We found enhanced myelin gene expression and myelin growth in the adult CNS at both moderate and hyperactivated levels of ERK1/2 when upregulation commenced during developmental myelination or was induced later during adulthood in quiescent preexisting oligodendrocytes, after active myelination is largely terminated. However, a late onset of demyelination and axonal degeneration occurred at hyperelevated, but not moderately elevated, levels regardless of the timing of the upregulation. Similarly, myelin and axonal pathology occurred with elevated ERK1/2 activity in Schwann cells. We conclude that a fine tuning of ERK1/2 signaling strength is critically important for normal oligodendrocyte and Schwann cell function and that disturbance of this balance has negative consequences for myelin and axonal integrity in the long term. Therefore, therapeutic modulation of ERK1/2 activity in demyelinating disease or peripheral neuropathies must be approached with caution. SIGNIFICANCE STATEMENT ERK1/2-MAPK activation in oligodendrocytes and Schwann cells is an important signal for promoting myelin growth during developmental myelination. Here, we show that

  6. White matter involvement after TBI: Clues to axon and myelin repair capacity.

    PubMed

    Armstrong, Regina C; Mierzwa, Amanda J; Marion, Christina M; Sullivan, Genevieve M

    2016-01-01

    Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI.

  7. CNS axons globally increase axonal transport after peripheral conditioning.

    PubMed

    Mar, Fernando M; Simões, Anabel R; Leite, Sérgio; Morgado, Marlene M; Santos, Telma E; Rodrigo, Inês S; Teixeira, Carla A; Misgeld, Thomas; Sousa, Mónica M

    2014-04-23

    Despite the inability of CNS axons to regenerate, an increased regenerative capacity can be elicited following conditioning lesion to the peripheral branch of dorsal root ganglia neurons (DRGs). By in vivo radiolabeling of rat DRGs, coupled to mass spectrometry and kinesin immunoprecipitation of spinal cord extracts, we determined that the anterograde transport of cytoskeleton components, metabolic enzymes and axonal regeneration enhancers, was increased in the central branch of DRGs following a peripheral conditioning lesion. Axonal transport of mitochondria was also increased in the central branch of Thy1-MitoCFP mice following a peripheral injury. This effect was generalized and included augmented transport of lysosomes and synaptophysin- and APP-carrying vesicles. Changes in axonal transport were only elicited by a peripheral lesion and not by spinal cord injury. In mice, elevated levels of motors and of polyglutamylated and tyrosinated tubulin were present following a peripheral lesion and can explain the increase in axonal transport induced by conditioning. In summary, our work shows that a peripheral injury induces a global increase in axonal transport that is not restricted to the peripheral branch, and that, by extending to the central branch, allows a rapid and sustained support of regenerating central axons.

  8. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction

    PubMed Central

    Vanderpool, Kimberly G.; Yasumura, Thomas; Hickman, Jordan; Beatty, Jonathan T.; Nagy, James I.

    2016-01-01

    Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K+-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed “rosettes” of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K+ conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000–400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K+ conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in

  9. An essential role of MAG in mediating axon-myelin attachment in Charcot-Marie-Tooth 1A disease

    PubMed Central

    Kinter, Jochen; Lazzati, Thomas; Schmid, Daniela; Zeis, Thomas; Erne, Beat; Lützelschwab, Roland; Steck, Andreas J.; Pareyson, Davide; Peles, Elior; Schaeren-Wiemers, Nicole

    2012-01-01

    Charcot-Marie-Tooth disease type 1A (CMT1A) is a hereditary demyelinating peripheral neuropathy caused by the duplication of the PMP22 gene. Demyelination precedes the occurrence of clinical symptoms that correlate with axonal degeneration. It was postulated that a disturbed axon-glia interface contribute to altered myelination consequently leading to axonal degeneration. In this study, we examined the expression of MAG and Necl4, two critical adhesion molecules that are present at the axon-glia interface, in sural nerve biopsies of CMT1A patients and in peripheral nerves of mice overexpressing human PMP22, an animal model for CMT1A. We show an increase in the expression of MAG and a strong decrease of Necl4 in biopsies of CMT1A patients as well as in CMT1A mice. Expression analysis revealed that MAG is strongly upregulated during peripheral nerve maturation, whereas Necl4 expression remains very low. Ablating MAG in CMT1A mice results in separation of axons from their myelin sheath. Our data show that MAG is important for axon-glia contact in a model for CMT1A, and suggest that its increased expression in CMT1A disease has a compensatory role in the pathology of the disease. Thus, we demonstrate that MAG together with other adhesion molecules such as Necl4 is important in sustaining axonal integrity. PMID:22940629

  10. Uncompacted myelin lamellae in peripheral nerve biopsy.

    PubMed

    Vital, Claude; Vital, Anne; Bouillot, Sandrine; Favereaux, Alexandre; Lagueny, Alain; Ferrer, Xavier; Brechenmacher, Christiane; Petry, Klaus G

    2003-01-01

    Since 1979, the authors have studied 49 peripheral nerve biopsies presenting uncompacted myelin lamellae (UML). Based on the ultrastructural pattern of UML they propose a 3-category classification. The first category includes cases displaying regular UML, which was observed in 43 cases; it was more frequent in 9 cases with polyneuropathy organomegaly endocrinopathy m-protein skin changes (POEMS) syndrome as well as in 1 case of Charcot-Marie-Tooth 1B with a novel point mutation in the P0 gene. The second category consists of cases showing irregular UML, observed in 4 cases with IgM monoclonal gammopathy and anti-myelin-associated glycoprotein (MAG) activity. This group included 1 benign case and 3 B-cell malignant lymphomas. The third category is complex UML, which was present in 2 unrelated patients with an Arg 98 His missense mutation in the P0 protein gene. Irregular and complex UML are respectively related to MAG and P0, which play a crucial role in myelin lamellae compaction and adhesion.

  11. Axonal regulation of Schwann cell integrin expression suggests a role for alpha 6 beta 4 in myelination

    PubMed Central

    1993-01-01

    Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two integrin subunits, beta 1 and beta 4, in an in vitro myelination system and compared their expression to that of the glial adhesion molecule, the myelin-associated glycoprotein (MAG). In the absence of neurons, Schwann cells express significant levels of beta 1 but virtually no beta 4 or MAG. When Schwann cells are cocultured with dorsal root ganglia neurons under conditions promoting myelination, expression of beta 4 and MAG increased dramatically in myelinating cells, whereas beta 1 levels remained essentially unchanged. (In general agreement with these findings, during peripheral nerve development in vivo, beta 4 levels also increase during the period of myelination in sharp contrast to beta 1 levels which show a striking decrease.) In cocultures of neurons and Schwann cells, beta 4 and MAG appear to colocalize in nascent myelin sheaths but have distinct distributions in mature sheaths, with beta 4 concentrated in the outer plasma membrane of the Schwann cell and MAG localized to the inner (periaxonal) membrane. Surprisingly, beta 4 is also present at high levels with MAG in Schmidt-Lanterman incisures. Immunoprecipitation studies demonstrated that primary Schwann cells express beta 1 in association with the alpha 1 and alpha 6 subunits, while myelinating Schwann cells express alpha 6 beta 4 and possibly alpha 1 beta 1. beta 4 is also downregulated during Wallerian degeneration in vitro, indicating that its expression requires continuous Schwann cell contact with the axon. These results indicate that axonal contact induces the expression of beta 4 during Schwann cell

  12. Unmyelinated axons are more vulnerable to degeneration than myelinated axons of the cardiac nerve in Parkinson's disease.

    PubMed

    Orimo, S; Uchihara, T; Kanazawa, T; Itoh, Y; Wakabayashi, K; Kakita, A; Takahashi, H

    2011-12-01

    We recently demonstrated accumulation of α-synuclein aggregates of the cardiac sympathetic nerve in Parkinson's disease (PD) and a possible relationship between degeneration of the cardiac sympathetic nerve and α-synuclein aggregates. The aim of this study is to determine whether there is a difference in the degenerative process between unmyelinated and myelinated axons of the cardiac nerve. We immunohistochemically examined cardiac tissues from four pathologically verified PD patients, nine patients with incidental Lewy body disease (ILBD) and five control subjects, using antibodies against neurofilament, myelin basic protein (MBP) and α-synuclein. First, we counted the number of neurofilament-immunoreactive axons not surrounded by MBP (unmyelinated axons) and those surrounded by MBP (myelinated axons). Next, we counted the number of unmyelinated and myelinated axons with α-synuclein aggregates. (i) The percentage of unmyelinated axons in PD (77.5 ± 9.14%) was significantly lower compared to that in control subjects (92.2 ± 2.40%). (ii) The ratio of unmyelinated axons with α-synuclein aggregates to total axons with α-synuclein aggregates in ILBD ranged from 94.4 to 100 (98.2 ± 2.18%). Among axons with α-synuclein aggregates, unmyelinated axons were the overwhelming majority, comprising 98.2%. These findings suggest that in PD unmyelinated axons are more vulnerable to degeneration than myelinated axons of the cardiac nerve, because α-synuclein aggregates accumulate much more abundantly in unmyelinated axons. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  13. RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

    PubMed Central

    Hendelman, Walter J.; Bunge, Richard P.

    1969-01-01

    This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair. PMID:5782444

  14. Paclitaxel causes degeneration of both central and peripheral axon branches of dorsal root ganglia in mice.

    PubMed

    Tasnim, Aniqa; Rammelkamp, Zoe; Slusher, Amy B; Wozniak, Krystyna; Slusher, Barbara S; Farah, Mohamed H

    2016-07-11

    Peripheral neuropathy is a common and dose-limiting side effect of many cancer chemotherapies. The taxane agents, including paclitaxel (Taxol(®)), are effective chemotherapeutic drugs but cause degeneration of predominantly large myelinated afferent sensory fibers of the peripheral nervous system in humans and animal models. Dorsal root ganglia (DRG) neurons are sensory neurons that have unipolar axons each with two branches: peripheral and central. While taxane agents induce degeneration of peripheral axons, whether they also cause degeneration of central nervous system axons is not clear. Using a mouse model of paclitaxel-induced neuropathy, we investigated the effects of paclitaxel on the central branches of sensory axons. We observed that in the spinal cords of paclitaxel-intoxicated mice, degenerated axons were present in the dorsal columns, where the central branches of DRG axons ascend rostrally. In the peripheral nerves, degenerated myelinated fibers were present in significantly greater numbers in distal segments than in proximal segments indicating that this model exhibits the distal-to-proximal degeneration pattern generally observed in human peripheral nerve disorders. We conclude that paclitaxel causes degeneration of both the peripheral and central branches of DRG axons, a finding that has implications for the site and mode of action of chemotherapy agents on the nervous system.

  15. Biology of peripheral inherited neuropathies: Schwann cell axonal interactions.

    PubMed

    Shy, Michael E

    2009-01-01

    Development and maintenance of PNS myelin depends on continual signaling from axons ensheathed by myelin. Recent advances have demonstrated the roles of neuregulin 1 type III, Erb2/3 and intracellular signal transduction pathways in inducing Schwann cell myelination. Alternatively, maintenance of myelinated axons depends on healthy myelinating Schwann cells. Axonal degeneration is a feature of virtually all inherited demyelinating neuropathies and in many cases is more responsible for clinical impairment than the primary demyelination. Signaling mechanisms through which demyelinating Schwann cells damage axons are not well understood. In this review several examples of potential mechanisms by which demyelinating neuropathies damage axons will be presented. Understanding the molecular basis of Schwann cell-axonal interactions will not only increase the understanding of PNS biology but also identify therapeutic targets for inherited neuropathies.

  16. Schwann cell mitochondria as key regulators in the development and maintenance of peripheral nerve axons.

    PubMed

    Ino, Daisuke; Iino, Masamitsu

    2017-03-01

    Formation of myelin sheaths by Schwann cells (SCs) enables rapid and efficient transmission of action potentials in peripheral axons, and disruption of myelination results in disorders that involve decreased sensory and motor functions. Given that construction of SC myelin requires high levels of lipid and protein synthesis, mitochondria, which are pivotal in cellular metabolism, may be potential regulators of the formation and maintenance of SC myelin. Supporting this notion, abnormal mitochondria are found in SCs of neuropathic peripheral nerves in both human patients and the relevant animal models. However, evidence for the importance of SC mitochondria in myelination has been limited, until recently. Several studies have recently used genetic approaches that allow SC-specific ablation of mitochondrial metabolic activity in living animals to show the critical roles of SC mitochondria in the development and maintenance of peripheral nerve axons. Here, we review current knowledge about the involvement of SC mitochondria in the formation and dysfunction of myelinated axons in the peripheral nervous system.

  17. A Novel Approach for Studying the Physiology and Pathophysiology of Myelinated and Non-Myelinated Axons in the CNS White Matter

    PubMed Central

    Samoilova, Marina

    2016-01-01

    Advances in brain connectomics set the need for detailed knowledge of functional properties of myelinated and non-myelinated (if present) axons in specific white matter pathways. The corpus callosum (CC), a major white matter structure interconnecting brain hemispheres, is extensively used for studying CNS axonal function. Unlike another widely used CNS white matter preparation, the optic nerve where all axons are myelinated, the CC contains also a large population of non-myelinated axons, making it particularly useful for studying both types of axons. Electrophysiological studies of optic nerve use suction electrodes on nerve ends to stimulate and record compound action potentials (CAPs) that adequately represent its axonal population, whereas CC studies use microelectrodes (MEs), recording from a limited area within the CC. Here we introduce a novel robust isolated "whole" CC preparation comparable to optic nerve. Unlike ME recordings where the CC CAP peaks representing myelinated and non-myelinated axons vary broadly in size, "whole" CC CAPs show stable reproducible ratios of these two main peaks, and also reveal a third peak, suggesting a distinct group of smaller caliber non-myelinated axons. We provide detailed characterization of "whole" CC CAPs and conduction velocities of myelinated and non-myelinated axons along the rostro-caudal axis of CC body and show advantages of this preparation for comparing axonal function in wild type and dysmyelinated shiverer mice, studying the effects of temperature dependence, bath-applied drugs and ischemia modeled by oxygen-glucose deprivation. Due to the isolation from gray matter, our approach allows for studying CC axonal function without possible "contamination" by reverberating signals from gray matter. Our analysis of "whole" CC CAPs revealed higher complexity of myelinated and non-myelinated axonal populations, not noticed earlier. This preparation may have a broad range of applications as a robust model for studying

  18. Axon-myelin sheath relations of oligodendrocyte unit phenotypes in the adult rat anterior medullary velum.

    PubMed

    Butt, A M; Ibrahim, M; Berry, M

    1998-04-01

    Axon-oligodendrocyte relations of Rip-immunolabelled and dye-injected oligodendrocyte units are characterised in the adult rat anterior medullary velum (AMV). Each oligodendrocyte unit comprised the oligodendrocyte cell body, processes and the internodal myelin segments they support. Oligodendrocyte units corresponded to classically described type I/II or type III/IV unit phenotypes which respectively myelinated discrete populations of small and large diameter axons, delineated by a myelinated fire diameter of 2-4 microns (diameter of the axon plus its myelin sheath). Within units, mean fibre diameter was directly related to mean internodal length and inversely related to the number of myelin sheaths in the unit. The relationship between fibre diameter and internodal length was retained in units which myelinated axons of different diameters, indicating that axon diameter was an important determinant of the longitudinal dimensions of myelin sheaths. We also show that type III/IV units maintained a far greater volume of myelin than type I/II units. It was concluded that type I/II and III/IV oligodendrocytes represent two functionally and morphologically distinct phenotypes whose distribution densities were determined by the diameter and spatial dispersion of axons.

  19. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    NASA Astrophysics Data System (ADS)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  20. Regulation of Myelin Genes Implicated in Psychiatric Disorders by Functional Activity in Axons

    PubMed Central

    Lee, Philip R.; Fields, R. Douglas

    2009-01-01

    Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons. PMID:19521541

  1. An apolipoprotein E-mimetic stimulates axonal regeneration and remyelination after peripheral nerve injury.

    PubMed

    Li, Feng-Qiao; Fowler, Kenneth A; Neil, Jessica E; Colton, Carol A; Vitek, Michael P

    2010-07-01

    Elevated apolipoprotein E (apoE) synthesis within crushed sciatic nerves advocates that apoE could benefit axonal repair and reconstruction of axonal and myelin membranes. We created an apoE-mimetic peptide, COG112 (acetyl-RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRLL-amide), and found that postinjury treatment with COG112 significantly improved recovery of motor and sensory function following sciatic nerve crush in C57BL/6 mice. Morphometric analysis of injured sciatic nerves revealed that COG112 promoted axonal regrowth after 2 weeks of treatment. More strikingly, the thickness of myelin sheaths was increased by COG112 treatment. Consistent with these histological findings, COG112 potently elevated growth associated protein 43 (GAP-43) and peripheral myelin protein zero (P0), which are markers of axon regeneration and remyelination, respectively. Electron microscopic examination further suggested that the apoE-mimetic COG112 may increase clearance of myelin debris. Schwann cell uptake of cholesterol-containing low-density lipoprotein particles was selectively enhanced by COG112 treatment in a Schwann cell line S16. Moreover, COG112 significantly promoted axon elongation in primary dorsal root ganglion cultures from rat pups. Considering that cholesterol and lipids are needed for reconstructing myelin sheaths and axon extension, these data support a hypothesis where supplementation with exogenous apoE-mimetics such as COG112 may be a promising strategy for restoring lost functional and structural elements following nerve injury.

  2. An Apolipoprotein E-Mimetic Stimulates Axonal Regeneration and Remyelination after Peripheral Nerve Injury

    PubMed Central

    Fowler, Kenneth A.; Neil, Jessica E.; Colton, Carol A.; Vitek, Michael P.

    2010-01-01

    Elevated apolipoprotein E (apoE) synthesis within crushed sciatic nerves advocates that apoE could benefit axonal repair and reconstruction of axonal and myelin membranes. We created an apoE-mimetic peptide, COG112 (acetyl-RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRLL-amide), and found that postinjury treatment with COG112 significantly improved recovery of motor and sensory function following sciatic nerve crush in C57BL/6 mice. Morphometric analysis of injured sciatic nerves revealed that COG112 promoted axonal regrowth after 2 weeks of treatment. More strikingly, the thickness of myelin sheaths was increased by COG112 treatment. Consistent with these histological findings, COG112 potently elevated growth associated protein 43 (GAP-43) and peripheral myelin protein zero (P0), which are markers of axon regeneration and remyelination, respectively. Electron microscopic examination further suggested that the apoE-mimetic COG112 may increase clearance of myelin debris. Schwann cell uptake of cholesterol-containing low-density lipoprotein particles was selectively enhanced by COG112 treatment in a Schwann cell line S16. Moreover, COG112 significantly promoted axon elongation in primary dorsal root ganglion cultures from rat pups. Considering that cholesterol and lipids are needed for reconstructing myelin sheaths and axon extension, these data support a hypothesis where supplementation with exogenous apoE-mimetics such as COG112 may be a promising strategy for restoring lost functional and structural elements following nerve injury. PMID:20406857

  3. Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS

    PubMed Central

    Carmel, Jason B.; Young, Wise; Hart, Ronald P.

    2015-01-01

    Poor regeneration of severed axons in the central nervous system (CNS) limits functional recovery. Regeneration failure involves interplay of inhibitory environmental elements and the growth state of the neuron. To find internal changes in gene expression that might overcome inhibitory environmental cues, we compared several paradigms that allow growth in the inhibitory environment. Conditions that allow axon growth by axotomized and cultured dorsal root ganglion (DRG) neurons on CNS myelin include immaturity (the first few postnatal days), high levels of cyclic adenosine mono phosphate (cAMP), and conditioning with a peripheral nerve lesion before explant. This shift from inhibition to growth depends on transcription. Seeking to understand the transcriptome changes that allow axon growth in the CNS, we collaborated with the Marie Filbin laboratory to identify several mRNAs that are functionally relevant, as determined by gain- and loss-of-function studies. In this Perspective, we review evidence from these experiments and discuss the merits of comparing multiple regenerative paradigms to identify a core transcriptional program for CNS axon regeneration. PMID:26236189

  4. Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem

    PubMed Central

    Seidl, Armin H.; Rubel, Edwin W

    2015-01-01

    A brainstem circuit for encoding the spatial location of sounds involves neurons in the cochlear nucleus that project to medial superior olivary (MSO) neurons on both sides of the brain via a single bifurcating axon. Neurons in MSO act as coincidence detectors, responding optimally when signals from the two ears arrive within a few microseconds. To achieve this, transmission of signals along the contralateral collateral must be faster than transmission of the same signals along the ipsilateral collateral. We demonstrate that this is achieved by differential regulation of myelination and axon caliber along the ipsilateral and contralateral branches of single axons; ipsilateral axon branches have shorter internode lengths and smaller caliber than contralateral branches. The myelination difference is established prior to the onset of hearing. We conclude that this differential myelination and axon caliber requires local interactions between axon collaterals and surrounding oligodendrocytes on the two sides of the brainstem. PMID:26556176

  5. The progeroid gene BubR1 regulates axon myelination and motor function

    PubMed Central

    Choi, Chan-Il; Yoo, Ki Hyun; Qasim Hussaini, Syed Mohammed; Tak Jeon, Byeong; Welby, John; Gan, Haiyun; Scarisbrick, Isobel A.; Zhang, Zhiguo; Baker, Darren J.; van Deursen, Jan M.; Rodriguez, Moses; Jang, Mi-Hyeon

    2016-01-01

    Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of normal and aberrant myelination remain incompletely understood. Here we report that axon myelination and related motor function are dependent on BubR1, a mitotic checkpoint protein that has been linked to progeroid phenotypes when expressed at low levels and healthy lifespan when overabundant. We found that oligodendrocyte progenitor cell proliferation and oligodendrocyte density is markedly reduced in mutant mice with low amounts of BubR1 (BubR1H/H mice), causing axonal hypomyelination in both brain and spinal cord. Expression of essential myelin-related genes such as MBP and PLP1 was significantly reduced in these tissues. Consistent with defective myelination, BubR1H/H mice exhibited various motor deficits, including impaired motor strength, coordination, and balance, irregular gait patterns and reduced locomotor activity. Collectively, these data suggest that BubR1 is a key determinant of oligodendrocyte production and function and provide a molecular entry point to understand age-related degenerative changes in axon myelination. PMID:27922816

  6. Myelin Lipids Inhibit Axon Regeneration Following Spinal Cord Injury: a Novel Perspective for Therapy.

    PubMed

    Mar, Fernando M; da Silva, Tiago F; Morgado, Marlene M; Rodrigues, Lorena G; Rodrigues, Daniel; Pereira, Marta I L; Marques, Ana; Sousa, Vera F; Coentro, João; Sá-Miranda, Clara; Sousa, Mónica M; Brites, Pedro

    2016-03-01

    Lack of axon regeneration following spinal cord injury has been mainly ascribed to the inhibitory environment of the injury site, i.e., to chondroitin sulfate proteoglycans (CSPGs) and myelin-associated inhibitors (MAIs). Here, we used shiverer (shi) mice to assess axon regeneration following spinal cord injury in the presence of MAIs and CSPG but in the absence of compact myelin. Although in vitro shi neurons displayed a similar intrinsic neurite outgrowth to wild-type neurons, in vivo, shi fibers had increased regenerative capacity, suggesting that the wild-type spinal cord contains additional inhibitors besides MAIs and CSPG. Our data show that besides myelin protein, myelin lipids are highly inhibitory for neurite outgrowth and suggest that this inhibitory effect is released in the shi spinal cord given its decreased lipid content. Specifically, we identified cholesterol and sphingomyelin as novel myelin-associated inhibitors that operate through a Rho-dependent mechanism and have inhibitory activity in multiple neuron types. We further demonstrated the inhibitory action of myelin lipids in vivo, by showing that delivery of 2-hydroxypropyl-β-cyclodextrin, a drug that reduces the levels of lipids specifically in the injury site, leads to increased axon regeneration of wild-type (WT) dorsal column axons following spinal cord injury. In summary, our work shows that myelin lipids are important modulators of axon regeneration that should be considered together with protein MAIs as critical targets in strategies aiming at improving axonal growth following injury.

  7. Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse.

    PubMed

    Andrews, Helen; White, Kathryn; Thomson, Christine; Edgar, Julia; Bates, David; Griffiths, Ian; Turnbull, Douglass; Nichols, Philip

    2006-06-01

    Axonal pathology in multiple sclerosis (MS) has been described for over a century, but new insights into axonal loss and disability have refocused interest in this area. There is evidence of oxidative damage to mitochondrial DNA in chronic MS plaques, suggesting that mitochondrial failure may play a role in MS pathology. We propose that in the chronic absence of myelin the maintenance of conduction relies partially on an increase in mitochondria to provide energy. This increased energy requirement also promotes reactive oxygen species (ROS), because most intraaxonal ROS are generated by mitochondria. If antioxidant defenses are overwhelmed by an excess of ROS, this may result in damage to the axon. Our aim was to investigate whether a chronic lack of myelin results in adaptive changes involving mitochondria within the axon. We investigated this in the shiverer mouse. This myelin basic protein gene mutant provides a model of how adult central nervous system (CNS) axons cope with the chronic absence of a compact myelin sheath. Cytochrome c histochemistry demonstrated a twofold increase in mitochondrial activity in white matter tracts of shiverer, and electron microscopy confirmed a significantly higher number of mitochondria within the dysmyelinated axons. Our data demonstrate that there are adaptive changes involving mitochondria occurring within CNS axons in shiverer mice in response to a lack of myelin. This work contributes to our understanding of the adaptive changes occurring in response to a lack of myelin in a noninflammatory environment similar to the situation seen in chronically demyelinated MS plaques.

  8. Age-related morphological regression of myelinated fibers and capillary architecture of distal peripheral nerves in rats.

    PubMed

    Sakita, Masahiro; Murakami, Shinichiro; Fujino, Hidemi

    2016-06-24

    Regression of myelinated peripheral nerve fibers in the lower extremities contributes to sarcopenia and balance dysfunction in normal aging. This subclinical regression of myelinated fibers (MFs) is heavily influenced by alterations in microvasculature, though the mechanism underlying these age-related degenerative phenomena remains unclear. The aim of the present study was to examine age-related regressions in myelinated distal peripheral nerve fibers as well as capillary architecture in rats using both morphological and histochemical methods. MFs were categorized into tertiles of 'large', 'medium', and 'small' sizes based on the distribution of MF diameters. A two-way ANOVA was used to assess effects of fiber size (large/medium/small) and group (young/elderly) on myelin thickness, axon diameter, myelin perimeter, axon perimeter, and G-ratio (axon diameter/fiber diameter). Significant main effects were observed for both MF size and group with respect to all dimensions except for G-ratio. Values for fiber diameter (P < 0.01), myelin thickness (P < 0.01), axon diameter (P < 0.01), myelin perimeter (P < 0.01), and axon perimeter (P < 0.01) were significantly lower than those in the young group. Additionally, mean capillary diameter and number of microvascular branch points were significantly lower in the elderly group than in the young group. The present study demonstrated that spontaneous age-related regression predominantly occurs for all fiber sizes in the distal peripheral nerves and the capillary architecture. The results of the present study further suggest that both the distal MFs and capillaries in the peripheral nerve may simultaneously regress with aging.

  9. Parameter exploration of staircase-shape extracellular stimulation for targeted stimulation of myelinated axon.

    PubMed

    Ueno, Ayako; Karashima, Akihiro; Nakao, Mitsuyuki; Katayama, Norihiro

    2011-01-01

    Spatio-temporal dynamics of a mathematical model of myelinated axon in response to staircase-shape extracellular electrical stimulation, which was developed for selective nerve stimulation, is investigated by the computer simulation. It is shown that the response is classified into four types: subthreshold response, cathodic excitation, anodal block and anodal break excitation. Based on the simulation results, simple diagrams representing the response characteristics of the axon are constructed as functions of stimulation parameters and distance between the axon and electrode. The diagram would be useful for determining simulation parameters for dynamic targeted stimulation of myelinated axon.

  10. Molecular architecture of myelinated peripheral nerves is supported by calorie restriction with aging.

    PubMed

    Rangaraju, Sunitha; Hankins, David; Madorsky, Irina; Madorsky, Evgenia; Lee, Wei-Hua; Carter, Christy S; Leeuwenburgh, Christiaan; Notterpek, Lucia

    2009-04-01

    Peripheral nerves from aged animals exhibit features of degeneration, including marked fiber loss, morphological irregularities in myelinated axons and notable reduction in the expression of myelin proteins. To investigate how protein homeostatic mechanisms change with age within the peripheral nervous system, we isolated Schwann cells from the sciatic nerves of young and old rats. The responsiveness of cells from aged nerves to stress stimuli is weakened, which in part may account for the observed age-associated alterations in glial and axonal proteins in vivo. Although calorie restriction is known to slow the aging process in the central nervous system, its influence on peripheral nerves has not been investigated in detail. To determine if dietary restriction is beneficial for peripheral nerve health and glial function, we studied sciatic nerves from rats of four distinct ages (8, 18, 29 and 38 months) kept on an ad libitum (AL) or a 40% calorie restricted diet. Age-associated reduction in the expression of the major myelin proteins and widening of the nodes of Ranvier are attenuated by the dietary intervention, which is paralleled with the maintenance of a differentiated Schwann cell phenotype. The improvements in nerve architecture with diet restriction, in part, are underlined by sustained expression of protein chaperones and markers of the autophagy-lysosomal pathway. Together, the in vitro and in vivo results suggest that there might be an age-limit by which dietary intervention needs to be initiated to elicit a beneficial response on peripheral nerve health.

  11. Activation of axonal Kv7 channels in human peripheral nerve by flupirtine but not placebo - therapeutic potential for peripheral neuropathies: results of a randomised controlled trial

    PubMed Central

    2013-01-01

    Background Flupirtine is an analgesic with muscle-relaxing properties that activates Kv7 potassium channels. Kv7 channels are expressed along myelinated and unmyelinated peripheral axons where their activation is expected to reduce axonal excitability and potentially contribute to flupirtine’s clinical profile. Trial design To investigate the electrical excitability of peripheral myelinated axons following orally administered flupirtine, in-vitro experiments on isolated peripheral nerve segments were combined with a randomised, double-blind, placebo-controlled, phase I clinical trial (RCT). Methods Threshold tracking was used to assess the electrical excitability of myelinated axons in isolated segments of human sural nerve in vitro and motoneurones to abductor pollicis brevis (APB) in situ in healthy subjects. In addition, the effect of flupirtine on ectopic action potential generation in myelinated axons was examined using ischemia of the lower arm. Results Flupirtine (3-30 μM) shortened the relative refractory period and increased post-conditioned superexcitability in human myelinated axons in vitro. Similarly, in healthy subjects the relative refractory period of motoneurones to APB was reduced 2 hours after oral flupirtine but not following placebo. Whether this effect was due to a direct action of flupirtine on peripheral axons or temperature could not be resolved. Flupirtine (200 mg p.o.) also reduced ectopic axonal activity induced by 10 minutes of lower arm ischemia. In particular, high frequency (ca. 200 Hz) components of EMG were reduced in the post-ischemic period. Finally, visual analogue scale ratings of sensations perceived during the post-ischemic period were reduced following flupirtine (200 mg p.o.). Conclusions Clinical doses of flupirtine reduce the excitability of peripheral myelinated axons. Trial registration ClinicalTrials registration is NCT01450865. PMID:23394517

  12. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons

    PubMed Central

    Micheva, Kristina D; Wolman, Dylan; Mensh, Brett D; Pax, Elizabeth; Buchanan, JoAnn; Smith, Stephen J; Bock, Davi D

    2016-01-01

    Myelin is best known for its role in increasing the conduction velocity and metabolic efficiency of long-range excitatory axons. Accordingly, the myelin observed in neocortical gray matter is thought to mostly ensheath excitatory axons connecting to subcortical regions and distant cortical areas. Using independent analyses of light and electron microscopy data from mouse neocortex, we show that a surprisingly large fraction of cortical myelin (half the myelin in layer 2/3 and a quarter in layer 4) ensheathes axons of inhibitory neurons, specifically of parvalbumin-positive basket cells. This myelin differs significantly from that of excitatory axons in distribution and protein composition. Myelin on inhibitory axons is unlikely to meaningfully hasten the arrival of spikes at their pre-synaptic terminals, due to the patchy distribution and short path-lengths observed. Our results thus highlight the need for exploring alternative roles for myelin in neocortical circuits. DOI: http://dx.doi.org/10.7554/eLife.15784.001 PMID:27383052

  13. Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2

    PubMed Central

    Ma, Ki H.; Hung, Holly A.; Srinivasan, Rajini; Xie, Huafeng; Orkin, Stuart H.

    2015-01-01

    Myelination of peripheral nerves by Schwann cells requires coordinate regulation of gene repression as well as gene activation. Several chromatin remodeling pathways critical for peripheral nerve myelination have been identified, but the functions of histone methylation in the peripheral nerve have not been elucidated. To determine the role of histone H3 Lys27 methylation, we have generated mice with a Schwann cell-specific knock-out of Eed, which is an essential subunit of the polycomb repressive complex 2 (PRC2) that catalyzes methylation of histone H3 Lys27. Analysis of this mutant revealed no significant effects on early postnatal development of myelin. However, its loss eventually causes progressive hypermyelination of small-diameter axons and apparent fragmentation of Remak bundles. These data identify the PRC2 complex as an epigenomic modulator of mature myelin thickness, which is associated with changes in Akt phosphorylation. Interestingly, we found that Eed inactivation causes derepression of several genes, e.g., Sonic hedgehog (Shh) and Insulin-like growth factor-binding protein 2 (Igfbp2), that become activated after nerve injury, but without activation of a primary regulator of the injury program, c-Jun. Analysis of the activated genes in cultured Schwann cells showed that Igfbp2 regulates Akt activation. Our results identify an epigenomic pathway required for establishing thickness of mature myelin and repressing genes that respond to nerve injury. PMID:26041929

  14. Development of a central nervous system axonal myelination assay for high throughput screening.

    PubMed

    Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri

    2016-04-22

    Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.

  15. Deciphering peripheral nerve myelination by using Schwann cell expression profiling.

    PubMed

    Nagarajan, Rakesh; Le, Nam; Mahoney, Heather; Araki, Toshiyuki; Milbrandt, Jeffrey

    2002-06-25

    Although mutations in multiple genes are associated with inherited demyelinating neuropathies, the molecular components and pathways crucial for myelination remain largely unknown. To approach this question, we performed genome-wide expression analysis in several paradigms where the status of peripheral nerve myelination is dynamically changing. Anchor gene correlation analysis, a form of microarray analysis that integrates functional information, using correlation-based clustering, with a statistically rigorous test, the Westfall and Young step-down algorithm, was applied to this data set. Biological pathways active in myelination, genes encoding proteins involved in myelin synthesis, and genes whose mutation results in myelination defects were identified. Many known genes and previously uncharacterized ESTs not heretofore associated with myelination were also identified. One of these ESTs, MASR (myelin-associated SUR4 protein), encodes a member of the SUR4 family of fatty acid desaturases, enzymes involved in elongation of very long chain fatty acids. Its specific localization in myelinating Schwann cells indicates a crucial role for MASR in normal myelin lipid synthesis.

  16. Correlation of axon size and myelin occupancy in rats prenatally exposed to methamphetamine.

    PubMed

    Melo, Pedro; Pinazo-Durán, Maria Dolores; Salgado-Borges, José; Tavares, Maria Amélia

    2008-07-30

    The abuse of methamphetamine (MA) and other psychostimulants is a social and medical problem. In particular, the use of these drugs by pregnant women results in an increased number of children exposed prenatally to psychostimulants. Our previous work has demonstrated that prenatal exposure to MA affects the normal development of the rat visual system due to alterations of biochemical mechanisms and oxidative stress. It was also demonstrated that prenatal exposure to MA affects the dopaminergic system of the rat retina and optic nerve (ON) myelination. The present work was conducted to evaluate the effects of prenatal exposure to MA on the development of the ON in terms of axon growth and the myelin sheath. Pregnant female rats were given 5 mg/kg/day MA, subcutaneously (s.c.), in 0.9% saline from gestational day (GD) 8 to 22. The pair-fed control group was injected s.c. with an isovolumetric dose of 0.9% saline. Qualitative analysis was performed using representative electron ultramicrographs. Quantitative analysis was performed at an electron microscopic level on ON cross sections; parameters measured included myelinated/unmyelinated ratio, outer axon mean area, inner axon mean area, myelin mean area, myelin occupancy and distribution of axons by size. The ON of prenatally MA-exposed rats presented a higher rate of deformed axons and slighter lamellar separation. At PND 21, the average outer axon area of MA-treated males was significantly reduced. The average inner axon area only showed a significant difference between MA and control males for axons with an area of less than 0.3 microm(2). The average myelin area of MA-treated males was significantly reduced, and in MA-treated females was only significantly reduced in axons with an area of less than 0.3 microm(2). The percentage of myelin occupancy was significantly affected in MA-treated males, and in MA-treated females in the group of axons with an area of more than 0.3 microm(2). At PND 14 no significant

  17. Axonal transport disruption in peripheral nerve disease

    PubMed Central

    Lloyd, Thomas E.

    2015-01-01

    Many neurodegenerative diseases and neuropathies have been proposed to be caused by a disruption of axonal transport. However, the mechanisms whereby impaired transport causes disease remain unclear. Proposed mechanisms include impairment in delivery of organelles such as mitochondria, defective retrograde neurotrophic signaling, and disruption of the synaptic vesicle cycle within the synaptic terminal. Simple model organisms such as the fruitfly, Drosophila melanogaster, allow live imaging of axonal transport to be combined with high-throughput genetic screens and are providing insights into the pathophysiology of peripheral nerve diseases. PMID:23279432

  18. Transfer of Vesicles From Schwann Cells to Axons: a Novel Mechanism of Communication in the Peripheral Nervous System

    PubMed Central

    Lopez-Verrilli, M. Alejandra; Court, Felipe A.

    2012-01-01

    Schwann cells (SCs) are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signaling between SCs and axons. In addition to the classic mechanisms of intercellular signaling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the advantages of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage. PMID:22707941

  19. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination.

    PubMed

    Lee, Xinhua; Yang, Zhongshu; Shao, Zhaohui; Rosenberg, Sheila S; Levesque, Melissa; Pepinsky, R Blake; Qiu, Mengsheng; Miller, Robert H; Chan, Jonah R; Mi, Sha

    2007-01-03

    Neurons and glia share a mutual dependence in establishing a functional relationship, and none is more evident than the process by which axons control myelination. Here, we identify LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) as a potent axonal inhibitor of oligodendrocyte differentiation and myelination that is regulated by nerve growth factor and its cognate receptor TrkA in a dose-dependent manner. Whereas LINGO-1 expressed by oligodendrocyte progenitor cells was previously identified as an inhibitor of differentiation, we demonstrate that axonal expression of LINGO-1 inhibits differentiation with equal potency. Disruption of LINGO-1 on either cell type is sufficient to overcome the inhibitory action and promote differentiation and myelination, independent of axon diameter. Furthermore, these results were recapitulated in transgenic mice overexpressing the full length LINGO-1 under the neuronal promoter synapsin. Myelination was greatly inhibited in the presence of enforced axonal LINGO-1. The implications of these results relate specifically to the development of potential therapeutics targeting extrinsic growth factors that may regulate the axonal expression of modulators of oligodendrocyte development.

  20. The heme precursor delta-aminolevulinate blocks peripheral myelin formation

    PubMed Central

    Felitsyn, Natalia; McLeod, Colin; Shroads, Albert L.; Stacpoole, Peter W.; Notterpek, Lucia

    2008-01-01

    Delta-aminolevulinic acid (δ-ALA) is a heme precursor implicated in neurological complications associated with porphyria and tyrosinemia type I. Delta-ALA is also elevated in the urine of animals and patients treated with the investigational drug dichloroacetate (DCA). We postulated that δ-ALA may be responsible, in part, for the peripheral neuropathy observed in subjects receiving DCA. To test this hypothesis, myelinating cocultures of Schwann cells and sensory neurons were exposed to δ-ALA (0.1–1 mM) and analyzed for the expression of neural proteins and lipids and markers of oxidative stress. Exposure of myelinating samples to δ-ALA is associated with a pronounced reduction in the levels of myelin-associated lipids and proteins, including myelin protein zero and peripheral myelin protein 22. We also observed an increase in protein carbonylation and the formation of hydroxynonenal and malondialdehyde after treatment with δ-ALA. Studies of isolated Schwann cells and neurons indicate that glial cells are more vulnerable to this pro-oxidant than neurons, based on a selective decrease in the expression of mitochondrial respiratory chain proteins in glial, but not in neuronal, cells. These results suggest that the neuropathic effects of δ-ALA are attributable, at least in part, to its pro-oxidant properties which damage myelinating Schwann cells. PMID:18665889

  1. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    PubMed

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail.

  2. The "Lillie transition": models of the onset of saltatory conduction in myelinating axons.

    PubMed

    Young, Robert G; Castelfranco, Ann M; Hartline, Daniel K

    2013-06-01

    Almost 90 years ago, Lillie reported that rapid saltatory conduction arose in an iron wire model of nerve impulse propagation when he covered the wire with insulating sections of glass tubing equivalent to myelinated internodes. This led to his suggestion of a similar mechanism explaining rapid conduction in myelinated nerve. In both their evolution and their development, myelinating axons must make a similar transition between continuous and saltatory conduction. Achieving a smooth transition is a potential challenge that we examined in computer models simulating a segmented insulating sheath surrounding an axon having Hodgkin-Huxley squid parameters. With a wide gap under the sheath, conduction was continuous. As the gap was reduced, conduction initially slowed, owing to the increased extra-axonal resistance, then increased (the "rise") up to several times that of the unmyelinated fiber, as saltatory conduction set in. The conduction velocity slowdown was little affected by the number of myelin layers or modest changes in the size of the "node," but strongly affected by the size of the "internode" and axon diameter. The steepness of the rise of rapid conduction was greatly affected by the number of myelin layers and axon diameter, variably affected by internode length and little affected by node length. The transition to saltatory conduction occurred at surprisingly wide gaps and the improvement in conduction speed persisted to surprisingly small gaps. The study demonstrates that the specialized paranodal seals between myelin and axon, and indeed even the clustering of sodium channels at the nodes, are not necessary for saltatory conduction.

  3. Myelin Loss and Axonal Ion Channel Adaptations Associated with Gray Matter Neuronal Hyperexcitability

    PubMed Central

    Hamada, Mustafa S.

    2015-01-01

    Myelination and voltage-gated ion channel clustering at the nodes of Ranvier are essential for the rapid saltatory conduction of action potentials. Whether myelination influences the structural organization of the axon initial segment (AIS) and action potential initiation is poorly understood. Using the cuprizone mouse model, we combined electrophysiological recordings with immunofluorescence of the voltage-gated Nav1.6 and Kv7.3 subunits and anchoring proteins to analyze the functional and structural properties of single demyelinated neocortical L5 axons. Whole-cell recordings demonstrated that neurons with demyelinated axons were intrinsically more excitable, characterized by increased spontaneous suprathreshold depolarizations as well as antidromically propagating action potentials ectopically generated in distal parts of the axon. Immunofluorescence examination of demyelinated axons showed that βIV-spectrin, Nav1.6, and the Kv7.3 channels in nodes of Ranvier either dissolved or extended into the paranodal domains. In contrast, while the AIS in demyelinated axons started more closely to the soma, ankyrin G, βIV-spectrin, and the ion channel expression were maintained. Structure–function analysis and computational modeling, constrained by the AIS location and realistic dendritic and axonal morphologies, confirmed that a more proximal onset of the AIS slightly reduced the efficacy of action potential generation, suggesting a compensatory role. These results suggest that oligodendroglial myelination is not only important for maximizing conduction velocity, but also for limiting hyperexcitability of pyramidal neurons. PMID:25948275

  4. Different Mechanisms Regulate Expression of Zebrafish Myelin Protein Zero (P0) in Myelinating Oligodendrocytes and Its Induction following Axonal Injury*

    PubMed Central

    Bai, Qing; Parris, Ritika S.; Burton, Edward A.

    2014-01-01

    Zebrafish CNS axons regenerate robustly following injury; it is thought that CNS oligodendrocytes contribute to this response by expressing growth-promoting molecules. We characterized the mpz gene, which encodes myelin protein zero and is up-regulated in oligodendroglia following axonal injury. The 2.5-kb mpz mRNA is expressed from a single TATA box promoter. Four independent Tg(mpz:egfp) transgenic zebrafish lines, in which GFP was expressed under the mpz promoter and 10 kb of genomic 5′-flanking sequence, showed transgene expression in CNS oligodendrocytes from larval development through adulthood. Following optic nerve crush injury, the mpz:egfp transgene was strongly up-regulated in oligodendrocytes along the regenerating retinotectal projection, mirroring up-regulation of endogenous mpz mRNA. GFP-expressing oligodendroglia were significantly more abundant in the regenerating optic pathway, resulting from both transgene induction in oligodendroglial precursors and the birth of new cells. Up-regulation of the mpz:egfp transgene was not dependent on axonal regeneration, suggesting that the primary signal may be axonal loss, debris, or microglial infiltration. Deletion experiments indicated that an oligodendroglial enhancer located in the region from −6 to −10 kb with respect to the mpz transcriptional start site is dissociable from the cis-regulatory element mediating the mpz transcriptional response to axonal injury, which is located between −1 and −4 kb. These data show that different mechanisms regulate expression of zebrafish mpz in myelinating oligodendrocytes and its induction following axonal injury. The underlying molecular events could potentially be exploited to enhance axonal repair following mammalian CNS injury. The transgenic lines and cis-regulatory constructs reported here will facilitate identification of the relevant signaling pathways. PMID:25028515

  5. Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes

    PubMed Central

    Lee, Hae Ung; Blasiak, Agata; Agrawal, Devansh R.; Loong, Daniel Teh Boon; Thakor, Nitish V.; All, Angelo H.; Ho, John S.

    2017-01-01

    Myelin formation has been identified as a modulator of neural plasticity. New tools are required to investigate the mechanisms by which environmental inputs and neural activity regulate myelination patterns. In this study, we demonstrate a microfluidic compartmentalized culture system with integrated electrical stimulation capabilities that can induce neural activity by whole cell and focal stimulation. A set of electric field simulations was performed to confirm spatial restriction of the electrical input in the compartmentalized culture system. We further demonstrate that electrode localization is a key consideration for generating uniform the stimulation of neuron and oligodendrocytes within the compartments. Using three configurations of the electrodes we tested the effects of subcellular activation of neural activity on distal axon myelination with oligodendrocytes. We further investigated if oligodendrocytes have to be exposed to the electrical field to induce axon myelination. An isolated stimulation of cell bodies and proximal axons had the same effect as an isolated stimulation of distal axons co-cultured with oligodendrocytes, and the two modes had a non-different result than whole cell stimulation. Our platform enabled the demonstration that electrical stimulation enhances oligodendrocyte maturation and myelin formation independent of the input localization and oligodendrocyte exposure to the electrical field. PMID:28671962

  6. Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes.

    PubMed

    Lee, Hae Ung; Blasiak, Agata; Agrawal, Devansh R; Loong, Daniel Teh Boon; Thakor, Nitish V; All, Angelo H; Ho, John S; Yang, In Hong

    2017-01-01

    Myelin formation has been identified as a modulator of neural plasticity. New tools are required to investigate the mechanisms by which environmental inputs and neural activity regulate myelination patterns. In this study, we demonstrate a microfluidic compartmentalized culture system with integrated electrical stimulation capabilities that can induce neural activity by whole cell and focal stimulation. A set of electric field simulations was performed to confirm spatial restriction of the electrical input in the compartmentalized culture system. We further demonstrate that electrode localization is a key consideration for generating uniform the stimulation of neuron and oligodendrocytes within the compartments. Using three configurations of the electrodes we tested the effects of subcellular activation of neural activity on distal axon myelination with oligodendrocytes. We further investigated if oligodendrocytes have to be exposed to the electrical field to induce axon myelination. An isolated stimulation of cell bodies and proximal axons had the same effect as an isolated stimulation of distal axons co-cultured with oligodendrocytes, and the two modes had a non-different result than whole cell stimulation. Our platform enabled the demonstration that electrical stimulation enhances oligodendrocyte maturation and myelin formation independent of the input localization and oligodendrocyte exposure to the electrical field.

  7. Polarization-dependent responses of fluorescent indicators partitioned into myelinated axons

    NASA Astrophysics Data System (ADS)

    Micu, Ileana; Brideau, Craig; Stys, Peter K.

    2012-02-01

    Myelination, i.e. the wrapping of axons in multiple layers of lipid-rich membrane, is a unique phenomenon in the nervous systems of both vertebrates and invertebrates, that greatly increases the speed and efficiency of signal transmission. In turn, disruption of axo-myelinic integrity underlies disability in numerous clinical disorders. The dependence of myelin physiology on nanometric organization of its lamellae makes it difficult to accurately study this structure in the living state. We expected that fluorescent probes might become highly oriented when partitioned into the myelin sheath, and in turn, this anisotropy could be interrogated by controlling the polarization state of the exciting laser field used for 2-photon excited fluorescence (TPEF). Live ex vivo myelinated rodent axons were labeled with a series of lipohilic and hydrophilic fluorescenct probes, and TPEF images acquired while laser polarization was varied at the sample over a broad range of ellipticities and orientations of the major angle [see Brideau, Micu & Stys, abstract this meeting]. We found that most probes exhibited strong dependence on both the major angle of polarization, and perhaps more surprisingly, on ellipticity as well. Lipophilic vs. hydrophilic probes exhibited distinctly different behavior. We propose that polarization-dependent TPEF microscopy represents a powerful tool for probing the nanostructural architecture of both myelin and axonal cytoskeleton in a domain far below the resolution limit of visible light microscopy. By selecting probes with different sizes and physicochemical properties, distinct aspects of cellular nanoarchitecture can be accurately interrogated in real-time in living tissue.

  8. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition

    PubMed Central

    Samantaray, Supriti; Knaryan, Varduhi H.; Patel, Kaushal S.; Mulholland, Patrick J.; Becker, Howard C.; Banik, Naren L.

    2015-01-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60 %), myelin proteins (myelin basic protein, 20-40 % proteolipid protein, 25 %) and enzyme (2′, 3′-cyclic-nucleotide 3′-phosphodiesterase, 21-55 %) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy

  9. Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy

    PubMed Central

    Kleinecke, Sandra; Richert, Sarah; de Hoz, Livia; Brügger, Britta; Kungl, Theresa; Asadollahi, Ebrahim; Quintes, Susanne; Blanz, Judith; McGonigal, Rhona; Naseri, Kobra; Sereda, Michael W; Sachsenheimer, Timo; Lüchtenborg, Christian; Möbius, Wiebke; Willison, Hugh; Baes, Myriam; Nave, Klaus-Armin; Kassmann, Celia Michèle

    2017-01-01

    Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels. DOI: http://dx.doi.org/10.7554/eLife.23332.001 PMID:28470148

  10. Glutamate receptors on myelinated spinal cord axons: II)AMPA and GluR5 receptors

    PubMed Central

    Ouardouz, M.; Coderre, E.; Zamponi, G. W.; Hameed, S.; Yin, X.; Trapp, B.D.; Stys, P.K.

    2010-01-01

    Objective Glutamate receptors, which play a major role in the physiology and pathology of CNS gray matter, are also involved in the pathophysiology of white matter. However the cellular and molecular mechanisms responsible for excitotoxic damage to white matter elements are not fully understood. We explored the roles of AMPA and GluR5 kainate receptors in axonal Ca2+ deregulation. Methods Dorsal column axons were loaded with a Ca2+ indicator and imaged in vitro using confocal microscopy. Results Both AMPA and a GluR5 kainate receptor agonists increased intra-axonal Ca2+ in myelinated rat dorsal column fibers. These responses were inhibited by selective antagonists of these glutamate receptors. The GluR5-mediated Ca2+ rise was mediated by both canonical (i.e. ionotropic) and non-canonical (metabotropic) signalling, dependent on a pertussis toxin-sensitive G protein and a phospholipase C-dependent pathway, promoting Ca2+ release from IP3-dependent stores. Additionally, the GluR5 response was significantly reduced by intra-axonal NO scavengers. In contrast, GluR4 AMPA receptors operated via Ca2+ induced Ca2+ release, dependent on ryanodine receptors, and unaffected by NO scavengers. Neither pathway depended on L-type Ca2+ channels, in contrast to GlurR6 kainate receptor action 1. Immunohistochemistry confirmed the presence of GluR4 and GluR5 clustered at the surface of myelinated axons; GluR5 co-immunoprecipitated with nNOS and often co-localized with nNOS clusters on the internodal axon. Interpretation Central myelinated axons express functional AMPA and GluR5 kainate receptors, and can directly respond to glutamate receptor agonists. These glutamate receptor-dependent signalling pathways promote an increase in intra-axonal Ca2+ levels potentially contributing to axonal degeneration. PMID:19224531

  11. Neuroimaging evidence of deficient axon myelination in Wolfram syndrome

    PubMed Central

    Lugar, Heather M.; Koller, Jonathan M.; Rutlin, Jerrel; Marshall, Bess A.; Kanekura, Kohsuke; Urano, Fumihiko; Bischoff, Allison N.; Shimony, Joshua S.; Hershey, Tamara; Austin, P.; Beato, B.; Bihun, E.; Doty, T.; Earhart, G.; Eisenstein, S.; Hoekel, J.; Karzon, R.; Licis, A.; Manwaring, L.; Paciorkowski, A. R.; Pepino de Gruev, Y.; Permutt, A.; Pickett, K.; Ranck, S.; Reiersen, A.; Tychsen, L.; Viehoever, A.; Wasson, J.; White, N. H.

    2016-01-01

    Wolfram syndrome is a rare autosomal recessive genetic disease characterized by insulin dependent diabetes and vision, hearing and brain abnormalities which generally emerge in childhood. Mutations in the WFS1 gene predispose cells to endoplasmic reticulum stress-mediated apoptosis and may induce myelin degradation in neuronal cell models. However, in vivo evidence of this phenomenon in humans is lacking. White matter microstructure and regional volumes were measured using magnetic resonance imaging in children and young adults with Wolfram syndrome (n = 21) and healthy and diabetic controls (n = 50). Wolfram patients had lower fractional anisotropy and higher radial diffusivity in major white matter tracts and lower volume in the basilar (ventral) pons, cerebellar white matter and visual cortex. Correlations were found between key brain findings and overall neurological symptoms. This pattern of findings suggests that reduction in myelin is a primary neuropathological feature of Wolfram syndrome. Endoplasmic reticulum stress-related dysfunction in Wolfram syndrome may interact with the development of myelin or promote degeneration of myelin during the progression of the disease. These measures may provide objective indices of Wolfram syndrome pathophysiology that will be useful in unraveling the underlying mechanisms and in testing the impact of treatments on the brain. PMID:26888576

  12. Node of Ranvier length as a potential regulator of myelinated axon conduction speed

    PubMed Central

    Arancibia-Cárcamo, I Lorena; Ford, Marc C; Cossell, Lee; Ishida, Kinji; Tohyama, Koujiro; Attwell, David

    2017-01-01

    Myelination speeds conduction of the nerve impulse, enhancing cognitive power. Changes of white matter structure contribute to learning, and are often assumed to reflect an altered number of myelin wraps. We now show that, in rat optic nerve and cerebral cortical axons, the node of Ranvier length varies over a 4.4-fold and 8.7-fold range respectively and that variation of the node length is much less along axons than between axons. Modelling predicts that these node length differences will alter conduction speed by ~20%, similar to the changes produced by altering the number of myelin wraps or the internode length. For a given change of conduction speed, the membrane area change needed at the node is >270-fold less than that needed in the myelin sheath. Thus, axon-specific adjustment of node of Ranvier length is potentially an energy-efficient and rapid mechanism for tuning the arrival time of information in the CNS. DOI: http://dx.doi.org/10.7554/eLife.23329.001 PMID:28130923

  13. Quantitative Analysis of Myelin and Axonal Remodeling in the Uninjured Motor Network After Stroke

    PubMed Central

    Lin, Ying-Chia; Daducci, Alessandro; Meskaldji, Djalel Eddine; Thiran, Jean-Philippe; Michel, Patrik; Meuli, Reto; Krueger, Gunnar; Menegaz, Gloria

    2015-01-01

    Abstract Contralesional brain connectivity plasticity was previously reported after stroke. This study aims at disentangling the biological mechanisms underlying connectivity plasticity in the uninjured motor network after an ischemic lesion. In particular, we measured generalized fractional anisotropy (GFA) and magnetization transfer ratio (MTR) to assess whether poststroke connectivity remodeling depends on axonal and/or myelin changes. Diffusion-spectrum imaging and magnetization transfer MRI at 3T were performed in 10 patients in acute phase, at 1 and 6 months after stroke, which was affecting motor cortical and/or subcortical areas. Ten age- and gender-matched healthy volunteers were scanned 1 month apart for longitudinal comparison. Clinical assessment was also performed in patients prior to magnetic resonance imaging (MRI). In the contralesional hemisphere, average measures and tract-based quantitative analysis of GFA and MTR were performed to assess axonal integrity and myelination along motor connections as well as their variations in time. Mean and tract-based measures of MTR and GFA showed significant changes in a number of contralesional motor connections, confirming both axonal and myelin plasticity in our cohort of patients. Moreover, density-derived features (peak height, standard deviation, and skewness) of GFA and MTR along the tracts showed additional correlation with clinical scores than mean values. These findings reveal the interplay between contralateral myelin and axonal remodeling after stroke. PMID:25296185

  14. Cholesterol Biosynthesis Supports Myelin Gene Expression and Axon Ensheathment through Modulation of P13K/Akt/mTor Signaling

    PubMed Central

    Mathews, Emily S.

    2016-01-01

    Myelin, which ensheaths and insulates axons, is a specialized membrane highly enriched with cholesterol. During myelin formation, cholesterol influences membrane fluidity, associates with myelin proteins such as myelin proteolipid protein, and assembles lipid-rich microdomains within membranes. Surprisingly, cholesterol also is required by oligodendrocytes, glial cells that make myelin, to express myelin genes and wrap axons. How cholesterol mediates these distinct features of oligodendrocyte development is not known. One possibility is that cholesterol promotes myelination by facilitating signal transduction within the cell, because lipid-rich microdomains function as assembly points for signaling molecules. Signaling cascades that localize to cholesterol-rich regions of the plasma membrane include the PI3K/Akt pathway, which acts upstream of mechanistic target of rapamycin (mTOR), a major driver of myelination. Through manipulation of cholesterol levels and PI3K/Akt/mTOR signaling in zebrafish, we discovered that mTOR kinase activity in oligodendrocytes requires cholesterol. Drawing on a combination of pharmacological and rescue experiments, we provide evidence that mTOR kinase activity is required for cholesterol-mediated myelin gene expression. On the other hand, cholesterol-dependent axon ensheathment is mediated by Akt signaling, independent of mTOR kinase activity. Our data reveal that cholesterol-dependent myelin gene expression and axon ensheathment are facilitated by distinct signaling cascades downstream of Akt. Because mTOR promotes cholesterol synthesis, our data raise the possibility that cholesterol synthesis and mTOR signaling engage in positive feedback to promote the formation of myelin membrane. SIGNIFICANCE STATEMENT The speed of electrical impulse movement through axons is increased by myelin, a specialized, cholesterol-rich glial cell membrane that tightly wraps axons. During development, myelin membrane grows dramatically, suggesting a

  15. The voltage dependence of Ih in human myelinated axons

    PubMed Central

    Howells, James; Trevillion, Louise; Bostock, Hugh; Burke, David

    2012-01-01

    HCN channels are responsible for Ih, a voltage-gated inwardly rectifying current activated by hyperpolarization. This current appears to be more active in human sensory axons than motor and may play a role in the determination of threshold. Differences in Ih are likely to be responsible for the high variability in accommodation to hyperpolarization seen in different subjects. The aim of this study was to characterise this current in human axons, both motor and sensory. Recordings of multiple axonal excitability properties were performed in 10 subjects, with a focus on the changes in threshold evoked by longer and stronger hyperpolarizing currents than normally studied. The findings confirm that accommodation to hyperpolarization is greater in sensory than motor axons in all subjects, but the variability between subjects was greater than the modality difference. An existing model of motor axons was modified to take into account the behaviour seen with longer and stronger hyperpolarization, and a mathematical model of human sensory axons was developed based on the data collected. The differences in behaviour of sensory and motor axons and the differences between different subjects are best explained by modulation of the voltage dependence, along with a modest increase of expression of the underlying conductance of Ih. Accommodation to hyperpolarization for the mean sensory data is fitted well with a value of −94.2 mV for the mid-point of activation (V0.5) of Ih as compared to −107.3 mV for the mean motor data. The variation in response to hyperpolarization between subjects is accounted for by varying this parameter for each modality (sensory: −89.2 to −104.2 mV; motor −87.3 to −127.3 mV). These voltage differences are within the range that has been described for physiological modulation of Ih function. The presence of slowly activated Ih isoforms on both motor and sensory axons was suggested by modelling a large internodal leak current and a masking of

  16. Lesioned corticospinal tract axons regenerate in myelin-free rat spinal cord

    SciTech Connect

    Savio, T.; Schwab, M.E. )

    1990-06-01

    In the adult central nervous system (CNS) of higher vertebrates lesioned axons seemed unable to regenerate and reach their former target regions due to influences of the CNS microenvironment. Evidence from in vitro and biochemical experiments has demonstrated the presence of inhibitory substrate components in CNS tissue, in particular in white matter. These CNS components, which strongly inhibit neurite growth, were identified as minor membrane proteins of defined molecular mass (35 and 250 kDa) in oligodendrocyte membranes and CNS myelin. Oligodendrocyte development and myelin formation can be prevented by x-irradiation of newborn rats. Here we show that in myelin-free spinal cords cortico-spinal tract fibers transected at 2 weeks of age show reelongation of many millimeters within 2-3 weeks after the lesion. In normally myelinated controls, regenerative sprouts grew less than 1.7 mm caudal to the lesion.

  17. Morphometric analysis of axons myelinated during adult life in the mouse superior cervical ganglion.

    PubMed Central

    Little, G J; Heath, J W

    1994-01-01

    In experimental studies addressing the regulation of myelin formation and maintenance by Schwann cells, the sympathetic nervous system of young adult rodents has served a key role as an essentially nonmyelinated yet modifiable control tissue. Nevertheless there is clear evidence of substantial myelination in the superior cervical ganglion (SCG) of normal mice and rats of more advanced age. Against this background, interpretation of experimental outcomes in particular sympathetic tissues will require detailed quantitative control data taking account of animal age. To provide a baseline for future investigations on myelin remodelling, an ultrastructural morphometric study of myelinated fibres in the SCG was undertaken in 4 strains (QS, Balb/C, C57 and CBA) of adult male mice aged 32-72 wk. Numbers of myelinated fibres in SCG cross-sections varied substantially between individual animals, and the mean numbers for QS (132), Balb/C (165) and CBA (254) were significantly higher than that for C57 (32). Both axonal and fibre diameter were distributed unimodally (means for the 4 strains ranged from 2.3-2.4 microns and 3.2-3.6 microns respectively). Myelin spiral length was distributed unimodally and skewed to the right (range of means = 227-357 microns) and was significantly greater in QS mice as compared with the other 3 strains. While the mean g ratio (axonal diameter/fibre diameter) was significantly lower in QS mice than in the other 3 strains, the range for mean g ratio was 0.64-0.73, indicating that myelination had proceeded appropriately even though late in onset in this tissue. The index of circularity was high in all strains, both for axons (range of means = 0.80-0.88) and fibres (range of means = 0.84-0.89). The small axonal and fibre diameter and unimodal distribution are consistent with the characteristics of autonomic myelinated fibres and it is probable that most are postganglionic sympathetic fibres arising within the SCG. In terms of providing a sufficient

  18. Polarization and Myelination in Myelinating Glia

    PubMed Central

    Masaki, Toshihiro

    2012-01-01

    Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed. PMID:23326681

  19. Myelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury

    PubMed Central

    Duffy, Philip; Wang, Xingxing; Siegel, Chad S.; Tu, Nathan; Henkemeyer, Mark; Cafferty, William B. J.; Strittmatter, Stephen M.

    2012-01-01

    Recovery of neurological function after traumatic injury of the adult mammalian central nervous system is limited by lack of axonal growth. Myelin-derived inhibitors contribute to axonal growth restriction, with ephrinB3 being a developmentally important axonal guidance cue whose expression in mature oligodendrocytes suggests a role in regeneration. Here we explored the in vivo regeneration role of ephrinB3 using mice lacking a functional ephrinB3 gene. We confirm that ephrinB3 accounts for a substantial portion of detergent-resistant myelin-derived inhibition in vitro. To assess in vivo regeneration, we crushed the optic nerve and examined retinal ganglion fibers extending past the crush site. Significantly increased axonal regeneration is detected in ephrinB3−/− mice. Studies of spinal cord injury in ephrinB3−/− mice must take into account altered spinal cord development and an abnormal hopping gait before injury. In a near-total thoracic transection model, ephrinB3−/− mice show greater spasticity than wild-type mice for 2 mo, with slightly greater hindlimb function at later time points, but no evidence for axonal regeneration. After a dorsal hemisection injury, increased corticospinal and raphespinal growth in the caudal spinal cord are detected by 6 wk. This increased axonal growth is accompanied by improved locomotor performance measured in the open field and by kinematic analysis. Thus, ephrinB3 contributes to myelin-derived axonal growth inhibition and limits recovery from adult CNS trauma. PMID:22411787

  20. A novel mutation of myelin protein zero associated with an axonal form of Charcot–Marie–Tooth disease

    PubMed Central

    Santoro, L; Manganelli, F; Di, M; Bordo, D; Cassandrini, D; Ajmar, F; Mandich, P; Bellone, E

    2004-01-01

    Objective: To report a new mutation in the MPZ gene which encodes myelin protein zero (P0), associated with an axonal form of Charcot–Marie–Tooth disease (CMT). Methods: Three patients from an Italian family with a mild, late onset axonal peripheral neuropathy are described clinically and electrophysiologically. To detect point mutation in MPZ gene the whole coding sequence was examined. The structure of the mutated protein was investigated using the three dimensional model of P0. Results: All patients showed a relatively mild CMT phenotype characterised by late onset and heterogeneity of the clinical and electrophysiological features. Molecular analysis demonstrated a novel heterozygous T/A transversion in the exon 3 of MPZ gene that predicts an Asp109Glu amino acid substitution in the extracellular domain of the P0. Asp109 is found at the protein surface, on ß strand E, in the interior of the P0 tetramer. Conclusions: The identification of Asp109Glu mutation confirms the pivotal role of P0 in axonal neuropathies and stresses the phenotypic heterogeneity associated with MPZ mutations. This study suggests the value of screening for MPZ mutations in CMT family members with minor clinical and electrophysiological signs of peripheral neuropathy. PMID:14742601

  1. Ionic mechanisms involved in the nodal swelling of myelinated axons caused by marine toxins.

    PubMed

    Benoit, Evelyne; Mattei, Cesar; Ouanounou, Gilles; Meunier, Frederic A; Suput, Dusan; Le Gall, Frederic; Marquais, Michel; Dechraoui, Marie Y; Molgo, Jordi

    2002-01-01

    This review describes the ionic mechanisms involved in the nodal swelling of frog myelinated axons caused by specific marine neurotoxins (ciguatoxins, brevetoxins, Conus consors toxin and equinatoxin-II), analysed using confocal laser scanning microscopy. We have focussed on toxins that either target neuronal voltage-dependent Na+ channels, or that form cation-selective pores and indirectly affect the functioning of the Na(+)-Ca(++)exchanger.

  2. Subtle Paranodal Injury Slows Impulse Conduction in a Mathematical Model of Myelinated Axons

    PubMed Central

    Babbs, Charles F.; Shi, Riyi

    2013-01-01

    This study explores in detail the functional consequences of subtle retraction and detachment of myelin around the nodes of Ranvier following mild-to-moderate crush or stretch mediated injury. An equivalent electrical circuit model for a series of equally spaced nodes of Ranvier was created incorporating extracellular and axonal resistances, paranodal resistances, nodal capacitances, time varying sodium and potassium currents, and realistic resting and threshold membrane potentials in a myelinated axon segment of 21 successive nodes. Differential equations describing membrane potentials at each nodal region were solved numerically. Subtle injury was simulated by increasing the width of exposed nodal membrane in nodes 8 through 20 of the model. Such injury diminishes action potential amplitude and slows conduction velocity from 19.1 m/sec in the normal region to 7.8 m/sec in the crushed region. Detachment of paranodal myelin, exposing juxtaparanodal potassium channels, decreases conduction velocity further to 6.6 m/sec, an effect that is partially reversible with potassium ion channel blockade. Conduction velocity decreases as node width increases or as paranodal resistance falls. The calculated changes in conduction velocity with subtle paranodal injury agree with experimental observations. Nodes of Ranvier are highly effective but somewhat fragile devices for increasing nerve conduction velocity and decreasing reaction time in vertebrate animals. Their fundamental design limitation is that even small mechanical retractions of myelin from very narrow nodes or slight loosening of paranodal myelin, which are difficult to notice at the light microscopic level of observation, can cause large changes in myelinated nerve conduction velocity. PMID:23844090

  3. Transfer of axonally transported phospholipids into myelin isolated from the rabbit optic pathway

    SciTech Connect

    Alberghina, M.; Viola, M.; Giuffrida, A.M.

    1982-02-01

    The contribution of the axonal transport to the biosynthesis of myelin phospholipids was investigated in the rabbit optic pathway. A double labeling technique was used. The same animals were injected with one isotope intravitreally and the other intraventricularly. This procedure allows double labeling of the optic nerves, optic tracts, lateral geniculate bodies (LGB), and superior colliculus (SC). The precursors simultaneously injected were: (1-/sup 14/C)palmitate (15 microCi intravitreally in both eyes or 50 microCi intraventricularly) and (2-/sup 3/H)glycerol (50 microCi intravitreally in both eyes of 100 microCi intraventricularly). Twenty four hours and 10 days after the injections, myelin was purified from pooled optic nerves and optic tracts as well as from pooled LGBs or SCs. The phospholipids were extracted and then separated by thin-layer chromatography; the specific radioactivity of the various classes of phospholipids was determined. Using both administration routes of C- or /sup 3/H-precursors, the distribution of label and specific radioactivity of myelin phospholipids in the retina and in all other optic structures were very similar. Phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine + phosphoinositol were preferentially labeled with both precursors. These results suggest that, in the rabbit optic pathway the phospholipids synthesized in the retinal ganglion cells and transported along the axons, could undergo transaxonal transfer into myelin.

  4. Pathways regulating modality-specific axonal regeneration in peripheral nerve.

    PubMed

    Wood, Matthew D; Mackinnon, Susan E

    2015-03-01

    Following peripheral nerve injury, the distal nerve is primed for regenerating axons by generating a permissive environment replete with glial cells, cytokines, and neurotrophic factors to encourage axonal growth. However, increasing evidence demonstrates that regenerating axons within peripheral nerves still encounter axonal-growth inhibitors, such as chondroitin sulfate proteoglycans. Given the generally poor clinical outcomes following peripheral nerve injury and reconstruction, the use of pharmacological therapies to augment axonal regeneration and overcome inhibitory signals has gained considerable interest. Joshi et al. (2014) have provided evidence for preferential or modality-specific (motor versus sensory) axonal growth and regeneration due to inhibitory signaling from Rho-associated kinase (ROCK) pathway regulation. By providing inhibition to the ROCK signaling pathway through Y-27632, they demonstrate that motor neurons regenerating their axons are impacted to a greater extent compared to sensory neurons. In light of this evidence, we briefly review the literature regarding modality-specific axonal regeneration to provide context to their findings. We also describe potential and novel barriers, such as senescent Schwann cells, which provide additional axonal-growth inhibitory factors for future consideration following peripheral nerve injury.

  5. Caspr and Caspr2 Are Required for Both Radial and Longitudinal Organization of Myelinated Axons

    PubMed Central

    Gordon, Aaron; Adamsky, Konstantin; Vainshtein, Anya; Frechter, Shahar; Dupree, Jeffrey L.; Rosenbluth, Jack

    2014-01-01

    In myelinated peripheral axons, Kv1 potassium channels are clustered at the juxtaparanodal region and at an internodal line located along the mesaxon and below the Schmidt-Lanterman incisures. This polarized distribution is controlled by Schwann cells and requires specific cell adhesion molecules (CAMs). The accumulation of Kv1 channels at the juxtaparanodal region depends on the presence of Caspr2 at this site, as well as on the presence of Caspr at the adjacent paranodal junction. However, the localization of these channels along the mesaxonal internodal line still persists in the absence of each one of these CAMs. By generating mice lacking both Caspr and Caspr2 (caspr−/−/caspr2−/−), we now reveal compensatory functions of the two proteins in the organization of the axolemma. Although Kv1 channels are clustered along the inner mesaxon and in a circumferential ring below the incisures in the single mutants, in sciatic nerves of caspr−/−/caspr2−/− mice, these channels formed large aggregates that were dispersed along the axolemma, demonstrating that internodal localization of Kv1 channels requires either Caspr or Caspr2. Furthermore, deletion of both Caspr and Caspr2 also resulted in widening of the nodes of Ranvier, suggesting that Caspr2 (which is present at paranodes in the absence of Caspr) can partially compensate for the barrier function of Caspr at this site even without the formation of a distinct paranodal junction. Our results indicate that Caspr and Caspr2 are required for the organization of the axolemma both radially, manifested as the mesaxonal line, and longitudinally, demarcated by the nodal domains. PMID:25378149

  6. The developmental loss of the ability of Purkinje cells to regenerate their axons occurs in the absence of myelin: an in vitro model to prevent myelination.

    PubMed

    Bouslama-Oueghlani, Lamia; Wehrlé, Rosine; Sotelo, Constantino; Dusart, Isabelle

    2003-09-10

    Axonal regeneration in the mammalian CNS is a property of immature neurons that is lost during development. Using organotypic culture of cerebellum, we have shown that in vitro Purkinje cells lose their regenerative capacity in parallel with the process of myelination. We have investigated whether myelination is involved in the age-dependent loss of regeneration of these neurons. By applying a high dose of bromodeoxyuridine in the culture medium of newborn cerebellar slices during the first 3 d in vitro, we have succeeded in obtaining cultures with oligodendrocyte depletion, together with a lack of ameboid microglia and enhancement of Purkinje cell survival. These cultures, after 14 d in vitro, are completely devoid of myelin. We have compared the ability of Purkinje cells to regenerate their axons in the presence or absence of myelin. Purkinje cells in cerebellar explants taken at birth, treated with bromodeoxyuridine and axotomized after 7 d in vitro, survive better than similar neurons in untreated cultures. However, despite the lack of myelin and the enhanced survival, Purkinje cells do not regenerate, whereas they do regenerate when the axotomy is done at postnatal day 0. Thus, the Purkinje cell developmental switch from axonal regeneration to lack of regeneration does not appear to be regulated by myelin.

  7. Potent glycan inhibitors of myelin-associated glycoprotein enhance axon outgrowth in vitro.

    PubMed

    Vyas, Alka A; Blixt, Ola; Paulson, James C; Schnaar, Ronald L

    2005-04-22

    Myelin-associated glycoprotein (MAG, Siglec-4) is one of several endogenous axon regeneration inhibitors that limit recovery from central nervous system injury and disease. Molecules that block such inhibitors may enhance axon regeneration and functional recovery. MAG, a member of the Siglec family of sialic acid-binding lectins, binds to sialoglycoconjugates on axons and particularly to gangliosides GD1a and GT1b, which may mediate some of the inhibitory effects of MAG. In a prior study, we identified potent monovalent sialoside inhibitors of MAG using a novel screening platform. In the current study, the most potent of these were tested for their ability to reverse MAG-mediated inhibition of axon outgrowth from rat cerebellar granule neurons in vitro. Monovalent sialoglycans enhanced axon regeneration in proportion to their MAG binding affinities. The most potent glycoside was disialyl T antigen (NeuAcalpha2-3Galbeta1-3[NeuAcalpha2-6]GalNAc-R), followed by 3-sialyl T antigen (NeuAcalpha2-3Galbeta1-3GalNAc-R), structures expressed on O-linked glycoproteins as well as on gangliosides. Prior studies indicated that blocking gangliosides reversed MAG inhibition. In the current study, blocking O-linked glycoprotein sialylation with benzyl-alpha-GalNAc had no effect. The ability to reverse MAG inhibition with monovalent glycosides encourages further exploration of glycans and glycan mimetics as blockers of MAG-mediated axon outgrowth inhibition.

  8. Japanese neuropathy patients with peripheral myelin protein-22 gene aneuploidy

    SciTech Connect

    Lebo, R.V.; Li, L.Y.; Flandermeyer, R.R.

    1994-09-01

    Peripheral myelin protein (PMP-22) gene aneuploidy results in Charcot-Marie-Tooth disease Type 1A (CMT1A) and the Hereditary Neuropathy with Liability to Pressure Palsy (HNPP) in Japanese patients as well as Caucasian Americans. Charcot-Marie-Tooth disease (CMT), the most common genetic neuropathy, results when expression of one of at least seven genes is defective. CMT1A, about half of all CMT mutations, is usually associated with a duplication spanning the peripheral myelin protein-22 gene on distal chromosome band 17p11.2. Autosomal dominant HNPP (hereditary pressure and sensory neuropathy, HPSN) results from a deletion of the CMT1A gene region. Multicolor in situ hybridization with PMP-22 gene region probe characterized HNPP deletion reliably and detected all different size duplications reported previously. In summary, 72% of 28 Japanese CMT1 (HMSNI) patients tested had the CMT1A duplication, while none of the CMT2 (HMSNII) or CMT3 (HMSNIII) patients had a duplication. Three cases of HNPP were identified by deletion of the CMT1A gene region on chromosome 17p. HNPP and CMT1A have been reported to result simultaneously from the same unequal recombination event. The lower frequency of HNPP compared to CMT1A suggests that HNPP patients have a lower reproductive fitness than CMT1A patients. This result, along with a CMT1A duplication found in an Asian Indian family, demonstrates the broad geographic distribution and high frequency of PMP-22 gene aneuploidy.

  9. Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy.

    PubMed

    Persson, Anna-Karin; Hoeijmakers, Janneke G J; Estacion, Mark; Black, Joel A; Waxman, Stephen G

    2016-05-01

    Peripheral neuropathy results from damage to peripheral nerves and is often accompanied by pain in affected limbs. Treatment represents an unmet medical need and a thorough understanding of the mechanisms underlying axonal injury is needed. Longer nerve fibers tend to degenerate first (length-dependence), and patients carrying pathogenic mutations throughout life usually become symptomatic in mid- or late-life (time-dependence). The activity of voltage-gated sodium channels can contribute to axonal injury and sodium channel gain-of-function mutations have been linked to peripheral neuropathy. Recent studies have implicated sodium channel activity, mitochondrial compromise, and reverse-mode Na(+)/Ca(2+) exchange in time- and length-dependent axonal injury. Elucidation of molecular mechanisms underlying axonal injury in peripheral neuropathy may provide new therapeutic strategies for this painful and debilitating condition.

  10. Salvianolic acid B protects the myelin sheath around injured spinal cord axons

    PubMed Central

    Zhu, Zhe; Ding, Lu; Qiu, Wen-feng; Wu, Hong-fu; Li, Rui

    2016-01-01

    Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. PMID:27127491

  11. Salvianolic acid B protects the myelin sheath around injured spinal cord axons.

    PubMed

    Zhu, Zhe; Ding, Lu; Qiu, Wen-Feng; Wu, Hong-Fu; Li, Rui

    2016-03-01

    Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells.

  12. Bursts and hyperexcitability in non-myelinated axons of the rat hippocampus.

    PubMed

    Palani, D; Baginskas, A; Raastad, M

    2010-06-02

    Strict control over the initiation of action potentials is the primary task of a neuron. One way to lose proper spike control is to create several spikes, a burst, when only one should be initiated. We describe a new site for burst initiation in rat hippocampal CA3 neurons: the Schaffer collateral axons. These axons lack myelin, are long, extremely thin, and form synapses along their entire paths, features typical for many, if not most cortical axons in the mammalian brain. We used hippocampal slices and recorded from individual Schaffer collateral axons. We found that single action potentials were converted into bursts of two to six action potentials after blocking 4-aminopyridine (4-AP) sensitive K(+) channels. The CA3 somata and initial part of their axons were surgically removed in these experiments, leading to the conclusion that the bursts were initiated far out in the axons. This conclusion was supported by two additional kinds of experiments. First, local application of 4-AP to one out of two stimulated axonal branches of the same neuron showed bursting only at the 4-AP exposed branch. Second, intracellular recordings from CA3 somata showed that some spontaneously occurring bursts were resistant to somatic hyperpolarization. We then investigated a hyperexcitable period that follows individual spikes in the Schaffer collaterals. With extracellular excitability testing, we showed that the time course of this hyperexcitability was compatible with that of the bursts, so this hyperexcitability could be the underlying cause of the bursts. Furthermore, the hyperexcitability was enhanced by low doses of 4-AP (20 microM), alpha-dendrotoxin (alpha-DTX) or margatoxin (MgTX). Kv1.2 containing channels may therefore dampen the hyperexcitability, but because bursting was observed only at high 4-AP concentration (1 mM), other channels may be needed to prevent axonal bursting.

  13. Autophagy Is Involved in the Reduction of Myelinating Schwann Cell Cytoplasm during Myelin Maturation of the Peripheral Nerve

    PubMed Central

    Jang, So Young; Shin, Yoon Kyung; Park, So Young; Park, Joo Youn; Rha, Seo-Hee; Kim, Jong Kuk; Lee, Hye Jeong; Park, Hwan Tae

    2015-01-01

    Peripheral nerve myelination involves dynamic changes in Schwann cell morphology and membrane structure. Recent studies have demonstrated that autophagy regulates organelle biogenesis and plasma membrane dynamics. In the present study, we investigated the role of autophagy in the development and differentiation of myelinating Schwann cells during sciatic nerve myelination. Electron microscopy and biochemical assays have shown that Schwann cells remove excess cytoplasmic organelles during myelination through macroautophagy. Inhibition of autophagy via Schwann cell-specific removal of ATG7, an essential molecule for macroautophagy, using a conditional knockout strategy, resulted in abnormally enlarged abaxonal cytoplasm in myelinating Schwann cells that contained a large number of ribosomes and an atypically expanded endoplasmic reticulum. Small fiber hypermyelination and minor anomalous peripheral nerve functions are observed in this mutant. Rapamycin-induced suppression of mTOR activity during the early postnatal period enhanced not only autophagy but also developmental reduction of myelinating Schwann cells cytoplasm in vivo. Together, our findings suggest that autophagy is a regulatory mechanism of Schwann cells structural plasticity during myelination. PMID:25581066

  14. Autophagy is involved in the reduction of myelinating Schwann cell cytoplasm during myelin maturation of the peripheral nerve.

    PubMed

    Jang, So Young; Shin, Yoon Kyung; Park, So Young; Park, Joo Youn; Rha, Seo-Hee; Kim, Jong Kuk; Lee, Hye Jeong; Park, Hwan Tae

    2015-01-01

    Peripheral nerve myelination involves dynamic changes in Schwann cell morphology and membrane structure. Recent studies have demonstrated that autophagy regulates organelle biogenesis and plasma membrane dynamics. In the present study, we investigated the role of autophagy in the development and differentiation of myelinating Schwann cells during sciatic nerve myelination. Electron microscopy and biochemical assays have shown that Schwann cells remove excess cytoplasmic organelles during myelination through macroautophagy. Inhibition of autophagy via Schwann cell-specific removal of ATG7, an essential molecule for macroautophagy, using a conditional knockout strategy, resulted in abnormally enlarged abaxonal cytoplasm in myelinating Schwann cells that contained a large number of ribosomes and an atypically expanded endoplasmic reticulum. Small fiber hypermyelination and minor anomalous peripheral nerve functions are observed in this mutant. Rapamycin-induced suppression of mTOR activity during the early postnatal period enhanced not only autophagy but also developmental reduction of myelinating Schwann cells cytoplasm in vivo. Together, our findings suggest that autophagy is a regulatory mechanism of Schwann cells structural plasticity during myelination.

  15. Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer Yellow.

    PubMed

    Velumian, Alexander A; Samoilova, Marina; Fehlings, Michael G

    2011-05-01

    The compactness of myelin allows for efficient insulation defining rapid propagation of action potentials, but also raises questions about how cytoplasmic access to its membranes is achieved, which is critical for physiological activity. Understanding the organization of cytoplasmic ('water') spaces of myelin is also important for diffusion MRI studies of CNS white matter. Using longitudinal slices of mature rat spinal cord, we monitored the diffusion of the water-soluble fluorescent dye Lucifer Yellow injected into individual oligodendrocytes or internodal myelin. We show that living myelin sheaths on CNS axons are fenestrated by a network of diffusionally interconnected cytoplasmic 'pockets' (1.9 ± 0.2 pockets per 10μm sheath length, n=58) that included Schmidt-Lanterman clefts (SLCs) and numerous smaller compartments. 3-D reconstructions of these cytoplasmic networks show that the outer cytoplasmic layer of CNS myelin is cylindrically 'encuffing', which differs from EM studies using fixed tissue. SLCs were found in different 'open states' and remained stable within a 1-2hour observation period. Unlike the peripheral nervous system, where similarly small (<500Da) molecules diffuse along the whole myelin segment within a few minutes, in mature CNS this takes more than one hour. The slower cytoplasmic diffusion in CNS myelin possibly contributes to its known vulnerability to injury and limited capacity for repair. Our findings point to an elaborate cytoplasmic access to compact CNS myelin. These results could be of relevance to MRI studies of CNS white matter and to CNS repair/regeneration strategies. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. The onset and rate of myelination in six peripheral and autonomic nerves of the rat.

    PubMed Central

    Schäfer, K; Friede, R L

    1988-01-01

    A light and electron microscopic study was carried out of the numbers of myelinated fibres in 6 nerves of the rat for 7 age groups from birth to 73 weeks. The hypoglossal nerve and the mandibular branch of the facial nerve had short and early myelination periods, essentially complete by the second week. The glossopharyngeal nerve and the sympathetic rami communicantes myelinated late and over a protracted period. Myelination of the rami communicantes continued up to 20 weeks, followed by a marked loss of fibres in the 73 week animals. Intercostal and saphenous nerves had intermediary patterns. There was evidence of subpopulations myelinating at different times. Measurements of myelin sheath thickness showed variations of relative sheath thickness with age, between nerves and for subpopulations of nerves. Late myelination corresponded to relatively thin myelin sheaths. Statistical two-stage-density cluster analysis by computer was used for analysing complex fibre populations. The developmental changes of three subpopulations of the intercostal nerve are documented. Nerves also differed in their rates of axon growth. The increment in axon calibre was small and late for sympathetic fibres. Intercostal and facial nerve fibres had rapid axon growth with different growth rates for subpopulations. PMID:3248966

  17. ST8SIA2 promotes oligodendrocyte differentiation and the integrity of myelin and axons

    PubMed Central

    Szewczyk, Lukasz Mateusz; Brozko, Nikola; Nagalski, Andrzej; Röckle, Iris; Werneburg, Sebastian; Hildebrandt, Herbert

    2016-01-01

    ST8SIA2 is a polysialyltransferase that attaches polysialic acid to the glycoproteins NCAM1 and CADM1. Polysialylation is involved in brain development and plasticity. ST8SIA2 is a schizophrenia candidate gene, and St8sia2 −/− mice exhibit schizophrenia‐like behavior. We sought to identify new pathological consequences of ST8SIA2 deficiency. Our proteomic analysis suggested myelin impairment in St8sia2 −/− mice. Histological and immune staining together with Western blot revealed that the onset of myelination was not delayed in St8sia2 −/− mice, but the content of myelin was lower. Ultrastructure analysis of the corpus callosum showed thinner myelin sheaths, smaller and irregularly shaped axons, and white matter lesions in adult St8sia2 −/− mice. Then we evaluated oligodendrocyte differentiation in vivo and in vitro. Fewer OLIG2+ cells in the cortex and corpus callosum, together with the higher percentage of undifferentiated oligodenroglia in St8sia2 −/− mice suggested an impairment in oligodendrocyte generation. Experiment on primary cultures of oligodendrocyte precursor cells (OPCs) confirmed a cell‐autonomous effect of ST8SIA2 in oligodendroglia, and demonstrated that OPC to oligodendrocyte transition is inhibited in St8sia2 −/− mice. Concluding, ST8SIA2‐mediated polysialylation influences on oligodendrocyte differentiation, and oligodendrocyte deficits in St8sia2 mice are a possible cause of the demyelination and degeneration of axons, resembling nerve fiber alterations in schizophrenia. GLIA 2016;65:34–49 PMID:27534376

  18. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury

    PubMed Central

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-01-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions. PMID:27904499

  19. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury.

    PubMed

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-10-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.

  20. Quantifying visual pathway axonal and myelin loss in multiple sclerosis and neuromyelitis optica.

    PubMed

    Manogaran, Praveena; Vavasour, Irene M; Lange, Alex P; Zhao, Yinshan; McMullen, Katrina; Rauscher, Alexander; Carruthers, Robert; Li, David K B; Traboulsee, Anthony L; Kolind, Shannon H

    2016-01-01

    The optic nerve is frequently injured in multiple sclerosis and neuromyelitis optica, resulting in visual dysfunction, which may be reflected by measures distant from the site of injury. To determine how retinal nerve fiber layer as a measure of axonal health, and macular volume as a measure of neuronal health are related to changes in myelin water fraction in the optic radiations of multiple sclerosis and neuromyelitis optica participants with and without optic neuritis and compared to healthy controls. 12 healthy controls, 42 multiple sclerosis (16 with optic neuritis), and 10 neuromyelitis optica participants (8 with optic neuritis) were included in this study. Optical coherence tomography assessment involved measurements of the segmented macular layers (total macular, ganglion cell layer, inner plexiform layer, and inner nuclear layer volume) and paripapillary retinal nerve fiber layer thickness. The MRI protocol included a 32-echo T2-relaxation GRASE sequence. Average myelin water fraction values were calculated within the optic radiations as a measure of myelin density. Multiple sclerosis and neuromyelitis optica eyes with optic neuritis history had lower retinal nerve fiber layer thickness, total macular, ganglion cell and inner plexiform layer volumes compared to eyes without optic neuritis history and controls. Inner nuclear layer volume increased in multiple sclerosis with optic neuritis history (mean = 0.99 mm(3), SD = 0.06) compared to those without (mean = 0.97 mm(3), SD = 0.06; p = 0.003). Mean myelin water fraction in the optic radiations was significantly lower in demyelinating diseases (neuromyelitis optica: mean = 0.098, SD = 0.01, multiple sclerosis with optic neuritis history: mean = 0.096, SD = 0.01, multiple sclerosis without optic neuritis history: mean = 0.098, SD = 0.02; F3,55 = 3.35, p = 0.03) compared to controls. Positive correlations between MRI and optical coherence tomography measures were also apparent

  1. Myelin

    MedlinePlus

    ... protein and fatty substances. This myelin sheath allows electrical impulses to transmit quickly and efficiently along the nerve cells. If myelin is damaged, these impulses slow down. This can cause diseases such as multiple sclerosis .

  2. Damage and repair of the peripheral myelin sheath and node of Ranvier after treatment with trypsin.

    PubMed

    Yu, R C; Bunge, R P

    1975-01-01

    Cultures of whole fetal rat sensory ganglia which had matured and myelinated in culture were treated for 1-3 h with a pulse of 0.2% trypsin. The tissue was observed during the period of treatment and during subsequent weeks using both light and electron microscopy. Within minutes after trypsin addition the matrix of the culture was altered and the nerve fascicles loosened. Progressive changes included the retraction of Schwann cell processes from the nodal region the detachment of the myelin-related paranodal Schwann cell loops from the axon, and lengthening of the nodal region as the axon was bared. The retraction of myelin from nodal stabilized several hours after trypsin withdrawal. Breakdown of the altered myelin segments was rare. There were no discernable changes in neurons or their processes after this exposure to trypsin. The partial repair which occured over a period of several weeks included the reattachment of paranodal Schwann cell loops to the axolemma and the insertion of new myelin segments where a substantial length of axolemma had been bared. The significance of these observations to the characterization of the Schwann cell-axolemmal junctions on myelinated nerve fibers is discussed. The dramatic degree of myelin change that can occur without concomitant myelin breakdown is particularly noted, as is the observation that these altered myelin segments are, in part, repaired.

  3. CONTINUOUS CONDUCTION OF IMPULSES IN PERIPHERAL MYELINATED NERVE FIBERS

    PubMed Central

    Laporte, Y.

    1951-01-01

    1. Conduction of impulses in peripheral myelinated fibers of a nerve trunk is a continuous process, since with uninjured nerve fibers: (a) within each internodal segment the conduction time increases continuously and linearly with increasing conduction distance; (b) the presence of nodes of Ranvier does not result in any detectable discontinuity in the conduction of the impulse; (c) the ascending phase of the spike always has an S shape and never presents signs of fractionation; (d) the shape and magnitude of the spike are constant at all points of each internodal segment. 2. Records have been presented of the external logitudinal current that flows during propagation of an impulse in undissected single nerve fiber (Fig. 6). 3. Propagation of impulses across a conduction block occurs with a readily demonstrable discontinuity. PMID:14898021

  4. On the resemblance of synapse formation and CNS myelination.

    PubMed

    Almeida, R G; Lyons, D A

    2014-09-12

    The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Heterozygous peripheral myelin protein 22-deficient mice are affected by a progressive demyelinating tomaculous neuropathy.

    PubMed

    Adlkofer, K; Frei, R; Neuberg, D H; Zielasek, J; Toyka, K V; Suter, U

    1997-06-15

    Hereditary neuropathy with liability to pressure palsy (HNPP) is associated with a heterozygous 1.5 megabase deletion on chromosome 17 that includes the peripheral myelin protein (PMP) gene PMP22. We show that heterozygous PMP22 knock-out mice, which carry only one functional pmp22 allele and thus genetically mimic HNPP closely, display similar morphological and electrophysiological features as observed in HNPP nerves. As reported previously, focal hypermyelinating structures called tomacula, the pathological hallmarks of HNPP, develop progressively in young PMP22(+/0) mice. By following the fate of tomacula during aging, we demonstrate now that these mutant animals are also interesting models for examining HNPP disease mechanisms. Subtle electrophysiological abnormalities are detected in PMP22(+/0) mice >1 year old, and a significant number of abnormally swollen and degenerating tomacula are present. Thinly myelinated axons and supernumerary Schwann cells forming onion bulbs as fingerprints of repeated cycles of demyelination and remyelination are also encountered frequently. Quantitative analyses using electron microscopy on cross sections and light microscopy on single teased nerve fibers suggest that tomacula are intrinsically unstable structures that are prone to degeneration; however, the severity of morphological and electrophysiological abnormalities in PMP22(+/0) mice is variable. These combined findings are reminiscent of the disease progression in HNPP and offer a possible explanation about why some HNPP patients develop a chronic motor and sensory neuropathy later in life that resembles demyelinating forms of Charcot-Marie-Tooth disease by both morphological and clinical criteria.

  6. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis.

    PubMed

    Recks, Mascha S; Stormanns, Eva R; Bader, Jonas; Arnhold, Stefan; Addicks, Klaus; Kuerten, Stefanie

    2013-10-01

    Studies of MS histopathology are largely dependent on suitable animal models. While light microscopic analysis gives an overview of tissue pathology, it falls short in evaluating detailed changes in nerve fiber morphology. The ultrastructural data presented here and obtained from studies of myelin oligodendrocyte glycoprotein (MOG):35-55-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice delineate that axonal damage and myelin pathology follow different kinetics in the disease course. While myelin pathology accumulated with disease progression, axonal damage coincided with the initial clinical disease symptoms and remained stable over time. This pattern applied both to irreversible axolysis and early axonal pathology. Notably, these histopathological patterns were reflected by the normal-appearing white matter (NAWM), suggesting that the NAWM is also in an active neurodegenerative state. The data underline the need for neuroprotection in MS and suggest the MOG model as a highly valuable tool for the assessment of different therapeutic strategies.

  7. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina.

    PubMed

    Rai, Nagendra Kumar; Ashok, Anushruti; Rai, Asit; Tripathi, Sachin; Nagar, Geet Kumar; Mitra, Kalyan; Bandyopadhyay, Sanghamitra

    2013-12-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2'-, 3'-cyclic-nucleotide-3'-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology.

  8. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells

    PubMed Central

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  9. Altered myelination and axonal integrity in adults with childhood lead exposure: a diffusion tensor imaging study.

    PubMed

    Brubaker, Christopher J; Schmithorst, Vincent J; Haynes, Erin N; Dietrich, Kim N; Egelhoff, John C; Lindquist, Diana M; Lanphear, Bruce P; Cecil, Kim M

    2009-11-01

    Childhood lead exposure is associated with adverse cognitive, neurobehavioral and motor outcomes, suggesting altered brain structure and function. The purpose of this work was to assess the long-term impact of childhood lead exposure on white matter integrity in young adults. We hypothesized that childhood lead exposure would alter adult white matter architecture via deficits in axonal integrity and myelin organization. Adults (22.9+/-1.5 years, range 20.0-26.1 years) from the Cincinnati Lead Study were recruited to undergo a study employing diffusion tensor imaging (DTI). The anatomic regions of association between water diffusion characteristics in white matter and mean childhood blood lead level were determined for 91 participants (52 female). Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were measured on an exploratory voxel-wise basis. In adjusted analyses, mean childhood blood lead levels were associated with decreased FA throughout white matter. Regions of the corona radiata demonstrated highly significant lead-associated decreases in FA and AD and increases in MD and RD. The genu, body, and splenium of the corpus callosum demonstrated highly significant lead-associated decreases in RD, smaller and less significant decreases in MD, and small areas with increases in AD. The results of this analysis suggest multiple insults appear as distinct patterns of white matter diffusion abnormalities in the adult brain. Neurotoxic insults from the significant lead burden the participants experienced throughout childhood affect neural elements differently and may be related to the developmental stage of myelination at periods of exposure. This study indicates that childhood lead exposure is associated with a significant and persistent impact on white matter microstructure as quantified with diffusivity changes suggestive of altered myelination and axonal integrity.

  10. Relationship between myelin sheath diameter and internodal length in axons of the anterior medullary velum of the adult rat.

    PubMed

    Ibrahim, M; Butt, A M; Berry, M

    1995-11-01

    Relations between myelin sheath diameters and internodal lengths were measured in whole mounts of osmium stained intact anterior medullary velum (AMV) from glutaraldehyde perfused adult rats. The AMV is a sheet of CNS tissue which roofs the IVth ventricle and contains fascicles of myelinated fibres which arise mainly from the nucleus of the IVth cranial nerve. These fibers displayed a broad range of myelin sheath external diameters and internodal lengths, from < 1-12 microns and 50-750 microns, respectively. Myelin sheath external diameter was a measurement of the axonal diameter plus the thickness of its myelin sheath, while internodal length was measured as the distance between consecutive nodes. There was a broadly linear relationship between myelin sheath diameters and internodal lengths, with the smaller diameter sheaths tending to have shorter internodes than the larger. However, the correlation was weak and for any given diameter myelin sheaths displayed considerable variation in their internodal lengths. The smallest diameter myelin sheaths, < 4 microns, consistently had shorter internodes than predicted by a linear regression and, in an analysis of consecutive internodes in single fibres, the slope was flattened in fibres with a diameter > 4 microns. Our results indicated that small and large calibre fibres may have different myelin sheath diameter-internodal length interrelations.

  11. The myelin brake: when enough is enough.

    PubMed

    Macklin, Wendy B

    2010-09-21

    Myelination by Schwann cells in the peripheral nervous system and by oligodendrocytes in the central nervous system is tightly regulated by interactions with axons. Various investigations have shed light on the signaling pathways that mediate the production of myelin, but an important question remains; that is, which signals determine when the cell stops myelinating. New studies demonstrate that in Schwann cells, this is controlled by the abundance of Dlg1, which acts to stop active myelination.

  12. Heterogeneous anisotropic magnetic susceptibility of the myelin-water layers causes local magnetic field perturbations in axons.

    PubMed

    Puwal, Steffan; Roth, Bradley J; Basser, Peter J

    2017-04-01

    One goal of MRI is to determine the myelin water fraction in neural tissue. One approach is to measure the reduction in T2 * arising from microscopic perturbations in the magnetic field caused by heterogeneities in the magnetic susceptibility of myelin. In this paper, analytic expressions for the induced magnetic field distribution are derived within and around an axon, assuming that the myelin susceptibility is anisotropic. Previous models considered the susceptibility to be piecewise continuous, whereas this model considers a sinusoidally varying susceptibility. Many conclusions are common in both models. When the magnetic field is applied perpendicular to the axon, the magnetic field in the intraaxonal space is uniformly perturbed, the magnetic field in the myelin sheath oscillates between the lipid and water layers, and the magnetic field in the extracellular space just outside the myelin sheath is heterogeneous. These field heterogeneities cause the spins to dephase, shortening T2 *. When the magnetic field is applied along the axon, the field is homogeneous within water-filled regions, including between lipid layers. Therefore the spins do not dephase and the magnetic susceptibility has no effect on T2 *. Generally, the response of an axon is given as the superposition of these two contributions. The sinusoidal model uses a different set of approximations compared with the piecewise model, so their common predictions indicate that the models are not too sensitive to the details of the myelin-water distribution. Other predictions, such as the sensitivity to water diffusion between myelin and water layers, may highlight differences between the two approaches. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Postnatal Loss of Neuronal and Glial Neurofascins Differentially Affects Node of Ranvier Maintenance and Myelinated Axon Function

    PubMed Central

    Taylor, Anna M.; Saifetiarova, Julia; Bhat, Manzoor A.

    2017-01-01

    Intricate molecular interactions between neurons and glial cells underlie the creation of unique domains that are essential for saltatory conduction of action potentials by myelinated axons. Previously, the cell surface adhesion molecule Neurofascin (Nfasc) has been shown to have a dual-role in the establishment of axonal domains from both the glial and neuronal interface. While the neuron-specific isoform of Neurofascin (NF186) is indispensable for clustering of voltage-gated sodium channels at nodes of Ranvier; the glial-specific isoform of Neurofascin (NF155) is required for myelinating glial cells to organize the paranodal domain. Although many studies have addressed the individual roles of NF155 and NF186 in assembling paranodes and nodes, respectively; critical questions about their roles in the maintenance and long-term health of the myelinated axons remain, which we aimed to address in these studies. Here using spatiotemporal ablation of Neurofascin in neurons alone or together with myelinating glia, we report that loss of NF186 individually from postnatal mice leads to progressive nodal destabilization and axonal degeneration. While individual ablation of paranodal NF155 does not disrupt nodes of Ranvier; loss of NF186 combined with NF155 causes more accelerated nodal destabilization than loss of NF186 alone, providing strong evidence regarding a supporting role for paranodes in nodal maintenance. In both cases of NF186 loss, myelinating axons show ultrastructural changes and degeneration. Our studies reveal that long-term maintenance of nodes and ultimately the health of axons is correlated with the stability of NF186 within the nodal complex and the presence of auxiliary paranodes. PMID:28217083

  14. Postnatal Loss of Neuronal and Glial Neurofascins Differentially Affects Node of Ranvier Maintenance and Myelinated Axon Function.

    PubMed

    Taylor, Anna M; Saifetiarova, Julia; Bhat, Manzoor A

    2017-01-01

    Intricate molecular interactions between neurons and glial cells underlie the creation of unique domains that are essential for saltatory conduction of action potentials by myelinated axons. Previously, the cell surface adhesion molecule Neurofascin (Nfasc) has been shown to have a dual-role in the establishment of axonal domains from both the glial and neuronal interface. While the neuron-specific isoform of Neurofascin (NF186) is indispensable for clustering of voltage-gated sodium channels at nodes of Ranvier; the glial-specific isoform of Neurofascin (NF155) is required for myelinating glial cells to organize the paranodal domain. Although many studies have addressed the individual roles of NF155 and NF186 in assembling paranodes and nodes, respectively; critical questions about their roles in the maintenance and long-term health of the myelinated axons remain, which we aimed to address in these studies. Here using spatiotemporal ablation of Neurofascin in neurons alone or together with myelinating glia, we report that loss of NF186 individually from postnatal mice leads to progressive nodal destabilization and axonal degeneration. While individual ablation of paranodal NF155 does not disrupt nodes of Ranvier; loss of NF186 combined with NF155 causes more accelerated nodal destabilization than loss of NF186 alone, providing strong evidence regarding a supporting role for paranodes in nodal maintenance. In both cases of NF186 loss, myelinating axons show ultrastructural changes and degeneration. Our studies reveal that long-term maintenance of nodes and ultimately the health of axons is correlated with the stability of NF186 within the nodal complex and the presence of auxiliary paranodes.

  15. Myelin injury induces axonal transport impairment but not AD-like pathology in the hippocampus of cuprizone-fed mice

    PubMed Central

    Sun, Junjun; Zhou, Hong; Bai, Feng; Ren, Qingguo; Zhang, Zhijun

    2016-01-01

    Both multiple sclerosis (MS) and Alzheimer's disease (AD) are progressive neurological disorders with myelin injury and memory impairment. However, whether myelin impairment could cause AD-like neurological pathology remains unclear. To explore neurological pathology following myelin injury, we assessed cognitive function, the expression of myelin proteins, axonal transport-associated proteins, axonal structural proteins, synapse-associated proteins, tau and beta amyloid and the status of neurons, using the cuprizone mouse model of demyelination. We found the mild impairment of learning ability in cuprizone-fed mice and the decreased expression of myelin basic protein (MBP) in the hippocampus. And anti-LINGO-1 improved learning ability and partly restored MBP level. Furthermore, we also found kinesin light chain (KLC), neurofilament light chain (NFL) and neurofilament heavy chain (NF200) were declined in demyelinated hippocampus, which could be partly improved by treatment with anti-LINGO-1. However, we did not observe the increased expression of beta amyloid, hyperphosphorylation of tau and loss of neurons in demyelinated hippocampus. Our results suggest that demyelination might lead to the impairment of neuronal transport, but not cause increased level of hyperphosphorylated tau and beta amyloid. Our research demonstrates remyelination might be an effective pathway to recover the function of neuronal axons and cognition in MS. PMID:27129150

  16. Assessment of functional recovery and axonal sprouting in oligodendrocyte-myelin glycoprotein (OMgp) null mice after spinal cord injury.

    PubMed

    Ji, Benxiu; Case, Lauren C; Liu, Kai; Shao, Zhaohui; Lee, Xinhua; Yang, Zhongshu; Wang, Joy; Tian, Tim; Shulga-Morskaya, Svetlana; Scott, Martin; He, Zhigang; Relton, Jane K; Mi, Sha

    2008-10-01

    Oligodendrocyte-myelin glycoprotein (OMgp) is a myelin component that has been shown in vitro to inhibit neurite outgrowth by binding to the Nogo-66 receptor (NgR1)/Lingo-1/Taj (TROY)/p75 receptor complex to activate the RhoA pathway. To investigate the effects of OMgp on axon regeneration in vivo, OMgp(-/-) mice on a mixed 129/Sv/C57BL/6 (129BL6) or a C57BL/6 (BL6) genetic background were tested in two spinal cord injury (SCI) models - a severe complete transection or a milder dorsal hemisection. OMgp(-/-) mice on the mixed 129BL6 genetic background showed greater functional improvement compared to OMgp(+/+) littermates, with increased numbers of cholera toxin B-labeled ascending sensory axons and 5-HT(+) descending axons and less RhoA activation after spinal cord injury. Myelin isolated from OMgp(-/-) mice (129BL6) was significantly less inhibitory to neurite outgrowth than wild-type (wt) myelin in vitro. However, OMgp(-/-) mice on a BL/6 genetic background showed neither statistically significant functional recovery nor axonal sprouting following dorsal hemisection.

  17. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina

    SciTech Connect

    Rai, Nagendra Kumar; Ashok, Anushruti; Rai, Asit; Tripathi, Sachin; Nagar, Geet Kumar; Mitra, Kalyan; Bandyopadhyay, Sanghamitra

    2013-12-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2′-, 3′-cyclic-nucleotide-3′-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology. - Highlights: • As, Cd and Pb-mixture, at human relevant dose, demyelinate developing rat CNS. • The attenuation in myelin and axon is synergistic. • The optic nerve and brain demonstrate reduced glutamine synthetase.

  18. Transplantation of Glial Cells Enhances Action Potential Conduction of Amyelinated Spinal Cord Axons in the Myelin-Deficient Rat

    NASA Astrophysics Data System (ADS)

    Utzschneider, David A.; Archer, David R.; Kocsis, Jeffery D.; Waxman, Stephen G.; Duncan, Ian D.

    1994-01-01

    A central issue in transplantation research is to determine how and when transplantation of neural tissue can influence the development and function of the mammalian central nervous system. Of particular interest is whether electrophysiological function in the traumatized or diseased mammalian central nervous system can be improved by the replacement of cellular elements that are missing or damaged. Although it is known that transplantation of neural tissue can lead to functional improvement in models of neurological disease characterized by neuronal loss, less is known about results of transplantation in disorders of myelin. We report here that transplantation of glial cells into the dorsal columns of neonatal myelin-deficient rat spinal cords leads to myelination and a 3-fold increase in conduction velocity. We also show that impulses can propagate into and out of the transplant region and that axons myelinated by transplanted cells do not have impaired frequency-response properties. These results demonstrate that myelination following central nervous system glial cell transplantation enhances action potential conduction in myelin-deficient axons, with conduction velocity approaching normal values.

  19. A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo

    NASA Astrophysics Data System (ADS)

    FitzGerald, James J.; Lago, Natalia; Benmerah, Samia; Serra, Jordi; Watling, Christopher P.; Cameron, Ruth E.; Tarte, Edward; Lacour, Stéphanie P.; McMahon, Stephen B.; Fawcett, James W.

    2012-02-01

    Neural interfaces are implanted devices that couple the nervous system to electronic circuitry. They are intended for long term use to control assistive technologies such as muscle stimulators or prosthetics that compensate for loss of function due to injury. Here we present a novel design of interface for peripheral nerves. Recording from axons is complicated by the small size of extracellular potentials and the concentration of current flow at nodes of Ranvier. Confining axons to microchannels of ˜100 µm diameter produces amplified potentials that are independent of node position. After implantation of microchannel arrays into rat sciatic nerve, axons regenerated through the channels forming ‘mini-fascicles’, each typically containing ˜100 myelinated fibres and one or more blood vessels. Regenerated motor axons reconnected to distal muscles, as demonstrated by the recovery of an electromyogram and partial prevention of muscle atrophy. Efferent motor potentials and afferent signals evoked by muscle stretch or cutaneous stimulation were easily recorded from the mini-fascicles and were in the range of 35-170 µV. Individual motor units in distal musculature were activated from channels using stimulus currents in the microampere range. Microchannel interfaces are a potential solution for applications such as prosthetic limb control or enhancing recovery after nerve injury.

  20. Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury

    PubMed Central

    Oñate, Maritza; Catenaccio, Alejandra; Martínez, Gabriela; Armentano, Donna; Parsons, Geoffrey; Kerr, Bredford; Hetz, Claudio; Court, Felipe A.

    2016-01-01

    Although protein-folding stress at the endoplasmic reticulum (ER) is emerging as a driver of neuronal dysfunction in models of spinal cord injury and neurodegeneration, the contribution of this pathway to peripheral nerve damage remains poorly explored. Here we targeted the unfolded protein response (UPR), an adaptive reaction against ER stress, in mouse models of sciatic nerve injury and found that ablation of the transcription factor XBP1, but not ATF4, significantly delay locomotor recovery. XBP1 deficiency led to decreased macrophage recruitment, a reduction in myelin removal and axonal regeneration. Conversely, overexpression of XBP1s in the nervous system in transgenic mice enhanced locomotor recovery after sciatic nerve crush, associated to an improvement in key pro-regenerative events. To assess the therapeutic potential of UPR manipulation to axonal regeneration, we locally delivered XBP1s or an shRNA targeting this transcription factor to sensory neurons of the dorsal root ganglia using a gene therapy approach and found an enhancement or reduction of axonal regeneration in vivo, respectively. Our results demonstrate a functional role of specific components of the ER proteostasis network in the cellular changes associated to regeneration and functional recovery after peripheral nerve injury. PMID:26906090

  1. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve.

    PubMed

    Boyle, M E; Berglund, E O; Murai, K K; Weber, L; Peles, E; Ranscht, B

    2001-05-01

    Rapid nerve impulse conduction depends on specialized membrane domains in myelinated nerve, the node of Ranvier, the paranode, and the myelinated internodal region. We report that GPI-linked contactin enables the formation of the paranodal septate-like axo-glial junctions in myelinated peripheral nerve. Contactin clusters at the paranodal axolemma during Schwann cell myelination. Ablation of contactin in mutant mice disrupts junctional attachment at the paranode and reduces nerve conduction velocity 3-fold. The mutation impedes intracellular transport and surface expression of Caspr and leaves NF155 on apposing paranodal myelin disengaged. The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels. Thus, contactin is a crucial part in the machinery that controls junctional attachment at the paranode and ultimately the physiology of myelinated nerve.

  2. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells

    PubMed Central

    Hirono, Moritoshi; Ogawa, Yasuhiro; Misono, Kaori; Zollinger, Daniel R.; Trimmer, James S.

    2015-01-01

    In myelinated axons, K+ channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na+ channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K+ channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K+ channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni2+ elicited a similar effect on APs, indicating the involvement of Ni2+-sensitive Ca2+ channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex. PMID:25948259

  3. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat.

    PubMed

    Xiao, W H; Zheng, H; Zheng, F Y; Nuydens, R; Meert, T F; Bennett, G J

    2011-12-29

    The dose-limiting side effect of the anti-neoplastic agent, paclitaxel, is a chronic distal symmetrical peripheral neuropathy that produces sensory dysfunction (hypoesthesia and neuropathic pain) but little or no distal motor dysfunction. Similar peripheral neuropathies are seen with chemotherapeutics in the vinca alkaloid, platinum-complex, and proteasome inhibitor classes. Studies in rats suggest that the cause is a mitotoxic effect on axonal mitochondria. If so, then the absence of motor dysfunction may be due to mitotoxicity that affects sensory axons but spares motor axons. To investigate this, paclitaxel exposure levels in the dorsal root, ventral root, dorsal root ganglion, peripheral nerve, and spinal cord were measured, and the ultrastructure and the respiratory function of mitochondria in dorsal roots and ventral roots were compared. Sensory and motor axons in the roots and nerve had comparably low exposure to paclitaxel and exposure in the spinal cord was negligible. However, sensory neurons in the dorsal root ganglion had a very high and remarkably persistent (up to 10 days or more after the last injection) exposure to paclitaxel. Paclitaxel evoked a significant increase in the incidence of swollen and vacuolated mitochondria in the myelinated and unmyelinated sensory axons of the dorsal root (as seen previously in the peripheral nerve) but not in the motor axons of the ventral root. Stimulated mitochondrial respiration in the dorsal root was significantly depressed in paclitaxel-treated animals examined 2-4 weeks after the last injection, whereas respiration in the ventral root was normal. We conclude that the absence of motor dysfunction in paclitaxel-evoked peripheral neuropathy may be due to the absence of a mitotoxic effect in motor neuron axons, whereas the sensory dysfunction may be due to a mitotoxic effect resulting from the primary afferent neuron's cell body being exposed to high and persistent levels of paclitaxel.

  4. Protons regulate the excitability properties of rat myelinated sensory axons in vitro through block of persistent sodium currents.

    PubMed

    Maurer, Konrad; Bostock, Hugh; Koltzenburg, Martin

    2012-03-01

    Little information is available on the pH sensitivity of the excitability properties of mammalian axons. Computer-assisted threshold tracking in humans has helped to define clinically relevant changes of nerve excitability in response to hyperventilation and ischaemia, but in vivo studies cannot directly differentiate between the impact of pH and other secondary factors. In this investigation, we applied an excitability testing protocol to a rat saphenous skin nerve in vitro preparation. Changes in extracellular pH were induced by altering pCO(2) in the perfusate, and excitability properties of large myelinated fibres were measured in the pH range from 6.9 to 8.1. The main effect of protons on nerve excitability was a near linear increase in threshold which was accompanied by a decrease in strength-duration time constant reflecting mainly a decrease in persistent sodium current. In the recovery cycle, late subexcitability following 7 conditioning stimuli was substantially reduced at acid pH, indicating a block of slow but not of fast potassium channels. Changes in threshold electrotonus were complex, reflecting the combined effects of pH on multiple channel types. These results provide the first systematic data on pH sensitivity of mammalian nerve excitability properties, and may help in the interpretation of abnormal clinical excitability measurements. © 2012 Peripheral Nerve Society.

  5. Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies

    PubMed Central

    Cashman, Christopher R.; Höke, Ahmet

    2015-01-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  6. Regional Myelin and Axon Damage and Neuroinflammation in the Adult Mouse Brain After Long-Term Postnatal Vanadium Exposure.

    PubMed

    Azeez, Idris A; Olopade, Funmilayo; Laperchia, Claudia; Andrioli, Anna; Scambi, Ilaria; Onwuka, Silas K; Bentivoglio, Marina; Olopade, James O

    2016-09-01

    Environmental exposure to vanadium occurs in areas of persistent burning of fossil fuels; this metal is known to induce oxidative stress and oligodendrocyte damage. Here, we determined whether vanadium exposure (3 mg/kg) in mice during the first 3 postnatal months leads to a sustained neuroinflammatory response. Body weight monitoring, and muscle strength and open field tests showed reduction of body weight gain and locomotor impairment in vanadium-exposed mice. Myelin histochemistry and immunohistochemistry for astrocytes, microglia, and nonphosphorylated neurofilaments revealed striking regional heterogeneity. Myelin damage involved the midline corpus callosum and fibers in cortical gray matter, hippocampus, and diencephalon that were associated with axonal damage. Astrocyte and microglial activation was identified in the same regions and in the internal capsule; however, no overt myelin and axon damage was observed in the latter. Double immunofluorescence revealed induction of high tumor necrosis factor (TNF) immunoreactivity in reactive astrocytes. Western blotting analysis showed significant induction of TNF and interleukin-1β expression. Together these findings show that chronic postnatal vanadium exposure leads to functional deficit and region-dependent myelin damage that does not spare axons. This injury is associated with glial cell activation and proinflammatory cytokine induction, which may reflect both neurotoxic and neuroprotective responses. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  7. Normal molecular repair mechanisms in regenerative peripheral nerve interfaces allow recording of early spike activity despite immature myelination.

    PubMed

    Seifert, Jennifer L; Desai, Vidhi; Watson, Robert C; Musa, Tabassum; Kim, Young-tae; Keefer, Edward W; Romero, Mario I

    2012-03-01

    Clinical use of neurally controlled prosthetics has advanced in recent years, but limitations still remain, including lacking fine motor control and sensory feedback. Indwelling multi-electrode arrays, cuff electrodes, and regenerative sieve electrodes have been reported to serve as peripheral neural interfaces, though long-term stability of the nerve-electrode interface has remained a formidable challenge. We recently developed a regenerative multi-electrode interface (REMI) that is able to record neural activity as early as seven days post-implantation. While this activity might represent normal neural depolarization during axonal regrowth, it can also be the result of altered nerve regeneration around the REMI. This study evaluated high-throughput expression levels of 84 genes involved in nerve injury and repair, and the histological changes that occur in parallel to this early neural activity. Animals exhibiting spike activity increased from 29% to 57% from 7 to 14 days following REMI implantation with a corresponding increase in firing rate of 113%. Two weeks after implantation, numbers of neurofilament-positive axons in the control and REMI implanted nerves were comparable, and in both cases the number of myelinated axons was low. During this time, expression levels of genes related to nerve injury and repair were similar in regenerated nerves, both in the presence or absence of the electrode array. Together, these results indicate that the early neural activity is intrinsic to the regenerating axons, and not induced by the REMI neurointerface.

  8. Peripheral neuropathies caused by mutations in the myelin protein zero.

    PubMed

    Shy, Michael E

    2006-03-15

    Charcot-Marie-Tooth disease type 1B (CMT1B) is caused by mutations in the major PNS myelin protein myelin protein zero (MPZ). MPZ is a member of the immunoglobulin supergene family and functions as an adhesion molecule helping to mediate compaction of PNS myelin. Mutations in MPZ appear to either disrupt myelination during development, leading to severe early onset neuropathies, or to disrupt axo-glial interactions leading to late onset neuropathies in adulthood. Identifying molecular pathways involved in early and late onset CMT1B will be crucial to understand how MPZ mutations cause CMT1B so that rational therapies for both early and late onset neuropathies can be developed.

  9. Over-expression of alpha-synuclein in the nervous system enhances axonal degeneration after peripheral nerve lesion in a transgenic mouse strain.

    PubMed

    Siebert, Heike; Kahle, Philipp J; Kramer, Michael L; Isik, Thomas; Schlüter, Oliver M; Schulz-Schaeffer, Walter J; Brück, Wolfgang

    2010-08-01

    Wallerian degeneration in peripheral nerves occurs after a traumatic insult when the distal nerve part degenerates while peripheral macrophages enter the nerve stump and remove the accruing debris by phagozytosis. We used an experimental model to investigate the effect of either the absence or over-expression of alpha-synuclein (alpha-syn) after transecting the sciatic nerves of mice. alpha-Synuclein is a major component of Lewy bodies and its aggregation results in a premature destruction of nerve cells. It has also been found present in different peripheral nerves but its role in the axon remains still unclear. Following sciatic nerve transection in different mouse strains, we investigated the numbers of invading macrophages, the amounts of remaining myelin and axons 6 days after injury. All mice showed clear signs of Wallerian degeneration, but transgenic mice expressing human wild-type alpha-syn showed lower numbers of invading macrophages, less preserved myelin and significantly lower numbers of preserved axons in comparison with either knockout mice or a mouse strain with a spontaneous deletion of alpha-syn. The use of protein aggregation filtration blots and paraffin-embedded tissue blots displayed depositions of alpha-syn aggregates within sciatic nerve axons of transgenic mice. Thicker myelin sheaths and higher numbers of mitochondria were detected in old alpha-syn transgenic mice. In a human sural nerve, alpha-syn could also be identified within axons. Thus, alpha-syn and its aggregates are not only a component of Lewy bodies and synapses but also of axons and these aggregates might interfere with axonal transport. alpha-Synuclein transgenic mice represent an appropriate model for investigations on axonal transport in neurodegenerative diseases.

  10. A Novel Asp121Asn Mutation of Myelin Protein Zero Is Associated with Late-Onset Axonal Charcot-Marie-Tooth Disease, Hearing Loss and Pupil Abnormalities.

    PubMed

    Duan, Xiaohui; Gu, Weihong; Hao, Ying; Wang, Renbin; Wen, Hong; Sun, Shaojie; Jiao, Jinsong; Fan, Dongsheng

    2016-01-01

    Myelin protein zero (MPZ) is a major component of compact myelin in peripheral nerves. Mutations in MPZ have been associated with different Charcot-Marie-Tooth disease (CMT) phenotypes (CMT1B, CMT2I/J, CMTDI), Dejerine-Sottas syndrome, and congenital hypomyelination neuropathy. Here, we report phenotypic variability in a four-generation Chinese family with the MPZ mutation Asp121Asn. Genetic testing was performed on nine family members and 200 controls. Clinical, electrophysiological and skeletal muscle MRI assessments were available for review in six family members. A novel heterozygous missense mutation, Asp121Asn, was observed in five affected members of the family. Unaffected relatives and 200 normal controls were without the mutation. Four of the affected members of the family displayed late-onset, predominantly axonal sensory and motor neuropathy, pupil abnormalities, and progressive sensorineural hearing loss. One young affected member presented with Argyll-Robertson pupils and diminished deep tendon reflexes in the lower limbs. The MPZ mutation Asp121Asn may be associated with late-onset axonal neuropathy, early onset hearing loss and pupil abnormalities. Our report expands the number and phenotypic spectrum of MPZ mutations.

  11. A Novel Asp121Asn Mutation of Myelin Protein Zero Is Associated with Late-Onset Axonal Charcot-Marie-Tooth Disease, Hearing Loss and Pupil Abnormalities

    PubMed Central

    Duan, Xiaohui; Gu, Weihong; Hao, Ying; Wang, Renbin; Wen, Hong; Sun, Shaojie; Jiao, Jinsong; Fan, Dongsheng

    2016-01-01

    Myelin protein zero (MPZ) is a major component of compact myelin in peripheral nerves. Mutations in MPZ have been associated with different Charcot–Marie–Tooth disease (CMT) phenotypes (CMT1B, CMT2I/J, CMTDI), Dejerine–Sottas syndrome, and congenital hypomyelination neuropathy. Here, we report phenotypic variability in a four-generation Chinese family with the MPZ mutation Asp121Asn. Genetic testing was performed on nine family members and 200 controls. Clinical, electrophysiological and skeletal muscle MRI assessments were available for review in six family members. A novel heterozygous missense mutation, Asp121Asn, was observed in five affected members of the family. Unaffected relatives and 200 normal controls were without the mutation. Four of the affected members of the family displayed late-onset, predominantly axonal sensory and motor neuropathy, pupil abnormalities, and progressive sensorineural hearing loss. One young affected member presented with Argyll–Robertson pupils and diminished deep tendon reflexes in the lower limbs. The MPZ mutation Asp121Asn may be associated with late-onset axonal neuropathy, early onset hearing loss and pupil abnormalities. Our report expands the number and phenotypic spectrum of MPZ mutations. PMID:27774063

  12. Mechanism of conduction block in amphibian myelinated axon induced by biphasic electrical current at ultra-high frequency.

    PubMed

    Tai, Changfeng; Guo, Dong; Wang, Jicheng; Roppolo, James R; de Groat, William C

    2011-11-01

    The mechanism of axonal conduction block induced by ultra-high frequency (≥ 20 kHz) biphasic electrical current was investigated using a lumped circuit model of the amphibian myelinated axon based on Frankenhaeuser-Huxley (FH) equations. The ultra-high frequency stimulation produces constant activation of both sodium and potassium channels at the axonal node under the block electrode causing the axonal conduction block. This blocking mechanism is different from the mechanism when the stimulation frequency is between 4 kHz and 10 kHz, where only the potassium channel is constantly activated. The minimal stimulation intensity required to induce a conduction block increases as the stimulation frequency increases. The results from this simulation study are useful to guide future animal experiments to reveal the different mechanisms underlying nerve conduction block induced by high-frequency biphasic electrical current.

  13. Extrinsic cellular and molecular mediators of peripheral axonal regeneration.

    PubMed

    Bosse, Frank

    2012-07-01

    The ability of injured peripheral nerves to regenerate and reinnervate their original targets is a characteristic feature of the peripheral nervous system (PNS). On the other hand, neurons of the central nervous system (CNS), including retinal ganglion cell (RGC) axons, are incapable of spontaneous regeneration. In the adult PNS, axonal regeneration after injury depends on well-orchestrated cellular and molecular processes that comprise a highly reproducible series of degenerative reactions distal to the site of injury. During this fine-tuned process, named Wallerian degeneration, a remodeling of the distal nerve fragment prepares a permissive microenvironment that permits successful axonal regrowth originating from the proximal nerve fragment. Therefore, a multitude of adjusted intrinsic and extrinsic factors are important for surviving neurons, Schwann cells, macrophages and fibroblasts as well as endothelial cells in order to achieve successful regeneration. The aim of this review is to summarize relevant extrinsic cellular and molecular determinants of successful axonal regeneration in rodents that contribute to the regenerative microenvironment of the PNS.

  14. Regional differences in myelination of chick vestibulocochlear ganglion cells.

    PubMed

    Sun, Ying-Jie; Kobayashi, Hiroto; Yoshida, Saori; Shirasawa, Nobuyuki; Naito, Akira

    2013-11-01

    In vertebrates, vestibular and cochlear ganglion (VG and CG, respectively) cells are bipolar neurons with myelinated axons and perikarya. The time course of the myelination of the VG and CG cells during development of chick embryos was investigated. Chick VG and CG from embryonic day at 7-20 (E7-20) were prepared for a transmission electron microscopy, myelin basic protein immunohistochemistry, and real-time quantitative RT-PCR. In the VG cells, myelination was first observed on the peripheral axons of the ampullar nerves at E10, on the utricular and saccular nerves at E12, and on the lagenar and neglecta nerves at E13. In the VG central axons, myelination was first seen on the ampullar nerves at E11, on the utricular and saccular nerves at E13, and on the lagenar nerves at E13. In the CG cells, the myelination was first observed on the peripheral and central axons at E14. In both VG and CG, myelination was observed on the perikarya at E17. These results suggest that the onset of the axonal myelination on the VG cells occurred earlier than that on the CG cells, whereas the perikaryal myelination occurred at about the same time on the both types of ganglion cells. Moreover, the myelination on the ampullar nerves occurred earlier than that on the utricular and saccular nerves. The myelination on the peripheral axons occurred earlier than that on the central axons of the VG cells, whereas that on the central and peripheral axons of the CG cells occurred at about the same time. The regional differences in myelination in relation to the onset of functional activities in the VG and CG cells are discussed. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. Expression and distribution of CD9 in myelin of the central and peripheral nervous systems.

    PubMed Central

    Nakamura, Y.; Iwamoto, R.; Mekada, E.

    1996-01-01

    CD9 is a member of the newly identified tetra-membrane-spanning protein family. We show here that CD9 is a constituent of myelin in the central and peripheral nervous systems. Expression of CD9 was detected in human cerebral white matter and sciatic nerve by Northern and Western blotting. Myelin in the central and peripheral nervous systems was strongly stained with a monoclonal antibody against human CD9 antigen in paraffin-embedded sections. CD9 was detected in adult nervous tissue but not in developing brain at less than 20 weeks of gestation. Immunohistochemical studies indicated that expression of CD9 is correlated with myelination and is somewhat delayed compared with expression of myelin basic protein, a major component protein of myelin. In the central nervous system, CD9 was detected along the outermost membrane of compact myelin but not inside compact myelin or the periaxonal region. Although the membrane-anchored form of heparin-binding epidermal-growth-factor-like growth factor (proHB-EGF), which is identical to the diphtheria toxin receptor, forms a complex with CD9 in some human and monkey cell lines, proHB-EGF was not detected in myelin immunocytochemically. The distribution of CD9 in the outer surface of myelin and its relatively late developmental appearance suggest that CD9 may interact with the extracellular matrix or cell adhesion molecules and participate in the maintenance of the entire myelin sheath. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8701996

  16. A reliable in vitro model for studying peripheral nerve myelination in mouse.

    PubMed

    Stettner, Mark; Wolffram, Kathleen; Mausberg, Anne K; Wolf, Christian; Heikaus, Sebastian; Derksen, Angelika; Dehmel, Thomas; Kieseier, Bernd C

    2013-03-30

    The rat dorsal root ganglia (DRG) model is a long-standing in vitro model for analysis of myelination in the peripheral nervous system. For performing systematic, high throughput analysis with transgenic animals, a simplified BL6 mouse protocol is indispensable. Here we present a stable and reliable protocol for myelinating co-cultures producing a high myelin ratio using cells from C57BL/6 mice. As an easy accessible and operable method, Sudan staining proved to be efficient in myelin detection for fixed cultures. Green fatty acid stain turned out to be highly reliable for analysis of the dynamic biological processes of myelination in vital cultures. Once myelinated we were able to induce demyelination by the addition of forskolin into the model system. In addition, we provide an optimised rat DRG protocol with significantly improved myelin ratio and a comparison of the protocols presented. Our results strengthen the value of ex vivo myelination models in neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Immune deficiency in mouse models for inherited peripheral neuropathies leads to improved myelin maintenance.

    PubMed

    Schmid, C D; Stienekemeier, M; Oehen, S; Bootz, F; Zielasek, J; Gold, R; Toyka, K V; Schachner, M; Martini, R

    2000-01-15

    The adhesive cell surface molecule P(0) is the most abundant glycoprotein in peripheral nerve myelin and fulfills pivotal functions during myelin formation and maintenance. Mutations in the corresponding gene cause hereditary demyelinating neuropathies. In mice heterozygously deficient in P(0) (P(0)(+/-) mice), an established animal model for a subtype of hereditary neuropathies, T-lymphocytes are present in the demyelinating nerves. To monitor the possible involvement of the immune system in myelin pathology, we cross-bred P(0)(+/-) mice with null mutants for the recombination activating gene 1 (RAG-1) or with mice deficient in the T-cell receptor alpha-subunit. We found that in P(0)(+/-) mice myelin degeneration and impairment of nerve conduction properties is less severe when the immune system is deficient. Moreover, isolated T-lymphocytes from P(0)(+/-) mice show enhanced reactivity to myelin components of the peripheral nerve, such as P(0), P(2), and myelin basic protein. We hypothesize that autoreactive immune cells can significantly foster the demyelinating phenotype of mice with a primarily genetically based peripheral neuropathy.

  18. Passive immunization with myelin basic protein activated T cells suppresses axonal dieback but does not promote axonal regeneration following spinal cord hemisection in adult rats.

    PubMed

    Wang, Hong-Ju; Hu, Jian-Guo; Shen, Lin; Wang, Rui; Wang, Qi-Yi; Zhang, Chen; Xi, Jin; Zhou, Jian-Sheng; Lü, He-Zuo

    2012-08-01

    The previous studies suggested that some subpopulations of T lymphocytes against central nervous system (CNS) antigens, such as myelin basic protein (MBP), are neuroprotective. But there were few reports about the effect of these T cells on axon regeneration. In this study, the neonatally thymectomied (Tx) adult rats which contain few T lymphocytes were subjected to spinal cord hemisection and then passively immunized with MBP-activated T cells (MBP-T). The regeneration and dieback of transected axons of cortico-spinal tract (CST) were detected by biotin dextran amine (BDA) tracing. The behavioral assessments were performed using the Basso, Beattie, and Bresnahan locomotor rating scale. We found that passive transferring of MBP-T could attenuate axonal dieback. However, no significant axon regeneration and behavioral differences were observed among the normal, Tx and sham-Tx (sTx) rats with or without MBP-T passive immunization. These results indicate that passive transferring of MBP-T cells can attenuate axonal dieback and promote neuroprotection following spinal cord injury (SCI), but may not promote axon regeneration.

  19. Immune response in peripheral axons delays disease progression in SOD1(G93A) mice.

    PubMed

    Nardo, Giovanni; Trolese, Maria Chiara; de Vito, Giuseppe; Cecchi, Roberta; Riva, Nilo; Dina, Giorgia; Heath, Paul R; Quattrini, Angelo; Shaw, Pamela J; Piazza, Vincenzo; Bendotti, Caterina

    2016-10-07

    Increasing evidence suggests that the immune system has a beneficial role in the progression of amyotrophic lateral sclerosis (ALS) although the mechanism remains unclear. Recently, we demonstrated that motor neurons (MNs) of C57SOD1(G93A) mice with slow disease progression activate molecules classically involved in the cross-talk with the immune system. This happens a lot less in 129SvSOD1(G93A) mice which, while expressing the same amount of transgene, had faster disease progression and earlier axonal damage. The present study investigated whether and how the immune response is involved in the preservation of motor axons in the mouse model of familial ALS with a more benign disease course. First, the extent of axonal damage, Schwann cell proliferation, and neuromuscular junction (NMJ) denervation were compared between the two ALS mouse models at the disease onset. Then, we compared the expression levels of different immune molecules, the morphology of myelin sheaths, and the presence of blood-derived immune cell infiltrates in the sciatic nerve of the two SOD1G93A mouse strains using immunohistochemical, immunoblot, quantitative reverse transcription PCR, and rotating-polarization Coherent Anti-Stokes Raman Scattering techniques. Muscle denervation, axonal dysregulation, and myelin disruption together with reduced Schwann cell proliferation are prominent in 129SvSOD1(G93A) compared to C57SOD1(G93A) mice at the disease onset, and this correlates with a faster disease progression in the first strain. On the contrary, a striking increase of immune molecules such as CCL2, MHCI, and C3 was seen in sciatic nerves of slow progressor C57SOD1(G93A) mice and this was accompanied by heavy infiltration of CD8(+) T lymphocytes and macrophages. These phenomena were not detectable in the peripheral nervous system of fast-progressing mice. These data show for the first time that damaged MNs in SOD1-related ALS actively recruit immune cells in the peripheral nervous system to

  20. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons.

    PubMed

    Battefeld, Arne; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-03-05

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these K(v)7 channels and the functional impact of colocalization with Na(v) channels remain poorly understood. Here, we quantitatively examined K(v)7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. K(v)7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ~12 (proximal) to 150 pS μm(-2) (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by K(v)7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (~15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic K(v)7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal K(v)7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains K(v)7.2/7.3 channels were found to increase Na(v) channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, K(v)7 clustering near axonal Na(v) channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential.

  1. Heteromeric Kv7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons

    PubMed Central

    Battefeld, Arne; Tran, Baouyen T.; Gavrilis, Jason; Cooper, Edward C.

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these Kv7 channels and the functional impact of colocalization with Nav channels remain poorly understood. Here, we quantitatively examined Kv7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. Kv7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ∼12 (proximal) to 150 pS μm−2 (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by Kv7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (∼15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic Kv7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal Kv7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains Kv7.2/7.3 channels were found to increase Nav channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, Kv7 clustering near axonal Nav channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential. PMID:24599470

  2. Conduction block in myelinated axons induced by high-frequency (kHz) non-symmetric biphasic stimulation

    PubMed Central

    Zhao, Shouguo; Yang, Guangning; Wang, Jicheng; Roppolo, James R.; de Groat, William C.; Tai, Changfeng

    2015-01-01

    This study used the Frankenhaeuser–Huxley axonal model to analyze the effects of non-symmetric waveforms on conduction block of myelinated axons induced by high-frequency (10–300 kHz) biphasic electrical stimulation. The results predict a monotonic relationship between block threshold and stimulation frequency for symmetric waveform and a non-monotonic relationship for non-symmetric waveforms. The symmetric waveform causes conduction block by constantly activating both sodium and potassium channels at frequencies of 20–300 kHz, while the non-symmetric waveforms share the same blocking mechanism from 20 kHz up to the peak threshold frequency. At the frequencies above the peak threshold frequency the non-symmetric waveforms block axonal conduction by either hyperpolarizing the membrane (if the positive pulse is longer) or depolarizing the membrane (if the negative pulse is longer). This simulation study further increases our understanding of conduction block in myelinated axons induced by high-frequency biphasic electrical stimulation, and can guide future animal experiments as well as optimize stimulation parameters that might be used for electrically induced nerve block in clinical applications. PMID:26217217

  3. Conduction block in myelinated axons induced by high-frequency (kHz) non-symmetric biphasic stimulation.

    PubMed

    Zhao, Shouguo; Yang, Guangning; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-01-01

    This study used the Frankenhaeuser-Huxley axonal model to analyze the effects of non-symmetric waveforms on conduction block of myelinated axons induced by high-frequency (10-300 kHz) biphasic electrical stimulation. The results predict a monotonic relationship between block threshold and stimulation frequency for symmetric waveform and a non-monotonic relationship for non-symmetric waveforms. The symmetric waveform causes conduction block by constantly activating both sodium and potassium channels at frequencies of 20-300 kHz, while the non-symmetric waveforms share the same blocking mechanism from 20 kHz up to the peak threshold frequency. At the frequencies above the peak threshold frequency the non-symmetric waveforms block axonal conduction by either hyperpolarizing the membrane (if the positive pulse is longer) or depolarizing the membrane (if the negative pulse is longer). This simulation study further increases our understanding of conduction block in myelinated axons induced by high-frequency biphasic electrical stimulation, and can guide future animal experiments as well as optimize stimulation parameters that might be used for electrically induced nerve block in clinical applications.

  4. The Lin28/let-7 axis is critical for myelination in the peripheral nervous system

    PubMed Central

    Gökbuget, Deniz; Pereira, Jorge A.; Bachofner, Sven; Marchais, Antonin; Ciaudo, Constance; Stoffel, Markus; Schulte, Johannes H.; Suter, Ueli

    2015-01-01

    MicroRNAs (miRNAs) are crucial regulators of myelination in the peripheral nervous system (PNS). However, the miRNAs species involved and the underlying mechanisms are largely unknown. We found that let-7 miRNAs are highly abundant during PNS myelination and that their levels are inversely correlated to the expression of lin28 homolog B (Lin28B), an antagonist of let-7 accumulation. Sustained expression of Lin28B and consequently reduced levels of let-7 miRNAs results in a failure of Schwann cell myelination in transgenic mouse models and in cell culture. Subsequent analyses revealed that let-7 miRNAs promote expression of the myelination-driving master transcription factor Krox20 (also known as Egr2) through suppression of myelination inhibitory Notch signalling. We conclude that the Lin28B/let-7 axis acts as a critical driver of PNS myelination, in particular by regulating myelination onset, identifying this pathway also as a potential therapeutic target in demyelinating diseases. PMID:26466203

  5. Axonal degeneration in peripheral nerves in a case of Leber hereditary optic neuropathy.

    PubMed

    Mnatsakanyan, Lilit; Ross-Cisneros, Fred N; Carelli, Valerio; Wang, Michelle Y; Sadun, Alfredo A

    2011-03-01

    Leber hereditary optic neuropathy (LHON) is a mitochondrial DNA (mtDNA) genetic disorder characterized by profound bilateral loss of central vision due to selective loss of retinal ganglion cells. Most patients with LHON do not have complaints related to the peripheral nervous system. We investigated possible qualitative and quantitative histological changes in the peripheral nerve of a patient with LHON as compared to normal controls. Brachial plexus specimens were obtained at necropsy from a patient with LHON carrying the 3460/ND1 mtDNA mutation and age-matched controls without known history of neurological disease. The nerves were evaluated by light microscope coupled to a digital camera-based morphometric analysis and electron microscopy. Extensive axonal degeneration of the large heavily myelinated fibers was found in the brachial plexus from the patient with LHON. In LHON nerve fascicles, we counted over 10 times as many degenerated profiles as found in the control nerve fascicles. Microscopic examination of the brachial plexus in the patient with LHON clearly demonstrated a significant pattern of neurodegeneration. Our study suggests that peripheral neuropathy may be a subclinical feature associated with LHON.

  6. Severity of Demyelinating and Axonal Neuropathy Mouse Models Is Modified by Genes Affecting Structure and Function of Peripheral Nodes.

    PubMed

    Morelli, Kathryn H; Seburn, Kevin L; Schroeder, David G; Spaulding, Emily L; Dionne, Loiuse A; Cox, Gregory A; Burgess, Robert W

    2017-03-28

    Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited polyneuropathies. Mutations in 80 genetic loci can cause forms of CMT, resulting in demyelination and axonal dysfunction. The clinical presentation, including sensory deficits, distal muscle weakness, and atrophy, can vary greatly in severity and progression. Here, we used mouse models of CMT to demonstrate genetic interactions that result in a more severe neuropathy phenotype. The cell adhesion molecule Nrcam and the Na(+) channel Scn8a (NaV1.6) are important components of nodes. Homozygous Nrcam and heterozygous Scn8a mutations synergized with both an Sh3tc2 mutation, modeling recessive demyelinating Charcot-Marie-Tooth type 4C, and mutations in Gars, modeling dominant axonal Charcot-Marie-Tooth type 2D. We conclude that genetic variants perturbing the structure and function of nodes interact with mutations affecting the cable properties of axons by thinning myelin or reducing axon diameter. Therefore, genes integral to peripheral nodes are candidate modifiers of peripheral neuropathy.

  7. q-space and conventional diffusion imaging of axon and myelin damage in the rat spinal cord after axotomy.

    PubMed

    Farrell, Jonathan A D; Zhang, Jiangyang; Jones, Melina V; Deboy, Cynthia A; Hoffman, Paul N; Landman, Bennett A; Smith, Seth A; Reich, Daniel S; Calabresi, Peter A; van Zijl, Peter C M

    2010-05-01

    Parallel and perpendicular diffusion properties of water in the rat spinal cord were investigated 3 and 30 days after dorsal root axotomy, a specific insult resulting in early axonal degeneration followed by later myelin damage in the dorsal column white matter. Results from q-space analysis (i.e., the diffusion probability density function) obtained with strong diffusion weighting were compared to conventional anisotropy and diffusivity measurements at low b-values, as well as to histology for axon and myelin damage. q-Space contrasts included the height (return to zero displacement probability), full width at half maximum, root mean square displacement, and kurtosis excess of the probability density function, which quantifies the deviation from gaussian diffusion. Following axotomy, a significant increase in perpendicular diffusion (with decreased kurtosis excess) and decrease in parallel diffusion (with increased kurtosis excess) were found in lesions relative to uninjured white matter. Notably, a significant change in abnormal parallel diffusion was detected from 3 to 30 days with full width at half maximum, but not with conventional diffusivity. Also, directional full width at half maximum and root mean square displacement measurements exhibited different sensitivities to white matter damage. When compared to histology, the increase in perpendicular diffusion was not specific to demyelination, whereas combined reduced parallel diffusion and increased perpendicular diffusion was associated with axon damage. (c) 2010 Wiley-Liss, Inc.

  8. Effects of Valproic Acid on Axonal Regeneration and Recovery of Motor Function after Peripheral Nerve Injury in the Rat

    PubMed Central

    Rao, Ting; Wu, Fei; Xing, Danmou; Peng, Zhengren; Ren, Dong; Feng, Wei; Chen, Yan; Zhao, Zhiming; Wang, Huan; Wang, Junweng; Kan, Wusheng; Zhang, Qingsong

    2014-01-01

    Background: Valproic acid (VPA) is used to be an effective anti-epileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal regulated kinase pathway, and increases bcl-2 and growth cone-associated protein 43 levels in spinal cord. In the present research we demonstrate the effect of VPA on peripheral nerve regeneration and recovery of motor function following sciatic nerve transaction in rats. Methods: The rats in VPA group and control group were administered with valproic acid (300mg/kg) and sodium chloride respectively after operation. Each animal was observed sciatic nerve index (SFI) at 2-week intervals and studied electrophysiology at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed 12 weeks after operation. Using the digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. Results: There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity), and morphometrical results (regenerated axon number and thickness of myelin sheath) in nerve regeneration between the VPA group and controls (P<0.05). Conclusions: The results demonstrated that VPA is able to enhance sciatic nerve regeneration in rats, suggesting the potential clinical application of VPA for the treatment of peripheral nerve injury in humans. PMID:25207308

  9. Tead1 regulates the expression of Peripheral Myelin Protein 22 during Schwann cell development

    PubMed Central

    Lopez-Anido, Camila; Poitelon, Yannick; Gopinath, Chetna; Moran, John J.; Ma, Ki Hwan; Law, William D.; Antonellis, Anthony; Feltri, M. Laura; Svaren, John

    2016-01-01

    Schwann cells are myelinating glia in the peripheral nervous system that form the myelin sheath. A major cause of peripheral neuropathy is a copy number variant involving the Peripheral Myelin Protein 22 (PMP22) gene, which is located within a 1.4-Mb duplication on chromosome 17 associated with the most common form of Charcot-Marie-Tooth Disease (CMT1A). Rodent models of CMT1A have been used to show that reducing Pmp22 overexpression mitigates several aspects of a CMT1A-related phenotype. Mechanistic studies of Pmp22 regulation identified enhancers regulated by the Sox10 (SRY sex determining region Y-box 10) and Egr2/Krox20 (Early growth response protein 2) transcription factors in myelinated nerves. However, relatively little is known regarding how other transcription factors induce Pmp22 expression during Schwann cell development and myelination. Here, we examined Pmp22 enhancers as a function of cell type-specificity, nerve injury and development. While Pmp22 enhancers marked by active histone modifications were lost or remodeled after injury, we found that these enhancers were permissive in early development prior to Pmp22 upregulation. Pmp22 enhancers contain binding motifs for TEA domain (Tead) transcription factors of the Hippo signaling pathway. We discovered that Tead1 and co-activators Yap and Taz are required for Pmp22 expression, as well as for the expression of Egr2. Tead1 directly binds Pmp22 and Egr2 enhancers early in development and Tead1 binding is induced during myelination, correlating with Pmp22 expression. The data identify Tead1 as a novel regulator of Pmp22 expression during development in concert with Sox10 and Egr2. PMID:27288457

  10. Tead1 regulates the expression of Peripheral Myelin Protein 22 during Schwann cell development.

    PubMed

    Lopez-Anido, Camila; Poitelon, Yannick; Gopinath, Chetna; Moran, John J; Ma, Ki Hwan; Law, William D; Antonellis, Anthony; Feltri, M Laura; Svaren, John

    2016-07-15

    Schwann cells are myelinating glia in the peripheral nervous system that form the myelin sheath. A major cause of peripheral neuropathy is a copy number variant involving the Peripheral Myelin Protein 22 (PMP22) gene, which is located within a 1.4-Mb duplication on chromosome 17 associated with the most common form of Charcot-Marie-Tooth Disease (CMT1A). Rodent models of CMT1A have been used to show that reducing Pmp22 overexpression mitigates several aspects of a CMT1A-related phenotype. Mechanistic studies of Pmp22 regulation identified enhancers regulated by the Sox10 (SRY sex determining region Y-box 10) and Egr2/Krox20 (Early growth response protein 2) transcription factors in myelinated nerves. However, relatively little is known regarding how other transcription factors induce Pmp22 expression during Schwann cell development and myelination. Here, we examined Pmp22 enhancers as a function of cell type-specificity, nerve injury and development. While Pmp22 enhancers marked by active histone modifications were lost or remodeled after injury, we found that these enhancers were permissive in early development prior to Pmp22 upregulation. Pmp22 enhancers contain binding motifs for TEA domain (Tead) transcription factors of the Hippo signaling pathway. We discovered that Tead1 and co-activators Yap and Taz are required for Pmp22 expression, as well as for the expression of Egr2 Tead1 directly binds Pmp22 and Egr2 enhancers early in development and Tead1 binding is induced during myelination, correlating with Pmp22 expression. The data identify Tead1 as a novel regulator of Pmp22 expression during development in concert with Sox10 and Egr2. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Effects of K+ channel blockers on developing rat myelinated CNS axons: identification of four types of K+ channels.

    PubMed

    Devaux, Jerome; Gola, Maurice; Jacquet, Guy; Crest, Marcel

    2002-03-01

    Four blockers of voltage-gated potassium channels (Kv channels) were tested on the compound action potentials (CAPs) of rat optic nerves in an attempt to determine the regulation of Kv channel expression during the process of myelination. Before myelination occurred, 4-aminopyridine (4-AP) increased the amplitude, duration, and refractory period of the CAPs. On the basis of their pharmacological sensitivity, 4-AP-sensitive channels were divided in two groups, the one sensitive to kaliotoxin (KTX), dendrotoxin-I (DTX-I), and 4-AP, and the other sensitive only to 4-AP. In addition, tetraethylammonium chloride (TEA) applied alone broadened the CAPs. At the onset of myelination, DTX-I induced a more pronounced effect than KTX; this indicates that a fourth group of channels sensitive to 4-AP and DTX-I but insensitive to KTX had developed. The effects of KTX and DTX-I gradually disappeared during the period of myelination. Electron microscope findings showed that the disappearance of these effects was correlated with the ongoing process of myelination. This was confirmed by the fact that DTX-I and KTX enlarged the CAPs of demyelinated adult optic nerves. These results show that KTX- and DTX-sensitive channels are sequestrated in paranodal regions. During the process of myelination, KTX had less pronounced effects than DTX-I on demyelinated nerves, which suggests that the density of the KTX-sensitive channels decreased during this process. By contrast, 4-AP increased the amplitude, duration, and refractory period of the CAPs at all the ages tested and to a greater extent than KTX and DTX-I. The effects of TEA alone also gradually disappeared during this period. However, effects of TEA on CAPs were observed when this substance was applied after 4-AP to the adult optic nerve; this shows that TEA-sensitive channels are not masked by the myelin sheath. In conclusion, the process of myelination seems to play an important part in the regulation and setting of Kv channels in

  12. Direct determination of the lamellar structure of peripheral nerve myelin at low resolution (17 A).

    PubMed

    McIntosh, T J; Worthington, C R

    1974-05-01

    New X-ray diffraction data from normal nerve and nerve swollen in glycerol solutions have been recorded. Direct methods of structure analysis have been used in the interpretation of the X-ray data, and the phases of the first five orders of diffraction of peripheral nerve myelin have been uniquely determined. The direct methods include deconvolution of the autocorrelation function, sampling theorem reconstructions, and Fourier synthesis comparisons. Electron density profiles of normal and swollen nerve myelin at a resolution of 17 A together with an electron density scale in electrons per cubic angstrom are presented.

  13. Schwann cells and their transcriptional network: Evolution of key regulators of peripheral myelination.

    PubMed

    Stolt, C Claus; Wegner, Michael

    2016-06-15

    As derivatives of the neural crest, Schwann cells represent a vertebrate invention. Their development and differentiation is under control of a newly constructed, vertebrate-specific regulatory network that contains Sox10, Oct6 and Krox20 as cornerstones and central regulators of peripheral myelination. In this review, we discuss the function and relationship of these transcription factors among each other and in the context of their regulatory network, and present ideas of how neofunctionalization may have helped to recruit them to their novel task in Schwann cells. This article is part of a Special Issue entitled SI: Myelin Evolution.

  14. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury.

    PubMed

    Asensio-Pinilla, Elena; Udina, Esther; Jaramillo, Jessica; Navarro, Xavier

    2009-09-01

    Although injured peripheral axons are able to regenerate, functional recovery is usually poor after nerve transection. In this study we aim to elucidate the role of neuronal activity, induced by nerve electrical stimulation and by exercise, in promoting axonal regeneration and modulating plasticity in the spinal cord after nerve injury. Four groups of adult rats were subjected to sciatic nerve transection and suture repair. Two groups received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h, immediately after injury (ESa) or during 4 weeks (1 h daily; ESc). A third group (ES+TR) received 1 h electrical stimulation and was submitted to treadmill running during 4 weeks (5 m/min, 2 h daily). A fourth group performed only exercise (TR), whereas an untreated group served as control (C). Nerve conduction, H reflex and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. Histological analysis was made at the end of the follow-up. Groups that received acute ES and/or were forced to exercise in the treadmill showed higher levels of muscle reinnervation and increased numbers of regenerated myelinated axons when compared to control animals or animals that received chronic ES. Combining ESa with treadmill training significantly improved muscle reinnervation during the initial phase. The facilitation of the monosynaptic H reflex in the injured limb was reduced in all treated groups, suggesting that the maintenance of activity helps to prevent the development of hyperreflexia.

  15. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system.

    PubMed

    Lopez-Verrilli, María Alejandra; Picou, Frederic; Court, Felipe A

    2013-11-01

    Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor-like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano-vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC-derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro-regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage.

  16. Calibration of the stereological estimation of the number of myelinated axons in the rat sciatic nerve: A multicenter study

    PubMed Central

    Kaplan, S.; Geuna, S.; Ronchi, G.; Ulkay, M.B.; von Bartheld, C.S.

    2010-01-01

    Several sources of variability can affect stereological estimates. Here we measured the impact of potential sources of variability on numerical stereological estimates of myelinated axons in the adult rat sciatic nerve. Besides biological variation, parameters tested included two variations of stereological methods (unbiased counting frame versus 2D-disector), two sampling schemes (few large versus frequent small sampling boxes), and workstations with varying degrees of sophistication. All estimates were validated against exhaustive counts of the same nerve cross sections to obtain calibrated true numbers of myelinated axons (gold standard). In addition, we quantified errors in particle identification by comparing light microscopic and electron microscopic images of selected consecutive sections. Biological variation was 15.6%. There was no significant difference between the two stereological approaches or workstations used, but sampling schemes with few large samples yielded larger differences (20.7%±3.7% SEM) of estimates from true values, while frequent small samples showed significantly smaller differences (12.7%±1.9% SEM). Particle identification was accurate in 94% of cases (range: 89–98%). The most common identification error was due to profiles of Schwann cell nuclei mimicking profiles of small myelinated nerve fibers. We recommend sampling frequent small rather than few large areas, and conclude that workstations with basic stereological equipment are sufficient to obtain accurate estimates. Electron microscopic verification showed that particle misidentification had a surprisingly variable and large impact of up to 11%, corresponding to 2/3 of the biological variation (15.6%). Thus, errors in particle identification require further attention, and we provide a simple nerve fiber recognition test to assist investigators with self-testing and training. PMID:20064555

  17. A distal Schwann cell-specific enhancer mediates axonal regulation of the Oct-6 transcription factor during peripheral nerve development and regeneration

    PubMed Central

    Mandemakers, Wim; Zwart, Ronald; Jaegle, Martine; Walbeehm, Erik; Visser, Pim; Grosveld, Frank; Meijer, Dies

    2000-01-01

    The POU domain transcription factor Oct-6 is a major regulator of Schwann cell differentiation and myelination. During nerve development and regeneration, expression of Oct-6 is under the control of axonal signals. Identification of the cis-acting elements necessary for Oct-6 gene regulation is an important step in deciphering the complex signalling between Schwann cells and axons governing myelination. Here we show that a fragment distal to the Oct-6 gene, containing two DNase I-hypersensitive sites, acts as the Oct-6 Schwann cell-specific enhancer (SCE). The SCE is sufficient to drive spatially and temporally correct expression, during both normal peripheral nerve development and regeneration. We further demonstrate that a tagged version of Oct-6, driven by the SCE, rescues the peripheral nerve phenotype of Oct-6-deficient mice. Thus, our isolation and characterization of the Oct-6 SCE provides the first description of a cis-acting genetic element that responds to converging signalling pathways to drive myelination in the peripheral nervous system. PMID:10856243

  18. Peptide Mimetic of the S100A4 Protein Modulates Peripheral Nerve Regeneration and Attenuates the Progression of Neuropathy in Myelin Protein P0 Null Mice

    PubMed Central

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana; Pankratova, Stanislava; Fugleholm, Kåre; Klingelhofer, Jorg; Bock, Elisabeth; Berezin, Vladimir; Krarup, Christian; Kiryushko, Darya

    2013-01-01

    We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies. PMID:23508572

  19. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals

    NASA Astrophysics Data System (ADS)

    Pelot, N. A.; Behrend, C. E.; Grill, W. M.

    2017-08-01

    Objective. There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics’ vBloc® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. Approach. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. Main results. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed ‘re-excitation’, arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Significance. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our

  20. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.

    PubMed

    Pelot, N A; Behrend, C E; Grill, W M

    2017-03-31

    There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics' vBloc(®) therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed 're-excitation', arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle

  1. N,N-diethyldithiocarbamate produces copper accumulation, lipid peroxidation, and myelin injury in rat peripheral nerve.

    PubMed

    Tonkin, Elizabeth G; Valentine, Holly L; Milatovic, Dejan M; Valentine, William M

    2004-09-01

    Previous studies have demonstrated the ability of the dithiocarbamate, disulfiram, to produce a peripheral neuropathy in humans and experimental animals and have also provided evidence that N,N-diethyldithiocarbamate (DEDC) is a proximate toxic species of disulfiram. The ability of DEDC to elevate copper levels in the brain suggests that it may also elevate levels of copper in peripheral nerve, possibly leading to oxidative stress and lipid peroxidation from redox cycling of copper. The study presented here investigates the potential of DEDC to promote copper accumulation and lipid peroxidation in peripheral nerve. Rats were administered either DEDC or deionized water by ip osmotic pumps and fed a normal diet or diet containing elevated copper, and the levels of metals, isoprostanes, and the severity of lesions in peripheral nerve and brain were assessed by ICP-AES/AAS, GC/MS, and light microscopy, respectively. Copper was the only metal that demonstrated any significant compound-related elevations relative to controls, and total copper was increased in both brain and peripheral nerve in animals administered DEDC on both diets. In contrast, lesions and elevated F2-isoprostanes were significantly increased only in peripheral nerve for the rats administered DEDC on both diets. Autometallography staining of peripheral nerve was consistent with increased metal content along the myelin sheath, but in brain, focal densities were observed, and a periportal distribution occurred in liver. These data are consistent with the peripheral nervous system being more sensitive to DEDC-mediated demyelination and demonstrate the ability of DEDC to elevate copper levels in peripheral nerve. Additionally lipid peroxidation appears to either be a contributing event in the development of demyelination, possibly through an increase of redox active copper, or a consequence of the myelin injury.

  2. A templated agarose scaffold for axon guidance in the central and peripheral nervous system

    NASA Astrophysics Data System (ADS)

    Gros, Thomas Richard

    This thesis examined the hypothesis that axonal guidance could be improved in the central and peripheral nervous systems using a highly linearized templated agarose scaffold. In the present study we examined whether a templated agarose scaffold improved axon retention across a large central nervous system (CNS) lesion and how cellular and axonal orientation was affected within the scaffold channels. The "physical" guidance from the scaffold was applied to an existing CNS "chemical" guidance strategy, shown to promote axons beyond the lesion site, to enhance the number of crossing axons in larger, disorganized, lesions. Specifically, there was the greatest number of long-tract sensory axons reaching the distal aspect of the lesion when the templated agarose scaffold was combined with a neurotrophic source of NT-3 beyond the lesion site and a conditioning lesion, to enhance chemical axon guidance and the intrinsic growth state of axons, respectively. When comparing the scaffold implant to a cell suspension grafts, we found a higher retention of long-tract ascending (sensory) axons and descending (motor) axons crossing large lesions (2mm). The enhanced axon retention may be attributed to the finding that cellular orientation within the scaffold channels is highly linear, thus promoting a less tortuous environment for axon orientation and bridging. Although an enhanced number of axons were able to cross the lesion, the axons did not repenetrate the host tissue due to a reactive cell layer, present only in scaffold the implant groups. Additionally, a peripheral nerve conduit, with the agarose scaffold as the core, displayed biocompatiablility and supported axon growth and vasculature beyond the clinically applicable distance of 4mm. Thus, the templated agarose scaffold enhances axon retention and guidance within CNS injury sites and has potential applications to the PNS.

  3. Short- and long-term effects of combined pre- and postnatal ethanol exposure (three trimester equivalency) on the development of myelin and axons in rat optic nerve.

    PubMed

    Phillips, D E; Krueger, S K; Rydquist, J E

    1991-01-01

    This study evaluated the effects of a combined gestational and 10 day postnatal alcohol exposure (human three trimester equivalency) on the development of myelin and axons in rat optic nerve. Rats were exposed during gestation via liquid diet, then their artificially reared pups were further exposed for 10 postnatal days via an ethanol-containing diet fed by gastrostomy. Control animals from pair-fed dams were artificially reared for 10 days on pair-fed isocaloric diets. Anesthetized animals were perfused with fixative on gestational days (G) 15 and 20 and postnatal days (P) 5, 10, 15, 20, and 90, then optic nerve tissues prepared for electron microscopy. Optic nerve cross-sectional areas were generally less from G20 through P90 in ethanol exposed animals. Counts of the number of myelinated nerve fibers per unit area and of the numbers of fibers in different stages of myelin development revealed that alcohol exposure caused a delay in myelin acquisition at 10 and 15 days that was compensated for at 20 and 90 days. Myelin thickness as a function of axon diameter was decreased in the alcohol exposed animals from 10 through 90 days, indicating a permanent reduction in the relative thickness of myelin. These results show that alcohol exposure for all of gestation and 10 postnatal days in the rat (human three trimester equivalency) causes a permanent reduction in myelin thickness along with a delay in myelin acquisition in the optic nerve. Such alterations in developing and adult myelin could help to explain some of the neurological and visual dysfunctions associated with developmental alcohol exposures.

  4. Organophosphate Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain

    DTIC Science & Technology

    2015-10-01

    we evaluated the effects of the commonly used OP- pesticide , chlorpyrifos (CPF) on axonal transport in the brains of living rats using manganese (Mn2...Environ Health Perspect 2004;112(9):950–8. Karlsson JO, Hansson HA, Sjöstrand J. Effect of colchicine on axonal transport and morphology of retinal...Pope CN. Organophosphorus pesticides : do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev 1999;2:161–81. Pope C

  5. LAR receptor tyrosine phosphatases and HSPGs guide peripheral sensory axons to the skin

    PubMed Central

    Wang, Fang; Wolfson, Sean N.; Gharib, Arash; Sagasti, Alvaro

    2012-01-01

    Background Peripheral axons of somatosensory neurons innervate the skin early in development to detect touch stimuli. Embryological experiments had suggested that the skin produces guidance cues that attract sensory axons, but neither the attractants nor their neuronal receptors had previously been identified. Results To investigate peripheral axon navigation to the skin, we combined live imaging of developing zebrafish Rohon-Beard (RB) neurons with molecular loss-of-function manipulations. Simultaneously knocking down two members of the LAR family of receptor tyrosine phosphatases expressed in RB neurons, or inhibiting their function with dominant negative proteins, misrouted peripheral axons to internal tissues. Time-lapse imaging indicated that peripheral axon guidance, rather than outgrowth or maintenance, was defective in LAR deficient neurons. Peripheral axons displayed a similar misrouting phenotype in mutants defective in heparan sulfate proteoglycan (HSPG) production and avoided regions in which HSPGs were locally degraded. Conclusions HSPGs and LAR family receptors are required for sensory axon guidance to the skin. Together, our results support a model in which peripheral HSPGs are attractive ligands for LAR receptors on RB neurons. PMID:22326027

  6. Axons provide the secretory machinery for trafficking of voltage-gated sodium channels in peripheral nerve

    PubMed Central

    González, Carolina; Cánovas, José; Fresno, Javiera; Couve, Eduardo; Court, Felipe A.; Couve, Andrés

    2016-01-01

    The regulation of the axonal proteome is key to generate and maintain neural function. Fast and slow axoplasmic waves have been known for decades, but alternative mechanisms to control the abundance of axonal proteins based on local synthesis have also been identified. The presence of the endoplasmic reticulum has been documented in peripheral axons, but it is still unknown whether this localized organelle participates in the delivery of axonal membrane proteins. Voltage-gated sodium channels are responsible for action potentials and are mostly concentrated in the axon initial segment and nodes of Ranvier. Despite their fundamental role, little is known about the intracellular trafficking mechanisms that govern their availability in mature axons. Here we describe the secretory machinery in axons and its contribution to plasma membrane delivery of sodium channels. The distribution of axonal secretory components was evaluated in axons of the sciatic nerve and in spinal nerve axons after in vivo electroporation. Intracellular protein trafficking was pharmacologically blocked in vivo and in vitro. Axonal voltage-gated sodium channel mRNA and local trafficking were examined by RT-PCR and a retention-release methodology. We demonstrate that mature axons contain components of the endoplasmic reticulum and other biosynthetic organelles. Axonal organelles and sodium channel localization are sensitive to local blockade of the endoplasmic reticulum to Golgi transport. More importantly, secretory organelles are capable of delivering sodium channels to the plasma membrane in isolated axons, demonstrating an intrinsic capacity of the axonal biosynthetic route in regulating the axonal proteome in mammalian axons. PMID:26839409

  7. Peripheral Glia Have a Pivotal Role in the Initial Response to Axon Degeneration of Peripheral Sensory Neurons in Zebrafish

    PubMed Central

    Pope, Holly M.; Voigt, Mark M.

    2014-01-01

    Axon degeneration is a feature of many peripheral neuropathies. Understanding the organismal response to this degeneration may aid in identifying new therapeutic targets for treatment. Using a transgenic zebrafish line expressing a bacterial nitroreductase (Ntr)/mCherry fusion protein in the peripheral sensory neurons of the V, VII, IX, and X cranial nerves, we were able to induce and visualize the pathology of axon degeneration in vivo. Exposure of 4 days post fertilization Ntr larvae to the prodrug metronidazole (Met), which Ntr metabolizes into cytotoxic metabolites, resulted in dose-dependent cell death and axon degeneration. This was limited to the Ntr-expressing sensory neurons, as neighboring glia and motor axons were unaffected. Cell death was rapid, becoming apparent 3–4 hours after Met treatment, and was followed by phagocytosis of soma and axon debris by cells within the nerves and ganglia beginning at 4–5 hours of exposure. Although neutrophils appear to be activated in response to the degenerating neurons, they did not accumulate at the sites of degeneration. In contrast, macrophages were found to be attracted to the sites of the degenerating axons, where they phagocytosed debris. We demonstrated that peripheral glia are critical for both the phagocytosis and inflammatory response to degenerating neurons: mutants that lack all peripheral glia (foxD3−/−; Ntr) exhibit a much reduced reaction to axonal degeneration, resulting in a dramatic decrease in the clearance of debris, and impaired macrophage recruitment. Overall, these results show that this zebrafish model of peripheral sensory axon degeneration exhibits many aspects common to peripheral neuropathies and that peripheral glia play an important role in the initial response to this process. PMID:25058656

  8. Polytherapy with a combination of three repurposed drugs (PXT3003) down-regulates Pmp22 over-expression and improves myelination, axonal and functional parameters in models of CMT1A neuropathy.

    PubMed

    Chumakov, Ilya; Milet, Aude; Cholet, Nathalie; Primas, Gwenaël; Boucard, Aurélie; Pereira, Yannick; Graudens, Esther; Mandel, Jonas; Laffaire, Julien; Foucquier, Julie; Glibert, Fabrice; Bertrand, Viviane; Nave, Klaus-Armin; Sereda, Michael W; Vial, Emmanuel; Guedj, Mickaël; Hajj, Rodolphe; Nabirotchkin, Serguei; Cohen, Daniel

    2014-12-10

    Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited sensory and motor peripheral neuropathy. It is caused by PMP22 overexpression which leads to defects of peripheral myelination, loss of long axons, and progressive impairment then disability. There is no treatment available despite observations that monotherapeutic interventions slow progression in rodent models. We thus hypothesized that a polytherapeutic approach using several drugs, previously approved for other diseases, could be beneficial by simultaneously targeting PMP22 and pathways important for myelination and axonal integrity. A combination of drugs for CMT1A polytherapy was chosen from a group of authorised drugs for unrelated diseases using a systems biology approach, followed by pharmacological safety considerations. Testing and proof of synergism of these drugs were performed in a co-culture model of DRG neurons and Schwann cells derived from a Pmp22 transgenic rat model of CMT1A. Their ability to lower Pmp22 mRNA in Schwann cells relative to house-keeping genes or to a second myelin transcript (Mpz) was assessed in a clonal cell line expressing these genes. Finally in vivo efficacy of the combination was tested in two models: CMT1A transgenic rats, and mice that recover from a nerve crush injury, a model to assess neuroprotection and regeneration. Combination of (RS)-baclofen, naltrexone hydrochloride and D-sorbitol, termed PXT3003, improved myelination in the Pmp22 transgenic co-culture cellular model, and moderately down-regulated Pmp22 mRNA expression in Schwannoma cells. In both in vitro systems, the combination of drugs was revealed to possess synergistic effects, which provided the rationale for in vivo clinical testing of rodent models. In Pmp22 transgenic CMT1A rats, PXT3003 down-regulated the Pmp22 to Mpz mRNA ratio, improved myelination of small fibres, increased nerve conduction and ameliorated the clinical phenotype. PXT3003 also improved axonal regeneration and

  9. Schwann cell phenotype is regulated by axon modality and central-peripheral location, and persists in vitro.

    PubMed

    Brushart, T M; Aspalter, M; Griffin, J W; Redett, R; Hameed, H; Zhou, C; Wright, M; Vyas, A; Höke, A

    2013-09-01

    Myelinating Schwann cells express distinct sensory and motor phenotypes as defined by their differing patterns of growth factor production (Hoke et al., 2006). The heterogeneous growth factor requirements of sensory and motor neurons, however, suggest that Schwann cell phenotype might vary across a broad spectrum. To explore this possibility, we selectively denervated six discrete Schwann cell populations: dorsal root, cutaneous nerve, cutaneous unmyelinated axons, muscle nerve afferents, muscle nerve efferents, and ventral root. Real-time RT-PCR for 11 growth factors was performed on the 6 target Schwann cell populations 5, 15, and 30 days after their denervation, and on normal cutaneous nerve, muscle nerve, ventral root, and dorsal root to establish baseline expression levels. Within the denervated axon populations, IGF-1 and VEGF were expressed most prominently in cutaneous nerve, HGF, NGF, and BDNF in cutaneous nerve and dorsal root, GDNF in dorsal root and ventral root, PTN in the ventral root and muscle nerve efferents, and IGF-2 in both afferents and efferents within muscle nerve; expression of CNTF, FGF-2 and NT-3 was not modality or location specific. ELISA for NGF, BDNF, and GDNF confirmed that gene expression correlated with protein concentration. These findings demonstrate that growth factor expression by denervated Schwann cells is not only subject to further regulation within the previously-defined sensory and motor groups, but also varies along a central-peripheral axis. The traditional view of myelinating Schwann cells as a homogenous population is modified by the realization that complex regulation produces a wide variety of Schwann cell phenotypes. Additionally, we found that Schwann cell phenotype is maintained for 2 weeks in vitro, demonstrating that it may survive several cell divisions without instructive cues from either axons or basal lamina.

  10. Integrin-linked kinase is required for radial sorting of axons and Schwann cell remyelination in the peripheral nervous system

    PubMed Central

    Pereira, Jorge A.; Benninger, Yves; Baumann, Reto; Gonçalves, Ana Filipa; Özçelik, Murat; Thurnherr, Tina; Tricaud, Nicolas; Meijer, Dies; Fässler, Reinhard; Suter, Ueli

    2009-01-01

    During development, Schwann cells (SCs) interpret different extracellular cues to regulate their migration, proliferation, and the remarkable morphological changes associated with the sorting, ensheathment, and myelination of axons. Although interactions between extracellular matrix proteins and integrins are critical to some of these processes, the downstream signaling pathways they control are still poorly understood. Integrin-linked kinase (ILK) is a focal adhesion protein that associates with multiple binding partners to link integrins to the actin cytoskeleton and is thought to participate in integrin and growth factor–mediated signaling. Using SC-specific gene ablation, we report essential functions for ILK in radial sorting of axon bundles and in remyelination in the peripheral nervous system. Our in vivo and in vitro experiments show that ILK negatively regulates Rho/Rho kinase signaling to promote SC process extension and to initiate radial sorting. ILK also facilitates axon remyelination, likely by promoting the activation of downstream molecules such as AKT/protein kinase B. PMID:19349584

  11. The effects of FGF-2 gene therapy combined with voluntary exercise on axonal regeneration across peripheral nerve gaps.

    PubMed

    Haastert, Kirsten; Ying, Zhe; Grothe, Claudia; Gómez-Pinilla, Fernando

    2008-10-10

    Studies were conducted to determine the possibility that voluntary exercise could enhance regenerative effects of gene therapy via Schwann cells (SC) over-expressing FGF-2. Sedentary or exercise rehabilitation conditions were therefore provided shortly after reconstructing 10mm sciatic nerve gaps in rats with silicone grafts. Exercise for 7 days elevated mRNA levels of regeneration associated proteins (GAP-43 and synapsin I) in lumbar spinal cord and dorsal root ganglia of SC transplanted, in contrast to non-cellular reconstructed rats. FGF-2 gene therapy followed by 25-27 days of exercise did enhance regeneration of myelinated axons in comparison to sedentary animals. Four weeks after surgery mRNA levels of regeneration associated proteins were significantly higher in lumbar spinal cord of running compared to sedentary SC transplanted animals. Our results suggest that voluntary exercise could reinforce the beneficial effects of SC transplantation and FGF-2 gene therapy in peripheral nerve reconstruction approaches.

  12. β1 integrins are required for normal CNS myelination and promote AKT-dependent myelin outgrowth

    PubMed Central

    Barros, Claudia S.; Nguyen, Tom; Spencer, Kathryn S. R.; Nishiyama, Akiko; Colognato, Holly; Müller, Ulrich

    2009-01-01

    Summary Oligodendrocytes in the central nervous system (CNS) produce myelin sheaths that insulate axons to ensure fast propagation of action potentials. β1 integrins regulate the myelination of peripheral nerves, but their function during the myelination of axonal tracts in the CNS is unclear. Here we show that genetically modified mice lacking β1 integrins in the CNS present a deficit in myelination but no defects in the development of the oligodendroglial lineage. Instead, in vitro data show that β1 integrins regulate the outgrowth of myelin sheaths. Oligodendrocytes derived from mutant mice are unable to efficiently extend myelin sheets and fail to activate AKT (also known as AKT1), a kinase that is crucial for axonal ensheathment. The inhibition of PTEN, a negative regulator of AKT, or the expression of a constitutively active form of AKT restores myelin outgrowth in cultured β1-deficient oligodendrocytes. Our data suggest that β1 integrins play an instructive role in CNS myelination by promoting myelin wrapping in a process that depends on AKT. PMID:19633169

  13. Endogenous glucocorticoids improve myelination via Schwann cells after peripheral nerve injury: An in vivo study using a crush injury model.

    PubMed

    Morisaki, Shinsuke; Nishi, Mayumi; Fujiwara, Hiroyoshi; Oda, Ryo; Kawata, Mitsuhiro; Kubo, Toshikazu

    2010-06-01

    Glucocorticoids improve the symptoms of peripheral nerve disorders, such as carpal tunnel syndrome and peripheral neuropathy. The effects of glucocorticoids are mainly anti-inflammatory, but the mechanisms of their effects in peripheral nerve disorders remain unclear. Schwann cells of the peripheral nerves express glucocorticoid receptors (GR), and glucocorticoids enhance the rate of myelin formation in vitro. Therefore, it is possible that the clinical improvement of peripheral nerve disorders by glucocorticoids is due, at least in part, to the modulation of myelination. In this study, an adrenalectomy (ADX) was performed, and followed by a daily injection of either low dose (1 mg/kg) or high dose (10 mg/kg) corticosterone (CORT). We then simulated a crush injury of the sciatic nerves. A sham ADX operation, followed by a simulated crush injury, was conducted as a control. Immunohistochemistry showed that the nuclei of in vivo Schwann cells expressed GR and that glucocorticoids impacted the GR immunoreactivity of the Schwann cells. The mRNA and protein expression of myelin basic protein was significantly lower in the animals given ADX with vehicle than in the sham operation group. However, the expression was restored in the low-dose CORT replacement group. Morphological analyses showed that the ADX with vehicle group had a significantly lower myelin thickness than did the low-dose CORT replacement group and the sham operation group. These results suggest that endogenous glucocorticoids have an important role in myelination through the GR in Schwann cells after an in vivo peripheral nerve injury.

  14. Bone Marrow-Derived Mesenchymal Stem Cells Improve Diabetic Neuropathy by Direct Modulation of Both Angiogenesis and Myelination in Peripheral Nerves.

    PubMed

    Han, Ji Woong; Choi, Dabin; Lee, Min Young; Huh, Yang Hoon; Yoon, Young-sup

    2016-01-01

    Recent evidence has suggested that diabetic neuropathy (DN) is pathophysiologically related to both impaired angiogenesis and a deficiency of neurotrophic factors in the nerves. It is widely known that vascular and neural growths are intimately associated. Mesenchymal stem cells (MSCs) promote angiogenesis in ischemic diseases and have neuroprotective effects, particularly on Schwann cells. Accordingly, we investigated whether DN could be improved by local transplantation of MSCs by augmenting angiogenesis and neural regeneration such as remyelination. In sciatic nerves of streptozotocin (STZ)-induced diabetic rats, motor and sensory nerve conduction velocities (NCVs) and capillary density were reduced, and axonal atrophy and demyelination were observed. After injection of bone marrow-derived MSCs (BM-MSCs) into hindlimb muscles, NCVs were restored to near-normal levels. Histological examination demonstrated that injected MSCs were preferentially and durably engrafted in the sciatic nerves, and a portion of the engrafted MSCs were distinctively localized close to vasa nervora of sciatic nerves. Furthermore, vasa nervora increased in density, and the ultrastructure of myelinated fibers in nerves was observed to be restored. Real-time RT-PCR experiments showed that gene expression of multiple factors involved in angiogenesis, neural function, and myelination were increased in the MSC-injected nerves. These findings suggest that MSC transplantation improved DN through direct peripheral nerve angiogenesis, neurotrophic effects, and restoration of myelination.

  15. Bone Marrow-Derived Mesenchymal Stem Cells Improve Diabetic Neuropathy by Direct Modulation of Both Angiogenesis and Myelination in Peripheral Nerves

    PubMed Central

    Han, Ji Woong; Choi, Dabin; Lee, Min Young; Huh, Yang Hoon; Yoon, Young-sup

    2016-01-01

    Recent evidence has suggested that diabetic neuropathy (DN) is pathophysiologically related to both impaired angiogenesis and a deficiency of neurotrophic factors in the nerves. It is widely known that vascular and neural growths are intimately associated. Mesenchymal stem cells (MSCs) promote angiogenesis in ischemic diseases and have neuroprotective effects, particularly on Schwann cells. Accordingly, we investigated whether DN could be improved by local transplantation of MSCs by augmenting angiogenesis and neural regeneration such as remyelination. In sciatic nerves of streptozotocin (STZ)-induced diabetic rats, motor and sensory nerve conduction velocities (NCVs) and capillary density were reduced, and axonal atrophy and demyelination were observed. After injection of bone marrow-derived MSCs (BM-MSCs) into hindlimb muscles, NCVs were restored to near-normal levels. Histological examination demonstrated that injected MSCs were preferentially and durably engrafted in the sciatic nerves, and a portion of the engrafted MSCs were distinctively localized close to vasa nervora of sciatic nerves. Furthermore, vasa nervora increased in density, and the ultrastructure of myelinated fibers in nerves was observed to be restored. Real-time RT-PCR experiments showed that gene expression of multiple factors involved in angiogenesis, neural function, and myelination were increased in the MSC-injected nerves. These findings suggest that MSC transplantation improved DN through direct peripheral nerve angiogenesis, neurotrophic effects, and restoration of myelination. PMID:25975801

  16. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  17. Soluble complement receptor 1 protects the peripheral nerve from early axon loss after injury.

    PubMed

    Ramaglia, Valeria; Wolterman, Ruud; de Kok, Maryla; Vigar, Miriam Ann; Wagenaar-Bos, Ineke; King, Rosalind Helen Mary; Morgan, Brian Paul; Baas, Frank

    2008-04-01

    Complement activation is a crucial early event in Wallerian degeneration. In this study we show that treatment of rats with soluble complement receptor 1 (sCR1), an inhibitor of all complement pathways, blocked both systemic and local complement activation after crush injury of the sciatic nerve. Deposition of membrane attack complex (MAC) in the nerve was inhibited, the nerve was protected from axonal and myelin breakdown at 3 days after injury, and macrophage infiltration and activation was strongly reduced. We show that both classical and alternative complement pathways are activated after acute nerve trauma. Inhibition of the classical pathway by C1 inhibitor (Cetor) diminished, but did not completely block, MAC deposition in the injured nerve, blocked myelin breakdown, inhibited macrophage infiltration, and prevented macrophage activation at 3 days after injury. However, in contrast to sCR1 treatment, early signs of axonal degradation were visible in the nerve, linking MAC deposition to axonal damage. We conclude that sCR1 protects the nerve from early axon loss after injury and propose complement inhibition as a potential therapy for the treatment of diseases in which axon loss is the main cause of disabilities.

  18. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    ERIC Educational Resources Information Center

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  19. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    ERIC Educational Resources Information Center

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  20. Tetraspan myelin protein PMP22 and demyelinating peripheral neuropathies: new facts and hypotheses.

    PubMed

    Müller, H W

    2000-01-15

    It has been demonstrated that abnormal levels of PMP22 expression due to altered gene dosage in CMT1A neuropathy alters Schwann cell growth and differentiation. On the other hand, disease-related missense mutations within transmembrane domains of PMP22 disturb intracellular protein trafficking leading to accumulation of the mutant protein in the endoplasmic reticulum/Golgi compartment. Further, the recently reported association of PMP22 and P0 in peripheral myelin sheds new light on the almost identical phenotypes of CMT1A and CMT1B giving rise to a unifying hypothesis on disease mechanism. Copyright 2000 Wiley-Liss, Inc.

  1. Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice

    NASA Astrophysics Data System (ADS)

    Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.

    2011-02-01

    Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration.

  2. Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice

    PubMed Central

    Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.

    2011-01-01

    Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration. PMID:21361672

  3. Childhood steroid-responsive acute erythromelalgia with axonal neuropathy of large myelinated fibers: a dysimmune neuropathy?

    PubMed

    Pfund, Zoltan; Stankovics, Jozsef; Decsi, Tamas; Illes, Zsolt

    2009-01-01

    A 12-year-old girl developed acute erythromelalgia of distal extremities. Physical, imaging and laboratory examinations failed to find an infective, systemic autoimmune, metabolic, endocrine, and vascular origin. The severe pain and allodynia indicated small-fiber neuropathy but muscle weakness suggested an involvement of large myelinated nerve fibers. This was confirmed by electrophysiological testing. High-dose then slowly tapered methylprednisolone resulted in rapid remission of painful erythromelalgia and complete electrophysiological recovery. Our case may suggest an additional variant to recently described steroid-responsive erythromelalgia with small-fiber axonopathy and may denote a transitory variant to Guillain-Barré syndrome or chronic dysimmune neuropathies.

  4. Predicting myelinated axon activation using spatial characteristics of the extracellular field

    PubMed Central

    Peterson, EJ; Izad, O; Tyler, DJ

    2011-01-01

    Computation time required for modeling the nonlinear response of an axon to an applied electric field is a significant limitation to optimizing a large number of neural interface design parameters through use of advanced computer algorithms. This paper introduces two methods of predicting axon activation that incorporate a threshold that includes the magnitude of the extracellular potential to achieve increased accuracy over previous computationally efficient methods. Each method employs the use of a modified driving function that includes the second spatial difference of the applied extracellular voltage to predict the electrical excitation of a nerve. The first method uses the second spatial difference taken at a single node of Ranvier, while the second uses a weighted sum of the second spatial differences taken at all nodes of Ranvier. This study quantifies prediction accuracy for cases with single and multiple point source stimulating electrodes. While both new methods address the major criticism of linearized prediction models, the weighted sum method provides the most robust response across single and multiple point sources. These methods eimprove prediction of axon activation based on properties of the applied field in a computationally efficient manner. PMID:21750371

  5. Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration

    PubMed Central

    Yoo, Soonmoon; van Niekerk, Erna A.; Merianda, Tanuja T.; Twiss, Jeffery L.

    2009-01-01

    Locally generating new proteins in subcellular regions provides means to spatially and temporally modify protein content in polarized cells. Recent years have seen resurgence of the concept that axonal processes of neurons can locally synthesize proteins. Experiments from a number of groups have now shown that axonal protein synthesis helps to initiate growth, provides a means to respond to guidance cues, and generates retrograde signaling complexes. Additionally, there is increasing evidence that locally synthesized proteins provide functions beyond injury responses and growth in the mature peripheral nervous system. A key regulatory event in this translational regulation is moving the mRNA templates into the axonal compartment. Transport of mRNAs into axons is a highly regulated and specific process that requires interaction of RNA binding proteins with specific cis-elements or structures within the mRNAs. mRNAs are transported in ribonucleoprotein particles that interact with microtubule motor proteins for long-range axonal transport and likely use microfilaments for short-range movement in the axons. The mature axon is able to recruit mRNAs into translation with injury and possibly other stimuli suggesting that mRNAs can be stored in a dormant state in the distal axon until needed. Axotomy triggers a shift in the populations of mRNAs localized to axons indicating a dynamic regulation of the specificity of the axonal transport machinery. In this review, we discuss how axonal mRNA transport and localization are regulated to achieve specific changes in axonal RNA content in response to axonal stimuli. PMID:19699200

  6. Three-dimensional ultra-structures of myelin and the axons in the spinal cord: application of SEM with the osmium maceration method to the central nervous system in two mouse models.

    PubMed

    Nomura, Taichi; Bando, Yoshio; Bochimoto, Hiroki; Koga, Daisuke; Watanabe, Tsuyoshi; Yoshida, Shigetaka

    2013-03-01

    Axonal injury and demyelination are observed in demyelinating diseases such as multiple sclerosis. However, pathological changes that underlie these morphologies are not fully understood. We examined in vivo morphological changes using a new histological technique, scanning electron microscopy (SEM) with osmium maceration method to observe three-dimensional structures such as myelin and axons in the spinal cord. Myelin basic protein-deficient shiverer mice and mice with experimental autoimmune encephalomyelitis (EAE) were used to visualize how morphological changes in myelin and axons are induced by dysmyelination and demyelination. SEM revealed following morphological changes during dysmyelination of shiverer mice. First, enriched mitochondria and well-developed sER in axons were observed in shiverer, but not in wild-type mice. Second, the processes from some perinodal glial cells ran parallel to internodes of axons in addition to the process that covered the nodal region of the axon in shiverer mice. Last, this technique left myelin and axonal structures undisturbed. Moreover, SEM images showed clear variations in the ultrastructural abnormalities of myelin and axons in the white matter of the EAE spinal cord. This technique will be a powerful tool for identifying the mechanisms underlying the pathogenesis in demyelination.

  7. Myelin-specific T cells induce interleukin-1beta expression in lesion-reactive microglial-like cells in zones of axonal degeneration.

    PubMed

    Grebing, Manuela; Nielsen, Helle H; Fenger, Christina D; T Jensen, Katrine; von Linstow, Christian U; Clausen, Bettina H; Söderman, Martin; Lambertsen, Kate L; Thomassen, Mads; Kruse, Torben A; Finsen, Bente

    2016-03-01

    Infiltration of myelin-specific T cells into the central nervous system induces the expression of proinflammatory cytokines in patients with multiple sclerosis (MS). We have previously shown that myelin-specific T cells are recruited into zones of axonal degeneration, where they stimulate lesion-reactive microglia. To gain mechanistic insight, we used RNA microarray analysis to compare the transcript profile in hippocampi from perforant pathway axonal-lesioned mice with and without adoptively transferred myelin-specific T cells 2 days postlesion, when microglia are clearly lesion reactive. Pathway analysis revealed that, among the 1,447 differently expressed transcripts, the interleukin (IL)-1 pathway including all IL-1 receptor ligands was upregulated in the presence of myelin-specific T cells. Quantitative polymerase chain reaction showed increased mRNA levels of IL-1β, IL-1α, and IL-1 receptor antagonist in the T-cell-infiltrated hippocampi from axonal-lesioned mice. In situ hybridization and immunohistochemistry showed a T-cell-enhanced lesion-specific expression of IL-1β mRNA and protein, respectively, and induction of the apoptosis-associated speck-like protein, ASC, in CD11b(+) cells. Double in situ hybridization showed colocalization of IL-1β mRNA in a subset of CD11b mRNA(+) cells, of which many were part of cellular doublets or clusters, characteristic of proliferating, lesion-reactive microglia. Double-immunofluorescence showed a T-cell-enhanced colocalization of IL-1β to CD11b(+) cells, including lesion-reactive CD11b(+) ramified microglia. These results suggest that myelin-specific T cells stimulate lesion-reactive microglial-like cells to produce IL-1β. These findings are relevant to understand the consequences of T-cell infiltration in white and gray matter lesions in patients with MS.

  8. Axonal loss and myelin in early ON loss in postacute optic neuritis.

    PubMed

    Klistorner, Alexander; Arvind, Hemamalini; Nguyen, Than; Garrick, Raymond; Paine, Mark; Graham, Stuart; O'Day, Justin; Grigg, John; Billson, Francis; Yiannikas, Con

    2008-09-01

    To investigate the relation between retinal nerve fiber layer (RNFL) thickness and latency and amplitude of multifocal visual-evoked potentials (mfVEPs) in the postacute stage of optic neuritis in patients with early or possible multiple sclerosis. Thirty-two patients with clinical diagnosis of unilateral optic neuritis and magnetic resonance imaging lesions typical of demyelination and 25 control subjects underwent mfVEP and optical coherence tomography imaging. Although there was significant reduction of RNFL thickness in the affected eyes (18.7%), a considerably larger decrease was observed for the amplitude of the mfVEPs (39.8%). Latency of the mfVEPs was also significantly delayed in optic neuritis eyes. In fellow eyes, the amplitude of mfVEPs was significantly reduced and the latency prolonged, but RNFL thickness remained unaltered. RNFL thickness correlated highly with the mfVEP amplitude (r = 0.90). There was also strong correlation between optical coherence tomography measure of axonal loss and mfVEP latency (r = -0.66). Although our findings demonstrate strong associations between structural and functional measures of optic nerve integrity, the functional loss was more marked. This fact, together with amplitude and latency changes of the mfVEPs observed in clinically normal fellow eyes, may indicate greater sensitivity of mfVEPs in detecting optic nerve abnormality or the presence of widespread inflammation in the central nervous system, or both. The significant correlation of the mfVEP latency with RNFL thickness suggests a role for demyelination in promoting axonal loss.

  9. Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons

    SciTech Connect

    Richardson, P.M.; Riopelle, R.J.

    1984-07-01

    To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, (/sup 125/I)NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of (/sup 125/I)NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. (/sup 125/I)NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little (/sup 125/I)NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of (/sup 125/I) cytochrome C or (/sup 125/I)oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of (/sup 125/I)NGF by intraspinal axons arising from dorsal root ganglia. Following injection of (/sup 125/I)NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration.

  10. How Schwann Cells Sort Axons: New Concepts.

    PubMed

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.

  11. Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies.

    PubMed

    Prior, Robert; Van Helleputte, Lawrence; Benoy, Veronick; Van Den Bosch, Ludo

    2017-09-01

    Peripheral neuropathies are characterized by a progressive and length-dependent loss of peripheral nerve function. This can be caused either by genetic defects, classified as 'inherited peripheral neuropathies', or they can be acquired throughout life. In that case, the disease is caused by various insults such as toxins and mechanical injuries, or it can arise secondary to medical conditions such as metabolic disorders, nutritional deficiencies, inflammation and infections. Peripheral neuropathies are not only very heterogeneous in etiology, but also in their pathology and clinical presentation. A commonality amongst all peripheral neuropathies is that no pharmacological disease-modifying therapies currently exist that can reverse or cure these diseases. Moreover, the length-dependent nature of the disease, affecting the longest nerves at the most distal sites, suggests an important role for disturbances in axonal transport, directly or indirectly linked to alterations in the cytoskeleton. In this review, we will give a systematic overview of the main arguments for the involvement of axonal transport defects in both inherited and acquired peripheral neuropathies. In addition, we will discuss the possible therapeutic strategies that can potentially counteract these disturbances, as this particular pathway might be a promising strategy to find a cure. Since counteracting axonal transport defects could limit the axonal degeneration and could be a driving force for neuronal regeneration, the benefits might be twofold. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Peripheral Myelin Protein 22 is Regulated Post-Transcriptionally by miRNA-29a

    PubMed Central

    Verrier, Jonathan D.; Lau, Pierre; Hudson, Lynn; Murashov, Alexander K.; Renne, Rolf; Notterpek, Lucia

    2009-01-01

    Peripheral myelin protein 22 (PMP22) is a dose-sensitive, disease-associated protein primarily expressed in myelinating Schwann cells. Either reduction or overproduction of PMP22 can result in hereditary neuropathy, suggesting a requirement for correct protein expression for peripheral nerve biology. PMP22 is post-transcriptionally regulated and the 3′untranslated region (3′UTR) of the gene exerts a negative effect on translation. MicroRNAs (miRNAs) are small regulatory molecules that function at a post-transcriptional level by targeting the 3′UTR in a reverse complementary manner. We used cultured Schwann cells to demonstrate that alterations in the miRNA biogenesis pathway affect PMP22 levels, and endogenous PMP22 is subjected to miRNA regulation. GW-body formation, the proposed cytoplasmic site for miRNA-mediated repression, and Dicer expression, an RNase III family ribonuclease involved in miRNA biogenesis, are co-regulated with the differentiation state of Schwann cells. Furthermore, the levels of Dicer inversely correlate with PMP22, while the inhibition of Dicer leads to elevated PMP22. Microarray analysis of actively-proliferating and differentiated Schwann cells, in conjunction with bioinformatics programs, identified several candidate PMP22-targeting miRNAs. Here we demonstrate that miR-29a binds and inhibits PMP22 reporter expression through a specific miRNA seed binding region. Over-expression of miR-29a enhances the association of PMP22 RNA with Argonaute 2, a protein involved in miRNA function, and reduces the steady-state levels of PMP22. In contrast, inhibition of endogenous miR-29a relieves the miRNA-mediated repression of PMP22. Correlation analyses of miR-29 and PMP22 in sciatic nerves reveal an inverse relationship, both developmentally and in post-crush injury. These results identify PMP22 as a target of miRNAs and suggest that myelin gene expression by Schwann cells is regulated by miRNAs. PMID:19170179

  13. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    PubMed

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications.

  14. Xanthine Oxidase Mediates Axonal and Myelin Loss in a Murine Model of Multiple Sclerosis

    PubMed Central

    Okuno, Tatsusada; Takata, Kazushiro; Koda, Toru; Tada, Satoru; Shirakura, Takashi; Fujimura, Harutoshi; Mochizuki, Hideki; Sakoda, Saburo; Nakatsuji, Yuji

    2013-01-01

    Objectives Oxidative stress plays an important role in the pathogenesis of multiple sclerosis (MS). Though reactive oxygen species (ROS) are produced by various mechanisms, xanthine oxidase (XO) is a major enzyme generating ROS in the context of inflammation. The objectives of this study were to investigate the involvement of XO in the pathogenesis of MS and to develop a potent new therapy for MS based on the inhibition of ROS. Methods XO were assessed in a model of MS: experimental autoimmune encephalomyelitis (EAE). The contribution of XO-generated ROS to the pathogenesis of EAE was assessed by treating EAE mice with a novel XO inhibitor, febuxostat. The efficacy of febuxostat was also examined in in vitro studies. Results We showed for the first time that the expression and the activity of XO were increased dramatically within the central nervous system of EAE mice as compared to naïve mice. Furthermore, prophylactic administration of febuxostat, a XO inhibitor, markedly reduced the clinical signs of EAE. Both in vivo and in vitro studies showed infiltrating macrophages and microglia as the major sources of excess XO production, and febuxostat significantly suppressed ROS generation from these cells. Inflammatory cellular infiltration and glial activation in the spinal cord of EAE mice were inhibited by the treatment with febuxostat. Importantly, therapeutic efficacy was observed not only in mice with relapsing-remitting EAE but also in mice with secondary progressive EAE by preventing axonal loss and demyelination. Conclusion These results highlight the implication of XO in EAE pathogenesis and suggest XO as a target for MS treatment and febuxostat as a promising therapeutic option for MS neuropathology. PMID:23951137

  15. Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons.

    PubMed

    Zhang, Lihai; Gavin, Terrence; DeCaprio, Anthony P; LoPachin, Richard M

    2010-09-01

    2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of alpha- or beta-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45-80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high-molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of gamma-diketone axonopathy.

  16. Axonal regeneration in severed peripheral facial nerve of the rabbit: relation of the number of axonal regenerates to behavioral and evoked muscle activity.

    PubMed

    Spector, J G; Lee, P

    1998-02-01

    The minimum number of regenerating facial nerve myelinated motor axons that are required to innervate and activate the mimetic musculature is not known. We compare rabbit facial nerve regeneration following complete transectional injuries of the buccal division to the evoked and behavioral muscle activities of the quadratus labii superioris muscle of the rabbit in three experimental models: end-to-end direct anastomosis (N = 4), 8-mm autologous nerve grafts (N = 8), and 10-mm silicone chamber implants (N = 40). Data are presented as total numbers of regenerating myelinated axons that traverse the surgical repair and innervate the fascicles of the transected distal nerve stump, as well as the percentage of regenerating neurites, as compared to the preoperative normal controls. Five weeks after neural repair, direct end-to-end anastomosis regained more myelinated axons across the reconstructed defect (2,632 +/- 1,232; 67%) than silicone tube implants (2,006 +/- 445; 51%) or autologous cable graft repairs (1,660 +/- 1,169; 42%). However, only a small percentage of myelinated fibers innervated the intrafascicular region of the distal transected neural stump in direct anastomosis (948 +/- 168; 24%), silicone tube implants (670 +/- 275; 17%), or autologous nerve grafts (445 +/- 120; 12%) in rabbits that regained evoked and behavioral mimetic muscle activity. All rabbits with direct anastomosis and neural cable grafts regained motor activity, despite the fact that 66% of regenerating motor neurites in cable graft repairs and 54% in direct anastomosis were collateral sprouts that did not contribute to effective muscle activity. In 17 rabbits with neural regenerates within the silicone tube implants that did not regain mimetic activity, the mean number of regenerating myelinated motor axons across the defect was 504 +/- 419 (13%), and the mean number of axons that innervated the distal transected nerve stump fascicles was 277 +/- 128 (7%). Therefore, the minimal number of

  17. Porphyrin-heme biosynthesis in organotypic cultures of mouse dorsal root ganglia. Effects of heme and lead on porphyrin synthesis and peripheral myelin.

    PubMed Central

    Whetsell, W O; Sassa, S; Kappas, A

    1984-01-01

    Well-myelinated cultures of mouse dorsal root ganglia incubated for 48 h with sigma-aminolevulinic acid (ALA) showed intense porphyrin fluorescence localized in myelin sheaths but not in axons or neuronal somata. When the cultures were continuously incubated with a high concentration of lead, focal swelling and segmental degeneration of myelin began to develop within 2 wk. Incubation of cultures with ALA after 3 wk of lead treatment revealed markedly decreased porphyrin fluorescence in myelin sheaths compared with untreated controls. After 6 wk of lead treatment, myelin showed severe segmental degeneration. Porphyrin fluorescence from ALA at this time was barely detectable in these cultures. No fluorescence was visible in the demyelinated axons; however, silver-impregnation staining after fixation demonstrated continuity of the axon despite the severe loss of myelin. When cultures were continuously incubated with lead and heme together for 6 wk, the segmental demyelination seen in cultures treated with lead alone did not occur. These findings suggest that the lead-induced segmental demyelination in cultured mouse dorsal root ganglia may be due to toxic effects of the metal on the heme biosynthetic pathway in myelinating cells and that exogenous heme may counteract this toxic effect of lead. Images PMID:6746908

  18. α6β4 integrin and dystroglycan cooperate to stabilize the myelin sheath

    PubMed Central

    Nodari, A.; Previtali, S.C.; Dati, G.; Occhi, S.; Court, FA.; Colombelli, C.; Zambroni, D.; Dina, G.; Del Carro, U.; Campbell, K. P.; Quattrini, A.; Wrabetz, L.; Feltri, ML.

    2008-01-01

    Schwann cells integrate signals deriving from the axon and the basal lamina to myelinate peripheral nerves. Integrin α6β4 is a laminin receptor synthesized by Schwann cells and displayed apposed to the basal lamina. α6β4 integrin expression in Schwann cells is induced by axons at the onset of myelination, and rise in adulthood. The β4 chain has a uniquely long cytoplasmic domain that interacts with intermediate filaments such as dystonin, important in peripheral myelination. Furthermore, α6β4 integrin binds peripheral myelin protein 22, whose alteration causes the most common demyelinating hereditary neuropathy. All these data suggest a role for α6β4 integrin in peripheral nerve myelination. Here we show that ablating α6β4 integrin specifically in Schwann cells of transgenic mice does not affect peripheral nerve development, myelin formation, maturation or regeneration. However, consistent with maximal expression in adult nerves, α6β4 integrin-null myelin is more prone to abnormal folding with aging. When the laminin receptor dystroglycan is also ablated, major folding abnormalities occur, associated with acute demyelination in some peripheral nervous system districts. These data indicate that, similar to its role in skin, α6β4 integrin confers stability to myelin in peripheral nerves. PMID:18579745

  19. Schwann Cell Myelination

    PubMed Central

    Salzer, James L.

    2015-01-01

    Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath. PMID:26054742

  20. Lithium Enhances Axonal Regeneration in Peripheral Nerve by Inhibiting Glycogen Synthase Kinase 3β Activation

    PubMed Central

    Su, Huanxing; Yuan, Qiuju; Qin, Dajiang; Yang, Xiaoying; So, Kwok-Fai; Wu, Wutian

    2014-01-01

    Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN) is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to investigate potential inhibitory signals which influence axonal regeneration after root avulsion injury. The results of the study showed that root avulsion triggered GSK-3β activation in the injured motoneurons and remaining axons in the ventral funiculus. Systemic application of a clinical dose of lithium suppressed activated GSK-3β in the lesioned spinal cord to the normal level and induced extensive axonal regeneration into replanted ventral roots. Our study suggests that GSK-3β activity is involved in negative regulation for axonal elongation and regeneration and lithium, the specific GSK-3β inhibitor, enhances motoneuron regeneration from CNS to PNS. PMID:24967390

  1. Burning feet in polycythemia vera - peripheral sensorimotor axonal neuropathy with erythromelalgia.

    PubMed

    Wollina, Uwe

    2015-01-01

    Polycythemia vera is a rare myeloproliferative disease. Cutaneous symptoms are uncommon. We report about a 72-year-old female patient with JAK2(V617F) -positive polycythemia who developed peripheral sensorimotor axonal neuropathy and erythromelalgia. Possible causes and treatment are discussed.

  2. Molecular characterization of myelin protein zero in Xenopus laevis peripheral nerve

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Luo, Xiaoyang; Zhao, Cheng; Priest, Christina Marie; Chan, Shiu-Yung; O'Connor, Peter B.; Kirschner, Daniel A.; Costello, Catherine E.

    2007-12-01

    Myelin protein zero (P0), a glycosylated single-pass transmembrane protein, is essential in the formation and maintenance of peripheral nervous system (PNS) compact myelin. P0 in Xenopus (xP0) exists primarily as a dimeric form that remains stable after various physical and chemical treatments. In exploring the nature of the interactions underlying the dimer stability, we found that xP0 dimer dissociated into monomer during continuous elution gel electrophoresis and conventional SDS-PAGE, indicating that the dimer is stabilized by non-covalent interactions. Furthermore, as some of the gel-purified monomer re-associated into dimer on SDS-PAGE gels, there is likely a dynamic equilibrium between xP0 dimer and monomer in vivo. Because the carbohydrate and fatty acyl moieties may be crucial for the adhesion role of P0, we used sensitive mass spectrometry approaches to elucidate the detailed N-glycosylation and S-acylation profiles of xP0. Asn92 was determined to be the single, fully-occupied glycosylation site of xP0, and a total of 12 glycans was detected that exhibited new structural features compared with those observed from P0 in other species: (1) the neutral glycans were composed mainly of high mannose and hybrid types; (2) 5 of 12 were acidic glycans, among which three were sialylated and the other two were sulfated; (3) none of the glycans had core fucosylation; and (4) no glucuronic acid, hence no HNK-1 epitope, was detected. The drastically different carbohydrate structures observed here support the concept of the species-specific variation in N-glycosylation of P0. Cys152 was found to be acylated with stearoyl (C18:0), whereas palmitoyl (C16:0) is the corresponding predominant fatty acyl group on P0 from higher vertebrates. We propose that the unique glycosylation and acylation patterns of Xenopus P0 may underlie its unusual dimerization behavior. Our results should shed light on the understanding of the phylogenetic development of P0's adhesion role in PNS

  3. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord.

    PubMed

    Tom, Veronica J; Sandrow-Feinberg, Harra R; Miller, Kassi; Santi, Lauren; Connors, Theresa; Lemay, Michel A; Houlé, John D

    2009-11-25

    Because there currently is no treatment for spinal cord injury, most patients are living with long-standing injuries. Therefore, strategies aimed at promoting restoration of function to the chronically injured spinal cord have high therapeutic value. For successful regeneration, long-injured axons must overcome their poor intrinsic growth potential as well as the inhibitory environment of the glial scar established around the lesion site. Acutely injured axons that regenerate into growth-permissive peripheral nerve grafts (PNGs) reenter host tissue to mediate functional recovery if the distal graft-host interface is treated with chondroitinase ABC (ChABC) to cleave inhibitory chondroitin sulfate proteoglycans in the scar matrix. To determine whether a similar strategy is effective for a chronic injury, we combined grafting of a peripheral nerve into a highly relevant, chronic, cervical contusion site with ChABC treatment of the glial scar and glial cell line-derived neurotrophic factor (GDNF) stimulation of long-injured axons. We tested this combination in two grafting paradigms: (1) a peripheral nerve that was grafted to span a chronic injury site or (2) a PNG that bridged a chronic contusion site with a second, more distal injury site. Unlike GDNF-PBS treatment, GDNF-ChABC treatment facilitated axons to exit the PNG into host tissue and promoted some functional recovery. Electrical stimulation of axons in the peripheral nerve bridge induced c-Fos expression in host neurons, indicative of synaptic contact by regenerating fibers. Thus, our data demonstrate, for the first time, that administering ChABC to a distal graft interface allows for functional axonal regeneration by chronically injured neurons.

  4. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    PubMed

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-03

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury.

  5. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury.

    PubMed

    Chen, Peiwen; Piao, Xianhua; Bonaldo, Paolo

    2015-11-01

    The peripheral nervous system (PNS) has remarkable regenerative abilities after injury. Successful PNS regeneration relies on both injured axons and non-neuronal cells, including Schwann cells and immune cells. Macrophages are the most notable immune cells that play key roles in PNS injury and repair. Upon peripheral nerve injury, a large number of macrophages are accumulated at the injury sites, where they not only contribute to Wallerian degeneration, but also are educated by the local microenvironment and polarized to an anti-inflammatory phenotype (M2), thus contributing to axonal regeneration. Significant progress has been made in understanding how macrophages are educated and polarized in the injured microenvironment as well as how they contribute to axonal regeneration. Following the discussion on the main properties of macrophages and their phenotypes, in this review, we will summarize the current knowledge regarding the mechanisms of macrophage infiltration after PNS injury. Moreover, we will discuss the recent findings elucidating how macrophages are polarized to M2 phenotype in the injured PNS microenvironment, as well as the role and underlying mechanisms of macrophages in peripheral nerve injury, Wallerian degeneration and regeneration. Furthermore, we will highlight the potential application by targeting macrophages in treating peripheral nerve injury and peripheral neuropathies.

  6. Ankyrin-B structurally defines terminal microdomains of peripheral somatosensory axons.

    PubMed

    Engelhardt, Maren; Vorwald, Silke; Sobotzik, Jürgen-Markus; Bennett, Vann; Schultz, Christian

    2013-07-01

    Axons are subdivided into functionally organized microdomains, which are required for generation and propagation of action potentials (APs). In the central nervous system (CNS), APs are generated near the soma in the axon initial segment (AIS) and propagated by nodes of Ranvier (noR). The crucial role of the membrane adapter proteins ankyrin-B and ankyrin-G as organizers of AIS and noR is now well established. By comparison, little is known on the localization and function of these proteins in sensory axon terminals of the peripheral nervous systems (PNS). Here, we tested the hypothesis that somatosensory PNS terminals are organized by distinct members of the ankyrin protein family. We discovered a specific distribution of ankyrin-B in somatosensory axon terminals of skin and muscle. Specifically, ankyrin-B was localized along the membrane of axons innervating Meissner corpuscles, Pacinian corpuscles and hair follicle receptors. Likewise, proprioceptive terminals of muscle spindles exhibited prominent ankyrin-B expression. Furthermore, ankyrin-B expression extended into nociceptive and thermoceptive intraepidermal nerve fibers. Interestingly, all studied somatosensory terminals were largely devoid of ankyrin-G, indicating that this scaffolding protein does not contribute to organization of mechanoelectric transduction zones in peripheral somatosensory neurons. Instead, we propose that ankyrin-B serves as a major membrane organizer in mechanoreceptive and nociceptive terminals of the PNS.

  7. Axonal morphological changes following impulse activity in mouse peripheral nerve in vivo: the return pathway for sodium ions.

    PubMed

    Trigo, Diogo; Smith, Kenneth J

    2015-02-15

    Conduction in myelinated axons involves substantial ion movements that must be reversed to restore homeostasis. The pathway taken by sodium ions returning to their original location and the potential osmotic consequences are currently unknown. We report striking morphological changes in axons following sustained impulse conduction that appear to result from osmosis and to indicate accumulation of ions in the periaxonal space followed by their release at the paranode. We conclude that the morphological changes illustrate a hitherto unrecognized part of normal axonal physiology that may also indicate the return pathway for the sodium ions involved in impulse formation. Myelinated axons can conduct sustained trains of impulses at high frequency, but this involves substantial ion movements that must be reversed to restore homeostasis. Little attention has been paid to the potential osmotic consequences of the ion movements or to the pathway taken by sodium ions returning to their original endoneurial location, given that the axolemmal Na(+)-K(+)-ATPase extrudes these ions into the periaxonal space beneath the myelin rather than into the endoneurium. Serial confocal imaging of fluorescent axons conducting at sustained physiological frequencies in vivo has revealed surprising morphological changes that may illuminate these problems. Saphenous nerves and spinal roots of anaesthetized transgenic mice expressing axoplasmic yellow fluorescent protein were stimulated electrically or pharmacologically (veratridine). Within 2 h, the axon herniated on one or both sides of the nodal membrane, displacing the paranodal myelin and widening the nodal gap. The herniated axoplasm became directed back towards the internode, forming a 'cap' up to 30 μm long. Concurrently, the fluid in the expanded periaxonal space accumulated into droplets that appeared to travel to the paranode, where they escaped. No such alterations occurred in axons treated with sodium channel or Na

  8. Upslope treadmill exercise enhances motor axon regeneration but not functional recovery following peripheral nerve injury

    PubMed Central

    Cannoy, Jill; Crowley, Sam; Jarratt, Allen; Werts, Kelly LeFevere; Osborne, Krista; Park, Sohee

    2016-01-01

    Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair. PMID:27466130

  9. Axonal morphological changes following impulse activity in mouse peripheral nerve in vivo: the return pathway for sodium ions

    PubMed Central

    Trigo, Diogo; Smith, Kenneth J

    2015-01-01

    Myelinated axons can conduct sustained trains of impulses at high frequency, but this involves substantial ion movements that must be reversed to restore homeostasis. Little attention has been paid to the potential osmotic consequences of the ion movements or to the pathway taken by sodium ions returning to their original endoneurial location, given that the axolemmal Na+–K+-ATPase extrudes these ions into the periaxonal space beneath the myelin rather than into the endoneurium. Serial confocal imaging of fluorescent axons conducting at sustained physiological frequencies in vivo has revealed surprising morphological changes that may illuminate these problems. Saphenous nerves and spinal roots of anaesthetized transgenic mice expressing axoplasmic yellow fluorescent protein were stimulated electrically or pharmacologically (veratridine). Within 2 h, the axon herniated on one or both sides of the nodal membrane, displacing the paranodal myelin and widening the nodal gap. The herniated axoplasm became directed back towards the internode, forming a ‘cap’ up to 30 μm long. Concurrently, the fluid in the expanded periaxonal space accumulated into droplets that appeared to travel to the paranode, where they escaped. No such alterations occurred in axons treated with sodium channel or Na+–K+-ATPase inhibitors. Remarkably, impulse conduction continued throughout, and all these changes reversed spontaneously over hours or days. The morphological changes were verified ultrastructurally, and occurred in virtually all myelinated axons. The findings appear to reveal an overlooked part of the physiological repertoire of nerve fibres, and here they are interpreted in terms of osmotic changes that may illuminate the pathway by which sodium ions return to the endoneurial space after they have entered the axon during impulse conduction. PMID:25524071

  10. Reversible Folding of Human Peripheral Myelin Protein 22, a Tetraspan Membrane Protein†

    PubMed Central

    Schlebach, Jonathan P.; Peng, Dungeng; Kroncke, Brett M.; Mittendorf, Kathleen F.; Narayan, Malathi; Carter, Bruce D.; Sanders, Charles R.

    2013-01-01

    Misfolding of the α-helical membrane protein peripheral myelin protein 22 (PMP22) has been implicated in the pathogenesis of the common neurodegenerative disease known as Charcot-Marie-Tooth disease (CMTD) and also several other related peripheral neuropathies. Emerging evidence suggests that the propensity of PMP22 to misfold in the cell may be due to an intrinsic lack of conformational stability. Therefore, quantitative studies of the conformational equilibrium of PMP22 are needed to gain insight into the molecular basis of CMTD. In this work, we have investigated the folding and unfolding of wild type (WT) human PMP22 in mixed micelles. Both kinetic and thermodynamic measurements demonstrate that the denaturation of PMP22 by n-lauroyl sarcosine (LS) in dodecylphosphocholine (DPC) micelles is reversible. Assessment of the conformational equilibrium indicates that a significant fraction of unfolded PMP22 persists even in the absence of the denaturing detergent. However, we find the stability of PMP22 is increased by glycerol, which facilitates quantitation of thermodynamic parameters. To our knowledge, this work represents the first report of reversible unfolding of a eukaryotic multispan membrane protein. The results indicate that WT PMP22 possesses minimal conformational stability in micelles, which parallels its poor folding efficiency in the endoplasmic reticulum. Folding equilibrium measurements for PMP22 in mixed micelles may provide an approach to assess the effects of cellular metabolites or potential therapeutic agents on its stability. Furthermore, these results pave the way for future investigation of the effects of pathogenic mutations on the conformational equilibrium of PMP22. PMID:23639031

  11. Erbin regulates NRG1 signaling and myelination

    PubMed Central

    Tao, Yanmei; Dai, Penggao; Liu, Yu; Marchetto, Sylvie; Xiong, Wen-Cheng; Borg, Jean-Paul; Mei, Lin

    2009-01-01

    Neuregulin 1 (NRG1) plays a critical role in myelination. However, little is known about regulatory mechanisms of NRG1 signaling. We show here that Erbin, a protein that contains leucine-rich repeats (LRR) and a PSD95-Dlg-Zol (PDZ) domain and that interacts specifically with ErbB2, is necessary for NRG1 signaling and myelination of peripheral nervous system (PNS). In Erbin null mice, myelinated axons were hypomyelinated with reduced expression of P0, a marker of mature myelinating Schwann cells (SCs), whereas unmyelinated axons were aberrantly ensheathed in Remak bundles, with increased numbers of axons in the bundles and in pockets. The morphological deficits were associated with decreased nerve conduction velocity and increased sensory threshold to mechanistic stimulation. These phenotypes were duplicated in erbinΔC/ΔC mice, in which Erbin lost the PDZ domain to interact with ErbB2. Moreover, ErbB2 was reduced at protein levels in both Erbin mutant sciatic nerves, and ErbB2 became unstable and NRG1 signaling compromised when Erbin expression was suppressed. These observations indicate a critical role of Erbin in myelination and identify a regulatory mechanism of NRG1 signaling. Our results suggest that Erbin, via the PDZ domain, binds to and stabilizes ErbB2, which is necessary for NRG1 signaling that has been implicated in tumorigenesis, heart development, and neural function. PMID:19458253

  12. Modeling the Chronic Loss of Optic Nerve Axons and the Effects on the Retinal Nerve Fiber Layer Structure in Primary Disorder of Myelin

    PubMed Central

    Teixeira, Leandro B. C.; Ver Hoeve, James N.; Mayer, Joshua A.; Dubielzig, Richard R.; Smith, Chelsey M.; Radcliff, Abigail B.; Duncan, Ian D.

    2016-01-01

    Purpose We determined whether the chronic lack of optic nerve myelination and subsequent axon loss is associated with optical coherence tomography (OCT) changes in the retinal nerve fiber layer (RNFL), and whether this models what occurs in multiple sclerosis (MS) and confers its use as a surrogate marker for axon degeneration. Methods Using an animal model of Pelizaeus-Merzbacher disease (shp) bilateral longitudinal measurements of the peripapillary RNFL (spectral-domain OCT), electroretinograms (ERG), and visual evoked potentials (VEP) were performed in affected and control animals from 5 months to 2 years and in individual animals at single time points. Light and electron microscopy of the optic nerve and retina and histomorphometric measurements of the RNFL were compared to OCT data. Results Of the shp animals, 17% had an average reduction of OCT RNFL thickness on the superior retinal quadrant compared to controls (P < 0.05). Electroretinograms showed normal photopic A- and B-waves but flash VEPs were disorganized in shp animals. Morphologically, the shp retinas and optic nerves revealed significant RNFL thinning (P < 0.001) without retinal ganglion cell (RGC) loss, decrease total and relative retinal axonal area, and loss of optic nerve axons. There was strong positive correlation between OCT and morphometric RNFL thickness measurements (r = 0.878, P = 0.004). Conclusion The loss of optic nerve axons demonstrated in the shp model resulted in moderate thinning of the RNFL confirmed by OCT and histology. These results indicate that OCT-derived RNFL measurement can be a useful surrogate biomarker of optic nerve axon loss and potentially disease progression in demyelinating diseases. PMID:27654412

  13. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae

    PubMed Central

    2014-01-01

    Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral line (pLL) nerve of zebrafish and follow the fate of both neurons and Schwann cells. Results Using pLL single axon labeling by transient transgene expression, as well as transplantation of glial precursor cells in zebrafish larvae, we individualize different components in this system and characterize their cellular behaviors during the regenerative process. Neurectomy is followed by loss of Schwann cell differentiation markers that is reverted after nerve regrowth. We show that reinnervation of lateral line hair cells in neuromasts during pLL nerve regeneration is a highly dynamic process with promiscuous yet non-random target recognition. Furthermore, Schwann cells are required for directional extension and fasciculation of the regenerating nerve. We provide evidence that these cells and regrowing axons are mutually dependant during early stages of nerve regeneration in the pLL. The role of ErbB signaling in this context is also explored. Conclusion The accessibility of the pLL nerve and the availability of transgenic lines that label this structure and their synaptic targets provides an outstanding in vivo model to study the different events associated with axonal extension, target reinnervation, and the complex cellular interactions between glial cells and injured axons during nerve regeneration. PMID:25326036

  14. Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves.

    PubMed

    Joshi, Abhijeet R; Bobylev, Ilja; Zhang, Gang; Sheikh, Kazim A; Lehmann, Helmar C

    2015-01-01

    The small GTPase RhoA and its down-stream effector Rho-kinase (ROCK) are important effector molecules of the neuronal cytoskeleton. Modulation of the RhoA/ROCK pathway has been shown to promote axonal regeneration, however in vitro and animal studies are inconsistent regarding the extent of axonal outgrowth induced by pharmacological inhibition of ROCK. We hypothesized that injury to sensory and motor nerves result in diverse activation levels of RhoA, which may impact the response of those nerve fiber modalities to ROCK inhibition. We therefore examined the effects of Y-27632, a chemical ROCK inhibitor, on the axonal outgrowth of peripheral sensory and motor neurons grown in the presence of growth-inhibiting chondroitin sulfate proteoglycans (CSPGs). In addition we examined the effects of three different doses of Y-27632 on nerve regeneration of motor and sensory nerves in animal models of peripheral nerve crush. In vitro, sensory neurons were less responsive to Y-27632 compared to motor neurons in a non-growth permissive environment. These differences were associated with altered expression and activation of RhoA in sensory and motor axons. In vivo, systemic treatment with high doses of Y-27632 significantly enhanced the regeneration of motor axons over short distances, while the regeneration of sensory fibers remained largely unchanged. Our results support the concept that in a growth non-permissive environment, the regenerative capacity of sensory and motor axons is differentially affected by the RhoA/ROCK pathway, with motor neurons being more responsive compared to sensory. Future treatments, that are aimed to modulate RhoA activity, should consider this functional diversity.

  15. Defective autoimmune regulator-dependent central tolerance to myelin protein zero is linked to autoimmune peripheral neuropathy.

    PubMed

    Su, Maureen A; Davini, Dan; Cheng, Philip; Giang, Karen; Fan, Una; DeVoss, Jason J; Johannes, Kellsey P A; Taylor, Lorelei; Shum, Anthony K; Valenzise, Mariella; Meloni, Antonella; Bour-Jordan, Helene; Anderson, Mark S

    2012-05-15

    Chronic inflammatory demyelinating polyneuropathy is a debilitating autoimmune disease characterized by peripheral nerve demyelination and dysfunction. How the autoimmune response is initiated, identity of provoking Ags, and pathogenic effector mechanisms are not well defined. The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting thymic expression of self-Ags and deletion of self-reactive T cells. In this study, we used mice with hypomorphic Aire function and two patients with Aire mutations to define how Aire deficiency results in spontaneous autoimmune peripheral neuropathy. Autoimmunity against peripheral nerves in both mice and humans targets myelin protein zero, an Ag for which expression is Aire-regulated in the thymus. Consistent with a defect in thymic tolerance, CD4(+) T cells are sufficient to transfer disease in mice and produce IFN-γ in infiltrated peripheral nerves. Our findings suggest that defective Aire-mediated central tolerance to myelin protein zero initiates an autoimmune Th1 effector response toward peripheral nerves.

  16. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy

    PubMed Central

    Fukuda, Yusuke; Li, Yihang; Segal, Rosalind A.

    2017-01-01

    Chemotherapeutic agents cause many short and long term toxic side effects to peripheral nervous system (PNS) that drastically alter quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and enduring disorder caused by several anti-neoplastic agents. CIPN typically presents with neuropathic pain, numbness of distal extremities, and/or oversensitivity to thermal or mechanical stimuli. This adverse side effect often requires a reduction in chemotherapy dosage or even discontinuation of treatment. Currently there are no effective treatment options for CIPN. While the underlying mechanisms for CIPN are not understood, current data identify a “dying back” axon degeneration of distal nerve endings as the major pathology in this disorder. Therefore, mechanistic understanding of axon degeneration will provide insights into the pathway and molecular players responsible for CIPN. Here, we review recent findings that expand our understanding of the pathogenesis of CIPN and discuss pathways that may be shared with the axonal degeneration that occurs during developmental axon pruning and during injury-induced Wallerian degeneration. These mechanistic insights provide new avenues for development of therapies to prevent or treat CIPN. PMID:28912674

  17. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Fukuda, Yusuke; Li, Yihang; Segal, Rosalind A

    2017-01-01

    Chemotherapeutic agents cause many short and long term toxic side effects to peripheral nervous system (PNS) that drastically alter quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and enduring disorder caused by several anti-neoplastic agents. CIPN typically presents with neuropathic pain, numbness of distal extremities, and/or oversensitivity to thermal or mechanical stimuli. This adverse side effect often requires a reduction in chemotherapy dosage or even discontinuation of treatment. Currently there are no effective treatment options for CIPN. While the underlying mechanisms for CIPN are not understood, current data identify a "dying back" axon degeneration of distal nerve endings as the major pathology in this disorder. Therefore, mechanistic understanding of axon degeneration will provide insights into the pathway and molecular players responsible for CIPN. Here, we review recent findings that expand our understanding of the pathogenesis of CIPN and discuss pathways that may be shared with the axonal degeneration that occurs during developmental axon pruning and during injury-induced Wallerian degeneration. These mechanistic insights provide new avenues for development of therapies to prevent or treat CIPN.

  18. Peripheral nerve: from the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure.

    PubMed

    Topp, Kimberly S; Boyd, Benjamin S

    2012-01-01

    Peripheral nerves are composed of motor and sensory axons, associated ensheathing Schwann cells, and organized layers of connective tissues that are in continuity with the tissues of the central nervous system. Nerve fiber anatomy facilitates conduction of electrical impulses to convey information over a distance, and the length of these polarized cells necessitates regulated axonal transport of organelles and structural proteins for normal cell function. Nerve connective tissues serve a protective function as the limb is subjected to the stresses of myriad limb positions and postures. Thus, the tissues are uniquely arranged to control the local nerve fiber environment and modulate physical stresses. In this brief review, we describe the microscopic anatomy and physiology of peripheral nerve and the biomechanical properties that enable nerve to withstand the physical stresses of everyday life. Copyright © 2012 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  19. Mammalian Target of Rapamycin (mTOR) Activation Increases Axonal Growth Capacity of Injured Peripheral Nerves*

    PubMed Central

    Abe, Namiko; Borson, Steven H.; Gambello, Michael J.; Wang, Fan; Cavalli, Valeria

    2010-01-01

    Unlike neurons in the central nervous system (CNS), injured neurons in the peripheral nervous system (PNS) can regenerate their axons and reinnervate their targets. However, functional recovery in the PNS often remains suboptimal, especially in cases of severe damage. The lack of regenerative ability of CNS neurons has been linked to down-regulation of the mTOR (mammalian target of rapamycin) pathway. We report here that PNS dorsal root ganglial neurons (DRGs) activate mTOR following damage and that this activity enhances axonal growth capacity. Furthermore, genetic up-regulation of mTOR activity by deletion of tuberous sclerosis complex 2 (TSC2) in DRGs is sufficient to enhance axonal growth capacity in vitro and in vivo. We further show that mTOR activity is linked to the expression of GAP-43, a crucial component of axonal outgrowth. However, although TSC2 deletion in DRGs facilitates axonal regrowth, it leads to defects in target innervation. Thus, whereas manipulation of mTOR activity could provide new strategies to stimulate nerve regeneration in the PNS, fine control of mTOR activity is required for proper target innervation. PMID:20615870

  20. Myelin-associated glycoprotein (MAG): past, present and beyond.

    PubMed

    Quarles, Richard H

    2007-03-01

    The myelin-associated glycoprotein (MAG) is a type I transmembrane glycoprotein localized in periaxonal Schwann cell and oligodendroglial membranes of myelin sheaths where it functions in glia-axon interactions. It contains five immunoglobulin (Ig)-like domains and is in the sialic acid-binding subgroup of the Ig superfamily. It appears to function both as a ligand for an axonal receptor that is needed for the maintenance of myelinated axons and as a receptor for an axonal signal that promotes the differentiation, maintenance and survival of oligodendrocytes. Its function in the maintenance of myelinated axons may be related to its role as one of the white matter inhibitors of neurite outgrowth acting through a receptor complex involving the Nogo receptor and/or gangliosides containing 2,3-linked sialic acid. MAG is expressed as two developmentally regulated isoforms with different cytoplasmic domains that may activate different signal transduction pathways in myelin-forming cells. MAG contains a carbohydrate epitope shared with other glycoconjugates that is a target antigen in autoimmune peripheral neuropathy associated with IgM gammopathy and has been implicated in a dying back oligodendrogliopathy in multiple sclerosis.

  1. Sex differences in morphometric aspects of the peripheral nerves and related diseases.

    PubMed

    Moriyama, Hiroshi; Hayashi, Shogo; Inoue, Yuriko; Itoh, Masahiro; Otsuka, Naruhito

    2016-07-15

    The elucidation of the relationship between the morphology of the peripheral nerves and the diseases would be valuable in developing new medical treatments on the assumption that characteristics of the peripheral nerves in females are different from those in males. We used 13 kinds of the peripheral nerve. The materials were obtained from 10 Japanese female and male cadavers. We performed a morphometric analysis of nerve fibers. We estimated the total number of myelinated axons, and calculated the average transverse area and average circularity ratio of myelinated axons in the peripheral nerves. There was no statistically significant difference in the total number, average transverse area, or average circularity ratio of myelinated axons between the female and male specimens except for the total number of myelinated axons in the vestibular nerve and the average circularity ratio of myelinated axons in the vagus nerve. The lower number of myelinated axons in the female vestibular nerve may be one of the reasons why vestibular disorders have a female preponderance. Moreover, the higher average circularity ratio of myelinated axons in the male vagus nerve may be one reason why vagus nerve activity to modulate pain has a male preponderance.

  2. Sex differences in morphometric aspects of the peripheral nerves and related diseases

    PubMed Central

    Moriyama, Hiroshi; Hayashi, Shogo; Inoue, Yuriko; Itoh, Masahiro; Otsuka, Naruhito

    2016-01-01

    BACKGROUND: The elucidation of the relationship between the morphology of the peripheral nerves and the diseases would be valuable in developing new medical treatments on the assumption that characteristics of the peripheral nerves in females are different from those in males. METHODS: We used 13 kinds of the peripheral nerve. The materials were obtained from 10 Japanese female and male cadavers. We performed a morphometric analysis of nerve fibers. We estimated the total number of myelinated axons, and calculated the average transverse area and average circularity ratio of myelinated axons in the peripheral nerves. RESULTS: There was no statistically significant difference in the total number, average transverse area, or average circularity ratio of myelinated axons between the female and male specimens except for the total number of myelinated axons in the vestibular nerve and the average circularity ratio of myelinated axons in the vagus nerve. CONCLUSIONS: The lower number of myelinated axons in the female vestibular nerve may be one of the reasons why vestibular disorders have a female preponderance. Moreover, the higher average circularity ratio of myelinated axons in the male vagus nerve may be one reason why vagus nerve activity to modulate pain has a male preponderance. PMID:27589511

  3. In vivo time-lapse imaging of mitochondria in healthy and diseased peripheral myelin sheath.

    PubMed

    Gonzalez, Sergio; Fernando, Ruani; Berthelot, Jade; Perrin-Tricaud, Claire; Sarzi, Emmanuelle; Chrast, Roman; Lenaers, Guy; Tricaud, Nicolas

    2015-07-01

    The myelin sheath that covers a large amount of neurons is critical for their homeostasis, and myelinating glia mitochondria have recently been shown to be essential for neuron survival. However morphological and physiological properties of these organelles remain elusive. Here we report a method to analyze mitochondrial dynamics and morphology in myelinating Schwann cells of living mice using viral transduction and time-lapse multiphoton microscopy. We describe the distribution, shape, size and dynamics of mitochondria in live cells. We also report mitochondrial alterations in Opa1(delTTAG) mutant mice cells at presymptomatic stages, suggesting that mitochondrial defects in myelin contribute to OPA1 related neuropathy and represent a biomarker for the disease.

  4. Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP.

    PubMed

    Deng, Yaqi; Kim, BongWoo; He, Xuelian; Kim, Sunja; Lu, Changqing; Wang, Haibo; Cho, Ssang-Goo; Hou, Yiping; Li, Jianrong; Zhao, Xianghui; Lu, Q Richard

    2014-04-01

    Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane-anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt-Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin-induced demyelination animal model. Taken together, the membrane-anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries.

  5. The Molecular and Morphologic Structures That Make Saltatory Conduction Possible in Peripheral Nerve.

    PubMed

    Carroll, Steven L

    2017-03-14

    Saltatory conduction is the process by which action potentials are rapidly and efficiently propagated along myelinated axons. In the peripheral nervous system, saltatory conduction is made possible by a series of morphologically and molecularly distinct subdomains in both axons and their associated myelinating Schwann cells. This review briefly summarizes current knowledge on the molecular structure and physiology of the node of Ranvier and adjacent regions of the axoglial unit in peripheral nerve.

  6. Berberine promotes axonal regeneration in injured nerves of the peripheral nervous system.

    PubMed

    Han, Ah Mi; Heo, Hwon; Kwon, Yunhee Kim

    2012-04-01

    Berberine, an isoquinoline alkaloid component of Coptidis Rhizoma (goldenthread) extract, has been reported to have therapeutic potential for central nervous system disorders such as Alzheimer's disease, cerebral ischemia, and schizophrenia. We have previously shown that berberine promotes the survival and differentiation of hippocampal precursor cells. In a memory-impaired rat model induced by ibotenic acid injection, the survival of pyramidal and granular cells was greatly increased in the hippocampus by berberine administration. In the present study, we investigated the effects of berberine on neurite outgrowth in the SH-SY5Y neuronal cell line and axonal regeneration in the rat peripheral nervous system (PNS). Berberine enhanced neurite extension in differentiating SH-SY5Y cells at concentrations of 0.25-3 μg/mL. In an injury model of the rat sciatic nerve, we examined the neuroregenerative effects of berberine on axonal remyelination by using immunohistochemical analysis. Four weeks after berberine administration (20 mg/kg i.p. once per day for 1 week), the thickness of remyelinated axons improved approximately 1.4-fold in the distal stump of the injury site. Taken together, these results indicate that berberine promotes neurite extension and axonal regeneration in injured nerves of the PNS.

  7. Evaluation of dermal myelinated nerve fibers in diabetes mellitus

    PubMed Central

    Peltier, Amanda C.; Myers, M. Iliza; Artibee, Kay J.; Hamilton, Audra D.; Yan, Qing; Guo, Jiasong; Shi, Yaping; Wang, Lily; Li, Jun

    2013-01-01

    Skin biopsies have primarily been used to study the non-myelinated nerve fibers of the epidermis in a variety of neuropathies. In the present study, we have expanded the skin biopsy technique to glabrous, non-hairy skin to evaluate myelinated nerve fibers in the most highly prevalent peripheral nerve disease, diabetic polyneuropathy (DPN). Twenty patients with DPN (Type I, n=9; Type II, n=11) and sixteen age-matched healthy controls (ages 29–73) underwent skin biopsy of the index finger, nerve conduction studies, and composite neuropathy scoring. In patients with DPN, we found a statistically significant reduction of both mechanoreceptive Meissner corpuscles (MC) and their afferent myelinated nerve fibers (p=0.01). This myelinated nerve fiber loss was correlated with the decreased amplitudes of sensory/motor responses in nerve conduction studies. This study supports the utilization of skin biopsy to quantitatively evaluate axonal loss of myelinated nerve fibers in patients with DPN. PMID:23781963

  8. Evaluation of dermal myelinated nerve fibers in diabetes mellitus.

    PubMed

    Peltier, Amanda C; Myers, M Iliza; Artibee, Kay J; Hamilton, Audra D; Yan, Qing; Guo, Jiasong; Shi, Yaping; Wang, Lily; Li, Jun

    2013-06-01

    Skin biopsies have primarily been used to study the non-myelinated nerve fibers of the epidermis in a variety of neuropathies. In this study, we have expanded the skin biopsy technique to glabrous, non-hairy skin to evaluate myelinated nerve fibers in the most highly prevalent peripheral nerve disease, diabetic polyneuropathy (DPN). Twenty patients with DPN (Type I, n = 9; Type II, n = 11) and 16 age-matched healthy controls (age 29-73) underwent skin biopsy of the index finger, nerve conduction studies (NCS), and composite neuropathy scoring. In patients with DPN, we found a statistically significant reduction of both mechanoreceptive Meissner corpuscles (MCs) and their afferent myelinated nerve fibers (p = 0.01). This myelinated nerve fiber loss was correlated with the decreased amplitudes of sensory/motor responses in NCS. This study supports the utilization of skin biopsy to quantitatively evaluate axonal loss of myelinated nerve fibers in patients with DPN.

  9. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve.

    PubMed

    Roberts, Sheridan L; Dun, Xin-Peng; Doddrell, Robin D S; Mindos, Thomas; Drake, Louisa K; Onaitis, Mark W; Florio, Francesca; Quattrini, Angelo; Lloyd, Alison C; D'Antonio, Maurizio; Parkinson, David B

    2017-09-01

    Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system. © 2017. Published by The Company of Biologists Ltd.

  10. High frequency of mutations in codon 98 of the peripheral myelin protein Po gene in 20 French CMT1 patients

    SciTech Connect

    Rougher, H.; LeGuern, E. Gouider, R.

    1996-03-01

    Charcot-Marie-Tooth disease, characterized by distal muscle weakness and amyotrophy, decreased or absent tendon reflexes, and high arched feet, is the most common inherited peripheral neuropathy, with a prevalence of 1 in 2,500. Two types of CMT have been distinguished on the basis of nerve conduction velocities. CMT type 1 is the most frequent, with markedly slowed velocities ({<=}40 m/s) associated with hypertrophic onion bulb changes on nerve biopsy. Autosomal dominant CMT1 is genetically heterogeneous: CMT1A is caused by a 1.5-Mb duplication in 17p11.2 and, more rarely, by a point mutation in tha PMP22 (peripheral myelin protein, 22 kD) gene located in the duplicated region; CMT1B results from mutations in the Po (peripheral myelin protein zero) gene in 1q22-23. Forty-five percent (7/16) of the published mutations associated with CMT1 occur in exon 3 of Po. In order to determine the cause of CMT1 in 20 unrelated patients without 17p11.2 duplications, mutations were sought in exon 3 of Po with three techniques: nonradioactive SSCP, automated sequencing, and PCR enzymatic restriction. 18 refs., 2 figs.

  11. Assessment of vascularization and myelination following peripheral nerve repair using angiographic and polarization sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nam, Ahhyun S.; Chico-Calero, Isabel; Easow, Jeena M.; Villiger, Martin; Welt, Jonathan; Winograd, Jonathan M.; Randolph, Mark A.; Redmond, Robert W.; Vakoc, Benjamin J.

    2017-02-01

    A severe traumatic injury to a peripheral nerve often requires surgical graft repair. However, functional recovery after these surgical repairs is often unsatisfactory. To improve interventional procedures, it is important to understand the regeneration of the nerve grafts. The rodent sciatic nerve is commonly used to investigate these parameters. However, the ability to longitudinally assess the reinnervation of injured nerves are limited, and to our knowledge, no methods currently exist to investigate the timing of the revascularization in functional recovery. In this work, we describe the development and use of angiographic and polarization-sensitive (PS) optical coherence tomography (OCT) to visualize the vascularization, demyelination and remyelination of peripheral nerve healing after crush and transection injuries, and across a variety of graft repair methods. A microscope was customized to provide 3.6 cm fields of view along the nerve axis with a capability to track the nerve height to maintain the nerve within the focal plane. Motion artifact rejection was implemented in the angiography algorithm to reduce degradation by bulk respiratory motion in the hindlimb site. Vectorial birefringence imaging methods were developed to significantly enhance the accuracy of myelination measurements and to discriminate birefringent contributions from the myelin and epineurium. These results demonstrate that the OCT platform has the potential to reveal new insights in preclinical studies and may ultimately provide a means for clinical intra-surgical assessment of peripheral nerve function.

  12. Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters

    SciTech Connect

    Patel, P.I.; Schoener-Scott, R.; Lupski, J.R.

    1994-09-01

    Mutations affecting the peripheral myelin protein-22 (PMP22) gene have been shown to be associated with inherited peripheral neuropathies. We have cloned and characterized the human PMP22 gene which spans approximately 40 kilobases and contains four coding exons. Towards developing gene therapy regimens for the associated peripheral neuropathies, we have initiated detailed analysis of the 5{prime} flanking region of the PMP22 gene and identified two alternatively transcribed, but untranslated exons. Mapping of separate PMP22 mRNA transcription initiation sites to each of these exons indicates that PMP22 expression is regulated by two alternatively used promoters. Both putative promoter sequences demonstrated the ability to drive expression of reporter genes in transfection experiments. Furthermore, the structure of the 5{prime} portion of the PMP22 gene appears to be identical in rat and human, supporting the biological significance of the observed arrangement of regulatory regions. The relative expression of the alternative PMP22 transcripts is tissue-specific and high levels of the exon 1A-containing transcript are tightly coupled to myelin formation. In contrast, exon 1B-containing transcripts are predominant in non-neural tissues and in growth-arrested primary fibroblasts. The observed regulation of the PMP22 by a complex molecular mechanism is consistent with the proposed dual role of PMP22 in neural and non-neural tissue.

  13. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    SciTech Connect

    Ruskamo, Salla; Yadav, Ravi P.; Sharma, Satyan; Lehtimäki, Mari; Laulumaa, Saara; Aggarwal, Shweta; Simons, Mikael; Bürck, Jochen; Ulrich, Anne S.; Juffer, André H.; Kursula, Inari; Kursula, Petri

    2014-01-01

    The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.

  14. Antibody responses to peptides of peripheral nerve myelin proteins P0 and P2 in patients with inflammatory demyelinating neuropathy

    PubMed Central

    Inglis, H R; Csurhes, P A; McCombe, P A

    2007-01-01

    Background Antibodies with reactivity to peripheral nerve myelin have previously been found in the serum, and bound to peripheral nerves of patients with Guillain–Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Aim To investigate the presence of antibodies reactive to specific peptide sequences within the myelin proteins P0 and P2 in patients with GBS, in patients with CIDP, in healthy controls and in patients with other neuropathies (ON). Methods Blood was obtained from 48 patients with GBS, 36 with CIDP, 48 with ON and 38 controls. ELISA was used to detect antibody responses to peptides of the human peripheral myelin proteins P0 and P2. Blood samples were collected from patients with GBS in early, peak and recovery stages of GBS to analyse antibody levels throughout the course of the disease. Results Significantly increased total IgG levels were found in patients with GBS compared with other groups. A higher percentage of patients with GBS at the peak of disease had antibody reactivity to P214–25 compared with patients with CIDP and control groups. In patients with GBS and CIDP, the percentages of patients with antibody reactivity to P261–70, and peptides derived from P0, were comparable to the control groups. Although some individual patients with GBS had high titres of reactivity to the peptide antigens tested, most patients with GBS and CIDP had levels of antibody similar to controls. Conclusion Our data suggest that increased IgG levels and increased antibody reactivity to P2 14–25 in patients with GBS at the peak of disease may play a contributory role in the disease process in some patients with demyelinating forms of GBS. PMID:17158557

  15. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program

    PubMed Central

    Chandran, Vijayendran; Coppola, Giovanni; Nawabi, Homaira; Omura, Takao; Versano, Revital; Huebner, Eric A.; Zhang, Alice; Costigan, Michael; Yekkirala, Ajay; Barrett, Lee; Blesch, Armin; Michaelevski, Izhak; Davis-Turak, Jeremy; Gao, Fuying; Langfelder, Peter; Horvath, Steve; He, Zhigang; Benowitz, Larry; Fainzilber, Mike; Tuszynski, Mark; Woolf, Clifford J.; Geschwind, Daniel H.

    2016-01-01

    SUMMARY The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology. PMID:26898779

  16. Association of myelinated primary afferents impairment with mechanical allodynia in diabetic peripheral neuropathy: an experimental study in rats.

    PubMed

    Liao, Chenlong; Yang, Min; Zhong, Wenxiang; Liu, Pengfei; Zhang, Wenchuan

    2017-09-08

    To investigate the mechanisms underlying the efficacy of surgical treatment for painful diabetic peripheral neuropathy. Rats were initially divided into 3 groups (I, control rats, II, streptozotocin-induced diabetic rats, III, streptozotocin-induced diabetic rats with latex tube encircling the sciatic nerve without compression). When mechanical allodynia (MA) became stable in the third week, one third of group III rats were sacrificed and the remainder were further divided into subgroups depending on whether the latex tube was removed. Except for some rats in group III, all rats were sacrificed in the fifth week. Morphometric analysis of nerve fibers was performed. Expression level of GABAB receptor protein in spinal dorsal horn was determined. Changes of GABAB receptor within areas of primary afferents central terminal were identified. Chronic nerve compression caused by the interaction of diabetic nerves swelling and the encircling latex tube increased the incidence of MA in diabetic rats, and nerve decompression could ameliorate MA. In diabetic rats with MA, demyelination of myelinated fibers was noted and reduction of GABAB receptor was mainly detected in the area of myelinated afferent central terminals. MA in DPN should be partially attributed to compression impairment of myelinated afferents, supporting the rationale for surgical decompression.

  17. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    SciTech Connect

    Denninger, Andrew R.; Demé, Bruno; Cristiglio, Viviana; LeDuc, Géraldine; Feller, W. Bruce; Kirschner, Daniel A.

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures and the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.

  18. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP.

    PubMed

    Hu, Bo; Arpag, Sezgi; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-09-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it "functional demyelination", a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP.

  19. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP

    PubMed Central

    Hu, Bo; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-01-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it “functional demyelination”, a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP. PMID:27583434

  20. Copper accumulation and lipid oxidation precede inflammation and myelin lesions in N,N-diethyldithiocarbamate peripheral myelinopathy

    SciTech Connect

    Viquez, Olga M.; Valentine, Holly L.; Amarnath, Kalyani; Milatovic, Dejan; Valentine, William M.

    2008-05-15

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture and medicine with new applications being actively investigated. One adverse effect of dithiocarbamates is the neurotoxicity observed in humans and experimental animals. Results from previous studies have suggested that dithiocarbamates elevate copper and promote lipid oxidation within myelin membranes. In the current study, copper levels, lipid oxidation, protein oxidative damage and markers of inflammation were monitored as a function of N,N-diethyldithiocarbamate (DEDC) exposure duration in an established model for DEDC-mediated myelinopathy in the rat. Intra-abdominal administration of DEDC was performed using osmotic pumps for periods of 2, 4, and 8 weeks. Metals in brain, liver and tibial nerve were measured using ICP-MS and lipid oxidation assessed through HPLC measurement of malondialdehyde in tibial nerve, and GC/MS measurement of F{sub 2} isoprostanes in sciatic nerve. Protein oxidative injury of sciatic nerve proteins was evaluated through quantification of 4-hydroxynonenal protein adducts using immunoassay, and inflammation monitored by quantifying levels of IgGs and activated macrophages using immunoassay and immunohistochemistry methods, respectively. Changes in these parameters were then correlated to the onset of structural lesions, determined by light and electron microscopy, to delineate the temporal relationship of copper accumulation and oxidative stress in peripheral nerve to the onset of myelin lesions. The data provide evidence that DEDC mediates lipid oxidation and elevation of total copper in peripheral nerve well before myelin lesions or activated macrophages are evident. This relationship is consistent with copper-mediated oxidative stress contributing to the myelinopathy.

  1. Copper Accumulation and Lipid Oxidation Precede Inflammation and Myelin Lesions in N,N-Diethyldithiocarbamate Peripheral Myelinopathy

    PubMed Central

    Viquez, Olga M.; Valentine, Holly L.; Amarnath, Kalyani; Milatovic, Dejan; Valentine, William M.

    2008-01-01

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture and medicine with new applications being actively investigated. One adverse effect of dithiocarbamates is the neurotoxicity observed in humans and experimental animals. Results from previous studies have suggested that dithiocarbamates elevate copper and promote lipid oxidation within myelin membranes. In the current study, copper levels, lipid oxidation, protein oxidative damage and markers of inflammation were monitored as a function of N,N-diethyldithiocarbmate (DEDC) exposure duration in an established model for DEDC-mediated myelinopathy in the rat. Intraabdominal administration of DEDC was performed using osmotic pumps for periods of 2, 4, and 8 weeks. Metals in brain, liver and tibial nerve were measured using ICP-MS and lipid oxidation assessed through HPLC measurement of malondialdehyde in tibial nerve, and GC/MS measurement of F2 isoprostanes in sciatic nerve. Protein oxidative injury of sciatic nerve proteins was evaluated through quantification of 4-hydroxynonenal protein adducts using immunoassay, and inflammation monitored by quantifying levels of IgGs and activated macrophages using immunoassay and immunhistochemistry methods, respectively. Changes in these parameters were then correlated to the onset of structural lesions, determined by light and electron microscopy, to delineate the temporal relationship of copper accumulation and oxidative stress in peripheral nerve to the onset of myelin lesions. The data provide evidence that DEDC mediates lipid oxidation and elevation of total copper in peripheral nerve well before myelin lesions or activated macrophages are evident. This relationship is consistent with copper-mediated oxidative stress contributing to the myelinopathy. PMID:18284930

  2. Copper accumulation and lipid oxidation precede inflammation and myelin lesions in N,N-diethyldithiocarbamate peripheral myelinopathy.

    PubMed

    Viquez, Olga M; Valentine, Holly L; Amarnath, Kalyani; Milatovic, Dejan; Valentine, William M

    2008-05-15

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture and medicine with new applications being actively investigated. One adverse effect of dithiocarbamates is the neurotoxicity observed in humans and experimental animals. Results from previous studies have suggested that dithiocarbamates elevate copper and promote lipid oxidation within myelin membranes. In the current study, copper levels, lipid oxidation, protein oxidative damage and markers of inflammation were monitored as a function of N,N-diethyldithiocarbamate (DEDC) exposure duration in an established model for DEDC-mediated myelinopathy in the rat. Intra-abdominal administration of DEDC was performed using osmotic pumps for periods of 2, 4, and 8 weeks. Metals in brain, liver and tibial nerve were measured using ICP-MS and lipid oxidation assessed through HPLC measurement of malondialdehyde in tibial nerve, and GC/MS measurement of F(2) isoprostanes in sciatic nerve. Protein oxidative injury of sciatic nerve proteins was evaluated through quantification of 4-hydroxynonenal protein adducts using immunoassay, and inflammation monitored by quantifying levels of IgGs and activated macrophages using immunoassay and immunohistochemistry methods, respectively. Changes in these parameters were then correlated to the onset of structural lesions, determined by light and electron microscopy, to delineate the temporal relationship of copper accumulation and oxidative stress in peripheral nerve to the onset of myelin lesions. The data provide evidence that DEDC mediates lipid oxidation and elevation of total copper in peripheral nerve well before myelin lesions or activated macrophages are evident. This relationship is consistent with copper-mediated oxidative stress contributing to the myelinopathy.

  3. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    PubMed Central

    Ruskamo, Salla; Yadav, Ravi P.; Sharma, Satyan; Lehtimäki, Mari; Laulumaa, Saara; Aggarwal, Shweta; Simons, Mikael; Bürck, Jochen; Ulrich, Anne S.; Juffer, André H.; Kursula, Inari; Kursula, Petri

    2014-01-01

    P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer. PMID:24419389

  4. Treadmill Training Enhances Axon Regeneration In Injured Mouse Peripheral Nerves Without Increased Loss of Topographic Specificity

    PubMed Central

    English, Arthur W.; Cucoranu, Delia; Mulligan, Amanda; Sabatier, Manning

    2009-01-01

    We investigated the extent of misdirection of regenerating axons when that regeneration was enhanced using treadmill training. Retrograde fluorescent tracers were applied to the cut proximal stumps of the tibial and common fibular nerves two or four weeks after transection and surgical repair of the mouse sciatic nerve. The spatial locations of retrogradely labeled motoneurons were studied in untreated control mice and in mice receiving two weeks of treadmill training, either according to a continuous protocol (10 m/min, one hour/day, five day/week) or an interval protocol (20 m/min for two minutes, followed by a five minute rest, repeated 4 times, five days/week). More retrogradely labeled motoneurons were found in both treadmill trained groups. The magnitude of this increase was as great as or greater than that found after using other enhancement strategies. In both treadmill trained groups, the proportions of motoneurons labeled from tracer applied to the common fibular nerve that were found in spinal cord locations reserved for tibial motoneurons in intact mice was no greater than in untreated control mice and significantly less than found after electrical stimulation or chondroitinase treatment. Treadmill training in the first two weeks following peripheral nerve injury produces a marked enhancement of motor axon regeneration without increasing the propensity of those axons to choose pathways leading to functionally inappropriate targets. PMID:19731339

  5. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    PubMed

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  6. In vivo expression of the Arf6 Guanine-nucleotide exchange factor cytohesin-1 in mice exhibits enhanced myelin thickness in nerves.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Onami, Naoko; Tsumura, Hideki; Nemoto, Noriko; Kawahara, Katsumasa; Kato, Minoru; Kotera, Jun; Nakamura, Kazuaki; Tanoue, Akito; Yamauchi, Junji

    2013-10-01

    The myelin sheath consists of a unique multiple layer structure that acts as an insulator between neuronal axons to enhance the propagation of the action potential. In neuropathies such as demyelinating or dismyelinating diseases, chronic demyelination and defective remyelination occur repeatedly, leading to more severe neuropathy. As yet, little is known about the possibility of drug target-specific medicine for such diseases. In the developing peripheral nervous system (PNS), myelin sheaths form as Schwann cells wrap individual axons. It is thought that the development of a drug promoting myelination by Schwann cells would provide effective therapy against peripheral nerve disorders: to test such treatment, genetically modified mice overexpressing the drug target molecules are needed. We previously identified an Arf6 activator, the guanine-nucleotide exchange factor cytohesin-1, as the signaling molecule controlling myelination of peripheral axons by Schwann cells; yet, the important issue of whether cytohesin-1 itself promotes myelin thickness in vivo has remained unclear. Herein, we show that, in mouse PNS nerves, Schwann cell-specific expression of wild-type cytohesin-1 exhibits enhanced myelin thickness. Downstream activation of Arf6 is also seen in these transgenic mice, revealing the involvement of the cytohesin-1 and Arf6 signaling unit in promoting myelination. These results suggest that cytohesin-1 may be a candidate for the basis of a therapy for peripheral neuropathies through its enhancement of myelin thickness.

  7. Influence of Breaching the Connective Sheaths of the Donor Nerve on Its Myelinated Sensory Axons and on Their Sprouting into the End-to-Side Coapted Nerve in the Rat

    PubMed Central

    Žele, Tilen; Tomšič, Martin; Sketelj, Janez; Bajrović, Fajko F.

    2012-01-01

    Abstract The influence of breaching the connective sheaths of the donor sural nerve on axonal sprouting into the end-to-side coapted peroneal nerve was examined in the rat. In parallel, the effect of these procedures on the donor nerve was assessed. The sheaths of the donor nerve at the coaptation site were either left completely intact (group A) or they were breached by epineurial sutures (group B), an epineurial window (group C), or a perineurial window (group D). In group A, the compound action potential (CAP) of sensory axons was detected in ∼10% and 40% of the recipient nerves at 4 and 8 weeks, respectively, which was significantly less frequently than in group D at both recovery periods. In addition, the number of myelinated axons in the recipient nerve was significantly larger in group D than in other groups at 4 weeks. At 8 weeks, the number of axons in group A was only ∼15% of the axon numbers in other groups (p<0.05). Focal subepineurial degenerative changes in the donor nerves were only seen after 4 weeks, but not later. The average CAP area and the total number of myelinated axons in the donor nerves were not different among the experimental groups. In conclusion, myelinated sensory axons are able to penetrate the epiperineurium of donor nerves after end-to-side nerve coaption; however, their ingrowth into recipient nerves is significantly enhanced by breaching the epiperineurial sheets at the coaptation site. Breaching does not cause permanent injury to the donor nerve. PMID:22873667

  8. An RNA Binding Protein Promotes Axonal Integrity in Peripheral Neurons by Destabilizing REST

    PubMed Central

    Cargnin, Francesca; Nechiporuk, Tamilla; Müllendorff, Karin; Stumpo, Deborah J.; Blackshear, Perry J.; Ballas, Nurit

    2014-01-01

    The RE1 Silencing Transcription Factor (REST) acts as a governor of the mature neuronal phenotype by repressing a large consortium of neuronal genes in non-neuronal cells. In the developing nervous system, REST is present in progenitors and downregulated at terminal differentiation to promote acquisition of mature neuronal phenotypes. Paradoxically, REST is still detected in some regions of the adult nervous system, but how REST levels are regulated, and whether REST can still repress neuronal genes, is not known. Here, we report that homeostatic levels of REST are maintained in mature peripheral neurons by a constitutive post-transcriptional mechanism. Specifically, using a three-hybrid genetic screen, we identify the RNA binding protein, ZFP36L2, associated previously only with female fertility and hematopoiesis, and show that it regulates REST mRNA stability. Dorsal root ganglia in Zfp36l2 knock-out mice, or wild-type ganglia expressing ZFP36L2 shRNA, show higher steady-state levels of Rest mRNA and protein, and extend thin and disintegrating axons. This phenotype is due, at least in part, to abnormally elevated REST levels in the ganglia because the axonal phenotype is attenuated by acute knockdown of REST in Zfp36l2 KO DRG explants. The higher REST levels result in lower levels of target genes, indicating that REST can still fine-tune gene expression through repression. Thus, REST levels are titrated in mature peripheral neurons, in part through a ZFP36L2-mediated post-transcriptional mechanism, with consequences for axonal integrity. PMID:25505318

  9. Polygenic Inheritance of Paclitaxel-Induced Sensory Peripheral Neuropathy Driven by Axon Outgrowth Gene Sets in CALGB 40101 (Alliance)

    PubMed Central

    Chhibber, Aparna; Mefford, Joel; Stahl, Eli A.; Pendergrass, Sarah A.; Baldwin, R. Michael; Owzar, Kouros; Li, Megan; Winer, Eric P.; Hudis, Clifford A.; Zembutsu, Hitoshi; Kubo, Michiaki; Nakamura, Yusuke; McLeod, Howard L.; Ratain, Mark J.; Shulman, Lawrence N.; Ritchie, Marylyn D.; Plenge, Robert M.; Witte, John S.; Kroetz, Deanna L.

    2014-01-01

    Peripheral neuropathy is a common dose-limiting toxicity for patients treated with paclitaxel. For most individuals there are no known risk factors that predispose patients to the adverse event, and pathogenesis for paclitaxel-induced peripheral neuropathy is unknown. Determining whether there is a heritable component to paclitaxel induced peripheral neuropathy would be valuable in guiding clinical decisions and may provide insight into treatment of and mechanisms for the toxicity. Using genotype and patient information from the paclitaxel arm of CALGB 40101 (Alliance), a phase III clinical trial evaluating adjuvant therapies for breast cancer in women, we estimated the variance in maximum grade and dose at first instance of sensory peripheral neuropathy. Our results suggest that paclitaxel-induced neuropathy has a heritable component, driven in part by genes involved in axon outgrowth. Disruption of axon outgrowth may be one of the mechanisms by which paclitaxel treatment results in sensory peripheral neuropathy in susceptible patients. PMID:24513692

  10. Polygenic inheritance of paclitaxel-induced sensory peripheral neuropathy driven by axon outgrowth gene sets in CALGB 40101 (Alliance).

    PubMed

    Chhibber, A; Mefford, J; Stahl, E A; Pendergrass, S A; Baldwin, R M; Owzar, K; Li, M; Winer, E P; Hudis, C A; Zembutsu, H; Kubo, M; Nakamura, Y; McLeod, H L; Ratain, M J; Shulman, L N; Ritchie, M D; Plenge, R M; Witte, J S; Kroetz, D L

    2014-08-01

    Peripheral neuropathy is a common dose-limiting toxicity for patients treated with paclitaxel. For most individuals, there are no known risk factors that predispose patients to the adverse event, and pathogenesis for paclitaxel-induced peripheral neuropathy is unknown. Determining whether there is a heritable component to paclitaxel-induced peripheral neuropathy would be valuable in guiding clinical decisions and may provide insight into treatment of and mechanisms for the toxicity. Using genotype and patient information from the paclitaxel arm of CALGB 40101 (Alliance), a phase III clinical trial evaluating adjuvant therapies for breast cancer in women, we estimated the variance in maximum grade and dose at first instance of sensory peripheral neuropathy. Our results suggest that paclitaxel-induced neuropathy has a heritable component, driven in part by genes involved in axon outgrowth. Disruption of axon outgrowth may be one of the mechanisms by which paclitaxel treatment results in sensory peripheral neuropathy in susceptible patients.

  11. Immunotherapy for IgM anti-myelin-associated glycoprotein paraprotein-associated peripheral neuropathies.

    PubMed

    Lunn, Michael Pt; Nobile-Orazio, Eduardo

    2016-10-04

    Serum monoclonal anti-myelin-associated glycoprotein (anti-MAG) antibodies may be pathogenic in some people with immunoglobulin M (IgM) paraprotein and demyelinating neuropathy. Immunotherapies aimed at reducing the level of these antibodies might be expected to be beneficial. This is an update of a review first published in 2003 and previously updated in 2006 and 2012. To assess the effects of immunotherapy for IgM anti-MAG paraprotein-associated demyelinating peripheral neuropathy. On 1 February 2016 we searched the Cochrane Neuromuscular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase for randomised controlled trials (RCTs). We also checked trials registers and bibliographies, and contacted authors and experts in the field. We included randomised controlled trials (RCTs) or quasi-RCTs involving participants of any age treated with any type of immunotherapy for anti-MAG antibody-associated demyelinating peripheral neuropathy with monoclonal gammopathy of undetermined significance and of any severity.Our primary outcome measures were numbers of participants improved in disability assessed with either or both of the Neuropathy Impairment Scale (NIS) or the modified Rankin Scale (mRS) at six months after randomisation. Secondary outcome measures were: mean improvement in disability, assessed with either the NIS or the mRS, 12 months after randomisation; change in impairment as measured by improvement in the 10-metre walk time, change in a validated linear disability measure such as the Rasch-built Overall Disability Scale (R-ODS) at six and 12 months after randomisation, change in subjective clinical scores and electrophysiological parameters at six and 12 months after randomisation; change in serum IgM paraprotein concentration or anti-MAG antibody titre at six months after randomisation; and adverse effects of treatments. We followed standard methodological procedures expected by Cochrane. We identified eight

  12. Immunohistological demonstration of CaV3.2 T-type voltage-gated calcium channel expression in soma of dorsal root ganglion neurons and peripheral axons of rat and mouse

    PubMed Central

    Rose, Kirstin E.; Lunardi, Nadia; Boscolo, Annalisa; Dong, Xinzhong; Erisir, Alev; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M.

    2013-01-01

    Previous behavioural studies have revealed that CaV3.2 T-type calcium channels support peripheral nociceptive transmission and electrophysiological studies have established the presence of T-currents in putative nociceptive sensory neurons of dorsal root ganglion (DRG). To date, however, the localization pattern of this key nociceptive channel in the soma and peripheral axons of these cells has not been demonstrated due to lack of isoform-selective anti-CaV3.2 antibodies. In the present study a new polyclonal CaV3.2 antibody is used to localize CaV3.2 expression in rodent DRG neurons using different staining techniques including confocal and electron microscopy. Confocal microscopy of both acutely dissociated cells and short-term cultures demonstrated strong immunofluorescence of anti-CaV3.2 antibody that was largely confined to smaller diameter DRG neurons where it co-localized with established immuno-markers of unmyelinated nociceptors, such as, CGRP, IB4 and peripherin. In contrast, a smaller proportion of these CaV3.2-labeled DRG cells also co-expressed NF-200, a marker of myelinated sensory neurons. In the rat sciatic nerve preparation, confocal microscopy demonstrated anti-CaV3.2 immunofluorescence which was co-localized with both peripherin and NF-200. Further, electron microscopy revealed immuno-gold labelling of CaV3.2 preferentially in association with un-myelinated sensory fibres from mouse sciatic nerve. Finally, we demonstrated the expression of CaV3.2 channels in peripheral nerve endings of mouse hindpaw skin as shown by co-localisation with Mrgpd-GFP-positive fibres. The CaV3.2 expression within the soma and peripheral axons of nociceptive sensory neurons further demonstrates the importance of this channel in peripheral pain transmission. PMID:23867767

  13. Unconventional myosin ID is expressed in myelinating oligodendrocytes.

    PubMed

    Yamazaki, Reiji; Ishibashi, Tomoko; Baba, Hiroko; Yamaguchi, Yoshihide

    2014-10-01

    Myelin is a dynamic multilamellar structure that ensheathes axons and is crucial for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes that wrap many layers of plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we found that myosin ID (Myo1d), a class I myosin, is enriched in the rat CNS myelin fraction. Myo1d is an unconventional myosin and has been shown to be involved in membrane trafficking in the recycling pathway in an epithelial cell line. Western blotting revealed that Myo1d expression begins early in myelinogenesis and continues to increase into adulthood. The localization of Myo1d in CNS myelin has not been reported, and the function of Myo1d in vivo remains unknown. To demonstrate the expression of Myo1d in CNS myelin and to begin to explore the function of Myo1d in myelination, we produced a new antibody against Myo1d that has a high titer and specificity for rat Myo1d. By using this antibody, we demonstrated that Myo1d is expressed in rat CNS myelin and is especially abundant in abaxonal and adaxonal regions (the outer and inner cytoplasm-containing loops, respectively), but that expression is low in peripheral nervous system myelin. In culture, Myo1d was expressed in mature rat oligodendrocytes. Furthermore, an increase in expression of Myo1d during maturation of CNS white matter (cerebellum and corpus callosum) was demonstrated by histological analysis. These results suggest that Myo1d may be involved in the formation and/or maintenance of CNS myelin. © 2014 Wiley Periodicals, Inc.

  14. DDIT4/REDD1/RTP801 Is a Novel Negative Regulator of Schwann Cell Myelination

    PubMed Central

    Noseda, Roberta; Belin, Sophie; Piguet, Françoise; Vaccari, Ilaria; Scarlino, Stefania; Brambilla, Paola; Boneschi, Filippo Martinelli; Feltri, Maria Laura; Wrabetz, Lawrence; Quattrini, Angelo; Feinstein, Elena; Huganir, Richard L.

    2013-01-01

    Signals that promote myelination must be tightly modulated to adjust myelin thickness to the axonal diameter. In the peripheral nervous system, axonal neuregulin 1 type III promotes myelination by activating erbB2/B3 receptors and the PI3K/AKT/mTOR pathway in Schwann cells. Conversely, PTEN (phosphatase and tensin homolog on chromosome 10) dephosphorylates PtdIns(3,4,5)P3 and negatively regulates the AKT pathway and myelination. Recently, the DLG1/SAP97 scaffolding protein was described to interact with PTEN to enhance PIP3 dephosphorylation. Here we now report that nerves from mice with conditional inactivation of Dlg1 in Schwann cells display only a transient increase in myelin thickness during development, suggesting that DLG1 is a transient negative regulator of myelination. Instead, we identified DDIT4/RTP801/REDD1 as a sustained negative modulator of myelination. We show that DDIT4 is expressed in Schwann cells and its maximum expression level precedes the peak of AKT activation and of DLG1 activity in peripheral nerves. Moreover, loss of DDIT4 expression both in vitro and in vivo in Ddit4-null mice provokes sustained hypermyelination and enhanced mTORC1 activation, thus suggesting that this molecule is a novel negative regulator of PNS myelination. PMID:24048858

  15. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon.

    PubMed

    Ylera, Bhavna; Ertürk, Ali; Hellal, Farida; Nadrigny, Fabien; Hurtado, Andres; Tahirovic, Sabina; Oudega, Martin; Kirchhoff, Frank; Bradke, Frank

    2009-06-09

    Several experimental manipulations result in axonal regeneration in the central nervous system (CNS) when applied before or at the time of injury but not when initiated after a delay, which would be clinically more relevant. As centrally injured neurons show signs of atrophy and degeneration, it raises the question whether chronically injured neurons are able to regenerate. To address this question, we used adult rodent primary sensory neurons that regenerate their central axon when their peripheral axon is cut (called conditioning) beforehand but not afterwards. We found that primary sensory neurons express regeneration-associated genes and efficiently regrow their axon in cell culture two months after a central lesion upon conditioning. Moreover, conditioning enables central axons to regenerate through a fresh lesion independent of a previous central lesion. Using in vivo imaging we demonstrated that conditioned neurons rapidly regrow their axons through a fresh central lesion. Finally, when single sensory axons were cut with a two-photon laser, they robustly regenerate within days after attaining growth competence through conditioning. We conclude that sensory neurons can acquire the intrinsic potential to regenerate their axons months after a CNS lesion, which they implement in the absence of traumatic tissue.

  16. Exposure of rats to a high but not low dose of ethanol during early postnatal life increases the rate of loss of optic nerve axons and decreases the rate of myelination

    PubMed Central

    HARRIS, SIMON J.; WILCE, PETER; BEDI, KULDIP S.

    2000-01-01

    Visual system abnormalities are commonly encountered in the fetal alcohol syndrome although the level of exposure at which they become manifest is uncertain. In this study we have examined the effects of either low (ETLD) or high dose (ETHD) ethanol, given between postnatal days 4–9, on the axons of the rat optic nerve. Rats were exposed to ethanol vapour in a special chamber for a period of 3 h per day during the treatment period. The blood alcohol concentration in the ETLD animals averaged ∼ 171 mg/dl and in the ETHD animals ∼ 430 mg/dl at the end of the treatment on any given day. Groups of 10 and 30-d-old mother-reared control (MRC), separation control (SC), ETLD and ETHD rats were anaesthetised with an intraperitoneal injection of ketamine and xylazine, and killed by intracardiac perfusion with phosphate-buffered glutaraldehyde. In the 10-d-old rat optic nerves there was a total of ∼ 145000–165000 axons in MRC, SC and ETLD animals. About 4% of these fibres were myelinated. The differences between these groups were not statistically significant. However, the 10-d-old ETHD animals had only about 75000 optic nerve axons (P < 0.05) of which about 2.8% were myelinated. By 30 d of age there was a total of between 75000–90000 optic nerve axons, irrespective of the group examined. The proportion of axons which were myelinated at this age was still significantly lower (P < 0.001) in the ETHD animals (∼ 77%) than in the other groups (about 98%). It is concluded that the normal stages of development and maturation of the rat optic nerve axons, as assessed in this study, can be severely compromised by exposure to a relatively high (but not low) dose of ethanol between postnatal d 4 and 9. PMID:11117631

  17. Involvement of both sodium influx and potassium efflux in ciguatoxin-induced nodal swelling of frog myelinated axons.

    PubMed

    Mattei, César; Molgó, Jordi; Benoit, Evelyne

    2014-10-01

    Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment.

  18. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury.

    PubMed

    Krajnak, Kristine; Raju, Sandya G; Miller, G Roger; Johnson, Claud; Waugh, Stacey; Kashon, Michael L; Riley, Danny A

    2016-01-01

    Repeated exposure to hand-transmitted vibration through the use of powered hand tools may result in pain and progressive reductions in tactile sensitivity. The goal of the present study was to use an established animal model of vibration-induced injury to characterize changes in sensory nerve function and cellular mechanisms associated with these alterations. Sensory nerve function was assessed weekly using the current perception threshold test and tail-flick analgesia test in male Sprague-Dawley rats exposed to 28 d of tail vibration. After 28 d of exposure, Aβ fiber sensitivity was reduced. This reduction in sensitivity was partly attributed to structural disruption of myelin. In addition, the decrease in sensitivity was also associated with a reduction in myelin basic protein and 2',3'- cyclic nucleotide phosphodiasterase (CNPase) staining in tail nerves, and an increase in circulating calcitonin gene-related peptide (CGRP) concentrations. Changes in Aβ fiber sensitivity and CGRP concentrations may serve as early markers of vibration-induced injury in peripheral nerves. It is conceivable that these markers may be utilized to monitor sensorineural alterations in workers exposed to vibration to potentially prevent additional injury.

  19. Mutation analysis of the nerve specific promoter of the peripheral myelin protein 22 gene in CMT1 disease and HNPP.

    PubMed

    Nelis, E; De Jonghe, P; De Vriendt, E; Patel, P I; Martin, J J; Van Broeckhoven, C

    1998-07-01

    We analysed the nerve specific promoter of the peripheral myelin protein 22 gene (PMP22) in a set of 15 unrelated patients with Charcot-Marie-Tooth type 1 disease (CMT1) and 16 unrelated patients with hereditary neuropathy with liability to pressure palsies (HNPP). In these patients no duplication/deletion nor a mutation in the coding region of the CMT1/ HNPP genes was detected. In one autosomal dominant CMT1 patient, we identified a base change in the non-coding exon 1A of PMP22 which, however, did not cosegregate with the disease in the family. This study indicates that mutations in the nerve specific PMP22 promoter and 5' untranslated exon will not be a common genetic cause of CMT1A and HNPP.

  20. Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation.

    PubMed

    Cai, Jie; Peng, Xuejun; Nelson, Kevin D; Eberhart, Robert; Smith, George M

    2005-11-01

    Successful peripheral nerve regeneration is still limited in artificial conduits, especially for long lesion gaps. In this study, porous poly(L-lactide-co-DL-lactide, 75:25) (PLA) conduits were manufactured with 16 poly(L-lactide) (PLLA) microfilaments aligned inside the lumen. Fourteen and 18 mm lesion gaps were created in a rat sciatic nerve lesion model. To evaluate the combined effect of permeable PLA conduits and microfilament bundles on axon growth, four types of implants were tested for each lesion gap: PLA conduits with 16 filaments; PLA conduits without filaments; silicone conduits with 16 filaments; and silicone conduits without filaments. Ten weeks following implantation, regeneration within the distal nerve was compared between corresponding groups. Antibodies against the markers S100, calcitonin gene related peptide (CGRP), RMDO95, and P0 were used to identify Schwann cells, unmyelinated axons, myelinated axons, and myelin, respectively. Results demonstrated that the filament scaffold enhanced tissue cable formation and Schwann cell migration in all groups. The filament scaffold enhanced axonal regeneration toward the distal stump, especially across long lesion gaps, but significance was only achieved with PLA conduits. When compared to corresponding silicone conduits, permeable PLA conduits enhanced myelinated axon regeneration across both lesion gaps and achieved significance only in combination with filament scaffolds. Myelin staining indicated PLA conduits supported axon myelination with better myelin quantity and quality when compared to silicone conduits.

  1. Novel roles for osteopontin and clusterin in peripheral motor and sensory axon regeneration.

    PubMed

    Wright, Megan C; Mi, Ruifa; Connor, Emmalynn; Reed, Nicole; Vyas, Alka; Alspalter, Manula; Coppola, Giovanni; Geschwind, Daniel H; Brushart, Thomas M; Höke, Ahmet

    2014-01-29

    Previous studies demonstrated that Schwann cells (SCs) express distinct motor and sensory phenotypes, which impact the ability of these pathways to selectively support regenerating neurons. In the present study, unbiased microarray analysis was used to examine differential gene expression in denervated motor and sensory pathways in rats. Several genes that were significantly upregulated in either denervated sensory or motor pathways were identified and two secreted factors were selected for further analysis: osteopontin (OPN) and clusterin (CLU) which were upregulated in denervated motor and sensory pathways, respectively. Sciatic nerve transection induced upregulation of OPN and CLU and expression of both returned to baseline levels with ensuing regeneration. In vitro analysis using exogenously applied OPN induced outgrowth of motor but not sensory neurons. CLU, however, induced outgrowth of sensory neurons, but not motor neurons. To assess the functional importance of OPN and CLU, peripheral nerve regeneration was examined in OPN and CLU(-/-) mice. When compared with OPN(+/+) mice, motor neuron regeneration was reduced in OPN(-/-) mice. Impaired regeneration through OPN(-/-) peripheral nerves grafted into OPN(+/+) mice indicated that loss of OPN in SCs was responsible for reduced motor regeneration. Sensory neuron regeneration was impaired in CLU(-/-) mice following sciatic nerve crush and impaired regeneration nerve fibers through CLU(-/-) nerve grafts transplanted into CLU(+/+) mice indicated that reduced sensory regeneration is likely due to SC-derived CLU. Together, these studies suggest unique roles for SC-derived OPN and CLU in regeneration of peripheral motor and sensory axons.

  2. Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA.

    PubMed

    Martinez-Moreno, Margot; O'Shea, Timothy Mark; Zepecki, John P; Olaru, Alexander; Ness, Jennifer K; Langer, Robert; Tapinos, Nikos

    2017-08-22

    Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA). During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG) cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS) biology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish

    PubMed Central

    Xiao, Yan; Faucherre, Adèle; Pola-Morell, Laura; Heddleston, John M.; Liu, Tsung-Li; Chew, Teng-Leong; Sato, Fuminori; Sehara-Fujisawa, Atsuko; Kawakami, Koichi; López-Schier, Hernán

    2015-01-01

    ABSTRACT Neural damage is a devastating outcome of physical trauma. The glia are one of the main effectors of neuronal repair in the nervous system, but the dynamic interactions between peripheral neurons and Schwann cells during injury and regeneration remain incompletely characterized. Here, we combine laser microsurgery, genetic analysis, high-resolution intravital imaging and lattice light-sheet microscopy to study the interaction between Schwann cells and sensory neurons in a zebrafish model of neurotrauma. We found that chronic denervation by neuronal ablation leads to Schwann-cell death, whereas acute denervation by axonal severing does not affect the overall complexity and architecture of the glia. Neuronal-circuit regeneration begins when Schwann cells extend bridging processes to close the injury gap. Regenerating axons grow faster and directionally after the physiological clearing of distal debris by the Schwann cells. This might facilitate circuit repair by ensuring that axons are guided through unoccupied spaces within bands of Büngner towards their original peripheral target. Accordingly, in the absence of Schwann cells, regenerating axons are misrouted, impairing the re-innervation of sensory organs. Our results indicate that regenerating axons use haptotaxis as a directional cue during the reconstitution of a neural circuit. These findings have implications for therapies aimed at neurorepair, which will benefit from preserving the architecture of the peripheral glia during periods of denervation. PMID:26035865

  4. YAP/TAZ initiate and maintain Schwann cell myelination.

    PubMed

    Grove, Matthew; Kim, Hyukmin; Santerre, Maryline; Krupka, Alexander J; Han, Seung Baek; Zhai, Jinbin; Cho, Jennifer Y; Park, Raehee; Harris, Michele; Kim, Seonhee; Sawaya, Bassel E; Kang, Shin H; Barbe, Mary F; Cho, Seo-Hee; Lemay, Michel A; Son, Young-Jin

    2017-01-26

    Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue.

  5. YAP/TAZ initiate and maintain Schwann cell myelination

    PubMed Central

    Grove, Matthew; Kim, Hyukmin; Santerre, Maryline; Krupka, Alexander J; Han, Seung Baek; Zhai, Jinbin; Cho, Jennifer Y; Park, Raehee; Harris, Michele; Kim, Seonhee; Sawaya, Bassel E; Kang, Shin H; Barbe, Mary F; Cho, Seo-Hee; Lemay, Michel A; Son, Young-Jin

    2017-01-01

    Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue. DOI: http://dx.doi.org/10.7554/eLife.20982.001 PMID:28124973

  6. GSK249320, A Monoclonal Antibody Against the Axon Outgrowth Inhibition Molecule Myelin-Associated Glycoprotein, Improves Outcome of Rodents with Experimental Stroke

    PubMed Central

    Cash, Diana; Easton, Alanna C.; Mesquita, Michel; Beech, John; Williams, Steve; Lloyd, Andrew; Irving, Elaine; Cramer, Steven C.

    2016-01-01

    Myelin-associated glycoprotein (MAG) is an inhibitor of axon growth. MAG levels increase after stroke. GSK249320 is a monoclonal antibody that neutralizes MAG-mediated inhibition and so may promote axon outgrowth and improve post-stroke outcomes. The current study tested the hypothesis that GSK249320 initiated 24 hours or 7 days after experimental stroke improves behavioural outcomes. Rats with right middle cerebral artery occlusion for 90 minutes were randomized to receive 6 weeks of intravenous (a) GSK249320 starting 24 hours post-stroke, (b) GSK249320 starting 7 days post-stroke, or (c) vehicle. Behavioral testing was performed over 7 weeks. Serial MRI demonstrated no differences in infarct volume across groups. Animals treated with GSK249320 24 hours post-stroke showed larger increases in Neuroscore (time X group, p = 0.0008) and staircase test (main effect of group, p = 0.0214) as compared to controls, but animals treated 7 days post-stroke showed no significant behavioral benefit. No significant results were found for the sticky tape or cylinder tests. A separate set of animals with experimental stroke received a single intravenous dose of GSK249320 or vehicle at 1 hour, 24 hours, 48 hours or 1 week post-stroke, and immunohistochemistry methods were used to measure GSK249320 distribution; GSK249320 was found in the ipsilesional hemisphere only, the extent of which increased with later times of injection. These data suggest that intravenous GSK249320 penetrates the lesion site and is associated with a small effect on functional outcomes when initiated 24 hours post-stroke and so support the translational potential of this monoclonal antibody as a restorative therapy for patients with stroke. PMID:28018988

  7. Sustained Growth Factor Delivery Promotes Axonal Regeneration in Long Gap Peripheral Nerve Repair

    PubMed Central

    Kokai, Lauren E.; Bourbeau, Dennis; Weber, Douglas; McAtee, Jedidiah

    2011-01-01

    The aim of this study was to evaluate the long-term effect of localized growth factor delivery on sciatic nerve regeneration in a critical-size (>1 cm) peripheral nerve defect. Previous work has demonstrated that bioactive proteins can be encapsulated within double-walled, poly(lactic-co-glycolic acid)/poly(lactide) microspheres and embedded within walls of biodegradable polymer nerve guides composed of poly(caprolactone). Within this study, nerve guides containing glial cell line-derived neurotrophic factor (GDNF) were used to bridge a 1.5-cm defect in the male Lewis rat for a 16-week period. Nerve repair was evaluated through functional assessment of joint angle range of motion using video gait kinematics, gastrocnemius twitch force, and gastrocnemius wet weight. Histological evaluation of nerve repair included assessment of Schwann cell and neurofilament location with immunohistochemistry, evaluation of tissue integration and organization throughout the lumen of the regenerated nerve with Masson's trichrome stain, and quantification of axon fiber density and g-ratio. Results from this study showed that the measured gastrocnemius twitch force in animals treated with GDNF was significantly higher than negative controls and was not significantly different from the isograft-positive control group. Histological assessment of explanted conduits after 16 weeks showed improved tissue integration within GDNF releasing nerve guides compared to negative controls. Nerve fibers were present across the entire length of GDNF releasing guides, whereas nerve fibers were not detectable beyond the middle region of negative control guides. Therefore, our results support the use of GDNF for improved functional recovery above negative controls following large axonal defects in the peripheral nervous system. PMID:21189072

  8. Myelin protein zero and its antibody in serum as biomarkers of n-hexane-induced peripheral neuropathy and neurotoxicity effects.

    PubMed

    Jia, Xiaowei; Liu, Qingjun; Zhang, Yanshu; Dai, Yufei; Duan, Huawei; Bin, Ping; Niu, Yong; Liu, Jie; Zhong, Liuzhen; Guo, Jisheng; Liu, Xiaofeng; Zheng, Yuxin

    2014-01-01

    Chronic exposure to n-hexane can lead to peripheral neuropathy that no effective treatment regimen could be applied presently. This study investigated whether myelin protein zero (P0) protein and its antibody could be used to distinguish n-hexane intoxication and protect workers from peripheral neuropathy. We compared P0 protein and its antibody among three levels of n-hexane-exposed groups, which included 18 patients with n-hexane-induced peripheral neuropathy as case group, 120 n-hexane-exposed workers as n-hexaneexposed control group, and 147 non-hexane-exposed participants used as control group. ELISA method was applied to detect P0 protein and its antibody. P0 protein in serum was significantly higher in the case group and n-hexane-exposed control group in comparison with the control group (P < 0.01). Compared with the n-hexane-exposed control group, the case group also had significant increase of P0 protein (P < 0.01). After 6 months therapy, P0 protein was observed to decrease significantly in the case group (P < 0.01). The P0 antibody in serum was significantly higher in the n-hexane-exposed control group than in the control group (P < 0.01), but not significantly different between cases and controls. P0 antibodies in serum may be a short-term effect biomarker for n-hexane exposure. P0 protein in serum may be an early effective biomarker for peripheral nerve neuropathy and its biological limit value needs investigation in the future study.

  9. Enhanced axon outgrowth and improved long-distance axon regeneration in sprouty2 deficient mice.

    PubMed

    Marvaldi, Letizia; Thongrong, Sitthisak; Kozłowska, Anna; Irschick, Regina; Pritz, Christian O; Bäumer, Bastian; Ronchi, Giulia; Geuna, Stefano; Hausott, Barbara; Klimaschewski, Lars

    2015-03-01

    Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo. Neurons dissociated from adult Spry2 deficient sensory ganglia revealed stronger extracellular signal-regulated kinase activation and enhanced axon outgrowth. Prominent axon elongation was observed in heterozygous Spry2(+/-) neuron cultures, whereas homozygous Spry2(-/-) neurons predominantly exhibited a branching phenotype. Following sciatic nerve crush, Spry2(+/-) mice recovered faster in motor but not sensory testing paradigms (Spry2(-/-) mice did not tolerate anesthesia required for nerve surgery). We attribute the improvement in the rotarod test to higher numbers of myelinated fibers in the regenerating sciatic nerve, higher densities of motor endplates in hind limb muscles and increased levels of GAP-43 mRNA, a downstream target of extracellular regulated kinase signaling. Conversely, homozygous Spry2(-/-) mice revealed enhanced mechanosensory function (von Frey's test) that was accompanied by an increased innervation of the epidermis, elevated numbers of nonmyelinated axons and more IB4-positive neurons in dorsal root ganglia. The present results corroborate the functional significance of receptor tyrosine kinase signaling inhibitors for axon outgrowth during development and nerve regeneration and propose Spry2 as a novel potential target for pharmacological inhibition to accelerate long-distance axon regeneration in injured peripheral nerves.

  10. Peripheral Nerve Injuries and Transplantation of Olfactory Ensheathing Cells for Axonal Regeneration and Remyelination: Fact or Fiction?

    PubMed Central

    Radtke, Christine; Kocsis, Jeffery D.

    2012-01-01

    Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs) have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration. PMID:23202929

  11. Neurotrophin-4/5 is implicated in the enhancement of axon regeneration produced by treadmill training following peripheral nerve injury

    PubMed Central

    English, Arthur W.; Cucoranu, Delia; Mulligan, Amanda; Rodriguez, José A.; Sabatier, Manning J.

    2011-01-01

    The role of neurotrophin-4/5 in the enhancement of axon regeneration in peripheral nerves produced by treadmill training was studied in mice. Common fibular nerves of animals of the H strain of thy-1-YFP mice, in which a subset of axons in peripheral nerves is marked by the presence of yellow fluorescent protein, were cut and surgically repaired using nerve grafts from non-fluorescent mice. Lengths of profiles of fluorescent regenerating axons were measured using optical sections made through whole mounts of harvested nerves. Measurements from mice that had undergone one hour of daily treadmill training at modest speed (10 m/min) were compared to those of untrained (control) mice. Modest treadmill training resulted in fluorescent axon profiles that were nearly twice as long as controls at one, two and four week survival times. Similar enhanced regeneration was found when cut nerves of wild type mice were repaired with grafts from neurotrophin-4/5 knockout mice or grafts made acellular by repeated freezing/thawing. No enhancement was produced by treadmill training in neurotrophin-4/5 knockout mice, irrespective of the nature of the graft used to repair the cut nerve. Much as had been observed previously for the effects of brief electrical stimulation, the effects of treadmill training on axon regeneration in cut peripheral nerves are independent of changes produced in the distal segment of the cut nerve and depend on the promotion of axon regeneration by changes in NT-4/5 expression by cells in the proximal nerve segment. PMID:21623957

  12. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve

    PubMed Central

    Barzan, Ruxandra; Pfeiffer, Friederike; Kukley, Maria

    2016-01-01

    In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na+ and K+ channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca2+ ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca2+ channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca2+ elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca2+ indicator Oregon Green BAPTA-1, and 2-photon Ca2+ imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca2+ concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca2+ transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca2+ imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca2+ transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca2+ entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca2+ may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS). PMID:27313508

  13. Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model.

    PubMed

    Koulaxouzidis, Georgios; Reim, Gernot; Witzel, Christian

    2015-07-01

    Microsurgical suturing is the gold standard of nerve coaptation. Although literature on the usefulness of fibrin glue as an alternative is becoming increasingly available, it remains contradictory. Furthermore, no data exist on how both repair methods might influence the morphological aspects (arborization; branching) of early peripheral nerve regeneration. We used the sciatic nerve transplantation model in thy-1 yellow fluorescent protein mice (YFP; n = 10). Pieces of nerve (1cm) were grafted from YFP-negative mice (n = 10) into those expressing YFP. We performed microsuture coaptations on one side and used fibrin glue for repair on the contralateral side. Seven days after grafting, the regeneration distance, the percentage of regenerating and arborizing axons, the number of branches per axon, the coaptation failure rate, the gap size at the repair site and the time needed for surgical repair were all investigated. Fibrin glue repair resulted in regenerating axons travelling further into the distal nerve. It also increased the percentage of arborizing axons. No coaptation failure was detected. Gap sizes were comparable in both groups. Fibrin glue significantly reduced surgical repair time. The increase in regeneration distance, even after the short period of time, is in line with the results of others that showed faster axonal regeneration after fibrin glue repair. The increase in arborizing axons could be another explanation for better functional and electrophysiological results after fibrin glue repair. Fibrin glue nerve coaptation seems to be a promising alternative to microsuture repair.

  14. What Is the Optimal Value of the g-Ratio for Myelinated Fibers in the Rat CNS? A Theoretical Approach

    PubMed Central

    Chomiak, Taylor; Hu, Bin

    2009-01-01

    Background The biological process underlying axonal myelination is complex and often prone to injury and disease. The ratio of the inner axonal diameter to the total outer diameter or g-ratio is widely utilized as a functional and structural index of optimal axonal myelination. Based on the speed of fiber conduction, Rushton was the first to derive a theoretical estimate of the optimal g-ratio of 0.6 [1]. This theoretical limit nicely explains the experimental data for myelinated axons obtained for some peripheral fibers but appears significantly lower than that found for CNS fibers. This is, however, hardly surprising given that in the CNS, axonal myelination must achieve multiple goals including reducing conduction delays, promoting conduction fidelity, lowering energy costs, and saving space. Methodology/Principal Findings In this study we explore the notion that a balanced set-point can be achieved at a functional level as the micro-structure of individual axons becomes optimized, particularly for the central system where axons tend to be smaller and their myelin sheath thinner. We used an intuitive yet novel theoretical approach based on the fundamental biophysical properties describing axonal structure and function to show that an optimal g-ratio can be defined for the central nervous system (≈0.77). Furthermore, by reducing the influence of volume constraints on structural design by about 40%, this approach can also predict the g-ratio observed in some peripheral fibers (≈0.6). Conclusions/Significance These results support the notion of optimization theory in nervous system design and construction and may also help explain why the central and peripheral systems have evolved different g-ratios as a result of volume constraints. PMID:19915661

  15. A co-culture microtunnel technique demonstrating a significant contribution of unmyelinated Schwann cells to the acceleration of axonal conduction in Schwann cell-regulated peripheral nerve development.

    PubMed

    Sakai, Koji; Shimba, Kenta; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2017-08-14

    Schwann cells (SCs) contribute to the regulation of axonal conduction in a myelin-dependent and -independent manner. However, due to the lack of investigative techniques that are able to record axonal conduction under conditions that control the proliferation of specific SC types, little is known about the extent to which myelinated SCs (mSCs) and unmyelinated SCs (umSCs) modulate axonal conduction. In this study, a microtunnel-electrode approach was applied to a neuron/SC co-culture technique. Rat dorsal root ganglion neurons and SCs were co-cultured in a microtunnel-electrode device, which enabled recording of the conduction delay in multiple axons passing through microtunnels. Despite the absence of nuclei in the microtunnel when SCs were eliminated, cultured cells were densely packed and expressed S100 beta (an SC marker) at a rate of 96% in neuron/SC co-culture, indicating that SCs migrated into the microtunnel. In addition, supplementation with ascorbic acid after 6 days in vitro (DIV) successfully induced myelination from 22 DIV. Activity recording experiments indicated that the conduction delay decreased with culture length from 17 DIV in the neuron/SC co-culture but not in neuron monoculture. Interestingly, the SC-modulated shortening of conduction delay was attenuated at 17 DIV and 22 DIV by supplementing the culture medium with ascorbic acid and, at the same time, suppressing SC proliferation, suggesting that immature umSCs increased axonal conduction velocity in a cell density-dependent manner before the onset of myelination. These results suggest that this method is an effective tool for investigating the contributions of mSCs or umSCs to the regulation of axonal conduction.

  16. Myelination and node of Ranvier formation on sensory neurons in a defined in vitro system.

    PubMed

    Rumsey, John W; McAleer, Christopher; Das, Mainak; Bhalkikar, Abhijeet; Wilson, Kerry; Stancescu, Maria; Lambert, Stephen; Hickman, James J

    2013-09-01

    One of the most important developmental modifications of the nervous system is Schwann cell myelination of axons. Schwann cells ensheath axons to create myelin segments to provide protection to the axon as well as increase the conduction of action potentials. In vitro neuronal systems provide a unique modality to study a variety of factors influencing myelination as well as diseases associated with myelin sheath degradation. This work details the development of a patterned in vitro myelinating dorsal root ganglion culture. This defined system utilized a serum-free medium in combination with a patterned substrate, utilizing the cytophobic and cytophilic molecules (poly)ethylene glycol (PEG) and N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), respectively. Directional outgrowth of the neurites and subsequent myelination was controlled by surface modifications, and conformity to the pattern was measured over the duration of the experiments. The myelinated segments and nodal proteins were visualized and quantified using confocal microscopy. This tissue-engineered system provides a highly controlled, reproducible model for studying Schwann cell interactions with sensory neurons, as well as the myelination process, and its effect on neuronal plasticity and peripheral nerve regeneration. It is also compatible for use in bio-hybrid constructs to reproduce the stretch reflex arc on a chip because the media combination used is the same that we have used previously for motoneurons, muscle, and for neuromuscular junction (NMJ) formation. This work could have application for the study of demyelinating diseases such as diabetes induced peripheral neuropathy and could rapidly translate to a role in the discovery of drugs promoting enhanced peripheral nervous system (PNS) remyelination.

  17. Myelination and node of Ranvier formation on sensory neurons in a defined in vitro system

    PubMed Central

    Das, Mainak; Bhalkikar, Abhijeet; Wilson, Kerry; Stancescu, Maria; Lambert, Stephen; Hickman, James J.

    2016-01-01

    One of the most important developmental modifications of the nervous system is Schwann cell myelination of axons. Schwann cells ensheath axons to create myelin segments to provide protection to the axon as well as increase the conduction of action potentials. In vitro neuronal systems provide a unique modality to study a variety of factors influencing myelination as well as diseases associated with myelin sheath degradation. This work details the development of a patterned in vitro myelinating dorsal root ganglion culture. This defined system utilized a serum-free medium in combination with a patterned substrate, utilizing the cytophobic and cytophilic molecules (poly)ethylene glycol (PEG) and N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), respectively. Directional outgrowth of the neurites and subsequent myelination was controlled by surface modifications, and conformity to the pattern was measured over the duration of the experiments. The myelinated segments and nodal proteins were visualized and quantified using confocal microscopy. This tissue-engineered system provides a highly controlled, reproducible model for studying Schwann cell interactions with sensory neurons, as well as the myelination process, and its effect on neuronal plasticity and peripheral nerve regeneration. It is also compatible for use in bio-hybrid constructs to reproduce the stretch reflex arc on a chip because the media combination used is the same we have used previously for motoneurons, muscle and for neuromuscular junction (NMJ) formation. This work could have application for the study of demyelinating diseases such as diabetes induced peripheral neuropathy and could rapidly translate to a role in the discovery of drugs promoting enhanced peripheral nervous system (PNS) remyelination. PMID:23949775

  18. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    PubMed

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  19. Schwann cell myelination requires integration of laminin activities.

    PubMed

    McKee, Karen K; Yang, Dong-Hua; Patel, Rajesh; Chen, Zu-Lin; Strickland, Sidney; Takagi, Junichi; Sekiguchi, Kiyotoshi; Yurchenco, Peter D

    2012-10-01

    Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination.

  20. Schwann cell myelination requires integration of laminin activities

    PubMed Central

    McKee, Karen K.; Yang, Dong-Hua; Patel, Rajesh; Chen, Zu-Lin; Strickland, Sidney; Takagi, Junichi; Sekiguchi, Kiyotoshi; Yurchenco, Peter D.

    2012-01-01

    Summary Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination. PMID:22767514

  1. Sphingomyelin as a myelin biomarker in CSF of acquired demyelinating neuropathies.

    PubMed

    Capodivento, Giovanna; Visigalli, Davide; Garnero, Martina; Fancellu, Roberto; Ferrara, Michela Demetra; Basit, Abdul; Hamid, Zeeshan; Pastore, Vito Paolo; Garibaldi, Silvano; Armirotti, Andrea; Mancardi, Gianluigi; Serrati, Carlo; Capello, Elisabetta; Schenone, Angelo; Nobbio, Lucilla

    2017-08-10

    Fast, accurate and reliable methods to quantify the amount of myelin still lack, both in humans and experimental models. The overall objective of the present study was to demonstrate that sphingomyelin (SM) in the cerebrospinal fluid (CSF) of patients affected by demyelinating neuropathies is a myelin biomarker. We found that SM levels mirror both peripheral myelination during development and small myelin rearrangements in experimental models. As in acquired demyelinating peripheral neuropathies myelin breakdown occurs, SM amount in the CSF of these patients might detect the myelin loss. Indeed, quantification of SM in 262 neurological patients showed a significant increase in patients with peripheral demyelination (p = 3.81 * 10 - 8) compared to subjects affected by non-demyelinating disorders. Interestingly, SM alone was able to distinguish demyelinating from axonal neuropathies and differs from the principal CSF indexes, confirming the novelty of this potential CSF index. In conclusion, SM is a specific and sensitive biomarker to monitor myelin pathology in the CSF of peripheral neuropathies. Most importantly, SM assay is simple, fast, inexpensive, and promising to be used in clinical practice and drug development.

  2. Morphological Analysis of Drosophila Larval Peripheral Sensory Neuron Dendrites and Axons Using Genetic Mosaics

    PubMed Central

    Karim, M. Rezaul; Moore, Adrian W.

    2011-01-01

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)1. They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation2-10. The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology11-13 because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator14-16. The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses14,16-20. Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)21. These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field7,22,23. Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping7,22,23, as well as the wiring of a

  3. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    PubMed

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as

  4. The Peripheral Neuropathy-Linked Trembler and Trembler-J Mutant Forms of Peripheral Myelin Protein 22 are Folding-Destabilized†

    PubMed Central

    Myers, Jeffrey K.; Mobley, Charles K.; Sanders, Charles R.

    2008-01-01

    Dominant mutations in the tetraspan membrane protein peripheral myelin protein 22 (PMP22) are known to result in peripheral neuropathies such as Charcot-Marie-Tooth Type 1A (CMT1A) disease via mechanisms that appear to be closely linked to misfolding of PMP22 in the membrane of the endoplasmic reticulum (ER). To characterize the molecular defects in PMP22, we examined the structure and folding stability of two human disease mutant forms of PMP22 that are also the basis for mouse models of peripheral neuropathies: G150D (Trembler phenotype), and L16P (Trembler-J phenotype). Circular dichroism and NMR spectroscopic studies indicated that, when folded, the 3-D structures of these disease-linked mutants are similar to the folded wild type protein. However, the folded forms of the mutants were observed to be destabilized relative to the wild type protein, with the L16P mutant being particularly unstable. The rate of refolding from an unfolded state was observed to be very slow for the wild type protein, and no refolding was observed for either mutant. These results lead to the hypothesis that ER quality control recognizes the G150D and L16P mutant forms of PMP22 as defective through mechanisms closely related to their conformational instability and/or slow folding. It was also seen that wild type PMP22 binds Zn(II) and Cu(II) with micromolar affinity, a property that may be important to the stability and function of this protein. Zn(II) was able to rescue the stability defect of the Tr mutant. PMID:18795802

  5. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  6. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  7. An experimental study of retrograde axonal plasmatic flow in the peripheral nerves of rats.

    PubMed

    Sanguinetti, C; Tranquilli Leali, P; Grispigni, C

    1986-12-01

    Retrograde axonal flow (R.A.F.) in the sciatic nerve of Sprague Dowley rats was studied by injecting horseradish peroxidase (H.R.P.) peripherally and identifying its appearance in the related segment of the spinal cord. This called for a precise identification of the vertebro-medullary topography, the afferant root levels of the sciatic nerve, and the transport velocity of the H.R.P. Our study revealed a clear difference of neuromuscular end plate permeability as between new-born and adult animals. The vertebral column of the rat consists of 8 cervical metameres, 13 dorsal, 6 lumbar, 4 sacral, and 3 coccygeal. The sciatic nerve is derived principally from the roots L4, L5, L6 and in part from L3 and S1. The injection of H.R.P. in the sural triceps of the new-born rat produced granules in the anterior horn cells as early as 12 hours later. In similar experiments with adult rats H.R.P. in the motorneurons was never detected. In our experimental model the transport velocity of H.R.P. from the point of injection to the anterior horn cells was approximately 68 mm per day. These findings provide a foundation on which to base future studies of retrograde flows in conditions of induced pathology.

  8. The history of myelin.

    PubMed

    Boullerne, Anne Isabelle

    2016-09-01

    Andreas Vesalius is attributed the discovery of white matter in the 16th century but van Leeuwenhoek is arguably the first to have observed myelinated fibers in 1717. A globular myelin theory followed, claiming all elements of the nervous system except for Fontana's primitive cylinder with outer sheath in 1781. Remak's axon revolution in 1836 relegated myelin to the unknown. Ehrenberg described nerve tubes with double borders in 1833, and Schwann with nuclei in 1839, but the medullary sheath acquired its name of myelin, coined by Virchow, only in 1854. Thanks to Schultze's osmium specific staining in 1865, myelin designates the structure known today. The origin of myelin though was baffling. Only after Ranvier discovered a periodic segmentation, which came to us as nodes of Ranvier, did he venture suggesting in 1872 that the nerve internode was a fatty cell secreting myelin in cytoplasm. Ranvier's hypothesis was met with high skepticism, because nobody could see the cytoplasm, and the term Schwann cell very slowly emerged into the vocabulary with von Lenhossék in 1895. When Cajal finally admitted the concept of Schwann cell internode in 1912, he still firmly believed myelin was secreted by the axon. Del Río-Hortega re-discovered oligodendrocytes in 1919 (after Robertson in 1899) and named them oligodendroglia in 1921, thereby antagonizing Cajal for discovering a second cell type in his invisible third element. Penfield had to come to del Río-Hortega's rescue in 1924 for oligodendrocytes to be accepted. They jointly hypothesized myelin could be made by oligodendrocytes, considered the central equivalent of Schwann cells. Meanwhile myelin birefringence properties observed by Klebs in 1865 then Schmidt in 1924 confirmed its high fatty content, ascertained by biochemistry by Thudichum in 1884. The 20th century saw X-ray diffraction developed by Schmitt, who discovered in 1935 the crystal-like organization of this most peculiar structure, and devised the g

  9. The history of myelin

    PubMed Central

    Boullerne, Anne Isabelle

    2016-01-01

    Andreas Vesalius is attributed the discovery of white matter in the 16th century but van Leeuwenhoek is arguably the first to have observed myelinated fibers in 1717. A globular myelin theory followed, claiming all elements of the nervous system except for Fontana’s primitive cylinder with outer sheath in 1781. Remak’s axon revolution in 1836 relegated myelin to the unknown. Ehrenberg described nerve tubes with double borders in 1833, and Schwann with nuclei in 1839, but the medullary sheath acquired its name of myelin, coined by Virchow, only in 1854. Thanks to Schultze’s osmium specific staining in 1865, myelin designates the structure known today. The origin of myelin though was baffling. Only after Ranvier discovered a periodic segmentation, which came to us as nodes of Ranvier, did he venture suggesting in 1872 that the nerve internode was a fatty cell secreting myelin in cytoplasm. Ranvier’s hypothesis was met with high skepticism, because nobody could see the cytoplasm, and the term Schwann cell very slowly emerged into the vocabulary with von Lenhossék in 1895. When Cajal finally admitted the concept of Schwann cell internode in 1912, he still firmly believed myelin was secreted by the axon. Del Río-Hortega re-discovered oligodendrocytes in 1919 (after Robertson in 1899) and named them oligodendroglia in 1921, thereby antagonizing Cajal for discovering a second cell type in his invisible third element. Penfield had to come to del Río-Hortega’s rescue in 1924 for oligodendrocytes to be accepted. They jointly hypothesized myelin could be made by oligodendrocytes, considered the central equivalent of Schwann cells. Meanwhile myelin birefringence properties observed by Klebs in 1865 then Schmidt in 1924 confirmed its high fatty content, ascertained by biochemistry by Thudichum in 1884. The 20th century saw X-ray diffraction developed by Schmitt, who discovered in 1935 the crystal-like organization of this most peculiar structure, and devised the g

  10. Epitope diversity of N-glycans from bovine peripheral myelin glycoprotein P0 revealed by mass spectrometry and nano probe magic angle spinning 1H NMR spectroscopy.

    PubMed

    Gallego, R G; Blanco, J L; Thijssen-van Zuylen, C W; Gotfredsen, C H; Voshol, H; Duus, J Ø; Schachner, M; Vliegenthart, J F

    2001-08-17

    The carbohydrate structures present on the glycoproteins in the central and peripheral nerve systems are essential in many cell adhesion processes. The P0 glycoprotein, expressed by myelinating Schwann cells, plays an important role during the formation and maintenance of myelin, and it is the most abundant constituent of myelin. Using monoclonal antibodies, the homophilic binding of the P0 glycoprotein was shown to be mediated via the human natural keller cell (HNK)-1 epitope (3-O-SO(3)H-GlcUA(beta1-3)Gal(beta1-4)GlcNAc) present on the N-glycans. We recently described the structure of the N-glycan carrying the HNK-1 epitope, present on bovine peripheral myelin P0 (Voshol, H., van Zuylen, C. W. E. M., Orberger, G., Vliegenthart, J. F. G., and Schachner, M. (1996) J. Biol. Chem. 271, 22957-22960). In this study, we report on the structural characterization of the detectable glycoforms, present on the single N-glycosylation site, using state-of-the-art NMR and mass spectrometry techniques. Even though all structures belong to the hybrid- or biantennary complex-type structures, the variety of epitopes is remarkable. In addition to the 3-O-sulfate present on the HNK-1-carrying structures, most of the glycans contain a 6-O-sulfated N-acetylglucosamine residue. This indicates the activity of a 6-O-sulfo-GlcNAc-transferase, which has not been described before in peripheral nervous tissue. The presence of the disialo-, galactosyl-, and 6-O-sulfosialyl-Lewis X epitopes provides evidence for glycosyltransferase activities not detected until now. The finding of such an epitope diversity triggers questions related to their function and whether events, previously attributed merely to the HNK-1 epitope, could be mediated by the structures described here.

  11. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    SciTech Connect

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-28

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  12. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    NASA Astrophysics Data System (ADS)

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-01

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  13. Immunocytochemical Localization of Monoamine Oxidase Type B in Rat's Peripheral Nervous System.

    PubMed

    Chen, Qiang; Xu, Yang; Zhang, Hui; Tan, Xiao; Liu, Shu Hui; Yan, Fen

    2015-11-01

    Immunohistochemistry is used to investigate subcellular localization of monoamine oxidase type B (MAOB) in the axon of the rat's peripheral nervous system. Through light and electron microscopy, the presence of MAOB-immunoreactive structures in the propria lamina of tongue and on the outer membranes of mitochondria in both myelinated and unmyelinated axons can be detected. As a result, MAOB may potentially play a crucial role in the axons of the rat's peripheral nervous system and may be closely associated with both axonal transport and nerve conduction.

  14. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    PubMed

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  15. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    PubMed Central

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  16. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration

    PubMed Central

    Sellers, Drew L.; Bergen, Jamie M.; Johnson, Russell N.; Back, Heidi; Ravits, John M.; Horner, Philip J.; Pun, Suzie H.

    2016-01-01

    A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics. PMID:26888285

  17. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration.

    PubMed

    Sellers, Drew L; Bergen, Jamie M; Johnson, Russell N; Back, Heidi; Ravits, John M; Horner, Philip J; Pun, Suzie H

    2016-03-01

    A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics.

  18. Overexpression of GAP-43 in thalamic projection neurons of transgenic mice does not enable them to regenerate axons through peripheral nerve grafts.

    PubMed

    Mason, M R; Campbell, G; Caroni, P; Anderson, P N; Lieberman, A R

    2000-09-01

    It is well established that some populations of neurons of the adult rat central nervous system (CNS) will regenerate axons into a peripheral nerve implant, but others, including most thalamocortical projection neurons, will not. The ability to regenerate axons may depend on whether neurons can express growth-related genes such as GAP-43, whose expression correlates with axon growth during development and with competence to regenerate. Thalamic projection neurons which fail to regenerate into a graft also fail to upregulate GAP-43. We have tested the hypothesis that the absence of strong GAP-43 expression by the thalamic projection neurons prevents them from regenerating their axons, using transgenic mice which overexpress GAP-43. Transgene expression was mapped by in situ hybridization with a digoxigenin-labeled RNA probe and by immunohistochemistry with a monoclonal antibody against the GAP-43 protein produced by the transgene. Many CNS neurons were found to express the mRNA and protein, including neurons of the mediodorsal and ventromedial thalamic nuclei, which rarely regenerate axons into peripheral nerve grafts. Grafts were implanted into the region of these nuclei in the brains of transgenic animals. Although these neurons strongly expressed the transgene mRNA and protein and transported the protein to their axon terminals, they did not regenerate axons into the graft, suggesting that lack of GAP-43 expression is not the only factor preventing thalamocortical neurons regenerating their axons. Copyright 2000 Academic Press.

  19. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve

    PubMed Central

    2016-01-01

    The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs) are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase). The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections) show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding epineurium

  20. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration.

    PubMed

    Seijffers, Rhona; Mills, Charles D; Woolf, Clifford J

    2007-07-25

    Peripheral axons of dorsal root ganglion (DRG) neurons, but not their central axons in the dorsal columns, regenerate after injury. However, if the neurons are conditioned by a peripheral nerve injury into an actively growing state, the rate of peripheral axonal growth is accelerated and the injured central axons begin to regenerate. The growth-promoting effects of conditioning injuries have two components, increased axonal growth and a reduced response to inhibitory myelin cues. We have examined which transcription factors activated by peripheral axonal injury may mediate the conditioning effect by regulating expression of effectors that increase the intrinsic growth state of the neurons. Activating transcription factor 3 (ATF3) is a prime candidate because it is induced in all injured DRG neurons after peripheral, but not central, axonal damage. To investigate if ATF3 promotes regeneration, we generated transgenic mice that constitutively express this transcription factor in non-injured adult DRG neurons. The rate of peripheral nerve regeneration was enhanced in the transgenic mice to an extent comparable to that produced by a preconditioning nerve injury. The expression of some growth-associated genes, such as SPRR1A, but not others like GAP-43, was increased in the non-injured neurons. ATF3 increased DRG neurite elongation when cultured on permissive substrates but did not overcome the inhibitory effects of myelin or promote central axonal regeneration in the spinal cord in vivo. We conclude that ATF3 contributes to nerve regeneration by increasing the intrinsic growth state of injured neurons.

  1. Efferent axons in the avian auditory nerve.

    PubMed

    Köppl, C

    2001-05-01

    The sensory hair cells of the inner ear receive both afferent and efferent innervation. The efferent supply to the auditory organ has evolved in birds and mammals into a separate complex system, with several types of neurons of largely unknown function. In this study, the efferent axons in four different species of birds (chicken, starling, barn owl and emu) were examined anatomically. Total numbers of efferents supplying the cochlear duct (auditory basilar papilla and the vestibular lagenar macula) were determined; separate estimates of the efferents to the lagenar macula only were also derived and subtracted. The numbers for auditory efferents thus varied between 120 (chicken) and 1068 (barn owl). Considering the much larger numbers of hair cells in the basilar papilla, each efferent is predicted to branch extensively. However, pronounced species-specific differences as well as regional differences along the tonotopic gradient of the basilar papilla were documented. Myelinated and unmyelinated axons were found, with mean diameters of about 1 microm and about 0.5 microm, respectively. This suggests two basic populations of efferents, however, they did not appear to be distinguished sharply. Evidence is presented that some efferents lose their myelination at the transition from central oligodendrocyte to peripheral Schwann cell myelin. Finally, a comparison of the four bird species evaluated suggests that the efferent population with smaller, unmyelinated axons is the phylogenetically more primitive one. A new population probably arose in parallel with the evolution and differentiation of the specialized hair-cell type it innervates, the short hair cell.

  2. Promoting Myelination in an In Vitro Mouse Model of the Peripheral Nerve System: The Effect of Wine Ingredients

    PubMed Central

    Stettner, Mark; Wolffram, Kathleen; Mausberg, Anne K.; Albrecht, Philipp; Derksen, Angelika; Methner, Axel; Dehmel, Thomas; Hartung, Hans-Peter; Dietrich, Helmut; Kieseier, Bernd C.

    2013-01-01

    Protective properties of moderate wine consumption against cancers, cardiovascular, metabolic and degenerative diseases have been reported in various clinical studies. Here, we analysed the effect of red wine (RW) and white wine (WW) on myelination using an in vitro embryonic co-culture mouse model. The total amount of myelin was found to be significantly increased after RW and WW treatment, while only RW significantly increased the number of internodes. Both types of wine increased rat Schwann cell- (rSC) expression of the NAD+-dependent deacetylase sirtuin-two-homolog 2 (Sirt2), a protein known to be involved in myelination. Detailed chemical analysis of RW revealed a broad spectrum of anthocyanins, piceids, and phenolics, including resveratrol (RSV). In our assay system RSV in low concentrations induced myelination. Furthermore RSV raised intracellular glutathione concentrations in rSCs and in co-cultures and therefore augmented antioxidant capacity. We conclude that wine promotes myelination in a rodent in vitro model by controlling intracellular metabolism and SC plasticity. During this process, RSV exhibits protective properties; however, the fostering effect on myelinaton during exposure to wine appears to be a complex interaction of various compounds. PMID:23762469

  3. Neurofilament gene expression: a major determinant of axonal caliber

    SciTech Connect

    Hoffman, P.N.; Cleveland, D.W.; Griffin, J.W.; Landes, P.W.; Cowan, N.J.; Price, D.L.

    1987-05-01

    Within the wide spectrum of axonal diameters occurring in mammalian nerve fibers, each class of neurons has a relatively restricted range of axonal calibers. The control of caliber has functional significance because diameter is the principal determinant of conduction velocity in myelinated nerve fibers. Previous observations support the hypothesis that neurofilaments (NF) are major intrinsic determinants of axonal caliber in large myelinated nerve fibers. Following interruption of axons (axotomy) by crushing or cutting a peripheral nerve, caliber is reduced in the proximal axonal stumps, which extend from the cell bodies to the site of axotomy. This reduction in axonal caliber in the proximal stumps is associated with a selective diminution in the amount of NF protein undergoing slow axonal transport in these axons, with a decrease in axonal NF content, and with reduced conduction velocity. The present report demonstrates that changes in axonal caliber after axotomy correlate with a selective alteration in NF gene expression. Hybridization with specific cDNAs was used to measure levels of mRNA encoding the 68-kDa neurofilament protein (NF68), ..beta..-tubulin, and actin in lumbar sensory neurons of rat at various times after crushing the sciatic nerve. Between 4 and 42 days after axotomy by nerve crush, the levels of NF68 mRNA were reduced 2- to 3-fold. At the same times, the levels of tubulin and actin mRNAs were increased several-fold. These findings support the hypothesis that the expression of a single set of neuron-specific genes (encoding NF) directly determines axonal caliber, a feature neuronal morphology with important consequences for physiology and behavior.

  4. Exogenous BDNF enhances the integration of chronically injured axons that regenerate through a peripheral nerve grafted into a chondroitinase-treated spinal cord injury site.

    PubMed

    Tom, Veronica J; Sandrow-Feinberg, Harra R; Miller, Kassi; Domitrovich, Cheryl; Bouyer, Julien; Zhukareva, Victoria; Klaw, Michelle C; Lemay, Michel A; Houlé, John D

    2013-01-01

    Although axons lose some of their intrinsic capacity for growth after their developmental period, some axons retain the potential for regrowth after injury. When provided with a growth-promoting substrate such as a peripheral nerve graft (PNG), severed axons regenerate into and through the graft; however, they stop when they reach the glial scar at the distal graft-host interface that is rich with inhibitory chondroitin sulfate proteoglycans. We previously showed that treatment of a spinal cord injury site with chondroitinase (ChABC) allows axons within the graft to traverse the scar and reinnervate spinal cord, where they form functional synapses. While this improvement in outgrowth was significant, it still represented only a small percentage (<20%) of axons compared to the total number of axons that regenerated into the PNG. Here we tested whether providing exogenous brain-derived neurotrophic factor (BDNF) via lentivirus in tissue distal to the PNG would augment regeneration beyond a ChABC-treated glial interface. We found that ChABC treatment alone promoted axonal regeneration but combining ChABC with BDNF-lentivirus did not increase the number of axons that regenerated back into spinal cord. Combining BDNF with ChABC did increase the number of spinal cord neurons that were trans-synaptically activated during electrical stimulation of the graft, as indicated by c-Fos expression, suggesting that BDNF overexpression improved the functional significance of axons that did reinnervate distal spinal cord tissue. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Exogenous BDNF enhances the integration of chronically injured axons that regenerate through a peripheral nerve grafted into a chondroitinase-treated spinal cord injury site

    PubMed Central

    Tom, Veronica J.; Sandrow-Feinberg, Harra R.; Miller, Kassi; Domitrovich, Cheryl; Bouyer, Julien; Zhukareva, Victoria; Klaw, Michelle C.; Lemay, Michel A.; Houlé, John D.

    2016-01-01

    Although axons lose some of their intrinsic capacity for growth after their developmental period, some axons retain the potential for regrowth after injury. When provided with a growth-promoting substrate such as a peripheral nerve graft (PNG), severed axons regenerate into and through the graft; however, they stop when they reach the glial scar at the distal graft-host interface that is rich with inhibitory chondroitin sulfate proteoglycans. We previously showed that treatment of a spinal cord injury site with chondroitinase (ChABC) allows axons within the graft to traverse the scar and reinnervate spinal cord, where they form functional synapses. While this improvement in outgrowth was significant, it still represented only a small percentage (<20%) of axons compared to the total number of axons that regenerated into the PNG. Here we tested whether providing exogenous brain-derived neurotrophic factor (BDNF) via lentivirus in tissue distal to the PNG would augment regeneration beyond a ChABC-treated glial interface. We found that ChABC treatment alone promoted axonal regeneration but combining ChABC with BDNF-lentivirus did not increase the number of axons that regenerated back into spinal cord. Combining BDNF with ChABC did increase the number of spinal cord neurons that were trans-synaptically activated during electrical stimulation of the graft, as indicated by c-Fos expression, suggesting that BDNF overexpression improved the functional significance of axons that did reinnervate distal spinal cord tissue. PMID:23022460

  6. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

    PubMed

    Fyffe-Maricich, Sharyl L; Schott, Alexandra; Karl, Molly; Krasno, Janet; Miller, Robert H

    2013-11-20

    Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following episodes of demyelination such as those that occur in patients with multiple sclerosis, however, the matching of myelin thickness to axon diameter fails leaving remyelinated axons with thin myelin sheaths potentially compromising function and leaving axons vulnerable to damage. How oligodendrocytes determine the appropriate thickness of myelin for an axon of defined size during repair is unknown and identifying the signals that regulate myelin thickness has obvious therapeutic implications. Here, we show that sustained activation of extracellular-regulated kinases 1 and 2 (ERK1/2) in oligodendrocyte lineage cells results in accelerated myelin repair after injury, and is sufficient for the generation of thick myelin sheaths around remyelinated axons in the adult mouse spinal cord. Our findings suggest a model where ERK1/2 MAP kinase signaling acts as a myelin thickness rheostat that instructs oligodendrocytes to generate axon-appropriate quantities of myelin.

  7. Mechanosensilla in the adult abdomen of Drosophila: engrailed and slit help to corral the peripheral sensory axons into segmental bundles.

    PubMed

    Fabre, Caroline C G; Casal, José; Lawrence, Peter A

    2010-09-01

    The abdomen of adult Drosophila bears mechanosensory bristles with axons that connect directly to the CNS, each hemisegment contributing a separate nerve bundle. Here, we alter the amount of Engrailed protein and manipulate the Hedgehog signalling pathway in clones of cells to study their effects on nerve pathfinding within the peripheral nervous system. We find that high levels of Engrailed make the epidermal cells inhospitable to bristle neurons; sensory axons that are too near these cells are either deflected or fail to extend properly or at all. We then searched for the engrailed-dependent agent responsible for these repellent properties. We found slit to be expressed in the P compartment and, using genetic mosaics, present evidence that Slit is the responsible molecule. Blocking the activity of the three Robo genes (putative receptors for Slit) with RNAi supported this hypothesis. We conclude that, during normal development, gradients of Slit protein repel axons away from compartment boundaries - in consequence, the bristles from each segment send their nerves to the CNS in separated sets.

  8. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve.

    PubMed

    Curtis, R; Scherer, S S; Somogyi, R; Adryan, K M; Ip, N Y; Zhu, Y; Lindsay, R M; DiStefano, P S

    1994-01-01

    Leukemia inhibitory factor (LIF) is a cytokine that affects the survival and differentiation of certain neuronal populations in vitro. To identify LIF-responsive neurons in the adult rat, we have demonstrated retrograde axonal transport of 125I-LIF to sensory and motor neurons. The accumulation of 125I-LIF by both cell types was significantly increased by prior sciatic nerve crush. Retrograde transport of 125I-LIF was inhibited by excess unlabeled LIF but not by related cytokines, indicating a specific receptor-mediated mechanism. Northern blot analysis revealed LIF expression in peripheral nerve that was increased in distal segments after axotomy. The correlation between LIF expression and increased retrograde transport following injury suggests that LIF plays a role in peripheral nerve regeneration.

  9. Immunoglobulins stimulate cultured Schwann cell maturation and promote their potential to induce axonal outgrowth.

    PubMed

    Tzekova, Nevena; Heinen, André; Bunk, Sebastian; Hermann, Corinna; Hartung, Hans-Peter; Reipert, Birgit; Küry, Patrick

    2015-05-29

    Schwann cells are the myelinating glial cells of the peripheral nervous system and exert important regenerative functions revealing them as central repair components of many peripheral nerve pathologies. Intravenous immunoglobulins (IVIG) are widely used to treat autoimmune and inflammatory diseases including immune-mediated neuropathies. Nevertheless, promotion of peripheral nerve regeneration is currently an unmet therapeutical goal. We therefore examined whether immunoglobulins affect glial cell homeostasis, differentiation, and Schwann cell dependent nerve regenerative processes. The responses of different primary Schwann cell culture models to IVIG were investigated: immature or differentiation competent Schwann cells, myelinating neuron/glial cocultures, and dorsal root ganglion explants. Immature or differentiating Schwann cells were used to study cellular proliferation, morphology, and gene/protein expression. Myelination rates were determined using myelinating neuron/glia cocultures, whereas axonal outgrowth was assessed using non-myelinating dorsal root ganglion explants. We found that IVIG specifically bind to Schwann cells and detected CD64 Fc receptor expression on their surface. In response to IVIG binding, Schwann cells reduced proliferation rates and accelerated growth of cellular protrusions. Furthermore, we observed that IVIG treatment transiently boosts myelin gene expression and myelination-related signaling pathways of immature cells, whereas in differentiating Schwann cells, myelin expression is enhanced on a long-term scale. Importantly, myelin gene upregulation was not detected upon application of IgG1 control antibodies. In addition, we demonstrate for the first time that Schwann cells secrete interleukin-18 upon IVIG stimulation and that this cytokine instructs these cells to promote axonal growth. We conclude that IVIG can positively influence the Schwann cell differentiation process and that it enhances their regenerative potential.

  10. Rapid alteration of thalamocortical axon morphology follows peripheral damage in the neonatal rat.

    PubMed Central

    Catalano, S M; Robertson, R T; Killackey, H P

    1995-01-01

    The effect of day of birth (postnatal day 0; P0) infraorbital nerve section on the morphology of individual thalamocortical axons in rat somatosensory cortex was examined on P3. Thalamic fibers were labeled in fixed brains with the carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, and individual photo-converted thalamocortical fibers were reconstructed. In normal animals on P3, axon arbor terminal formation within layer IV has commenced and terminal arbor width is comparable to that of a cortical "barrel." After infraorbital nerve section, the average width of thalamocortical terminal arbors is significantly greater than is the average arbor width of normal rats of the same age; however, neither the number of branches per terminal arbor nor total arbor length differs between groups. These observations suggest that the role of the periphery in guiding terminal arbor formation is exerted both very rapidly and at the level of the single thalamic axon. Further, these results indicate a close association between individual axon terminal arbor morphology and pattern formation in the rat somatosensory cortex. Images Fig. 1 PMID:7708683

  11. The effect of intraluminal contact mediated guidance signals on axonal mismatch during peripheral nerve repair.

    PubMed

    Daly, William T; Yao, Li; Abu-rub, Mohammad T; O'Connell, Claire; Zeugolis, Dimitrios I; Windebank, Anthony J; Pandit, Abhay S

    2012-10-01

    The current microsurgical gold standard for repairing long gap nerve injuries is the autograft. Autograft provides a protective environment for repair and a natural internal architecture, which is essential for regeneration. Current clinically approved hollow nerve guidance conduits allow provision of this protective environment; however they fail to provide an essential internal architecture to the regenerating nerve. In the present study both structured and unstructured intraluminal collagen fibres are investigated to assess their ability to enhance conduit mediated nerve repair. This study presents a direct comparison of both structured and unstructured fibres in vivo. The addition of intraluminal guidance structures was shown to significantly decrease axonal dispersion within the conduit and reduced axonal mismatch of distal nerve targets (p < 0.05). The intraluminal fibres were shown to be successfully incorporated into the host regenerative process, acting as a platform for Schwann cell migration and axonal regeneration. Ultimately the fibres were able to provide a platform for nerve regeneration in a long term regeneration study (16 weeks) and facilitated increased guidance of regenerating axons towards their distal nerve targets. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Peripheral myelin protein 22 gene duplication with atypical presentations: a new example of the wide spectrum of Charcot-Marie-Tooth 1A disease.

    PubMed

    Mathis, Stéphane; Corcia, Philippe; Tazir, Meriem; Camu, William; Magdelaine, Corinne; Latour, Philippe; Biberon, Julien; Guennoc, Anne-Marie; Richard, Laurence; Magy, Laurent; Funalot, Benoît; Vallat, Jean-Michel

    2014-06-01

    Charcot-Marie-Tooth type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are both autosomal-dominant disorders linked to peripheral myelin anomalies. CMT1A is associated with a Peripheral Myelin Protein 22 (PMP22) duplication, whereas HNPP is due to a PMP22 deletion on chromosome 17. In spite of this crucial difference, we report three observations of patients with the 1.4 megabase CMT1A duplication and atypical presentation (electrophysiological, clinical or pathological): a 10 year-old girl with tomaculous lesions on nerve biopsy; a 26 year-old woman with recurrent paresthesiae and block conduction on the electrophysiological study; a 46 year-old woman with transient recurrent nerve palsies mimicking HNPP. These observations highlight the wide spectrum of CMT1A and the overlap between CMT1A and HNPP (both linked to the PMP22 gene), and finally illustrate the complexity of the genotype-phenotype correlations in Charcot-Marie-Tooth diseases.

  13. Axon-glial relationships in the anterior medullary velum of the adult rat.

    PubMed

    Berry, M; Ibrahim, M; Carlile, J; Ruge, F; Duncan, A; Butt, A M

    1995-12-01

    The anterior medullary velum is a thin sheet of CNS tissue which roofs the rostral part of the IVth ventricle and contains fascicles of myelinated fibres which, in part, arise from the nucleus of the IVth cranial nerve. This study used histochemical, immunohistochemical, and intracellular dye-injection techniques to describe cellular interrelationships in the velum in whole-mounts and in sections. Rip antibody-stained whole mounts provided a unique description of both oligodendrocyte units (defined as an oligodendrocyte and the complement of myelinated internodal segments it forms), and consecutive myelin sheaths along the same axon. A broad range of unit morphologies was categorised into four arbitrary groups, according to classical criteria, which comprised small cells supporting the short, thin myelin sheaths of 15-30 small diameter axons (Type I), through intermediate types (II & III), to the largest cells forming the long, thick myelin sheaths of 1-3 large diameter axons. Rip antibody and ferric ion-ferrocyanide staining, together with intracellular dye injection, revealed oligodendrocyte process branching patterns and their mode of engagement of myelin sheaths, nodes of Ranvier, and the spatial disposition of the outer cytoplasmic rims of myelin sheaths. The latter formed a conspicuous spiral ridge on the exterior surface of myelin sheaths which connected with the paranodal loops at each heminode. Large bundles of axons decussated through the velum, the bulk of which were IVth nerve fibres which constituted the IVth nerve rootlet. The PNS/CNS transitional zone of the IVth nerve was located 0.25-0.50 mm along the root, where astrocytic end-feet defined an abrupt margin, convex towards the periphery, where the heminodes of central and peripheral myelin were apposed, and where the basal lamina tubes of the Schwann cell units were discontinued. The basal processes of ependymal cells lining the ventricular wall of the velum, passed between axon bundles before

  14. A coin-like peripheral small cell lung carcinoma associated with acute paraneoplastic axonal Guillain-Barre-like syndrome.

    PubMed

    Jung, Ioan; Gurzu, Simona; Balasa, Rodica; Motataianu, Anca; Contac, Anca Otilia; Halmaciu, Ioana; Popescu, Septimiu; Simu, Iunius

    2015-06-01

    A 65-year-old previously healthy male heavy smoker was hospitalized with a 2-week history of progressive muscle weakness in the lower and upper extremities. After 10 days of hospitalization, urinary sphincter incompetence and fecal incontinence were added and tetraparesis was established. The computer-tomography scan examination revealed a massive right hydrothorax and multifocal solid acinar structures with peripheral localization in the left lung, which suggested pulmonary cancer. Bone marrow metastases were also suspected. Based on the examination results, the final diagnosis was acute paraneoplastic axonal Guillain-Barre-like syndrome. The patient died 3 weeks after hospitalization. At autopsy, bronchopneumonia and a right hydrothorax were confirmed. Several 4 to 5-mm-sized round peripherally located white nodules were identified in the left lung, without any central tumor mass. Under microscope, a coin-shaped peripheral/subpleural small cell carcinoma was diagnosed, with generalized bone metastases. A huge thrombus in the abdominal aorta and acute pancreatitis was also seen at autopsy. This case highlights the difficulty of diagnosis of lung carcinomas and the necessity of a complex differential diagnosis of severe progressive ascending neuropathies. This is the 6th reported case of small cell lung cancer-associated acute Guillain-Barre-like syndrome and the first report about an association with a coin-like peripheral pattern.

  15. Myelin imaging compound (MIC) enhanced magnetic resonance imaging of myelination.

    PubMed

    Frullano, Luca; Zhu, Junqing; Wang, Changning; Wu, Chunying; Miller, Robert H; Wang, Yanming

    2012-01-12

    The vertebrate nervous system is characterized by myelination, a fundamental biological process that protects the axons and facilitates electric pulse transduction. Damage to myelin is considered a major effect of autoimmune diseases such as multiple sclerosis (MS). Currently, therapeutic interventions are focused on protecting myelin integrity and promoting myelin repair. These efforts need to be accompanied by an effective imaging tool that correlates the disease progression with the extent of myelination. To date, magnetic resonance imaging (MRI) is the primary imaging technique to detect brain lesions in MS. However, conventional MRI cannot differentiate demyelinated lesions from other inflammatory lesions and therefore cannot predict disease progression in MS. To address this problem, we have prepared a Gd-based contrast agent, termed MIC (myelin imaging compound), which binds to myelin with high specificity. In this work, we demonstrate that MIC exhibits a high kinetic stability toward transmetalation with promising relaxometric properties. MIC was used for in vivo imaging of myelination following intracerebroventricular infusion in the rat brain. MIC was found to distribute preferentially in highly myelinated regions and was able to detect regions of focally induced demyelination.

  16. TDP6, a brain-derived neurotrophic factor-based trkB peptide mimetic, promotes oligodendrocyte myelination.

    PubMed

    Wong, Agnes W; Giuffrida, Lauren; Wood, Rhiannon; Peckham, Haley; Gonsalvez, David; Murray, Simon S; Hughes, Richard A; Xiao, Junhua

    2014-11-01

    Brain-derived neurotrophic factor (BDNF) plays critical roles in the development and maintenance of the central (CNS) and peripheral nervous systems (PNS). BDNF exerts its biological effects via tropomyosin-related kinase B (TrkB) and the p75 neurotrophin receptor (p75NTR). We have recently identified that BDNF promotes CNS myelination via oligodendroglial TrkB receptors. In order to selectively target TrkB to promote CNS myelination, we have used a putative TrkB agonist, a small multicyclic peptide (tricyclic dimeric peptide 6, TDP6) previously described by us that structurally mimics a region of BDNF that binds TrkB. We confirmed that TDP6 acts as a TrkB agonist as it provoked autophosphorylation of TrkB and its downstream signalling effector extracellular related-kinase 1 and 2 (Erk1/2) in primary oligodendrocytes. Using an in vitro myelination assay, we show that TDP6 significantly promotes myelination by oligodendrocytes in vitro, as evidenced by enhanced myelin protein expression and an increased number of myelinated axonal segments. In contrast, a second, structurally distinct BDNF mimetic (cyclo-dPAKKR) that targets p75NTR had no effect upon oligodendrocyte myelination in vitro, despite the fact that cyclo-dPAKKR is a very effective promoter of peripheral (Schwann cell) myelination. The selectivity of TDP6 was further verified by using TrkB-deficient oligodendrocytes, in which TDP6 failed to promote myelination, indicating that the pro-myelinating effect of TDP6 is oligodendroglial TrkB-dependent. Together, our results demonstrate that TDP6 is a novel BDNF mimetic that promotes oligodendrocyte myelination in vitro via targeting TrkB.

  17. Induction of paranodal myelin detachment and sodium channel loss in vivo by Campylobacter jejuni DNA-binding protein from starved cells (C-Dps) in myelinated nerve fibers.

    PubMed

    Piao, Hua; Minohara, Motozumi; Kawamura, Nobutoshi; Li, Wei; Mizunoe, Yoshimitsu; Umehara, Fujio; Goto, Yoshinobu; Kusunoki, Susumu; Matsushita, Takuya; Ikenaka, Kazuhiro; Maejima, Takashi; Nabekura, Jun-ichi; Yamasaki, Ryo; Kira, Jun-ichi

    2010-01-15

    In an axonal variant of Guillain-Barré syndrome (GBS) associated with Campylobacter jejuni (C. jejuni) enteritis, the mechanism underlying axonal damage is obscure. We purified and characterized a DNA-binding protein from starved cells derived from C. jejuni (C-Dps). This C-Dps protein has significant homology with Helicobacter pylori neutrophil-activating protein (HP-NAP), which is chemotactic for human neutrophils through binding to sulfatide. Because sulfatide is essential for paranodal junction formation and for the maintenance of ion channels on myelinated axons, we examined the in vivo effects of C-Dps. First, we found that C-Dps specifically binds to sulfatide by ELISA and immunostaining of thin-layer chromatograms loaded with various glycolipids. Double immunostaining of peripheral nerves exposed to C-Dps with anti-sulfatide antibody and anti-C-Dps antibody revealed co-localization of them. When C-Dps was injected into rat sciatic nerves, it densely bound to the outermost parts of the myelin sheath and nodes of Ranvier. Injection of C-Dps rapidly induced paranodal myelin detachment and axonal degeneration; this was not seen following injection of PBS or heat-denatured C-Dps. Electron microscopically, C-Dps-injected nerves showed vesiculation of the myelin sheath at the nodes of Ranvier. Nerve conduction studies disclosed a significant reduction in compound muscle action potential amplitudes in C-Dps-injected nerves compared with pre-injection values, but not in PBS-, heat-denatured C-Dps-, or BSA-injected nerves. However, C-Dps did not directly affect Na(+) currents in dissociated hippocampal neurons. Finally, when C-Dps was intrathecally infused into rats, it was deposited in a scattered pattern in the cauda equina, especially in the outer part of the myelin sheath and the nodal region. In C-Dps-infused rats, but not in BSA-infused ones, a decrease in the number of sodium channels, vesiculation of the myelin sheath, axonal degeneration and infiltration of

  18. Different effects of astrocytes and Schwann cells on regenerating retinal axons.

    PubMed

    Campbell, Gregor; Kitching, Juliet; Anderson, Patrick N; Lieberman, A Robert

    2003-11-14

    Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.

  19. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration.

    PubMed

    Landowski, Lila M; Pavez, Macarena; Brown, Lachlan S; Gasperini, Robert; Taylor, Bruce V; West, Adrian K; Foa, Lisa

    2016-01-15

    The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system.

  20. Platelet-derived growth factor delays oligodendrocyte differentiation and axonal myelination in vivo in the anterior medullary velum of the developing rat.

    PubMed

    Butt, A M; Hornby, M F; Kirvell, S; Berry, M

    1997-06-15

    The AA dimeric form of platelet-derived growth factor (PDGF-AA) is implicated in the differentiation of cells of the oligodendrocyte lineage, which express PDGF receptors of the alpha subunit type (PDGF-alphaR). In the present study, we show that a single injection of PDGF-AA into the cerebrospinal fluid of neonatal rats delays oligodendrocyte differentiation and interrupts the progress of myelination in the anterior medullary velum (AMV), a white matter tract roofing the IVth ventricle of the brain. PDGF-AA or saline was injected intrathecally in postnatal day (P) 7 rats, and the AMV was subsequently removed and immunolabelled with the oligodendrocyte-specific antibody Rip, at P9, P12, and P21, corresponding to postinjection days (PID) 2, 5, and 14. At P9 (PID2), myelination was retarded in PDGF-AA-treated rats as opposed to saline-treated controls but progressed rapidly after P12 (PID5). Quantification supported the qualitative observations that PDGF-AA mediated an acute decrease in the number of Rip+ oligodendrocytes at P9-12, which largely recovered by P21, suggesting that PDGF-AA may have delayed recruitment of myelinating oligodendrocytes. However, the definitive number of Rip+ oligodendrocytes in the AMV was not increased, suggesting that its action as a promoter of early oligodendrocyte survival may not ultimately affect the definitive number of myelinating oliogdendrocytes in vivo. We discuss the possibilities that excess PDGF-AA may have acted on early oligodendrocytes (precursors or preoligodendrocytes) to either (1) delay their differentiation by maintaining them in the cell cycle or (2) accelerate their differentiation, which may result in premature cell death in the absence of synchronised survival signals. This study supports a role for PDGF-AA in the timing of oligodendrocyte differentiation in vivo, as has been shown in vitro.

  1. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering—A Comparison between Wild-Type Protein and a Hinge Mutant

    PubMed Central

    Laulumaa, Saara; Nieminen, Tuomo; Lehtimäki, Mari; Aggarwal, Shweta; Simons, Mikael; Koza, Michael M.; Vattulainen, Ilpo; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations. PMID:26068118

  2. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    NASA Astrophysics Data System (ADS)

    Stoyanova, Irina I.; van Wezel, Richard J. A.; Rutten, Wim L. C.

    2013-12-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.

  3. Exploring the role of nerve growth factor in multiple sclerosis: implications in myelin repair.

    PubMed

    Acosta, C M R; Cortes, C; MacPhee, H; Namaka, M P

    2013-12-01

    Multiple sclerosis (MS) is a chronic disease resulting from targeted destruction of central nervous system (CNS) myelin. MS is suggested to be an autoimmune disease involving the pathogenic activation of CD4(+) T cells by a foreign antigen in the peripheral blood. The activated CD4(+) T cells liberate inflammatory cytokines that facilitate the breakdown of the blood-brain barrier (BBB) promoting their passage into the CNS. Inside the CNS, CD4(+) T cells become re-activated by myelin proteins sharing a similar structure to the foreign antigen that initially triggered the immune response. The CD4(+) T cells continue to liberate inflammatory cytokines, such as tumor necrosis factor α (TNFα), which activates macrophages and antibodies responsible for the phagocytosis of myelin. Acute CNS lesions can be re-myelinated, however, the repair of chronic demyelinating lesions is limited, leading to permanent neurological deficits. Although current MS treatments reduce severity and slow disease progression, they do not directly repair damaged myelin. Henceforth, recent treatment strategies have focused on neurotrophins, such as nerve growth factor (NGF) for myelin repair. NGF promotes axonal regeneration, survival, protection and differentiation of oligodendrocytes (OGs) and facilitates migration and proliferation of oligodendrocyte precursors (OPs) to the sites of myelin damage. NGF also directly regulates key structural proteins that comprise myelin. Interestingly, NGF also induces the production of brain-derived neurotrophic factor (BDNF), another integral neurotrophin involved in myelination. The intricate signaling between neurotrophins and cytokines that governs myelin repair supports the role of NGF as a leading therapeutic candidate in white matter disorders, such as MS.

  4. Long-term characterization of axon regeneration and matrix changes using multiple channel bridges for spinal cord regeneration.

    PubMed

    Tuinstra, Hannah M; Margul, Daniel J; Goodman, Ashley G; Boehler, Ryan M; Holland, Samantha J; Zelivyanskaya, Marina L; Cummings, Brian J; Anderson, Aileen J; Shea, Lonnie D

    2014-03-01

    Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited available therapies. The host response to SCI is typified by limited endogenous repair, and biomaterial bridges offer the potential to alter the microenvironment to promote regeneration. Porous multiple channel bridges implanted into the injury provide stability to limit secondary damage and support cell infiltration that limits cavity formation. At the same time, the channels provide a path that physically directs axon growth across the injury. Using a rat spinal cord hemisection injury model, we investigated the dynamics of axon growth, myelination, and scar formation within and around the bridge in vivo for 6 months, at which time the bridge has fully degraded. Axons grew into and through the channels, and the density increased overtime, resulting in the greatest axon density at 6 months postimplantation, despite complete degradation of the bridge by that time point. Furthermore, the persistence of these axons contrasts with reports of axonal dieback in other models and is consistent with axon stability resulting from some degree of connectivity. Immunostaining of axons revealed both motor and sensory origins of the axons found in the channels of the bridge. Extensive myelination was observed throughout the bridge at 6 months, with centrally located and peripheral channels seemingly myelinated by oligodendrocytes and Schwann cells, respectively. Chondroitin sulfate proteoglycan deposition was restricted to the edges of the bridge, was greatest at 1 week, and significantly decreased by 6 weeks. The dynamics of collagen I and IV, laminin, and fibronectin deposition varied with time. These studies demonstrate that the bridge structure can support substantial long-term axon growth and myelination with limited scar formation.

  5. Long-Term Characterization of Axon Regeneration and Matrix Changes Using Multiple Channel Bridges for Spinal Cord Regeneration

    PubMed Central

    Tuinstra, Hannah M.; Margul, Daniel J.; Goodman, Ashley G.; Boehler, Ryan M.; Holland, Samantha J.; Zelivyanskaya, Marina L.; Cummings, Brian J.; Anderson, Aileen J.

    2014-01-01

    Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited available therapies. The host response to SCI is typified by limited endogenous repair, and biomaterial bridges offer the potential to alter the microenvironment to promote regeneration. Porous multiple channel bridges implanted into the injury provide stability to limit secondary damage and support cell infiltration that limits cavity formation. At the same time, the channels provide a path that physically directs axon growth across the injury. Using a rat spinal cord hemisection injury model, we investigated the dynamics of axon growth, myelination, and scar formation within and around the bridge in vivo for 6 months, at which time the bridge has fully degraded. Axons grew into and through the channels, and the density increased overtime, resulting in the greatest axon density at 6 months postimplantation, despite complete degradation of the bridge by that time point. Furthermore, the persistence of these axons contrasts with reports of axonal dieback in other models and is consistent with axon stability resulting from some degree of connectivity. Immunostaining of axons revealed both motor and sensory origins of the axons found in the channels of the bridge. Extensive myelination was observed throughout the bridge at 6 months, with centrally located and peripheral channels seemingly myelinated by oligodendrocytes and Schwann cells, respectively. Chondroitin sulfate proteoglycan deposition was restricted to the edges of the bridge, was greatest at 1 week, and significantly decreased by 6 weeks. The dynamics of collagen I and IV, laminin, and fibronectin deposition varied with time. These studies demonstrate that the bridge structure can support substantial long-term axon growth and myelination with limited scar formation. PMID:24168314

  6. Delaying the onset of treadmill exercise following peripheral nerve injury has different effects on axon regeneration and motoneuron synaptic plasticity

    PubMed Central

    Brandt, Jaclyn; Evans, Jonathan T.; Mildenhall, Taylor; Mulligan, Amanda; Konieczny, Aimee; Rose, Samuel J.

    2015-01-01

    Transection of a peripheral nerve results in withdrawal of synapses from motoneurons. Some of the withdrawn synapses are restored spontaneously, but those containing the vesicular glutamate transporter 1 (VGLUT1), and arising mainly from primary afferent neurons, are withdrawn permanently. If animals are exercised immediately after nerve injury, regeneration of the damaged axons is enhanced and no withdrawal of synapses from injured motoneurons can be detected. We investigated whether delaying the onset of exercise until after synapse withdrawal had occurred would yield similar results. In Lewis rats, the right sciatic nerve was cut and repaired. Reinnervation of the soleus muscle was monitored until a direct muscle (M) response was observed to stimulation of the tibial nerve. At that time, rats began 2 wk of daily treadmill exercise using an interval training protocol. Both M responses and electrically-evoked H reflexes were monitored weekly for an additional seven wk. Contacts made by structures containing VGLUT1 or glutamic acid decarboxylase (GAD67) with motoneurons were studied from confocal images of retrogradely labeled cells. Timing of full muscle reinnervation was similar in both delayed and immediately exercised rats. H reflex amplitude in delayed exercised rats was only half that found in immediately exercised animals. Unlike immediately exercised animals, motoneuron contacts containing VGLUT1 in delayed exercised rats were reduced significantly, relative to intact rats. The therapeutic window for application of exercise as a treatment to promote restoration of synaptic inputs onto motoneurons following peripheral nerve injury is different from that for promoting axon regeneration in the periphery. PMID:25632080

  7. A system and method to interface with multiple groups of axons in several fascicles of peripheral nerves.

    PubMed

    Thota, Anil K; Kuntaegowdanahalli, Sathyakumar; Starosciak, Amy K; Abbas, James J; Orbay, Jorge; Horch, Kenneth W; Jung, Ranu

    2015-04-15

    Several neural interface technologies that stimulate and/or record from groups of axons have been developed. The longitudinal intrafascicular electrode (LIFE) is a fine wire that can provide access to a discrete population of axons within a peripheral nerve fascicle. Some applications require, or would benefit greatly from, technology that could provide access to multiple discrete sites in several fascicles. The distributed intrafascicular multi-electrode (DIME) lead was developed to deploy multiple LIFEs to several fascicles. It consists of several (e.g. six) LIFEs that are coiled and placed in a sheath for strength and durability, with a portion left uncoiled to allow insertion at distinct sites. We have also developed a multi-lead multi-electrode (MLME) management system that includes a set of sheaths and procedures for fabrication and deployment. A prototype with 3 DIME leads was fabricated and tested in a procedure in a cadaver arm. The leads were successfully routed through skin and connective tissue and the deployment procedures were utilized to insert the LIFEs into fascicles of two nerves. Most multi-electrode systems use a single-lead, multi-electrode design. For some applications, this design may be limited by the bulk of the multi-contact array and/or by the spatial distribution of the electrodes. We have designed a system that can be used to access multiple sets of discrete groups of fibers that are spatially distributed in one or more fascicles of peripheral nerves. This system may be useful for neural-enabled prostheses or other applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Delaying the onset of treadmill exercise following peripheral nerve injury has different effects on axon regeneration and motoneuron synaptic plasticity.

    PubMed

    Brandt, Jaclyn; Evans, Jonathan T; Mildenhall, Taylor; Mulligan, Amanda; Konieczny, Aimee; Rose, Samuel J; English, Arthur W

    2015-04-01

    Transection of a peripheral nerve results in withdrawal of synapses from motoneurons. Some of the withdrawn synapses are restored spontaneously, but those containing the vesicular glutamate transporter 1 (VGLUT1), and arising mainly from primary afferent neurons, are withdrawn permanently. If animals are exercised immediately after nerve injury, regeneration of the damaged axons is enhanced and no withdrawal of synapses from injured motoneurons can be detected. We investigated whether delaying the onset of exercise until after synapse withdrawal had occurred would yield similar results. In Lewis rats, the right sciatic nerve was cut and repaired. Reinnervation of the soleus muscle was monitored until a direct muscle (M) response was observed to stimulation of the tibial nerve. At that time, rats began 2 wk of daily treadmill exercise using an interval training protocol. Both M responses and electrically-evoked H reflexes were monitored weekly for an additional seven wk. Contacts made by structures containing VGLUT1 or glutamic acid decarboxylase (GAD67) with motoneurons were studied from confocal images of retrogradely labeled cells. Timing of full muscle reinnervation was similar in both delayed and immediately exercised rats. H reflex amplitude in delayed exercised rats was only half that found in immediately exercised animals. Unlike immediately exercised animals, motoneuron contacts containing VGLUT1 in delayed exercised rats were reduced significantly, relative to intact rats. The therapeutic window for application of exercise as a treatment to promote restoration of synaptic inputs onto motoneurons following peripheral nerve injury is different from that for promoting axon regeneration in the periphery. Copyright © 2015 the American Physiological Society.

  9. A system and method to interface with multiple groups of axons in several fascicles of peripheral nerves

    PubMed Central

    Thota, Anil K.; Kuntaegowdanahalli, Sathyakumar; Starosciak, Amy K.; Abbas, James J.; Orbay, Jorge; Horch, Kenneth W.; Jung, Ranu

    2014-01-01

    Background Several neural interface technologies that stimulate and/or record from groups of axons have been developed. The longitudinal intrafascicular electrode (LIFE) is a fine wire that can provide access to a discrete population of axons within a peripheral nerve fascicle. Some applications require, or would benefit greatly from, technology that could provide access to multiple discrete sites in several fascicles. New Method The distributed intrafascicular multi-electrode (DIME) lead was developed to deploy multiple LIFEs to several fascicles. It consists of several (e.g. six) LIFEs that are coiled and placed in a sheath for strength and durability, with a portion left uncoiled to allow insertion at distinct sites. We have also developed a multi-lead multi-electrode (MLME) management system that includes a set of sheaths and procedures for fabrication and deployment. Results A prototype with 3 DIME leads was fabricated and tested in a procedure in a cadaver arm. The leads were successfully routed through skin and connective tissue and the deployment procedures were utilized to insert the LIFEs into fascicles of two nerves. Comparison with Existing Method(s) Most multi-electrode systems use a single-lead, multi-electrode design. For some applications, this design may be limited by the bulk of the multi-contact array and/or by the spatial distribution of the electrodes. Conclusion We have designed a system that can be used to access multiple sets of discrete groups of fibers that are spatially distributed in one or more fascicles of peripheral nerves. This system may be useful for neural-enabled prostheses or other applications. PMID:25092497

  10. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury

    PubMed Central

    Zigmond, Richard E.

    2012-01-01

    Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the “cell body response.” The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons. PMID:22319466

  11. Molecular signaling mechanisms of axon-glia communication in the peripheral nervous system.

    PubMed

    Grigoryan, Tamara; Birchmeier, Walter

    2015-05-01

    In this article we discuss the molecular signaling mechanisms that coordinate interactions between Schwann cells and the neurons of the peripheral nervous system. Such interactions take place perpetually during development and in adulthood, and are critical for the homeostasis of the peripheral nervous system (PNS). Neurons provide essential signals to control Schwann cell functions, whereas Schwann cells promote neuronal survival and allow efficient transduction of action potentials. Deregulation of neuron-Schwann cell interactions often results in developmental abnormalities and diseases. Recent investigations have shown that during development, neuronally provided signals, such as Neuregulin, Jagged, and Wnt interact to fine-tune the Schwann cell lineage progression. In adult, the signal exchange between neurons and Schwann cells ensures proper nerve function and regeneration. Identification of the mechanisms of neuron-Schwann cell interactions is therefore essential for our understanding of the development, function and pathology of the peripheral nervous system as a whole.

  12. Motor and sensory neuropathy due to myelin infolding and paranodal damage in a transgenic mouse model of Charcot–Marie–Tooth disease type 1C

    PubMed Central

    Lee, Samuel M.; Sha, Di; Mohammed, Anum A.; Asress, Seneshaw; Glass, Jonathan D.; Chin, Lih-Shen; Li, Lian

    2013-01-01

    Charcot–Marie–Tooth disease type 1C (CMT1C) is a dominantly inherited motor and sensory neuropathy. Despite human genetic evidence linking missense mutations in SIMPLE to CMT1C, the in vivo role of CMT1C-linked SIMPLE mutations remains undetermined. To investigate the molecular mechanism underlying CMT1C pathogenesis, we generated transgenic mice expressing either wild-type or CMT1C-linked W116G human SIMPLE. Mice expressing mutant, but not wild type, SIMPLE develop a late-onset motor and sensory neuropathy that recapitulates key clinical features of CMT1C disease. SIMPLE mutant mice exhibit motor and sensory behavioral impairments accompanied by decreased motor and sensory nerve conduction velocity and reduced compound muscle action potential amplitude. This neuropathy phenotype is associated with focally infolded myelin loops that protrude into the axons at paranodal regions and near Schmidt–Lanterman incisures of peripheral nerves. We find that myelin infolding is often linked to constricted axons with signs of impaired axonal transport and to paranodal defects and abnormal organization of the node of Ranvier. Our findings support that SIMPLE mutation disrupts myelin homeostasis and causes peripheral neuropathy via a combination of toxic gain-of-function and dominant-negative mechanisms. The results from this study suggest that myelin infolding and paranodal damage may represent pathogenic precursors preceding demyelination and axonal degeneration in CMT1C patients. PMID:23359569

  13. The effects of thyroid hormones on myelination in the developing rat brain.

    PubMed

    Freundl, K; Van Wynsberghe, D M

    1978-01-01

    Rats radiothyroidectomized 1 day after birth received daily subcutaneous injections of 1 microgram/10 g body weight of thyroxine (T4) or an equimolar amount of triiodothyroacetic acid (T3AC) from day 6 through day 25. The number of myelinated axons, myelinated axon area, and area of the myelin sheath in the corpus striatum were investigated. Hypothyroid neonates demonstrated a normal number of myelinated axons with a decrease in the area of these axons. T4 treatment resulted in an increased number of smaller axons while T3AC treatment produced fewer but larger axons than the T4 treatment. The myelin area changed as the axon area changed with the myelin thickness remaining constant in all groups.

  14. Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord.

    PubMed

    Li, Y; Raisman, G

    1995-07-01

    Small, circumscribed electrolytic lesions were made in the corticospinal tract at the upper cervical level of the adult rat spinal cord. At increasing survival times, immunohistochemistry of glial fibrillary acidic protein and electron microscopy showed that the predominantly longitudinal astrocytic processes underwent a progressive hypertrophy, which spread from the lesion, increasing in intensity from 1 week and reaching a maximum at between 9.5 and 13 weeks, by which time the lesion was completely surrounded by a dense astrocytic scar. A previous study with orthograde transport of axonal tracers showed that from 2 weeks after the lesion the main axonal stems of both cut and adjacent uncut corticospinal axons had large varicosities. The swollen ends of the cut axons, and also the adjacent uncut axons, emitted extensive arborizations of sprouts directed into the central, macrophage-filled area of the lesion. The present experiments indicated that the axon sprouts persisted apparently undiminished over the period (from 9.5 to 13 weeks) when the astrocytic scarring process was reaching its maximum. Surrounding the center of the lesion was an area in which the axons had become demyelinated. By 3 weeks a few axons were remyelinated with peripheral myelin formed by Schwann cells which had migrated into the lesions. By 4 months the scar region was densely colonized by Schwann cells, which now had remyelinated a wide swath of both cut and uncut axons. The cut axons were myelinated by Schwann cells as far as their large terminal expansions, which were sheathed, but not myelinated, by satellitic Schwann cells. Thus, at survivals long enough for the formation of a dense, astrocytic scar, cut corticospinal axons retain extensive terminal and collateral arborizations even in the macrophage-filled central lesion area and are myelinated or ensheathed by endogenous Schwann cells.

  15. In vitro myelin formation using embryonic stem cells

    PubMed Central

    Kerman, Bilal E.; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S.; Fitzpatrick, James A. J.; Jappelli, Roberto; Chandross, Karen J.; August, Paul; Gage, Fred H.

    2015-01-01

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation. PMID:26015546

  16. Cholecalciferol (Vitamin D3) Improves Myelination and Recovery after Nerve Injury

    PubMed Central

    Chabas, Jean-Francois; Stephan, Delphine; Marqueste, Tanguy; Garcia, Stephane; Lavaut, Marie-Noelle; Nguyen, Catherine; Legre, Regis; Khrestchatisky, Michel

    2013-01-01

    Previously, we demonstrated i) that ergocalciferol (vitamin D2) increases axon diameter and potentiates nerve regeneration in a rat model of transected peripheral nerve and ii) that cholecalciferol (vitamin D3) improves breathing and hyper-reflexia in a rat model of paraplegia. However, before bringing this molecule to the clinic, it was of prime importance i) to assess which form – ergocalciferol versus cholecalciferol – and which dose were the most efficient and ii) to identify the molecular pathways activated by this pleiotropic molecule. The rat left peroneal nerve was cut out on a length of 10 mm and autografted in an inverted position. Animals were treated with either cholecalciferol or ergocalciferol, at the dose of 100 or 500 IU/kg/day, or excipient (Vehicle), and compared to unlesioned rats (Control). Functional recovery of hindlimb was measured weekly, during 12 weeks, using the peroneal functional index. Ventilatory, motor and sensitive responses of the regenerated axons were recorded and histological analysis was performed. In parallel, to identify the genes regulated by vitamin D in dorsal root ganglia and/or Schwann cells, we performed an in vitro transcriptome study. We observed that cholecalciferol is more efficient than ergocalciferol and, when delivered at a high dose (500 IU/kg/day), cholecalciferol induces a significant locomotor and electrophysiological recovery. We also demonstrated that cholecalciferol increases i) the number of preserved or newly formed axons in the proximal end, ii) the mean axon diameter in the distal end, and iii) neurite myelination in both distal and proximal ends. Finally, we found a modified expression of several genes involved in axogenesis and myelination, after 24 hours of vitamin supplementation. Our study is the first to demonstrate that vitamin D acts on myelination via the activation of several myelin-associated genes. It paves the way for future randomised controlled clinical trials for peripheral nerve or

  17. The Impact of Prestretch Induced Surface Anisotropy on Axon Regeneration.

    PubMed

    Liu, Chun; Pyne, Ryan; Kim, Jungsil; Wright, Neil Thomas; Baek, Seungik; Chan, Christina

    2016-01-08

    Nerve regeneration after spinal cord injury requires proper axon alignment to bridge the lesion site and myelination to achieve functional recovery. Significant effort has been invested in developing engineering approaches to induce axon alignment with less focus on myelination. Topological features, such as aligned fibers and channels, have been shown to induce axon alignment, but do not enhance axon thickness. We previously demonstrated that surface anisotropy generated through mechanical prestretch induced mesenchymal stem cells to align in the direction of prestretch. In this study, we demonstrate that static prestretch-induced anisotropy promotes dorsal root ganglion (DRG) neurons to extend thicker axon aggregates along the stretched direction and form aligned fascicular-like axon tracts. Moreover, Schwann cells, when cocultured with DRG neurons on the prestretched surface colocalized with the aligned axons and expressed P0 protein, are indicative of myelination of the aligned axons, thereby demonstrating that prestretch-induced surface anisotropy is beneficial in enhancing axon alignment, growth, and myelination.

  18. Late form of Pompe disease with glycogen storage in peripheral nerves axons.

    PubMed

    Fidziańska, Anna; Ługowska, Agnieszka; Tylki-Szymańska, Anna

    2011-02-15

    Pompe disease is caused by the deficiency of acid α-glucosidase (GAA), which degrades glycogen into glucose. Its manifestation is characterized by a broad and continuous spectrum of clinical severity ranging from severe infantile to relatively benign adult form. We describe a 12-year-old girl diagnosed at a presymptomatic stage of late form Pompe disease due to fortuitous detection of an elevated level of serum creatine kinase (CK) at the age of 4. Biopsies were taken from the quadriceps muscle and studied with histological and histochemical techniques, as well as in electron microscope. Sporadic muscle cells showed the accumulation of lysosomal glycogen, suggesting Pompe disease. Interestingly, we found lysosomal bound glycogen, located in the axons of intramuscular nerves. The diagnosis was confirmed by deficient GAA activity in leukocytes. Mutation analysis revealed changes IVS1-13T>G and p.C103G in the GAA gene. The patient was able to obtain enzyme replacement therapy in the early asymptomatic stage of the disease.

  19. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy.

    PubMed

    Viader, Andreu; Sasaki, Yo; Kim, Sungsu; Strickland, Amy; Workman, Cayce S; Yang, Kui; Gross, Richard W; Milbrandt, Jeffrey

    2013-03-06

    Mitochondrial dysfunction is a common cause of peripheral neuropathy. Much effort has been devoted to examining the role played by neuronal/axonal mitochondria, but how mitochondrial deficits in peripheral nerve glia (Schwann cells [SCs]) contribute to peripheral nerve diseases remains unclear. Here, we investigate a mouse model of peripheral neuropathy secondary to SC mitochondrial dysfunction (Tfam-SCKOs). We show that disruption of SC mitochondria activates a maladaptive integrated stress response (ISR) through the actions of heme-regulated inhibitor (HRI) kinase, and causes a shift in lipid metabolism away from fatty acid synthesis toward oxidation. These alterations in SC lipid metabolism result in depletion of important myelin lipid components as well as in accumulation of acylcarnitines (ACs), an intermediate of fatty acid β-oxidation. Importantly, we show that ACs are released from SCs and induce axonal degeneration. A maladaptive ISR as well as altered SC lipid metabolism are thus underlying pathological mechanisms in mitochondria-related peripheral neuropathies.

  20. Crystal structure of the extracellular domain of human myelin protein zero

    SciTech Connect

    Liu, Zhigang; Wang, Yong; Yedidi, Ravikiran S.; Brunzelle, Joseph S.; Kovari, Iulia A.; Sohi, Jasloveleen; Kamholz, John; Kovari, Ladislau C.

    2012-03-27

    different mutations in the MPZ gene leading to peripheral neuropathy in patients have been reported worldwide (http://www.molgen. ua.ac.be/CMTMutations). All identified mutations resulting in a change or deletion of amino acid residues in MPZ give rise to neuropathy with the exception of R215L, which instead causes a benign polymorphism. Furthermore, more detailed analysis has classified the MPZ mutations into two major groups. In the first group, the mutations disrupt the intracellular processing of MPZ and are primarily associated with early onset neuropathy. It has been proposed that the mutated MPZ is trapped inside the cell rather than being transported to the plasma membrane. However, other evidence suggests that the mutated MPZ protein is expressed on the plasma membrane, but dominant-negatively disrupts the structure of myelin. In the second group, the MPZ mutations are associated with late onset neuropathy as these mutations cause only mild demyelination. The underlying mechanism is elusive with the hypothesis being that the second group of mutations cause minor abnormalities in the myelin sheath that over time may lead to aberrant Schwann cell-axon interactions and subsequently to axonal degeneration. The crystal structure of the extracellular domain of human MPZ (hP0ex) fused with maltose binding protein (MBP) is reported at 2.1 {angstrom} resolution. While the crystal structure of rat MPZ extracellular domain (rP0ex) is available, the crystal structure of the human counterpart is useful for the analysis of the two homologs as well as a comparison between the two species. The hP0ex molecule reveals subtle structural variations between two homologs allowing comparison of the human myelin protein zero to that of the rat protein. The alignment of these homologs is shown in Figure 1(a).

  1. Remodelling of motor nerve terminals in demyelinating axons of periaxin null mutant mice

    PubMed Central

    Court, Felipe A; Brophy, Peter J; Ribchester, Richard R

    2015-01-01

    Myelin formation around axons increases nerve conduction velocity and regulates phenotypic characteristics of the myelinated axon. In the peripheral nervous system, demyelinating forms of hereditary Charcot-Marie-Tooth (CMT) diseases, due to Schwann-cell intrinsic molecular defects, leads to reduced nerve conduction velocity and changes in the axonal phenotype. Several mouse models of CMT diseases have been generated, allowing the study of consequences of demyelination in peripheral nerve fibres. Nevertheless, the effect of demyelination at the level of the neuromuscular synapse has been largely overlooked. Here we show that in the periaxin knock-out mice, a model of CMT condition, neuromuscular junctions develop profound morphological changes in pre-terminal region of motoraxons. These changes include extensive preterminal branches which originate in demyelinated regions of the nerve fibre and axonal swellings associated with residually-myelinated regions of the fibre. Using intracellular recording from muscle fibres we detected asynchronous failure of action potential transmission at high but not low stimulation frequencies, a phenomenon consistent with branch point failure. Taken together, our morphological and electrophysiological findings suggest that preterminal branching due to segmental demyelination near the neuromuscular synapse in periaxin KO mice may underlie phenotypic disabilities present in this mouse model of CMT disease. These results opens a new avenue of research in order to understand the cellular changes responsible for clinical disabilities in demyelinating conditions. PMID:18205176

  2. Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury.

    PubMed

    Curtis, R; Adryan, K M; Zhu, Y; Harkness, P J; Lindsay, R M; DiStefano, P S

    1993-09-16

    Ciliary neurotrophic factor (CNTF) promotes the survival of several populations of neurons, including sensory and motor neurons. Although CNTF is abundant in adult sciatic nerve, the mature protein lacks a signal sequence and is not secreted; therefore, it has been proposed to act as a lesion factor. The identification of a functional CNTF receptor revealed ligand-specific phosphorylation cascades and gene induction. However, it is not clear how these signal-transducing events are elicited in neuronal cell bodies that may be distant from the source of CNTF. We report here that CNTF can be retrogradely transported by adult sensory neurons. More importantly, sensory and motor neurons both show greatly increased transport of CNTF following peripheral nerve lesion. Axotomy-induced increases in retrograde transport of neurotrophic factors may be an important response of neuronal cell bodies during regeneration.

  3. Stress Increases Peripheral Axon Growth and Regeneration through Glucocorticoid Receptor-Dependent Transcriptional Programs

    PubMed Central

    Alexander, Jessica K.; Madalena, Kathryn M.; Motti, Dario; Quach, Tam; Zha, Alicia; Webster Marketon, Jeanette

    2017-01-01

    Abstract Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult DRG neurite growth increases through mechanisms involving GR-dependent gene transcription. In vivo, prior exposure to an acute systemic stress increases peripheral nerve regeneration. These data have broad clinical implications and highlight the importance of stress and GCs as novel behavioral and circulating modifiers of neuronal plasticity. PMID:28828403

  4. Stress Increases Peripheral Axon Growth and Regeneration through Glucocorticoid Receptor-Dependent Transcriptional Programs.

    PubMed

    Lerch, Jessica K; Alexander, Jessica K; Madalena, Kathryn M; Motti, Dario; Quach, Tam; Dhamija, Akhil; Zha, Alicia; Gensel, John C; Webster Marketon, Jeanette; Lemmon, Vance P; Bixby, John L; Popovich, Phillip G

    2017-01-01

    Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult DRG neurite growth increases through mechanisms involving GR-dependent gene transcription. In vivo, prior exposure to an acute systemic stress increases peripheral nerve regeneration. These data have broad clinical implications and highlight the importance of stress and GCs as novel behavioral and circulating modifiers of neuronal plasticity.

  5. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: Implications for chemotherapy-induced peripheral neuropathy

    PubMed Central

    LaPointe, Nichole E.; Morfini, Gerardo; Brady, Scott T.; Feinstein, Stuart C.; Wilson, Leslie; Jordan, Mary Ann

    2014-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a serious, painful and dose-limiting side effect of cancer drugs that target microtubules. The mechanisms underlying the neuronal damage are unknown, but may include disruption of fast axonal transport, an essential microtubule-based process that moves cellular components over long distances between neuronal cell bodies and nerve terminals. This idea is supported by the “dying back” pattern of degeneration observed in CIPN, and by the selective vulnerability of sensory neurons bearing the longest axonal projections. In this study, we test the hypothesis that microtubule-targeting drugs disrupt fast axonal transport using vesicle motility assays in isolated squid axoplasm and a cell-free microtubule gliding assay with defined components. We compare four clinically-used drugs, eribulin, vincristine, paclitaxel and ixabepilone. Of these, eribulin is associated with a relatively low incidence of severe neuropathy, while vincristine has a relatively high incidence. In vesicle motility assays, we found that all four drugs inhibited anterograde (conventional kinesin-dependent) fast axonal transport, with the potency being vincristine = ixabepilone > paclitaxel = eribulin. Interestingly, eribulin and paclitaxel did not inhibit retrograde (cytoplasmic dynein-dependent) fast axonal transport, in contrast to vincristine and ixabepilone. Similarly, vincristine and ixabepilone both exerted significant inhibitory effects in an in vitro microtubule gliding assay consisting of recombinant kinesin (kinesin-1) and microtubules composed of purified bovine brain tubulin, whereas paclitaxel and eribulin had negligible effects. Our results suggest that (i) inhibition of microtubule-based fast axonal transport may be a significant contributor to neurotoxicity induced by microtubule-targeting drugs, and (ii) that individual microtubule-targeting drugs affect fast axonal transport through different mechanisms. PMID:23711742

  6. Visualizing Peripheral Nerve Regeneration by Whole Mount Staining

    PubMed Central

    Dun, Xin-peng; Parkinson, David B.

    2015-01-01

    Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis), in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis) repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries. PMID:25738874

  7. Myelin ultrastructure of sciatic nerve in rat experimental autoimmune neuritis model and its correlation with associated protein expression

    PubMed Central

    Yuan, Xiao-Jing; Wei, Yu-Jun; Ao, Qiang; Gong, Kai; Wang, Jian-Yong; Sun, Qiang-San; Zhang, Ling; Zheng, Zun-Cheng; Chen, Lin

    2015-01-01

    To explore the relationship of peripheral nerve ultrastructure and its associated protein expression in experimental autoimmune neuritis (EAN). EAN was established in Lewis rats using an emulsified mixture of P0 peptide 180-199, Mycobacterium tuberculosis, and incomplete Freund’s adjuvant. Rats immunized with saline solution were used as a control group. Sciatic nerve ultrastructure and immunofluorescence histopathology were measured at the neuromuscular severity peak on day 18 post-induction. Cell-specific protein markers were used for immunofluorescence histopathology staining to characterize sciatic nerve cells: CD3 (T cell), Iba-1 (microglia), S100 (myelin), and neurofilament 200 (axon). The results showed that swelling of the myelin lamellae, vesicular disorganization, separation of the myelin lamellae, and an attenuation or disappearance of the axon were observed by transmission electron microscopy in the EAN group. CD3 and Iba-1 increased significantly in the structures characterized by separation or swelling of the myelin lamellae, and increased slightly in the structures characterized by vesicular of the myelin lamellae, S100 decreased in the structures characterized by vesicular disorganization or separation of the myelin lamellae. And neurofilament 200 decreased in the structures characterized by separation of the myelin lamellae. Furthermore, we found that Iba1 were positive in the myelin sheath, and overlapped with S100, which significantly indicated that Schwann cells played as macrophage-like cells during the disease progression of ENA. Our findings may be a significant supplement for the knowledge of EAN model, and may offer a novel sight on the treatment of Guillain-Barré syndrome. PMID:26339349

  8. Structure-function analysis of protein complexes involved in the molecular architecture of juxtaparanodal regions of myelinated fibers.

    PubMed

    Tzimourakas, Alexandros; Giasemi, Sevasti; Mouratidou, Maria; Karagogeos, Domna

    2007-05-01

    Demyelinating disorders, including multiple sclerosis (MS), are common causes of neurological disability. One critical step towards the management and therapy of demyelinating diseases is to understand the basic functions of myelinating glia and their relationship with axons. Axons and myelinating glia, oligodendrocytes in the central (CNS) and Schwann cells in the peripheral (PNS) nervous systems, reciprocally influence each other's development and trophism. These interactions are critical for the formation of distinct axonal domains in myelinated fibers that ensure the rapid propagation of action potentials. Macromolecular complexes mediating axo-glial interactions in these domains have been identified, consisting of members of the immunoglobulin superfamily (IgSF) of adhesion molecules and the neurexin/NCP superfamily as well as other proteins. We have investigated the molecular details of axo-glial interactions in the juxtaparanodal region of myelinated fibers by utilizing domain-specific GFP constructs and immunoprecipitation assays on transfected cells. We have shown that the immunoglobulin domains of the IgSF member TAG-1/Cnt-2 are necessary and sufficient for the direct, cis interaction of this protein with Caspr2 and potassium channels.

  9. BACE1 Processing of NRG1 Type III Produces a Myelin-Inducing Signal but Is Not Essential for the Stimulation of Myelination

    PubMed Central

    Velanac, Viktorija; Unterbarnscheidt, Tilmann; Hinrichs, Wilko; Gummert, Maike N; Fischer, Tobias M; Rossner, Moritz J; Trimarco, Amelia; Brivio, Veronica; Taveggia, Carla; Willem, Michael; Haass, Christian; Möbius, Wiebke; Nave, Klaus-Armin; Schwab, Markus H

    2012-01-01

    Myelin sheath thickness is precisely adjusted to axon caliber, and in the peripheral nervous system, neuregulin 1 (NRG1) type III is a key regulator of this process. It has been proposed that the protease BACE1 activates NRG1 dependent myelination. Here, we characterize the predicted product of BACE1-mediated NRG1 type III processing in transgenic mice. Neuronal overexpression of a NRG1 type III-variant, designed to mimic prior cleavage in the juxtamembrane stalk region, induces hypermyelination in vivo and is sufficient to restore myelination of NRG1 type III-deficient neurons. This observation implies that the NRG1 cytoplasmic domain is dispensable and that processed NRG1 type III is sufficient for all steps of myelination. Surprisingly, transgenic neuronal overexpression of full-length NRG1 type III promotes hypermyelination also in BACE1 null mutant mice. Moreover, NRG1 processing is impaired but not abolished in BACE1 null mutants. Thus, BACE1 is not essential for the activation of NRG1 type III to promote myelination. Taken together, these findings suggest that multiple neuronal proteases collectively regulate NRG1 processing. © 2011 Wiley Periodicals, Inc. PMID:22052506

  10. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    PubMed Central

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-01-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo. PMID:27538357

  11. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-08-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo.

  12. Radial Glia Inhibit Peripheral Glial Infiltration into the Spinal Cord at Motor Exit Point Transition Zones

    PubMed Central

    Smith, Cody J.; Johnson, Kimberly; Welsh, Taylor G.; Barresi, Michael J. F.; Kucenas, Sarah

    2016-01-01

    In the mature vertebrate nervous system, central and peripheral nervous system (CNS and PNS, respectively) GLIA myelinate distinct motor axon domains at the motor exit point transition zone (MEP TZ). How these cells preferentially associate with and myelinate discrete, non-overlapping CNS versus PNS axonal segments, is unknown. Using in vivo imaging and genetic cell ablation in zebrafish, we demonstrate that radial glia restrict migration of PNS glia into the spinal cord during development. Prior to development of radial glial endfeet, peripheral cells freely migrate back and forth across the MEP TZ. However, upon maturation, peripherally located cells never enter the CNS. When we ablate radial glia, peripheral glia ectopically migrate into the spinal cord during developmental stages when they would normally be restricted. These findings demonstrate that radial glia contribute to both CNS and PNS development and control the unidirectional movement of glial cell types across the MEP TZ early in development. PMID:27029762

  13. Magnetic Resonance Characterization of Axonal Response to Spinal Cord Injury

    DTIC Science & Technology

    2011-10-01

    Deaconess Medical Center, Boston, MA, United States Introduction Myelin is a lipid bilayer sheath encasing axons that enhances nerve...myelin from SC tissue using both WM and grey matter (GM). This method has been shown to preserve the bilayer structure of myelin. The myelin extract was...resolution 1H, 31P and 13C spectra of myelin extract (not shown) are consistent with the galactolipid, phospholipid , and cholesterol constituents of

  14. Effects of melatonin on peripheral nerve regeneration.

    PubMed

    Turgut, Mehmet; Kaplan, Süleyman

    2011-05-01

    In the available literature, there are thousands of studies on peripheral nerve regeneration using many nerves of several animals at different ages with various types of lesions and different methods of evaluation at certain time of follow-up. Despite many experimental data and clinical observations, there is still no ideal treatment method enhancing peripheral nerve regeneration. In clinical practice, various types of surgical nerve repair techniques do not frequently result in complete recovery due to neuroma formation, lipid peroxidative damage, ischemia and other factors. Recently, a number of neuroscientists demonstrated that pineal neurohormone melatonin (MLT) has an effect on the morphologic features of the nerve tissue, suggesting its neuroprotective, free radical scavenging, antioxidative, and analgesic effects in degenerative diseases of peripheral nerves. At present, it is widely accepted that MLT has a useful effect on axon length and sprouting after traumatic events to peripheral nerves. Our studies using various experimental injury models clearly suggest positive effects of MLT on the number of axons, thickness of myelin sheath by inhibition of collagen accumulation and neuroma formation following traumatic events to peripheral nerves, myelination of developing peripheral nerve after intrauterine ethanol exposure. Nevertheless, further experimental and randomized controlled clinical studies are vital to identify the clinical use of MLT hormone. This is an overview of recent patents and current literature in terms of the effects of MLT on peripheral nerve regeneration based on a critical analysis of electrophysiological, biochemical and light and electron microscopic findings, in addition to functional observations.

  15. NKCC1 Activation Is Required for Myelinated Sensory Neurons Regeneration through JNK-Dependent Pathway.

    PubMed

    Mòdol, Laura; Santos, Daniel; Cobianchi, Stefano; González-Pérez, Francisco; López-Alvarez, Víctor; Navarro, Xavier

    2015-05-13

    After peripheral nerve injury, axons are able to regenerate, although specific sensory reinnervation and functional recovery are usually worse for large myelinated than for small sensory axons. The mechanisms that mediate the regeneration of different sensory neuron subpopulations are poorly known. The Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) is particularly relevant in setting the intracellular chloride concentration. After axotomy, increased NKCC1 phosphorylation has been reported to be important for neurite outgrowth of sensory neurons; however, the mechanisms underlying its effects are still unknown. In the present study we used in vitro and in vivo models to assess the differential effects of blocking NKCC1 activity on the regeneration of different types of dorsal root ganglia (DRGs) neurons after sciatic nerve injury in the rat. We observed that blocking NKCC1 activity by bumetanide administration induces a selective effect on neurite outgrowth and regeneration of myelinated fibers without affecting unmyelinated DRG neurons. To further study the mechanism underlying NKCC1 effects, we also assessed the changes in mitogen-activated protein kinase (MAPK) signaling under NKCC1 modulation. The inhibition of NKCC1 activity in vitro and in vivo modified pJNK1/2/3 expression in DRG neurons. Together, our study identifies a mechanism selectively contributing to myelinated axon regeneration, and point out the role of Cl(-) modulation in DRG neuron regeneration and in the activation of MAPKs, particularly those belonging to the JNK family. Copyright © 2015 the authors 0270-6474/15/357414-14$15.00/0.

  16. Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination.

    PubMed

    Kegel, Linde; Jaegle, Martine; Driegen, Siska; Aunin, Eerik; Leslie, Kris; Fukata, Yuko; Watanabe, Masahiko; Fukata, Masaki; Meijer, Dies

    2014-04-01

    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution.

  17. Evaluation of neuroprotection by melatonin against adverse effects of prenatal exposure to a nonsteroidal anti-inflammatory drug during peripheral nerve development.

    PubMed

    Keskin, Ilknur; Kaplan, Suleyman; Kalkan, Serpil; Sutcu, Mustafa; Ulkay, M Basak; Esener, O Burak

    2015-04-01

    The potential ability of melatonin to protect against impairment of the fetal peripheral nerve system due to maternal consumption of diclofenac sodium (DS) was investigated. Eighty-four pregnant rats were divided into seven groups: control (CONT), saline administered (PS), DS administered (DS), DS with low-dose melatonin administered (DS+MLT10), DS with high-dose melatonin administered (DS+MLT50), low-dose melatonin administered (MLT10), and high-dose melatonin administered (MLT50). After the pregnancy, six male newborn rats from each group were sacrificed at 4 and 20 weeks of age. Their right sciatic nerves were harvested, and nerve fibers were evaluated using stereological techniques. Mean numbers of myelinated axons, axon cross-section areas and the mean thickness of the myelin sheet were estimated. Four-week-old prenatally DS-exposed rats had significantly fewer axons, a smaller myelinated axonal area, and a thinner myelin sheath compared to CONT group (p<0.05). Although melatonin at both doses significantly increased axon numbers, only a high dose of melatonin increased the diameter of those axons (p<0.05). At 20-weeks of age, myelinated axon number in the DS group was not only significantly lower than all other groups (p<0.05) but also the cross-sectional area of these axons was smaller than all other groups (p<0.05). There were no differences between the groups regarding the mean thickness of the myelin sheet. The current study indicates that prenatal exposure to DS decreases the number and the diameter of sciatic nerve axons and that melatonin prophylaxis can prevent these effects.

  18. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination

    PubMed Central

    Bonin, Sawyer R.; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  19. Neuron-specific enolase, but not S100B or myelin basic protein, increases in peripheral blood corresponding to lesion volume after cortical impact in piglets.

    PubMed

    Costine, Beth A; Quebeda-Clerkin, Patricia B; Dodge, Carter P; Harris, Brent T; Hillier, Simon C; Duhaime, Ann-Christine

    2012-11-20

    A peripheral indicator of the presence and magnitude of brain injury has been a sought-after tool by clinicians. We measured neuron-specific enolase (NSE), myelin basic protein (MBP), and S100B, prior to and after scaled cortical impact in immature pigs, to determine if these purported markers increase after injury, correlate with the resulting lesion volume, and if these relationships vary with maturation. Scaled cortical impact resulted in increased lesion volume with increasing age. Concentrations of NSE, but not S100B or MBP, increased after injury in all age groups. The high variability of S100B concentrations prior to injury may have precluded detection of an increase due to injury. Total serum markers were estimated, accounting for the allometric growth of blood volume, and resulted in a positive correlation of both NSE and S100B with lesion volume. Even with allometric scaling of blood volume and a uniform mechanism of injury, NSE had only a fair to poor predictive value. In a clinical setting, where the types of injuries are varied, more investigation is required to yield a panel of serum markers that can reliably predict the extent of injury. Allometric scaling may improve estimation of serum marker release in pediatric populations.

  20. Neuron-Specific Enolase, but Not S100B or Myelin Basic Protein, Increases in Peripheral Blood Corresponding to Lesion Volume after Cortical Impact in Piglets

    PubMed Central

    Quebeda-Clerkin, Patricia B.; Dodge, Carter P.; Harris, Brent T.; Hillier, Simon C.; Duhaime, Ann-Christine

    2012-01-01

    Abstract A peripheral indicator of the presence and magnitude of brain injury has been a sought-after tool by clinicians. We measured neuron-specific enolase (NSE), myelin basic protein (MBP), and S100B, prior to and after scaled cortical impact in immature pigs, to determine if these purported markers increase after injury, correlate with the resulting lesion volume, and if these relationships vary with maturation. Scaled cortical impact resulted in increased lesion volume with increasing age. Concentrations of NSE, but not S100B or MBP, increased after injury in all age groups. The high variability of S100B concentrations prior to injury may have precluded detection of an increase due to injury. Total serum markers were estimated, accounting for the allometric growth of blood volume, and resulted in a positive correlation of both NSE and S100B with lesion volume. Even with allometric scaling of blood volume and a uniform mechanism of injury, NSE had only a fair to poor predictive value. In a clinical setting, where the types of injuries are varied, more investigation is required to yield a panel of serum markers that can reliably predict the extent of injury. Allometric scaling may improve estimation of serum marker release in pediatric populations. PMID:22867012

  1. In vivo stimulation of early peripheral axon regeneration by N-propionylmannosamine in the presence of polysialyltransferase ST8SIA2.

    PubMed

    Koulaxouzidis, Georgios; Reutter, Werner; Hildebrandt, Herbert; Stark, G Björn; Witzel, Christian

    2015-09-01

    The key enzyme of sialic acid (Sia) biosynthesis is the bifunctional UDP-N-acetylglucosamine 2-epimerase/ManNAc kinase (GNE/MNK). It metabolizes the physiological precursor ManNAc and N-acyl modified analogues such as N-propionylmannosamine (ManNProp) to the respective modified sialic acid. Polysialic acid (polySia) is a crucial compound for several functions in the nervous system and is synthesized by the polysialyltransferases ST8SIA2 and ST8SIA4. PolySia can be modified in vitro and in vivo by metabolic glycoengineering of the N-acyl side chain of Sia. In vitro studies show that the application of ManNProp increases neurite outgrowth and accelerates the re-establishment of functional synapses. In this study, we investigate in vivo how ManNProp application might benefit peripheral nerve regeneration. In mice expressing axonal fluorescent proteins (thy-1-YFP), we transected the sciatic nerve and then replaced part of it with a sciatic nerve graft from non-expressing mice (wild-type mice or St8sia2(-/-) mice). Analyses conducted 5 days after grafting showed that systemic application of ManNProp (200 mg/kg, twice a day, i.p.), but not of physiological ManNAc (1 g/kg, twice a day, i.p.), significantly increased the extent of axonal elongation, the number of arborizing axons and the number of branches per regenerating axon within the grafts from wild-type mice, but not in those from St8sia2(-/-) mice. The results demonstrate that the application of ManNProp has beneficial effects on early peripheral nerve regeneration and indicate that the stimulation of axon growth depends on ST8SIA2 activity in the nerve graft.

  2. A unified cell biological perspective on axon–myelin injury

    PubMed Central

    2014-01-01

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders. PMID:25092654

  3. Delayed Nerve Stimulation Promotes Axon-Protective Neurofilament Phosphorylation, Accelerates Immune Cell Clearance and Enhances Remyelination In Vivo in Focally Demyelinated Nerves

    PubMed Central

    McLean, Nikki A.; Popescu, Bogdan F.; Gordon, Tessa; Zochodne, Douglas W.; Verge, Valerie M. K.

    2014-01-01

    Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies. PMID:25310564

  4. Early and Late Loss of the Cytoskeletal Scaffolding Protein, Ankyrin G Reveals its Role in Maturation and Maintenance of Nodes of Ranvier in Myelinated Axons.

    PubMed

    Saifetiarova, Julia; Taylor, Anna M; Bhat, Manzoor A

    2017-02-01

    The mechanisms that govern node of Ranvier organization, stability and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, Ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of AnkG in nodal organization and maintenance is still not clearly defined, as to whether AnkG functions as an initial nodal organizer or whether it functions as a nodal stabilizer after the nodal complex has been assembled. Using a mouse model system, we report here that perinatal and juvenile neuronal ablation of AnkG has differential consequences on nodal stability. Early loss of AnkG creates immature nodes with abnormal morphology, which undergo accelerated destabilization within a month, resulting in rapid NaV channel and βIV Spectrin loss with reduced effects on Neurofascin 186. On the other hand, late ablation of AnkG from established nodal complexes leads to slow but progressive nodal destabilization over 10 months, primarily affecting βIV Spectrin, followed by NaV channels, with modest impact on Neurofascin 186. We also show that Ankyrin R and βI Spectrin are not sufficient to prevent nodal disorganization after AnkG ablation. Additionally, nodal disorganization in both early and late AnkG mutants is accompanied by axonal pathology and neurological dysfunction. Together, our results suggest that AnkG plays an indispensable role in maturation and long-term stabilization of the newly assembled nodal complex, and that loss of AnkG after nodal stabilization does not lead to rapid nodal disassembly but loss of specific nodal components in a time-dependent manner.

  5. Propylene oxide causes central-peripheral distal axonopathy in rats

    SciTech Connect

    Ohnishi, A.; Yamamoto, T.; Murai, Y.; Hayashida, Y.; Hori, H.; Tanaka, I.

    1988-09-01

    In Wistar rats subjected daily to a 6-hr exposure of propylene oxide (PO) at a concentration of 1,500 ppm (5 times a wk for 7 wk), ataxia developed in the hindlegs. Myelinated fibers in hindleg nerves and in the fasciculus gracilis showed axonal degeneration, sparing the nerve cell body of the first sacral dorsal root ganglion and myelinated fibers of the first sacral dorsal and ventral roots. These pathologic findings are compatible with central-peripheral distal axonopathy. This is apparently the first animal model of PO neuropathy to be verified histologically.

  6. Generalized peripheral neuropathy in a dental technician exposed to methyl methacrylate monomer

    SciTech Connect

    Donaghy, M.; Rushworth, G.; Jacobs, J.M. )

    1991-07-01

    A 58-year-old dental prosthetic technician developed generalized sensorimotor peripheral neuropathy. Neurophysiologic studies showed a generalized sensorimotor neuropathy of axonal degeneration type. Examination of a sural nerve biopsy showed a moderately severe axonal neuropathy with loss of large myelinated fibers and unmyelinated axons. There was evidence of slow ongoing degeneration and considerable fiber regeneration. Electron microscopy showed increased numbers of filaments in a few fibers. These findings show resemblances to the nerve changes caused by another acrylic resin, acrylamide. They suggest that the neuropathy may have been caused by 30 years of occupational cutaneous and inhalational exposure to methyl methacrylate monomer since they excluded other recognized causes of neuropathy.

  7. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves.

    PubMed

    Bozkurt, Ahmet; Lassner, Franz; O'Dey, Dan; Deumens, Ronald; Böcker, Arne; Schwendt, Tilman; Janzen, Christoph; Suschek, Christoph V; Tolba, Rene; Kobayashi, Eiji; Sellhaus, Bernd; Tholl, S; Eummelen, Lizette; Schügner, Frank; Damink, Leon Olde; Weis, Joachim; Brook, Gary A; Pallua, Norbert

    2012-02-01

    The use of bioengineered nerve guides as alternatives for autologous nerve transplantation (ANT) is a promising strategy for the repair of peripheral nerve defects. In the present investigation, we present a collagen-based micro-structured nerve guide (Perimaix) for the repair of 2 cm rat sciatic nerve defects. Perimaix is an open-porous biodegradable nerve guide containing continuous, longitudinally orientated channels for orientated nerve growth. The effects of these nerve guides on axon regeneration by six weeks after implantation have been compared with those of ANT. Investigation of the regenerated sciatic nerve indicated that Perimaix strongly supported directed axon regeneration. When seeded with cultivated rat Schwann cells (SC), the Perimaix nerve guide was found to be almost as supportive of axon regeneration as ANT. The use of SC from transgenic green-fluorescent-protein (GFP) rats allowed us to detect the viability of donor SC at 1 week and 6 weeks after transplantation. The GFP-positive SC were aligned in a columnar fashion within the longitudinally orientated micro-channels. This cellular arrangement was not only observed prior to implantation, but also at one week and 6 weeks after implantation. It may be concluded that Perimaix nerve guides hold great promise for the repair of peripheral nerve defects.

  8. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo.

    PubMed

    Peterson, Sheri L; Nguyen, Hal X; Mendez, Oscar A; Anderson, Aileen J

    2015-03-11

    Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI.

  9. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice.

    PubMed

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana; Klein, Dennis; Martini, Rudolf; Krarup, Christian

    2016-03-01

    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice. With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na(+) channel isoform expression contributes to changes in motor axon function during aging.

  10. Major isoform of zebrafish P0 is a 23.5 kDa myelin glycoprotein expressed in selected white matter tracts of the central nervous system.

    PubMed

    Bai, Qing; Sun, Ming; Stolz, Donna B; Burton, Edward A

    2011-06-01

    The zebrafish mpz gene, encoding the ortholog of mammalian myelin protein zero, is expressed in oligodendrocytes of the zebrafish central nervous system (CNS). The putative gene product, P0, has been implicated in promoting axonal regeneration in addition to its proposed structural functions in compact myelin. We raised novel zebrafish P0-specific antibodies and established that P0 is a 23.5 kDa glycoprotein containing a 3 kDa N-linked carbohydrate moiety. P0 was localized to myelin sheaths surrounding axons, but was not detected in the cell bodies or proximal processes of oligodendrocytes. Many white matter tracts in the adult zebrafish CNS were robustly immunoreactive for P0, including afferent visual and olfactory pathways, commissural and longitudinal tracts of the brain, and selected ascending and descending tracts of the spinal cord. P0 was first detected during development in premyelinating oligodendrocytes of the ventral hindbrain at 48 hours postfertilization (hpf). By 72 hpf, short segments of longitudinally oriented P0-immunoreactive myelinating axons were seen in the hindbrain; expression in the spinal cord, optic pathways, hindbrain commissures, midbrain, and peripheral nervous system followed. The mpz transcript was found to be alternatively spliced, giving rise to P0 isoforms with alternative C-termini. The 23.5 kDa isoform was most abundant in the CNS, but other isoforms predominated in the myelin sheath surrounding the Mauthner axon. These data provide a detailed account of P0 expression and demonstrate novel P0 isoforms, which may have discrete functional properties. The restriction of P0 immunoreactivity to myelin sheaths indicates that the protein is subject to stringent intracellular compartmentalization, which likely occurs through posttranslational mechanisms.

  11. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis

    PubMed Central

    Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.

    2011-01-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in

  12. Label-free photoacoustic microscopy of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies.

  13. Label-free photoacoustic microscopy of peripheral nerves

    PubMed Central

    Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Abstract. Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies. PMID:24395587

  14. Long-term survival and integration of transplanted engineered nervous tissue constructs promotes peripheral nerve regeneration.

    PubMed

    Huang, Jason H; Cullen, D Kacy; Browne, Kevin D; Groff, Robert; Zhang, Jun; Pfister, Bryan J; Zager, Eric L; Smith, Douglas H

    2009-07-01

    Although peripheral nerve injury is a common consequence of trauma or surgery, there are insufficient means for repair. In particular, there is a critical need for improved methods to facilitate regeneration of axons across major nerve lesions. Here, we engineered transplantable living nervous tissue constructs to provide a labeled pathway to guide host axonal regeneration. These constructs consisted of stretch-grown, longitudinally aligned living axonal tracts inserted into poly(glycolic acid) tubes. The constructs (allogenic) were transplanted to bridge an excised segment of sciatic nerve in the rat, and histological analyses were performed at 6 and 16 weeks posttransplantation to determine graft survival, integration, and host regeneration. At both time points, the transplanted constructs were found to have maintained their pretransplant geometry, with surviving clusters of graft neuronal somata at the extremities of the constructs spanned by tracts of axons. Throughout the transplanted region, there was an intertwining plexus of host and graft axons, suggesting that the transplanted axons mediated host axonal regeneration across the lesion. By 16 weeks posttransplant, extensive myelination of axons was observed throughout the transplant region. Further, graft neurons had extended axons beyond the margins of the transplanted region, penetrating into the host nerve. Notably, this survival and integration of the allogenic constructs occurred in the absence of immunosuppression therapy. These findings demonstrate the promise of living tissue-engineered axonal constructs to bridge major nerve lesions and promote host regeneration, potentially by providing axon-mediated axonal outgrowth and guidance.

  15. Myelin water weighted diffusion tensor imaging.

    PubMed

    Avram, Alexandru V; Guidon, Arnaud; Song, Allen W

    2010-10-15

    In this study we describe our development and implementation of a magnetization transfer (MT) prepared stimulated-echo diffusion tensor imaging (DTI) technique that can be made sensitive to the microanatomy of myelin tissue. The short echo time (TE) enabled by the stimulated-echo acquisition preserves significant signal from the short T(2) component (myelin water), and the MT preparation further provides differentiating sensitization to this signal. It was found that this combined strategy could provide sufficient sensitivity in our first attempt to image myelin microstructure. Compared to the diffusion tensor derived from the conventional DTI technique, the myelin water weighted (MWW) tensor has the same principal diffusion direction but exhibits a significant increase in fractional anisotropy (FA), which is mainly due to a decrease in radial diffusivity. These findings are consistent with the microstructural organization of the myelin sheaths that wrap around the axons in the white matter and therefore hinder radial diffusion. Given that many white matter diseases (e.g. multiple sclerosis) begin with a degradation of myelin microanatomy but not a loss of myelin content (e.g. loosening of the myelin sheaths), our newly implemented MWW DTI has the potential to lead to improved assessment of myelin pathology and early detection of demyelination.

  16. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

    PubMed Central

    Patzig, Julia; Erwig, Michelle S; Tenzer, Stefan; Kusch, Kathrin; Dibaj, Payam; Möbius, Wiebke; Goebbels, Sandra; Schaeren-Wiemers, Nicole; Nave, Klaus-Armin; Werner, Hauke B

    2016-01-01

    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. DOI: http://dx.doi.org/10.7554/eLife.17119.001 PMID:27504968

  17. Immunoglobulin (Ig) M antibody against myelin associated glycoprotein (MAG): A comparison of methods.

    PubMed

    Jaskowski, T D; Martins, T B; Litwin, C M; Hill, H R

    2004-01-01

    The presence of immunoglobulin (Ig)M antibody against myelin associated glycoprotein (MAG) has been associated with autoimmune demyelinating, sensorimotor neuropathies. Approximately 50% of patients with IgM paraproteinemia and associated peripheral neuropathy possess antibodies against MAG. These autoantibodies are thought to interfere with the process of myelination, myelin maintenance, or axon-Schwann cell interaction. The detection of these autoantibodies is useful to the clinician and is suggestive of active demyelination in a peripheral neuropathy. Our objective in this study was to compare the results obtained using three different methods (dual enzyme immunoassay [EIA], immunofluorescent antibody [IFA] and Western blot [WB]) for detecting IgM antibody against MAG in patients suspected of having autoimmune demyelinating neuropathies. Since the dual EIA utilized two different antigens, results from this assay were separated into two groups: MAG and sulfate-3-glucuronyl paragloboside (SGPG). When compared to WB (gold standard), percent agreement, sensitivity, and specificity for EIA and IFA are as follows: MAG EIA (68.3, 100.0, and 60.6); SGPG EIA (95.1, 100.0, and 93.9); and myelin IFA (97.6, 100.0, and 97.0). The authors conclude that the SGPG EIA and myelin IFA compared well with the standard WB method when detecting IgM antibody against MAG (100 kD). Many sera demonstrated reactivity on the MAG EIA that were negative by WB (100 kD glycoprotein). The authors recommend screening for MAG IgM in suspected patient sera by SGPG EIA or myelin IFA and utilizing these same methods to titer sera confirmed positive by WB.

  18. Myelinated fibers of the mouse spinal cord after a 30-day space flight.

    PubMed

    Povysheva, T V; Rezvyakov, P N; Shaimardanova, G F; Nikolskii, E E; Islamov, R R; Chelyshev, Yu A; Grygoryev, A I

    2016-07-01

    Myelinated fibers and myelin-forming cells in the spinal cord at the L3-L5 level were studied in C57BL/6N mice that had spent 30 days in space. Signs of destruction of myelin in different areas of white matter, reduction of the thickness of myelin sheath and axon diameter, decreased number of myelin-forming cells were detected in "flight" mice. The stay of mice in space during 30 days had a negative impact on the structure of myelinated fibers and caused reduced expression of the markers myelin-forming cells. These findings can complement the pathogenetic picture of the development of hypogravity motor syndrome.

  19. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    PubMed

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency.

  20. Proposed evolutionary changes in the role of myelin.

    PubMed

    Stiefel, Klaus M; Torben-Nielsen, Benjamin; Coggan, Jay S

    2013-01-01

    Myelin is the multi-layered lipid sheet periodically wrapped around neuronal axons. It is most frequently found in vertebrates. Myelin allows for saltatory action potential (AP) conduction along axons. During this form of conduction, the AP travels passively along the myelin-covered part of the axon, and is recharged at the intermittent nodes of Ranvier. Thus, myelin can reduce the energy load needed and/or increase the speed of AP conduction. Myelin first evolved during the Ordovician period. We hypothesize that myelin's first role was mainly energy conservation. During the later "Mesozoic marine revolution," marine ecosystems changed toward an increase in marine predation pressure. We hypothesize that the main purpose of myelin changed from energy conservation to conduction speed increase during this Mesozoic marine revolution. To test this hypothesis, we optimized models of myelinated axons for a combination of AP conduction velocity and energy efficiency. We demonstrate that there is a trade-off between these objectives. We then compared the simulation results to empirical data and conclude that while the data are consistent with the theory, additional measurements are necessary for a complete evaluation of the proposed hypothesis.

  1. Mammalian-Specific Central Myelin Protein Opalin Is Redundant for Normal Myelination: Structural and Behavioral Assessments

    PubMed Central

    Tohyama, Koujiro; Akagi, Takumi; Furuse, Tamio; Sadakata, Tetsushi; Tanaka, Mika; Shinoda, Yo; Hashikawa, Tsutomu; Itohara, Shigeyoshi; Sano, Yoshitake; Ghandour, M. Said; Wakana, Shigeharu

    2016-01-01

    Opalin, a central nervous system-specific myelin protein phylogenetically unique to mammals, has been suggested to play a role in mammalian-specific myelin. To elucidate the role of Opalin in mammalian myelin, we disrupted the Opalin gene in mice and analyzed the impacts on myelination and behavior. Opalin-knockout (Opalin−/−) mice were born at a Mendelian ratio and had a normal body shape and weight. Interestingly, Opalin−/− mice had no obvious abnormalities in major myelin protein compositions, expression of oligodendrocyte lineage markers, or domain organization of myelinated axons compared with WT mice (Opalin+/+) mice. Electron microscopic observation of the optic nerves did not reveal obvious differences between Opalin+/+ and Opalin−/− mice in terms of fine structures of paranodal loops, transverse bands, and multi-lamellae of myelinated axons. Moreover, sensory reflex, circadian rhythm, and locomotor activity in the home cage, as well as depression-like behavior, in the Opalin−/− mice were indistinguishable from the Opalin+/+ mice. Nevertheless, a subtle but significant impact on exploratory activity became apparent in Opalin−/− mice exposed to a novel environment. These results suggest that Opalin is not critical for central nervous system myelination or basic sensory and motor activities under conventional breeding conditions, although it might be required for fine-tuning of exploratory behavior. PMID:27855200

  2. Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination.

    PubMed

    Hyung, Sujin; Yoon Lee, Bo; Park, Jong-Chul; Kim, Jinseok; Hur, Eun-Mi; Francis Suh, Jun-Kyo

    2015-10-12

    A culture system that can recapitulate myelination in vitro will not only help us better understand the mechanism of myelination and demyelination, but also find out possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC coculture system, MNs survived over 3 weeks and extended long axons. Both viability and axon growth of MNs in the coculture were markedly enhanced as compared to those of MN monoculture. Co-labeling of myelin basic proteins (MBPs) and neuronal microtubules revealed that SC formed myelin sheaths by wrapping around the axons of MNs. Furthermore, using the coculture system we found that treatment of an antioxidant substance coenzyme Q10 (Co-Q10) markedly facilitated myelination.

  3. Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination

    PubMed Central

    Hyung, Sujin; Yoon Lee, Bo; Park, Jong-Chul; Kim, Jinseok; Hur, Eun-Mi; Francis Suh, Jun-Kyo

    2015-01-01

    A culture system that can recapitulate myelination in vitro will not only help us better understand the mechanism of myelination and demyelination, but also find out possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC coculture system, MNs survived over 3 weeks and extended long axons. Both viability and axon growth of MNs in the coculture were markedly enhanced as compared to those of MN monoculture. Co-labeling of myelin basic proteins (MBPs) and neuronal microtubules revealed that SC formed myelin sheaths by wrapping around the axons of MNs. Furthermore, using the coculture system we found that treatment of an antioxidant substance coenzyme Q10 (Co-Q10) markedly facilitated myelination. PMID:26456300

  4. Functional Delay of Myelination of Auditory Delay Lines in the Nucleus Laminaris of the Barn Owl

    PubMed Central

    Cheng, Shih-Min; Carr, Catherine E.

    2012-01-01

    In the barn owl, maps of interaural time difference (ITD) are created in the nucleus laminaris (NL) by interdigitating axons that act as delay lines. Adult delay line axons are myelinated, and this myelination is timely, coinciding with the attainment of adult head size, and stable ITD cues. The proximal portions of the axons become myelinated in late embryonic life, but the delay line portions of the axon in NL remain unmyelinated until the first postnatal week. Myelination of the delay lines peaks at the third week posthatch, and myelinating oligodendrocyte density approaches adult levels by one month, when the head reaches its adult width. Migration of oligodendrocyte progenitors into NL and the subsequent onset of myelination may be restricted by a glial barrier in late embryonic stages and the first posthatch week, since the loss of tenascin-C immunoreactivity in NL is correlated with oligodendrocyte progenitor migration into NL. PMID:17918244

  5. Mechanisms of diabetic neuropathy: axon dysfunction.

    PubMed

    Sima, Anders A F; Zhang, Weixian

    2014-01-01

    Diabetic neuropathy is the most common complication of diabetes. It shows a progressive development with sensory loss, pain and autonomic dysfunction as common symptoms. Pathologically it is characterized by a series of interrelated metabolic abnormalities with insulin deficiency and hyperglycemia as the initiating culprits. The neuropathy accompanying type 2DM (insulin resistance) and type 1DM (insulin deficiency) appears to differ as to their structural changes; the former showing a milder axonal involvement and segmental myelin breakdown, whereas the latter shows a more severe axonal atrophy and axonal loss. Based mainly on animal data we will describe the sequential neuropathologic changes and differences in the two types of diabetes. These differences are related to differences in a myriad of underlying sequential metabolic abnormalities, which will be dealt with in detail. How metabolic defects affect nerve function will be elaborated upon. The disorder does not only involve somatic peripheral nerves but also autonomic and central nerve tracts. Today no successful therapy exists for diabetic neuropathy. During the last 30 years several experimental drugs targeting the polyol-pathway and oxidative stress have been tested, but with limited or no success. Instead therapies targeting the initiating and overriding pathogenetic abnormalities, such as insulin-deficiency and hyperglycemia need to be employed. One such agent is the insulinomimetic C-peptide which has demonstrated significant therapeutic and preventive effects in type 1 diabetic patients. Not surprisingly this has been particularly successful following early intervention. However diabetic neuropathy still remains a major medical problem affecting millions of patients.

  6. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation

    PubMed Central

    Hong, Young Bin; Choi, Heesun; Kim, Jisoo; Choi, Hyunjung; Mook-Jung, Inhee; Ha, Nina; Kyung, Jangbeen; Koo, Soo Kyung

    2016-01-01

    The Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy 2B (dHMN2B) are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1) gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs) of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy. PMID:28105056

  7. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation.

    PubMed

    Kim, Ji-Yon; Woo, So-Youn; Hong, Young Bin; Choi, Heesun; Kim, Jisoo; Choi, Hyunjung; Mook-Jung, Inhee; Ha, Nina; Kyung, Jangbeen; Koo, Soo Kyung; Jung, Sung-Chul; Choi, Byung-Ok

    2016-01-01

    The Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy 2B (dHMN2B) are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1) gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs) of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy.

  8. Peripheral Neuropathy in Rats Exposed to Dichloroacetate

    PubMed Central

    Calcutt, Nigel A.; Lopez, Veronica L.; Bautista, Arjel D.; Mizisin, Leah M.; Torres, Brenda R.; Shroads, Albert L.; Mizisin, Andrew P.; Stacpoole, Peter W.

    2009-01-01

    The use of dichloroacetate (DCA) for treating patients with mitochondrial diseases is limited by the induction of peripheral neuropathy. The mechanisms of DCA-induced neuropathy are not known. Oral DCA treatment (50–500 mg/kg/day for up to 16 weeks) induced tactile allodynia in both juvenile and adult rats; concurrent thermal hypoalgesia developed at higher doses. Both juvenile and adult rats treated with DCA developed nerve conduction slowing that was more pronounced in adult rats. No overt axonal or glial cell abnormalities were identified in peripheral nerves or spinal cord of any DCA-treated rats but morphometric analysis identified a reduction of mean axonal caliber of peripheral nerve myelinated fibers. DCA treatment also caused accumulation of oxidative stress markers in the nerves. These data indicate that behavioral, functional and structural indices of peripheral neuropathy may be induced in both juvenile and adult rats treated with DCA at doses similar to those in clinical use. DCA-induced peripheral neuropathy primarily afflicts axons and involves both metabolic and structural disorders. The DCA-treated rat may provide insight into the pathogenesis of peripheral neuropathy and facilitate development of adjuvant therapeutics to prevent this disorder that currently restricts the clinical use of DCA. PMID:19680144

  9. Ndrg1 in development and maintenance of the myelin sheath.

    PubMed

    King, Rosalind H M; Chandler, David; Lopaticki, Sash; Huang, Dexing; Blake, Julian; Muddle, John R; Kilpatrick, Trevor; Nourallah, Michelle; Miyata, Toshiyuki; Okuda, Tomohiko; Carter, Kim W; Hunter, Michael; Angelicheva, Dora; Morahan, Grant; Kalaydjieva, Luba

    2011-06-01

    CMT4D disease is a severe autosomal recessive demyelinating neuropathy with extensive axonal loss leading to early disability, caused by mutations in the N-myc downstream regulated gene 1 (NDRG1). NDRG1 is expressed at particularly high levels in the Schwann cell (SC), but its physiological function(s) are unknown. To help with their understanding, we characterise the phenotype of a new mouse model, stretcher (str), with total Ndrg1 deficiency, in comparison with the hypomorphic Ndrg1 knock-out (KO) mouse. While both models display normal initial myelination and a transition to overt pathology between weeks 3 and 5, the markedly more severe str phenotype suggests that even low Ndrg1 expression results in significant phenotype rescue. Neither model replicates fully the features of CMT4D: although axon damage is present, regenerative capacity is unimpaired and the mice do not display the early severe axonal loss typical of the human disease. The widespread large fibre demyelination coincides precisely with the period of rapid growth of the animals and the dramatic (160-500-fold) increase in myelin volume and length in large fibres. This is followed by stabilisation after week 10, while small fibres remain unaffected. Gene expression profiling of str peripheral nerve reveals non-specific secondary changes at weeks 5 and 10 and preliminary data point to normal proteasomal function. Our findings do not support the proposed roles of NDRG1 in growth arrest, terminal differentiation, gene expression regulation and proteasomal degradation. Impaired SC trafficking failing to meet the considerable demands of nerve growth, emerges as the likely pathogenetic mechanism in NDRG1 deficiency.

  10. Poor efficacy of the phosphorylated high-molecular-weight neurofilament heavy subunit serum level, a biomarker of axonal damage, as a marker of chemotherapy-induced peripheral neuropathy.

    PubMed

    Sumitani, Masahiko; Ogata, Toru; Natori, Akina; Hozumi, Jun; Shimojo, Nobutake; Kida, Kumiko; Yamauchi, Hideko; Yamauchi, Teruo

    2016-06-01

    The phosphorylated form of the high-molecular-weight neurofilament heavy subunit (pNF-H) is a major structural protein in axons. The pNF-H level is elevated in the serum of certain patients with central nervous disorders, including chemotherapy-induced cognitive impairment. The present study was conducted to elucidate the potential role of pNF-H as a marker of chemotherapy-induced peripheral neuropathy (CIPN). A total of 71 patients with early breast cancer in various stages of treatment (following 1, 3 or 7 cycles of chemotherapy, or a previous history of breast cancer chemotherapy) were assessed with a self-administered PainDETECT questionnaire [pain location, pain intensity on an 11-point numeric rating scale (NRS), and various pain qualities] and a single serum pNF-H measurement. Patients were divided into two groups based on the presence or absence of bilateral symmetric pain in the distal portions of the extremities [CIPN(+) or CIPN(-)]. The χ(2) and Mann-Whitney tests were used for statistical analyses. Among the participants, only 8 patients complained of CIPN. Their pain intensity was 3.5±1.9 (mean ± standard deviation) compared with 1.5±1.8 in the CIPN(-) group (P<0.01). The NRS of numbness in the CIPN(+) group was significantly higher (2.4±1.4) than that of the CIPN(-) group (1.0±1.0). Increased pNF-H levels were observed in 37.5% of the CIPN(+) patients and in 23.8% of CIPN(-) patients (P=0.40). In conclusion, CIPN is observed in the most distal portions of the peripheral nerves that are composed of dendrites but not axons. Although serum pNF-H is a biomarker of axonal damage, it is not useful as a marker of CIPN.

  11. Rodent models of chemotherapy-induced peripheral neuropathy.

    PubMed

    Höke, Ahmet; Ray, Mitali

    2014-01-01

    Peripheral neuropathy is a common and dose-limiting side effect of many chemotherapeutic drugs. These include platinum compounds, taxanes, vinca alkaloids, proteasome inhibitors, and others such as thalidomide and suramin. Although many rodent models have been developed using either mice or rats, there is limited consistency in the dose or mode of delivery of the drug; the sex, age, and genetic background of the animal used in the study; and the outcome measures used in evaluation of the peripheral neuropathy. Behavioral assays are commonly used to evaluate evoked sensory responses but are unlikely to be a good representation of the spontaneous sensory paresthesias that the patients experience. Electrophysiologic tests evaluate the integrity of large myelinated populations and are useful in drugs that cause either demyelination or degeneration of large myelinated axons but are insensitive to degeneration of unmyelinated axons in early stages of neuropathy. Histopathologic tools offer an unbiased way to evaluate the degree of axonal degeneration or changes in neuronal cell body but are often time consuming and require processing of the tissue after the study is completed. Nevertheless, use of drug doses and mode of delivery that are relevant to the clinical protocols and use of outcome measures that are both sensitive and objective in evaluation of the length-dependent distal axonal degeneration seen in most chemotherapy-induced peripheral neuropathies may improve the translational utility of these rodent models.

  12. Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder

    PubMed Central

    Elazar, Nimrod; Lerer, Israela; Schueler-Furman, Ora; Fellig, Yakov; Glick, Benjamin; Zimmerman, Bat-El; Azulay, Haim; Dotan, Shlomo; Goldberg, Sharon; Gomori, John M.; Ponger, Penina; Newman, J. P.; Marreed, Hodaifah; Steck, Andreas J.; Schaeren-Wiemers, Nicole; Mor, Nofar; Harel, Michal; Geiger, Tamar; Eshed-Eisenbach, Yael; Peles, Elior

    2015-01-01

    Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by mutations or rearrangements in PLP1. It presents in infancy with nystagmus, jerky head movements, hypotonia and developmental delay evolving into spastic tetraplegia with optic atrophy and variable movement disorders. A clinically similar phenotype caused by recessive mutations in GJC2 is known as Pelizaeus-Merzbacher-like disease. Both genes encode proteins associated with myelin. We describe three siblings of a consanguineous family manifesting the typical infantile-onset Pelizaeus-Merzbacher disease-like phenotype slowly evolving into a form of complicated hereditary spastic paraplegia with mental retardation, dysarthria, optic atrophy and peripheral neuropathy in adulthood. Magnetic resonance imaging and spectroscopy were consistent with a demyelinating leukodystrophy. Using genetic linkage and exome sequencing, we identified a homozygous missense c.399C>G; p.S133R mutation in MAG. This gene, previously associated with hereditary spastic paraplegia, encodes myelin-associated glycoprotein, which is involved in myelin maintenance and glia-axon interaction. This mutation is predicted to destabilize the protein and affect its tertiary structure. Examination of the sural nerve biopsy sample obtained in childhood in the oldest sibling revealed complete absence of myelin-associated glycoprotein accompanied by ill-formed onion-bulb structures and a relatively thin myelin sheath of the affected axons. Immunofluorescence, cell surface labelling, biochemical analysis and mass spectrometry-based proteomics studies in a variety of cell types demonstrated a devastating effect of the mutation on post-translational processing, steady state expression and subcellular localization of myelin-associated glycoprotein. In contrast to the wild-type protein, the p.S133R mutant was retained in the endoplasmic reticulum and was subjected to endoplasmic reticulum-associated protein degradation by the

  13. Differential expression of cyclin G2, cyclin-dependent kinase inhibitor 2C and peripheral myelin protein 22 genes during adipogenesis.

    PubMed

    Zhang, J; Suh, Y; Choi, Y M; Ahn, J; Davis, M E; Lee, K

    2014-05-01

    Increase of fat cells (FCs) in adipose tissue is attributed to proliferation of preadipocytes or immature adipocytes in the early stage, as well as adipogenic differentiation in the later stage of adipose development. Although both events are involved in the FC increase, they are contrary to each other, because the former requires cell cycle activity, whereas the latter requires cell cycle withdrawal. Therefore, appropriate regulation of cell cycle inhibition is critical to adipogenesis. In order to explore the important cell cycle inhibitors and study their expression in adipogenesis, we adopted a strategy combining the Gene Expression Omnibus (GEO) database available on the NCBI website and the results of quantitative real-time PCR (qPCR) data in porcine adipose tissue. Three cell cycle inhibitors - cyclin G2 (CCNG2), cyclin-dependent kinase inhibitor 2C (CDKN2C) and peripheral myelin protein (PMP22) - were selected for study because they are relatively highly expressed in adipose tissue compared with muscle, heart, lung, liver and kidney in humans and mice based on two GEO DataSets (GDS596 and GDS3142). In the latter analysis, they were found to be more highly expressed in differentiating/ed preadipocytes than in undifferentiated preadipocytes in human and mice as shown respectively by GDS2366 and GDS2743. In addition, GDS2659 also suggested increasing expression of the three cell cycle inhibitors during differentiation of 3T3-L1 cells. Further study with qPCR in Landrace pigs did not confirm the high expression of these genes in adipose tissue compared with other tissues in market-age pigs, but confirmed higher expression of these genes in FCs than in the stromal vascular fraction, as well as increasing expression of these genes during in vitro adipogenic differentiation and in vivo development of adipose tissue. Moreover, the relatively high expression of CCNG2 in adipose tissue of market-age pigs and increasing expression during development of adipose tissue

  14. Binary imaging analysis for comprehensive quantitative histomorphometry of peripheral nerve.

    PubMed

    Hunter, Daniel A; Moradzadeh, Arash; Whitlock, Elizabeth L; Brenner, Michael J; Myckatyn, Terence M; Wei, Cindy H; Tung, Thomas H H; Mackinnon, Susan E

    2007-10-15

    Quantitative histomorphometry is the current gold standard for objective measurement of nerve architecture and its components. Many methods still in use rely heavily upon manual techniques that are prohibitively time consuming, predisposing to operator fatigue, sampling error, and overall limited reproducibility. More recently, investigators have attempted to combine the speed of automated morphometry with the accuracy of manual and semi-automated methods. Systematic refinements in binary imaging analysis techniques combined with an algorithmic approach allow for more exhaustive characterization of nerve parameters in the surgically relevant injury paradigms of regeneration following crush, transection, and nerve gap injuries. The binary imaging method introduced here uses multiple bitplanes to achieve reproducible, high throughput quantitative assessment of peripheral nerve. Number of myelinated axons, myelinated fiber diameter, myelin thickness, fiber distributions, myelinated fiber density, and neural debris can be quantitatively evaluated with stratification of raw data by nerve component. Results of this semi-automated method are validated by comparing values against those obtained with manual techniques. The use of this approach results in more rapid, accurate, and complete assessment of myelinated axons than manual techniques.

  15. Myelinated mouse nerves studied by X-ray phase contrast zoom tomography.

    PubMed

    Bartels, M; Krenkel, M; Cloetens, P; Möbius, W; Salditt, T

    2015-12-01

    We have used X-ray phase contrast tomography to resolve the structure of uncut, entire myelinated