Science.gov

Sample records for peripheral sensory axons

  1. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    NASA Technical Reports Server (NTRS)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  2. LAR receptor tyrosine phosphatases and HSPGs guide peripheral sensory axons to the skin

    PubMed Central

    Wang, Fang; Wolfson, Sean N.; Gharib, Arash; Sagasti, Alvaro

    2012-01-01

    Background Peripheral axons of somatosensory neurons innervate the skin early in development to detect touch stimuli. Embryological experiments had suggested that the skin produces guidance cues that attract sensory axons, but neither the attractants nor their neuronal receptors had previously been identified. Results To investigate peripheral axon navigation to the skin, we combined live imaging of developing zebrafish Rohon-Beard (RB) neurons with molecular loss-of-function manipulations. Simultaneously knocking down two members of the LAR family of receptor tyrosine phosphatases expressed in RB neurons, or inhibiting their function with dominant negative proteins, misrouted peripheral axons to internal tissues. Time-lapse imaging indicated that peripheral axon guidance, rather than outgrowth or maintenance, was defective in LAR deficient neurons. Peripheral axons displayed a similar misrouting phenotype in mutants defective in heparan sulfate proteoglycan (HSPG) production and avoided regions in which HSPGs were locally degraded. Conclusions HSPGs and LAR family receptors are required for sensory axon guidance to the skin. Together, our results support a model in which peripheral HSPGs are attractive ligands for LAR receptors on RB neurons. PMID:22326027

  3. Developmentally regulated impediments to skin reinnervation by injured peripheral sensory axon terminals.

    PubMed

    O'Brien, Georgeann S; Martin, Seanna M; Söllner, Christian; Wright, Gavin J; Becker, Catherina G; Portera-Cailliau, Carlos; Sagasti, Alvaro

    2009-12-29

    The structural plasticity of neurites in the central nervous system (CNS) diminishes dramatically after initial development, but the peripheral nervous system (PNS) retains substantial plasticity into adulthood. Nevertheless, functional reinnervation by injured peripheral sensory neurons is often incomplete [1-6]. To investigate the developmental control of skin reinnervation, we imaged the regeneration of trigeminal sensory axon terminals in live zebrafish larvae following laser axotomy. When axons were injured during early stages of outgrowth, regenerating and uninjured axons grew into denervated skin and competed with one another for territory. At later stages, after the establishment of peripheral arbor territories, the ability of uninjured neighbors to sprout diminished severely, and although injured axons reinitiated growth, they were repelled by denervated skin. Regenerating axons were repelled specifically by their former territories, suggesting that local inhibitory factors persist in these regions. Antagonizing the function of several members of the Nogo receptor (NgR)/RhoA pathway improved the capacity of injured axons to grow into denervated skin. Thus, as in the CNS, impediments to reinnervation in the PNS arise after initial establishment of axon arbor structure.

  4. Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves.

    PubMed

    Joshi, Abhijeet R; Bobylev, Ilja; Zhang, Gang; Sheikh, Kazim A; Lehmann, Helmar C

    2015-01-01

    The small GTPase RhoA and its down-stream effector Rho-kinase (ROCK) are important effector molecules of the neuronal cytoskeleton. Modulation of the RhoA/ROCK pathway has been shown to promote axonal regeneration, however in vitro and animal studies are inconsistent regarding the extent of axonal outgrowth induced by pharmacological inhibition of ROCK. We hypothesized that injury to sensory and motor nerves result in diverse activation levels of RhoA, which may impact the response of those nerve fiber modalities to ROCK inhibition. We therefore examined the effects of Y-27632, a chemical ROCK inhibitor, on the axonal outgrowth of peripheral sensory and motor neurons grown in the presence of growth-inhibiting chondroitin sulfate proteoglycans (CSPGs). In addition we examined the effects of three different doses of Y-27632 on nerve regeneration of motor and sensory nerves in animal models of peripheral nerve crush. In vitro, sensory neurons were less responsive to Y-27632 compared to motor neurons in a non-growth permissive environment. These differences were associated with altered expression and activation of RhoA in sensory and motor axons. In vivo, systemic treatment with high doses of Y-27632 significantly enhanced the regeneration of motor axons over short distances, while the regeneration of sensory fibers remained largely unchanged. Our results support the concept that in a growth non-permissive environment, the regenerative capacity of sensory and motor axons is differentially affected by the RhoA/ROCK pathway, with motor neurons being more responsive compared to sensory. Future treatments, that are aimed to modulate RhoA activity, should consider this functional diversity.

  5. Peripheral Axons of the Adult Zebrafish Maxillary Barbel Extensively Remyelinate During Sensory Appendage Regeneration

    PubMed Central

    Moore, Alex C.; Mark, Tiffany E.; Hogan, Ann K.; Topczewski, Jacek; LeClair, Elizabeth E.

    2013-01-01

    Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ~180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ~85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate. PMID:22592645

  6. Novel roles for osteopontin and clusterin in peripheral motor and sensory axon regeneration.

    PubMed

    Wright, Megan C; Mi, Ruifa; Connor, Emmalynn; Reed, Nicole; Vyas, Alka; Alspalter, Manula; Coppola, Giovanni; Geschwind, Daniel H; Brushart, Thomas M; Höke, Ahmet

    2014-01-29

    Previous studies demonstrated that Schwann cells (SCs) express distinct motor and sensory phenotypes, which impact the ability of these pathways to selectively support regenerating neurons. In the present study, unbiased microarray analysis was used to examine differential gene expression in denervated motor and sensory pathways in rats. Several genes that were significantly upregulated in either denervated sensory or motor pathways were identified and two secreted factors were selected for further analysis: osteopontin (OPN) and clusterin (CLU) which were upregulated in denervated motor and sensory pathways, respectively. Sciatic nerve transection induced upregulation of OPN and CLU and expression of both returned to baseline levels with ensuing regeneration. In vitro analysis using exogenously applied OPN induced outgrowth of motor but not sensory neurons. CLU, however, induced outgrowth of sensory neurons, but not motor neurons. To assess the functional importance of OPN and CLU, peripheral nerve regeneration was examined in OPN and CLU(-/-) mice. When compared with OPN(+/+) mice, motor neuron regeneration was reduced in OPN(-/-) mice. Impaired regeneration through OPN(-/-) peripheral nerves grafted into OPN(+/+) mice indicated that loss of OPN in SCs was responsible for reduced motor regeneration. Sensory neuron regeneration was impaired in CLU(-/-) mice following sciatic nerve crush and impaired regeneration nerve fibers through CLU(-/-) nerve grafts transplanted into CLU(+/+) mice indicated that reduced sensory regeneration is likely due to SC-derived CLU. Together, these studies suggest unique roles for SC-derived OPN and CLU in regeneration of peripheral motor and sensory axons.

  7. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat.

    PubMed

    Xiao, W H; Zheng, H; Zheng, F Y; Nuydens, R; Meert, T F; Bennett, G J

    2011-12-29

    The dose-limiting side effect of the anti-neoplastic agent, paclitaxel, is a chronic distal symmetrical peripheral neuropathy that produces sensory dysfunction (hypoesthesia and neuropathic pain) but little or no distal motor dysfunction. Similar peripheral neuropathies are seen with chemotherapeutics in the vinca alkaloid, platinum-complex, and proteasome inhibitor classes. Studies in rats suggest that the cause is a mitotoxic effect on axonal mitochondria. If so, then the absence of motor dysfunction may be due to mitotoxicity that affects sensory axons but spares motor axons. To investigate this, paclitaxel exposure levels in the dorsal root, ventral root, dorsal root ganglion, peripheral nerve, and spinal cord were measured, and the ultrastructure and the respiratory function of mitochondria in dorsal roots and ventral roots were compared. Sensory and motor axons in the roots and nerve had comparably low exposure to paclitaxel and exposure in the spinal cord was negligible. However, sensory neurons in the dorsal root ganglion had a very high and remarkably persistent (up to 10 days or more after the last injection) exposure to paclitaxel. Paclitaxel evoked a significant increase in the incidence of swollen and vacuolated mitochondria in the myelinated and unmyelinated sensory axons of the dorsal root (as seen previously in the peripheral nerve) but not in the motor axons of the ventral root. Stimulated mitochondrial respiration in the dorsal root was significantly depressed in paclitaxel-treated animals examined 2-4 weeks after the last injection, whereas respiration in the ventral root was normal. We conclude that the absence of motor dysfunction in paclitaxel-evoked peripheral neuropathy may be due to the absence of a mitotoxic effect in motor neuron axons, whereas the sensory dysfunction may be due to a mitotoxic effect resulting from the primary afferent neuron's cell body being exposed to high and persistent levels of paclitaxel.

  8. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve.

    PubMed

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-09-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff electrodes. The timing of laminectomy was based on the presence of regenerating fibres along the nerve within the tibial cuff. Stimulation of unlesioned tibial nerves (n = 6) evoked the largest motor response in S1 ventral root and the largest sensory response in L7 dorsal root. Growth rates were compared by mapping the regenerating nerve fibres within the tibial nerve cuff to all ventral or dorsal roots and, regardless of the lesion type, the fastest growth was similar in sensory and motor fibres. Maturation was assessed as recovery of the maximum motor and sensory conduction velocities (CVs) within the tibial nerve cuff. Throughout the observation period the CV was approximately 14% faster in regenerated sensory fibres than in motor fibres in accordance with the difference observed in control nerves. Recovery of amplitude was only partial after section, whereas the root distribution pattern was restored. Our data suggest that the fastest growth and maturation rates that can be achieved during regeneration are similar for motor and sensory myelinated fibres.

  9. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    PubMed

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as

  10. Morphological Analysis of Drosophila Larval Peripheral Sensory Neuron Dendrites and Axons Using Genetic Mosaics

    PubMed Central

    Karim, M. Rezaul; Moore, Adrian W.

    2011-01-01

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)1. They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation2-10. The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology11-13 because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator14-16. The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses14,16-20. Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)21. These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field7,22,23. Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping7,22,23, as well as the wiring of a

  11. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  12. Pathways regulating modality-specific axonal regeneration in peripheral nerve.

    PubMed

    Wood, Matthew D; Mackinnon, Susan E

    2015-03-01

    Following peripheral nerve injury, the distal nerve is primed for regenerating axons by generating a permissive environment replete with glial cells, cytokines, and neurotrophic factors to encourage axonal growth. However, increasing evidence demonstrates that regenerating axons within peripheral nerves still encounter axonal-growth inhibitors, such as chondroitin sulfate proteoglycans. Given the generally poor clinical outcomes following peripheral nerve injury and reconstruction, the use of pharmacological therapies to augment axonal regeneration and overcome inhibitory signals has gained considerable interest. Joshi et al. (2014) have provided evidence for preferential or modality-specific (motor versus sensory) axonal growth and regeneration due to inhibitory signaling from Rho-associated kinase (ROCK) pathway regulation. By providing inhibition to the ROCK signaling pathway through Y-27632, they demonstrate that motor neurons regenerating their axons are impacted to a greater extent compared to sensory neurons. In light of this evidence, we briefly review the literature regarding modality-specific axonal regeneration to provide context to their findings. We also describe potential and novel barriers, such as senescent Schwann cells, which provide additional axonal-growth inhibitory factors for future consideration following peripheral nerve injury.

  13. Bioenergetic deficits in peripheral nerve sensory axons during chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of mitochondrial superoxide dismutase

    PubMed Central

    Janes, Kali; Doyle, Timothy; Bryant, Leesa; Esposito, Emanuela; Cuzzocrea, Salvatore; Ryerse, Jan; Bennett, Gary J.; Salvemini, Daniela

    2016-01-01

    Many of the widely used anticancer drugs induce dose-limiting peripheral neuropathies that undermine their therapeutic efficacy. Animal models of chemotherapy-induced painful peripheral neuropathy (CIPN) evoked by a variety of drug classes, including taxanes, vinca alkaloids, platinum-complexes, and proteasome-inhibitors, suggest that the common underlying mechanism in the development of these neuropathies is mitotoxicity in primary nerve sensory axons (PNSAs) arising from reduced mitochondrial bioenergetics [eg adenosine triphosphate (ATP) production deficits due to compromised respiratory complex I and II activity]. The causative mechanisms of this mitotoxicity remain poorly defined. However, peroxynitrite, an important pro-nociceptive agent, has been linked to mitotoxicity in several disease states and may also drive the mitotoxicity associated with CIPN. Our findings reveal that the development of mechano-hypersensitivity induced by paclitaxel, oxaliplatin, and bortezomib was prevented by administration of the peroxynitrite decomposition catalyst Mn(III) 5,10,15,20-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTE-2-PyP5+) without interfering with their anti-tumor effects. Peak CIPN was associated with the nitration and inactivation of superoxide dismutase in the mitochondria, but not in the cytosol, as well as a significant decrease in ATP production within the PNSAs; all of these events were attenuated by MnTE-2-PyP5+. Our results provide continued support for the role of mitotoxicity in the development of CIPN across chemotherapeutic drug classes, and identify peroxynitrite as a key mediator in these processes, thereby providing the rationale towards development of “peroxynitrite-targeted” therapeutics for CIPN. PMID:23891899

  14. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes.

    PubMed

    Sachdeva, Rahul; Theisen, Catherine C; Ninan, Vinu; Twiss, Jeffery L; Houlé, John D

    2016-02-01

    Insufficient regeneration of central nervous system (CNS) axons contributes to persisting neurological dysfunction after spinal cord injury (SCI). Peripheral nerve grafts (PNGs) support regeneration by thousands of injured intraspinal axons and help them bypass some of the extracellular barriers that form after SCI. However this number represents but a small portion of the total number of axons that are injured. Here we tested if rhythmic sensory stimulation during cycling exercise would boost the intrinsic regenerative state of neurons to enhance axon regeneration into PNGs after a lower thoracic (T12) spinal transection of adult rats. Using True Blue retrograde tracing, we show that 4 weeks of cycling improves regeneration into a PNG from lumbar interneurons but not by primary sensory neurons. The majority of neurons that regenerate their axon are within 5 mm of the lesion and their number increased 70% with exercise. Importantly propriospinal neurons in more distant regions (5-20 mm from the lesion) that routinely exhibit very limited regeneration responded to exercise by increasing the number of regenerating neurons by 900%. There was no exercise-associated increase in regeneration from sensory neurons. Analyses using fluorescent in situ hybridization showed that this increase in regenerative response is associated with changes in levels of mRNAs encoding the regeneration associated genes (RAGs) GAP43, β-actin and Neuritin. While propriospinal neurons showed increased mRNA levels in response to SCI alone and then to grafting and exercise, sensory neurons did not respond to SCI, but there was a response to the presence of a PNG. Thus, exercise is a non-invasive approach to modulate gene expression in injured neurons leading to an increase in regeneration. This sets the stage for future studies to test whether exercise will promote axon outgrowth beyond the PNG and reconnection with spinal cord neurons, thereby demonstrating a potential clinical application of

  15. Characterizing Semaphorin-Mediated Effects on Sensory and Motor Axon Pathfinding and Connectivity During Embryonic Development.

    PubMed

    Huettl, Rosa Eva; Huber, Andrea B

    2017-01-01

    How are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal. Reliable quantitative analyses of sensory-motor fasciculation, extension, and guidance of axons to their cognate target muscles and the skin during development, but also assessment of physiological and behavioral consequences at adult age, are therefore a necessity to extend our understanding of the molecular mechanisms of peripheral circuit formation. In this chapter we provide a detailed methodology to characterize class 3 semaphorin-mediated effects on peripheral sensory and motor axon pathfinding and connectivity during embryonic development.

  16. Eph:ephrin-B1 forward signaling controls fasciculation of sensory and motor axons.

    PubMed

    Luxey, Maëva; Jungas, Thomas; Laussu, Julien; Audouard, Christophe; Garces, Alain; Davy, Alice

    2013-11-15

    Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it remains unclear how these two distinct types of responses are elicited. Herein we have characterized the role of ephrin-B1, a member of the ephrinB family in sensory and motor innervation of the limb. We show that ephrin-B1 is expressed in sensory axons and in the limb bud mesenchyme while EphB2 is expressed in motor and sensory axons. Loss of ephrin-B1 had no impact on the accurate dorso-ventral innervation of the limb by motor axons, yet EfnB1 mutants exhibited decreased fasciculation of peripheral motor and sensory nerves. Using tissue-specific excision of EfnB1 and in vitro experiments, we demonstrate that ephrin-B1 controls fasciculation of axons via a surround repulsion mechanism involving growth cone collapse of EphB2-expressing axons. Altogether, our results highlight the complex role of Eph:ephrin signaling in the development of the sensory-motor circuit innervating the limb.

  17. Concomitant Acute Transverse Myelitis and Sensory Motor Axonal Polyneuropathy in Two Children: Two Case Reports

    PubMed Central

    Chung, Hyung; Joa, Kyung-Lim; Kim, Hyo-Sang; Kim, Chang-Hwan; Jung, Han-Young

    2015-01-01

    Acute transverse myelitis (ATM) is an upper motor neuron disease of the spinal cord, and concomitant association of peripheral polyneuropathy, particularly the axonal type, is rarely reported in children. Our cases presented with ATM complicated with axonal type polyneuropathy. Axonal type polyneuropathy may be caused by acute motor-sensory axonal neuropathy (AMSAN) or critical illness polyneuropathy and myopathy (CIPNM). These cases emphasize the need for nerve and muscle biopsies to make the differential diagnosis between AMSAN and CIPNM in patients with ATM complicated with axonal polyneuropathy. PMID:25750885

  18. A templated agarose scaffold for axon guidance in the central and peripheral nervous system

    NASA Astrophysics Data System (ADS)

    Gros, Thomas Richard

    This thesis examined the hypothesis that axonal guidance could be improved in the central and peripheral nervous systems using a highly linearized templated agarose scaffold. In the present study we examined whether a templated agarose scaffold improved axon retention across a large central nervous system (CNS) lesion and how cellular and axonal orientation was affected within the scaffold channels. The "physical" guidance from the scaffold was applied to an existing CNS "chemical" guidance strategy, shown to promote axons beyond the lesion site, to enhance the number of crossing axons in larger, disorganized, lesions. Specifically, there was the greatest number of long-tract sensory axons reaching the distal aspect of the lesion when the templated agarose scaffold was combined with a neurotrophic source of NT-3 beyond the lesion site and a conditioning lesion, to enhance chemical axon guidance and the intrinsic growth state of axons, respectively. When comparing the scaffold implant to a cell suspension grafts, we found a higher retention of long-tract ascending (sensory) axons and descending (motor) axons crossing large lesions (2mm). The enhanced axon retention may be attributed to the finding that cellular orientation within the scaffold channels is highly linear, thus promoting a less tortuous environment for axon orientation and bridging. Although an enhanced number of axons were able to cross the lesion, the axons did not repenetrate the host tissue due to a reactive cell layer, present only in scaffold the implant groups. Additionally, a peripheral nerve conduit, with the agarose scaffold as the core, displayed biocompatiablility and supported axon growth and vasculature beyond the clinically applicable distance of 4mm. Thus, the templated agarose scaffold enhances axon retention and guidance within CNS injury sites and has potential applications to the PNS.

  19. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors

    PubMed Central

    Santos, Daniel; González-Pérez, Francisco; Giudetti, Guido; Micera, Silvestro; Udina, Esther; Del Valle, Jaume; Navarro, Xavier

    2016-01-01

    After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation. PMID:28036084

  20. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy

    PubMed Central

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1–8) and G2+3 (TNSr 9–24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches. PMID:28182728

  1. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    PubMed

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8) and G2+3 (TNSr 9-24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  2. Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy.

    PubMed

    Persson, Anna-Karin; Hoeijmakers, Janneke G J; Estacion, Mark; Black, Joel A; Waxman, Stephen G

    2016-05-01

    Peripheral neuropathy results from damage to peripheral nerves and is often accompanied by pain in affected limbs. Treatment represents an unmet medical need and a thorough understanding of the mechanisms underlying axonal injury is needed. Longer nerve fibers tend to degenerate first (length-dependence), and patients carrying pathogenic mutations throughout life usually become symptomatic in mid- or late-life (time-dependence). The activity of voltage-gated sodium channels can contribute to axonal injury and sodium channel gain-of-function mutations have been linked to peripheral neuropathy. Recent studies have implicated sodium channel activity, mitochondrial compromise, and reverse-mode Na(+)/Ca(2+) exchange in time- and length-dependent axonal injury. Elucidation of molecular mechanisms underlying axonal injury in peripheral neuropathy may provide new therapeutic strategies for this painful and debilitating condition.

  3. Calsyntenin-1 Regulates Axon Branching and Endosomal Trafficking during Sensory Neuron Development In Vivo

    PubMed Central

    Ponomareva, Olga Y.; Holmen, Ian C.; Sperry, Aiden J.; Eliceiri, Kevin W.

    2014-01-01

    Precise regulation of axon branching is crucial for neuronal circuit formation, yet the mechanisms that control branch formation are not well understood. Moreover, the highly complex morphology of neurons makes them critically dependent on protein/membrane trafficking and transport systems, although the functions for membrane trafficking in neuronal morphogenesis are largely undefined. Here we identify a kinesin adaptor, Calsyntenin-1 (Clstn-1), as an essential regulator of axon branching and neuronal compartmentalization in vivo. We use morpholino knockdown and a Clstn-1 mutant to show that Clstn-1 is required for formation of peripheral but not central sensory axons, and for peripheral axon branching in zebrafish. We used live imaging of endosomal trafficking in vivo to show that Clstn-1 regulates transport of Rab5-containing endosomes from the cell body to specific locations of developing axons. Our results suggest a model in which Clstn-1 patterns separate axonal compartments and define their ability to branch by directing trafficking of specific endosomes. PMID:25009257

  4. Local erythropoietin signaling enhances regeneration in peripheral axons.

    PubMed

    Toth, C; Martinez, J A; Liu, W Q; Diggle, J; Guo, G F; Ramji, N; Mi, R; Hoke, A; Zochodne, D W

    2008-06-23

    Erythropoietin (EPO) and its receptor (EPO-R), mediate neuroprotection from axonopathy and apoptosis in the peripheral nervous system (PNS). We examined the impact and potential mechanisms of local EPO signaling on regenerating PNS axons in vivo and in vitro. As a consequence of injury, peripheral nerve axons and DRG neurons have a marked increase in the expression of EPO and EPO-R. Local delivery of EPO via conduit over 2 weeks to rat sciatic nerve following crush injury increased the density and maturity of regenerating myelinated axons growing distally from the crush site. In addition, EPO also rescued retrograde degeneration and atrophy of axons. EPO substantially increased the density and intensity of calcitonin gene-related peptide (CGRP) expression within outgrowing axons. Behavioral improvements in sensorimotor function also occurred in rats exposed to near nerve EPO delivery. EPO delivery led to decreased nuclear factor kappaB (NFkB) activation but increased phosphorylation of Akt and STAT3 within nerve and dorsal root ganglia neurons indicating rescue from an injury phenotype. Spinal cord explant studies also demonstrated a similar dose-dependent effect of EPO upon motor axonal outgrowth. Local EPO signaling enhances regenerating peripheral nervous system axons in addition to its known neuroprotection. Exogenous EPO may have a therapeutic role in a large number of peripheral nerve diseases through its impact on regeneration.

  5. Ankyrin-B structurally defines terminal microdomains of peripheral somatosensory axons.

    PubMed

    Engelhardt, Maren; Vorwald, Silke; Sobotzik, Jürgen-Markus; Bennett, Vann; Schultz, Christian

    2013-07-01

    Axons are subdivided into functionally organized microdomains, which are required for generation and propagation of action potentials (APs). In the central nervous system (CNS), APs are generated near the soma in the axon initial segment (AIS) and propagated by nodes of Ranvier (noR). The crucial role of the membrane adapter proteins ankyrin-B and ankyrin-G as organizers of AIS and noR is now well established. By comparison, little is known on the localization and function of these proteins in sensory axon terminals of the peripheral nervous systems (PNS). Here, we tested the hypothesis that somatosensory PNS terminals are organized by distinct members of the ankyrin protein family. We discovered a specific distribution of ankyrin-B in somatosensory axon terminals of skin and muscle. Specifically, ankyrin-B was localized along the membrane of axons innervating Meissner corpuscles, Pacinian corpuscles and hair follicle receptors. Likewise, proprioceptive terminals of muscle spindles exhibited prominent ankyrin-B expression. Furthermore, ankyrin-B expression extended into nociceptive and thermoceptive intraepidermal nerve fibers. Interestingly, all studied somatosensory terminals were largely devoid of ankyrin-G, indicating that this scaffolding protein does not contribute to organization of mechanoelectric transduction zones in peripheral somatosensory neurons. Instead, we propose that ankyrin-B serves as a major membrane organizer in mechanoreceptive and nociceptive terminals of the PNS.

  6. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    PubMed

    Huettl, Rosa-Eva; Soellner, Heidi; Bianchi, Elisa; Novitch, Bennett G; Huber, Andrea B

    2011-02-01

    The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  7. An Apolipoprotein E-Mimetic Stimulates Axonal Regeneration and Remyelination after Peripheral Nerve Injury

    PubMed Central

    Fowler, Kenneth A.; Neil, Jessica E.; Colton, Carol A.; Vitek, Michael P.

    2010-01-01

    Elevated apolipoprotein E (apoE) synthesis within crushed sciatic nerves advocates that apoE could benefit axonal repair and reconstruction of axonal and myelin membranes. We created an apoE-mimetic peptide, COG112 (acetyl-RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRLL-amide), and found that postinjury treatment with COG112 significantly improved recovery of motor and sensory function following sciatic nerve crush in C57BL/6 mice. Morphometric analysis of injured sciatic nerves revealed that COG112 promoted axonal regrowth after 2 weeks of treatment. More strikingly, the thickness of myelin sheaths was increased by COG112 treatment. Consistent with these histological findings, COG112 potently elevated growth associated protein 43 (GAP-43) and peripheral myelin protein zero (P0), which are markers of axon regeneration and remyelination, respectively. Electron microscopic examination further suggested that the apoE-mimetic COG112 may increase clearance of myelin debris. Schwann cell uptake of cholesterol-containing low-density lipoprotein particles was selectively enhanced by COG112 treatment in a Schwann cell line S16. Moreover, COG112 significantly promoted axon elongation in primary dorsal root ganglion cultures from rat pups. Considering that cholesterol and lipids are needed for reconstructing myelin sheaths and axon extension, these data support a hypothesis where supplementation with exogenous apoE-mimetics such as COG112 may be a promising strategy for restoring lost functional and structural elements following nerve injury. PMID:20406857

  8. An apolipoprotein E-mimetic stimulates axonal regeneration and remyelination after peripheral nerve injury.

    PubMed

    Li, Feng-Qiao; Fowler, Kenneth A; Neil, Jessica E; Colton, Carol A; Vitek, Michael P

    2010-07-01

    Elevated apolipoprotein E (apoE) synthesis within crushed sciatic nerves advocates that apoE could benefit axonal repair and reconstruction of axonal and myelin membranes. We created an apoE-mimetic peptide, COG112 (acetyl-RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRLL-amide), and found that postinjury treatment with COG112 significantly improved recovery of motor and sensory function following sciatic nerve crush in C57BL/6 mice. Morphometric analysis of injured sciatic nerves revealed that COG112 promoted axonal regrowth after 2 weeks of treatment. More strikingly, the thickness of myelin sheaths was increased by COG112 treatment. Consistent with these histological findings, COG112 potently elevated growth associated protein 43 (GAP-43) and peripheral myelin protein zero (P0), which are markers of axon regeneration and remyelination, respectively. Electron microscopic examination further suggested that the apoE-mimetic COG112 may increase clearance of myelin debris. Schwann cell uptake of cholesterol-containing low-density lipoprotein particles was selectively enhanced by COG112 treatment in a Schwann cell line S16. Moreover, COG112 significantly promoted axon elongation in primary dorsal root ganglion cultures from rat pups. Considering that cholesterol and lipids are needed for reconstructing myelin sheaths and axon extension, these data support a hypothesis where supplementation with exogenous apoE-mimetics such as COG112 may be a promising strategy for restoring lost functional and structural elements following nerve injury.

  9. Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies

    PubMed Central

    Cashman, Christopher R.; Höke, Ahmet

    2015-01-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  10. Spatiotemporal gradients of intra-axonal [Na+] after transection and resealing in lizard peripheral myelinated axons.

    PubMed Central

    David, G; Barrett, J N; Barrett, E F

    1997-01-01

    1. Post-transection changes in intracellular Na+ ([Na+]i) were measured in lizard peripheral axons ionophoretically injected with the Na(+)-sensitive ratiometric dye, sodium-binding benzofuran isophthalate (SBFI). 2. Following axonal transection in physiological saline [Na+]i increased to more than 100 mM in a region that quickly extended hundreds of micrometers from the transection site. This post-transection increase in [Na+]i was similar when the bath contained 5 microM tetrodotoxin, but was absent in Na(+)-free solution. Depolarization of uncut axons in 50 mM K+ produced little or no elevation of [Na+]i until veratridine was added. These results suggest that the post-transection increase in [Na+]i was due mainly to Na+ entry via the cut end, rather than via depolarization-activated Na+ channels. 3. The spatiotemporal profile of the post-transection increase in [Na+]i could be accounted for by movement of Na+ from the cut end with an apparent diffusion coefficient of 1.3 x 10(-5) cm2 s-1. 4. [Na+]i began to decline toward resting levels by 20 +/- 15 min (mean +/- S.D.) post-transection, except in regions of the axon within 160 +/- 85 microns of the transection site, where [Na+]i remained high. The boundary between axonal regions in which [Na+]i did or did not recover probably defines a locus of resealing of the axonal membrane. 5. [Na+]i returned to resting values within about 1 h after resealing, even in axonal regions where the normal transmembrane [Na+] gradient had completely dissipated. The recovery of [Na+]i was faster and reached lower levels than expected by diffusional redistribution of Na+ along the axon. Partial recovery occurred even in an isolated internode, indicating that the internodal axolemma can actively extrude Na+. Images Figure 2 Figure 4 Figure 6 PMID:9032679

  11. Phenotyping the Function of TRPV1-Expressing Sensory Neurons by Targeted Axonal Silencing

    PubMed Central

    Brenneis, Christian; Kistner, Katrin; Puopolo, Michelino; Segal, David; Roberson, David; Sisignano, Marco; Labocha, Sandra; Ferreirós, Nerea; Strominger, Amanda; Cobos, Enrique J.; Ghasemlou, Nader; Geisslinger, Gerd; Reeh, Peter W.; Bean, Bruce P.; Woolf, Clifford J.

    2013-01-01

    Specific somatosensations may be processed by different subsets of primary afferents. C-fibers expressing heat-sensitive TRPV1 channels are proposed, for example, to be heat but not mechanical pain detectors. To phenotype in rats the sensory function of TRPV1+ afferents, we rapidly and selectively silenced only their activity, by introducing the membrane-impermeant sodium channel blocker QX-314 into these axons via the TRPV1 channel pore. Using tandem mass spectrometry we show that upon activation with capsaicin, QX-314 selectively accumulates in the cytosol only of TRPV1-expressing cells, and not in control cells. Exposure to QX-314 and capsaicin induces in small DRG neurons a robust sodium current block within 30 s. In sciatic nerves, application of extracellular QX-314 with capsaicin persistently reduces C-fiber but not A-fiber compound action potentials and this effect does not occur in TRPV1−/− mice. Behavioral phenotyping after selectively silencing TRPV1+ sciatic nerve axons by perineural injections of QX-314 and capsaicin reveals deficits in heat and mechanical pressure but not pinprick or light touch perception. The response to intraplantar capsaicin is substantially reduced, as expected. During inflammation, silencing TRPV1+ axons abolishes heat, mechanical, and cold hyperalgesia but tactile and cold allodynia remain following peripheral nerve injury. These results indicate that TRPV1-expressing sensory neurons process particular thermal and mechanical somatosensations, and that the sensory channels activated by mechanical and cold stimuli to produce pain in naive/inflamed rats differ from those in animals after peripheral nerve injury. PMID:23283344

  12. Responses of human sensory and motor axons to the release of ischaemia and to hyperpolarizing currents.

    PubMed

    Lin, Cindy S-Y; Kuwabara, Satoshi; Cappelen-Smith, Cecilia; Burke, David

    2002-06-15

    This study compared directly the post-ischaemic behaviour of sensory and motor axons in the human median nerve, focusing on the excitability changes produced by ischaemia and its release and by continuous polarizing DC. The decrease in threshold during ischaemia for 13 min was greater, the post-ischaemic increase in threshold was more rapid, and the return to the pre-ischaemic excitability took longer in sensory axons. However, a transient depolarizing threshold shift developed in sensory axons a few minutes after release of ischaemia. This pattern could not be reproduced by polarizing currents designed to mimic the probable pump-induced changes in membrane potential, even though the applied currents produced greater changes in threshold. Hyperpolarizing currents of equivalent intensity produced a greater increase in threshold for motor axons than sensory axons and, in studies of threshold electrotonus using graded hyperpolarizing DC, accommodation was greater in sensory than motor axons. The post-ischaemic changes in threshold were not uniform for axons of different threshold, whether sensory or motor, the threshold increase was usually less prominent for low-threshold axons. A transient post-ischaemic depolarization could be produced in motor axons with ischaemia of 20 min duration. Greater ischaemic and post-ischaemic changes in threshold for sensory axons could reflect greater dependence on the electrogenic Na+-K+ pump to maintain resting membrane potential and/or greater extracellular K+ accumulation in ischaemic sensory axons. Inward K+ currents due to extracellular K+ accumulation would then be more likely to trigger a depolarizing shift in membrane potential, the degree of K+ accumulation and pump activity being dependent on the duration of ischaemia. In sensory axons the greater tendency to accommodate to hyperpolarizing stimuli presumably contributes to shaping their post-ischaemic behaviour but is probably insufficient to explain why their behaviour

  13. Extrinsic cellular and molecular mediators of peripheral axonal regeneration.

    PubMed

    Bosse, Frank

    2012-07-01

    The ability of injured peripheral nerves to regenerate and reinnervate their original targets is a characteristic feature of the peripheral nervous system (PNS). On the other hand, neurons of the central nervous system (CNS), including retinal ganglion cell (RGC) axons, are incapable of spontaneous regeneration. In the adult PNS, axonal regeneration after injury depends on well-orchestrated cellular and molecular processes that comprise a highly reproducible series of degenerative reactions distal to the site of injury. During this fine-tuned process, named Wallerian degeneration, a remodeling of the distal nerve fragment prepares a permissive microenvironment that permits successful axonal regrowth originating from the proximal nerve fragment. Therefore, a multitude of adjusted intrinsic and extrinsic factors are important for surviving neurons, Schwann cells, macrophages and fibroblasts as well as endothelial cells in order to achieve successful regeneration. The aim of this review is to summarize relevant extrinsic cellular and molecular determinants of successful axonal regeneration in rodents that contribute to the regenerative microenvironment of the PNS.

  14. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo.

    PubMed

    Mrkusich, Eli M; Flanagan, Dustin J; Whitington, Paul M

    2011-10-01

    The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.

  15. Skin incision induces expression of axonal regeneration-related genes in adult rat spinal sensory neurons

    PubMed Central

    Hill, Caitlin E.; Harrison, Benjamin J.; Rau, Kris K.; Hougland, M. Tyler; Bunge, Mary Bartlett; Mendell, Lorne M.; Petruska, Jeffrey C.

    2010-01-01

    Skin incision and nerve injury both induce painful conditions. Incisional and post-surgical pain is believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral and central neurons. The role of axonal regeneration-related processes in development of pain has only been considered when there has been injury to the peripheral nerve itself, even though tissue damage likely induces injury of resident axons. We sought to determine if skin incision would affect expression of regeneration-related genes such as activating transcription factor 3 (ATF3) in dorsal root ganglion (DRG) neurons. ATF3 is absent from DRG neurons of the normal adult rodent, but is induced by injury of peripheral nerves and modulates the regenerative capacity of axons. Image analysis of immunolabeled DRG sections revealed that skin incision led to an increase in the number of DRG neurons expressing ATF3. RT-PCR indicated that other regeneration-associated genes (galanin, GAP-43, Gadd45a) were also increased, further suggesting an injury-like response in DRG neurons. Our finding that injury of skin can induce expression of neuronal injury/regeneration-associated genes may impact how clinical post-surgical pain is investigated and treated. Perspective Tissue injury, even without direct nerve injury, may induce a state of enhanced growth capacity in sensory neurons. Axonal regeneration-associated processes should be considered alongside nerve signal conduction and inflammatory/sensitization processes as possible mechanisms contributing to pain, particularly the transition from acute to chronic pain. PMID:20627820

  16. Peripheral Nerve Diffusion Tensor Imaging: Assessment of Axon and Myelin Sheath Integrity

    PubMed Central

    Heckel, A.; Weiler, M.; Xia, A.; Ruetters, M.; Pham, M.; Bendszus, M.; Heiland, S.; Baeumer, P.

    2015-01-01

    Purpose To investigate the potential of diffusion tensor imaging (DTI) parameters as in-vivo biomarkers of axon and myelin sheath integrity of the median nerve in the carpal tunnel as validated by correlation with electrophysiology. Methods MRI examinations at 3T including DTI were conducted on wrists in 30 healthy subjects. After manual segmentation of the median nerve quantitative analysis of fractional anisotropy (FA) as well as axial, radial and mean diffusivity (AD, RD, and MD) was carried out. Pairwise Pearson correlations with electrophysiological parameters comprising sensory nerve action potential (SNAP) and compound muscle action potential (CMAP) as markers of axon integrity, and distal motor latency (dml) and sensory nerve conduction velocity (sNCV) as markers of myelin sheath integrity were computed. The significance criterion was set at P=0.05, Bonferroni corrected for multiple comparisons. Results DTI parameters showed a distinct proximal-to-distal profile with FA, MD, and RD extrema coinciding in the center of the carpal tunnel. AD correlated with CMAP (r=0.50, p=0.04, Bonf. corr.) but not with markers of myelin sheath integrity. RD correlated with sNCV (r=-0.53, p=0.02, Bonf. corr.) but not with markers of axon integrity. FA correlated with dml (r=-0.63, p=0.002, Bonf. corr.) and sNCV (r=0.68, p=0.001, Bonf. corr.) but not with markers of axon integrity. Conclusion AD reflects axon integrity, while RD (and FA) reflect myelin sheath integrity as validated by correlation with electrophysiology. DTI parameters consistently indicate a slight decrease of structural integrity in the carpal tunnel as a physiological site of median nerve entrapment. DTI is particularly sensitive, since these findings are observed in healthy participants. Our results encourage future studies to evaluate the potential of DTI in differentiating axon from myelin sheath injury in patients with manifest peripheral neuropathies. PMID:26114630

  17. Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Hutson, Thomas; Rau, Kristofer K.; Bunge, Mary Bartlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin; Rouchka, Eric C.; Moon, Lawrence; Petruska, Jeffrey C.

    2015-01-01

    Primary afferent collateral sprouting is a process whereby non-injured primary afferent neurons respond to some stimulus and extend new branches from existing axons. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]). In the model used here (the “spared dermatome” model), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Investigations of gene expression changes associated with collateral sprouting can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatments to promote functional recovery for spinal cord injury and other similar conditions. This report includes raw gene expression data files from microarray experiments in order to study the gene regulation in spared sensory ganglia in the initiation (7 days) and maintenance (14 days) phases of the spared dermatome model relative to intact (“naïve”) sensory ganglia. Data has been deposited into GEO (GSE72551). PMID:26697387

  18. Rapamycin-Resistant mTOR Activity Is Required for Sensory Axon Regeneration Induced by a Conditioning Lesion

    PubMed Central

    Lu, Na; Ding, Yue; Chan, Leung Ting; Wang, Xu; Gao, Xin; Jiang, Songshan

    2016-01-01

    Abstract Neuronal mammalian target of rapamycin (mTOR) activity is a critical determinant of the intrinsic regenerative ability of mature neurons in the adult central nervous system (CNS). However, whether its action also applies to peripheral nervous system (PNS) neurons after injury remains elusive. To address this issue unambiguously, we used genetic approaches to determine the role of mTOR signaling in sensory axon regeneration in mice. We showed that deleting mTOR in dorsal root ganglion (DRG) neurons suppressed the axon regeneration induced by conditioning lesions. To establish whether the impact of mTOR on axon regeneration results from functions of mTOR complex 1 (mTORC1) or 2 (mTORC2), two distinct kinase complexes, we ablated either Raptor or Rictor in DRG neurons. We found that suppressing mTORC1 signaling dramatically decreased the conditioning lesion effect. In addition, an injury to the peripheral branch boosts mTOR activity in DRG neurons that cannot be completely inhibited by rapamycin, a widely used mTOR-specific inhibitor. Unexpectedly, examining several conditioning lesion–induced pro-regenerative pathways revealed that Raptor deletion but not rapamycin suppressed Stat3 activity in neurons. Therefore, our results demonstrate that crosstalk between mTOR and Stat3 signaling mediates the conditioning lesion effect and provide genetic evidence that rapamycin-resistant mTOR activity contributes to the intrinsic axon growth capacity in adult sensory neurons after injury. PMID:28101526

  19. Sensory Biology: Novel Peripheral Organization for Better Smell.

    PubMed

    Wall, Crystal M; Zhao, Haiqing

    2015-10-05

    Sensory systems have adopted various ways to enhance detection and discrimination. A recent study shows a novel spatial organization of sensory cells in the peripheral olfactory system in mice for better odor detection.

  20. Peripherally-Derived BDNF Promotes Regeneration of Ascending Sensory Neurons after Spinal Cord Injury

    PubMed Central

    Zhang, Feng-He; Zhong, Jin-Hua; Zhou, Xin-Fu

    2008-01-01

    Background The blood brain barrier (BBB) and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF) applied into the peripheral (PNS) and central nervous system (CNS) thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons. Methodology/Principal Findings The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG) neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions. Conclusions/Significance Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury. PMID:18320028

  1. The atypical cadherin Flamingo is required for sensory axon advance beyond intermediate target cells.

    PubMed

    Steinel, Martin C; Whitington, Paul M

    2009-03-15

    The Drosophila atypical cadherin Flamingo plays key roles in a number of developmental processes. We have used the sensory nervous system of the Drosophila embryo to shed light on the mechanism by which Flamingo regulates axon growth. flamingo loss of function mutants display a highly penetrant sensory axon stall phenotype. The location of these axon stalls is stereotypic and corresponds to the position of intermediate target cells, with which sensory axons associate during normal development. This suggests that Flamingo mediates an interaction between the sensory neuron growth cones and these intermediate targets, which is required for continued axon advance. Mutant rescue experiments show that Flamingo expression is required only in sensory neurons for normal axon growth. The flamingo mutant phenotype can be partially rescued by expressing a Flamingo construct lacking most of the extracellular domain, suggesting that regulation of sensory axon advance by Flamingo does not absolutely depend upon a homophilic Flamingo-Flamingo interaction or its ability to mediate cell-cell adhesion. Loss of function mutants for a number of key genes that act together with Flamingo in the planar cell polarity pathway do not display the highly penetrant stalling phenotype seen in flamingo mutants.

  2. Charcot Marie Tooth 2B Peripheral Sensory Neuropathy: How Rab7 Mutations Impact NGF Signaling?

    PubMed Central

    Liu, Harry; Wu, Chengbiao

    2017-01-01

    Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B) is a debilitating autosomal dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M) in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s) enhances the cellular levels of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF) in the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation. A “gain of toxicity” model has, thus, been proposed based on these observations. However, studies of fly photo-sensory neurons indicate that the Rab7 mutation(s) causes a “loss of function”, resulting in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses. We argue that better models (rodent animals and human neurons) of CMT2B are needed to precisely define the disease mechanisms. PMID:28165391

  3. Charcot Marie Tooth 2B Peripheral Sensory Neuropathy: How Rab7 Mutations Impact NGF Signaling?

    PubMed

    Liu, Harry; Wu, Chengbiao

    2017-02-04

    Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B) is a debilitating autosomal dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M) in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s) enhances the cellular levels of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF) in the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation. A "gain of toxicity" model has, thus, been proposed based on these observations. However, studies of fly photo-sensory neurons indicate that the Rab7 mutation(s) causes a "loss of function", resulting in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses. We argue that better models (rodent animals and human neurons) of CMT2B are needed to precisely define the disease mechanisms.

  4. New form of autosomal-recessive axonal hereditary sensory motor neuropathy.

    PubMed

    Eckhardt, S M; Hicks, E M; Herron, B; Morrison, P J; Aicardi, J

    1998-09-01

    Two siblings, a male and a female, had severe axonal neuropathy and sideroblastic anemia. Despite a distinct clinical picture with areflexia, ataxia, hypotonia, optic atrophy, and progressive sensory neural hearing loss, no definite diagnosis could be reached and the older sibling died at 6 years of age of respiratory failure. It is proposed that the two affected siblings have a new form of autosomal-recessive axonal hereditary sensory motor neuropathy.

  5. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system.

    PubMed

    Lopez-Verrilli, María Alejandra; Picou, Frederic; Court, Felipe A

    2013-11-01

    Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor-like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano-vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC-derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro-regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage.

  6. Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats.

    PubMed

    Muradov, Johongir M; Ewan, Eric E; Hagg, Theo

    2013-11-01

    The mechanisms contributing to axon loss after spinal cord injury (SCI) are largely unknown but may involve microvascular loss as we have previously suggested. Here, we used a mild contusive injury (120 kdyn IH impactor) at T9 in rats focusing on ascending primary sensory dorsal column axons, anterogradely traced from the sciatic nerves. The injury caused a rapid and progressive loss of dorsal column microvasculature and oligodendrocytes at the injury site and penumbra and an ~70% loss of the sensory axons by 24 h. To model the microvascular loss, focal ischemia of the T9 dorsal columns was achieved via phototoxic activation of intravenously injected rose bengal. This caused an ~53% loss of sensory axons and an ~80% loss of dorsal column oligodendrocytes by 24 h. Axon loss correlated with the extent and axial length of microvessel and oligodendrocyte loss along the dorsal column. To determine if oligodendrocyte loss contributes to axon loss, the glial toxin ethidium bromide (EB; 0.3 μg/μl) was microinjected into the T9 dorsal columns, and resulted in an ~88% loss of dorsal column oligodendrocytes and an ~56% loss of sensory axons after 72 h. EB also caused an ~75% loss of microvessels. Lower concentrations of EB resulted in less axon, oligodendrocyte and microvessel loss, which were highly correlated (R(2) = 0.81). These data suggest that focal spinal cord ischemia causes both oligodendrocyte and axon degeneration, which are perhaps linked. Importantly, they highlight the need of limiting the penumbral spread of ischemia and oligodendrocyte loss after SCI in order to protect axons.

  7. Morphological and molecular features of the mammalian olfactory sensory neuron axons: What makes these axons so special?

    PubMed

    Nedelec, Stéphane; Dubacq, Caroline; Trembleau, Alain

    2005-03-01

    The main organization and gross morphology of the mammalian olfactory primary pathway, from the olfactory epithelium to the olfactory bulb, has been initially characterized using classical anatomical and ultrastructural approaches. During the last fifteen years, essentially thanks to the cloning of the odorant receptor genes, and to the characterization of a number of molecules expressed by the olfactory sensory neuron axons and their environment, significant new insights have been gained into the understanding of the development and adult functioning of this system. In the course of these genetic, biochemical and neuroanatomical studies, however, several molecular and structural features were uncovered that appear somehow to be unique to these axons. For example, these axons express odorant receptors in their terminal segment, and transport several mRNA species and at least two transcription factors. In the present paper, we review these unusual structural and molecular features and speculate about their possible functions in the development and maintenance of the olfactory system.

  8. Axons provide the secretory machinery for trafficking of voltage-gated sodium channels in peripheral nerve

    PubMed Central

    González, Carolina; Cánovas, José; Fresno, Javiera; Couve, Eduardo; Court, Felipe A.; Couve, Andrés

    2016-01-01

    The regulation of the axonal proteome is key to generate and maintain neural function. Fast and slow axoplasmic waves have been known for decades, but alternative mechanisms to control the abundance of axonal proteins based on local synthesis have also been identified. The presence of the endoplasmic reticulum has been documented in peripheral axons, but it is still unknown whether this localized organelle participates in the delivery of axonal membrane proteins. Voltage-gated sodium channels are responsible for action potentials and are mostly concentrated in the axon initial segment and nodes of Ranvier. Despite their fundamental role, little is known about the intracellular trafficking mechanisms that govern their availability in mature axons. Here we describe the secretory machinery in axons and its contribution to plasma membrane delivery of sodium channels. The distribution of axonal secretory components was evaluated in axons of the sciatic nerve and in spinal nerve axons after in vivo electroporation. Intracellular protein trafficking was pharmacologically blocked in vivo and in vitro. Axonal voltage-gated sodium channel mRNA and local trafficking were examined by RT-PCR and a retention-release methodology. We demonstrate that mature axons contain components of the endoplasmic reticulum and other biosynthetic organelles. Axonal organelles and sodium channel localization are sensitive to local blockade of the endoplasmic reticulum to Golgi transport. More importantly, secretory organelles are capable of delivering sodium channels to the plasma membrane in isolated axons, demonstrating an intrinsic capacity of the axonal biosynthetic route in regulating the axonal proteome in mammalian axons. PMID:26839409

  9. Severity of Demyelinating and Axonal Neuropathy Mouse Models Is Modified by Genes Affecting Structure and Function of Peripheral Nodes.

    PubMed

    Morelli, Kathryn H; Seburn, Kevin L; Schroeder, David G; Spaulding, Emily L; Dionne, Loiuse A; Cox, Gregory A; Burgess, Robert W

    2017-03-28

    Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited polyneuropathies. Mutations in 80 genetic loci can cause forms of CMT, resulting in demyelination and axonal dysfunction. The clinical presentation, including sensory deficits, distal muscle weakness, and atrophy, can vary greatly in severity and progression. Here, we used mouse models of CMT to demonstrate genetic interactions that result in a more severe neuropathy phenotype. The cell adhesion molecule Nrcam and the Na(+) channel Scn8a (NaV1.6) are important components of nodes. Homozygous Nrcam and heterozygous Scn8a mutations synergized with both an Sh3tc2 mutation, modeling recessive demyelinating Charcot-Marie-Tooth type 4C, and mutations in Gars, modeling dominant axonal Charcot-Marie-Tooth type 2D. We conclude that genetic variants perturbing the structure and function of nodes interact with mutations affecting the cable properties of axons by thinning myelin or reducing axon diameter. Therefore, genes integral to peripheral nodes are candidate modifiers of peripheral neuropathy.

  10. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons

    PubMed Central

    Rodriguez-Gil, Diego J.; Bartel, Dianna L.; Jaspers, Austin W.; Mobley, Arie S.; Imamura, Fumiaki; Greer, Charles A.

    2015-01-01

    Odorant receptors (OR) are strongly implicated in coalescence of olfactory sensory neuron (OSN) axons and the formation of olfactory bulb (OB) glomeruli. However, when ORs are first expressed relative to basal cell division and OSN axon extension is unknown. We developed an in vivo fate-mapping strategy that enabled us to follow OSN maturation and axon extension beginning at basal cell division. In parallel, we mapped the molecular development of OSNs beginning at basal cell division, including the onset of OR expression. Our data show that ORs are first expressed around 4 d following basal cell division, 24 h after OSN axons have reached the OB. Over the next 6+ days the OSN axons navigate the OB nerve layer and ultimately coalesce in glomeruli. These data provide a previously unidentified perspective on the role of ORs in homophilic OSN axon adhesion and lead us to propose a new model dividing axon extension into two phases. Phase I is OR-independent and accounts for up to 50% of the time during which axons approach the OB and begin navigating the olfactory nerve layer. Phase II is OR-dependent and concludes as OSN axons coalesce in glomeruli. PMID:25902488

  11. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  12. Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord

    PubMed Central

    Cheah, Menghon; Chew, Daniel J.; Moloney, Elizabeth B.; Verhaagen, Joost; Fässler, Reinhard

    2016-01-01

    After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9β1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a β1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6–C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory–motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient. PMID:27383601

  13. Sensory loss, pains, motor deficit and axonal regeneration in length-dependent diabetic polyneuropathy.

    PubMed

    Said, G; Baudoin, D; Toyooka, K

    2008-11-01

    In order to learn more on the occurrence of pains and motor deficit in severe diabetic polyneuropathy we reviewed the data of a series of 30 diabetic patients with an uncommonly severe length-dependent diabetic polyneuropathy (LDDP). Extensive sensory loss predominated with pains and temperature sensations and affected all four limb extremities, anterior trunk in all, plus the top of the scalp in 9 patients and the cauda equina territory in 2. Twenty patients had neuropathic pains. Symptomatic autonomic dysfunction was present in 28/30 patients, mild distal motor deficit in 12 patients, severe in only one. Vibratory sensation was impaired in the lower limbs in 18 patients; position sense in 8. In the 10 nerve biopsy specimens, the density of myelinated axons was reduced to 23 % and that of unmyelinated axons to 8.5 % of control values. Regenerating axons accounted for 32.4 +/- 19.8 % of the myelinated fibres. On teased fibre preparations 13.9 % of fibres were undergoing axonal degeneration, while 29.4 % of fibres showed focal abnormalities of the myelin sheath.We conclude that distal motor deficit occurs only after major loss of sensory fibres in LDDP; the unmyelinated axons are predominantly affected; absence of clinical improvement contrasts with the high proportion of regenerating axons; detection of alteration of pain and temperature sensation in the feet seems the best method for neuropathy screening in diabetic patients.

  14. Differential expression of axon-sorting molecules in mouse olfactory sensory neurons.

    PubMed

    Ihara, Naoki; Nakashima, Ai; Hoshina, Naosuke; Ikegaya, Yuji; Takeuchi, Haruki

    2016-08-01

    In the mouse olfactory system, the axons of olfactory sensory neurons that express the same type of odorant receptor (OR) converge to a specific set of glomeruli in the olfactory bulb (OB). It is widely accepted that expressed OR molecules instruct glomerular segregation by regulating the expression of axon-sorting molecules. Although the relationship between the expression of axon-sorting molecules and OR types has been analyzed in detail, those between the expressions of axon-sorting molecules remain to be elucidated. Here we collected the expression profiles of four axon-sorting molecules from a large number of glomeruli in the OB. These molecules demonstrated position-independent mosaic expressions, but their patterns were not identical in the OB. Comparing their expressions identified positive and negative correlations between several pairs of genes even though they showed various expressions. Furthermore, the principal component analysis revealed that the factor loadings in the principal component 1, which explain the largest amount of variation, were most likely to reflect the degree of the cyclic nucleotide-gated (CNG) channel dependence on the expression of axon-sorting molecules. Thus, neural activity generated through the CNG channel is a major component in the generation of a wide variety of expressions of axon-sorting molecules in glomerular segregation.

  15. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits

    PubMed Central

    Jiang, Yu-Qiu; Zaaimi, Boubker

    2016-01-01

    , but it is promoted after injury. Axons of the major descending motor pathway for motor skills, the corticospinal tract (CST), sprout after brain or spinal cord injury. This contributes to spontaneous spinal motor circuit repair and partial motor recovery. Knowing the determinants that enhance this plasticity is critical for functional rehabilitation. Here we examine the remodeling of CST axons directed by sensory fibers. We found that the CST projection is regulated dynamically in maturity by the competitive, activity-dependent actions of sensory fibers. Knowledge of the properties of this competition enables prediction of the remodeling of CST connections and spinal circuits after injury and informs ways to engineer target-specific control of CST connections to promote recovery. PMID:26740661

  16. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    PubMed

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  17. Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration

    PubMed Central

    Yoo, Soonmoon; van Niekerk, Erna A.; Merianda, Tanuja T.; Twiss, Jeffery L.

    2009-01-01

    Locally generating new proteins in subcellular regions provides means to spatially and temporally modify protein content in polarized cells. Recent years have seen resurgence of the concept that axonal processes of neurons can locally synthesize proteins. Experiments from a number of groups have now shown that axonal protein synthesis helps to initiate growth, provides a means to respond to guidance cues, and generates retrograde signaling complexes. Additionally, there is increasing evidence that locally synthesized proteins provide functions beyond injury responses and growth in the mature peripheral nervous system. A key regulatory event in this translational regulation is moving the mRNA templates into the axonal compartment. Transport of mRNAs into axons is a highly regulated and specific process that requires interaction of RNA binding proteins with specific cis-elements or structures within the mRNAs. mRNAs are transported in ribonucleoprotein particles that interact with microtubule motor proteins for long-range axonal transport and likely use microfilaments for short-range movement in the axons. The mature axon is able to recruit mRNAs into translation with injury and possibly other stimuli suggesting that mRNAs can be stored in a dormant state in the distal axon until needed. Axotomy triggers a shift in the populations of mRNAs localized to axons indicating a dynamic regulation of the specificity of the axonal transport machinery. In this review, we discuss how axonal mRNA transport and localization are regulated to achieve specific changes in axonal RNA content in response to axonal stimuli. PMID:19699200

  18. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    PubMed

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  19. Acute motor-sensory axonal neuropathy with hyperreflexia in Guillain-Barré syndrome.

    PubMed

    Tosun, Ayşe; Dursun, Şiar; Akyildiz, Utku Ogan; Oktay, Seçil; Tataroğlu, Cengiz

    2015-04-01

    Guillain-Barré syndrome is an acute inflammatory autoimmune polyradiculoneuritis. Progressive motor weakness and areflexia are essential for its diagnosis. Hyperreflexia has rarely been reported in the early healing period of Guillain-Barré syndrome following Campylobacter jejuni infection in patients with acute motor axonal neuropathy with antiganglioside antibody positivity. In this study, we report a 12-year-old girl presenting with complaints of inability to walk, numbness in hands and feet, and hyperactive deep tendon reflexes since the onset of the clinical picture, diagnosed with acute motor-sensory axonal neuropathy type of Guillain-Barré syndrome.

  20. Sensory-motor axonal polyneuropathy involving cranial nerves: An uncommon manifestation of disulfiram toxicity.

    PubMed

    Santos, Telma; Martins Campos, António; Morais, Hugo

    2017-01-01

    Disulfiram (tetraethylthiuram disulfide) has been used for the treatment of alcohol dependence. An axonal sensory-motor polyneuropathy with involvement of cranial pairs due to disulfiram is exceedingly rare. The authors report a unique case of an extremely severe axonal polyneuropathy involving cranial nerves that developed within weeks after a regular dosage of 500mg/day disulfiram. To the authors best knowledge, such a severe and rapidly-progressive course has never been described with disulfiram dosages of only 500mg/day.

  1. STAT3 phosphorylation in injured axons before sensory and motor neuron nuclei: potential role for STAT3 as a retrograde signaling transcription factor.

    PubMed

    Lee, Nancy; Neitzel, Karen L; Devlin, Brenda K; MacLennan, A John

    2004-07-05

    STAT3 is a latent transcription factor that is activated by plasma membrane growth factor receptor complexes. Conditional gene disruption data indicate that it contributes to the survival of cranial motor neurons after peripheral nerve lesion. In agreement, levels of activated STAT3 (Tyr705-phosphorylated STAT3) have been shown to increase in the nuclei of adult cranial motor neurons during their regeneration after the same injury. The data presented here demonstrate that STAT3 is similarly but not identically affected in sciatic motor neurons after sciatic nerve injury. In addition, we find that sensory neuron nuclei also display an analogous increase in activated STAT3, thereby supporting a role for STAT3 in the survival and regeneration of these cells. Most interesting, the present data indicate that peripheral nerve lesion leads to a very rapid activation of STAT3 in axons at the lesion site. This response increases during the first 24 hours after injury and extends back to the motor and sensory neurons such that phospho-STAT3-immunoreactive axons are first detected in the dorsal root ganglia and ventral spinal cord at the same postlesion time intervals at which the activated STAT3 is first detected in the neuronal nuclei. Together these data raise the possibility that axonal STAT3, activated at the injury site, acts as a retrograde signaling transcription factor, which promotes the survival and regeneration of both sensory and motor neurons.

  2. Schwann cell phenotype is regulated by axon modality and central-peripheral location, and persists in vitro.

    PubMed

    Brushart, T M; Aspalter, M; Griffin, J W; Redett, R; Hameed, H; Zhou, C; Wright, M; Vyas, A; Höke, A

    2013-09-01

    Myelinating Schwann cells express distinct sensory and motor phenotypes as defined by their differing patterns of growth factor production (Hoke et al., 2006). The heterogeneous growth factor requirements of sensory and motor neurons, however, suggest that Schwann cell phenotype might vary across a broad spectrum. To explore this possibility, we selectively denervated six discrete Schwann cell populations: dorsal root, cutaneous nerve, cutaneous unmyelinated axons, muscle nerve afferents, muscle nerve efferents, and ventral root. Real-time RT-PCR for 11 growth factors was performed on the 6 target Schwann cell populations 5, 15, and 30 days after their denervation, and on normal cutaneous nerve, muscle nerve, ventral root, and dorsal root to establish baseline expression levels. Within the denervated axon populations, IGF-1 and VEGF were expressed most prominently in cutaneous nerve, HGF, NGF, and BDNF in cutaneous nerve and dorsal root, GDNF in dorsal root and ventral root, PTN in the ventral root and muscle nerve efferents, and IGF-2 in both afferents and efferents within muscle nerve; expression of CNTF, FGF-2 and NT-3 was not modality or location specific. ELISA for NGF, BDNF, and GDNF confirmed that gene expression correlated with protein concentration. These findings demonstrate that growth factor expression by denervated Schwann cells is not only subject to further regulation within the previously-defined sensory and motor groups, but also varies along a central-peripheral axis. The traditional view of myelinating Schwann cells as a homogenous population is modified by the realization that complex regulation produces a wide variety of Schwann cell phenotypes. Additionally, we found that Schwann cell phenotype is maintained for 2 weeks in vitro, demonstrating that it may survive several cell divisions without instructive cues from either axons or basal lamina.

  3. A New Regulatory Mechanism for Kv7.2 Protein During Neuropathy: Enhanced Transport from the Soma to Axonal Terminals of Injured Sensory Neurons

    PubMed Central

    Cisneros, Elsa; Roza, Carolina; Jackson, Nieka; López-García, José Antonio

    2015-01-01

    Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics. PMID:26696829

  4. Schwann Cell Expressed Nogo-B Modulates Axonal Branching of Adult Sensory Neurons Through the Nogo-B Receptor NgBR

    PubMed Central

    Eckharter, Christoph; Junker, Nina; Winter, Lilli; Fischer, Irmgard; Fogli, Barbara; Kistner, Steffen; Pfaller, Kristian; Zheng, Binhai; Wiche, Gerhard; Klimaschewski, Lars; Schweigreiter, Rüdiger

    2015-01-01

    In contrast to the central nervous system (CNS) nerve fibers do regenerate in the peripheral nervous system (PNS) although in a clinically unsatisfying manner. A major problem is excessive sprouting of regenerating axons which results in aberrant reinnervation of target tissue and impaired functional recovery. In the CNS, the reticulon protein Nogo-A has been identified as a prominent oligodendrocyte expressed inhibitor of long-distance growth of regenerating axons. We show here that the related isoform Nogo-B is abundantly expressed in Schwann cells in the PNS. Other than Nogo-A in oligodendrocytes, Nogo-B does not localize to the myelin sheath but is detected in the ER and the plasma membrane of Schwann cells. Adult sensory neurons that are cultured on nogo-a/b deficient Schwann cells form significantly fewer axonal branches vs. those on wildtype Schwann cells, while their maximal axonal extension is unaffected. We demonstrate that this effect of Nogo-B on neuronal morphology is restricted to undifferentiated Schwann cells and is mediated by direct physical contact between these two cell types. Moreover, we show that blocking the Nogo-B specific receptor NgBR, which we find expressed on sensory neurons and to interact with Schwann cell expressed Nogo-B, produces the same branching phenotype as observed after deletion of Nogo-B. These data provide evidence for a novel function of the nogo gene that is implemented by the Nogo-B isoform. The remarkably specific effects of Nogo-B/NgBR on axonal branching, while leaving axonal extension unaffected, are of potential clinical relevance in the context of excessive axonal sprouting after peripheral nerve injury. Main Points Nogo-B is prominently expressed in Schwann cells and localizes to the ER and plasma membrane. It distributes to the external cytoplasmic compartment of Schwann cells in vivo, but is absent from the myelin sheath. Genetic deletion of Nogo-B in Schwann cells reduces axonal branching, but not long

  5. Lithium Enhances Axonal Regeneration in Peripheral Nerve by Inhibiting Glycogen Synthase Kinase 3β Activation

    PubMed Central

    Su, Huanxing; Yuan, Qiuju; Qin, Dajiang; Yang, Xiaoying; So, Kwok-Fai; Wu, Wutian

    2014-01-01

    Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN) is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to investigate potential inhibitory signals which influence axonal regeneration after root avulsion injury. The results of the study showed that root avulsion triggered GSK-3β activation in the injured motoneurons and remaining axons in the ventral funiculus. Systemic application of a clinical dose of lithium suppressed activated GSK-3β in the lesioned spinal cord to the normal level and induced extensive axonal regeneration into replanted ventral roots. Our study suggests that GSK-3β activity is involved in negative regulation for axonal elongation and regeneration and lithium, the specific GSK-3β inhibitor, enhances motoneuron regeneration from CNS to PNS. PMID:24967390

  6. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    PubMed

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-03

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury.

  7. Sensory map transfer to the neocortex relies on pretarget ordering of thalamic axons.

    PubMed

    Lokmane, Ludmilla; Proville, Rémi; Narboux-Nême, Nicolas; Györy, Ildiko; Keita, Maryama; Mailhes, Caroline; Léna, Clément; Gaspar, Patricia; Grosschedl, Rudolf; Garel, Sonia

    2013-05-06

    Sensory maps, such as the representation of mouse facial whiskers, are conveyed throughout the nervous system by topographic axonal projections that preserve neighboring relationships between adjacent neurons. In particular, the map transfer to the neocortex is ensured by thalamocortical axons (TCAs), whose terminals are topographically organized in response to intrinsic cortical signals. However, TCAs already show a topographic order early in development, as they navigate toward their target. Here, we show that this preordering of TCAs is required for the transfer of the whisker map to the neocortex. Using Ebf1 conditional inactivation that specifically perturbs the development of an intermediate target, the basal ganglia, we scrambled TCA topography en route to the neocortex without affecting the thalamus or neocortex. Notably, embryonic somatosensory TCAs were shifted toward the visual cortex and showed a substantial intermixing along their trajectory. Somatosensory TCAs rewired postnatally to reach the somatosensory cortex but failed to form a topographic anatomical or functional map. Our study reveals that sensory map transfer relies not only on positional information in the projecting and target structures but also on preordering of axons along their trajectory, thereby opening novel perspectives on brain wiring.

  8. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury.

    PubMed

    Chen, Peiwen; Piao, Xianhua; Bonaldo, Paolo

    2015-11-01

    The peripheral nervous system (PNS) has remarkable regenerative abilities after injury. Successful PNS regeneration relies on both injured axons and non-neuronal cells, including Schwann cells and immune cells. Macrophages are the most notable immune cells that play key roles in PNS injury and repair. Upon peripheral nerve injury, a large number of macrophages are accumulated at the injury sites, where they not only contribute to Wallerian degeneration, but also are educated by the local microenvironment and polarized to an anti-inflammatory phenotype (M2), thus contributing to axonal regeneration. Significant progress has been made in understanding how macrophages are educated and polarized in the injured microenvironment as well as how they contribute to axonal regeneration. Following the discussion on the main properties of macrophages and their phenotypes, in this review, we will summarize the current knowledge regarding the mechanisms of macrophage infiltration after PNS injury. Moreover, we will discuss the recent findings elucidating how macrophages are polarized to M2 phenotype in the injured PNS microenvironment, as well as the role and underlying mechanisms of macrophages in peripheral nerve injury, Wallerian degeneration and regeneration. Furthermore, we will highlight the potential application by targeting macrophages in treating peripheral nerve injury and peripheral neuropathies.

  9. Involvement of ADAM10 in axonal outgrowth and myelination of the peripheral nerve.

    PubMed

    Jangouk, Parastoo; Dehmel, Thomas; Meyer Zu Hörste, Gerd; Ludwig, Andreas; Lehmann, Helmar C; Kieseier, Bernd C

    2009-12-01

    The disintegrin and metalloproteinase 10 (ADAM10) is a membrane-anchored metalloproteinase with both proteolytic and disintegrin characteristics. Here, we investigate the expression, regulation, and functional role of ADAM10 in axonal outgrowth and myelination of the peripheral nerve. Expression pattern analysis of 11 ADAM family members in co-cultures of rat dorsal root ganglia (DRG) neurons and Schwann cells (SCs) demonstrated the most pronounced mRNA expression for ADAM10. In further studies, ADAM10 was found to be consistently upregulated in DRG-SC co-cultures before the induction of myelination. Neurons as well as SCs widely expressed ADAM10 at the protein level. In neurons, the expression of ADAM10 was exclusively limited to the axons before the induction of myelination. Inhibition of ADAM10 activity by the hydroxamate-based inhibitors GI254023X and GW280264X resulted in a significant decrease in the mean axonal length. These data suggest that ADAM10 represents a prerequisite for myelination, although its activity is not required during the process of myelination itself as demonstrated by expression analysis of myelin protein zero (P0) and Sudan black staining. Hence, during the process of myelin formation, ADAM10 is highly upregulated and appears to be critically involved in axonal outgrowth that is a requirement for myelination in the peripheral nerve.

  10. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    NASA Astrophysics Data System (ADS)

    Stoyanova, Irina I.; van Wezel, Richard J. A.; Rutten, Wim L. C.

    2013-12-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.

  11. Mammalian Target of Rapamycin (mTOR) Activation Increases Axonal Growth Capacity of Injured Peripheral Nerves*

    PubMed Central

    Abe, Namiko; Borson, Steven H.; Gambello, Michael J.; Wang, Fan; Cavalli, Valeria

    2010-01-01

    Unlike neurons in the central nervous system (CNS), injured neurons in the peripheral nervous system (PNS) can regenerate their axons and reinnervate their targets. However, functional recovery in the PNS often remains suboptimal, especially in cases of severe damage. The lack of regenerative ability of CNS neurons has been linked to down-regulation of the mTOR (mammalian target of rapamycin) pathway. We report here that PNS dorsal root ganglial neurons (DRGs) activate mTOR following damage and that this activity enhances axonal growth capacity. Furthermore, genetic up-regulation of mTOR activity by deletion of tuberous sclerosis complex 2 (TSC2) in DRGs is sufficient to enhance axonal growth capacity in vitro and in vivo. We further show that mTOR activity is linked to the expression of GAP-43, a crucial component of axonal outgrowth. However, although TSC2 deletion in DRGs facilitates axonal regrowth, it leads to defects in target innervation. Thus, whereas manipulation of mTOR activity could provide new strategies to stimulate nerve regeneration in the PNS, fine control of mTOR activity is required for proper target innervation. PMID:20615870

  12. Acute motor-sensory axonal neuropathy associated with active systemic lupus erythematosus and anticardiolipin antibodies.

    PubMed

    Ubogu, E E; Zaidat, O O; Suarez, J I

    2001-10-01

    Acute motor-sensory axonal neuropathy (AMSAN) is an axonal variant of Guillian-Barré syndrome (GBS) that presents with acute ascending quadriparesis. This has generally been described in association with Campylobacter jejuni infections or with anti-ganglioside antibodies. Known cases have shown a slow recovery and a poor prognosis. We report a case with clinical and electrophysiological evidence of AMSAN in association with active systemic lupus erythematosus (SLE) and anticardiolipin antibodies but not the other associations, with a rapid response to combination immunosuppressant and intravenous immunoglobulin (IVIg) therapy. The association between AMSAN and SLE has not been previously described. This case illustrates that early recognition and the utilization of electrophysiologic techniques may be beneficial in the diagnosis and management of GBS associated with SLE. Fulminant or rapidly progressive cases should be managed in specialized intensive care units. Combination therapy of immunosuppressants and IVIg may be beneficial in non-vasculitic axonal radiculo-neuropathies associated with SLE, resulting in good outcomes.

  13. Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy

    PubMed Central

    Perry, TracyAnn; Holloway, Harold W.; Weerasuriya, Ananda; Mouton, Peter R.; Duffy, Kara; Mattison, Julie A.; Greig, Nigel H.

    2007-01-01

    Pyridoxine (vitamin B6) intoxicated rodents develop a peripheral neuropathy characterized by sensory nerve conduction deficits associated with disturbances of nerve fiber geometry and axonal atrophy. To investigate the possibility that glucagon-like peptide-1 (7-36)-amide (GLP-1) receptor agonism may influence axonal structure and function through neuroprotection neurotrophic support, effects of GLP-1 and its long acting analog, Exendin-4 (Ex4) treatment on pyridoxine-induced peripheral neuropathy were examined in rats using behavioral and morphometric techniques. GLP-1 is an endogenous insulinotropic peptide secreted from the gut in response to the presence of food. GLP-1 receptors (GLP-1R) are coupled to the cAMP second messenger pathway, and are expressed widely throughout neural tissues of humans and rodents. Recent studies have established that GLP-1 and Ex4, have multiple synergistic effects on glucose-dependent insulin secretion pathways of pancreatic β-cells and on neural plasticity. Data reported here suggest that clinically relevant doses of GLP-1 and Ex4 may offer some protection against the sensory peripheral neuropathy induced by pyridoxine. Our findings suggest a potential role for these peptides in the treatment of neuropathies, including that associated with type II diabetes mellitus. PMID:17125767

  14. Axon Growth and Guidance Genes Identify Nascent, Immature, and Mature Olfactory Sensory Neurons

    PubMed Central

    McIntyre, Jeremy C.; Titlow, William B.; McClintock, Timothy S.

    2016-01-01

    Neurogenesis of projection neurons requires that axons be initiated, extended, and connected. Differences in the expression of axon growth and guidance genes must drive these events, but comprehensively characterizing these differences in a single neuronal type has not been accomplished. Guided by a catalog of gene expression in olfactory sensory neurons (OSNs), in situ hybridization and immunohistochemistry revealed that Cxcr4 and Dbn1, two axon initiation genes, marked the developmental transition from basal progenitor cells to immature OSNs in the olfactory epithelium. The CXCR4 immunoreactivity of these nascent OSNs overlapped partially with markers of proliferation of basal progenitor cells and partially with immunoreactivity for GAP43, the canonical marker of immature OSNs. Intracellular guidance cue signaling transcripts Ablim1, Crmp1, Dypsl2, Dpysl3, Dpysl5, Gap43, Marcskl1, and Stmn1–4 were specific to, or much more abundant in, the immature OSN layer. Receptors that mediate axonal inhibition or repulsion tended to be expressed in both immature and mature OSNs (Plxna1, Plxna4, Nrp2, Efna5) or specifically in mature OSNs (Plxna3, Unc5b, Efna3, Epha5, Epha7), although some were specific to immature OSNs (Plxnb1, Plxnb2, Plxdc2, Nrp1). Cell adhesion molecules were expressed either by both immature and mature OSNs (Dscam, Ncam1, Ncam2, Nrxn1) or solely by immature OSNs (Chl1, Nfasc1, Dscaml1). Given the loss of intracellular signaling protein expression, the continued expression of guidance cue receptors in mature OSNs is consistent with a change in the role of these receptors, perhaps to sending signals back to the cell body and nucleus. PMID:20882566

  15. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration.

    PubMed

    Landowski, Lila M; Pavez, Macarena; Brown, Lachlan S; Gasperini, Robert; Taylor, Bruce V; West, Adrian K; Foa, Lisa

    2016-01-15

    The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system.

  16. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target.

    PubMed

    Taku, Alemji A; Marcaccio, Christina L; Ye, Wenda; Krause, Gregory J; Raper, Jonathan A

    2016-01-01

    Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.

  17. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target

    PubMed Central

    Taku, Alemji A.; Marcaccio, Christina L.; Ye, Wenda; Krause, Gregory J.; Raper, Jonathan A.

    2016-01-01

    Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target. PMID:26732841

  18. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: Implications for chemotherapy-induced peripheral neuropathy

    PubMed Central

    LaPointe, Nichole E.; Morfini, Gerardo; Brady, Scott T.; Feinstein, Stuart C.; Wilson, Leslie; Jordan, Mary Ann

    2014-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a serious, painful and dose-limiting side effect of cancer drugs that target microtubules. The mechanisms underlying the neuronal damage are unknown, but may include disruption of fast axonal transport, an essential microtubule-based process that moves cellular components over long distances between neuronal cell bodies and nerve terminals. This idea is supported by the “dying back” pattern of degeneration observed in CIPN, and by the selective vulnerability of sensory neurons bearing the longest axonal projections. In this study, we test the hypothesis that microtubule-targeting drugs disrupt fast axonal transport using vesicle motility assays in isolated squid axoplasm and a cell-free microtubule gliding assay with defined components. We compare four clinically-used drugs, eribulin, vincristine, paclitaxel and ixabepilone. Of these, eribulin is associated with a relatively low incidence of severe neuropathy, while vincristine has a relatively high incidence. In vesicle motility assays, we found that all four drugs inhibited anterograde (conventional kinesin-dependent) fast axonal transport, with the potency being vincristine = ixabepilone > paclitaxel = eribulin. Interestingly, eribulin and paclitaxel did not inhibit retrograde (cytoplasmic dynein-dependent) fast axonal transport, in contrast to vincristine and ixabepilone. Similarly, vincristine and ixabepilone both exerted significant inhibitory effects in an in vitro microtubule gliding assay consisting of recombinant kinesin (kinesin-1) and microtubules composed of purified bovine brain tubulin, whereas paclitaxel and eribulin had negligible effects. Our results suggest that (i) inhibition of microtubule-based fast axonal transport may be a significant contributor to neurotoxicity induced by microtubule-targeting drugs, and (ii) that individual microtubule-targeting drugs affect fast axonal transport through different mechanisms. PMID:23711742

  19. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury

    PubMed Central

    Zigmond, Richard E.

    2012-01-01

    Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the “cell body response.” The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons. PMID:22319466

  20. Roundabout gene family functions during sensory axon guidance in the drosophila embryo are mediated by both Slit-dependent and Slit-independent mechanisms.

    PubMed

    Parsons, Linda; Harris, Kerri-Lee; Turner, Kirsty; Whitington, Paul M

    2003-12-15

    roundabout (robo) family genes play key roles in axon guidance in a wide variety of animals. We have investigated the roles of the robo family members, robo, robo2, and robo3, in the guidance of sensory axons in the Drosophila embryo. In robo(-/-), slit(-/-), and robo(-/+) slit(-/+) mutants, lateral cluster sensory neurons misproject to cells and axons in the nearby ventral' (v') cluster. These phenotypes, together with the normal expression pattern of Slit and Robo, suggest that Slit ligand secreted from the epidermis interacts with Robo receptors on lateral cluster sensory growth cones to limit their exploration of nearby attractive substrates. The most common sensory axon phenotype seen in robo2(-/-) mutants was misprojection of dorsal cluster sensory axons away from their normal growth substrate, the transverse connective of the trachea. slit appears to play no role in this aspect of sensory axon growth. Robo2 is expressed, not on the dorsal sensory axons, but on the transverse connective. These results suggest a novel, non-cell-autonomous mechanism for axon guidance by robo family genes: Robo2 expressed on the trachea acts as an attractant for the dorsal sensory growth cones.

  1. A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo

    NASA Astrophysics Data System (ADS)

    FitzGerald, James J.; Lago, Natalia; Benmerah, Samia; Serra, Jordi; Watling, Christopher P.; Cameron, Ruth E.; Tarte, Edward; Lacour, Stéphanie P.; McMahon, Stephen B.; Fawcett, James W.

    2012-02-01

    Neural interfaces are implanted devices that couple the nervous system to electronic circuitry. They are intended for long term use to control assistive technologies such as muscle stimulators or prosthetics that compensate for loss of function due to injury. Here we present a novel design of interface for peripheral nerves. Recording from axons is complicated by the small size of extracellular potentials and the concentration of current flow at nodes of Ranvier. Confining axons to microchannels of ˜100 µm diameter produces amplified potentials that are independent of node position. After implantation of microchannel arrays into rat sciatic nerve, axons regenerated through the channels forming ‘mini-fascicles’, each typically containing ˜100 myelinated fibres and one or more blood vessels. Regenerated motor axons reconnected to distal muscles, as demonstrated by the recovery of an electromyogram and partial prevention of muscle atrophy. Efferent motor potentials and afferent signals evoked by muscle stretch or cutaneous stimulation were easily recorded from the mini-fascicles and were in the range of 35-170 µV. Individual motor units in distal musculature were activated from channels using stimulus currents in the microampere range. Microchannel interfaces are a potential solution for applications such as prosthetic limb control or enhancing recovery after nerve injury.

  2. Activation of axonal Kv7 channels in human peripheral nerve by flupirtine but not placebo - therapeutic potential for peripheral neuropathies: results of a randomised controlled trial

    PubMed Central

    2013-01-01

    Background Flupirtine is an analgesic with muscle-relaxing properties that activates Kv7 potassium channels. Kv7 channels are expressed along myelinated and unmyelinated peripheral axons where their activation is expected to reduce axonal excitability and potentially contribute to flupirtine’s clinical profile. Trial design To investigate the electrical excitability of peripheral myelinated axons following orally administered flupirtine, in-vitro experiments on isolated peripheral nerve segments were combined with a randomised, double-blind, placebo-controlled, phase I clinical trial (RCT). Methods Threshold tracking was used to assess the electrical excitability of myelinated axons in isolated segments of human sural nerve in vitro and motoneurones to abductor pollicis brevis (APB) in situ in healthy subjects. In addition, the effect of flupirtine on ectopic action potential generation in myelinated axons was examined using ischemia of the lower arm. Results Flupirtine (3-30 μM) shortened the relative refractory period and increased post-conditioned superexcitability in human myelinated axons in vitro. Similarly, in healthy subjects the relative refractory period of motoneurones to APB was reduced 2 hours after oral flupirtine but not following placebo. Whether this effect was due to a direct action of flupirtine on peripheral axons or temperature could not be resolved. Flupirtine (200 mg p.o.) also reduced ectopic axonal activity induced by 10 minutes of lower arm ischemia. In particular, high frequency (ca. 200 Hz) components of EMG were reduced in the post-ischemic period. Finally, visual analogue scale ratings of sensations perceived during the post-ischemic period were reduced following flupirtine (200 mg p.o.). Conclusions Clinical doses of flupirtine reduce the excitability of peripheral myelinated axons. Trial registration ClinicalTrials registration is NCT01450865. PMID:23394517

  3. Neuronal ADAM10 Promotes Outgrowth of Small-Caliber Myelinated Axons in the Peripheral Nervous System.

    PubMed

    Meyer zu Horste, Gerd; Derksen, Angelika; Stassart, Ruth; Szepanowski, Fabian; Thanos, Melissa; Stettner, Mark; Boettcher, Christina; Lehmann, Helmar C; Hartung, Hans-Peter; Kieseier, Bernd C

    2015-11-01

    The regulation of myelination and axonal outgrowth in the peripheral nervous system is controlled by a complex signaling network involving various signaling pathways. Members of the A Disintegrin And Metalloproteinase (ADAM) family are membrane-anchored proteinases with both proteolytic and disintegrin characteristics that modulate the function of signaling molecules. One family member, ADAM17, is known to influence myelination by cleaving and thus regulating one of the key signals, neuregulin-1, which controls peripheral nervous system myelination. A similar function for ADAM10 had been suggested by previous in vitro studies. Here, we assessed whether ADAM10 exerts a similar function in vivo and deleted ADAM10 in a cell type-specific manner in either neurons or Schwann cells. We found that ADAM10 is not required in either Schwann cells or neurons for normal myelination during development or for remyelination after injury. Instead, ADAM10 is required specifically in neurons for the outgrowth of myelinated small-fiber axons in vitro and after injury in vivo. Thus, we report for the first time a neuron-intrinsic function of ADAM10 in axonal regeneration that is distinct from that of the related protein family member ADAM17 and that may have implications for targeting ADAM function in nervous system diseases.

  4. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program

    PubMed Central

    Chandran, Vijayendran; Coppola, Giovanni; Nawabi, Homaira; Omura, Takao; Versano, Revital; Huebner, Eric A.; Zhang, Alice; Costigan, Michael; Yekkirala, Ajay; Barrett, Lee; Blesch, Armin; Michaelevski, Izhak; Davis-Turak, Jeremy; Gao, Fuying; Langfelder, Peter; Horvath, Steve; He, Zhigang; Benowitz, Larry; Fainzilber, Mike; Tuszynski, Mark; Woolf, Clifford J.; Geschwind, Daniel H.

    2016-01-01

    SUMMARY The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology. PMID:26898779

  5. Sensory neuropathy in progressive motor neuronopathy (pmn) mice is associated with defects in microtubule polymerization and axonal transport.

    PubMed

    Schäfer, Michael K; Bellouze, Sarah; Jacquier, Arnaud; Schaller, Sébastien; Richard, Laurence; Mathis, Stéphane; Vallat, Jean-Michel; Haase, Georg

    2016-08-04

    Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) are now recognized as multi-system disorders also involving various non-motor neuronal cell types. The precise extent and mechanistic basis of non-motor neuron damage in human ALS and ALS animal models remain however unclear. To address this, we here studied progressive motor neuronopathy (pmn) mice carrying a missense loss-of-function mutation in tubulin binding cofactor E (TBCE). These mice manifest a particularly aggressive form of motor axon dying back and display a microtubule loss, similar to that induced by human ALS-linked TUBA4A mutations. Using whole nerve confocal imaging of pmn × thy1.2-YFP16 fluorescent reporter mice and electron microscopy, we demonstrate axonal discontinuities, bead-like spheroids and ovoids in pmn suralis nerves indicating prominent sensory neuropathy. The axonal alterations qualitatively resemble those in phrenic motor nerves but do not culminate in the loss of myelinated fibers. We further show that the pmn mutation decreases the level of TBCE, impedes microtubule polymerization in dorsal root ganglion (DRG) neurons and causes progressive loss of microtubules in large and small caliber suralis axons. Live imaging of axonal transport using GFP-tagged tetanus toxin C-fragment (GFP-TTC) demonstrates defects in microtubule-based transport in pmn DRG neurons, providing a potential explanation for the axonal alterations in sensory nerves. This study unravels sensory neuropathy as a pathological feature of mouse pmn, and discusses the potential contribution of cytoskeletal defects to sensory neuropathy in human motor neuron disease.

  6. Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system

    PubMed Central

    Farah, Mohamed H.; Pan, Bao Han; Hoffman, Paul N.; Ferraris, Dana; Tsukamoto, Takashi; Nguyen, Thien; Wong, Philip C.; Price, Donald L.; Slusher, Barbara S.; Griffin, John W.

    2012-01-01

    β- site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is an aspartyl protease best known for its role in generating the amyloid β peptides that are present in plaques of Alzheimer's Disease. BACE1 has been an attractive target for drug development. In cultured embryonic neurons BACE1-cleaved N-terminal APP is further processed to generate a fragment that can trigger axonal degeneration, suggesting a vital role for BACE1 in axonal health. In addition, BACE1 cleaves neuregulin 1 type III, a protein critical for myelination of peripheral axons by Schwann cells during development. Here, we asked if axonal degeneration or axonal regeneration in adult nerves might be affected by inhibition or elimination of BACE1. We report that BACE1 knockout and wild-type nerves degenerated at a similar rate after axotomy and to a similar extent in the experimental neuropathies produced by administration of paclitaxel and acrylamide. These data indicate N-APP is not the sole culprit in axonal degeneration in adult nerves. Unexpectedly, however, we observed that BACE1 knockout mice had markedly enhanced clearance of axonal and myelin debris from degenerated fibers, accelerated axonal regeneration, and earlier reinnervation of neuromuscular junctions, compared to littermate controls. These observations were reproduced in part by pharmacological inhibition of BACE1. These data suggest BACE1 inhibition as a therapeutic approach to accelerate regeneration and recovery after peripheral nerve damage. PMID:21490216

  7. An RNA Binding Protein Promotes Axonal Integrity in Peripheral Neurons by Destabilizing REST

    PubMed Central

    Cargnin, Francesca; Nechiporuk, Tamilla; Müllendorff, Karin; Stumpo, Deborah J.; Blackshear, Perry J.; Ballas, Nurit

    2014-01-01

    The RE1 Silencing Transcription Factor (REST) acts as a governor of the mature neuronal phenotype by repressing a large consortium of neuronal genes in non-neuronal cells. In the developing nervous system, REST is present in progenitors and downregulated at terminal differentiation to promote acquisition of mature neuronal phenotypes. Paradoxically, REST is still detected in some regions of the adult nervous system, but how REST levels are regulated, and whether REST can still repress neuronal genes, is not known. Here, we report that homeostatic levels of REST are maintained in mature peripheral neurons by a constitutive post-transcriptional mechanism. Specifically, using a three-hybrid genetic screen, we identify the RNA binding protein, ZFP36L2, associated previously only with female fertility and hematopoiesis, and show that it regulates REST mRNA stability. Dorsal root ganglia in Zfp36l2 knock-out mice, or wild-type ganglia expressing ZFP36L2 shRNA, show higher steady-state levels of Rest mRNA and protein, and extend thin and disintegrating axons. This phenotype is due, at least in part, to abnormally elevated REST levels in the ganglia because the axonal phenotype is attenuated by acute knockdown of REST in Zfp36l2 KO DRG explants. The higher REST levels result in lower levels of target genes, indicating that REST can still fine-tune gene expression through repression. Thus, REST levels are titrated in mature peripheral neurons, in part through a ZFP36L2-mediated post-transcriptional mechanism, with consequences for axonal integrity. PMID:25505318

  8. Cxcl12/Cxcr4 chemokine signaling is required for placode assembly and sensory axon pathfinding in the zebrafish olfactory system.

    PubMed

    Miyasaka, Nobuhiko; Knaut, Holger; Yoshihara, Yoshihiro

    2007-07-01

    Positioning neurons in the right places and wiring axons to the appropriate targets are essential events for establishment of neural circuits. In the zebrafish olfactory system, precursors of olfactory sensory neurons (OSNs) assemble into a compact cluster to form the olfactory placode. Subsequently, OSNs differentiate and extend their axons to the presumptive olfactory bulb with high precision. In this study, we aim to elucidate the molecular mechanism underlying these two developmental processes. cxcr4b, encoding a chemokine receptor, is expressed in the migrating olfactory placodal precursors, and cxcl12a (SDF-1a), encoding a ligand for Cxcr4b, is expressed in the abutting anterior neural plate. The expression of cxcr4b persists in the olfactory placode at the initial phase of OSN axon pathfinding. At this time, cxcl12a is expressed along the placode-telencephalon border and at the anterior tip of the telencephalon, prefiguring the route and target of OSN axons, respectively. Interfering with Cxcl12a/Cxcr4b signaling perturbs the assembly of the olfactory placode, resulting in the appearance of ventrally displaced olfactory neurons. Moreover, OSN axons frequently fail to exit the olfactory placode and accumulate near the placode-telencephalon border in the absence of Cxcr4b-mediated signaling. These data indicate that chemokine signaling contributes to both the olfactory placode assembly and the OSN axon pathfinding in zebrafish.

  9. 4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy.

    PubMed

    Akude, Eli; Zherebitskaya, Elena; Roy Chowdhury, Subir K; Girling, Kimberly; Fernyhough, Paul

    2010-01-01

    Modification of proteins by 4-hydroxy-2-nonenal (4-HNE) has been proposed to cause neurotoxicity in a number of neurodegenerative diseases, including distal axonopathy in diabetic sensory neuropathy. We tested the hypothesis that exposure of cultured adult rat sensory neurons to 4-HNE would result in the formation of amino acid adducts on mitochondrial proteins and that this process would be associated with impaired mitochondrial function and axonal regeneration. In addition, we compared 4-HNE-induced axon pathology with that exhibited by neurons isolated from diabetic rats. Cultured adult rat dorsal root ganglion (DRG) sensory neurons were incubated with varying concentrations of 4-HNE. Cell survival, axonal morphology, and level of axon outgrowth were assessed. In addition, video microscopy of live cells, western blot, and immunofluorescent staining were utilized to detect protein adduct formation by 4-HNE and to localize actively respiring mitochondria. 4-HNE induced formation of protein adducts on cytoskeletal and mitochondrial proteins, and impaired axon regeneration by approximately 50% at 3 microM while having no effect on neuronal survival. 4-HNE initiated formation of aberrant axonal structures and caused the accumulation of mitochondria in these dystrophic structures. Neurons treated with 4-HNE exhibited a distal loss of active mitochondria. Finally, the distal axonopathy and the associated aberrant axonal structures generated by 4-HNE treatment mimicked axon pathology observed in DRG sensory neurons isolated from diabetic rats and replicated aspects of neurodegeneration observed in human diabetic sensory neuropathy.

  10. Role of sensory-motor cortex activity in postnatal development of corticospinal axon terminals in the cat.

    PubMed

    Friel, Kathleen M; Martin, John H

    2005-04-25

    The initial pattern of corticospinal (CS) terminations, as axons grow into the spinal gray matter, bears little resemblance to the pattern later in development and in maturity. This is because of extensive axon pruning and local axon terminal growth during early postnatal development. Pruning is driven by activity-dependent competition between the CS systems on each side during postnatal weeks (PW) 3-7. It is not known whether CS axon terminal growth and final topography are activity dependent. We examined the activity dependence of CS axon terminal growth and topography at different postnatal times. We inactivated sensory-motor cortex by infusion of the gamma-aminobutyric acid type A (GABA(A)) agonist muscimol and traced CS axons from the inactivated side. Inactivation between PW5 and PW7 produced permanent changes in projection topography, reduced local axon branching, and prevented development of dense clusters of presynaptic sites, which are normally characteristic of CS terminals. Inactivation at younger (PW3-5) and older (PW8-12) ages did not affect projection topography but impeded development of local axon branching and presynaptic site clusters. These effects were not due to increased cortical cell death during inactivation. Neural activity plays an important role in determining the morphology of CS terminals during the entire period of development, but, for the projection topography, the role of activity is exercised during a very brief period. This points to a complex, and possibly independent, regulation of termination topography and terminal morphology. Surprisingly, when a CS neuron's activity is blocked during early development, it does not recover lost connections later in development once activity resumes.

  11. Peripheral Sensory Neurons Expressing Melanopsin Respond to Light

    PubMed Central

    Matynia, Anna; Nguyen, Eileen; Sun, Xiaoping; Blixt, Frank W.; Parikh, Sachin; Kessler, Jason; Pérez de Sevilla Müller, Luis; Habib, Samer; Kim, Paul; Wang, Zhe Z.; Rodriguez, Allen; Charles, Andrew; Nusinowitz, Steven; Edvinsson, Lars; Barnes, Steven; Brecha, Nicholas C.; Gorin, Michael B.

    2016-01-01

    The ability of light to cause pain is paradoxical. The retina detects light but is devoid of nociceptors while the trigeminal sensory ganglia (TG) contain nociceptors but not photoreceptors. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to mediate light-induced pain but recent evidence raises the possibility of an alternative light responsive pathway independent of the retina and optic nerve. Here, we show that melanopsin is expressed in both human and mouse TG neurons. In mice, they represent 3% of small TG neurons that are preferentially localized in the ophthalmic branch of the trigeminal nerve and are likely nociceptive C fibers and high-threshold mechanoreceptor Aδ fibers based on a strong size-function association. These isolated neurons respond to blue light stimuli with a delayed onset and sustained firing, similar to the melanopsin-dependent intrinsic photosensitivity observed in ipRGCs. Mice with severe bilateral optic nerve crush exhibit no light-induced responses including behavioral light aversion until treated with nitroglycerin, an inducer of migraine in people and migraine-like symptoms in mice. With nitroglycerin, these same mice with optic nerve crush exhibit significant light aversion. Furthermore, this retained light aversion remains dependent on melanopsin-expressing neurons. Our results demonstrate a novel light-responsive neural function independent of the optic nerve that may originate in the peripheral nervous system to provide the first direct mechanism for an alternative light detection pathway that influences motivated behavior. PMID:27559310

  12. [A case of sensory ataxic axonal polyneuropathy with IgGλ monoclonal gammopathy successfully treated with intravenous immunoglobulin therapy].

    PubMed

    Kanatsuka, Yoichi; Hasegawa, Osamu; Imazeki, Ryoko; Yamamoto, Masahiro

    2015-01-01

    We report the case of an 84-year-old man with sensory ataxic polyneuropathy and IgGλ monoclonal gammopathy of undetermined significance (MGUS), which was successfully treated with intravenous immunoglobulin (IVIG) therapy. He had developed progressive ataxic gait over the span of 2 years before he was admitted to our hospital. On admission, he was unable to walk without assistance because of severe sensory ataxia. He performed poorly on the finger-nose-finger and heel-knee tests, and his vibration and position sense in the feet was remarkably diminished. However, motor involvement was not remarkable. Serum immunoelectrophoresis revealed IgGλ monoclonal gammopathy, and MGUS was diagnosed. Nerve conduction studies revealed sensory-dominant axonal polyneuropathy. The patient was successfully treated with IVIG (400 mg/kg/day, for 5 days). He regained his capacity to walk independently after treatment, but his nerve conduction results remained unchanged. This sensory ataxia might be partially due to underlying cervical spondylotic myelopathy. To our knowledge, this is the first report in our country of the successful use of IVIG therapy to treat a patient with IgGλ monoclonal gammopathy and related sensory ataxic axonal polyneuropathy.

  13. Towing of sensory axons by their migrating target cells in vivo.

    PubMed

    Gilmour, Darren; Knaut, Holger; Maischein, Hans-Martin; Nüsslein-Volhard, Christiane

    2004-05-01

    Many pathfinding axons must locate target fields that are themselves positioned by active migration. A hypothetical method for ensuring that these migrations are coordinated is towing, whereby the extension of axons is entirely dependent on the migration of their target cells. Here we combine genetics and time-lapse imaging in the zebrafish to show that towing by migrating cells is a bona fide mechanism for guiding pathfinding axons in vivo.

  14. Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb.

    PubMed

    Prince, Janet E A; Cho, Jin Hyung; Dumontier, Emilie; Andrews, William; Cutforth, Tyler; Tessier-Lavigne, Marc; Parnavelas, John; Cloutier, Jean-François

    2009-11-11

    The ability of sensory systems to detect and process information from the environment relies on the elaboration of precise connections between sensory neurons in the periphery and second order neurons in the CNS. In mice, the accessory olfactory system is thought to regulate a wide variety of social and sexual behaviors. The expression of the Slit receptors Robo-1 and Robo-2 in vomeronasal sensory neurons (VSNs) suggests they may direct the stereotypic targeting of their axons to the accessory olfactory bulb (AOB). Here, we have examined the roles of Robo-1 and Robo-2 in the formation of connections by VSN axons within the AOB. While Robo-1 is not necessary for the segregation of VSN axons within the anterior and posterior regions of the AOB, Robo-2 is required for the targeting of some basal VSN axons to the posterior region of the AOB but is dispensable for the fasciculation of VSN axons. Furthermore, the specific ablation of Robo-2 expression in VSNs leads to mistargeting of a portion of basal VSN axons to the anterior region of the AOB, indicating that Robo-2 expression is required on projecting VSN axons. Together, these results identify Robo-2 as a receptor that controls the targeting of basal VSN axons to the posterior AOB.

  15. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve

    PubMed Central

    Barzan, Ruxandra; Pfeiffer, Friederike; Kukley, Maria

    2016-01-01

    In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na+ and K+ channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca2+ ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca2+ channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca2+ elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca2+ indicator Oregon Green BAPTA-1, and 2-photon Ca2+ imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca2+ concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca2+ transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca2+ imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca2+ transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca2+ entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca2+ may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS). PMID:27313508

  16. Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model.

    PubMed

    Koulaxouzidis, Georgios; Reim, Gernot; Witzel, Christian

    2015-07-01

    Microsurgical suturing is the gold standard of nerve coaptation. Although literature on the usefulness of fibrin glue as an alternative is becoming increasingly available, it remains contradictory. Furthermore, no data exist on how both repair methods might influence the morphological aspects (arborization; branching) of early peripheral nerve regeneration. We used the sciatic nerve transplantation model in thy-1 yellow fluorescent protein mice (YFP; n = 10). Pieces of nerve (1cm) were grafted from YFP-negative mice (n = 10) into those expressing YFP. We performed microsuture coaptations on one side and used fibrin glue for repair on the contralateral side. Seven days after grafting, the regeneration distance, the percentage of regenerating and arborizing axons, the number of branches per axon, the coaptation failure rate, the gap size at the repair site and the time needed for surgical repair were all investigated. Fibrin glue repair resulted in regenerating axons travelling further into the distal nerve. It also increased the percentage of arborizing axons. No coaptation failure was detected. Gap sizes were comparable in both groups. Fibrin glue significantly reduced surgical repair time. The increase in regeneration distance, even after the short period of time, is in line with the results of others that showed faster axonal regeneration after fibrin glue repair. The increase in arborizing axons could be another explanation for better functional and electrophysiological results after fibrin glue repair. Fibrin glue nerve coaptation seems to be a promising alternative to microsuture repair.

  17. TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons.

    PubMed

    Shibasaki, Koji; Murayama, Namie; Ono, Katsuhiko; Ishizaki, Yasuki; Tominaga, Makoto

    2010-03-31

    Thermosensitive TRP (thermo TRP) channels are well recognized for their contributions to sensory transduction, responding to a wide variety of stimuli including temperature, nociceptive stimuli, touch, and osmolarity. However, the precise roles for the thermo TRP channels during development have not been determined. To explore the functional importance of thermo TRP channels during neural development, the temporal expression was determined in embryonic mice. Interestingly, TRPV2 expression was detected in spinal motor neurons in addition to the dorsal root ganglia from embryonic day 10.5 and was localized in axon shafts and growth cones, suggesting that the channel is important for axon outgrowth regulation. We revealed that endogenous TRPV2 was activated in a membrane stretch-dependent manner in developing neurons by knocking down the TRPV2 function with dominant-negative TRPV2 and TRPV2-specific shRNA and significantly promoted axon outgrowth. Thus, for the first time we revealed that TRPV2 is an important regulator for axon outgrowth through its activation by membrane stretch during development.

  18. Immunohistological demonstration of CaV3.2 T-type voltage-gated calcium channel expression in soma of dorsal root ganglion neurons and peripheral axons of rat and mouse

    PubMed Central

    Rose, Kirstin E.; Lunardi, Nadia; Boscolo, Annalisa; Dong, Xinzhong; Erisir, Alev; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M.

    2013-01-01

    Previous behavioural studies have revealed that CaV3.2 T-type calcium channels support peripheral nociceptive transmission and electrophysiological studies have established the presence of T-currents in putative nociceptive sensory neurons of dorsal root ganglion (DRG). To date, however, the localization pattern of this key nociceptive channel in the soma and peripheral axons of these cells has not been demonstrated due to lack of isoform-selective anti-CaV3.2 antibodies. In the present study a new polyclonal CaV3.2 antibody is used to localize CaV3.2 expression in rodent DRG neurons using different staining techniques including confocal and electron microscopy. Confocal microscopy of both acutely dissociated cells and short-term cultures demonstrated strong immunofluorescence of anti-CaV3.2 antibody that was largely confined to smaller diameter DRG neurons where it co-localized with established immuno-markers of unmyelinated nociceptors, such as, CGRP, IB4 and peripherin. In contrast, a smaller proportion of these CaV3.2-labeled DRG cells also co-expressed NF-200, a marker of myelinated sensory neurons. In the rat sciatic nerve preparation, confocal microscopy demonstrated anti-CaV3.2 immunofluorescence which was co-localized with both peripherin and NF-200. Further, electron microscopy revealed immuno-gold labelling of CaV3.2 preferentially in association with un-myelinated sensory fibres from mouse sciatic nerve. Finally, we demonstrated the expression of CaV3.2 channels in peripheral nerve endings of mouse hindpaw skin as shown by co-localisation with Mrgpd-GFP-positive fibres. The CaV3.2 expression within the soma and peripheral axons of nociceptive sensory neurons further demonstrates the importance of this channel in peripheral pain transmission. PMID:23867767

  19. An experimental study of retrograde axonal plasmatic flow in the peripheral nerves of rats.

    PubMed

    Sanguinetti, C; Tranquilli Leali, P; Grispigni, C

    1986-12-01

    Retrograde axonal flow (R.A.F.) in the sciatic nerve of Sprague Dowley rats was studied by injecting horseradish peroxidase (H.R.P.) peripherally and identifying its appearance in the related segment of the spinal cord. This called for a precise identification of the vertebro-medullary topography, the afferant root levels of the sciatic nerve, and the transport velocity of the H.R.P. Our study revealed a clear difference of neuromuscular end plate permeability as between new-born and adult animals. The vertebral column of the rat consists of 8 cervical metameres, 13 dorsal, 6 lumbar, 4 sacral, and 3 coccygeal. The sciatic nerve is derived principally from the roots L4, L5, L6 and in part from L3 and S1. The injection of H.R.P. in the sural triceps of the new-born rat produced granules in the anterior horn cells as early as 12 hours later. In similar experiments with adult rats H.R.P. in the motorneurons was never detected. In our experimental model the transport velocity of H.R.P. from the point of injection to the anterior horn cells was approximately 68 mm per day. These findings provide a foundation on which to base future studies of retrograde flows in conditions of induced pathology.

  20. A quantitative sensory analysis of peripheral neuropathy in colorectal cancer and its exacerbation by oxaliplatin chemotherapy.

    PubMed

    de Carvalho Barbosa, Mariana; Kosturakis, Alyssa K; Eng, Cathy; Wendelschafer-Crabb, Gwen; Kennedy, William R; Simone, Donald A; Wang, Xin S; Cleeland, Charles S; Dougherty, Patrick M

    2014-11-01

    Peripheral neuropathy caused by cytotoxic chemotherapy, especially platins and taxanes, is a widespread problem among cancer survivors that is likely to continue to expand in the future. However, little work to date has focused on understanding this challenge. The goal in this study was to determine the impact of colorectal cancer and cumulative chemotherapeutic dose on sensory function to gain mechanistic insight into the subtypes of primary afferent fibers damaged by chemotherapy. Patients with colorectal cancer underwent quantitative sensory testing before and then prior to each cycle of oxaliplatin. These data were compared with those from 47 age- and sex-matched healthy volunteers. Patients showed significant subclinical deficits in sensory function before any therapy compared with healthy volunteers, and they became more pronounced in patients who received chemotherapy. Sensory modalities that involved large Aβ myelinated fibers and unmyelinated C fibers were most affected by chemotherapy, whereas sensory modalities conveyed by thinly myelinated Aδ fibers were less sensitive to chemotherapy. Patients with baseline sensory deficits went on to develop more symptom complaints during chemotherapy than those who had no baseline deficit. Patients who were tested again 6 to 12 months after chemotherapy presented with the most numbness and pain and also the most pronounced sensory deficits. Our results illuminate a mechanistic connection between the pattern of effects on sensory function and the nerve fiber types that appear to be most vulnerable to chemotherapy-induced toxicity, with implications for how to focus future work to ameloirate risks of peripheral neuropathy.

  1. Peripheral sensory coding through oscillatory synchrony in weakly electric fish

    PubMed Central

    Baker, Christa A; Huck, Kevin R; Carlson, Bruce A

    2015-01-01

    Adaptations to an organism's environment often involve sensory system modifications. In this study, we address how evolutionary divergence in sensory perception relates to the physiological coding of stimuli. Mormyrid fishes that can detect subtle variations in electric communication signals encode signal waveform into spike-timing differences between sensory receptors. In contrast, the receptors of species insensitive to waveform variation produce spontaneously oscillating potentials. We found that oscillating receptors respond to electric pulses by resetting their phase, resulting in transient synchrony among receptors that encodes signal timing and location, but not waveform. These receptors were most sensitive to frequencies found only in the collective signals of groups of conspecifics, and this was correlated with increased behavioral responses to these frequencies. Thus, different perceptual capabilities correspond to different receptor physiologies. We hypothesize that these divergent mechanisms represent adaptations for different social environments. Our findings provide the first evidence for sensory coding through oscillatory synchrony. DOI: http://dx.doi.org/10.7554/eLife.08163.001 PMID:26238277

  2. Autosomal recessive peripheral sensory neuropathy in 3 non-Ashkenazi Jewish families.

    PubMed Central

    Tamari, I; Goodman, R M; Sarova, I; Hertz, M; Adar, R; Zvibach, T

    1980-01-01

    Three unrelated Oriental Jewish families with a total of eight subjects with progressive hereditary sensory neuropathy are reported. The parents were all unaffected and because of parental consanguinity in each of the three families it is postulated that this rare neurological disorder is transmitted in an autosomal recessive manner. In one family both parents showed an abnormal response to pain stimulation with normal motor and sensory nerve conduction velocity. This response may be an expression of the carrier state for this hereditary disease. Only five other families (non-Jewish) have been reported as having this form of peripheral hereditary sensory neuropathy. These observations suggest that one type, the progressive form, of peripheral hereditary sensory neuropathy may be more common in Oriental Jews. Images PMID:6937618

  3. Ectopic vesicular neurotransmitter release along sensory axons mediates neurovascular coupling via glial calcium signaling.

    PubMed

    Thyssen, Anne; Hirnet, Daniela; Wolburg, Hartwig; Schmalzing, Günther; Deitmer, Joachim W; Lohr, Christian

    2010-08-24

    Neurotransmitter release generally is considered to occur at active zones of synapses, and ectopic release of neurotransmitters has been demonstrated in a few instances. However, the mechanism of ectopic neurotransmitter release is poorly understood. We took advantage of the intimate morphological and functional proximity of olfactory receptor axons and specialized glial cells, olfactory ensheathing cells (OECs), to study ectopic neurotransmitter release. Axonal stimulation evoked purinergic and glutamatergic Ca(2+) responses in OECs, indicating ATP and glutamate release. In axons expressing synapto-pHluorin, stimulation evoked an increase in synapto-pHluorin fluorescence, indicative of vesicle fusion. Transmitter release was dependent on Ca(2+) and could be inhibited by bafilomycin A1 and botulinum toxin A. Ca(2+) transients in OECs evoked by ATP, axonal stimulation, and laser photolysis of NP-EGTA resulted in constriction of adjacent blood vessels. Our results indicate that ATP and glutamate are released ectopically by vesicles along axons and mediate neurovascular coupling via glial Ca(2+) signaling.

  4. Enhanced axon outgrowth and improved long-distance axon regeneration in sprouty2 deficient mice.

    PubMed

    Marvaldi, Letizia; Thongrong, Sitthisak; Kozłowska, Anna; Irschick, Regina; Pritz, Christian O; Bäumer, Bastian; Ronchi, Giulia; Geuna, Stefano; Hausott, Barbara; Klimaschewski, Lars

    2015-03-01

    Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo. Neurons dissociated from adult Spry2 deficient sensory ganglia revealed stronger extracellular signal-regulated kinase activation and enhanced axon outgrowth. Prominent axon elongation was observed in heterozygous Spry2(+/-) neuron cultures, whereas homozygous Spry2(-/-) neurons predominantly exhibited a branching phenotype. Following sciatic nerve crush, Spry2(+/-) mice recovered faster in motor but not sensory testing paradigms (Spry2(-/-) mice did not tolerate anesthesia required for nerve surgery). We attribute the improvement in the rotarod test to higher numbers of myelinated fibers in the regenerating sciatic nerve, higher densities of motor endplates in hind limb muscles and increased levels of GAP-43 mRNA, a downstream target of extracellular regulated kinase signaling. Conversely, homozygous Spry2(-/-) mice revealed enhanced mechanosensory function (von Frey's test) that was accompanied by an increased innervation of the epidermis, elevated numbers of nonmyelinated axons and more IB4-positive neurons in dorsal root ganglia. The present results corroborate the functional significance of receptor tyrosine kinase signaling inhibitors for axon outgrowth during development and nerve regeneration and propose Spry2 as a novel potential target for pharmacological inhibition to accelerate long-distance axon regeneration in injured peripheral nerves.

  5. Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae

    PubMed Central

    Song, Wei; Onishi, Maika; Jan, Lily Yeh; Jan, Yuh Nung

    2007-01-01

    From breathing to walking, rhythmic movements encompass physiological processes important across the entire animal kingdom. It is thought by many that the generation of rhythmic behavior is operated by a central pattern generator (CPG) and does not require peripheral sensory input. Sensory feedback is, however, required to modify or coordinate the motor activity in response to the circumstances of actual movement. In contrast to this notion, we report here that sensory input is necessary for the generation of Drosophila larval locomotion, a form of rhythmic behavior. Blockage of all peripheral sensory inputs resulted in cessation of larval crawling. By conditionally silencing various subsets of larval peripheral sensory neurons, we identified the multiple dendritic (MD) neurons as the neurons essential for the generation of rhythmic peristaltic locomotion. By recording the locomotive motor activities, we further demonstrate that removal of MD neuron input disrupted rhythmic motor firing pattern in a way that prolonged the stereotyped segmental motor firing duration and prevented the propagation of posterior to anterior segmental motor firing. These findings reveal that MD sensory neuron input is a necessary component in the neural circuitry that generates larval locomotion. PMID:17360325

  6. Nocistatin sensitizes TRPA1 channels in peripheral sensory neurons.

    PubMed

    Avenali, Luca; Abate Fulas, Oli; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2017-01-02

    The ability of sensory neurons to detect potentially harmful stimuli relies on specialized molecular signal detectors such as transient receptor potential (TRP) A1 ion channels. TRPA1 is critically implicated in vertebrate nociception and different pain states. Furthermore, TRPA1 channels are subject to extensive modulation and regulation - processes which consequently affect nociceptive signaling. Here we show that the neuropeptide Nocistatin sensitizes TRPA1-dependent calcium influx upon application of the TRPA1 agonist mustard oil (MO) in cultured sensory neurons of dorsal root ganglia (DRG). Interestingly, TRPV1-mediated cellular calcium responses are unaffected by Nocistatin. Furthermore, Nocistatin-induced TRPA1-sensitization is likely independent of the Nocistatin binding partner 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) as assessed by siRNA-mediated knockdown in DRG cultures. In conclusion, we uncovered the sensitization of TRPA1 by Nocistatin, which may represent a novel mechanism how Nocistatin can modulate pain.

  7. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles.

    PubMed

    Baron, Ralf; Maier, Christoph; Attal, Nadine; Binder, Andreas; Bouhassira, Didier; Cruccu, Giorgio; Finnerup, Nanna B; Haanpää, Maija; Hansson, Per; Hüllemann, Philipp; Jensen, Troels S; Freynhagen, Rainer; Kennedy, Jeffrey D; Magerl, Walter; Mainka, Tina; Reimer, Maren; Rice, Andrew S C; Segerdahl, Märta; Serra, Jordi; Sindrup, Sören; Sommer, Claudia; Tölle, Thomas; Vollert, Jan; Treede, Rolf-Detlef

    2017-02-01

    Patients with neuropathic pain are heterogeneous in etiology, pathophysiology, and clinical appearance. They exhibit a variety of pain-related sensory symptoms and signs (sensory profile). Different sensory profiles might indicate different classes of neurobiological mechanisms, and hence subgroups with different sensory profiles might respond differently to treatment. The aim of the investigation was to identify subgroups in a large sample of patients with neuropathic pain using hypothesis-free statistical methods on the database of 3 large multinational research networks (German Research Network on Neuropathic Pain (DFNS), IMI-Europain, and Neuropain). Standardized quantitative sensory testing was used in 902 (test cohort) and 233 (validation cohort) patients with peripheral neuropathic pain of different etiologies. For subgrouping, we performed a cluster analysis using 13 quantitative sensory testing parameters. Three distinct subgroups with characteristic sensory profiles were identified and replicated. Cluster 1 (sensory loss, 42%) showed a loss of small and large fiber function in combination with paradoxical heat sensations. Cluster 2 (thermal hyperalgesia, 33%) was characterized by preserved sensory functions in combination with heat and cold hyperalgesia and mild dynamic mechanical allodynia. Cluster 3 (mechanical hyperalgesia, 24%) was characterized by a loss of small fiber function in combination with pinprick hyperalgesia and dynamic mechanical allodynia. All clusters occurred across etiologies but frequencies differed. We present a new approach of subgrouping patients with peripheral neuropathic pain of different etiologies according to intrinsic sensory profiles. These 3 profiles may be related to pathophysiological mechanisms and may be useful in clinical trial design to enrich the study population for treatment responders.

  8. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles

    PubMed Central

    Baron, Ralf; Maier, Christoph; Attal, Nadine; Binder, Andreas; Bouhassira, Didier; Cruccu, Giorgio; Finnerup, Nanna B.; Haanpää, Maija; Hansson, Per; Hüllemann, Philipp; Jensen, Troels S.; Freynhagen, Rainer; Kennedy, Jeffrey D.; Magerl, Walter; Mainka, Tina; Reimer, Maren; Rice, Andrew S.C.; Segerdahl, Märta; Serra, Jordi; Sindrup, Sören; Sommer, Claudia; Tölle, Thomas; Vollert, Jan; Treede, Rolf-Detlef

    2016-01-01

    Abstract Patients with neuropathic pain are heterogeneous in etiology, pathophysiology, and clinical appearance. They exhibit a variety of pain-related sensory symptoms and signs (sensory profile). Different sensory profiles might indicate different classes of neurobiological mechanisms, and hence subgroups with different sensory profiles might respond differently to treatment. The aim of the investigation was to identify subgroups in a large sample of patients with neuropathic pain using hypothesis-free statistical methods on the database of 3 large multinational research networks (German Research Network on Neuropathic Pain (DFNS), IMI-Europain, and Neuropain). Standardized quantitative sensory testing was used in 902 (test cohort) and 233 (validation cohort) patients with peripheral neuropathic pain of different etiologies. For subgrouping, we performed a cluster analysis using 13 quantitative sensory testing parameters. Three distinct subgroups with characteristic sensory profiles were identified and replicated. Cluster 1 (sensory loss, 42%) showed a loss of small and large fiber function in combination with paradoxical heat sensations. Cluster 2 (thermal hyperalgesia, 33%) was characterized by preserved sensory functions in combination with heat and cold hyperalgesia and mild dynamic mechanical allodynia. Cluster 3 (mechanical hyperalgesia, 24%) was characterized by a loss of small fiber function in combination with pinprick hyperalgesia and dynamic mechanical allodynia. All clusters occurred across etiologies but frequencies differed. We present a new approach of subgrouping patients with peripheral neuropathic pain of different etiologies according to intrinsic sensory profiles. These 3 profiles may be related to pathophysiological mechanisms and may be useful in clinical trial design to enrich the study population for treatment responders. PMID:27893485

  9. Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve.

    PubMed

    Chen, Zu-Lin; Strickland, Sidney

    2003-11-24

    Laminins are heterotrimeric extracellular matrix proteins that regulate cell viability and function. Laminin-2, composed of alpha2, beta1, and gamma1 chains, is a major matrix component of the peripheral nervous system (PNS). To investigate the role of laminin in the PNS, we used the Cre-loxP system to disrupt the laminin gamma1 gene in Schwann cells. These mice have dramatically reduced expression of laminin gamma1 in Schwann cells, which results in a similar reduction in laminin alpha2 and beta1 chains. These mice exhibit motor defects which lead to hind leg paralysis and tremor. During development, Schwann cells that lack laminin gamma1 were present in peripheral nerves, and proliferated and underwent apoptosis similar to control mice. However, they were unable to differentiate and synthesize myelin proteins, and therefore unable to sort and myelinate axons. In mutant mice, after sciatic nerve crush, the axons showed impaired regeneration. These experiments demonstrate that laminin is an essential component for axon myelination and regeneration in the PNS.

  10. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches.

    PubMed

    Sainath, Rajiv; Gallo, Gianluca

    2015-07-01

    The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)-induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi-derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF-induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport.

  11. Gravity receptors - An ultrastructural basis for peripheral sensory processing

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Donovan, K.

    1984-01-01

    The present ultrastructural study of serial sections has shown that type II hair cells of the anterior part of the utricular macula are integrated into the afferent neural circuitry of type I cells, which are arranged in clusters. Additionally, there exists a complex system of intramacularly originating efferent-type nerve fibers and terminals. The findings, taken together, suggest that on morphological grounds, complex processing of sensory information occurs in gravity receptors. Asymmetry of such a complex system may contribute to motion and space-motion sickness.

  12. Axon reflex in ocular injury: sensory mediation of the response of the rabbit eye to laser irradiation of the iris.

    PubMed

    Butler, J M; Unger, W G; Cole, D F

    1980-10-01

    Laser irradiation of the rabbit iris produces an injury response consisting of prolonged miosis, uveal vasodilation and a transient rise of intraocular pressure (IOP) accompanied by a breakdown of the blood-aqueous barrier. This response has hitherto been attributed partly to prostaglandin (PG) mediation and partly to mediation by a non-cholinergic nervous pathway thought to be sensory in fuction. Responses of the rabbit eye to laser irritation were examined at specified intervals after diathermic coagulation of the epigasserian nerve tract. Both the intensity of the pupillary constriction and the increase in IOP were almost unaltered at 90 minutes but progressively decreased until at 4 days there was essentially no response to high energy laser irradiation in the denervated eye. It was evident that manifestation of the response is largely dependent upon the presence of intact and functional sensory nerves, and it is proposed that endogenous PGs exert some, if not all of their effects via sensory nerve endings. It is suggested that those terminals which are directly stimulated, whether by laser irradiation or by PGs formed during the injury, release some mediator to cause pupillary constriction. From thes terminals impulses pass orthodromically and antidromically by axon reflex to release further mediator from terminals in the region of the ciliary vessels or the major arterial circle. In this way the response is propagated and augmented.

  13. Peripheral sensory neuropathy is associated with altered postocclusive reactive hyperemia in the diabetic foot

    PubMed Central

    Barwick, Alex L; Tessier, John W; Janse de Jonge, Xanne; Ivers, James R; Chuter, Vivienne H

    2016-01-01

    Objective This study examined whether the presence of peripheral sensory neuropathy or cardiac autonomic deficits is associated with postocclusive reactive hyperemia (reflective of microvascular function) in the diabetic foot. Research design and methods 99 participants with type 2 diabetes were recruited into this cross-sectional study. The presence of peripheral sensory neuropathy was determined with standard clinical tests and cardiac autonomic function was assessed with heart rate variation testing. Postocclusive reactive hyperemia was measured with laser Doppler in the hallux. Multiple hierarchical regression was performed to examine relationships between neuropathy and the peak perfusion following occlusion and the time to reach this peak. Results Peripheral sensory neuropathy predicted 22% of the variance in time to peak following occlusion (p<0.05), being associated with a slower time to peak but was not associated with the magnitude of the peak. Heart rate variation was not associated with the postocclusive reactive hyperemia response. Conclusions This study found an association between the presence of peripheral sensory neuropathy in people with diabetes and altered microvascular reactivity in the lower limb. PMID:27486520

  14. Early Electrodiagnostic Features of Upper Extremity Sensory Nerves Can Differentiate Axonal Guillain-Barré Syndrome from Acute Inflammatory Demyelinating Polyneuropathy

    PubMed Central

    Koo, Yong Seo; Shin, Ha Young; Kim, Jong Kuk; Nam, Tai-Seung; Shin, Kyong Jin; Bae, Jong-Seok; Suh, Bum Chun; Oh, Jeeyoung; Yoon, Byeol-A

    2016-01-01

    Background and Purpose Serial nerve conduction studies (NCSs) are recommended for differentiating axonal and demyelinating Guillain-Barré syndrome (GBS), but this approach is not suitable for early diagnoses. This study was designed to identify possible NCS parameters for differentiating GBS subtypes. Methods We retrospectively reviewed the medical records of 70 patients with GBS who underwent NCS within 10 days of symptom onset. Patients with axonal GBS and acute inflammatory demyelinating polyneuropathy (AIDP) were selected based on clinical characteristics and serial NCSs. An antiganglioside antibody study was used to increase the diagnostic certainty. Results The amplitudes of median and ulnar nerve sensory nerve action potentials (SNAPs) were significantly smaller in the AIDP group than in the axonal-GBS group. Classification and regression-tree analysis revealed that the distal ulnar sensory nerve SNAP amplitude was the best predictor of axonal GBS. Conclusions Early upper extremity sensory NCS findings are helpful in differentiating axonal-GBS patients with antiganglioside antibodies from AIDP patients. PMID:27819421

  15. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    PubMed Central

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  16. Kv7.2 regulates the function of peripheral sensory neurons

    PubMed Central

    King, Chih H.; Lancaster, Eric; Salomon, Daniela; Peles, Elior; Scherer, Steven S.

    2014-01-01

    The Kv7 (KCNQ) family of voltage-gated K+ channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2-null animal model. In this study, we generated homozygous Kcnq2-null sensory neurons using the Cre-Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2-null animals exhibit normal motor performance, but have increased thermal hyperalgesia and mechanical allodynia. Whole cell patch recording technique demonstrates that Kcnq2-null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons. PMID:24687876

  17. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve

    PubMed Central

    2016-01-01

    The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs) are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase). The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections) show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding epineurium

  18. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb.

    PubMed

    Cho, Jin H; Kam, Joseph W K; Cloutier, Jean-François

    2012-11-15

    Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2(lox/lox);OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2(lox/lox);OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.

  19. ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations.

    PubMed

    Ji, Zhi-Gang; Wang, Hongxia

    2016-04-01

    Since the introduction of Channelrhodopsin-2 (ChR2) to neuroscience, optogenetics technology was developed, making it possible to activate specific neurons or circuits with spatial and temporal precision. Various ChR2 transgenic animal models have been generated and are playing important roles in revealing the mechanisms of neural activities, mapping neural circuits, controlling the behaviors of animals as well as exploring new strategy for treating the neurological diseases in both central and peripheral nervous system. An animal including humans senses environments through Aristotle's five senses (sight, hearing, smell, taste and touch). Usually, each sense is associated with a kind of sensory organ (eyes, ears, nose, tongue and skin). Is it possible that one could hear light, smell light, taste light and touch light? When ChR2 is targeted to different peripheral sensory neurons by viral vectors or generating ChR2 transgenic animals, the animals can sense the light as various sensations such as hearing, touch, pain, smell and taste. In this review, we focus on ChR2 transgenic animals in the peripheral nervous system. Firstly the working principle of ChR2 as an optogenetic actuator is simply described. Then the current transgenic animal lines where ChR2 was expressed in peripheral sensory neurons are presented and the findings obtained by these animal models are reviewed.

  20. Soluble complement receptor 1 protects the peripheral nerve from early axon loss after injury.

    PubMed

    Ramaglia, Valeria; Wolterman, Ruud; de Kok, Maryla; Vigar, Miriam Ann; Wagenaar-Bos, Ineke; King, Rosalind Helen Mary; Morgan, Brian Paul; Baas, Frank

    2008-04-01

    Complement activation is a crucial early event in Wallerian degeneration. In this study we show that treatment of rats with soluble complement receptor 1 (sCR1), an inhibitor of all complement pathways, blocked both systemic and local complement activation after crush injury of the sciatic nerve. Deposition of membrane attack complex (MAC) in the nerve was inhibited, the nerve was protected from axonal and myelin breakdown at 3 days after injury, and macrophage infiltration and activation was strongly reduced. We show that both classical and alternative complement pathways are activated after acute nerve trauma. Inhibition of the classical pathway by C1 inhibitor (Cetor) diminished, but did not completely block, MAC deposition in the injured nerve, blocked myelin breakdown, inhibited macrophage infiltration, and prevented macrophage activation at 3 days after injury. However, in contrast to sCR1 treatment, early signs of axonal degradation were visible in the nerve, linking MAC deposition to axonal damage. We conclude that sCR1 protects the nerve from early axon loss after injury and propose complement inhibition as a potential therapy for the treatment of diseases in which axon loss is the main cause of disabilities.

  1. Stereoselective peripheral sensory neurotoxicity of diaminocyclohexane platinum enantiomers related to ormaplatin and oxaliplatin.

    PubMed Central

    Screnci, D.; Er, H. M.; Hambley, T. W.; Galettis, P.; Brouwer, W.; McKeage, M. J.

    1997-01-01

    The diaminocyclohexane platinum (Pt(DACH)) derivatives ormaplatin and oxaliplatin have caused severe and dose-limiting peripheral sensory neurotoxicity in a clinical trial. We hypothesized that this toxicity could vary in relation to the biotransformation and stereochemistry of these Pt(DACH) derivatives. We prepared pure R,R and S,S enantiomers of ormaplatin (Pt(DACH)Cl4), oxaliplatin (Pt(DACH)oxalato) and their metabolites (Pt(DACH)Cl2 and Pt(DACH)methionine) and assessed their peripheral sensory neurotoxicity and tissue distribution in the rat and in vitro anti-tumour activity in human ovarian carcinoma cell lines. The R,R enantiomers of Pt(DACH)Cl4, Pt(DACH)oxalato and Pt(DACH)Cl2, induced peripheral sensory neurotoxicity at significantly lower cumulative doses (18 +/- 5.7 vs 32 +/- 2.3 micromol kg(-1); P < 0.01) and at earlier times (4 +/- 1 vs 6.7 +/- 0.6 weeks; P = 0.016) during repeat-dose treatment than the S,S enantiomers. Pt(DACH)methionine enantiomers showed no biological activity. There was no difference between Pt(DACH) enantiomers in the platinum concentration in sciatic nerve, dorsal root ganglia, spinal cord, brain or blood at the end of each experiment. Three human ovarian carcinoma cell lines (41 M, 41 McisR and SKOV-3) showed no (or inconsistent) chiral discrimination in their sensitivity to Pt(DACH) enantiomers, whereas two cell lines (CH-1 and CH-1cisR) showed modest enantiomeric selectivity favouring the R,R isomer (more active). In conclusion, Pt(DACH) derivatives exhibit enantiomeric-selective peripheral sensory neurotoxicity during repeated dosing in rats favouring S,S isomers (less neurotoxic). They exhibited less chiral discrimination in their accumulation within peripheral nerves and in vitro anti-tumour activity. PMID:9275028

  2. Integrin-linked kinase is required for radial sorting of axons and Schwann cell remyelination in the peripheral nervous system

    PubMed Central

    Pereira, Jorge A.; Benninger, Yves; Baumann, Reto; Gonçalves, Ana Filipa; Özçelik, Murat; Thurnherr, Tina; Tricaud, Nicolas; Meijer, Dies; Fässler, Reinhard; Suter, Ueli

    2009-01-01

    During development, Schwann cells (SCs) interpret different extracellular cues to regulate their migration, proliferation, and the remarkable morphological changes associated with the sorting, ensheathment, and myelination of axons. Although interactions between extracellular matrix proteins and integrins are critical to some of these processes, the downstream signaling pathways they control are still poorly understood. Integrin-linked kinase (ILK) is a focal adhesion protein that associates with multiple binding partners to link integrins to the actin cytoskeleton and is thought to participate in integrin and growth factor–mediated signaling. Using SC-specific gene ablation, we report essential functions for ILK in radial sorting of axon bundles and in remyelination in the peripheral nervous system. Our in vivo and in vitro experiments show that ILK negatively regulates Rho/Rho kinase signaling to promote SC process extension and to initiate radial sorting. ILK also facilitates axon remyelination, likely by promoting the activation of downstream molecules such as AKT/protein kinase B. PMID:19349584

  3. A locus for axonal motor-sensory neuropathy with deafness and mental retardation maps to Xq26-q27

    SciTech Connect

    Priest, J.M.; Nouri, N.; Keats, B.J.B.

    1994-09-01

    Twenty-two DNA markers spanning the X chromosome have been analyzed for linkage to the locus causing an unusual form of X-linked recessive hereditary motor and sensory neuropathy in a Pennsylvania family of Italian ancestry. This 3 generation family which was originally reported by Cowchock includes 7 affected males, 3 obligate carrier females, and 4 unaffected males. Males are severely affected at birth or within the first few years of life with areflexia, slowly progressive axonal atrophy, and absence of large myelinated fibers, and they all develop pes cavus and hammer toes. Five of the 7 affected males show associated deafness and 3 of these 5 individuals also presented with mental retardation or social developmental delay. Motor nerve conduction velocities in affected males are normal to mildly delayed and sensory conduction velocities are markedly abnormal. Heterozygous females are asymptomatic. Close linkage to the Xg blood group locus (Xp22) was previously excluded in this family while weak linkage of the disease gene to DXYS1 (Xq13-q21) was suggested. The current study excludes the short arm and the proximal long arm of the X chromosome. Haplotype analysis of markers on the long arm demonstrates that HPRT is a proximal flanking marker and that the disease gene is closely linked to the marker DXS984. Further microsatellite markers are being studied in order to refine the region of the distal long arm of the X chromosome containing the gene causing the motor-sensory neuropathy in this family. This is the first such gene assigned to the distal region of Xq.

  4. Modality-Specific Axonal Regeneration: Toward Selective Regenerative Neural Interfaces

    PubMed Central

    Lotfi, Parisa; Garde, Kshitija; Chouhan, Amit K.; Bengali, Ebrahim; Romero-Ortega, Mario I.

    2011-01-01

    Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed sub-modality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF) and neurotrophin-3 (NT-3), to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5-fold compared to that in saline or NT-3, whereas the number of branches increased threefold in the NT-3 channels. These results were confirmed using a 3D “Y”-shaped in vitro assay showing that the arm containing NGF was able to entice a fivefold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a “Y”-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted toward the sural nerve, while N-52+ large-diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces. PMID:22016734

  5. Effects of Valproic Acid on Axonal Regeneration and Recovery of Motor Function after Peripheral Nerve Injury in the Rat

    PubMed Central

    Rao, Ting; Wu, Fei; Xing, Danmou; Peng, Zhengren; Ren, Dong; Feng, Wei; Chen, Yan; Zhao, Zhiming; Wang, Huan; Wang, Junweng; Kan, Wusheng; Zhang, Qingsong

    2014-01-01

    Background: Valproic acid (VPA) is used to be an effective anti-epileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal regulated kinase pathway, and increases bcl-2 and growth cone-associated protein 43 levels in spinal cord. In the present research we demonstrate the effect of VPA on peripheral nerve regeneration and recovery of motor function following sciatic nerve transaction in rats. Methods: The rats in VPA group and control group were administered with valproic acid (300mg/kg) and sodium chloride respectively after operation. Each animal was observed sciatic nerve index (SFI) at 2-week intervals and studied electrophysiology at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed 12 weeks after operation. Using the digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. Results: There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity), and morphometrical results (regenerated axon number and thickness of myelin sheath) in nerve regeneration between the VPA group and controls (P<0.05). Conclusions: The results demonstrated that VPA is able to enhance sciatic nerve regeneration in rats, suggesting the potential clinical application of VPA for the treatment of peripheral nerve injury in humans. PMID:25207308

  6. Multifocal acquired demyelinating sensory and motor neuropathy presenting as a peripheral nerve tumor.

    PubMed

    Allen, David C; Smallman, Clare A; Mills, Kerry R

    2006-09-01

    A man with multifocal acquired demyelinating sensory and motor neuropathy (MADSAM), or Lewis-Sumner syndrome, presented with a progressive left lumbosacral plexus lesion resembling a neurofibroma. After 7 years he developed a left ulnar nerve lesion with conduction block in its upper segment. Treatment with intravenous immunoglobulin improved the symptoms and signs of both lesions. We conclude that inflammatory neuropathy must be considered in the differential diagnosis of peripheral nerve tumors, and that unifocal lesions may precede multifocal involvement in MADSAM by several years. In addition, we discuss the clinical features in 9 patients attending a specialist peripheral nerve clinic and review the literature.

  7. Comparative proteomic analysis of differentially expressed proteins between peripheral sensory and motor nerves.

    PubMed

    He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong

    2012-06-01

    Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.

  8. Rapid alteration of thalamocortical axon morphology follows peripheral damage in the neonatal rat.

    PubMed Central

    Catalano, S M; Robertson, R T; Killackey, H P

    1995-01-01

    The effect of day of birth (postnatal day 0; P0) infraorbital nerve section on the morphology of individual thalamocortical axons in rat somatosensory cortex was examined on P3. Thalamic fibers were labeled in fixed brains with the carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, and individual photo-converted thalamocortical fibers were reconstructed. In normal animals on P3, axon arbor terminal formation within layer IV has commenced and terminal arbor width is comparable to that of a cortical "barrel." After infraorbital nerve section, the average width of thalamocortical terminal arbors is significantly greater than is the average arbor width of normal rats of the same age; however, neither the number of branches per terminal arbor nor total arbor length differs between groups. These observations suggest that the role of the periphery in guiding terminal arbor formation is exerted both very rapidly and at the level of the single thalamic axon. Further, these results indicate a close association between individual axon terminal arbor morphology and pattern formation in the rat somatosensory cortex. Images Fig. 1 PMID:7708683

  9. A coin-like peripheral small cell lung carcinoma associated with acute paraneoplastic axonal Guillain-Barre-like syndrome.

    PubMed

    Jung, Ioan; Gurzu, Simona; Balasa, Rodica; Motataianu, Anca; Contac, Anca Otilia; Halmaciu, Ioana; Popescu, Septimiu; Simu, Iunius

    2015-06-01

    A 65-year-old previously healthy male heavy smoker was hospitalized with a 2-week history of progressive muscle weakness in the lower and upper extremities. After 10 days of hospitalization, urinary sphincter incompetence and fecal incontinence were added and tetraparesis was established. The computer-tomography scan examination revealed a massive right hydrothorax and multifocal solid acinar structures with peripheral localization in the left lung, which suggested pulmonary cancer. Bone marrow metastases were also suspected. Based on the examination results, the final diagnosis was acute paraneoplastic axonal Guillain-Barre-like syndrome. The patient died 3 weeks after hospitalization. At autopsy, bronchopneumonia and a right hydrothorax were confirmed. Several 4 to 5-mm-sized round peripherally located white nodules were identified in the left lung, without any central tumor mass. Under microscope, a coin-shaped peripheral/subpleural small cell carcinoma was diagnosed, with generalized bone metastases. A huge thrombus in the abdominal aorta and acute pancreatitis was also seen at autopsy. This case highlights the difficulty of diagnosis of lung carcinomas and the necessity of a complex differential diagnosis of severe progressive ascending neuropathies. This is the 6th reported case of small cell lung cancer-associated acute Guillain-Barre-like syndrome and the first report about an association with a coin-like peripheral pattern.

  10. Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons.

    PubMed

    Nédélec, Stéphane; Foucher, Isabelle; Brunet, Isabelle; Bouillot, Colette; Prochiantz, Alain; Trembleau, Alain

    2004-07-20

    We report that Emx2 homeogene is expressed at the mRNA and protein levels in the adult mouse olfactory neuroepithelium. As expected for a transcription factor, Emx2 is present in the nucleus of immature and mature olfactory sensory neurons. However, the protein is also detected in the axonal compartment of these neurons, both in the olfactory mucosa axon bundles and in axon terminals within the olfactory bulb. Emx2 axonal staining is heterogeneous, suggesting an association with particles. Subcellular fractionations of olfactory bulb synaptosomes, combined with chemical lesions of olfactory neurons, confirm the presence of Emx2 in axon terminals. Significant amounts of Emx2 protein cosediment with high density synaptosomal subfractions containing eukaryotic translation initiation factor 4E (eIF4E). Nonionic detergents and RNase treatments failed to detach eIF4E and Emx2 from these high-density fractions enriched in vesicles and granular structures. In addition, Emx2 and eIF4E can be coimmunoprecipitated from olfactory mucosa and bulb extracts and interact directly, as demonstrated in pull-down experiments. Emx2 axonal localization, association with high-density particles and interaction with eIF4E strongly suggest that this transcription factor has new nonnuclear functions most probably related to the local control of protein translation in the olfactory sensory neuron axons. Finally, we show that two other brain-expressed homeoproteins, Otx2 and Engrailed 2, also bind eIF4E, indicating that several homeoproteins may modulate eIF4E functions in the developing and adult nervous system.

  11. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides.

    PubMed

    Lavezzo, A; Melillo, G; Clavenna, G; Omini, C

    1992-06-01

    The mechanism of action of levodropropizine has been investigated in different models of experimentally-induced cough in guinea-pigs. In particular it has been demonstrated that the antitussive drug has a peripheral site of action by injecting the drug intracerebroventricularly (i.c.v.). In these experiments levodropropizine (40 micrograms/50 microliters i.c.v.) did not prevent electrically-induced cough. On the other hand, codeine (5 micrograms/50 microliters i.c.v.) markedly prevented coughing. A difference in the potency ratio of levodropropizine and codeine has been demonstrated in capsaicin-induced cough; after oral administration, codeine was about two to three times more potent than levodropropizine. However, after aerosol administration the two compounds were equipotent. These data might suggest a peripheral site of action for levodropropizine which is related to sensory neuropeptides. Further support for the role of sensory neuropeptides in the mechanism of action of levodropropizine comes from the results obtained in capsaicin-desensitized animals. In this experimental model levodropropizine failed to prevent the vagally elicited cough in neuropeptide-depleted animals, whereas codeine did not differentiate between control and capsaicin-treated animals. In conclusion, our results support the suggestion that levodropropizine has a peripheral site of action. In addition, the interference with the sensory neuropeptide system may explain, at least in part, its activity in experimentally-induced cough.

  12. Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning.

    PubMed

    Martin, Seanna M; O'Brien, Georgeann S; Portera-Cailliau, Carlos; Sagasti, Alvaro

    2010-12-01

    Fragments of injured axons that detach from their cell body break down by the molecularly regulated process of Wallerian degeneration (WD). Although WD resembles local axon degeneration, a common mechanism for refining neuronal structure, several previously examined instances of developmental pruning were unaffected by WD pathways. We used laser axotomy and time-lapse confocal imaging to characterize and compare peripheral sensory axon WD and developmental pruning in live zebrafish larvae. Detached fragments of single injured axon arbors underwent three stereotyped phases of WD: a lag phase, a fragmentation phase and clearance. The lag phase was developmentally regulated, becoming shorter as embryos aged, while the length of the clearance phase increased with the amount of axon debris. Both cell-specific inhibition of ubiquitylation and overexpression of the Wallerian degeneration slow protein (Wld(S)) lengthened the lag phase dramatically, but neither affected fragmentation. Persistent Wld(S)-expressing axon fragments directly repelled regenerating axon branches of their parent arbor, similar to self-repulsion among sister branches of intact arbors. Expression of Wld(S) also disrupted naturally occurring local axon pruning and axon degeneration in spontaneously dying trigeminal neurons: although pieces of Wld(S)-expressing axons were pruned, and some Wld(S)-expressing cells still died during development, in both cases detached axon fragments failed to degenerate. We propose that spontaneously pruned fragments of peripheral sensory axons must be removed by a WD-like mechanism to permit efficient innervation of the epidermis.

  13. Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning

    PubMed Central

    Martin, Seanna M.; O'Brien, Georgeann S.; Portera-Cailliau, Carlos; Sagasti, Alvaro

    2010-01-01

    Fragments of injured axons that detach from their cell body break down by the molecularly regulated process of Wallerian degeneration (WD). Although WD resembles local axon degeneration, a common mechanism for refining neuronal structure, several previously examined instances of developmental pruning were unaffected by WD pathways. We used laser axotomy and time-lapse confocal imaging to characterize and compare peripheral sensory axon WD and developmental pruning in live zebrafish larvae. Detached fragments of single injured axon arbors underwent three stereotyped phases of WD: a lag phase, a fragmentation phase and clearance. The lag phase was developmentally regulated, becoming shorter as embryos aged, while the length of the clearance phase increased with the amount of axon debris. Both cell-specific inhibition of ubiquitylation and overexpression of the Wallerian degeneration slow protein (WldS) lengthened the lag phase dramatically, but neither affected fragmentation. Persistent WldS-expressing axon fragments directly repelled regenerating axon branches of their parent arbor, similar to self-repulsion among sister branches of intact arbors. Expression of WldS also disrupted naturally occurring local axon pruning and axon degeneration in spontaneously dying trigeminal neurons: although pieces of WldS-expressing axons were pruned, and some WldS-expressing cells still died during development, in both cases detached axon fragments failed to degenerate. We propose that spontaneously pruned fragments of peripheral sensory axons must be removed by a WD-like mechanism to permit efficient innervation of the epidermis. PMID:21041367

  14. Adeno-associated Virus Vectors Efficiently Transduce Mouse and Rabbit Sensory Neurons Coinfected with Herpes Simplex Virus 1 following Peripheral Inoculation

    PubMed Central

    Watson, Zachary L.; Ertel, Monica K.; Lewin, Alfred S.; Tuli, Sonal S.; Schultz, Gregory S.; Neumann, Donna M.

    2016-01-01

    ABSTRACT Following infection of epithelial tissues, herpes simplex virus 1 (HSV-1) virions travel via axonal transport to sensory ganglia and establish a lifelong latent infection within neurons. Recent studies have revealed that, following intraganglionic or intrathecal injection, recombinant adeno-associated virus (rAAV) vectors can also infect sensory neurons and are capable of stable, long-term transgene expression. We sought to determine if application of rAAV to peripheral nerve termini at the epithelial surface would allow rAAV to traffic to sensory ganglia in a manner similar to that seen with HSV. We hypothesized that footpad or ocular inoculation with rAAV8 would result in transduction of dorsal root ganglia (DRG) or trigeminal ganglia (TG), respectively. To test this, we inoculated the footpads of mice with various amounts of rAAV as well as rAAV capsid mutants. We demonstrated that this method of inoculation can achieve a transduction rate of >90% of the sensory neurons in the DRG that innervate the footpad. Similarly, we showed that corneal inoculation with rAAV vectors in the rabbit efficiently transduced >70% of the TG neurons in the optic tract. Finally, we demonstrated that coinfection of mouse footpads or rabbit eyes with rAAV vectors and HSV-1 resulted in colocalization in nearly all of the HSV-1-positive neurons. These results suggest that rAAV is a useful tool for the study of HSV-1 infection and may provide a means to deliver therapeutic cargos for the treatment of HSV infections or of dysfunctions of sensory ganglia. IMPORTANCE Adeno-associated virus (AAV) has been shown to transduce dorsal root ganglion sensory neurons following direct intraganglionic sciatic nerve injection and intraperitoneal and intravenous injection as well as intrathecal injection. We sought to determine if rAAV vectors would be delivered to the same sensory neurons that herpes simplex virus (HSV-1) infects when applied peripherally at an epithelial surface that had

  15. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush

    PubMed Central

    Wu, Di; Klaw, Michelle C.; Kholodilov, Nikolai; Burke, Robert E.; Detloff, Megan R.; Côté, Marie-Pascale; Tom, Veronica J.

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  16. Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130.

    PubMed

    Quarta, Serena; Baeumer, Bastian E; Scherbakov, Nadja; Andratsch, Manfred; Rose-John, Stefan; Dechant, Georg; Bandtlow, Christine E; Kress, Michaela

    2014-09-24

    After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.

  17. An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy

    PubMed Central

    Achilli, Francesca; Bros-Facer, Virginie; Williams, Hazel P.; Banks, Gareth T.; AlQatari, Mona; Chia, Ruth; Tucci, Valter; Groves, Michael; Nickols, Carole D.; Seburn, Kevin L.; Kendall, Rachel; Cader, Muhammed Z.; Talbot, Kevin; van Minnen, Jan; Burgess, Robert W.; Brandner, Sebastian; Martin, Joanne E.; Koltzenburg, Martin; Greensmith, Linda; Nolan, Patrick M.; Fisher, Elizabeth M. C.

    2009-01-01

    SUMMARY Mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system in humans, described clinically as Charcot-Marie-Tooth type 2D or distal spinal muscular atrophy type V. Here, we characterise a new mouse mutant, GarsC201R, with a point mutation that leads to a non-conservative substitution within GARS. Heterozygous mice with a C3H genetic background have loss of grip strength, decreased motor flexibility and disruption of fine motor control; this relatively mild phenotype is more severe on a C57BL/6 background. Homozygous mutants have a highly deleterious set of features, including movement difficulties and death before weaning. Heterozygous animals have a reduction in axon diameter in peripheral nerves, slowing of nerve conduction and an alteration in the recovery cycle of myelinated axons, as well as innervation defects. An assessment of GARS levels showed increased protein in 15-day-old mice compared with controls; however, this increase was not observed in 3-month-old animals, indicating that GARS function may be more crucial in younger animals. We found that enzyme activity was not reduced detectably in heterozygotes at any age, but was diminished greatly in homozygous mice compared with controls; thus, homozygous animals may suffer from a partial loss of function. The GarsC201R mutation described here is a contribution to our understanding of the mechanism by which mutations in tRNA synthetases, which are fundamentally important, ubiquitously expressed enzymes, cause axonopathy in specific sets of neurons. PMID:19470612

  18. Functional selectivity of kappa opioid receptor agonists in peripheral sensory neurons.

    PubMed

    Jamshidi, Raehannah J; Jacobs, Blaine A; Sullivan, Laura C; Chavera, Teresa A; Saylor, Rachel M; Prisinzano, Thomas E; Clarke, William P; Berg, Kelly A

    2015-11-01

    Activation of kappa opioid receptors (KORs) expressed by peripheral sensory neurons that respond to noxious stimuli (nociceptors) can reduce neurotransmission of pain stimuli from the periphery to the central nervous system. We have previously shown that the antinociception dose-response curve for peripherally restricted doses of the KOR agonist (-)-(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50488) has an inverted U shape. Here, we found that the downward phase of the U50488 dose-response curve was blocked by an inhibitor of extracellular signal-regulated kinase (ERK) activation U0126. Local administration of the selective KOR agonist salvinorin A (Sal-A), also resulted in an inverted U-shaped curve; however, the downward phase was insensitive to U0126. By contrast, inhibition of c-Jun N-terminal kinase (JNK) partially blocked the downward phase of the dose-response curve to Sal-A, suggesting a role for JNK. In cultures of peripheral sensory neurons, U50488 and Sal-A inhibited adenylyl cyclase activity with similar efficacies; however, their ability to activate ERK and JNK differed. Whereas U50488 activated ERK but not JNK, Sal-A activated JNK but not ERK. Moreover, although both U50488 and Sal-A produced homologous desensitization, desensitization to U50488 was blocked by inhibition of ERK activation, whereas desensitization to Sal-A was blocked by inhibition of JNK. Substitution of an ethoxymethyl ether for the C2 position acetyl group of Sal-A reduced stimulation of JNK, prevented desensitization by ethoxymethyl ether for the C2 position acetyl group of Sal-A, and resulted in a monotonic antinociception dose-response curve. Collectively, these data demonstrate the functional selectivity of KOR ligands for signaling in peripheral sensory neurons, which results in differential effects on behavioral responses in vivo.

  19. Functional Selectivity of Kappa Opioid Receptor Agonists in Peripheral Sensory Neurons

    PubMed Central

    Jamshidi, Raehannah J.; Jacobs, Blaine A.; Sullivan, Laura C.; Chavera, Teresa A.; Saylor, Rachel M.; Prisinzano, Thomas E.; Clarke, William P.

    2015-01-01

    Activation of kappa opioid receptors (KORs) expressed by peripheral sensory neurons that respond to noxious stimuli (nociceptors) can reduce neurotransmission of pain stimuli from the periphery to the central nervous system. We have previously shown that the antinociception dose-response curve for peripherally restricted doses of the KOR agonist (–)-(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50488) has an inverted U shape. Here, we found that the downward phase of the U50488 dose-response curve was blocked by an inhibitor of extracellular signal-regulated kinase (ERK) activation U0126. Local administration of the selective KOR agonist salvinorin A (Sal-A), also resulted in an inverted U-shaped curve; however, the downward phase was insensitive to U0126. By contrast, inhibition of c-Jun N-terminal kinase (JNK) partially blocked the downward phase of the dose-response curve to Sal-A, suggesting a role for JNK. In cultures of peripheral sensory neurons, U50488 and Sal-A inhibited adenylyl cyclase activity with similar efficacies; however, their ability to activate ERK and JNK differed. Whereas U50488 activated ERK but not JNK, Sal-A activated JNK but not ERK. Moreover, although both U50488 and Sal-A produced homologous desensitization, desensitization to U50488 was blocked by inhibition of ERK activation, whereas desensitization to Sal-A was blocked by inhibition of JNK. Substitution of an ethoxymethyl ether for the C2 position acetyl group of Sal-A reduced stimulation of JNK, prevented desensitization by ethoxymethyl ether for the C2 position acetyl group of Sal-A, and resulted in a monotonic antinociception dose-response curve. Collectively, these data demonstrate the functional selectivity of KOR ligands for signaling in peripheral sensory neurons, which results in differential effects on behavioral responses in vivo. PMID:26297384

  20. Developmental localization of calcitonin gene-related peptide in dorsal sensory axons and ventral motor neurons of mouse cervical spinal cord.

    PubMed

    Kim, Jeongtae; Sunagawa, Masanobu; Kobayashi, Shiori; Shin, Taekyun; Takayama, Chitoshi

    2016-04-01

    Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide, synthesized by alternative splicing of calcitonin gene mRNA. CGRP is characteristically distributed in the nervous system, and its function varies depending on where it is expressed. To reveal developmental formation of the CGRP network and its function in neuronal maturation, we examined the immunohistochemical localization of CGRP in the developing mouse cervical spinal cord and dorsal root ganglion. CGRP immunolabeling (IL) was first detected in motor neurons on E13, and in ascending axons of the posterior funiculus and DRG neurons on E14. CGRP-positive sensory axon fibers entered Laminae I and II on E16, and Laminae I through IV on E18. The intensity of the CGRP-IL gradually increased in both ventral and dorsal horns during embryonic development, but markedly decreased in the ventral horn after birth. These results suggest that CGRP is expressed several days after neuronal settling and entry of sensory fibers, and that the CGRP network is formed in chronological and sequential order. Furthermore, because CGRP is markedly expressed in motor neurons when axons are vastly extending and innervating targets, CGRP may also be involved in axonal elongation and synapse formation during normal development.

  1. Novel High-Throughput Drug Screening Platform for Chemotherapy-Induced Axonal Neuropathy

    DTIC Science & Technology

    2013-05-01

    The side effect of Taxol is peripheral neuropathy . DRG neurons are sensory nerve cells, and their cell bodies are bundled together lying outside of...We believe that the identified drugs will be beneficial to reduce the pain and discomfort in peripheral system of patients experiencing chemotherapy induced axonal neuropathies . ...Platform for Chemotherapy-Induced Axonal Neuropathy PRINCIPAL INVESTIGATOR: In Hong Yang CONTRACTING ORGANIZATION: The Johns

  2. The effects of FGF-2 gene therapy combined with voluntary exercise on axonal regeneration across peripheral nerve gaps.

    PubMed

    Haastert, Kirsten; Ying, Zhe; Grothe, Claudia; Gómez-Pinilla, Fernando

    2008-10-10

    Studies were conducted to determine the possibility that voluntary exercise could enhance regenerative effects of gene therapy via Schwann cells (SC) over-expressing FGF-2. Sedentary or exercise rehabilitation conditions were therefore provided shortly after reconstructing 10mm sciatic nerve gaps in rats with silicone grafts. Exercise for 7 days elevated mRNA levels of regeneration associated proteins (GAP-43 and synapsin I) in lumbar spinal cord and dorsal root ganglia of SC transplanted, in contrast to non-cellular reconstructed rats. FGF-2 gene therapy followed by 25-27 days of exercise did enhance regeneration of myelinated axons in comparison to sedentary animals. Four weeks after surgery mRNA levels of regeneration associated proteins were significantly higher in lumbar spinal cord of running compared to sedentary SC transplanted animals. Our results suggest that voluntary exercise could reinforce the beneficial effects of SC transplantation and FGF-2 gene therapy in peripheral nerve reconstruction approaches.

  3. Taste placodes are primary targets of geniculate but not trigeminal sensory axons in mouse developing tongue.

    PubMed

    Mbiene, Joseph-Pascal

    2004-12-01

    Tongue embryonic taste buds begin to differentiate before the onset of gustatory papilla formation in murine. In light of this previous finding, we sought to reexamine the developing sensory innervation as it extends toward the lingual epithelium between E 11.5 and 14.5. Nerve tracings with fluorescent lipophilic dyes followed by confocal microscope examination were used to study the terminal branching of chorda tympani and lingual nerves. At E11.5, we confirmed that the chorda tympani nerve provided for most of the nerve branching in the tongue swellings. At E12.5, we show that the lingual nerve contribution to the overall innervation of the lingual swellings increased to the extent that its ramifications matched those of the chorda tympani nerve. At E13.0, the chorda tympani nerve terminal arborizations appeared more complex than those of the lingual nerve. While the chorda tympani nerve terminal branching appeared close to the lingual epithelium that of the trigeminal nerve remained rather confined to the subepithelial mesenchymal tissue. At E13.5, chorda tympani nerve terminals projected specifically to an ordered set of loci on the tongue dorsum corresponding to the epithelial placodes. In contrast, the lingual nerve terminals remained subepithelial with no branches directed towards the placodes. At E14.5, chorda tympani nerve filopodia first entered the apical epithelium of the developing fungiform papilla. The results suggest that there may be no significant delay between the differentiation of embryonic taste buds and their initial innervation.

  4. A critical appraisal of the mild axonal peripheral neuropathy of late neurologic Lyme disease.

    PubMed

    Wormser, Gary P; Strle, Franc; Shapiro, Eugene D; Dattwyler, Raymond J; Auwaerter, Paul G

    2017-02-01

    In older studies, a chronic distal symmetric sensory neuropathy was reported as a relatively common manifestation of late Lyme disease in the United States. However, the original papers describing this entity had notable inconsistencies and certain inexplicable findings, such as reports that this condition developed in patients despite prior antibiotic treatment known to be highly effective for other manifestations of Lyme disease. More recent literature suggests that this entity is seen rarely, if at all. A chronic distal symmetric sensory neuropathy as a manifestation of late Lyme disease in North America should be regarded as controversial and in need of rigorous validation studies before acceptance as a documented clinical entity.

  5. A system and method to interface with multiple groups of axons in several fascicles of peripheral nerves

    PubMed Central

    Thota, Anil K.; Kuntaegowdanahalli, Sathyakumar; Starosciak, Amy K.; Abbas, James J.; Orbay, Jorge; Horch, Kenneth W.; Jung, Ranu

    2014-01-01

    Background Several neural interface technologies that stimulate and/or record from groups of axons have been developed. The longitudinal intrafascicular electrode (LIFE) is a fine wire that can provide access to a discrete population of axons within a peripheral nerve fascicle. Some applications require, or would benefit greatly from, technology that could provide access to multiple discrete sites in several fascicles. New Method The distributed intrafascicular multi-electrode (DIME) lead was developed to deploy multiple LIFEs to several fascicles. It consists of several (e.g. six) LIFEs that are coiled and placed in a sheath for strength and durability, with a portion left uncoiled to allow insertion at distinct sites. We have also developed a multi-lead multi-electrode (MLME) management system that includes a set of sheaths and procedures for fabrication and deployment. Results A prototype with 3 DIME leads was fabricated and tested in a procedure in a cadaver arm. The leads were successfully routed through skin and connective tissue and the deployment procedures were utilized to insert the LIFEs into fascicles of two nerves. Comparison with Existing Method(s) Most multi-electrode systems use a single-lead, multi-electrode design. For some applications, this design may be limited by the bulk of the multi-contact array and/or by the spatial distribution of the electrodes. Conclusion We have designed a system that can be used to access multiple sets of discrete groups of fibers that are spatially distributed in one or more fascicles of peripheral nerves. This system may be useful for neural-enabled prostheses or other applications. PMID:25092497

  6. Motor evoked potentials enable differentiation between motor and sensory branches of peripheral nerves in animal experiments.

    PubMed

    Turkof, Edvin; Jurasch, Nikita; Knolle, Erik; Schwendenwein, Ilse; Habib, Danja; Unger, Ewald; Reichel, Martin; Losert, Udo

    2006-10-01

    Differentiation between motor and sensory fascicles is frequently necessary in reconstructive peripheral nerve surgery. The goal of this experimental study was to verify if centrally motor evoked potentials (MEP) could be implemented to differentiate sensory from motor fascicles, despite the well-known intermingling between nerve fascicles along their course to their distant periphery. This new procedure would enable surgeons to use MEP for placing nerve grafts at corresponding fascicles in the proximal and distal stumps without the need to use time-consuming staining. In ten sheep, both ulnar nerves were exposed at the terminal bifurcation between the last sensory and motor branch. Animals were then relaxed to avoid volume conduction. On central stimulation, the evoked nerve compound action potentials were simultaneously recorded from both terminal branches. In all cases, neurogenic motor nerve action potentials were recorded only from the terminal motor branch. The conclusion was that MEPs can be used for intraoperative differentiation between sensory and motor nerves. Further studies are necessary to develop this method for in situ measurements on intact nerve trunks.

  7. Molecular signaling mechanisms of axon-glia communication in the peripheral nervous system.

    PubMed

    Grigoryan, Tamara; Birchmeier, Walter

    2015-05-01

    In this article we discuss the molecular signaling mechanisms that coordinate interactions between Schwann cells and the neurons of the peripheral nervous system. Such interactions take place perpetually during development and in adulthood, and are critical for the homeostasis of the peripheral nervous system (PNS). Neurons provide essential signals to control Schwann cell functions, whereas Schwann cells promote neuronal survival and allow efficient transduction of action potentials. Deregulation of neuron-Schwann cell interactions often results in developmental abnormalities and diseases. Recent investigations have shown that during development, neuronally provided signals, such as Neuregulin, Jagged, and Wnt interact to fine-tune the Schwann cell lineage progression. In adult, the signal exchange between neurons and Schwann cells ensures proper nerve function and regeneration. Identification of the mechanisms of neuron-Schwann cell interactions is therefore essential for our understanding of the development, function and pathology of the peripheral nervous system as a whole.

  8. Effect of helium-neon laser irradiation on peripheral sensory nerve latency

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.E.

    1988-02-01

    The purpose of this randomized, double-blind study was to determine the effect of a helium-neon (He-Ne) laser on latency of peripheral sensory nerve. Forty healthy subjects with no history of right upper extremity pathological conditions were assigned to either a Laser or a Placebo Group. Six 1-cm2 blocks along a 12-cm segment of the subjects' right superficial radial nerve received 20-second applications of either the He-Ne laser or a placebo. We assessed differences between pretest and posttest latencies with t tests for correlated and independent samples. The Laser Group showed a statistically significant increase in latency that corresponded to a decrease in sensory nerve conduction velocity. Short-duration He-Ne laser application significantly increased the distal latency of the superficial radial nerve. This finding provides information about the mechanism of the reported pain-relieving effect of the He-Ne laser.

  9. Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit

    NASA Astrophysics Data System (ADS)

    Rubakhin, Stanislav S.; Ulanov, Alexander; Sweedler, Jonathan V.

    2015-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition.

  10. Identification of a signaling cascade that maintains constitutive delta opioid receptor incompetence in peripheral sensory neurons.

    PubMed

    Brackley, Allison Doyle; Sarrami, Shayda; Gomez, Ruben; Guerrero, Kristi A; Jeske, Nathaniel A

    2017-04-05

    Mu opioid receptor (MOR) agonists are often used to treat severe pain, but can result in adverse side effects. To circumvent systemic side effects, targeting peripheral opioid receptors is an attractive alternative treatment for severe pain. Activation of the delta opioid receptor (DOR) produces similar analgesia with reduced side effects. However, until primed by inflammation, peripheral DOR is analgesically incompetent, raising interest in the mechanism. We recently identified a novel role for G protein-coupled receptor kinase 2 (GRK2) that renders DOR analgesically incompetent at the plasma membrane. However, the mechanism that maintains constitutive GRK2 association with DOR is unknown. Protein kinase A (PKA) phosphorylation of GRK2 at Ser685 targets it to the plasma membrane. A-kinase anchoring protein 79/150 (AKAP), residing at the plasma membrane in neurons, scaffolds PKA to target proteins to mediate downstream signal. Therefore, we sought to determine whether GRK2-mediated DOR desensitization is directed by PKA via AKAP scaffolding. Membrane fractions from cultured rat sensory neurons following AKAP siRNA-transfection and from AKAP-knockout mice, had less PKA activity, GRK2 Ser685 phosphorylation, and GRK2 plasma membrane targeting than controls. Site-directed mutagenesis revealed that GRK2 Ser685 phosphorylation drives GRK2s association with plasma membrane-associated DOR. Moreover, overexpression studies with AKAP mutants indicated that impaired AKAP-mediated PKA scaffolding significantly reduces DOR-GRK2 association at the plasma membrane and consequently increases DOR activity in sensory neurons without a priming event. These findings suggest that AKAP scaffolds PKA to increase plasma membrane targeting and phosphorylation of GRK2 to maintain DOR analgesic incompetence in peripheral sensory neurons.

  11. Role of voltage-gated cation channels and axon reflexes in the release of sensory neuropeptides by capsaicin from isolated rat trachea.

    PubMed

    Németh, József; Helyes, Zsuzsanna; Oroszi, Gábor; Jakab, Balázs; Pintér, Erika; Szilvássy, Zoltán; Szolcsányi, János

    2003-01-05

    In order to reveal the role of axon reflexes and sensory receptors in sensory neuropeptide release in response to capsaicin, liberation of substance P, calcitonin gene-related peptide and somatostatin from isolated rat tracheae was investigated in the presence of voltage-sensitive Na(+) and Ca(2+) channel blocking agents. Neuropeptide release induced by capsaicin (10 nM) remained unchanged in the presence of 25 mM lidocaine, 1 microM tetrodotoxin or the N-type Ca(2+) channel inhibitor, omega-conotoxin GVIA (100-300 nM). Peptide release by 100 pulses of 2 Hz field stimulation was prevented by lidocaine or tetrodotoxin. Omega-agatoxin TK (250 nM) significantly inhibited and Cd(2+) (200 microM) prevented capsaicin-induced neuropeptide release. These results suggest that chemical stimulation-induced neuropeptide release does not involve activation of fast Na(+) channels or N- and P-type voltage-dependent Ca(2+) channels, but contribution of Q-type Ca(2+) channels is possible. Sensory neuropeptides are released by capsaicin from sensory receptors without axon reflexes.

  12. Acute motor and sensory axonal neuropathy (AMSAN) in a 15-year-old boy presenting with severe pain and distal muscle weakness.

    PubMed

    Rostásy, K M; Huppke, P; Beckers, B; Brockmann, K; Degenhardt, V; Wesche, B; König, F; Gärtner, J

    2005-08-01

    Acute motor and sensory axonal neuropathy (AMSAN) is a recently described subtype of Guillain-Barré syndrome characterized by acute onset of distal weakness, loss of deep tendon reflexes and sensory symptoms. Electrophysiological studies show mildly reduced nerve conduction velocities combined with a marked reduction of muscle action and sensory nerve action potentials. Here, we report a 15-year-old boy who suffered from severe burning and knife-like pain that increased over a period of three months and resulted in a disrupted sleep pattern and suicidal intentions as well as marked loss of weight. In addition, he developed muscle weakness in his hands and feet. Neurophysiological and histopathological studies revealed AMSAN. Marked improvement of his condition was achieved by treatment with intravenous immunoglobulins, high-dose methylprednisolone, and a combination of gabapentin, antidepressants, and an oral morphine.

  13. Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays.

    PubMed

    Clark, Gregory A; Ledbetter, Noah M; Warren, David J; Harrison, Reid R

    2011-01-01

    Recording and stimulation via high-count penetrating microelectrode arrays implanted in peripheral nerves may help restore precise motor and sensory function after nervous system damage or disease. Although previous work has demonstrated safety and relatively successful stimulation for long-term implants of 100-electrode Utah Slanted Electrode Arrays (USEAs) in feline sciatic nerve [1], two major remaining challenges were 1) to maintain viable recordings of nerve action potentials long-term, and 2) to overcome contamination of unit recordings by myoelectric (EMG) activity in awake, moving animals. In conjunction with improvements to USEAs themselves, we have redesigned several aspects of our USEA containment and connector systems. Although further increases in unit yield and long-term stability remain desirable, here we report considerable progress toward meeting both of these goals: We have successfully recorded unit activity from USEAs implanted intrafascicularly in sciatic nerve for periods up to 4 months (the terminal experimental time point), and we have developed a containment system that effectively eliminates or substantially reduces EMG contamination of unit recordings in the moving animal. In addition, we used a 100-channel wireless recording integrated circuit attached to implanted USEAs to transmit broadband or spike-threshold data from nerve. Neural data thusly obtained during imposed limb movements were decoded blindly to drive a virtual prosthetic limb in real time. These results support the possibility of using USEAs in peripheral nerves to provide motor control and cutaneous or proprioceptive sensory feedback in individuals after limb loss or spinal cord injury.

  14. Morphology, innervation, and peripheral sensory cells of the siphon of aplysia californica.

    PubMed

    Carrigan, Ian D; Croll, Roger P; Wyeth, Russell C

    2015-11-01

    The siphon of Aplysia californica has several functions, including involvement in respiration, excretion, and defensive inking. It also provides sensory input for defensive withdrawals that have been studied extensively to examine mechanisms that underlie learning. To better understand the neuronal bases of these functions, we used immunohistochemistry to catalogue peripheral cell types and innervation of the siphon in stage 12 juveniles (chosen to allow observation of tissues in whole-mounts). We found that the siphon nerve splits into three major branches, leading ultimately to a two-part FMRFamide-immunoreactive plexus and an apparently separate tyrosine hydroxylase-immunoreactive plexus. Putative sensory neurons included four distinct types of tubulin-immunoreactive bipolar cells (one likely also tyrosine hydroxylase immunoreactive) that bore ciliated dendrites penetrating the epithelium. A fifth bipolar neuron type (tubulin- and FMRFamide-immunoreactive) occurred deeper in the tissue, associated with part of the FMRFamide-immunoreactive plexus. Our observations emphasize the structural complexity of the peripheral nervous system of the siphon, and the importance of direct tests of the various components to better understand the functioning of the entire organ, including its role in defensive withdrawal responses.

  15. Peptidomics and Secretomics of the Mammalian Peripheral Sensory-Motor System

    NASA Astrophysics Data System (ADS)

    Tillmaand, Emily G.; Yang, Ning; Kindt, Callie A. C.; Romanova, Elena V.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2015-12-01

    The dorsal root ganglion (DRG) and its anatomically and functionally associated spinal nerve and ventral and dorsal roots are important components of the peripheral sensory-motor system in mammals. The cells within these structures use a number of peptides as intercellular signaling molecules. We performed a variety of mass spectrometry (MS)-based characterizations of peptides contained within and secreted from these structures, and from isolated and cultured DRG cells. Liquid chromatography-Fourier transform MS was utilized in DRG and nerve peptidome analysis. In total, 2724 peptides from 296 proteins were identified in tissue extracts. Neuropeptides are among those detected, including calcitonin gene-related peptide I, little SAAS, and known hemoglobin-derived peptides. Solid phase extraction combined with direct matrix-assisted laser desorption/ionization time-of-flight MS was employed to investigate the secretome of these structures. A number of peptides were detected in the releasate from semi-intact preparations of DRGs and associated nerves, including neurofilament- and myelin basic protein-related peptides. A smaller set of analytes was observed in releasates from cultured DRG neurons. The peptide signals observed in the releasates have been mass-matched to those characterized and identified in homogenates of entire DRGs and associated nerves. This data aids our understanding of the chemical composition of the mammalian peripheral sensory-motor system, which is involved in key physiological functions such as nociception, thermoreception, itch sensation, and proprioception.

  16. Amplitude of sensory nerve action potential in early stage diabetic peripheral neuropathy: an analysis of 500 cases.

    PubMed

    Zhang, Yunqian; Li, Jintao; Wang, Tingjuan; Wang, Jianlin

    2014-07-15

    Early diagnosis of diabetic peripheral neuropathy is important for the successful treatment of diabetes mellitus. In the present study, we recruited 500 diabetic patients from the Fourth Affiliated Hospital of Kunming Medical University in China from June 2008 to September 2013: 221 cases showed symptoms of peripheral neuropathy (symptomatic group) and 279 cases had no symptoms of peripheral impairment (asymptomatic group). One hundred healthy control subjects were also recruited. Nerve conduction studies revealed that distal motor latency was longer, sensory nerve conduction velocity was slower, and sensory nerve action potential and amplitude of compound muscle action potential were significantly lower in the median, ulnar, posterior tibial and common peroneal nerve in the diabetic groups compared with control subjects. Moreover, the alterations were more obvious in patients with symptoms of peripheral neuropathy. Of the 500 diabetic patients, neural conduction abnormalities were detected in 358 cases (71.6%), among which impairment of the common peroneal nerve was most prominent. Sensory nerve abnormality was more obvious than motor nerve abnormality in the diabetic groups. The amplitude of sensory nerve action potential was the most sensitive measure of peripheral neuropathy. Our results reveal that varying degrees of nerve conduction changes are present in the early, asymptomatic stage of diabetic peripheral neuropathy.

  17. Late form of Pompe disease with glycogen storage in peripheral nerves axons.

    PubMed

    Fidziańska, Anna; Ługowska, Agnieszka; Tylki-Szymańska, Anna

    2011-02-15

    Pompe disease is caused by the deficiency of acid α-glucosidase (GAA), which degrades glycogen into glucose. Its manifestation is characterized by a broad and continuous spectrum of clinical severity ranging from severe infantile to relatively benign adult form. We describe a 12-year-old girl diagnosed at a presymptomatic stage of late form Pompe disease due to fortuitous detection of an elevated level of serum creatine kinase (CK) at the age of 4. Biopsies were taken from the quadriceps muscle and studied with histological and histochemical techniques, as well as in electron microscope. Sporadic muscle cells showed the accumulation of lysosomal glycogen, suggesting Pompe disease. Interestingly, we found lysosomal bound glycogen, located in the axons of intramuscular nerves. The diagnosis was confirmed by deficient GAA activity in leukocytes. Mutation analysis revealed changes IVS1-13T>G and p.C103G in the GAA gene. The patient was able to obtain enzyme replacement therapy in the early asymptomatic stage of the disease.

  18. Quantitative Sensory Testing in Painful Hand Osteoarthritis Demonstrates Features of Peripheral Sensitisation

    PubMed Central

    Wajed, Julekha; Ejindu, Vivian; Heron, Christine; Hermansson, Monika; Kiely, Patrick; Sofat, Nidhi

    2012-01-01

    Hand osteoarthritis (HOA) is a prevalent condition for which treatments are based on analgesia and physical therapies. Our primary objective was to evaluate pain perception in participants with HOA by assessing the characteristics of nodal involvement, pain threshold in each hand joint, and radiological severity. We hypothesised that inflammation in hand osteoarthritis joints enhances sensitivity and firing of peripheral nociceptors, thereby causing chronic pain. Participants with proximal and distal interphalangeal (PIP and DIP) joint HOA and non-OA controls were recruited. Clinical parameters of joint involvement were measured including clinical nodes, VAS (visual analogue score) for pain (0–100 mm scale), HAQ (health assessment questionnaire), and Kellgren-Lawrence scores for radiological severity and pain threshold measurement were performed. The mean VAS in HOA participants was 59.3 mm ± 8.19 compared with 4.0 mm ± 1.89 in the control group (P < 0.0001). Quantitative sensory testing (QST) demonstrated lower pain thresholds in DIP/PIP joints and other subgroups in the OA group including the thumb, metacarpophalangeal (MCPs), joints, and wrists (P < 0.008) but not in controls (P = 0.348). Our data demonstrate that HOA subjects are sensitised to pain due to increased firing of peripheral nociceptors. Future work to evaluate mechanisms of peripheral sensitisation warrants further investigation. PMID:23209475

  19. A Genome-Wide Association Study Identifies Novel Loci for Paclitaxel-Induced Sensory Peripheral Neuropathy in CALGB 40101

    PubMed Central

    Baldwin, R. Michael; Owzar, Kouros; Zembutsu, Hitoshi; Chhibber, Aparna; Kubo, Michiaki; Jiang, Chen; Watson, Dorothy; Eclov, Rachel J.; Mefford, Joel; McLeod, Howard L.; Friedman, Paula N.; Hudis, Clifford A.; Winer, Eric P.; Jorgenson, Eric M.; Witte, John S.; Shulman, Lawrence N.; Nakamura, Yusuke; Ratain, Mark J.; Kroetz, Deanna L.

    2012-01-01

    Purpose Sensory peripheral neuropathy is a common and sometimes debilitating toxicity associated with paclitaxel therapy. This study aims to identify genetic risk factors for development of this toxicity. Experimental Design A prospective pharmacogenetic analysis of primary breast cancer patients randomized to the paclitaxel arm of CALGB 40101 was used to identify genetic predictors of the onset and severity of sensory peripheral neuropathy. A genome-wide association study in 855 subjects of European ancestry was performed and findings were replicated in additional European (n = 154) and African American (n = 117) subjects. Results A single nucleotide polymorphism in FGD4 was associated with the onset of sensory peripheral neuropathy in the discovery cohort (rs10771973; HR, 1.57; 95% CI, 1.30–1.91; P = 2.6 × 10−6) and in a European (HR, 1.72; 95% CI, 1.06–2.80; P = 0.013) and African American (HR, 1.93; 95% CI, 1.13-3.28; P = 6.7 × 10−3) replication cohort. There is also evidence that markers in additional genes, including EPHA5 (rs7349683) and FZD3 (rs10771973), were associated with the onset or severity of paclitaxel-induced sensory peripheral neuropathy. Conclusions A genome-wide association study has identified novel genetic markers of paclitaxel-induced sensory peripheral neuropathy, including a common polymorphism in FGD4, a congenital peripheral neuropathy gene. These findings suggest that genetic variation may contribute to variation in development of this toxicity. Validation of these findings may allow for the identification of patients at increased risk of peripheral neuropathy and inform the use of an alternative to paclitaxel and/or the clinical management of this toxicity. PMID:22843789

  20. Axonal regeneration in severed peripheral facial nerve of the rabbit: relation of the number of axonal regenerates to behavioral and evoked muscle activity.

    PubMed

    Spector, J G; Lee, P

    1998-02-01

    The minimum number of regenerating facial nerve myelinated motor axons that are required to innervate and activate the mimetic musculature is not known. We compare rabbit facial nerve regeneration following complete transectional injuries of the buccal division to the evoked and behavioral muscle activities of the quadratus labii superioris muscle of the rabbit in three experimental models: end-to-end direct anastomosis (N = 4), 8-mm autologous nerve grafts (N = 8), and 10-mm silicone chamber implants (N = 40). Data are presented as total numbers of regenerating myelinated axons that traverse the surgical repair and innervate the fascicles of the transected distal nerve stump, as well as the percentage of regenerating neurites, as compared to the preoperative normal controls. Five weeks after neural repair, direct end-to-end anastomosis regained more myelinated axons across the reconstructed defect (2,632 +/- 1,232; 67%) than silicone tube implants (2,006 +/- 445; 51%) or autologous cable graft repairs (1,660 +/- 1,169; 42%). However, only a small percentage of myelinated fibers innervated the intrafascicular region of the distal transected neural stump in direct anastomosis (948 +/- 168; 24%), silicone tube implants (670 +/- 275; 17%), or autologous nerve grafts (445 +/- 120; 12%) in rabbits that regained evoked and behavioral mimetic muscle activity. All rabbits with direct anastomosis and neural cable grafts regained motor activity, despite the fact that 66% of regenerating motor neurites in cable graft repairs and 54% in direct anastomosis were collateral sprouts that did not contribute to effective muscle activity. In 17 rabbits with neural regenerates within the silicone tube implants that did not regain mimetic activity, the mean number of regenerating myelinated motor axons across the defect was 504 +/- 419 (13%), and the mean number of axons that innervated the distal transected nerve stump fascicles was 277 +/- 128 (7%). Therefore, the minimal number of

  1. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice

    PubMed Central

    Park, Sunmee; Bandi, Akhil; Lee, Christian R; Margolis, David J

    2016-01-01

    We discovered that optical stimulation of the mystacial pad in Emx1-Cre;Ai27D transgenic mice induces whisker movements due to activation of ChR2 expressed in muscles controlling retraction and protraction. Using high-speed videography in anesthetized mice, we characterize the amplitude of whisker protractions evoked by varying the intensity, duration, and frequency of optogenetic stimulation. Recordings from primary somatosensory cortex (S1) in anesthetized mice indicated that optogenetic whisker pad stimulation evokes robust yet longer latency responses than mechanical whisker stimulation. In head-fixed mice trained to report optogenetic whisker pad stimulation, psychometric curves showed similar dependence on stimulus duration as evoked whisker movements and S1 activity. Furthermore, optogenetic stimulation of S1 in expert mice was sufficient to substitute for peripheral stimulation. We conclude that whisker protractions evoked by optogenetic activation of whisker pad muscles results in cortical activity and sensory perception, consistent with the coding of evoked whisker movements by reafferent sensory input. DOI: http://dx.doi.org/10.7554/eLife.14140.001 PMID:27269285

  2. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy.

    PubMed

    Urban, Michael J; Pan, Pan; Farmer, Kevin L; Zhao, Huiping; Blagg, Brian S J; Dobrowsky, Rick T

    2012-05-01

    Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons.

  3. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy

    PubMed Central

    Urban, Michael J.; Pan, Pan; Farmer, Kevin L.; Zhao, Huiping; Blagg, Brian S.J.; Dobrowsky, Rick T.

    2012-01-01

    Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20 mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons. PMID:22465570

  4. Acute Putrescine Supplementation with Schwann Cell Implantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injured Rats.

    PubMed

    Iorgulescu, J Bryan; Patel, Samik P; Louro, Jack; Andrade, Christian M; Sanchez, Andre R; Pearse, Damien D

    2015-01-01

    Schwann cell (SC) transplantation exhibits significant potential for spinal cord injury (SCI) repair and its use as a therapeutic modality has now progressed to clinical trials for subacute and chronic human SCI. Although SC implants provide a receptive environment for axonal regrowth and support functional recovery in a number of experimental SCI models, axonal regeneration is largely limited to local systems and the behavioral improvements are modest without additional combinatory approaches. In the current study we investigated whether the concurrent delivery of the polyamine putrescine, started either 30 min or 1 week after SCI, could enhance the efficacy of SCs when implanted subacutely (1 week after injury) into the contused rat spinal cord. Polyamines are ubiquitous organic cations that play an important role in the regulation of the cell cycle, cell division, cytoskeletal organization, and cell differentiation. We show that the combination of putrescine with SCs provides a significant increase in implant size, an enhancement in axonal (sensory and serotonergic) sparing and/or growth, and improved open field locomotion after SCI, as compared to SC implantation alone. These findings demonstrate that polyamine supplementation can augment the effectiveness of SCs when used as a therapeutic approach for subacute SCI repair.

  5. Identification of genes influencing dendrite morphogenesis in developing peripheral sensory and central motor neurons

    PubMed Central

    Ou, Yimiao; Chwalla, Barbara; Landgraf, Matthias; van Meyel, Donald J

    2008-01-01

    Background Developing neurons form dendritic trees with cell type-specific patterns of growth, branching and targeting. Dendrites of Drosophila peripheral sensory neurons have emerged as a premier genetic model, though the molecular mechanisms that underlie and regulate their morphogenesis remain incompletely understood. Still less is known about this process in central neurons and the extent to which central and peripheral dendrites share common organisational principles and molecular features. To address these issues, we have carried out two comparable gain-of-function screens for genes that influence dendrite morphologies in peripheral dendritic arborisation (da) neurons and central RP2 motor neurons. Results We found 35 unique loci that influenced da neuron dendrites, including five previously shown as required for da dendrite patterning. Several phenotypes were class-specific and many resembled those of known mutants, suggesting that genes identified in this study may converge with and extend known molecular pathways for dendrite development in da neurons. The second screen used a novel technique for cell-autonomous gene misexpression in RP2 motor neurons. We found 51 unique loci affecting RP2 dendrite morphology, 84% expressed in the central nervous system. The phenotypic classes from both screens demonstrate that gene misexpression can affect specific aspects of dendritic development, such as growth, branching and targeting. We demonstrate that these processes are genetically separable. Targeting phenotypes were specific to the RP2 screen, and we propose that dendrites in the central nervous system are targeted to territories defined by Cartesian co-ordinates along the antero-posterior and the medio-lateral axes of the central neuropile. Comparisons between the screens suggest that the dendrites of peripheral da and central RP2 neurons are shaped by regulatory programs that only partially overlap. We focused on one common candidate pathway controlled by the

  6. In vivo stimulation of early peripheral axon regeneration by N-propionylmannosamine in the presence of polysialyltransferase ST8SIA2.

    PubMed

    Koulaxouzidis, Georgios; Reutter, Werner; Hildebrandt, Herbert; Stark, G Björn; Witzel, Christian

    2015-09-01

    The key enzyme of sialic acid (Sia) biosynthesis is the bifunctional UDP-N-acetylglucosamine 2-epimerase/ManNAc kinase (GNE/MNK). It metabolizes the physiological precursor ManNAc and N-acyl modified analogues such as N-propionylmannosamine (ManNProp) to the respective modified sialic acid. Polysialic acid (polySia) is a crucial compound for several functions in the nervous system and is synthesized by the polysialyltransferases ST8SIA2 and ST8SIA4. PolySia can be modified in vitro and in vivo by metabolic glycoengineering of the N-acyl side chain of Sia. In vitro studies show that the application of ManNProp increases neurite outgrowth and accelerates the re-establishment of functional synapses. In this study, we investigate in vivo how ManNProp application might benefit peripheral nerve regeneration. In mice expressing axonal fluorescent proteins (thy-1-YFP), we transected the sciatic nerve and then replaced part of it with a sciatic nerve graft from non-expressing mice (wild-type mice or St8sia2(-/-) mice). Analyses conducted 5 days after grafting showed that systemic application of ManNProp (200 mg/kg, twice a day, i.p.), but not of physiological ManNAc (1 g/kg, twice a day, i.p.), significantly increased the extent of axonal elongation, the number of arborizing axons and the number of branches per regenerating axon within the grafts from wild-type mice, but not in those from St8sia2(-/-) mice. The results demonstrate that the application of ManNProp has beneficial effects on early peripheral nerve regeneration and indicate that the stimulation of axon growth depends on ST8SIA2 activity in the nerve graft.

  7. Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage.

    PubMed

    Resnik, Jennifer; Polley, Daniel B

    2017-03-21

    Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons. Whereas the status of brainstem-evoked potentials did not predict the recovery of sensory responses to surviving nerve fibers, homeostatic adjustments in PV-mediated inhibition during the first days following injury could predict the eventual recovery of cortical sound processing weeks later. These findings underscore the potential importance of self-regulated inhibitory dynamics for the restoration of sensory processing in excitatory neurons following peripheral nerve injuries.

  8. Methods to measure peripheral and central sensitization using quantitative sensory testing: A focus on individuals with low back pain.

    PubMed

    Starkweather, Angela R; Heineman, Amy; Storey, Shannon; Rubia, Gil; Lyon, Debra E; Greenspan, Joel; Dorsey, Susan G

    2016-02-01

    Quantitative sensory testing can be used to assess peripheral and central sensitization; important factors that contribute to the individual's experience of pain and disability. Many studies use quantitative sensory testing in patients with low back pain to detect alterations in pain sensitivity, however, because investigators employ different protocols, interpretation of findings across studies can become problematic. The purpose of this article is to propose a standardized method of testing peripheral and central pain sensitization in patients with low back pain. Video clips are provided to demonstrate correct procedures for measuring the response to experimental pain using mechanical, thermal and pressure modalities. As nurse researchers and clinicians increase utilization of quantitative sensory testing to examine pain phenotypes, it is anticipated that more personalized methods for monitoring the trajectory of low back pain and response to treatment will improve outcomes for this patient population.

  9. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control.

    PubMed

    Toosizadeh, Nima; Mohler, Jane; Armstrong, David G; Talal, Talal K; Najafi, Bijan

    2015-01-01

    Poor balance control and increased fall risk have been reported in people with diabetic peripheral neuropathy (DPN). Traditional body sway measures are unable to describe underlying postural control mechanism. In the current study, we used stabilogram diffusion analysis to examine the mechanism under which balance is altered in DPN patients under local-control (postural muscle control) and central-control (postural control using sensory cueing). DPN patients and healthy age-matched adults over 55 years performed two 15-second Romberg balance trials. Center of gravity sway was measured using a motion tracker system based on wearable inertial sensors, and used to derive body sway and local/central control balance parameters. Eighteen DPN patients (age = 65.4±7.6 years; BMI = 29.3±5.3 kg/m2) and 18 age-matched healthy controls (age = 69.8±2.9; BMI = 27.0±4.1 kg/m2) with no major mobility disorder were recruited. The rate of sway within local-control was significantly higher in the DPN group by 49% (healthy local-controlslope = 1.23±1.06×10-2 cm2/sec, P<0.01), which suggests a compromised local-control balance behavior in DPN patients. Unlike local-control, the rate of sway within central-control was 60% smaller in the DPN group (healthy central-controlslope-Log = 0.39±0.23, P<0.02), which suggests an adaptation mechanism to reduce the overall body sway in DPN patients. Interestingly, significant negative correlations were observed between central-control rate of sway with neuropathy severity (rPearson = 0.65-085, P<0.05) and the history of diabetes (rPearson = 0.58-071, P<0.05). Results suggest that in the lack of sensory feedback cueing, DPN participants were highly unstable compared to controls. However, as soon as they perceived the magnitude of sway using sensory feedback, they chose a high rigid postural control strategy, probably due to high concerns for fall, which may increase the energy cost during extended period of standing; the adaptation mechanism

  10. Molecular analysis of axon repulsion by the notochord.

    PubMed

    Anderson, Christopher N G; Ohta, Kunimasa; Quick, Marie M; Fleming, Angeleen; Keynes, Roger; Tannahill, David

    2003-03-01

    During development of the amniote peripheral nervous system, the initial trajectory of primary sensory axons is determined largely by the action of axon repellents. We have shown previously that tissues flanking dorsal root ganglia, the notochord lying medially and the dermamyotomes lying laterally, are sources of secreted molecules that prevent axons from entering inappropriate territories. Although there is evidence suggesting that SEMA3A contributes to the repellent activity of the dermamyotome, the nature of the activity secreted by the notochord remains undetermined. We have employed an expression cloning strategy to search for axon repellents secreted by the notochord, and have identified SEMA3A as a candidate repellent. Moreover, using a spectrum of different axon populations to assay the notochord activity, together with neuropilin/Fc receptor reagents to block semaphorin activity in collagen gel assays, we show that SEMA3A probably contributes to notochord-mediated repulsion. Sympathetic axons that normally avoid the midline in vivo are also repelled, in part, by a semaphorin-based notochord activity. Although our results implicate semaphorin signalling in mediating repulsion by the notochord, repulsion of early dorsal root ganglion axons is only partially blocked when using neuropilin/Fc reagents. Moreover, retinal axons, which are insensitive to SEMA3A, are also repelled by the notochord. We conclude that multiple factors act in concert to guide axons in this system, and that further notochord repellents remain to be identified.

  11. Comparison of sensory tests and neuronal quantity of peripheral nerves between streptozotocin (STZ)-induced diabetic rats and paclitaxel (PAC)-treated rats.

    PubMed

    Jin, Heung Yong; Lee, Na Young; Ko, Hyun A; Lee, Kyung Ae; Park, Tae Sun

    Although diabetic peripheral neuropathy (DPN) and chemotherapy-induced peripheral neuropathy (CIPN) are different disease entities, they share similar neuropathic symptoms that impede quality of life for these patients. Despite having very similar downstream effects, there have been no direct comparisons between DPN and CIPN with respect to symptom severity and therapeutic responses. We compared peripheral nerve damage due to hyperglycemia with that caused by paclitaxel (PAC) treatment as represented by biochemical parameters, diverse sensory tests, and immunohistochemistry of cutaneous and sciatic nerves. The therapeutic effects of alpha-lipoic acid and DA-9801 were also compared in the two models. Animals were divided into seven groups (n = 7-10) as follows: normal, diabetes (DM), DM + alpha-lipoic acid 100 mg/kg (ALA), DM + DA-9801 (100 mg/kg), paclitaxel-treated rat (PAC), PAC + ALA (100 mg/kg), and PAC + DA-9801 (100 mg/kg). The sensory thresholds of animals to mechanical, heat, and pressure stimuli were altered by both hyperglycemia and PAC when compared with controls, and the responses to sensory tests were different between both groups. There were no significant differences in the biochemical markers of blood glutathione between DM and PAC groups (p > .05). Quantitative comparisons of peripheral nerves by intraepidermal nerve fiber density (IENFD) analysis indicated that the DM and PAC groups were similar (6.18 ± 1.03 vs. 5.01 ± 2.57). IENFD was significantly improved after ALA and DA-9801 treatment in diabetic animals (7.6 ± 1.28, 7.7 ± 1.28, respectively, p < .05) but did not reach significance in the PAC-treated groups (6.05 ± 1.76, 5.66 ± 1.26, respectively, p > .05). Sciatic nerves were less damaged in the PAC-treated groups compared with the DM groups with respect to axonal diameter and area (8.60 ± 1.14 μm vs. 6.66 ± 1.07 μm, and 59.04 ± 15.16 μm(2) vs. 35

  12. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves.

    PubMed

    Bozkurt, Ahmet; Lassner, Franz; O'Dey, Dan; Deumens, Ronald; Böcker, Arne; Schwendt, Tilman; Janzen, Christoph; Suschek, Christoph V; Tolba, Rene; Kobayashi, Eiji; Sellhaus, Bernd; Tholl, S; Eummelen, Lizette; Schügner, Frank; Damink, Leon Olde; Weis, Joachim; Brook, Gary A; Pallua, Norbert

    2012-02-01

    The use of bioengineered nerve guides as alternatives for autologous nerve transplantation (ANT) is a promising strategy for the repair of peripheral nerve defects. In the present investigation, we present a collagen-based micro-structured nerve guide (Perimaix) for the repair of 2 cm rat sciatic nerve defects. Perimaix is an open-porous biodegradable nerve guide containing continuous, longitudinally orientated channels for orientated nerve growth. The effects of these nerve guides on axon regeneration by six weeks after implantation have been compared with those of ANT. Investigation of the regenerated sciatic nerve indicated that Perimaix strongly supported directed axon regeneration. When seeded with cultivated rat Schwann cells (SC), the Perimaix nerve guide was found to be almost as supportive of axon regeneration as ANT. The use of SC from transgenic green-fluorescent-protein (GFP) rats allowed us to detect the viability of donor SC at 1 week and 6 weeks after transplantation. The GFP-positive SC were aligned in a columnar fashion within the longitudinally orientated micro-channels. This cellular arrangement was not only observed prior to implantation, but also at one week and 6 weeks after implantation. It may be concluded that Perimaix nerve guides hold great promise for the repair of peripheral nerve defects.

  13. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    PubMed Central

    2012-01-01

    Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of

  14. A distal Schwann cell-specific enhancer mediates axonal regulation of the Oct-6 transcription factor during peripheral nerve development and regeneration

    PubMed Central

    Mandemakers, Wim; Zwart, Ronald; Jaegle, Martine; Walbeehm, Erik; Visser, Pim; Grosveld, Frank; Meijer, Dies

    2000-01-01

    The POU domain transcription factor Oct-6 is a major regulator of Schwann cell differentiation and myelination. During nerve development and regeneration, expression of Oct-6 is under the control of axonal signals. Identification of the cis-acting elements necessary for Oct-6 gene regulation is an important step in deciphering the complex signalling between Schwann cells and axons governing myelination. Here we show that a fragment distal to the Oct-6 gene, containing two DNase I-hypersensitive sites, acts as the Oct-6 Schwann cell-specific enhancer (SCE). The SCE is sufficient to drive spatially and temporally correct expression, during both normal peripheral nerve development and regeneration. We further demonstrate that a tagged version of Oct-6, driven by the SCE, rescues the peripheral nerve phenotype of Oct-6-deficient mice. Thus, our isolation and characterization of the Oct-6 SCE provides the first description of a cis-acting genetic element that responds to converging signalling pathways to drive myelination in the peripheral nervous system. PMID:10856243

  15. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis

    NASA Astrophysics Data System (ADS)

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M.; Tyler, Dustin J.

    2016-02-01

    Objective. Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Approach. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject’s sense of embodiment with a survey and his self-confidence. Main results. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Significance. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  16. The effects of electroacupuncture on analgesia and peripheral sensory thresholds in patients with burn scar pain.

    PubMed

    Cuignet, Olivier; Pirlot, A; Ortiz, S; Rose, T

    2015-09-01

    The aim of this study is to observe if the effects of electro-acupuncture (EA) on analgesia and peripheral sensory thresholds are transposable from the model of heat pain in volunteers to the clinical setting of burn scar pain. After severe burns, pathological burn scars (PPBS) may occur with excruciating pain that respond poorly to treatment and prevent patients from wearing their pressure garments, thereby leading to unesthetic and function-limiting scars. EA might be of greater benefit in terms of analgesia and functional recovery, should it interrupt this vicious circle by counteracting the peripheral hyperalgesia characterizing PPBS. Therefore we enrolled 32 patients (22 males/10 females) aged of 46±11 years with clinical signs of PPBS and of neuropathic pain despite treatment. The study protocol consisted in 3 weekly 30-min sessions of standardized EA with extra individual needles in accordance to Traditional Chinese Medicine, in addition of previous treatments. We assessed VAS for pain and quantitative sensory testing (QST) twice: one week before and one after protocol. QST measured electrical thresholds for non-nociceptive A-beta fibers, nociceptive A-delta and C fibers in 2 dermatomes, respectively from the PPBS and from the contralateral pain-free areas. Based on heat pain studies, EA consisted in sessions at the extremity points of the main meridian flowing through PPBS (0.300s, 5Hz, sub noxious intensity, 15min) and at the bilateral paravertebral points corresponding to the same metameric level, 15min. VAS reduction of 3 points or below 3 on a 10 points scale was considered clinically relevant. Paired t-test compared thresholds (mean [SD]) and Wilcoxon test compared VAS (median [IQR]) pre and after treatment, significant p<0.05. The reduction of VAS for pain reached statistical but not clinical relevance (6.8 [3] vs. 4.5 [3.6]). This was due to a large subgroup of 14 non-responders whose VAS did not change after treatment (6.6 [2.7] vs. 7.2 [3

  17. Primary Sensory and Motor Cortex Excitability Are Co-Modulated in Response to Peripheral Electrical Nerve Stimulation

    PubMed Central

    Schabrun, Siobhan M.; Ridding, Michael C.; Galea, Mary P.; Hodges, Paul W.; Chipchase, Lucinda S.

    2012-01-01

    Peripheral electrical stimulation (PES) is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory) intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1) excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1) and motor (M1) cortex excitability follow the same time-course when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS) and sensory cortex excitability using somatosensory evoked potentials (SEPs) before and after 30 min of PES to right abductor pollicis brevis (APB). Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30–50 Hz; strong motor intensity) and PES at sub motor-threshold intensity (100 Hz). PES applied to induce strong activation of APB increased the size of the N20-P25 component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25-N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P14-N20 SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES. PMID:23227260

  18. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation.

    PubMed

    Schabrun, Siobhan M; Ridding, Michael C; Galea, Mary P; Hodges, Paul W; Chipchase, Lucinda S

    2012-01-01

    Peripheral electrical stimulation (PES) is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory) intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1) excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1) and motor (M1) cortex excitability follow the same time-course when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS) and sensory cortex excitability using somatosensory evoked potentials (SEPs) before and after 30 min of PES to right abductor pollicis brevis (APB). Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30-50 Hz; strong motor intensity) and PES at sub motor-threshold intensity (100 Hz). PES applied to induce strong activation of APB increased the size of the N(20)-P(25) component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25-N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P(14)-N(20) SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES.

  19. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation

    PubMed Central

    Hong, Young Bin; Choi, Heesun; Kim, Jisoo; Choi, Hyunjung; Mook-Jung, Inhee; Ha, Nina; Kyung, Jangbeen; Koo, Soo Kyung

    2016-01-01

    The Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy 2B (dHMN2B) are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1) gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs) of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy. PMID:28105056

  20. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation.

    PubMed

    Kim, Ji-Yon; Woo, So-Youn; Hong, Young Bin; Choi, Heesun; Kim, Jisoo; Choi, Hyunjung; Mook-Jung, Inhee; Ha, Nina; Kyung, Jangbeen; Koo, Soo Kyung; Jung, Sung-Chul; Choi, Byung-Ok

    2016-01-01

    The Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy 2B (dHMN2B) are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1) gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs) of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy.

  1. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus.

    PubMed

    Lo, Fu-Sun; Erzurumlu, Reha S

    2016-01-01

    Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.

  2. A locus for axonal motor-sensory neuropathy with deafness and mental retardation maps to Xq24-q26

    SciTech Connect

    Priest, J.M.; Nouri, N.; Keats, B.J.B.

    1995-09-20

    DNA markers on the X chromosome were used to map the locus for an unusual form of X-linked recessive hereditary motor and sensory neuropathy with associated deafness and mental retardation in a three-generation family that was originally reported by Towchock et al. This family included seven affected males, three obligate carrier females, and four unaffected males. The patients were severely affected within the first few years of life with distal weakness, muscle atrophy, sensory loss, areflexia, pes cavus, and hammer toes. Five of the seven affected males showed associated deafness, and three of these five individuals also presented with mental retardation or social development delay. Motor nerve conduction velocitites in affected males were normal to mildly delayed, and sensory conduction was markedly abnormal. Heterozygous females were asymptomatic. Close linkage to the Xg blood group locus (Xp22) and the PGK locus (Xq13) was previously excluded in this family, while weak linkage of the disease gene to DXYS1 (Xq21.3) was suggested. Our current linkage studies and haplotype analysis of 19 microsatellite markers on the long arm of the X chromosome demonstrate that DXS425 (Xq24) and HPRT (Xq26.1) are flanking markers and that the disease gene is closely linked to the markers DSX1122, DXS994, DXS737, DXS100, DXS1206, and DXS1047. 27 refs., 1 fig., 2 tabs.

  3. Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury.

    PubMed

    Sachdeva, Rahul; Farrell, Kaitlin; McMullen, Mary-Katharine; Twiss, Jeffery L; Houle, John D

    2016-01-01

    Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.

  4. Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury

    PubMed Central

    Sachdeva, Rahul; Farrell, Kaitlin; McMullen, Mary-Katharine; Twiss, Jeffery L.; Houle, John D.

    2016-01-01

    Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury. PMID:27375904

  5. Painful traumatic peripheral partial nerve injury-sensory dysfunction profiles comparing outcomes of bedside examination and quantitative sensory testing.

    PubMed

    Leffler, Ann-Sofie; Hansson, Per

    2008-05-01

    The primary aim of this retrospective study was to focusing on the relationship between individual outcomes of bedside examination (BE) and quantitative testing of somatosensory functions (QST) in 32 patients with painful traumatic partial nerve injury. In addition, the potential presence of common sensory dysfunction denominators has been probed. Patients with a history of traumatic partial nerve injury and ongoing pain were included if pain was confined to the entire or part of the innervation territory of the severed nerve and a bedside titration of the neuron-anatomical borders confirmed sensory aberrations. An in-depth BE and QST was then performed in the most painful area. Categorization of normal and pathological outcome for both BE and QST was based on time honoured clinical decision-making using the healthy contralateral corresponding area as control. In patients with normal outcome or quantitative aberrations (i.e. hypo- or hyperesthesia) at BE and QST, the same individual outcome of touch sensation was reported by 48% of the patients, for cold in 54% and for warmth in 58%. The most common dysfunction found at both BE and QST was hypoesthesia, however with no common denominators in somatosensory dysfunction. In conclusion, this study demonstrated that not infrequently the individual outcome of BE and the corresponding QST measure differed, most frequently for touch sensibility. This finding is of outmost importance when QST outcomes are used to corroborate results from BE in the diagnostic situation.

  6. Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage

    PubMed Central

    Resnik, Jennifer; Polley, Daniel B

    2017-01-01

    Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons. Whereas the status of brainstem-evoked potentials did not predict the recovery of sensory responses to surviving nerve fibers, homeostatic adjustments in PV-mediated inhibition during the first days following injury could predict the eventual recovery of cortical sound processing weeks later. These findings underscore the potential importance of self-regulated inhibitory dynamics for the restoration of sensory processing in excitatory neurons following peripheral nerve injuries. DOI: http://dx.doi.org/10.7554/eLife.21452.001 PMID:28323619

  7. Sensory, psychological, and metabolic dysfunction in HIV-associated peripheral neuropathy: A cross-sectional deep profiling study.

    PubMed

    Phillips, Tudor J C; Brown, Matthew; Ramirez, Juan D; Perkins, James; Woldeamanuel, Yohannes W; Williams, Amanda C de C; Orengo, Christine; Bennett, David L H; Bodi, Istvan; Cox, Sarah; Maier, Christoph; Krumova, Elena K; Rice, Andrew S C

    2014-09-01

    HIV-associated sensory neuropathy (HIV-SN) is a frequent complication of HIV infection and a major source of morbidity. A cross-sectional deep profiling study examining HIV-SN was conducted in people living with HIV in a high resource setting using a battery of measures which included the following: parameters of pain and sensory symptoms (7day pain diary, Neuropathic Pain Symptom Inventory [NPSI] and Brief Pain Inventory [BPI]), sensory innervation (structured neurological examination, quantitative sensory testing [QST] and intraepidermal nerve fibre density [IENFD]), psychological state (Pain Anxiety Symptoms Scale-20 [PASS-20], Depression Anxiety and Positive Outlook Scale [DAPOS], and Pain Catastrophizing Scale [PCS], insomnia (Insomnia Severity Index [ISI]), and quality of life (Short Form (36) Health Survey [SF-36]). The diagnostic utility of the Brief Peripheral Neuropathy Screen (BPNS), Utah Early Neuropathy Scale (UENS), and Toronto Clinical Scoring System (TCSS) were evaluated. Thirty-six healthy volunteers and 66 HIV infected participants were recruited. A novel triumvirate case definition for HIV-SN was used that required 2 out of 3 of the following: 2 or more abnormal QST findings, reduced IENFD, and signs of a peripheral neuropathy on a structured neurological examination. Of those with HIV, 42% fulfilled the case definition for HIV-SN (n=28), of whom 75% (n=21) reported pain. The most frequent QST abnormalities in HIV-SN were loss of function in mechanical and vibration detection. Structured clinical examination was superior to QST or IENFD in HIV-SN diagnosis. HIV-SN participants had higher plasma triglyceride, concentrations depression, anxiety and catastrophizing scores, and prevalence of insomnia than HIV participants without HIV-SN.

  8. Sensory, psychological, and metabolic dysfunction in HIV-associated peripheral neuropathy: A cross-sectional deep profiling study

    PubMed Central

    Phillips, Tudor J.C.; Brown, Matthew; Ramirez, Juan D.; Perkins, James; Woldeamanuel, Yohannes W.; Williams, Amanda C. de C.; Orengo, Christine; Bennett, David L.H.; Bodi, Istvan; Cox, Sarah; Maier, Christoph; Krumova, Elena K.; Rice, Andrew S.C.

    2014-01-01

    HIV-associated sensory neuropathy (HIV-SN) is a frequent complication of HIV infection and a major source of morbidity. A cross-sectional deep profiling study examining HIV-SN was conducted in people living with HIV in a high resource setting using a battery of measures which included the following: parameters of pain and sensory symptoms (7 day pain diary, Neuropathic Pain Symptom Inventory [NPSI] and Brief Pain Inventory [BPI]), sensory innervation (structured neurological examination, quantitative sensory testing [QST] and intraepidermal nerve fibre density [IENFD]), psychological state (Pain Anxiety Symptoms Scale-20 [PASS-20], Depression Anxiety and Positive Outlook Scale [DAPOS], and Pain Catastrophizing Scale [PCS], insomnia (Insomnia Severity Index [ISI]), and quality of life (Short Form (36) Health Survey [SF-36]). The diagnostic utility of the Brief Peripheral Neuropathy Screen (BPNS), Utah Early Neuropathy Scale (UENS), and Toronto Clinical Scoring System (TCSS) were evaluated. Thirty-six healthy volunteers and 66 HIV infected participants were recruited. A novel triumvirate case definition for HIV-SN was used that required 2 out of 3 of the following: 2 or more abnormal QST findings, reduced IENFD, and signs of a peripheral neuropathy on a structured neurological examination. Of those with HIV, 42% fulfilled the case definition for HIV-SN (n = 28), of whom 75% (n = 21) reported pain. The most frequent QST abnormalities in HIV-SN were loss of function in mechanical and vibration detection. Structured clinical examination was superior to QST or IENFD in HIV-SN diagnosis. HIV-SN participants had higher plasma triglyceride, concentrations depression, anxiety and catastrophizing scores, and prevalence of insomnia than HIV participants without HIV-SN. PMID:24973717

  9. Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission

    PubMed Central

    Omoto, Katsuhiro; Maruhama, Kotaro; Terayama, Ryuji; Yamamoto, Yumiko; Matsushita, Osamu; Sugimoto, Tomosada; Oguma, Keiji; Matsuka, Yoshizo

    2015-01-01

    Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A) to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE) reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG) was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission. PMID:26248078

  10. Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission.

    PubMed

    Omoto, Katsuhiro; Maruhama, Kotaro; Terayama, Ryuji; Yamamoto, Yumiko; Matsushita, Osamu; Sugimoto, Tomosada; Oguma, Keiji; Matsuka, Yoshizo

    2015-08-04

    Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A) to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE) reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG) was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission.

  11. The leukotriene B4 receptors BLT1 and BLT2 form an antagonistic sensitizing system in peripheral sensory neurons.

    PubMed

    Zinn, Sebastian; Sisignano, Marco; Kern, Katharina; Pierre, Sandra; Tunaru, Sorin; Jordan, Holger; Suo, Jing; Treutlein, Elsa-Marie; Angioni, Carlo; Ferreiros, Nerea; Leffler, Andreas; DeBruin, Natasja; Offermanns, Stefan; Geisslinger, Gerd; Scholich, Klaus

    2017-02-27

    Sensitization of the heat-activated ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) through lipids is a fundamental mechanism during inflammation-induced peripheral sensitization. Leukotriene B4 is a proinflammatory lipid-mediator whose role in peripheral nociceptive sensitization is to date not well understood. Two major G-Protein-coupled receptors for Leukotriene B4 have been identified: the high affinity receptor BLT1 and the low affinity receptor BLT2. Transcriptional screening for the expression GProtein-coupled receptors in murine dorsal root ganglia showed that both receptors were among the highest expressed in dorsal root ganglia. Calcium imaging revealed a sensitization of TRPV1-mediated calcium increases in a relative narrow concentration range for Leukotriene B4 (100-200 nM). Selective antagonists and neurons from knockout mice demonstrated a BLT1-dependent sensitization of TRPV1-mediated calcium increases. Accordingly, Leukotriene B4 -induced thermal hyperalgesia was mediated through BLT1 and TRPV1 as shown using the respective knockout mice. Importantly, higher Leukotriene B4 concentrations (>0.5 μM) and BLT2 agonists abolished sensitization of the TRPV1-mediated calcium increases. Also, BLT2-activation inhibited protein kinase C- as well as protein kinase Amediated sensitization processes through the phosphatase calcineurin. Consequently, a selective BLT2-receptor agonist increased thermal and mechanical withdrawal thresholds during zymosan-induced inflammation. In accordance with these data immunohistochemical analysis showed that both Leukotriene B4 receptors were expressed in peripheral sensory neurons. Thus, the data show that the two Leukotriene B4 receptors have opposing roles in the sensitization of peripheral sensory neurons forming a self-restricting system.

  12. The ErbB2 inhibitor Herceptin (Trastuzumab) promotes axonal outgrowth four weeks after acute nerve transection and repair.

    PubMed

    Placheta, Eva; Hendry, J Michael; Wood, Matthew D; Lafontaine, Christine W; Liu, Edward H; Cecilia Alvarez Veronesi, M; Frey, Manfred; Gordon, Tessa; Borschel, Gregory H

    2014-10-17

    Accumulating evidence suggests that neuregulin, a potent Schwann cell mitogen, and its receptor, ErbB2, have an important role in regulating peripheral nerve regeneration. We hypothesized that Herceptin (Trastuzumab), a monoclonal antibody that binds ErbB2, would disrupt ErbB2 signaling, allowing us to evaluate ErbB2's importance in peripheral nerve regeneration. In this study, the extent of peripheral motor and sensory nerve regeneration and distal axonal outgrowth was analyzed two and four weeks after common peroneal (CP) nerve injury in rats. Outcomes analyzed included neuron counts after retrograde labeling, histomorphometry, and protein analysis. The data analysis revealed that there was no impact of Herceptin administration on either the numbers of motor or sensory neurons that regenerated their axons but histomorphometry revealed that Herceptin significantly increased the number of regenerated axons in the distal repaired nerve after 4 weeks. Protein analysis with Western blotting revealed no difference in either expression levels of ErbB2 or the amount of activated, phosphorylated ErbB2 in injured nerves. In conclusion, administration of the ErbB2 receptor inhibitor after nerve transection and surgical repair did not alter the number of regenerating neurons but markedly increased the number of regenerated axons per neuron in the distal nerve stump. Enhanced axon outgrowth in the presence of this ErbB2 inhibitor indicates that ErbB2 signaling may limit the numbers of axons that are emitted from each regenerating neuron.

  13. Acrolein contributes to TRPA1 up-regulation in peripheral and central sensory hypersensitivity following spinal cord injury.

    PubMed

    Park, Jonghyuck; Zheng, Lingxing; Acosta, Glen; Vega-Alvarez, Sasha; Chen, Zhe; Muratori, Breanne; Cao, Peng; Shi, Riyi

    2015-12-01

    Acrolein, an endogenous aldehyde, has been shown to be involved in sensory hypersensitivity after rat spinal cord injury (SCI), for which the pathogenesis is unclear. Acrolein can directly activate a pro-algesic transient receptor protein ankyrin 1 (TRPA1) channel that exists in sensory neurons. Both acrolein and TRPA1 mRNA are elevated post SCI, which contributes to the activation of TRPA1 by acrolein and consequently, neuropathic pain. In the current study, we further showed that, post-SCI elevation of TRPA1 mRNA exists not only in dorsal root ganglias but also in both peripheral (paw skin) and central endings of primary afferent nerves (dorsal horn of spinal cord). This is the first indication that pain signaling can be over-amplified in the peripheral skin by elevated expressions of TRPA1 following SCI, in addition over-amplification previously seen in the spinal cord and dorsal root ganglia. Furthermore, we show that acrolein alone, in the absence of physical trauma, could lead to the elevation of TRPA1 mRNA at various locations when injected to the spinal cord. In addition, post-SCI elevation of TRPA1 mRNA could be mitigated using acrolein scavengers. Both of these attributes support the critical role of acrolein in elevating TRPA1 expression through gene regulation. Taken together, these data indicate that acrolein is likely a critical causal factor in heightening pain sensation post-SCI, through both the direct binding of TRPA1 receptor, and also by boosting the expression of TRPA1. Finally, our data also further support the notion that acrolein scavenging may be an effective therapeutic approach to alleviate neuropathic pain after SCI. We propose that the trauma-mediated elevation of acrolein causes neuropathic pain through at least two mechanisms: acrolein stimulates the production of transient receptor protein ankyrin 1 (TRPA1) in both central and peripheral locations, and it activates TRPA1 channels directly. Therefore, acrolein appears to be a critical

  14. Effects of peripherally and centrally acting analgesics on somato-sensory evoked potentials.

    PubMed Central

    Moore, U J; Marsh, V R; Ashton, C H; Seymour, R A

    1995-01-01

    1. The effects of aspirin 1000 mg, paracetamol 1000 mg, codeine 60 mg on somatosensory evoked potentials (SEPs) were measured in a four-way cross-over study. 2. SEPs were elicited by electrical stimulation of the skin overlying the digital nerve at intensities close to pain threshold. 3. Amplitudes and latencies of both early and late SEPs were recorded, as well as first sensory threshold and subjective pain threshold. 4. None of the study medications affected the amplitude or latency of the late SEP components (100-250 ms post-stimulus). The amplitude of early components (15-30 ms post-stimulus) was also unaffected, but aspirin shortened the latency 30 min after ingestion. 5. Sensory detection and pain threshold to electrical skin stimulation were also unaffected by any of the study medications despite subjective central effects with codeine. PMID:8562292

  15. A Functional Role for VEGFR1 Expressed in Peripheral Sensory Neurons in Cancer Pain

    PubMed Central

    Selvaraj, Deepitha; Gangadharan, Vijayan; Michalski, Christoph W.; Kurejova, Martina; Stösser, Sebastian; Srivastava, Kshitij; Schweizerhof, Matthias; Waltenberger, Johannes; Ferrara, Napoleone; Heppenstall, Paul; Shibuya, Masabumi; Augustin, Hellmut G.; Kuner, Rohini

    2015-01-01

    Summary Cancer pain is a debilitating disorder and a primary determinant of the poor quality of life. Here, we report a non-vascular role for ligands of the Vascular Endothelial Growth Factor (VEGF) family in cancer pain. Tumor-derived VEGF-A, PLGF-2, and VEGF-B augment pain sensitivity through selective activation of VEGF receptor 1 (VEGFR1) expressed in sensory neurons in human cancer and mouse models. Sensory-neuron-specific genetic deletion/silencing or local or systemic blockade of VEGFR1 prevented tumor-induced nerve remodeling and attenuated cancer pain in diverse mouse models in vivo. These findings identify a therapeutic potential for VEGFR1-modifying drugs in cancer pain and suggest a palliative effect for VEGF/VEGFR1-targeting anti-angiogenic tumor therapies. PMID:26058077

  16. Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis

    PubMed Central

    Wang, I-Ching; Chung, Chen-Yen; Liao, Fang; Chen, Chih-Cheng; Lee, Cheng-Han

    2017-01-01

    Multiple sclerosis (MS)-induced neuropathic pain deteriorates quality of life in patients but is often refractory to treatment. In experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, animals develop neuropathy and inflammation-induced tissue acidosis, which suggests the involvement of acid-sensing ion channels (ASICs). Also, peripheral neuropathy is reported in MS patients. However, the involvement of the peripheral nervous system (PNS) in MS neuropathic pain remains elusive. This study investigated the contribution of ASICs and peripheral neuropathy in MS-induced neuropathic pain. Elicited pain levels were as high in Asic1a−/−, Asic2−/− and Asic3−/− mice as wild-type mice even though only Asic1a−/− mice showed reduced EAE disease severity, which indicates that pain in EAE was independent of disease severity. We thus adopted an EAE model without pertussis toxin (EAEnp) to restrain activated immunity in the periphery and evaluate the PNS contribution to pain. Both EAE and EAEnp mice showed similar pain behaviors and peripheral neuropathy in nerve fibers and DRG neurons. Moreover, pregabalin significantly reduced neuropathic pain in both EAE and EAEnp mice. Our findings highlight the essential role of the PNS in neuropathic pain in EAE and pave the way for future development of analgesics without side effects in the CNS. PMID:28181561

  17. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors.

    PubMed

    St-Jacques, Bruno; Ma, Weiya

    2014-11-01

    Prostaglandin E2 (PGE2), a well-known pain mediator enriched in inflamed tissues, plays a pivotal role in the genesis of chronic pain conditions such as inflammatory and neuropathic pain. PGE2-prolonged sensitization of nociceptive dorsal root ganglion (DRG) neurons (nociceptors) may contribute to the transition from acute to chronic pain. However, the underlying cellular mechanisms are poorly understood. In this study, we tested the hypothesis that facilitating synthesis and anterograde axonal trafficking of EP receptors contribute to PGE2-prolonged nociceptor sensitization. Intraplantar (i.pl.) injection of a stabilized PGE2 analog, 16,16 dimethyl PGE2 (dmPGE2), in a dose- and time-dependent manner, not only elicited primary tactile allodynia which lasted for 1d, but also prolonged tactile allodynia evoked by a subsequent i.pl. injection of dmPGE2 from 1d to 4d. Moreover, the duration of tactile allodynia was progressively prolonged following multiple sequential i.pl. injections of dmPGE2. Co-injection of the selective EP1 or EP4 receptor antagonist, the inhibitors of cAMP, PKA, PKC, PKCε or PLC as well as an interleukin-6 (IL-6) neutralizing antiserum differentially blocked primary tactile allodynia elicited by the 1st dmPGE2 and the prolonged tactile allodynia evoked by the 2nd dmPGE2, suggesting the involvement of these signaling events in dmPGE2-induced nociceptor activation and sensitization. Co-injection of a selective COX2 inhibitor or two EP4 antagonists prevented or shortened inflammagen-prolonged nociceptor sensitization. I.pl. injection of dmPGE2 or carrageenan time-dependently increased EP4 levels in L4-6 DRG neurons and peripheral nerves. EP4 was expressed in almost half of IB4-binding nociceptors of L4-6 DRG. Taken together, our data suggest that stimulating the synthesis and anterograde axonal trafficking to increase EP4 availability at the axonal terminals of nociceptors is likely a novel mechanism underlying PGE2-prolonged nociceptor

  18. Alpha-synuclein pathology and axonal degeneration of the peripheral motor nerves innervating pharyngeal muscles in Parkinson disease.

    PubMed

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2013-02-01

    Parkinson disease (PD) is a neurodegenerative disease primarily characterized by cardinal motor manifestations and CNS pathology. Current drug therapies can often stabilize these cardinal motor symptoms, and attention has shifted to the other motor and nonmotor symptoms of PD that are resistant to drug therapy. Dysphagia in PD is perhaps the most important drug-resistant symptom because it leads to aspiration and pneumonia, the leading cause of death. Here, we present direct evidence for degeneration of the pharyngeal motor nerves in PD. We examined the cervical vagal nerve (cranial nerve X), pharyngeal branch of nerve X, and pharyngeal plexus innervating the pharyngeal muscles in 14 postmortem specimens, that is, from 10 patients with PD and 4 age-matched control subjects. Synucleinopathy in the pharyngeal nerves was detected using an immunohistochemical method for phosphorylated α-synuclein. Alpha-synuclein aggregates were revealed in nerve X and the pharyngeal branch of nerve X, and immunoreactive intramuscular nerve twigs and axon terminals within the neuromuscular junctions were identified in all of the PD patients but in none of the controls. These findings indicate that the motor nervous system of the pharynx is involved in the pathologic process of PD. Notably, PD patients who have had dysphagia had a higher density of α-synuclein aggregates in the pharyngeal nerves than those without dysphagia. These findings indicate that motor involvement of the pharynx in PD is one of the factors leading to oropharyngeal dysphagia commonly seen in PD patients.

  19. VEGF-B selectively regenerates injured peripheral neurons and restores sensory and trophic functions

    PubMed Central

    Guaiquil, Victor H.; Pan, Zan; Karagianni, Natalia; Fukuoka, Shima; Alegre, Gemstonn; Rosenblatt, Mark I.

    2014-01-01

    VEGF-B primarily provides neuroprotection and improves survival in CNS-derived neurons. However, its actions on the peripheral nervous system have been less characterized. We examined whether VEGF-B mediates peripheral nerve repair. We found that VEGF-B induced extensive neurite growth and branching in trigeminal ganglia neurons in a manner that required selective activation of transmembrane receptors and was distinct from VEGF-A–induced neuronal growth. VEGF-B–induced neurite elongation required PI3K and Notch signaling. In vivo, VEGF-B is required for normal nerve regeneration: mice lacking VEGF-B showed impaired nerve repair with concomitant impaired trophic function. VEGF-B treatment increased nerve regeneration, sensation recovery, and trophic functions of injured corneal peripheral nerves in VEGF-B–deficient and wild-type animals, without affecting uninjured nerves. These selective effects of VEGF-B on injured nerves and its lack of angiogenic activity makes VEGF-B a suitable therapeutic target to treat nerve injury. PMID:25404333

  20. Peripheral tactile sensory perception of older adults improved using subsensory electrical noise stimulation.

    PubMed

    Breen, Paul P; Serrador, Jorge M; O'Tuathail, Claire; Quinlan, Leo R; McIntosh, Caroline; ÓLaighin, Gearóid

    2016-08-01

    Loss of tactile sensory function is common with aging and can lead to numbness and difficulty with balance and gait. In previous work we found that subsensory electrical noise stimulation (SENS) applied to the tibial nerve improved tactile perception in the soles of the feet of healthy adults. In this work we aimed to determine if SENS remained effective in an older adult population with significant levels of sensory loss. Older adult subjects (N=8, female = 4, aged 65-80) had SENS applied via surface electrodes placed proximally to the medial and lateral malleoli. Vibration perception thresholds (VPTs) were assessed in six conditions, two control conditions (no SENS) and four SENS conditions (zero mean ±15µA, 30µA, 45µA and 60µA SD). VPT was assessed at three sites on the plantar aspect of the foot. Vibration perception was significantly improved in the presence of ±30µA SENS and by 16.2±2.4% (mean ± s.e.m.) when optimised for each subject. The improvement in perception was similar across all VPT test sites.

  1. Impaired basal thermal homeostasis in rats lacking capsaicin-sensitive peripheral small sensory neurons.

    PubMed

    Yamashita, Hitoshi; Wang, Zuocheng; Wang, Youxue; Furuyama, Tatsuo; Kontani, Yasuhide; Sato, Yuzo; Mori, Nozomu

    2008-03-01

    We studied the effects of selective loss of capsaicin-sensitive primary sensory neurons on thermosensation and thermoregulation in rats. Neonatal capsaicin treatment in rats caused a remarkable decrease in the number of small-diameter neurons in the dorsal root ganglion (DRG) compared with their number in the control rats. Gene expression analysis for various thermo-sensitive transient receptor potential (TRP) channels indicated marked reductions in the mRNA levels of TRPV1 (70%), TRPM8 (46%) and TRPA1 (64%), but not of TRPV2, in the DRG of capsaicin-treated rats compared with those in the control rats. In addition to the heat and cold insensitivity, capsaicin-treated rats showed lower rectal core temperature, higher skin temperature and decreased sensitivity to ambient temperature alteration under normal housing at room temperature, suggesting impaired thermosensation and change in thermoregulation in the rats. Uncoupling protein 1 (UCP1) expression and the thermogenic ability in brown adipose tissues were attenuated in the capsaicin-treated rats. These results indicate a critical role of capsaicin-sensitive sensory neurons in both heat and cool sensation and hence in basal thermal homeostasis, which is balanced by heat release and production including UCP1 thermogenesis, following sensation of the ambient temperature.

  2. Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene

    PubMed Central

    Singh, Bhagat; Singh, Vandana; Krishnan, Anand; Koshy, Kurien; Martinez, Jose A.; Cheng, Chu; Almquist, Chris

    2014-01-01

    Diabetes mellitus renders both widespread and localized irreversible damage to peripheral axons while imposing critical limitations on their ability to regenerate. A major failure of regenerative capacity thereby imposes a ‘double hit’ in diabetic patients who frequently develop focal neuropathies such as carpal tunnel syndrome in addition to generalized diffuse polyneuropathy. The mechanisms of diabetic neuron regenerative failure have been speculative and few approaches have offered therapeutic opportunities. In this work we identify an unexpected but major role for PTEN upregulation in diabetic peripheral neurons in attenuating axon regrowth. In chronic diabetic neuropathy models in mice, we identified significant PTEN upregulation in peripheral sensory neurons of messenger RNA and protein compared to littermate controls. In vitro, sensory neurons from these mice responded to PTEN knockdown with substantial rises in neurite outgrowth and branching. To test regenerative plasticity in a chronic diabetic model with established neuropathy, we superimposed an additional focal sciatic nerve crush injury and assessed morphological, electrophysiological and behavioural recovery. Knockdown of PTEN in dorsal root ganglia ipsilateral to the side of injury was achieved using a unique form of non-viral short interfering RNA delivery to the ipsilateral nerve injury site and paw. In comparison with scrambled sequence control short interfering RNA, PTEN short interfering RNA improved several facets of regeneration: recovery of compound muscle action potentials, reflecting numbers of reconnected motor axons to endplates, conduction velocities of both motor and sensory axons, reflecting their maturation during regrowth, numbers and calibre of regenerating myelinated axons distal to the injury site, reinnervation of the skin by unmyelinated epidermal axons and recovery of mechanical sensation. Collectively, these findings identify a novel therapeutic approach, potentially

  3. FAK Is Required for Schwann Cell Spreading on Immature Basal Lamina to Coordinate the Radial Sorting of Peripheral Axons with Myelination

    PubMed Central

    Grove, Matthew

    2014-01-01

    Without Focal Adhesion Kinase (FAK), developing murine Schwann cells (SCs) proliferate poorly, sort axons inefficiently, and cannot myelinate peripheral nerves. Here we show that FAK is required for the development of SCs when their basal lamina (BL) is fragmentary, but not when it is mature in vivo. Mutant SCs fail to spread on fragmentary BL during development in vivo, and this is phenocopied by SCs lacking functional FAK on low laminin (LN) in vitro. Furthermore, SCs without functional FAK initiate differentiation prematurely, both in vivo and in vitro. In contrast to their behavior on high levels of LN, SCs lacking functional FAK grown on low LN display reduced spreading, proliferation, and indicators of contractility (i.e., stress fibers, arcs, and focal adhesions) and are primed to differentiate. Growth of SCs lacking functional FAK on increasing LN concentrations in vitro revealed that differentiation is not regulated by G1 arrest but rather by cell spreading and the level of contractile actomyosin. The importance of FAK as a critical regulator of the specific response of developing SCs to fragmentary BL was supported by the ability of adult FAK mutant SCs to remyelinate demyelinated adult nerves on mature BL in vivo. We conclude that FAK promotes the spreading and actomyosin contractility of immature SCs on fragmentary BL, thus maintaining their proliferation, and preventing differentiation until they reach high density, thereby promoting radial sorting. Hence, FAK has a critical role in the response of SCs to limiting BL by promoting proliferation and preventing premature SC differentiation. PMID:25274820

  4. Calcium-activated potassium channel SK1 is widely expressed in the peripheral nervous system and sensory organs of adult zebrafish.

    PubMed

    Cabo, R; Zichichi, R; Viña, E; Guerrera, M C; Vázquez, G; García-Suárez, O; Vega, J A; Germanà, A

    2013-10-25

    Sensory cells contain ion channels involved in the organ-specific transduction mechanisms that convert different types of stimuli into electric energy. Here we focus on small-conductance calcium-activated potassium channel 1 (SK1) which plays an important role in all excitable cells acting as feedback regulators in after-hyperpolarization. This study was undertaken to analyze the pattern of expression of SK1 in the zebrafish peripheral nervous system and sensory organs using RT-PRC, Westernblot and immunohistochemistry. Expression of SK1 mRNA was observed at all developmental stages analyzed (from 10 to 100 days post fertilization, dpf), and the antibody used identified a protein with a molecular weight of 70kDa, at 100dpf (regarded to be adult). Cell expressing SK1 in adult animals were neurons of dorsal root and cranial nerve sensory ganglia, sympathetic neurons, sensory cells in neuromasts of the lateral line system and taste buds, crypt olfactory neurons and photoreceptors. Present results report for the first time the expression and the distribution of SK1 in the peripheral nervous system and sensory organs of adult zebrafish, and may contribute to set zebrafish as an interesting experimental model for calcium-activated potassium channels research. Moreover these findings are of potential interest because the potential role of SK as targets for the treatment of neurological diseases and sensory disorders.

  5. Phenotypic switching of nonpeptidergic cutaneous sensory neurons following peripheral nerve injury.

    PubMed

    Wang, Ting; Molliver, Derek C; Jing, Xiaotang; Schwartz, Erica S; Yang, Fu-Chia; Samad, Omar Abdel; Ma, Qiufu; Davis, Brian M

    2011-01-01

    In adult mammals, the phenotype of half of all pain-sensing (nociceptive) sensory neurons is tonically modulated by growth factors in the glial cell line-derived neurotrophic factor (GDNF) family that includes GDNF, artemin (ARTN) and neurturin (NRTN). Each family member binds a distinct GFRα family co-receptor, such that GDNF, NRTN and ARTN bind GFRα1, -α2, and -α3, respectively. Previous studies revealed transcriptional regulation of all three receptors in following axotomy, possibly in response to changes in growth factor availability. Here, we examined changes in the expression of GFRα1-3 in response to injury in vivo and in vitro. We found that after dissociation of adult sensory ganglia, up to 27% of neurons die within 4 days (d) in culture and this can be prevented by nerve growth factor (NGF), GDNF and ARTN, but not NRTN. Moreover, up-regulation of ATF3 (a marker of neuronal injury) in vitro could be prevented by NGF and ARTN, but not by GDNF or NRTN. The lack of NRTN efficacy was correlated with rapid and near-complete loss of GFRα2 immunoreactivity. By retrogradely-labeling cutaneous afferents in vivo prior to nerve cut, we demonstrated that GFRα2-positive neurons switch phenotype following injury and begin to express GFRα3 as well as the capsaicin receptor, transient receptor potential vanilloid 1(TRPV1), an important transducer of noxious stimuli. This switch was correlated with down-regulation of Runt-related transcription factor 1 (Runx1), a transcription factor that controls expression of GFRα2 and TRPV1 during development. These studies show that NRTN-responsive neurons are unique with respect to their plasticity and response to injury, and suggest that Runx1 plays an ongoing modulatory role in the adult.

  6. IB4-binding sensory neurons in the adult rat express a novel 3′ UTR-extended isoform of CaMK4 that is associated with its localization to axons

    PubMed Central

    Harrison, Benjamin J.; Flight, Robert M.; Gomes, Cynthia; Venkat, Gayathri; Ellis, Steven R; Sankar, Uma; Twiss, Jeffery L.; Rouchka, Eric C.; Petruska, Jeffrey C.

    2013-01-01

    Calcium/Calmodulin-dependent protein Kinase 4 (Gene and transcript: CaMK4; Protein: CaMKIV) is the nuclear effector of the Ca2+/Calmodulin Kinase (CaMK) pathway where it co-ordinates transcriptional responses. However, CaMKIV is present in the cytoplasm and axons of subpopulations of neurons, including some sensory neurons of the dorsal root ganglia (DRG), suggesting an extra-nuclear role for this protein. We observed that CaMKIV was expressed strongly in the cytoplasm and axons of a subpopulation of small diameter DRG neurons, most likely cutaneous nociceptors by virtue of their binding the isolectin IB4. In IB4+ spinal nerve axons, 20% of CaMKIV was co-localized with the endocytic marker Rab7 in axons that highly expressed CAM-Kinase-Kinase (CAMKK), an upstream activator of CaMKIV, suggesting a role for CaMKIV in signalling though signalling endosomes. Using fluorescent in situ hybridization (FISH) with riboprobes, we also observed that small diameter neurons expressed high levels of a novel 3' untranslated region (UTR) variant of CaMK4 mRNA. Using rapid amplification of cDNA ends (RACE), RT-PCR with gene-specific primers, and cDNA sequencing analyses we determined that the novel transcript contains an additional 10kb beyond the annotated gene terminus to a highly conserved alternate poly-adenylation site. qPCR analyses of fluorescent-activated cell sorted (FACS) DRG neurons confirmed that this 3'UTR-extended variant was preferentially expressed in IB4-binding neurons. Computational analyses of the 3'-UTR sequence predict that UTR-extension introduces consensus sites for RNA-binding proteins (RBPs) including the Embryonic Lethal Abnormal Vision (ELAV)/Hu family proteins. We consider the possible implications of axonal CaMKIV in the context of the unique properties of IB4-binding DRG neurons. PMID:23817991

  7. Axonal Localization of Integrins in the CNS Is Neuronal Type and Age Dependent

    PubMed Central

    Soleman, Sara; Mason, Matthew R. J.; Verhaagen, Joost; Bensadoun, Jean-Charles; Aebischer, Patrick

    2016-01-01

    The regenerative ability of CNS axons decreases with age, however, this ability remains largely intact in PNS axons throughout adulthood. These differences are likely to correspond with age-related silencing of proteins necessary for axon growth and elongation. In previous studies, it has been shown that reintroduction of the α9 integrin subunit (tenascin-C receptor, α9) that is downregulated in adult CNS can improve neurite outgrowth and sensory axon regeneration after a dorsal rhizotomy or a dorsal column crush spinal cord lesion. In the current study, we demonstrate that virally expressed integrins (α9, α6, or β1 integrin) in the adult rat sensorimotor cortex and adult red nucleus are excluded from axons following neuronal transduction. Attempts to stimulate transport by inclusion of a cervical spinal injury and thus an upregulation of extracellular matrix molecules at the lesion site, or cotransduction with its binding partner, β1 integrin, did not induce integrin localization within axons. In contrast, virally expressed α9 integrin in developing rat cortex (postnatal day 5 or 10) demonstrated clear localization of integrins in cortical axons revealed by the presence of integrin in the axons of the corpus callosum and internal capsule, as well as in the neuronal cell body. Furthermore, examination of dorsal root ganglia neurons and retinal ganglion cells demonstrated integrin localization both within peripheral nerve as well as dorsal root axons and within optic nerve axons, respectively. Together, our results suggest a differential ability for in vivo axonal transport of transmembrane proteins dependent on neuronal age and subtype. PMID:27570822

  8. TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons.

    PubMed

    Anand, U; Otto, W R; Facer, P; Zebda, N; Selmer, I; Gunthorpe, M J; Chessell, I P; Sinisi, M; Birch, R; Anand, P

    2008-06-20

    TRPA1 is a receptor expressed by sensory neurons, that is activated by low temperature (<17 degrees C) and plant derivatives such as cinnamaldehyde and isoeugenol, to elicit sensations including pain. Using immunohistochemistry, we have, for the first time, localised TRPA1 in human DRG neurons, spinal cord motoneurones and nerve roots, peripheral nerves, intestinal myenteric plexus neurones, and skin basal keratinocytes. TRPA1 co-localised with a subset of hDRG neurons positive for TRPV1, the heat and capsaicin receptor. The number of small/medium TRPA1 positive neurons (< or =50 microm) was increased after hDRG avulsion injury [percentage of cells, median (range): controls 16.5 (7-23); injured 46 (34-55); P<0.005], but the number of large TRPA1 neurons was unchanged [control 19.5 (13-31); injured 21 (11-35)]. Similar TRPA1 changes were observed in cultured hDRG neurons, after exposure to a combination of key neurotrophic factors NGF, GDNF and NT-3 (NTFs) in vitro. We used calcium imaging to examine responses of HEK cells transfected with hTRPA1 cDNA, and of human and rat DRG neurons cultured with or without added NTFs, to cinnamaldehyde (CA) and isoeugenol (IE). Exposure to NTFs in vitro sensitized cultured human sensory neuronal responses to CA; repeated CA exposure produced desensitisation. In rDRG neurons, low (225 microM) CA preincubation enhanced capsaicin responses, while high (450 microM and 2mM) CA caused inhibition which was partially reversed in the presence of 8 bromo cAMP, indicating receptor dephosphorylation. While TRPA1 localisation is more widespread than TRPV1, it represents a promising novel drug target for the treatment of chronic pain and hypersensitivity.

  9. Mechanisms of diabetic neuropathy: axon dysfunction.

    PubMed

    Sima, Anders A F; Zhang, Weixian

    2014-01-01

    Diabetic neuropathy is the most common complication of diabetes. It shows a progressive development with sensory loss, pain and autonomic dysfunction as common symptoms. Pathologically it is characterized by a series of interrelated metabolic abnormalities with insulin deficiency and hyperglycemia as the initiating culprits. The neuropathy accompanying type 2DM (insulin resistance) and type 1DM (insulin deficiency) appears to differ as to their structural changes; the former showing a milder axonal involvement and segmental myelin breakdown, whereas the latter shows a more severe axonal atrophy and axonal loss. Based mainly on animal data we will describe the sequential neuropathologic changes and differences in the two types of diabetes. These differences are related to differences in a myriad of underlying sequential metabolic abnormalities, which will be dealt with in detail. How metabolic defects affect nerve function will be elaborated upon. The disorder does not only involve somatic peripheral nerves but also autonomic and central nerve tracts. Today no successful therapy exists for diabetic neuropathy. During the last 30 years several experimental drugs targeting the polyol-pathway and oxidative stress have been tested, but with limited or no success. Instead therapies targeting the initiating and overriding pathogenetic abnormalities, such as insulin-deficiency and hyperglycemia need to be employed. One such agent is the insulinomimetic C-peptide which has demonstrated significant therapeutic and preventive effects in type 1 diabetic patients. Not surprisingly this has been particularly successful following early intervention. However diabetic neuropathy still remains a major medical problem affecting millions of patients.

  10. Unique Function of Kinesin Kif5A in Localization of Mitochondria in Axons

    PubMed Central

    Campbell, Philip D.; Shen, Kimberle; Sapio, Matthew R.; Glenn, Thomas D.; Talbot, William S.

    2014-01-01

    Mutations in Kinesin proteins (Kifs) are linked to various neurological diseases, but the specific and redundant functions of the vertebrate Kifs are incompletely understood. For example, Kif5A, but not other Kinesin-1 heavy-chain family members, is implicated in Charcot-Marie-Tooth disease (CMT) and Hereditary Spastic Paraplegia (HSP), but the mechanism of its involvement in the progressive axonal degeneration characteristic of these diseases is not well understood. We report that zebrafish kif5Aa mutants exhibit hyperexcitability, peripheral polyneuropathy, and axonal degeneration reminiscent of CMT and HSP. Strikingly, although kif5 genes are thought to act largely redundantly in other contexts, and zebrafish peripheral neurons express five kif5 genes, kif5Aa mutant peripheral sensory axons lack mitochondria and degenerate. We show that this Kif5Aa-specific function is cell autonomous and is mediated by its C-terminal tail, as only Kif5Aa and chimeric motors containing the Kif5Aa C-tail can rescue deficits. Finally, concurrent loss of the kinesin-3, kif1b, or its adaptor kbp, exacerbates axonal degeneration via a nonmitochondrial cargo common to Kif5Aa. Our results shed light on Kinesin complexity and reveal determinants of specific Kif5A functions in mitochondrial transport, adaptor binding, and axonal maintenance. PMID:25355224

  11. Inflammation of peripheral tissues and injury to peripheral nerves induce differing effects in the expression of the calcium-sensitive N-arachydonoylethanolamine-synthesizing enzyme and related molecules in rat primary sensory neurons.

    PubMed

    Sousa-Valente, João; Varga, Angelika; Torres-Perez, Jose Vicente; Jenes, Agnes; Wahba, John; Mackie, Ken; Cravatt, Benjamin; Ueda, Natsuo; Tsuboi, Kazuhito; Santha, Peter; Jancso, Gabor; Tailor, Hiren; Avelino, António; Nagy, Istvan

    2017-06-01

    Elevation of intracellular Ca(2+) concentration induces the synthesis of N-arachydonoylethanolamine (anandamide) in a subpopulation of primary sensory neurons. N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is the only known enzyme that synthesizes anandamide in a Ca(2+) -dependent manner. NAPE-PLD mRNA as well as anandamide's main targets, the excitatory transient receptor potential vanilloid type 1 ion channel (TRPV1), the inhibitory cannabinoid type 1 (CB1) receptor, and the main anandamide-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), are all expressed by subpopulations of nociceptive primary sensory neurons. Thus, NAPE-PLD, TRPV1, the CB1 receptor, and FAAH could form an autocrine signaling system that could shape the activity of a major subpopulation of nociceptive primary sensory neurons, contributing to the development of pain. Although the expression patterns of TRPV1, the CB1 receptor, and FAAH have been comprehensively elucidated, little is known about NAPE-PLD expression in primary sensory neurons under physiological and pathological conditions. This study shows that NAPE-PLD is expressed by about one-third of primary sensory neurons, the overwhelming majority of which also express nociceptive markers as well as the CB1 receptor, TRPV1, and FAAH. Inflammation of peripheral tissues and injury to peripheral nerves induce differing but concerted changes in the expression pattern of NAPE-PLD, the CB1 receptor, TRPV1, and FAAH. Together these data indicate the existence of the anatomical basis for an autocrine signaling system in a major proportion of nociceptive primary sensory neurons and that alterations in that autocrine signaling by peripheral pathologies could contribute to the development of both inflammatory and neuropathic pain.

  12. Disruption and restoration of dorsal horn sensory map after peripheral nerve crush and regeneration.

    PubMed

    Sugimoto, T; Yoshida, A; Nishijima, K; Ichikawa, H

    1995-10-01

    Formalin injection into the hindpaw of rats produces many neurons with c-fos protein-like immunoreactivity (fos-neurons) in the medial 3/4 of the ipsilateral dorsal horn laminae I and II at the junction of 4th and 5th lumbar segments (the sciatic territory). The tibial nerve transection 2 or 3 days earlier resulted in almost complete elimination of stimulation-induced fos-neurons in the tibial territory (medial 1/2 of the sciatic territory). When the animals had been conditioned by crushing the tibial nerve 2 weeks before stimulation (11 or 12 days before transection), the number of fos-neurons significantly increased compared to simple transection alone. The increase (2.5-fold) was greatest in the tibial territory. Therefore, the dorsal horn neurons in the deafferented tibial territory exhibited hypersensitivity to intact peroneal primary input, and the somatotopy map was disrupted. When the nerve had been crushed 3 weeks (18 or 19 days earlier than transection) rather than 2 weeks before stimulation, however, the number and distribution of fos-neurons were not different from those without conditioning (transection alone). Regenerated tibial nerve fibers were capable of transganglionic transport of WGA-HRP from the hindpaw receptive field to the tibial territory of the dorsal horn by 3 weeks but not by 2 weeks following the nerve crush. When transection was omitted, noxious signal transmitted through the tibial nerve fibers regenerated by 3 weeks after crush was capable of inducing c-fos in the tibial territory. The injury-induced hypersensitivity of dorsal horn neurons and resulting disruption of somatotopy map were reversed by re-establishment of peripheral tissue-nerve interaction.

  13. Long-Term Characterization of Axon Regeneration and Matrix Changes Using Multiple Channel Bridges for Spinal Cord Regeneration

    PubMed Central

    Tuinstra, Hannah M.; Margul, Daniel J.; Goodman, Ashley G.; Boehler, Ryan M.; Holland, Samantha J.; Zelivyanskaya, Marina L.; Cummings, Brian J.; Anderson, Aileen J.

    2014-01-01

    Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited available therapies. The host response to SCI is typified by limited endogenous repair, and biomaterial bridges offer the potential to alter the microenvironment to promote regeneration. Porous multiple channel bridges implanted into the injury provide stability to limit secondary damage and support cell infiltration that limits cavity formation. At the same time, the channels provide a path that physically directs axon growth across the injury. Using a rat spinal cord hemisection injury model, we investigated the dynamics of axon growth, myelination, and scar formation within and around the bridge in vivo for 6 months, at which time the bridge has fully degraded. Axons grew into and through the channels, and the density increased overtime, resulting in the greatest axon density at 6 months postimplantation, despite complete degradation of the bridge by that time point. Furthermore, the persistence of these axons contrasts with reports of axonal dieback in other models and is consistent with axon stability resulting from some degree of connectivity. Immunostaining of axons revealed both motor and sensory origins of the axons found in the channels of the bridge. Extensive myelination was observed throughout the bridge at 6 months, with centrally located and peripheral channels seemingly myelinated by oligodendrocytes and Schwann cells, respectively. Chondroitin sulfate proteoglycan deposition was restricted to the edges of the bridge, was greatest at 1 week, and significantly decreased by 6 weeks. The dynamics of collagen I and IV, laminin, and fibronectin deposition varied with time. These studies demonstrate that the bridge structure can support substantial long-term axon growth and myelination with limited scar formation. PMID:24168314

  14. Schwann cell interactions with axons and microvessels in diabetic neuropathy.

    PubMed

    Gonçalves, Nádia P; Vægter, Christian B; Andersen, Henning; Østergaard, Leif; Calcutt, Nigel A; Jensen, Troels S

    2017-03-01

    The prevalence of diabetes worldwide is at pandemic levels, with the number of patients increasing by 5% annually. The most common complication of diabetes is peripheral neuropathy, which has a prevalence as high as 50% and is characterized by damage to neurons, Schwann cells and blood vessels within the nerve. The pathogenic mechanisms of diabetic neuropathy remain poorly understood, impeding the development of targeted therapies to treat nerve degeneration and its most disruptive consequences of sensory loss and neuropathic pain. Involvement of Schwann cells has long been proposed, and new research techniques are beginning to unravel a complex interplay between these cells, axons and microvessels that is compromised during the development of diabetic neuropathy. In this Review, we discuss the evolving concept of Schwannopathy as an integral factor in the pathogenesis of diabetic neuropathy, and how disruption of the interactions between Schwann cells, axons and microvessels contribute to the disease.

  15. Diagnostic approach to peripheral neuropathy

    PubMed Central

    Misra, Usha Kant; Kalita, Jayantee; Nair, Pradeep P.

    2008-01-01

    Peripheral neuropathy refers to disorders of the peripheral nervous system. They have numerous causes and diverse presentations; hence, a systematic and logical approach is needed for cost-effective diagnosis, especially of treatable neuropathies. A detailed history of symptoms, family and occupational history should be obtained. General and systemic examinations provide valuable clues. Neurological examinations investigating sensory, motor and autonomic signs help to define the topography and nature of neuropathy. Large fiber neuropathy manifests with the loss of joint position and vibration sense and sensory ataxia, whereas small fiber neuropathy manifests with the impairment of pain, temperature and autonomic functions. Electrodiagnostic (EDx) tests include sensory, motor nerve conduction, F response, H reflex and needle electromyography (EMG). EDx helps in documenting the extent of sensory motor deficits, categorizing demyelinating (prolonged terminal latency, slowing of nerve conduction velocity, dispersion and conduction block) and axonal (marginal slowing of nerve conduction and small compound muscle or sensory action potential and dennervation on EMG). Uniform demyelinating features are suggestive of hereditary demyelination, whereas difference between nerves and segments of the same nerve favor acquired demyelination. Finally, neuropathy is classified into mononeuropathy commonly due to entrapment or trauma; mononeuropathy multiplex commonly due to leprosy and vasculitis; and polyneuropathy due to systemic, metabolic or toxic etiology. Laboratory investigations are carried out as indicated and specialized tests such as biochemical, immunological, genetic studies, cerebrospinal fluid (CSF) examination and nerve biopsy are carried out in selected patients. Approximately 20% patients with neuropathy remain undiagnosed but the prognosis is not bad in them. PMID:19893645

  16. Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury

    PubMed Central

    Yagasaki, Yuki; Katayama, Yoko

    2017-01-01

    Abstract Plastic changes in the CNS in response to peripheral sensory nerve injury are a series of complex processes, ranging from local circuit remodeling to somatotopic reorganization. However, the link between circuit remodeling and somatotopic reorganization remains unclear. We have previously reported that transection of the primary whisker sensory nerve causes the abnormal rewiring of lemniscal fibers (sensory afferents) on a neuron in the mouse whisker sensory thalamus (V2 VPM). In the present study, using transgenic mice whose lemniscal fibers originate from the whisker sensory principle trigeminal nucleus (PrV2) are specifically labeled, we identified that the transection induced retraction of PrV2-originating lemniscal fibers and invasion of those not originating from PrV2 in the V2 VPM. This anatomical remodeling with somatotopic reorganization was highly correlated with the rewiring of lemniscal fibers. Origins of the non-PrV2-origin lemniscal fibers in the V2 VPM included the mandibular subregion of trigeminal nuclei and the dorsal column nuclei (DCNs), which normally represent body parts other than whiskers. The transection also resulted in ectopic receptive fields of V2 VPM neurons and extraterritorial pain behavior on the uninjured mandibular region of the face. The anatomical remodeling, emergence of ectopic receptive fields, and extraterritorial pain behavior all concomitantly developed within a week and lasted more than three months after the transection. Our findings, thus, indicate a strong linkage between these plastic changes after peripheral sensory nerve injury, which may provide a neural circuit basis underlying large-scale reorganization of somatotopic representation and abnormal ectopic sensations.

  17. Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system.

    PubMed

    Carr, Lauren; Parkinson, David B; Dun, Xin-Peng

    2017-01-01

    The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury.

  18. A longitudinal study of sensory biomarkers of progression in patients with diabetic peripheral neuropathy using skin biopsies.

    PubMed

    Narayanaswamy, H; Facer, P; Misra, V P; Timmers, M; Byttebier, G; Meert, T; Anand, P

    2012-11-01

    We aimed to identify biomarkers in skin punch biopsies that could be used to monitor progression of diabetic peripheral neuropathy (DPN), and, in future studies, to assess the efficacy of agents that may reduce progression. Patients with DPN were studied with clinical assessments, skin biopsies, quantitative sensory testing (QST), histamine-induced skin flare, nerve conduction studies and contact heat-evoked potentials (CHEPS). Skin biopsies were performed on two visits with a 6 month interval (n=29 patients) to quantify intraepidermal (IENF) and subepidermal (SENF) nerve fibres immunoreactive for: protein gene product 9.5 (PGP9.5), a pan-neuronal marker; transient receptor potential cation channel vanilloid 1 (TRPV1), the heat and capsaicin receptor; and growth associated protein-43 (GAP-43), a marker of regenerating fibres. The IENF were counted along the length of four non-consecutive sections, and results were expressed as fibres per millimetre length of section. SENF were measured by image analysis, and the area of highlighted immunoreactivity was obtained as a percentage (% area) of the field scanned. QST, skin flare and CHEPS were also performed at the two visits. We found that IENF and SENF were significantly reduced for both PGP9.5 and TRPV1 between the first and second skin biopsy over 6months. The annual rate ± standard error of the mean of IENF loss was 3.76 ± 1.46 fibres/mm for PGP9.5, and 3.13 ± 0.58 fibres/mm for TRPV1. The other tests did not show significant changes. Strongly positive GAP-43 nerve fibres were found in deep dermis in the patients with diabetes, even in those with an absence of IENF. We conclude that PGP9.5 and TRPV1 IENF and SENF in skin biopsies are useful markers of progression in DPN, whereas GAP-43 SENF could potentially help detect nerve regeneration in severe neuropathy.

  19. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    PubMed

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency.

  20. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    NASA Astrophysics Data System (ADS)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  1. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury

    PubMed Central

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David LH

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. DOI: http://dx.doi.org/10.7554/eLife.12661.001 PMID:27033551

  2. Physician-assessed and patient-reported outcome measures in chemotherapy-induced sensory peripheral neurotoxicity: two sides of the same coin

    PubMed Central

    Alberti, P.; Rossi, E.; Cornblath, D. R.; Merkies, I. S. J.; Postma, T. J.; Frigeni, B.; Bruna, J.; Velasco, R.; Argyriou, A. A.; Kalofonos, H. P.; Psimaras, D.; Ricard, D.; Pace, A.; Galiè, E.; Briani, C.; Dalla Torre, C.; Faber, C. G.; Lalisang, R. I.; Boogerd, W.; Brandsma, D.; Koeppen, S.; Hense, J.; Storey, D.; Kerrigan, S.; Schenone, A.; Fabbri, S.; Valsecchi, M. G.; Cavaletti, G.; Cavaletti, G.; Cornblath, D.R.; Merkies, I.S.J.; Postma, T.J.; Valsecchi, M.G; Galimberti, S.; Rossi, E.; Cavaletti, G.; Frigeni, B.; Lanzani, F.; Mattavelli, L.; Piatti, ML.; Alberti, P.; Binda, D.; Bidoli, P..; Cazzaniga, M.; Cortinovis, D.; Bruna, J.; Velasco, R.; Argyriou, AA.; Kalofonos, HP.; Psimaras, D.; Ricard, D.; Pace, A.; Galiè, E.; Briani, C.; Lucchetta, M.; Campagnolo, M.; Dalla Torre, C.; Merkies, ISJ.; Faber, CG.; Merkies, ISJ.; Vanhoutte, EK.; Bakkers, M.; Brouwer, B.; Lalisang, RI.; Boogerd, W.; Brandsma, D.; Koeppen, S.; Hense, J.; Grant, R.; Storey, D.; Kerrigan, S.; Schenone, A.; Reni, L.; Piras, B.; Fabbri, S.; Padua, L.; Granata, G.; Leandri, M.; Ghignotti, I.; Plasmati, R..; Pastorelli, F.; Postma, TJ.; Heimans, JJ.; Eurelings, M.; Meijer, RJ.; Grisold, W.; Lindeck Pozza, E.; Mazzeo, A.; Toscano, A.; Tomasello, C.; Altavilla, G.; Penas Prado, M.; Dominguez Gonzalez, C.; Dorsey, SG.; Brell, JM.

    2014-01-01

    Background The different perception and assessment of chemotherapy-induced peripheral neurotoxicity (CIPN) between healthcare providers and patients has not yet been fully addressed, although these two approaches might eventually lead to inconsistent, possibly conflicting interpretation, especially regarding sensory impairment. Patients and methods A cohort of 281 subjects with stable CIPN was evaluated with the National Cancer Institute—Common Toxicity Criteria (NCI-CTC v. 2.0) sensory scale, the clinical Total Neuropathy Score (TNSc©), the modified Inflammatory Neuropathy Cause and Treatment (INCAT) sensory sumscore (mISS) and the European Organization for Research and Treatment of Cancer CIPN specific self-report questionnaire (EORTC QOL-CIPN20). Results Patients' probability estimates showed that the EORTC QLQ-CIPN20 sensory score was overall more highly related to the NCI-CTC sensory score. However, the vibration perception item of the TNSc had a higher probability to be scored 0 for EORTC QLQ-CIPN20 scores lower than 35, as vibration score 2 for EORTC QLQ-CIPN20 scores between 35 and 50 and as grade 3 or 4 for EORTC QLQ-CIPN20 scores higher than 50. The linear models showed a significant trend between each mISS item and increasing EORTC QLQ-CIPN20 sensory scores. Conclusion None of the clinical items had a perfect relationship with patients' perception, and most of the discrepancies stood in the intermediate levels of CIPN severity. Our data indicate that to achieve a comprehensive knowledge of CIPN including a reliable assessment of both the severity and the quality of CIPN-related sensory impairment, clinical and PRO measures should be always combined. PMID:24256846

  3. Mitochondrial dynamics and peripheral neuropathy.

    PubMed

    Baloh, Robert H

    2008-02-01

    Peripheral neuropathy is perhaps the archetypal disease of axonal degeneration, characteristically involving degeneration of the longest axons in the body. Evidence from both inherited and acquired forms of peripheral neuropathy strongly supports that the primary pathology is in the axons themselves and points to disruption of axonal transport as an important disease mechanism. Recent studies in human genetics have further identified abnormalities in mitochondrial dynamics--the fusion, fission, and movement of mitochondria--as a player in the pathogenesis of inherited peripheral neuropathy. This review provides an update on the mechanisms of mitochondrial trafficking in axons and the emerging relationship between the disruption of mitochondrial dynamics and axonal degeneration. Evidence suggests mitochondria are a "critical cargo" whose transport is necessary for proper axonal and synaptic function. Importantly, understanding the regulation of mitochondrial movement and the consequences of decreased axonal mitochondrial function may define new paths for therapeutic agents in peripheral neuropathy and other neurodegenerative diseases.

  4. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system.

    PubMed

    Richner, Mette; Ulrichsen, Maj; Elmegaard, Siri Lander; Dieu, Ruthe; Pallesen, Lone Tjener; Vaegter, Christian Bjerggaard

    2014-12-01

    Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75(NTR) and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.

  5. Impaired Axonal Regeneration in Diabetes. Perspective on the Underlying Mechanism from In Vivo and In Vitro Experimental Studies

    PubMed Central

    Sango, Kazunori; Mizukami, Hiroki; Horie, Hidenori; Yagihashi, Soroku

    2017-01-01

    Axonal regeneration after peripheral nerve injury is impaired in diabetes, but its precise mechanisms have not been elucidated. In this paper, we summarize the progress of research on altered axonal regeneration in animal models of diabetes and cultured nerve tissues exposed to hyperglycemia. Impaired nerve regeneration in animal diabetes can be attributed to dysfunction of neurons and Schwann cells, unfavorable stromal environment supportive of regenerating axons, and alterations of target tissues receptive to reinnervation. In particular, there are a number of factors such as enhanced activity of the negative regulators of axonal regeneration (e.g., phosphatase and tensin homolog deleted on chromosome 10 and Rho/Rho kinase), delayed Wallerian degeneration, alterations of the extracellular matrix components, enhanced binding of advanced glycation endproducts (AGEs) with the receptor for AGE, and delayed muscle reinnervation that can be obstacles to functional recovery after an axonal injury. It is also noteworthy that we and others have observed excessive neurite outgrowth from peripheral sensory ganglion explants from streptozotocin (STZ)-diabetic mice in culture and enhanced regeneration of small nerve fibers after sciatic nerve injury in STZ-induced diabetic rats. The excess of abortive neurite outgrowth may lead to misconnections of axons and target organs, which may interfere with appropriate target reinnervation and functional repair. Amelioration of perturbed nerve regeneration may be crucial for the future management of diabetic neuropathy. PMID:28203223

  6. Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity.

    PubMed

    Donnelly, Christopher J; Willis, Dianna E; Xu, Mei; Tep, Chhavy; Jiang, Chunsu; Yoo, Soonmoon; Schanen, N Carolyn; Kirn-Safran, Catherine B; van Minnen, Jan; English, Arthur; Yoon, Sung Ok; Bassell, Gary J; Twiss, Jeffery L

    2011-09-30

    Subcellular localization of mRNAs is regulated by RNA-protein interactions. Here, we show that introduction of a reporter mRNA with the 3'UTR of β-actin mRNA competes with endogenous mRNAs for binding to ZBP1 in adult sensory neurons. ZBP1 is needed for axonal localization of β-actin mRNA, and introducing GFP with the 3'UTR of β-actin mRNA depletes axons of endogenous β-actin and GAP-43 mRNAs and attenuates both in vitro and in vivo regrowth of severed axons. Consistent with limited levels of ZBP1 protein in adult neurons, mice heterozygous for the ZBP1 gene are haploinsufficient for axonal transport of β-actin and GAP-43 mRNAs and for regeneration of peripheral nerve. Exogenous ZBP1 can rescue the RNA transport deficits, but the axonal growth deficit is only rescued if the transported mRNAs are locally translated. These data support a direct role for ZBP1 in transport and translation of mRNA cargos in axonal regeneration in vitro and in vivo.

  7. The critical period for peripheral specification of dorsal root ganglion neurons is related to the period of sensory neurogenesis

    SciTech Connect

    Smith, C.L. )

    1990-12-01

    Thoracic sensory neurons in bullfrog tadpoles can be induced to form connections typical of brachial sensory neurons by transplanting thoracic ganglia to the branchial level at stages when some thoracic sensory neurons already have formed connections. In order to find out how many postmitotic sensory neurons survive transplantation, ({sup 3}H)thymidine was administered to tadpoles in which thoracic ganglia were transplanted to the brachial level unilaterally at stages VII to IX. Between 16 and 37% of the neurons in transplanted ganglia were unlabeled, as compared to 46 to 60% in unoperated ganglia. Transplanted ganglia contained fewer unlabeled neurons than corresponding unoperated ganglia, indicating that transplantation caused degeneration of postmitotic neurons. Therefore, a large fraction of the neurons that formed connections typical of brachial sensory neurons probably differentiated while they were at the brachial level.

  8. Accommodation to hyperpolarizing currents: differences between motor and sensory nerves in mice.

    PubMed

    Nodera, Hiroyuki; Rutkove, Seward B

    2012-06-19

    Peripheral motor nerves have revealed variability in excitability by hyperpolarizing current at specific target response levels, likely reflecting differences in the hyperpolarization-activated current (Ih). Whether such variability in Ih exists in sensory axons is yet to be established. We performed nerve excitability testing in mouse tail motor and sensory nerves at 3 target response levels (20, 40, and 60% of the maximum amplitudes). Target-level dependent variability was present by long hyperpolarizing currents in motor and sensory nerves in which the recording at the low target level showed smaller threshold changes than at the high target level. Other excitability measures, however, showed no variability. Furthermore, the accommodation by long, strong hyperpolarization revealed smaller S3 accommodation (threshold change between the maximum and at the end of the 200 ms conditioning pulse) at the low target response level in sensory axons, but not in motor axons. Variation in the kinetics of the subtypes of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in motor and sensory axons is the most likely explanation for these findings. The present study has proposed that nerve excitability testing may provide a non-invasive means for the assessment of the different types of Ih in neurological disorders where HCN subtypes play unique pathophysiological roles.

  9. Hereditary sensory radicular neuropathy: defective neurogenic inflammation.

    PubMed

    Westerman, R A; Block, A; Nunn, A; Delaney, C A; Hahn, A; Dennett, X; Carr, R W

    1992-01-01

    Hereditary sensory radicular neuropathy exhibits autosomal dominant inheritance with complete penetrance in males and incomplete penetrance in females. Newer tests of small sensory nerve function were used in screening 8 family members aged between 14 and 66 years. All exhibited some frequent features of the disorder with an onset in the 2nd or 3rd decade, foot ulceration, foot callus, loss of pin prick, thermal and light touch sensation, and some reduction in vibration acuity and proprioception in the lower limbs. The hands were involved in 3 of 8, muscle involvement was present in 5 of 8, but deafness was not detected by audiometry. Nerve conduction velocity, sensory action potentials, latency and amplitude, thermal acuity, vibration acuity and axon reflex flares were measured in all patients. One sural nerve biopsy confirmed the presence of peripheral fibre loss in this predominantly sensory neuropathy. Chemically evoked axon reflex tests were used to evaluate the extent of primary sensory nerve fibre involvement. All patients were tested using a Moor MBF 3-D dual channel laser Doppler velocimeter. Acetylcholine or phenylephrine iontophoretically applied as 16 mC doses evoked absent or tiny axon reflexes in areas of impaired pin prick sensation. By contrast, direct microvascular dilator responses to nitroprusside (smooth muscle dependent) and acetylcholine (endothelium-dependent) were present but somewhat reduced in areas with defective neurogenic inflammation. These results differ significantly from the responses obtained in age-matched healthy controls (P < 0.05). Foot pressure analysis was performed for orthoses in 2 affected members with foot ulceration using the Musgrave Footprint system.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Target-dependence of sensory neurons: an ultrastructural comparison of axotomised dorsal root ganglion neurons with allowed or denied reinnervation of peripheral targets.

    PubMed

    Johnson, I P; Sears, T A

    2013-01-03

    Evidence is emerging for a role of rough endoplasmic reticulum (RER) in the form of stress granules, the unfolded protein response and protein bodies in the response of neurons to injury and in neurodegenerative diseases. Here, we have studied the role of the peripheral target in regulating the RER and polyribosomes of Nissl bodies in axotomised adult cat dorsal root ganglion (DRG) neurons where axonal regeneration and peripheral target reinnervation was either allowed or denied. Retrograde labelling with horseradish peroxidise was used as an independent marker to enable selection of only those DRG neuronal cell bodies with axons in the injured intercostal nerves. Indications of polyribosomal dispersal were seen by 6h following axotomy, and by 24h the normal orderly arrangement of lamellae of RER in Nissl bodies had become disorganised. These ultrastructural changes preceded light microscopical chromatolysis by 1-3d. The retrograde response was maximal 8-32 d after axotomy. Clusters of debris-laden satellite cells/macrophages were present at this time but no ultrastructural evidence of neuronal apoptosis or necrosis was seen and there were no differences in the initial retrograde response according to the type of injury. By 64 d following axotomy with reinnervation, approximately half the labelled DRG neurons showed restoration of the orderly arrangement of RER and polyribosomes in their Nissl bodies. This was not seen after axotomy with reinnervation denied. We propose that the target-dependent changes in Nissl body ultrastructure described here are part of a continuum that can modify neuronal protein synthesis directed towards growth, maintenance or death of the neuron. This represents a possible structural basis for mediating the varied effects of neurotrophic interactions.

  11. Mitochondrial dynamics and inherited peripheral nerve diseases.

    PubMed

    Pareyson, Davide; Saveri, Paola; Sagnelli, Anna; Piscosquito, Giuseppe

    2015-06-02

    Peripheral nerves have peculiar energetic requirements because of considerable length of axons and therefore correct mitochondria functioning and distribution along nerves is fundamental. Mitochondrial dynamics refers to the continuous change in size, shape, and position of mitochondria within cells. Abnormalities of mitochondrial dynamics produced by mutations in proteins involved in mitochondrial fusion (mitofusin-2, MFN2), fission (ganglioside-induced differentiation-associated protein-1, GDAP1), and mitochondrial axonal transport usually present with a Charcot-Marie-Tooth disease (CMT) phenotype. MFN2 mutations cause CMT type 2A by altering mitochondrial fusion and trafficking along the axonal microtubule system. CMT2A is an axonal autosomal dominant CMT type which in most cases is characterized by early onset and rather severe course. GDAP1 mutations also alter fission, fusion and transport of mitochondria and are associated either with recessive demyelinating (CMT4A) and axonal CMT (AR-CMT2K) and, less commonly, with dominant, milder, axonal CMT (CMT2K). OPA1 (Optic Atrophy-1) is involved in fusion of mitochondrial inner membrane, and its heterozygous mutations lead to early-onset and progressive dominant optic atrophy which may be complicated by other neurological symptoms including peripheral neuropathy. Mutations in several proteins fundamental for the axonal transport or forming the axonal cytoskeleton result in peripheral neuropathy, i.e., CMT, distal hereditary motor neuropathy (dHMN) or hereditary sensory and autonomic neuropathy (HSAN), as well as in hereditary spastic paraplegia. Indeed, mitochondrial transport involves directly or indirectly components of the kinesin superfamily (KIF5A, KIF1A, KIF1B), responsible of anterograde transport, and of the dynein complex and related proteins (DYNC1H1, dynactin, dynamin-2), implicated in retrograde flow. Microtubules, neurofilaments, and chaperones such as heat shock proteins (HSPs) also have a fundamental

  12. Identification of the Ulex europaeus agglutinin-I-binding protein as a unique glycoform of the neural cell adhesion molecule in the olfactory sensory axons of adults rats.

    PubMed

    Pestean, A; Krizbai, I; Böttcher, H; Párducz, A; Joó, F; Wolff, J R

    1995-08-04

    Histochemical localization of two lectins, Ulex europaeus agglutinin-I (UEA-I) and Tetragonolobus purpureus (TPA), was studied in the olfactory bulb of adult rats. In contrast to TPA, UEA-I detected a fucosylated glycoprotein that is only present in the surface membranes of olfactory sensory cells including the whole course of their neurites up to the final arborization in glomeruli. Immunoblotting revealed that UEA-I binds specifically to a protein of 205 kDa, while TPA stains several other glycoproteins. Affinity chromatography with the use of a UEA-I column identified the 205 kDa protein as a glycoform of neural cell adhesion molecule (N-CAM), specific for the rat olfactory sensory nerves.

  13. Reduced evoked motor and sensory potential amplitudes in obstructive sleep apnea patients.

    PubMed

    Mihalj, Mario; Lušić, Linda; Đogaš, Zoran

    2016-06-01

    It is unknown to what extent chronic intermittent hypoxaemia in obstructive sleep apnea causes damage to the motor and sensory peripheral nerves. It was hypothesized that patients with obstructive sleep apnea would have bilaterally significantly impaired amplitudes of both motor and sensory peripheral nerve-evoked potentials of both lower and upper limbs. An observational study was conducted on 43 patients with obstructive sleep apnea confirmed by the whole-night polysomnography, and 40 controls to assess the relationship between obstructive sleep apnea and peripheral neuropathy. All obstructive sleep apnea subjects underwent standardized electroneurographic testing, with full assessment of amplitudes of evoked compound muscle action potentials, sensory neural action potentials, motor and sensory nerve conduction velocities, and distal motor and sensory latencies of the median, ulnar, peroneal and sural nerves, bilaterally. All nerve measurements were compared with reference values, as well as between the untreated patients with obstructive sleep apnea and control subjects. Averaged compound muscle action potential and sensory nerve action potential amplitudes were significantly reduced in the nerves of both upper and lower limbs in patients with obstructive sleep apnea compared with controls (P < 0.001). These results confirmed that patients with obstructive sleep apnea had significantly lower amplitudes of evoked action potentials of both motor and sensory peripheral nerves. Clinical/subclinical axonal damage exists in patients with obstructive sleep apnea to a greater extent than previously thought.

  14. Induction of monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 in primary sensory neurons contributes to paclitaxel-induced peripheral neuropathy

    PubMed Central

    Zhang, Haijun; Boyette-Davis, Jessica A.; Kosturakis, Alyssa K.; Li, Yan; Yoon, Seo-Yeon; Walters, Edgar T.; Dougherty, Patrick M.

    2013-01-01

    The use of paclitaxel (Taxol®), a microtubule stabilizer, for cancer treatment is often limited by its associated peripheral neuropathy (chemotherapy-induced peripheral neuropathy, CIPN) which predominantly results in sensory dysfunction including chronic pain. Here we show that paclitaxel CIPN was associated with an induction of chemokine monocyte chemoattractant protein-1 (MCP-1) and its cognate receptor CCR2 in primary sensory neurons of dorsal root ganglia (DRG). Immunostaining revealed that MCP-1 was mainly expressed in small nociceptive neurons while CCR2 was expressed in large and medium-sized myelinated neurons. Direct application of MCP-1 consistently induced intracellular calcium increases in DRG large and medium-sized but not small neurons mainly dissociated from paclitaxel- but not vehicle-treated animals. Paclitaxel also induced increased expression of MCP-1 in spinal astrocytes but no CCR2 signal was detected in spinal cord. Local blockade of MCP-1/CCR2 signaling by anti-MCP-1 antibody or CCR2 antisense oligodeoxynucleotides significantly attenuated paclitaxel CIPN phenotypes including mechanical hypersensitivity and loss of intraepidermal nerve fibers (IENFs) in hindpaw glabrous skin. These results suggest that activation of paracrine MCP-1/CCR2 signaling between DRG neurons plays a critical role in the development of paclitaxel CIPN and targeting MCP-1/CCR2 signaling could be a novel therapeutic approach. PMID:23726937

  15. Peripheral Neuropathy: Symptoms and Signs

    MedlinePlus

    ... Tomography Scan (CAT) Electrodiagnostic Testing Lumbar Puncture Imaging Quantitative Sensory Testing (QST) Peripheral Neuropathy Treatments Facts + Risk ... Tomography Scan (CAT) Electrodiagnostic Testing Lumbar Puncture Imaging Quantitative Sensory Testing (QST) Peripheral Neuropathy Treatments Facts + Risk ...

  16. Synapse Plasticity in Motor, Sensory, and Limbo-Prefrontal Cortex Areas as Measured by Degrading Axon Terminals in an Environment Model of Gerbils (Meriones unguiculatus)

    PubMed Central

    Neufeld, Janina; Teuchert-Noodt, Gertraud; Grafen, Keren; Winter, York; Witte, A. Veronica

    2009-01-01

    Still little is known about naturally occurring synaptogenesis in the adult neocortex and related impacts of epigenetic influences. We therefore investigated (pre)synaptic plasticity in various cortices of adult rodents, visualized by secondary lysosome accumulations (LA) in remodeling axon terminals. Twenty-two male gerbils from either enriched (ER) or impoverished rearing (IR) were used for quantification of silver-stained LA. ER-animals showed rather low LA densities in most primary fields, whereas barrel and secondary/associative cortices exhibited higher densities and layer-specific differences. In IR-animals, these differences were evened out or even inverted. Basic plastic capacities might be linked with remodeling of local intrinsic circuits in the context of cortical map adaptation in both IR- and ER-animals. Frequently described disturbances due to IR in multiple corticocortical and extracortical afferent systems, including the mesocortical dopamine projection, might have led to maladaptations in the plastic capacities of prefronto-limbic areas, as indicated by different LA densities in IR- compared with ER-animals. PMID:19809517

  17. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy.

    PubMed

    Calcutt, Nigel A; Smith, Darrell R; Frizzi, Katie; Sabbir, Mohammad Golam; Chowdhury, Subir K Roy; Mixcoatl-Zecuatl, Teresa; Saleh, Ali; Muttalib, Nabeel; Van der Ploeg, Randy; Ochoa, Joseline; Gopaul, Allison; Tessler, Lori; Wess, Jürgen; Jolivalt, Corinne G; Fernyhough, Paul

    2017-02-01

    Sensory neurons have the capacity to produce, release, and respond to acetylcholine (ACh), but the functional role of cholinergic systems in adult mammalian peripheral sensory nerves has not been established. Here, we have reported that neurite outgrowth from adult sensory neurons that were maintained under subsaturating neurotrophic factor conditions operates under cholinergic constraint that is mediated by muscarinic receptor-dependent regulation of mitochondrial function via AMPK. Sensory neurons from mice lacking the muscarinic ACh type 1 receptor (M1R) exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural indices of sensory neuropathy. Pharmacological blockade of M1R using specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy, such as depletion of sensory nerve terminals, thermal hypoalgesia, and nerve conduction slowing in diverse rodent models of diabetes. Pirenzepine and MT7 also prevented peripheral neuropathy induced by the chemotherapeutic agents dichloroacetate and paclitaxel or HIV envelope protein gp120. As a variety of antimuscarinic drugs are approved for clinical use against other conditions, prompt translation of this therapeutic approach to clinical trials is feasible.

  18. Mutations in the MORC2 gene cause axonal Charcot-Marie-Tooth disease.

    PubMed

    Sevilla, Teresa; Lupo, Vincenzo; Martínez-Rubio, Dolores; Sancho, Paula; Sivera, Rafael; Chumillas, María J; García-Romero, Mar; Pascual-Pascual, Samuel I; Muelas, Nuria; Dopazo, Joaquín; Vílchez, Juan J; Palau, Francesc; Espinós, Carmen

    2016-01-01

    Charcot-Marie-Tooth disease (CMT) is a complex disorder with wide genetic heterogeneity. Here we present a new axonal Charcot-Marie-Tooth disease form, associated with the gene microrchidia family CW-type zinc finger 2 (MORC2). Whole-exome sequencing in a family with autosomal dominant segregation identified the novel MORC2 p.R190W change in four patients. Further mutational screening in our axonal Charcot-Marie-Tooth disease clinical series detected two additional sporadic cases, one patient who also carried the same MORC2 p.R190W mutation and another patient that harboured a MORC2 p.S25L mutation. Genetic and in silico studies strongly supported the pathogenicity of these sequence variants. The phenotype was variable and included patients with congenital or infantile onset, as well as others whose symptoms started in the second decade. The patients with early onset developed a spinal muscular atrophy-like picture, whereas in the later onset cases, the initial symptoms were cramps, distal weakness and sensory impairment. Weakness and atrophy progressed in a random and asymmetric fashion and involved limb girdle muscles, leading to a severe incapacity in adulthood. Sensory loss was always prominent and proportional to disease severity. Electrophysiological studies were consistent with an asymmetric axonal motor and sensory neuropathy, while fasciculations and myokymia were recorded rather frequently by needle electromyography. Sural nerve biopsy revealed pronounced multifocal depletion of myelinated fibres with some regenerative clusters and occasional small onion bulbs. Morc2 is expressed in both axons and Schwann cells of mouse peripheral nerve. Different roles in biological processes have been described for MORC2. As the silencing of Charcot-Marie-Tooth disease genes have been associated with DNA damage response, it is tempting to speculate that a deregulation of this pathway may be linked to the axonal degeneration observed in MORC2 neuropathy, thus adding a

  19. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression.

    PubMed

    Geremia, Nicole M; Gordon, Tessa; Brushart, Thomas M; Al-Majed, Abdulhakeem A; Verge, Valerie M K

    2007-06-01

    Brief electrical stimulation enhances the regenerative ability of axotomized motor [Nix, W.A., Hopf, H.C., 1983. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 272, 21-25; Al-Majed, A.A., Neumann, C.M., Brushart, T.M., Gordon, T., 2000. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20, 2602-2608] and sensory [Brushart, T.M., Jari, R., Verge, V., Rohde, C., Gordon, T., 2005. Electrical stimulation restores the specificity of sensory axon regeneration. Exp. Neurol. 194, 221-229] neurons. Here we examined the parameter of duration of stimulation on regenerative capacity, including the intrinsic growth programs, of sensory neurons. The effect of 20 Hz continuous electrical stimulation on the number of DRG sensory neurons that regenerate their axons was evaluated following transection and surgical repair of the femoral nerve trunk. Stimulation was applied proximal to the repair site for 1 h, 3 h, 1 day, 7 days or 14 days at the time of nerve repair. Following a 21-day regeneration period, DRG neurons that regenerated axons into the muscle and cutaneous sensory nerve branches were retrogradely identified. Stimulation of 1 h led to a significant increase in DRG neurons regenerating into cutaneous and muscle branches when compared to 0 h (sham) stimulation or longer periods of stimulation. Stimulation for 1 h also significantly increased the numbers of neurons that regenerated axons beyond the repair site 4 days after lesion and was correlated with a significant increase in expression of growth-associated protein 43 (GAP-43) mRNA in the regenerating neurons at 2 days post-repair. An additional indicator of heightened plasticity following 1 h stimulation was elevated expression of brain-derived neurotrophic factor (BDNF). The effect of brief stimulation on enhancing sensory and motoneuron regeneration holds promise for inducing improved peripheral nerve repair in the

  20. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy.

    PubMed

    Zheng, Huaien; Xiao, Wen Hua; Bennett, Gary J

    2011-12-01

    Cancer chemotherapeutics like paclitaxel and oxaliplatin produce a dose-limiting chronic sensory peripheral neuropathy that is often accompanied by neuropathic pain. The cause of the neuropathy and pain is unknown. In animal models, paclitaxel-evoked and oxaliplatin-evoked painful peripheral neuropathies are accompanied by an increase in the incidence of swollen and vacuolated mitochondria in peripheral nerve axons. It has been proposed that mitochondrial swelling and vacuolation are indicative of a functional impairment and that this results in a chronic axonal energy deficiency that is the cause of the neuropathy's symptoms. However, the significance of mitochondrial swelling and vacuolation is ambiguous and a test of the hypothesis requires a direct assessment of the effects of chemotherapy on mitochondrial function. The results of such an assessment are reported here. Mitochondrial respiration and ATP production were measured in rat sciatic nerve samples taken 1-2 days after and 3-4 weeks after induction of painful peripheral neuropathy with paclitaxel and oxaliplatin. Significant deficits in Complex I-mediated and Complex II-mediated respiration and significant deficits in ATP production were found for both drugs at both time points. In addition, prophylactic treatment with acetyl-l-carnitine, which inhibited the development of paclitaxel-evoked and oxaliplatin-evoked neuropathy, prevented the deficits in mitochondrial function. These results implicate mitotoxicity as a possible cause of chemotherapy-evoked chronic sensory peripheral neuropathy.

  1. DGAT2 Mutation in a Family with Autosomal-Dominant Early-Onset Axonal Charcot-Marie-Tooth Disease.

    PubMed

    Hong, Young Bin; Kang, Junghee; Kim, Ji Hyun; Lee, Jinho; Kwak, Geon; Hyun, Young Se; Nam, Soo Hyun; Hong, Hyun Dae; Choi, Yu-Ri; Jung, Sung-Chul; Koo, Heasoo; Lee, Ji Eun; Choi, Byung-Ok; Chung, Ki Wha

    2016-05-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy and is a genetically and clinically heterogeneous disorder. We examined a Korean family in which two individuals had an autosomal-dominant axonal CMT with early-onset, sensory ataxia, tremor, and slow disease progression. Pedigree analysis and exome sequencing identified a de novo missense mutation (p.Y223H) in the diacylglycerol O-acyltransferase 2 (DGAT2) gene. DGAT2 encodes an endoplasmic reticulum-mitochondrial-associated membrane protein, acyl-CoA:diacylglycerol acyltransferase, which catalyzes the final step of the triglyceride (TG) biosynthesis pathway. The patient showed consistently decreased serum TG levels, and overexpression of the mutant DGAT2 significantly inhibited the proliferation of mouse motor neuron cells. Moreover, the variant form of human DGAT2 inhibited the axonal branching in the peripheral nervous system of zebrafish. We suggest that mutation of DGAT2 is the novel underlying cause of an autosomal-dominant axonal CMT2 neuropathy. This study will help provide a better understanding of the pathophysiology of axonal CMT and contribute to the molecular diagnostics of peripheral neuropathies.

  2. Axonal interferon responses and alphaherpesvirus neuroinvasion

    NASA Astrophysics Data System (ADS)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  3. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis

    PubMed Central

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg. PMID:27594833

  4. Central neuron-glial and glial-glial interactions following axon injury.

    PubMed

    Aldskogius, H; Kozlova, E N

    1998-05-01

    Axon injury rapidly activates microglial and astroglial cells close to the axotomized neurons. Following motor axon injury, astrocytes upregulate within hour(s) the gap junction protein connexin-43, and within one day glial fibrillary acidic protein (GFAP). Concomitantly, microglial cells proliferate and migrate towards the axotomized neuron perikarya. Analogous responses occur in central termination territories of peripherally injured sensory ganglion cells. The activated microglia express a number of inflammatory and immune mediators. When neuron degeneration occurs, microglia act as phagocytes. This is uncommon after peripheral nerve injury in the adult mammal, however, and the functional implications of the glial cell responses in this situation are unclear. When central axons are injured, the glial cell responses around the affected neuron perikarya appears to be minimal or absent, unless neuron degeneration occurs. Microglia proliferate, and astrocytes upregulate GFAP along central axons undergoing anterograde, Wallerian, degeneration. Although microglia develop into phagocytes, they eliminate the disintegrating myelin very slowly, presumably because they fail to release molecules which facilitate phagocytosis. During later stages of Wallerian degeneration, oligodendrocytes express clusterin, a glycoprotein implicated in several conditions of cell degeneration. A hypothetical scheme for glial cell activation following axon injury is discussed, implying the injured neurons initially interact with adjacent astrocytes. Subsequently, neighbouring resting microglia are activated. These glial reactions are amplified by paracrine and autocrine mechanisms, in which cytokines appear to be important mediators. The specific functional properties of the activated glial cells will determine their influence on neuronal survival, axon regeneration, and synaptic plasticity. The control of the induction and progression of these responses are therefore likely to be critical

  5. The Order and Place of Neuronal Differentiation Establish the Topography of Sensory Projections and the Entry Points within the Hindbrain.

    PubMed

    Zecca, Andrea; Dyballa, Sylvia; Voltes, Adria; Bradley, Roger; Pujades, Cristina

    2015-05-13

    Establishing topographical maps of the external world is an important but still poorly understood feature of the vertebrate sensory system. To study the selective innervation of hindbrain regions by sensory afferents in the zebrafish embryo, we mapped the fine-grained topographical representation of sensory projections at the central level by specific photoconversion of sensory neurons. Sensory ganglia located anteriorly project more medially than do ganglia located posteriorly, and this relates to the order of sensory ganglion differentiation. By single-plane illumination microscopy (SPIM) in vivo imaging, we show that (1) the sequence of arrival of cranial ganglion inputs predicts the topography of central projections, and (2) delaminated neuroblasts differentiate in close contact with the neural tube, and they never loose contact with the neural ectoderm. Afferent entrance points are established by plasma membrane interactions between primary differentiated peripheral sensory neurons and neural tube border cells with the cooperation of neural crest cells. These first contacts remain during ensuing morphological growth to establish pioneer axons. Neural crest cells and repulsive slit1/robo2 signals then guide axons from later-differentiating neurons toward the neural tube. Thus, this study proposes a new model by which the topographical representation of cranial sensory ganglia is established by entrance order, with the entry points determined by cell contact between the sensory ganglion cell bodies and the hindbrain.

  6. AlphaB-crystallin regulates remyelination after peripheral nerve injury

    PubMed Central

    Lim, Erin-Mai F.; Nakanishi, Stan T.; Hoghooghi, Vahid; Eaton, Shane E. A.; Palmer, Alexandra L.; Frederick, Ariana; Stratton, Jo A.; Stykel, Morgan G.; Zochodne, Douglas W.; Biernaskie, Jeffrey; Ousman, Shalina S.

    2017-01-01

    AlphaB-crystallin (αBC) is a small heat shock protein that is constitutively expressed by peripheral nervous system (PNS) axons and Schwann cells. To determine what role this crystallin plays after peripheral nerve damage, we found that loss of αBC impaired remyelination, which correlated with a reduced presence of myelinating Schwann cells and increased numbers of nonmyelinating Schwann cells. The heat shock protein also seems to regulate the cross-talk between Schwann cells and axons, because expected changes in neuregulin levels and ErbB2 receptor expression after PNS injury were disrupted in the absence of αBC. Such dysregulations led to defects in conduction velocity and motor and sensory functions that could be rescued with therapeutic application of the heat shock protein in vivo. Altogether, these findings show that αBC plays an important role in regulating Wallerian degeneration and remyelination after PNS injury. PMID:28137843

  7. Development of the embryonic and larval peripheral nervous system of Drosophila.

    PubMed

    Singhania, Aditi; Grueber, Wesley B

    2014-01-01

    The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. Many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development.

  8. Development of the embryonic and larval peripheral nervous system of Drosophila

    PubMed Central

    Singhania, Aditi; Grueber, Wesley B.

    2014-01-01

    The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. The many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development. PMID:24896657

  9. Motor and sensory neuropathy due to myelin infolding and paranodal damage in a transgenic mouse model of Charcot–Marie–Tooth disease type 1C

    PubMed Central

    Lee, Samuel M.; Sha, Di; Mohammed, Anum A.; Asress, Seneshaw; Glass, Jonathan D.; Chin, Lih-Shen; Li, Lian

    2013-01-01

    Charcot–Marie–Tooth disease type 1C (CMT1C) is a dominantly inherited motor and sensory neuropathy. Despite human genetic evidence linking missense mutations in SIMPLE to CMT1C, the in vivo role of CMT1C-linked SIMPLE mutations remains undetermined. To investigate the molecular mechanism underlying CMT1C pathogenesis, we generated transgenic mice expressing either wild-type or CMT1C-linked W116G human SIMPLE. Mice expressing mutant, but not wild type, SIMPLE develop a late-onset motor and sensory neuropathy that recapitulates key clinical features of CMT1C disease. SIMPLE mutant mice exhibit motor and sensory behavioral impairments accompanied by decreased motor and sensory nerve conduction velocity and reduced compound muscle action potential amplitude. This neuropathy phenotype is associated with focally infolded myelin loops that protrude into the axons at paranodal regions and near Schmidt–Lanterman incisures of peripheral nerves. We find that myelin infolding is often linked to constricted axons with signs of impaired axonal transport and to paranodal defects and abnormal organization of the node of Ranvier. Our findings support that SIMPLE mutation disrupts myelin homeostasis and causes peripheral neuropathy via a combination of toxic gain-of-function and dominant-negative mechanisms. The results from this study suggest that myelin infolding and paranodal damage may represent pathogenic precursors preceding demyelination and axonal degeneration in CMT1C patients. PMID:23359569

  10. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    PubMed

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  11. Early sensory re-education of the hand after peripheral nerve repair based on mirror therapy: a randomized controlled trial

    PubMed Central

    Paula, Mayara H.; Barbosa, Rafael I.; Marcolino, Alexandre M.; Elui, Valéria M. C.; Rosén, Birgitta; Fonseca, Marisa C. R.

    2016-01-01

    BACKGROUND: Mirror therapy has been used as an alternative stimulus to feed the somatosensory cortex in an attempt to preserve hand cortical representation with better functional results. OBJECTIVE: To analyze the short-term functional outcome of an early re-education program using mirror therapy compared to a late classic sensory program for hand nerve repair. METHOD: This is a randomized controlled trial. We assessed 20 patients with median and ulnar nerve and flexor tendon repair using the Rosen Score combined with the DASH questionnaire. The early phase group using mirror therapy began on the first postoperative week and lasted 5 months. The control group received classic sensory re-education when the protective sensation threshold was restored. All participants received a patient education booklet and were submitted to the modified Duran protocol for flexor tendon repair. The assessments were performed by the same investigator blinded to the allocated treatment. Mann-Whitney Test and Effect Size using Cohen's d score were used for inter-group comparisons at 3 and 6 months after intervention. RESULTS: The primary outcome (Rosen score) values for the Mirror Therapy group and classic therapy control group after 3 and 6 months were 1.68 (SD=0.5); 1.96 (SD=0.56) and 1.65 (SD=0.52); 1.51 (SD=0.62), respectively. No between-group differences were observed. CONCLUSION: Although some clinical improvement was observed, mirror therapy was not shown to be more effective than late sensory re-education in an intermediate phase of nerve repair in the hand. Replication is needed to confirm these findings. PMID:26786080

  12. Self- and Cross-desensitization of Oral Irritation by Menthol and Cinnamaldehyde (CA) via Peripheral Interactions at Trigeminal Sensory Neurons

    PubMed Central

    Klein, Amanda H.; Zanotto, Karen L.; Sawyer, Carolyn M.; Ivanov, Margaret; Cheung, Susan

    2011-01-01

    Menthol and cinnamaldehyde (CA) are plant-derived spices commonly used in oral hygiene products, chewing gum, and many other applications. However, little is known regarding their sensory interactions in the oral cavity. We used a human psychophysics approach to investigate the temporal dynamics of oral irritation elicited by sequential application of menthol and/or CA, and ratiometric calcium imaging methods to investigate activation of rat trigeminal ganglion (TG) cells by these agents. Irritancy decreased significantly with sequential oral application of menthol and CA (self-desensitization). Menthol cross-desensitized irritation elicited by CA, and vice versa, over a time course of at least 60 min. Seventeen and 19% of TG cells were activated by menthol and CA, respectively, with ∼50% responding to both. TG cells exhibited significant self-desensitization to menthol applied at a 5, but not 10, min interval. They also exhibited significant self-desensitization to CA at 400 but not 200 μM. Menthol cross-desensitized TG cell responses to CA. CA at a concentration of 400 but not 200 μM also cross-desensitized menthol-evoked responses. The results support the argument that the perceived reductions in oral irritancy and cross-interactions between menthol and CA and menthol observed (at least at short interstimulus intervals) can be largely accounted for by the properties of trigeminal sensory neurons innervating the tongue. PMID:21059698

  13. Self- and cross-desensitization of oral irritation by menthol and cinnamaldehyde (CA) via peripheral interactions at trigeminal sensory neurons.

    PubMed

    Klein, Amanda H; Carstens, Mirela Iodi; Zanotto, Karen L; Sawyer, Carolyn M; Ivanov, Margaret; Cheung, Susan; Carstens, E

    2011-01-01

    Menthol and cinnamaldehyde (CA) are plant-derived spices commonly used in oral hygiene products, chewing gum, and many other applications. However, little is known regarding their sensory interactions in the oral cavity. We used a human psychophysics approach to investigate the temporal dynamics of oral irritation elicited by sequential application of menthol and/or CA, and ratiometric calcium imaging methods to investigate activation of rat trigeminal ganglion (TG) cells by these agents. Irritancy decreased significantly with sequential oral application of menthol and CA (self-desensitization). Menthol cross-desensitized irritation elicited by CA, and vice versa, over a time course of at least 60 min. Seventeen and 19% of TG cells were activated by menthol and CA, respectively, with ∼50% responding to both. TG cells exhibited significant self-desensitization to menthol applied at a 5, but not 10, min interval. They also exhibited significant self-desensitization to CA at 400 but not 200 μM. Menthol cross-desensitized TG cell responses to CA. CA at a concentration of 400 but not 200 μM also cross-desensitized menthol-evoked responses. The results support the argument that the perceived reductions in oral irritancy and cross-interactions between menthol and CA and menthol observed (at least at short interstimulus intervals) can be largely accounted for by the properties of trigeminal sensory neurons innervating the tongue.

  14. Actions of neuropoietic cytokines and cyclic AMP in regenerative conditioning of rat primary sensory neurons.

    PubMed

    Wu, Dongsheng; Zhang, Yi; Bo, Xuenong; Huang, Wenlong; Xiao, Fang; Zhang, Xinyu; Miao, Tizong; Magoulas, Charalambos; Subang, Maria C; Richardson, Peter M

    2007-03-01

    A conditioning lesion to peripheral axons of primary sensory neurons accelerates regeneration of their central axons in vivo or neurite outgrowth if the neurons are grown in vitro. Previous evidence has implicated neuropoietic cytokines and also cyclic AMP in regenerative conditioning. In experiments reported here, delivery through a lentivirus vector of ciliary neurotrophic factor to the appropriate dorsal root ganglion in rats was sufficient to mimic the conditioning effect of peripheral nerve injury on the regeneration of dorsal spinal nerve root axons. Regeneration in this experimental preparation was also stimulated by intraganglionic injection of dibutyryl cyclic AMP but the effects of ciliary neurotrophic factor and dibutyryl cyclic AMP were not additive. Dibutyryl cyclic AMP injection into the dorsal root ganglion induced mRNAs for two other neuropoietic cytokines, interleukin-6 and leukemia inhibitory factor and increased the accumulation of phosphorylated STAT3 in neuronal nuclei. The in vitro conditioning action of dibutyryl cyclic AMP was partially blocked by a pharmacological inhibitor of Janus kinase 2, a neuropoietic cytokine signaling molecule. We suggest that the beneficial actions of increased cyclic AMP activity on axonal regeneration of primary sensory neurons are mediated, at least in part, through the induction of neuropoietic cytokine synthesis within the dorsal root ganglion.

  15. Serotonin-immunoreactive sensory neurons in the antenna of the cockroach Periplaneta americana.

    PubMed

    Watanabe, Hidehiro; Shimohigashi, Miki; Yokohari, Fumio

    2014-02-01

    The antennae of insects contain a vast array of sensory neurons that process olfactory, gustatory, mechanosensory, hygrosensory, and thermosensory information. Except those with multimodal functions, most sensory neurons use acetylcholine as a neurotransmitter. Using immunohistochemistry combined with retrograde staining of antennal sensory neurons in the cockroach Periplaneta americana, we found serotonin-immunoreactive sensory neurons in the antenna. These were selectively distributed in chaetic and scolopidial sensilla and in the scape, the pedicel, and first 15 segments of the flagellum. In a chaetic sensillum, A single serotonin-immunoreactive sensory neuron cohabited with up to four serotonin-negative sensory neurons. Based on their morphological features, serotonin-immunopositive and -negative sensory neurons might process mechanosensory and contact chemosensory modalities, respectively. Scolopidial sensilla constitute the chordotonal and Johnston's organs within the pedicel and process antennal vibrations. Immunoelectron microscopy clearly revealed that serotonin-immunoreactivities selectively localize to a specific type of mechanosensory neuron, called type 1 sensory neuron. In a chordotonal scolopidial sensillum, a serotonin-immunoreactive type 1 neuron always paired with a serotonin-negative type 1 neuron. Conversely, serotonin-immunopositive and -negative type 1 neurons were randomly distributed in Johnston's organ. In the deutocerebrum, serotonin-immunoreactive sensory neuron axons formed three different sensory tracts and those from distinct types of sensilla terminated in distinct brain regions. Our findings indicate that a biogenic amine, serotonin, may act as a neurotransmitter in peripheral mechanosensory neurons.

  16. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion

    PubMed Central

    Song, Ren; Koyuncu, Orkide O.; Greco, Todd M.; Diner, Benjamin A.; Cristea, Ileana M.

    2016-01-01

    ABSTRACT Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS). Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs). The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β) or gamma interferon (IFN-γ) significantly diminished the number of herpes simplex virus 1 (HSV-1) and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion. PMID:26838720

  17. Astrocyte scar formation aids CNS axon regeneration

    PubMed Central

    Anderson, Mark A.; Burda, Joshua E.; Ren, Yilong; Ao, Yan; O’Shea, Timothy M.; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S.; Deming, Timothy J.; Sofroniew, Michael V.

    2017-01-01

    Summary Transected axons fail to regrow in the mature central nervous system (CNS). Astrocyte scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or deleting chronic astrocyte scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. In striking contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocyte scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth supporting molecules. Our findings show that contrary to prevailing dogma, astrocyte scar formation aids rather than prevents CNS axon regeneration. PMID:27027288

  18. A-Kinase Anchoring Protein 79/150 Coordinates Metabotropic Glutamate Receptor Sensitization of Peripheral Sensory Neurons

    PubMed Central

    Szteyn, Kalina; Rowan, Matthew P.; Gomez, Ruben; Du, Junhui; Carlton, Susan M.; Jeske, Nathaniel A.

    2016-01-01

    Glutamate serves as the primary excitatory neurotransmitter in the nervous system. Previous studies have identified a role for glutamate and group I metabotropic receptors as targets for study in peripheral inflammatory pain. However, the coordination of signaling events that transpire from receptor activation to afferent neuronal sensitization has not been explored. Herein, we identify that scaffolding protein A-Kinase Anchoring Protein 79/150 (AKAP150) coordinates increased peripheral thermal sensitivity following group I metabotropic receptor (mGluR5) activation. In both acute and persistent models of thermal somatosensory behavior, we report that mGluR5 sensitization requires AKAP150 expression. Furthermore, electrophysiological approaches designed to record afferent neuronal activity reveal that mGluR5 sensitization also requires functional AKAP150 expression. In dissociated primary afferent neurons, mGluR5 activation increases TRPV1 responses in an AKAP dependent manner through a mechanism that induces AKAP association with TRPV1. Experimental results presented herein identify a mechanism of receptor-driven scaffolding association with ion channel targets. Importantly, this mechanism could prove significant in the search for therapeutic targets that repress episodes of acute pain from becoming chronic in nature. PMID:26172554

  19. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo.

    PubMed

    Lopatina, Tatiana; Kalinina, Natalia; Karagyaur, Maxim; Stambolsky, Dmitry; Rubina, Kseniya; Revischin, Alexander; Pavlova, Galina; Parfyonova, Yelena; Tkachuk, Vsevolod

    2011-03-14

    Transplantation of adipose-derived mesenchymal stem cells (ASCs) induces tissue regeneration by accelerating the growth of blood vessels and nerve. However, mechanisms by which they accelerate the growth of nerve fibers are only partially understood. We used transplantation of ASCs with subcutaneous matrigel implants (well-known in vivo model of angiogenesis) and model of mice limb reinnervation to check the influence of ASC on nerve growth. Here we show that ASCs stimulate the regeneration of nerves in innervated mice's limbs and induce axon growth in subcutaneous matrigel implants. To investigate the mechanism of this action we analyzed different properties of these cells and showed that they express numerous genes of neurotrophins and extracellular matrix proteins required for the nerve growth and myelination. Induction of neural differentiation of ASCs enhances production of brain-derived neurotrophic factor (BDNF) as well as ability of these cells to induce nerve fiber growth. BDNF neutralizing antibodies abrogated the stimulatory effects of ASCs on the growth of nerve sprouts. These data suggest that ASCs induce nerve repair and growth via BDNF production. This stimulatory effect can be further enhanced by culturing the cells in neural differentiation medium prior to transplantation.

  20. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair

    PubMed Central

    Ferreira Junior, Rui Seabra

    2016-01-01

    Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons. PMID:27446617

  1. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    PubMed Central

    Crago, Patrick E; Makowski, Nathan S

    2014-01-01

    Objective Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main Results Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases.. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic

  2. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.

    2014-10-01

    Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic

  3. KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.

    PubMed

    Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud

    2016-09-01

    Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.

  4. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy.

    PubMed

    Yilmaz, E; Gold, M S

    2015-08-06

    The purpose of the present study was to test the prediction that the unique manifestation of chemotherapeutic-induced peripheral neuropathy (CIPN) would be reflected in a specific pattern of changes in the regulation of the intracellular Ca(2+) concentration ([Ca(2+)]i) in subpopulations of cutaneous neurons. To test this prediction, we characterized the pattern of changes in mechanical nociceptive threshold associated with paclitaxel administration (2mg/kg, iv, every other day for four days), as well as the impact of target of innervation and paclitaxel treatment on the regulation of [Ca(2+)]i in subpopulations of putative nociceptive and non-nociceptive neurons. Neurons innervating the glabrous and hairy skin of the hindpaw as well as the thigh were identified with retrograde tracers, and fura-2 was used to assess changes in [Ca(2+)]i. Paclitaxel was associated with a persistent decrease in mechanical nociceptive threshold in response to stimuli applied to the glabrous skin of the hindpaw, but not the hairy skin of the hindpaw or the thigh. However, in both putative nociceptive and non-nociceptive neurons, resting [Ca(2+)]i was significantly lower in neurons innervating the thigh after treatment. The magnitude of the depolarization-evoked Ca(2+) transient was also lower in putative non-nociceptive thigh neurons. More interestingly, while paclitaxel had no detectable influence on either resting or depolarization-evoked Ca(2+) transients in putative non-nociceptive neurons, in putative nociceptive neurons there was a subpopulation-specific decrease in the duration of the evoked Ca(2+) transient that was largely restricted to neurons innervating the glabrous skin. These results suggest that peripheral nerve length alone, does not account for the selective distribution of CIPN symptoms. Rather, they suggest the symptoms of CIPN reflect an interaction between the toxic actions of the therapeutic and unique properties of the neurons deleteriously impacted.

  5. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy

    PubMed Central

    Yilmaz, E; Gold, MS

    2015-01-01

    The purpose of the present study was to test the prediction that the unique manifestation of chemotherapeutic-induced peripheral neuropathy (CIPN) would be reflected in a specific pattern of changes in the regulation of the intracellular Ca2+ concentration ([Ca2+]i) in subpopulations of cutaneous neurons. To test this prediction, we characterized the pattern of changes in mechanical nociceptive threshold associated with paclitaxel administration (2 mg/kg, iv, every other day for four days), as well as the impact of target of innervation and paclitaxel treatment on the regulation of [Ca2+]i in subpopulations of putative nociceptive and non-nociceptive neurons. Neurons innervating the glabrous and hairy skin of the hindpaw as well as the thigh were identified with retrograde tracers, and fura-2 was used to assess changes in [Ca2+]i. Paclitaxel was associated with a persistent decrease in mechanical nociceptive threshold in response to stimuli applied to the glabrous skin of the hindpaw, but not the hairy skin of the hindpaw or the thigh. However, in both putative nociceptive and non-nociceptive neurons, resting [Ca2+]i was significantly lower in neurons innervating the thigh after treatment. The magnitude of the depolarization-evoked Ca2+ transient was also lower in putative non-nociceptive thigh neurons. More interestingly, while paclitaxel had no detectable influence on either resting or depolarization-evoked Ca2+ transients in putative non-nociceptive neurons, in putative nociceptive neurons there was a subpopulation- specific decrease in the duration of the evoked Ca2+ transient that was largely restricted to neurons innervating the glabrous skin. These results suggest that peripheral nerve length alone, does not account for the selective distribution of CIPN symptoms. Rather, they suggest the symptoms of CIPN reflect an interaction between the toxic actions of the therapeutic and unique properties of the neurons deleteriously impacted. PMID:25982563

  6. Neuropathy-associated Nav1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons.

    PubMed

    Persson, Anna-Karin; Liu, Shujun; Faber, Catharina G; Merkies, Ingemar S J; Black, Joel A; Waxman, Stephen G

    2013-01-01

    Small-fiber neuropathy (SFN) is characterized by injury to small-diameter peripheral nerve axons and intraepidermal nerve fibers (IENF). Although mechanisms underlying loss of IENF in SFN are poorly understood, available data suggest that it results from axonal degeneration and reduced regenerative capacity. Gain-of-function variants in sodium channel Na(V)1.7 that increase firing frequency and spontaneous firing of dorsal root ganglion (DRG) neurons have recently been identified in ∼30% of patients with idiopathic SFN. In the present study, to determine whether these channel variants can impair axonal integrity, we developed an in vitro assay of DRG neurite length, and examined the effect of 3 SFN-associated variant Na(V)1.7 channels, I228M, M932L/V991L (ML/VL), and I720K, on DRG neurites in vitro. At 3 days after culturing, DRG neurons transfected with I228M channels exhibited ∼20% reduced neurite length compared to wild-type channels; DRG neurons transfected with ML/VL and I720K variants displayed a trend toward reduced neurite length. I228M-induced reduction in neurite length was ameliorated by the use-dependent sodium channel blocker carbamazepine and by a blocker of reverse Na-Ca exchange. These in vitro observations provide evidence supporting a contribution of the I228M variant Na(V)1.7 channel to impaired regeneration and/or degeneration of sensory axons in idiopathic SFN, and suggest that enhanced sodium channel activity and reverse Na-Ca exchange can contribute to a decrease in length of peripheral sensory axons.

  7. KW-4679-induced inhibition of tachykininergic contraction in the guinea-pig bronchi by prejunctional inhibition of peripheral sensory nerves.

    PubMed Central

    Ikemura, T.; Okarmura, K.; Sasaki, Y.; Ishi, H.; Ohmori, K.

    1996-01-01

    1. Sensory mechanisms play an important role in the vagal regulation of tracheobronchial smooth muscle tone. We examined the effect of KW-4679, an anti-allergic drug, on guinea-pig tachykinin-mediated contractile responses induced by electrical field stimulation (EFS) in guinea-pig bronchial muscles. 2. EFS (8 Hz, 0.5 ms, 15 V, for 15 s) evoked biphasic contractile responses in the guinea-pig isolated main bronchus in the presence of 5 microM indomethacin. The contractions consisted of a fast phase of an atropine-sensitive transient contraction and a slow phase of a sustained contraction which was inhibited by a combination of the tachykinin NK1 receptor antagonist, (+/-)-CP-96,345 (1 microM) and the NK2 receptor antagonist, SR 48969 (0.1 microM). 3. KW-4679 preferentially inhibited the slow phase in a concentration-dependent manner by 43.2 +/- 7.7% at 10 microM, whereas the drug had no effect on the fast phase at concentrations up to 10 microM. KW-4679, at a concentration of 100 microM, inhibited not only the slow phase by 49.2 +/- 11.4%, but also the fast phase by 36.8 +/- 9.3% [corrected]. 4. KW-4679 (10 microM and 100 microM) did not affect the substance P-induced or neurokinin A-induced contraction. Against the acetylcholine-induced contractile responses, 100 microM KW-4679 had a marked effect producing a 10.2 fold shift to the right in the curve. 5. The inhibitory effect of KW-4679 (10 microM) on the slow phase contraction was not influenced by treatment with naloxone (100 nM), propranolol (1 microM), thioperamide (1 microM), saclofen (50 microM), yohimbine (1 microM), methiothepin (1 microM) or methysergide (1 microM). 6. The inhibitory effect of KW-4679 (10 microM) on the slow phase contraction was not influenced by treatment with intermediate or large conductance Ca(2+)-activated K+ channel blockers (charybdotoxin (10 nM) or iberiotoxin (10 nM)), but suppressed by treatment with small conductance Ca(2+)-activated K+ channel blockers, apamin (500 nM) or

  8. Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation.

    PubMed

    Waterhouse, B D; Moises, H C; Woodward, D J

    1998-04-20

    In the present study we examined the effects of phasic activation of the nucleus locus coeruleus (LC) on transmission of somatosensory information to the rat cerebral cortex. The rationale for this investigation was based on earlier findings that local microiontophoretic application of the putative LC transmitter, norepinephrine (NE), had facilitating actions on cortical neuronal responses to excitatory and inhibitory synaptic stimuli and more recent microdialysis experiments that have demonstrated increases in cortical levels of NE following phasic or tonic activation of LC. Glass micropipets were used to record the extracellular activity of single neurons in the somatosensory cortex of halothane-anesthetized rats. Somatosensory afferent pathways were activated by threshold level mechanical stimulation of the glabrous skin on the contralateral forepaw. Poststimulus time histograms were used to quantitate cortical neuronal responses before and at various time intervals after preconditioning burst activation of the ipsilateral LC. Excitatory and postexcitatory inhibitory responses to forepaw stimulation were enhanced when preceded by phasic activation of LC at conditioning intervals of 200-500 ms. These effects were anatomically specific in that they were only observed upon stimulation of brainstem sites close to (>150 micron) or within LC and were pharmacologically specific in that they were not consistently observed in animals where the LC-NE system had been disrupted by 6-OHDA pretreatment. Overall, these data suggest that following phasic activation of the LC efferent system, the efficacy of signal transmission through sensory networks in mammalian brain is enhanced.

  9. Orexin A and orexin receptor 1 axonal traffic in dorsal roots at the CNS/PNS interface.

    PubMed

    Colas, Damien; Manca, Annalisa; Delcroix, Jean-Dominique; Mourrain, Philippe

    2014-01-01

    Hypothalamic orexin/hypocretin neurons send long axonal projections through the dorsal spinal cord in lamina I-II of the dorsal horn (DH) at the interface with the peripheral nervous system (PNS). We show that in the DH OXA fibers colocalize with substance P (SP) positive afferents of dorsal root ganglia (DRG) neurons known to mediate sensory processing. Further, OR1 is expressed in p75(NTR) and SP positive DRG neurons, suggesting a potential signaling pathway between orexin and DRG neurons. Interestingly, DRG sensory neurons have a distinctive bifurcating axon where one branch innervates the periphery and the other one the spinal cord (pseudo-unipolar neurons), allowing for potential functional coupling of distinct targets. We observe that OR1 is transported selectively from DRG toward the spinal cord, while OXA is accumulated retrogradely toward the DRG. We hence report a rare situation of asymmetrical neuropeptide receptor distribution between axons projected by a single neuron. These molecular and cellular data are consistent with the role of OXA/OR1 in sensory processing, including DRG neuronal modulation, and support the potential existence of an OX/HCRT circuit between CNS and PNS.

  10. G9a inhibits CREB-triggered expression of mu opioid receptor in primary sensory neurons following peripheral nerve injury

    PubMed Central

    Liang, Lingli; Zhao, Jian-Yuan; Gu, Xiyao; Wu, Shaogen; Mo, Kai; Xiong, Ming; Marie Lutz, Brianna; Bekker, Alex

    2016-01-01

    Neuropathic pain, a distressing and debilitating disorder, is still poorly managed in clinic. Opioids, like morphine, remain the mainstay of prescribed medications in the treatment of this disorder, but their analgesic effects are highly unsatisfactory in part due to nerve injury-induced reduction of opioid receptors in the first-order sensory neurons of dorsal root ganglia. G9a is a repressor of gene expression. We found that nerve injury-induced increases in G9a and its catalyzed repressive marker H3K9m2 are responsible for epigenetic silencing of Oprm1, Oprk1, and Oprd1 genes in the injured dorsal root ganglia. Blocking these increases rescued dorsal root ganglia Oprm1, Oprk1, and Oprd1 gene expression and morphine or loperamide analgesia and prevented the development of morphine or loperamide-induced analgesic tolerance under neuropathic pain conditions. Conversely, mimicking these increases reduced the expression of three opioid receptors and promoted the mu opioid receptor-gated release of primary afferent neurotransmitters. Mechanistically, nerve injury-induced increases in the binding activity of G9a and H3K9me2 to the Oprm1 gene were associated with the reduced binding of cyclic AMP response element binding protein to the Oprm1 gene. These findings suggest that G9a participates in the nerve injury-induced reduction of the Oprm1 gene likely through G9a-triggered blockage in the access of cyclic AMP response element binding protein to this gene. PMID:27927796

  11. Activation of silent mechanoreceptive cat C and Adelta sensory neurons and their substance P expression following peripheral inflammation.

    PubMed

    Xu, G Y; Huang, L Y; Zhao, Z Q

    2000-10-15

    The effect of inflammation on the excitability and the level of substance P (SP) in cat mechanoreceptive C and Adelta dorsal root ganglion (DRG) neurons were studied in vivo using intracellular recording and immunocytochemical techniques. Following injections of carrageenan (Carg) into the cat hindpaw, the percentage of C neurons exhibiting spontaneous activity increased from 7.2 to 20.7% and the percentage of Adelta neurons increased from 6.9 to 18.6%. In contrast to most cells from normal cats, which fired regularly below 10 Hz, many cells from Carg-treated cats fired at higher frequencies or in bursts. Inflammation (Carg treatment) also depolarized membrane potentials, increased membrane input resistance, caused the disappearance of inward rectifying currents and lowered the mean current thresholds of tibial nerve-evoked responses in DRG neurons. With inflammation, the percentage of C or Adelta neurons responding to low threshold mechanoreceptive stimuli increased (C neurons: normal, 13%; inflamed, 41%; Adelta neurons: normal, 13 %; inflamed, 39 %), while the percentage of C or Adelta neurons responding to high threshold mechanoreceptive stimuli remained unchanged. Some receptive field (RF)-responsive cells were injected with Lucifer Yellow and their SP immunoreactivity was determined. Following Carg treatment, substantially higher percentages of RF-responsive cells were SP positive (C neurons: normal, 35.7%; inflamed, 60%; Adelta neurons: normal, 18.2%; inflamed, 66.7%). These combined increases in the excitability of DRG neurons and SP-containing RF-responsive neurons could lead to sensitization of sensory neurons, thus contributing to the development of hyperalgesia.

  12. Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system

    PubMed Central

    Carr, Lauren; Parkinson, David B.; Dun, Xin-peng

    2017-01-01

    The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury. PMID:28234971

  13. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    PubMed

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  14. Intrinsic facilitation of adult peripheral nerve regeneration by the Sonic hedgehog morphogen.

    PubMed

    Martinez, Jose A; Kobayashi, Masaki; Krishnan, Anand; Webber, Christine; Christie, Kimberly; Guo, GuiFang; Singh, Vandana; Zochodne, Douglas W

    2015-09-01

    Intrinsic molecular determinants of neurodevelopmental outcomes assume new, albeit related roles during adult neural regeneration. Here we studied and identified a facilitatory role for Sonic hedgehog protein (Shh), a morphogen that influences motor neuron floor plate architecture, during adult peripheral neuron regeneration. Shh and its receptors were expressed in adult dorsal root ganglia (DRG) neurons, axons and glia and trended toward higher levels following axotomy injury. Knockdown of Shh in adult sensory neurons resulted in decreased outgrowth and branching in vitro, identifying a role for Shh in facilitating outgrowth. The findings argued for an intrinsic action to support neuron regeneration. Support of advancement and turning however, were not identified in adult sensory neuron growth cones in response to local extrinsic gradients of Shh. That intrinsic Shh supported the regrowth of peripheral nerves after injury was confirmed by the analysis of axon regrowth from the proximal stumps of transected sciatic nerves. By exposing regenerating axons to local infusions of Shh siRNA in vivo within a conduit bridging the transected proximal and distal stumps, we achieved local knockdown of Shh. In response, there was attenuated axonal and Schwann cell outgrowth beyond the transection zone. Unlike its role during neurodevelopment, Shh facilitates but does not confer regenerative outgrowth properties to adult neurons alone. Exploring the differing properties of morphogens and related proteins in the adult nervous system identifies new and important roles for them.

  15. Targeting of CaV3.2 T-type calcium channels in peripheral sensory neurons for the treatment of painful diabetic neuropathy.

    PubMed

    Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna

    2014-04-01

    Pain-sensing sensory neurons (nociceptors) of the dorsal root ganglion (DRG) can become sensitized (hyperexcitable) in response to pathological conditions such as diabetes, which in turn may lead to the development of painful peripheral diabetic neuropathy (PDN). Because of insufficient knowledge about the mechanisms for this hypersensitization, current treatment for painful PDN has been limited to somewhat nonspecific systemic drugs having significant side effects or potential for abuse. Recent studies have established that the CaV3.2 isoform of T-channels makes a previously unrecognized contribution to sensitization of pain responses by enhancing excitability of nociceptors in animal models of type 1 and type 2 PDN. Furthermore, it has been reported that the glycosylation inhibitor neuraminidase can inhibit the native and recombinant CaV3.2 T-currents in vitro and completely reverse mechanical and thermal hyperalgesia in diabetic animals with PDN in vivo. Understanding details of posttranslational regulation of nociceptive channel activity via glycosylation may facilitate development of novel therapies for treatment of painful PDN. Pharmacological targeting the specific pathogenic mechanism rather than the channel per se may cause fewer side effects and reduce the potential for drug abuse in patients with diabetes.

  16. Requirement for Dicer in Maintenance of Monosynaptic Sensory-Motor Circuits in the Spinal Cord.

    PubMed

    Imai, Fumiyasu; Chen, Xiaoting; Weirauch, Matthew T; Yoshida, Yutaka

    2016-11-22

    In contrast to our knowledge of mechanisms governing circuit formation, our understanding of how neural circuits are maintained is limited. Here, we show that Dicer, an RNaseIII protein required for processing microRNAs (miRNAs), is essential for maintenance of the spinal monosynaptic stretch reflex circuit in which group Ia proprioceptive sensory neurons form direct connections with motor neurons. In postnatal mice lacking Dicer in proprioceptor sensory neurons, there are no obvious defects in specificity or formation of monosynaptic sensory-motor connections. However, these circuits degrade through synapse loss and retraction of proprioceptive axonal projections from the ventral spinal cord. Peripheral terminals are also impaired without retracting from muscle targets. Interestingly, despite these central and peripheral axonal defects, proprioceptive neurons survive in the absence of Dicer-processed miRNAs. These findings reveal that Dicer, through its production of mature miRNAs, plays a key role in the maintenance of monosynaptic sensory-motor circuits.

  17. Altered Nociceptive Neuronal Circuits After Neonatal Peripheral Inflammation

    NASA Astrophysics Data System (ADS)

    Ruda, M. A.; Ling, Qing-Dong; Hohmann, Andrea G.; Peng, Yuan Bo; Tachibana, Toshiya

    2000-07-01

    Nociceptive neuronal circuits are formed during embryonic and postnatal times when painful stimuli are normally absent or limited. Today, medical procedures for neonates with health risks can involve tissue injury and pain for which the long-term effects are unknown. To investigate the impact of neonatal tissue injury and pain on development of nociceptive neuronal circuitry, we used an animal model of persistent hind paw peripheral inflammation. We found that, as adults, these animals exhibited spinal neuronal circuits with increased input and segmental changes in nociceptive primary afferent axons and altered responses to sensory stimulation.

  18. Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis-causing mutations.

    PubMed

    Vaughan, Sydney K; Kemp, Zachary; Hatzipetros, Theo; Vieira, Fernando; Valdez, Gregorio

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets the motor system. Although much is known about the effects of ALS on motor neurons and glial cells, little is known about its effect on proprioceptive sensory neurons. This study examines proprioceptive sensory neurons in mice harboring mutations associated with ALS, in SOD1(G93A) and TDP43(A315T) transgenic mice. In both transgenic lines, we found fewer proprioceptive sensory neurons containing fluorescently tagged cholera toxin in their soma five days after injecting this retrograde tracer into the tibialis anterior muscle. We asked whether this is due to neuronal loss or selective degeneration of peripheral nerve endings. We found no difference in the total number and size of proprioceptive sensory neuron soma between symptomatic SOD1(G93A) and control mice. However, analysis of proprioceptive nerve endings in muscles revealed early and significant alterations at Ia/II proprioceptive nerve endings in muscle spindles before the symptomatic phase of the disease. Although these changes occur alongside those at α-motor axons in SOD1(G93A) mice, Ia/II sensory nerve endings degenerate in the absence of obvious alterations in α-motor axons in TDP43(A315T) transgenic mice. We next asked whether proprioceptive nerve endings are similarly affected in the spinal cord and found that nerve endings terminating on α-motor neurons are affected during the symptomatic phase and after peripheral nerve endings begin to degenerate. Overall, we show that Ia/II proprioceptive sensory neurons are affected by ALS-causing mutations, with pathological changes starting at their peripheral nerve endings.

  19. Nerve Growth Factor Promotes Reorganization of the Axonal Microtubule Array at Sites of Axon Collateral Branching

    PubMed Central

    Ketschek, Andrea; Jones, Steven; Spillane, Mirela; Korobova, Farida; Svitkina, Tatyana; Gallo, Gianluca

    2015-01-01

    The localized debundling of the axonal microtubule array and the entry of microtubules into axonal filopodia are two defining features of collateral branching. We report that nerve growth factor (NGF), a branch inducing signal, increases the frequency of microtubule debundling along the axon shaft of chicken embryonic sensory neurons. Sites of debundling correlate strongly with the localized targeting of microtubules into filopodia. Platinum replica electron microscopy suggests physical interactions between debundled microtubules and axonal actin filaments. However, as evidenced by depolymerization of actin filaments and inhibition of myosin II, actomyosin force generation does not promote debundling. In contrast, loss of actin filaments or inhibition of myosin II activity promotes debundling, indicating that axonal actomyosin forces suppress debundling. MAP1B is a microtubule associated protein that represses axon branching. Following treatment with NGF, microtubules penetrating filopodia during the early stages of branching exhibited lower levels of associated MAP1B. NGF increased and decreased the levels of MAP1B phosphorylated at a GSK-3β site (pMAP1B) along the axon shaft and within axonal filopodia, respectively. The levels of MAP1B and pMAP1B were not altered at sites of debundling, relative to the rest of the axon. Unlike the previously determined effects of NGF on the axonal actin cytoskeleton, the effects of NGF on microtubule debundling were not affected by inhibition of protein synthesis. Collectively, these data indicate that NGF promotes localized axonal microtubule debundling, that actomyosin forces antagonize microtubule debundling and that NGF regulates pMAP1B in axonal filopodia during the early stages of collateral branch formation. PMID:25846486

  20. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo.

    PubMed

    Peterson, Sheri L; Nguyen, Hal X; Mendez, Oscar A; Anderson, Aileen J

    2015-03-11

    Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI.

  1. Emerging brain morphologies from axonal elongation

    PubMed Central

    Holland, Maria A.; Miller, Kyle E.; Kuhl, Ellen

    2015-01-01

    Understanding the characteristic morphology of our brain remains a challenging, yet important task in human evolution, developmental biology, and neurosciences. Mathematical modeling shapes our understanding of cortical folding and provides functional relations between cortical wavelength, thickness, and stiffness. Yet, current mathematical models are phenomenologically isotropic and typically predict non-physiological, periodic folding patterns. Here we establish a mechanistic model for cortical folding, in which macroscopic changes in white matter volume are a natural consequence of microscopic axonal growth. To calibrate our model, we consult axon elongation experiments in chick sensory neurons. We demonstrate that a single parameter, the axonal growth rate, explains a wide variety of in vitro conditions including immediate axonal thinning and gradual thickness restoration. We embed our axonal growth model into a continuum model for brain development using axonal orientation distributions motivated by diffusion spectrum imaging. Our simulations suggest that white matter anisotropy - as an emergent property from directional axonal growth - intrinsically induces symmetry breaking, and predicts more physiological, less regular morphologies with regionally varying gyral wavelengths and sulcal depths. Mechanistic modeling of brain development could establish valuable relationships between brain connectivity, brain anatomy, and brain function. PMID:25824370

  2. cJun promotes CNS axon growth

    PubMed Central

    Lerch, Jessica K; Martinez, Yania; Bixby, John L; Lemmon, Vance P

    2014-01-01

    A number of genes regulate regeneration of peripheral axons, but their ability to drive axon growth and regeneration in the central nervous system (CNS) remains largely untested. To address this question we overexpressed eight transcription factors and one small GTPase alone and in pairwise combinations to test whether combinatorial overexpression would have a synergistic impact on CNS neuron neurite growth. The Jun oncogene/signal transducer and activator of transcription 6 (JUN/STAT6) combination increased neurite growth in dissociated cortical neurons and in injured cortical slices. In injured cortical slices, JUN overexpression increased axon growth to a similar extent as JUN and STAT6 together. Interestingly, JUN overexpression was not associated with increased growth associated protein 43 (GAP43) or integrin alpha 7 (ITGA7) expression, though these are predicted transcriptional targets. This study demonstrates that JUN overexpression in cortical neurons stimulates axon growth, but does so independently of changes in expression of genes thought to be critical for JUN’s effects on axon growth. We conclude that JUN activity underlies this CNS axonal growth response, and that it is mechanistically distinct from peripheral regeneration responses, in which increases in JUN expression coincide with increases in GAP43 expression. PMID:24521823

  3. How Schwann Cells Sort Axons: New Concepts.

    PubMed

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.

  4. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport

    PubMed Central

    Ferreirinha, Fatima; Quattrini, Angelo; Pirozzi, Marinella; Valsecchi, Valentina; Dina, Giorgia; Broccoli, Vania; Auricchio, Alberto; Piemonte, Fiorella; Tozzi, Giulia; Gaeta, Laura; Casari, Giorgio; Ballabio, Andrea; Rugarli, Elena I.

    2004-01-01

    In several neurodegenerative diseases, axonal degeneration occurs before neuronal death and contributes significantly to patients’ disability. Hereditary spastic paraplegia (HSP) is a genetically heterogeneous condition characterized by selective degeneration of axons of the corticospinal tracts and fasciculus gracilis. HSP may therefore be considered an exemplary disease to study the local programs mediating axonal degeneration. We have developed a mouse model for autosomal recessive HSP due to mutations in the SPG7 gene encoding the mitochondrial ATPase paraplegin. Paraplegin-deficient mice are affected by a distal axonopathy of spinal and peripheral axons, characterized by axonal swelling and degeneration. We found that mitochondrial morphological abnormalities occurred in synaptic terminals and in distal regions of axons long before the first signs of swelling and degeneration and correlated with onset of motor impairment during a rotarod test. Axonal swellings occur through massive accumulation of organelles and neurofilaments, suggesting impairment of anterograde axonal transport. Retrograde axonal transport is delayed in symptomatic mice. We speculate that local failure of mitochondrial function may affect axonal transport and cause axonal degeneration. Our data suggest that a timely therapeutic intervention may prevent the loss of axons. PMID:14722615

  5. The human thalamic somatic sensory nucleus [ventral caudal (Vc)] shows neuronal mechanoreceptor-like responses to optimal stimuli for peripheral mechanoreceptors.

    PubMed

    Weiss, N; Ohara, S; Johnson, K O; Lenz, F A

    2009-02-01

    Although the response of human cutaneous mechanoreceptors to controlled stimuli is well studied, it is not clear how these peripheral signals may be reflected in neuronal activity of the human CNS. We now test the hypothesis that individual neurons in the human thalamic principal somatic sensory nucleus [ventral caudal (Vc)] respond selectively to the optimal stimulus for one of the four mechanoreceptors. The optimal stimuli for particular mechanoreceptors were defined as follows: Pacinian corpuscles (PC), vibration at 128 Hz; rapidly adapting (RA), vibration at 32 or 64 Hz; slowly adapting type 1 (SA1), edge; slowly adapting type 2 (SA2), skin stretch. Nineteen neurons had a significant response to at least one optimal stimulus, and 17 had a significantly greater response to one stimulus than to the other three, including 7 PC-related, 7 RA-like, 3 SA1-like, and 2 SA2-like neurons. One of each of the SA1- and SA2-like thalamic neurons responded to vibration with firing rates that were lower than those to edge or stretch but not significantly. Except in the case of PC-related neurons, the receptive field (RF) sizes were larger for these thalamic neurons than for the corresponding mechanoreceptor. Von Frey thresholds were higher than those for the corresponding human RA and SA1 mechanoreceptors. These results suggest that there is a convergence of pathways transmitting input from multiple mechanoreceptors of one type on single thalamic neurons via the dorsal columns. They are also consistent with the presence of primate thalamic elements of modality and somatotopic isorepresentation.

  6. Dose-Dependent Differential Effect of Neurotrophic Factors on In Vitro and In Vivo Regeneration of Motor and Sensory Neurons

    PubMed Central

    Santos, Daniel; Gonzalez-Perez, Francisco; Navarro, Xavier

    2016-01-01

    Although peripheral axons can regenerate after nerve transection and repair, functional recovery is usually poor due to inaccurate reinnervation. Neurotrophic factors promote directional guidance to regenerating axons and their selective application may help to improve functional recovery. Hence, we have characterized in organotypic cultures of spinal cord and dorsal root ganglia the effect of GDNF, FGF-2, NGF, NT-3, and BDNF at different concentrations on motor and sensory neurite outgrowth. In vitro results show that GDNF and FGF-2 enhanced both motor and sensory neurite outgrowth, NGF and NT-3 were the most selective to enhance sensory neurite outgrowth, and high doses of BDNF selectively enhanced motor neurite outgrowth. Then, NGF, NT-3, and BDNF (as the most selective factors) were delivered in a collagen matrix within a silicone tube to repair the severed sciatic nerve of rats. Quantification of Fluorogold retrolabeled neurons showed that NGF and NT-3 did not show preferential effect on sensory regeneration whereas BDNF preferentially promoted motor axons regeneration. Therefore, the selective effects of NGF and NT-3 shown in vitro are lost when they are applied in vivo, but a high dose of BDNF is able to selectively enhance motor neuron regeneration both in vitro and in vivo. PMID:27867665

  7. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison to the neuropathy induced by paclitaxel

    PubMed Central

    Xiao, W. H.; Zheng, H.; Bennett, G. J.

    2012-01-01

    Anti-neoplastic agents in the platinum-complex, taxane, vinca alkaloid, and proteasome inhibitor classes induce a dose-limiting, chronic, distal, symmetrical, sensory peripheral neuropathy that is often accompanied by neuropathic pain. Clinical descriptions suggest that these conditions are very similar but clinical data are insufficient to determine the degree of similarity and to determine if they share common pathophysiological mechanisms. Animal models do not have the limitations of clinical studies and so we have characterized a rat model of chronic painful peripheral neuropathy induced by a platinum-complex agent, oxaliplatin, in order to compare it to a previously characterized model of chronic painful peripheral neuropathy induced by a taxane agent, paclitaxel. The oxaliplatin model evokes mechano-allodynia, mechano-hyperalgesia, and cold-allodynia that have a delayed onset, gradually increasing severity, a distinct delay to peak severity, and duration of about 2.5 months. There is no effect on heat sensitivity. EM analyses found no evidence for axonal degeneration in peripheral nerve and there is no up-regulation of activating transcription factor-3 in the lumbar dorsal root ganglia. There is a statistically significant loss of intraepidermal nerve fibers in the plantar hind paw skin. Oxaliplatin treatment causes a significant increase in the incidence of swollen and vacuolated mitochondria in peripheral nerve axons, but not in their Schwann cells. Nerve conduction studies found significant slowing of sensory axons, but no change in motor axons. Single fiber recordings found an abnormal incidence of A- and C-fibers with irregular, low-frequency spontaneous discharge. Prophylactic dosing with two drugs that are known to protect mitochondria, acetyl-L-carnitine and olesoxime, significantly reduced the development of pain hypersensitivity. Our results are very similar to those obtained previously with paclitaxel and support the hypothesis that these two

  8. A novel internal fixator device for peripheral nerve regeneration.

    PubMed

    Chuang, Ting-Hsien; Wilson, Robin E; Love, James M; Fisher, John P; Shah, Sameer B

    2013-06-01

    Recovery from peripheral nerve damage, especially for a transected nerve, is rarely complete, resulting in impaired motor function, sensory loss, and chronic pain with inappropriate autonomic responses that seriously impair quality of life. In consequence, strategies for enhancing peripheral nerve repair are of high clinical importance. Tension is a key determinant of neuronal growth and function. In vitro and in vivo experiments have shown that moderate levels of imposed tension (strain) can encourage axonal outgrowth; however, few strategies of peripheral nerve repair emphasize the mechanical environment of the injured nerve. Toward the development of more effective nerve regeneration strategies, we demonstrate the design, fabrication, and implementation of a novel, modular nerve-lengthening device, which allows the imposition of moderate tensile loads in parallel with existing scaffold-based tissue engineering strategies for nerve repair. This concept would enable nerve regeneration in two superposed regimes of nerve extension--traditional extension through axonal outgrowth into a scaffold and extension in intact regions of the proximal nerve, such as that occurring during growth or limb-lengthening. Self-sizing silicone nerve cuffs were fabricated to grip nerve stumps without slippage, and nerves were deformed by actuating a telescoping internal fixator. Poly(lactic co-glycolic) acid (PLGA) constructs mounted on the telescoping rods were apposed to the nerve stumps to guide axonal outgrowth. Neuronal cells were exposed to PLGA using direct contact and extract methods, and they exhibited no signs of cytotoxic effects in terms of cell morphology and viability. We confirmed the feasibility of implanting and actuating our device within a sciatic nerve gap and observed axonal outgrowth following device implantation. The successful fabrication and implementation of our device provides a novel method for examining mechanical influences on nerve regeneration.

  9. Subacute axonal neuropathy in Parkinson's disease with cobalamin and vitamin B6 deficiency under duodopa therapy.

    PubMed

    Urban, Peter P; Wellach, Ingmar; Faiss, Siegbert; Layer, Peter; Rosenkranz, Thorsten; Knop, Karl; Weis, Joachim

    2010-08-15

    We describe two patients who developed subacute axonal peripheral neuropathy under duodopa treatment. Comprehensive diagnostic workup including muscle and sural nerve biopsy revealed that the most probable cause of subacute axonal peripheral neuropathy was cobalamin and vitamin B6 deficiency in both the patients.

  10. Distorted Coarse Axon Targeting and Reduced Dendrite Connectivity Underlie Dysosmia after Olfactory Axon Injury

    PubMed Central

    Iwata, Ryo; Fujimoto, Satoshi; Aihara, Shuhei

    2016-01-01

    The glomerular map in the olfactory bulb (OB) is the basis for odor recognition. Once established during development, the glomerular map is stably maintained throughout the life of an animal despite the continuous turnover of olfactory sensory neurons (OSNs). However, traumatic damage to OSN axons in the adult often leads to dysosmia, a qualitative and quantitative change in olfaction in humans. A mouse model of dysosmia has previously indicated that there is an altered glomerular map in the OB after the OSN axon injury; however, the underlying mechanisms that cause the map distortion remain unknown. In this study, we examined how the glomerular map is disturbed and how the odor information processing in the OB is affected in the dysosmia model mice. We found that the anterior–posterior coarse targeting of OSN axons is disrupted after OSN axon injury, while the local axon sorting mechanisms remained. We also found that the connectivity of mitral/tufted cell dendrites is reduced after injury, leading to attenuated odor responses in mitral/tufted cells. These results suggest that existing OSN axons are an essential scaffold for maintaining the integrity of the olfactory circuit, both OSN axons and mitral/tufted cell dendrites, in the adult. PMID:27785463

  11. Regulation of Conduction Time along Axons

    PubMed Central

    Seidl, Armin H.

    2013-01-01

    Timely delivery of information is essential for proper function of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies in the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the

  12. Regulation of conduction time along axons.

    PubMed

    Seidl, A H

    2014-09-12

    Timely delivery of information is essential for proper functioning of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies on the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the

  13. Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Parallel Human Differentiation Into Sensory Neural Subtypes.

    PubMed

    Webb, Robin L; Gallegos-Cárdenas, Amalia; Miller, Colette N; Solomotis, Nicholas J; Liu, Hong-Xiang; West, Franklin D; Stice, Steven L

    2017-04-01

    The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate into neural rosette (NR) structures similar to human NRs, here we demonstrate that pig NR cells could differentiate into neural crest cells and other peripheral nervous system-relevant cell types. Treatment with either bone morphogenetic protein 4 or fetal bovine serum led to differentiation into BRN3A-positive sensory cells and increased expression of sensory neuron TRK receptor gene family: TRKA, TRKB, and TRKC. Porcine sensory neural cells would allow determination of parallels between human and porcine cells in response to noxious stimuli, analgesics, and reparative mechanisms. In vitro differentiation of pig sensory neurons provides a novel model system for neural cell subtype specification and would provide a novel platform for the study of regenerative therapeutics by elucidating the requirements for innervation following injury and axonal survival.

  14. Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents.

    PubMed

    Saleh, Ali; Roy Chowdhury, Subir K; Smith, Darrell R; Balakrishnan, Savitha; Tessler, Lori; Martens, Corina; Morrow, Dwane; Schartner, Emily; Frizzi, Katie E; Calcutt, Nigel A; Fernyhough, Paul

    2013-02-01

    Diabetes causes mitochondrial dysfunction in sensory neurons that may contribute to peripheral neuropathy. Ciliary neurotrophic factor (CNTF) promotes sensory neuron survival and axon regeneration and prevents axonal dwindling, nerve conduction deficits and thermal hypoalgesia in diabetic rats. In this study, we tested the hypothesis that CNTF protects sensory neuron function during diabetes through normalization of impaired mitochondrial bioenergetics. In addition, we investigated whether the NF-κB signal transduction pathway was mobilized by CNTF. Neurite outgrowth of sensory neurons derived from streptozotocin (STZ)-induced diabetic rats was reduced compared to neurons from control rats and exposure to CNTF for 24 h enhanced neurite outgrowth. CNTF also activated NF-κB, as assessed by Western blotting for the NF-κB p50 subunit and reporter assays for NF-κB promoter activity. Conversely, blockade of NF-κB signaling using SN50 peptide inhibited CNTF-mediated neurite outgrowth. Studies in mice with STZ-induced diabetes demonstrated that systemic therapy with CNTF prevented functional indices of peripheral neuropathy along with deficiencies in dorsal root ganglion (DRG) NF-κB p50 expression and DNA binding activity. DRG neurons derived from STZ-diabetic mice also exhibited deficiencies in maximal oxygen consumption rate and associated spare respiratory capacity that were corrected by exposure to CNTF for 24 h in an NF-κB-dependent manner. We propose that the ability of CNTF to enhance axon regeneration and protect peripheral nerve from structural and functional indices of diabetic peripheral neuropathy is associated with targeting of mitochondrial function, in part via NF-κB activation, and improvement of cellular bioenergetics.

  15. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

    PubMed

    Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande

    2015-01-01

    Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

  16. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    PubMed

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  17. [Physiological approach to peripheral neuropathy. Conventional nerve conduction studies and magnetic motor root stimulation].

    PubMed

    Ugawa, Yoshikazu

    2004-11-01

    In this communication, I first show some points we should mind in the conventional peripheral nerve conduction studies and later present clinical usefulness of motor root stimulation for peripheral neuropathy. CONVENTIONAL NERVE CONDUCTION STUDIES (NCS): The most important point revealed by the conventional NCSs is whether neuropathy is due to axonal degeneration or demyelinating process. Precise clinical examination with this neurophysiological information leads us to a diagnosis and treatment. Poor clinical examination makes these findings useless. Long standing axonal degeneration sometimes induces secondary demyelination at the most distal part of involved nerves. On the other hand, severe segmental demyelination often provokes secondary axonal degeneration at distal parts to the site of demyelination. These secondary changes show the same abnormal neurophysiological findings as those of the primary involvement. We should be careful of this possibility when interpreting the results of NCS. NCS of sensory nerves is not good at revealing demyelinating process. Mild temporal dispersion of potentials often reduces an amplitude of SNAP or loss of responses, which usually suggests axonal degeneration, because of short duration of sensory nerve potentials. MOTOR ROOT STIMULATION IN PERIPHERAL NEUROPATHY: Magnetic stimulation with a coil placed over the spine activates motor roots and evokes EMG responses from upper and lower limb muscles. The site of activation with this method was determined to be where the motor roots exit from the spinal canal (intervertebral foramina) (J Neurol Neurosurg Psychiatry 52 (9): 1025-1032, 1989) because induced currents are very dense at such a foramen made by electric resistant bones. In several kinds of peripheral neuropathy, this method has been used to detect a lesion at a proximal part of the peripheral nerves which can not be detected by the conventional NCSs. I present a few cases in whom motor root stimulation had a clinical

  18. [Pathophysiology of sensory ataxic neuropathy].

    PubMed

    Sobue, G

    1996-12-01

    The main lesions of sensory ataxic neuropathy such as chronic idiopathic sensory ataxic neuropathy, (ISAN), carcinomatous neuropathy, Sjögren syndrome-associated neuropathy and acute autonomic and sensory neuropathy (AASN) are the large-diameter sensory neurons and dosal column of the spinal cord and the large myelinated fibers in the peripheral nerve trunks. In addition, afferent fibers to the Clarke's nuclei are also severely involved, suggesting Ia fibers being involved in these neuropathies. In NT-3 knockout mouse, an animal model of sensory ataxia, large-sized la neurons as well as muscle spindle and Golgi tendon organs are depleted, and are causative for sensory ataxia. Thus, the proprioceptive Ia neurons would play a role in pathogenesis of sensory ataxia in human sensory ataxic neuropathies, but the significance of dorsal column involvement in human sensory ataxia is still needed to evaluate.

  19. Evaluation and use of regenerative multi electrode interfaces in peripheral nerves

    NASA Astrophysics Data System (ADS)

    Desai, Vidhi

    Peripheral nerves offer unique accessibility to the innate motor and sensory pathways that can be interfaced with high degree of selectivity for intuitive and bidirectional control of advanced upper extremity prosthetic limbs. Several peripheral nerve interfaces have been proposed and investigated over the last few decades with significant progress made in the area of sensory feedback. However, clinical translation still remains a formidable challenge due to the lack of long term recordings. Prominent causes include signal degradation, eventual interface failures, and lack of specificity in the low amplitude nerve signals. This dissertation evaluates the capabilities of the newly developed Regenerative Multi-electrode Interface (REMI) by the characterization of signal quality progression, the identification of interfaced axon types, and the demonstration of "functional linkage" between acquired signals and target organs. Chapter 2 details the chronic recording of high quality signals from REMI in sciatic nerve which remained stable over a 120 day implantation period indicative of minimal ongoing tissue response with no detrimental effects on the recording ability. The dominant cause of failures was attributable to abiotic factors pertaining to the connector/wire breakage, observed in 76% of REMI implants. Also, the REMI implants had 20% higher success rate and significantly larger Signal to Noise Ratio (SNR) in comparison to the Utah Slanted Electrode Array (USEA). Chapter 3 describes the successful feasibility of interfacing with motor and sensory axons by REMI implantation in the tibial and sural fascicles of the sciatic nerve. A characteristic sampling bias towards recording signals from medium-to-large diameter axons that are primarily involved in mechanoception and proprioception sensory functions was uncovered. Specific bursting units (Inter Spike Interval of 30-70ms) were observed most frequently from the tibial fascicle during bipedal locomotion. Chapter 4

  20. Transcriptome Analysis of Chemically-Induced Sensory Neuron Ablation in Zebrafish

    PubMed Central

    Cox, Jane A.; Zhang, Bo; Pope, Holly M.; Voigt, Mark M.

    2016-01-01

    Peripheral glia are known to have a critical role in the initial response to axon damage and degeneration. However, little is known about the cellular responses of non-myelinating glia to nerve injury. In this study, we analyzed the transcriptomes of wild-type and mutant (lacking peripheral glia) zebrafish larvae that were treated with metronidazole. This treatment allowed us to conditionally and selectively ablate cranial sensory neurons whose axons are ensheathed only by non-myelinating glia. While transcripts representing over 27,000 genes were detected by RNAseq, only a small fraction (~1% of genes) were found to be differentially expressed in response to neuronal degeneration in either line at either 2 hrs or 5 hrs of metronidazole treatment. Analysis revealed that most expression changes (332 out of the total of 458 differentially expressed genes) occurred over a continuous period (from 2 to 5 hrs of metronidazole exposure), with a small number of genes showing changes limited to only the 2 hr (55 genes) or 5 hr (71 genes) time points. For genes with continuous alterations in expression, some of the most meaningful sets of enriched categories in the wild-type line were those involving the inflammatory TNF-alpha and IL6 signaling pathways, oxidoreductase activities and response to stress. Intriguingly, these changes were not observed in the mutant line. Indeed, cluster analysis indicated that the effects of metronidazole treatment on gene expression was heavily influenced by the presence or absence of glia, indicating that the peripheral non-myelinating glia play a significant role in the transcriptional response to sensory neuron degeneration. This is the first transcriptome study of metronidazole-induced neuronal death in zebrafish and the response of non-myelinating glia to sensory neuron degeneration. We believe this study provides important insight into the mechanisms by which non-myelinating glia react to neuronal death and degeneration in sensory

  1. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers

    PubMed Central

    Yalom, Anisa; Berns, Eric J.; Stephanopoulos, Nicholas; McClendon, Mark T.; Segovia, Luis A.; Spigelman, Igor; Stupp, Samuel I.; Jarrahy, Reza

    2014-01-01

    Peripheral nerve injuries can result in lifelong disability. Primary coaptation is the treatment of choice when the gap between transected nerve ends is short. Long nerve gaps seen in more complex injuries often require autologous nerve grafts or nerve conduits implemented into the repair. Nerve grafts, however, cause morbidity and functional loss at donor sites, which are limited in number. Nerve conduits, in turn, lack an internal scaffold to support and guide axonal regeneration, resulting in decreased efficacy over longer nerve gap lengths. By comparison, peptide amphiphiles (PAs) are molecules that can self-assemble into nanofibers, which can be aligned to mimic the native architecture of peripheral nerve. As such, they represent a potential substrate for use in a bioengineered nerve graft substitute. To examine this, we cultured Schwann cells with bioactive PAs (RGDS-PA, IKVAV-PA) to determine their ability to attach to and proliferate within the biomaterial. Next, we devised a PA construct for use in a peripheral nerve critical sized defect model. Rat sciatic nerve defects were created and reconstructed with autologous nerve, PLGA conduits filled with various forms of aligned PAs, or left unrepaired. Motor and sensory recovery were determined and compared among groups. Our results demonstrate that Schwann cells are able to adhere to and proliferate in aligned PA gels, with greater efficacy in bioactive PAs compared to the backbone-PA alone. In vivo testing revealed recovery of motor and sensory function in animals treated with conduit/PA constructs comparable to animals treated with autologous nerve grafts. Functional recovery in conduit/PA and autologous graft groups was significantly faster than in animals treated with empty PLGA conduits. Histological examinations also demonstrated increased axonal and Schwann cell regeneration within the reconstructed nerve gap in animals treated with conduit/PA constructs. These results indicate that PA nanofibers may

  2. Substratum preferences of motor and sensory neurons in postnatal and adult rats.

    PubMed

    Gonzalez-Perez, Francisco; Alé, Albert; Santos, Daniel; Barwig, Christina; Freier, Thomas; Navarro, Xavier; Udina, Esther

    2016-02-01

    After peripheral nerve injuries, damaged axons can regenerate but functional recovery is limited by the specific reinnervation of targets. In this study we evaluated if motor and sensory neurites have a substrate preference for laminin and fibronectin in postnatal and adult stages. In postnatal dorsal root ganglia (DRG) explants, sensory neurons extended longer neurites on collagen matrices enriched with laminin (~50%) or fibronectin (~35%), whereas motoneurons extended longer neurites (~100%) in organotypic spinal cord slices embedded in fibronectin-enriched matrix. An increased percentage of parvalbumin-positive neurites (presumptive proprioceptive) vs. neurofilament-positive neurites was also found in DRG in fibronectin-enriched matrix. To test if the different preference of neurons for extracellular matrix components was maintained in vivo, these matrices were used to fill a chitosan guide to repair a 6-mm gap in the sciatic nerve of adult rats. However, the number of regenerating motor and sensory neurons after 1 month was similar between groups. Moreover, none of the retrotraced sensory neurons in DRG was positive for parvalbumin, suggesting that presumptive proprioceptive neurons had poor regenerative capabilities compared with other peripheral neurons. Using real-time PCR we evaluated the expression of α5β1 (receptor for fibronectin) and α7β1 integrin (receptor for laminin) in spinal cord and DRG 2 days after injury. Postnatal animals showed a higher increase of α5β1 integrin, whereas both integrins were similarly expressed in adult neurons. Therefore, we conclude that motor and sensory axons have a different substrate preference at early postnatal stages but this difference is lost in the adult.

  3. Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons.

    PubMed

    Kappagantula, Sunil; Andrews, Melissa R; Cheah, Menghon; Abad-Rodriguez, José; Dotti, Carlos G; Fawcett, James W

    2014-02-12

    PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.

  4. Intra-axonal protein synthesis – a new target for neural repair?

    PubMed Central

    Twiss, Jeffery L.; Kalinski, Ashley L.; Sachdeva, Rahul; Houle, John D.

    2016-01-01

    Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthesis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been documented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regenerating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regenerating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems. PMID:27857722

  5. Intra-axonal protein synthesis - a new target for neural repair?

    PubMed

    Twiss, Jeffery L; Kalinski, Ashley L; Sachdeva, Rahul; Houle, John D

    2016-09-01

    Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthesis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been documented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regenerating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regenerating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  6. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration.

    PubMed

    Wu, Xiaoli; He, Liumin; Li, Wen; Li, Heng; Wong, Wai-Man; Ramakrishna, Seeram; Wu, Wutian

    2017-02-01

    Peripheral nerves are fragile and easily damaged, usually resulting in nervous tissue loss, motor and sensory function loss. Advances in neuroscience and engineering have been significantly contributing to bridge the damage nerve and create permissive environment for axonal regrowth across lesions. We have successfully designed two self-assembling peptides by modifying RADA 16-I with two functional motifs IKVAV and RGD. Nanofiber hydrogel formed when combing the two neutral solutions together, defined as RADA 16-Mix that overcomes the main drawback of RADA16-I associated with low pH. In the present study, we transplanted the RADA 16-Mix hydrogel into the transected rat sciatic nerve gap and effect on axonal regeneration was examined and compared with the traditional RADA16-I hydrogel. The regenerated nerves were found to grow along the walls of the large cavities formed in the graft of RADA16-I hydrogel, while the nerves grew into the RADA 16-Mix hydrogel toward distal position. RADA 16-Mix hydrogel induced more axons regeneration and Schwann cells immigration than RADA16-I hydrogel, resulting in better functional recovery as determined by the gait-stance duration percentage and the formation of new neuromuscular junction structures. Therefore, our results indicated that the functional SAP RADA16-Mix nanofibrous hydrogel provided a better environment for peripheral nerve regeneration than RADA16-I hydrogel and could be potentially used in peripheral nerve injury repair.

  7. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration

    PubMed Central

    Wu, Xiaoli; He, Liumin; Li, Wen; Li, Heng; Wong, Wai-Man; Ramakrishna, Seeram; Wu, Wutian

    2017-01-01

    Peripheral nerves are fragile and easily damaged, usually resulting in nervous tissue loss, motor and sensory function loss. Advances in neuroscience and engineering have been significantly contributing to bridge the damage nerve and create permissive environment for axonal regrowth across lesions. We have successfully designed two self-assembling peptides by modifying RADA 16-I with two functional motifs IKVAV and RGD. Nanofiber hydrogel formed when combing the two neutral solutions together, defined as RADA 16-Mix that overcomes the main drawback of RADA16-I associated with low pH. In the present study, we transplanted the RADA 16-Mix hydrogel into the transected rat sciatic nerve gap and effect on axonal regeneration was examined and compared with the traditional RADA16-I hydrogel. The regenerated nerves were found to grow along the walls of the large cavities formed in the graft of RADA16-I hydrogel, while the nerves grew into the RADA 16-Mix hydrogel toward distal position. RADA 16-Mix hydrogel induced more axons regeneration and Schwann cells immigration than RADA16-I hydrogel, resulting in better functional recovery as determined by the gait-stance duration percentage and the formation of new neuromuscular junction structures. Therefore, our results indicated that the functional SAP RADA16-Mix nanofibrous hydrogel provided a better environment for peripheral nerve regeneration than RADA16-I hydrogel and could be potentially used in peripheral nerve injury repair. PMID:28149526

  8. Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration

    PubMed Central

    Painter, Michio W.; Brosius Lutz, Amanda; Cheng, Yung-Chih; Latremoliere, Alban; Duong, Kelly; Miller, Christine M.; Posada, Sean; Cobos, Enrique J.; Zhang, Alice X.; Wagers, Amy J.; Havton, Leif A.; Barres, Ben; Omura, Takao

    2014-01-01

    SUMMARY The regenerative capacity of the peripheral nervous system declines with age. Why this occurs, however, is unknown. We demonstrate that 24-month old mice exhibit an impairment of functional recovery after nerve injury compared to 2-month old animals. We find no difference in the intrinsic growth capacity between aged and young sensory neurons in vitro nor in their ability to activate growth-associated transcriptional programs after injury. Instead, using age-mismatched nerve transplants in vivo, we show that the extent of functional recovery depends on the age of the nerve graft, and not the age of the host. Molecular interrogation of the sciatic nerve reveals that aged Schwann cells (SCs) fail to rapidly activate a transcriptional repair program after injury. Functionally, aged SCs exhibit impaired de-differentiation, myelin clearance and macrophage recruitment. These results suggest that the age-associated decline in axonal regeneration results from diminished Schwann cell plasticity, leading to slower myelin clearance. PMID:25033179

  9. Making scent of the presence and local translation of odorant receptor mRNAs in olfactory axons.

    PubMed

    Dubacq, Caroline; Fouquet, Coralie; Trembleau, Alain

    2014-03-01

    Rodents contain in their genome more than 1000 functional odorant receptor genes, which are specifically expressed by the olfactory sensory neurons projecting from the olfactory epithelium to the olfactory bulb. Strong evidence for the presence and local translation of odorant receptor mRNAs in the axon of olfactory sensory neurons was obtained, but no function has been assigned to these axonal mRNAs yet. The aim of this review is to discuss the evidence for the presence and local translation of odorant receptor mRNAs in olfactory sensory axons, and to speculate on their possible function in the wiring of the mouse olfactory sensory projections.

  10. Mechanosensitivity in axon growth and guidance

    NASA Astrophysics Data System (ADS)

    Urbach, Jeff

    2013-03-01

    In the developing nervous system, axons respond to a diverse array of cues to generate the intricate connection network required for proper function. The growth cone, a highly motile structure at the tip of a growing axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth cone behavior. We have investigated axon outgrowth and force generation on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that force generation and stiffness-dependent outgrowth are strongly dependent on cell type. We also observe very different internal dynamics and substrate coupling in the two populations, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate engagement in the peripheral nervous system neurons. We will discuss the biological origins of these differences, and recent analyses of the dynamic aspects of growth cone force generation and the implications for the role of mechanosensitivity in axon guidance. In collaboration with D. Koch, W. Rosoff, and H. M. Geller. Supported by NINDS grant 1R01NS064250-01 (J.S.U.) and the NHLBI Intramural Research Program (H.M.G.).

  11. Axonal Degeneration Is Mediated by the Mitochondrial Permeability Transition Pore

    PubMed Central

    Barrientos, Sebastian A.; Martinez, Nicolas W.; Yoo, Soonmoon; Jara, Juan S.; Zamorano, Sebastian; Hetz, Claudio; Twiss, Jeffery L.; Alvarez, Jaime; Court, Felipe A.

    2011-01-01

    Axonal degeneration is an active process that has been associated with neurodegenerative conditions triggered by mechanical, metabolic, infectious, toxic, hereditary and inflammatory stimuli. This degenerative process can cause permanent loss of function, so it represents a focus for neuroprotective strategies. Several signaling pathways are implicated in axonal degeneration, but identification of an integrative mechanism for this self-destructive process has remained elusive. Here, we show that rapid axonal degeneration triggered by distinct mechanical and toxic insults is dependent on the activation of the mitochondrial permeability transition pore (mPTP). Both pharmacological and genetic targeting of cyclophilin D, a functional component of the mPTP, protects severed axons and vincristine-treated neurons from axonal degeneration in ex vivo and in vitro mouse and rat model systems. These effects were observed in axons from both the peripheral and central nervous system. Our results suggest that the mPTP is a key effector of axonal degeneration, upon which several independent signaling pathways converge. Since axonal and synapse degeneration are increasingly considered early pathological events in neurodegeneration, our work identifies a potential target for therapeutic intervention in a wide variety of conditions that lead to loss of axons and subsequent functional impairment. PMID:21248121

  12. Concepts for regulation of axon integrity by enwrapping glia

    PubMed Central

    Beirowski, Bogdan

    2013-01-01

    Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes (OLGs)) form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that EG nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral nervous system and central nervous system (PNS and CNS). PMID:24391540

  13. THEORETICAL PRINCIPLES UNDERLYING OPTICAL STIMULATION OF MYELINATED AXONS EXPRESSING CHANNELRHODOPSIN-2

    PubMed Central

    ARLOW, R. L.; FOUTZ, T. J.; MCINTYRE, C. C.

    2013-01-01

    Numerous clinical conditions can be treated by neuromodulation of the peripheral nervous system (PNS). Typical electrical PNS therapies activate large diameter axons at lower electrical stimulus thresholds than small diameter axons. However, recent animal experiments with peripheral optogenetic neural stimulation (PONS) of myelinated axons expressing channelrhodopsin-2 (ChR2) have shown that this technique activates small diameter axons at lower irradiances than large diameter axons. We hypothesized that the small-to-large diameter recruitment order primarily arises from the internodal spacing relationship of myelinated axons. Small diameter axons have shorter distances between their nodes of Ranvier, which increases the number of nodes of Ranvier directly illuminated relative to larger diameter axons. We constructed “light-axon” PONS models that included multi-compartment, double cable, myelinated axon models embedded with ChR2 membrane dynamics, coupled with a model of blue light dynamics in the tissue medium from a range of different light sources. The light-axon models enabled direct calculation of threshold irradiance for different diameter axons. Our simulations demonstrate that illumination of multiple nodal sections reduces the threshold irradiance and enhances the small-to-large diameter recruitment order. In addition to addressing biophysical questions, our light-axon model system could also be useful in guiding the engineering design of optical stimulation technology that could maximize the efficiency and selectivity of PONS. PMID:23811392

  14. Epigenetic Regulation of Axon Regeneration after Neural Injury

    PubMed Central

    Shin, Jung Eun; Cho, Yongcheol

    2017-01-01

    When peripheral axons are damaged, neuronal injury signaling pathways induce transcriptional changes that support axon regeneration and consequent functional recovery. The recent development of bioinformatics techniques has allowed for the identification of many of the regeneration-associated genes that are regulated by neural injury, yet it remains unclear how global changes in transcriptome are coordinated. In this article, we review recent studies on the epigenetic mechanisms orchestrating changes in gene expression in response to nerve injury. We highlight the importance of epigenetic mechanisms in discriminating efficient axon regeneration in the peripheral nervous system and very limited axon regrowth in the central nervous system and discuss the therapeutic potential of targeting epigenetic regulators to improve neural recovery. PMID:28152303

  15. Recovery of axonal myelination sheath and axonal caliber in the mouse corpus callosum following damage induced by N,N-diethyldithiocarbamate.

    PubMed

    Utrera, Juana; Romero, Rafael; Verdaguer, Ester; Junyent, Fèlix; Auladell, Carme

    2011-12-01

    Disulfiram is an aldehyde dehydrogenase inhibitor used for the treatment of alcohol dependence and of cocaine addiction. It has been demonstrated that subchronic administration of disulfiram or N,N-diethyldithiocarbamate (DEDTC), the main derivative of disulfiram, to rats can produce central-peripheral distal axonopathy. However, few data regarding the axonal effects of these compounds in the central nervous system exist. Our previous studies have revealed DEDTC-induced axonal damage in the mouse brain during the course of postnatal development, together with alterations in axonal pathfinding and in the myelination process, with partial recovery during the post-treatment period. In order to gather new data about how this axonal damage and recovery occurs in the central nervous system, we performed an ultrastructural analysis of the axons located in the corpus callosum from mice treated with DEDTC during postnatal development. The axonal caliber throughout the axonal area, the maximum axonal diameter, the maximum fiber diameter, and the axonal circularity, at different postnatal stages [from postnatal day (P)9 to P30], were analyzed. In addition, parameters related to the myelinization process (number of myelinated axons, sheath thickness, and the ratio of myelinated axons to total axons) were evaluated. A reduction in the average value of axonal caliber during treatment and a delay in the axonal myelination process were detected. Whereas early recovery of individual axons occurred after treatment (P22), complete recovery of myelinated axons occurred at late postnatal stages (P42). Therefore, chronic treatment with dithiocarbamates requires periods of rest to encourage the recovery of myelinated axons.

  16. Multifunctional Silk Nerve Guides for Axon Outgrowth

    NASA Astrophysics Data System (ADS)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  17. Axonal GABAA receptors.

    PubMed

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  18. Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration

    PubMed Central

    Joyce, Peter I.; Fratta, Pietro; Landman, Allison S.; Mcgoldrick, Philip; Wackerhage, Henning; Groves, Michael; Busam, Bharani Shiva; Galino, Jorge; Corrochano, Silvia; Beskina, Olga A.; Esapa, Christopher; Ryder, Edward; Carter, Sarah; Stewart, Michelle; Codner, Gemma; Hilton, Helen; Teboul, Lydia; Tucker, Jennifer; Lionikas, Arimantas; Estabel, Jeanne; Ramirez-Solis, Ramiro; White, Jacqueline K.; Brandner, Sebastian; Plagnol, Vincent; Bennet, David L. H.; Abramov, Andrey Y.; Greensmith, Linda; Fisher, Elizabeth M. C.; Acevedo-Arozena, Abraham

    2016-01-01

    Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid–protein and protein–protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106−/−), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106−/− mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106−/− mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106−/− mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106−/− motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration. PMID:26604141

  19. Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration.

    PubMed

    Joyce, Peter I; Fratta, Pietro; Landman, Allison S; Mcgoldrick, Philip; Wackerhage, Henning; Groves, Michael; Busam, Bharani Shiva; Galino, Jorge; Corrochano, Silvia; Beskina, Olga A; Esapa, Christopher; Ryder, Edward; Carter, Sarah; Stewart, Michelle; Codner, Gemma; Hilton, Helen; Teboul, Lydia; Tucker, Jennifer; Lionikas, Arimantas; Estabel, Jeanne; Ramirez-Solis, Ramiro; White, Jacqueline K; Brandner, Sebastian; Plagnol, Vincent; Bennet, David L H; Abramov, Andrey Y; Greensmith, Linda; Fisher, Elizabeth M C; Acevedo-Arozena, Abraham

    2016-01-15

    Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid-protein and protein-protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106(-/-)), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106(-/-) mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106(-/-) mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106(-/-) mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106(-/-) motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.

  20. [Ultrastructural lesions of axonal mitochondria in patients with childhood-onset Charcot-Marie-Tooth disease due to MFN2 mutations].

    PubMed

    Funalot, Benoît; Magdelaine, Corinne; Sturtz, Franck; Ouvrier, Robert; Vallat, Jean-Michel

    2009-01-01

    We present neuropathological findings based on sural nerve biopsy in six children with mutations of the mitofusin 2 gene (MFN2). All six children had severe axonal neuropathies (mild or severe hereditary motor and sensory neuropathy, HMSN), with onset in early childhood. All had a marked decrease in the density of mainly large myelinated fibers. Although neurophysiological findings were suggestive of axonal degeneration, some onion bulbs were present in each case. Unequivocal mitochondrial changes were apparent only on longitudinal sections. Many axonal mitochondria appeared smaller than normal and round or spherical instead of tubular. These mitochondria were abnormally aggregated, accumulating primarily at the axon periphery. This peripheral distribution was clearest in residual large myelinated fibers. The inner and outer mitochondrial membranes were irregular, and the cristae were quite often disrupted. These changes were observed in both myelinated and unmyelinated fibers. Mitofusin 2 is a large mitochondrial transmembrane GTPase, with two coiled coil domains and two transmembrane spans. It is targeted to the outer mitochondrial membrane, where it interacts with mitofusin 1 to regulate the mitochondrial network architecture by stimulating mitochondrialfusion. The mitochondrial changes we observed could thus result from abnormal mitochondrial fusion and fission. Neuropathologic abnormalities can be sufficiently characteristic to suggest the genetic basis of some hereditary neuropathies such as those associated with mutations in MPZ, GJB1, GDAP1, MTMR2, SH3TC2, PRX, FGD4 and LMNA. This may also be true of MFN2-related neuropathies.

  1. Cross-modal plasticity in sensory deprived animal models: From the thalamocortical development point of view.

    PubMed

    Mezzera, Cecilia; López-Bendito, Guillermina

    2016-09-01

    Over recent decades, our understanding of the plasticity of the central nervous system has expanded enormously. Accordingly, it is now widely accepted that the brain can adapt to changes by reorganizing its circuitry, both in response to external stimuli and experience, as well as through intrinsic mechanisms. A clear example of this is the activation of a deprived sensory area and the expansion of spared sensory cortical regions in individuals who suffered peripheral sensory loss. Despite the efforts to understand these neuroplastic changes, the mechanisms underlying such adaptive remodeling remains poorly understood. Progress in understanding these events may be hindered by the highly varied data obtained from the distinct experimental paradigms analyzed, which include different animal models and neuronal systems, as well as studies into the onset of sensory loss. Here, we will establish the current state-of-the-art describing the principal observations made according to the time of sensory deprivation with respect to the development of the thalamocortical connectivity. We will review the experimental data obtained from animal models where sensory deprivation has been induced either before or after thalamocortical axons reach and invade their target cortical areas. The anatomical and functional effects of sensory loss on the primary sensory areas of the cortex will be presented. Indeed, we consider that the comparative approach of this review is a necessary step in order to help deciphering the processes that underlie sensory neuroplasticity, for which studies in animal models have been indispensable. Understanding these mechanisms will then help to develop restorative strategies and prostheses that will overcome the functional loss.

  2. Regulation of motor patterns by the central spike-initiation zone of a sensory neuron.

    PubMed

    Daur, Nelly; Nadim, Farzan; Stein, Wolfgang

    2009-09-01

    Sensory feedback from muscles and peripheral sensors acts to initiate, tune or reshape motor activity according to the state of the body. Yet, sensory neurons often show low levels of activity even in the absence of sensory input. Here we examine the functional role of spontaneous low-frequency activity of such a sensory neuron. The anterior gastric receptor (AGR) is a muscle-tendon organ in the crab stomatogastric nervous system whose phasic activity shapes the well-characterized gastric mill (chewing) and pyloric (filtering) motor rhythms. Phasic activity is driven by a spike-initiation zone near the innervated muscle. We demonstrate that AGR possesses a second spike-initiation zone, which is located spatially distant from the innervated muscle in a central section of the axon. This initiation zone generates tonic activity and is responsible for the spontaneous activity of AGR in vivo, but does not code sensory information. Rather, it is sensitive to the neuromodulator octopamine. A computational model indicates that the activity at this initiation zone is not caused by excitatory input from another neuron, but generated intrinsically. This tonic activity is functionally relevant, because it modifies the activity state of the gastric mill motor circuit and changes the pyloric rhythm. The sensory function of AGR is not impaired as phasic activity suppresses spiking at the central initiation zone. Our results thus demonstrate that sensory neurons are not mere reporters of sensory signals. Neuromodulators can elicit non-sensory coding activity in these neurons that shapes the state of the motor system.

  3. Axons take a dive

    PubMed Central

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2015-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  4. Bicyclic-Capped Histone Deacetylase 6 Inhibitors with Improved Activity in a Model of Axonal Charcot-Marie-Tooth Disease.

    PubMed

    Shen, Sida; Benoy, Veronick; Bergman, Joel A; Kalin, Jay H; Frojuello, Mariana; Vistoli, Giulio; Haeck, Wanda; Van Den Bosch, Ludo; Kozikowski, Alan P

    2016-02-17

    Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A.

  5. Axonal pruning is actively regulated by the microtubule-destabilizing protein kinesin superfamily protein 2A.

    PubMed

    Maor-Nof, Maya; Homma, Noriko; Raanan, Calanit; Nof, Aviv; Hirokawa, Nobutaka; Yaron, Avraham

    2013-04-25

    Extensive axonal pruning and neuronal cell death are critical events for the development of the nervous system. Like neuronal cell death, axonal elimination occurs in discrete steps; however, the regulators of these processes remain mostly elusive. Here, we identify the kinesin superfamily protein 2A (KIF2A) as a key executor of microtubule disassembly and axonal breakdown during axonal pruning. Knockdown of Kif2a, but not other microtubule depolymerization or severing proteins, protects axonal microtubules from disassembly upon trophic deprivation. We further confirmed and extended this result to demonstrate that the entire degeneration process is delayed in neurons from the Kif2a knockout mice. Finally, we show that the Kif2a-null mice exhibit normal sensory axon patterning early during development, but abnormal target hyperinnervation later on, as they compete for limited skin-derived trophic support. Overall, these findings reveal a central regulatory mechanism of axonal pruning during development.

  6. Pleiotrophin and peripheral nerve injury.

    PubMed

    Jin, Li; Jianghai, Chen; Juan, Liu; Hao, Kang

    2009-10-01

    The proto-oncogene pleiotrophin, discovered in 1989, was considered as a multifunctional growth factor, which played an important role in tumor occurrence, development, and central nervous system. The latest research showed that pleiotrophin signal pathway probably participated in neural repair after peripheral nerve injury, especially in the following critical points, such as the protection of spinal cord neuron, the promotion of the speed of neuron axon regeneration, the guidance of neuron axon regeneration, skeleton muscle reinnervation, and so on. It potentially plays a key role in the guidance of neural axon regeneration in peripheral nervous system and muscle reinnervation. With the deepening of related researches, pleiotrophin gene would become a controllable target for improving the repairing effect of peripheral nerve injury and reconstruction of the neuromuscular junction.

  7. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srikanth; Patel, Kunal; Welle, Cristin

    2017-02-01

    Objective. In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. Approach. Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. Main results. Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons

  8. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon

    PubMed Central

    Ma, Marek

    2013-01-01

    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed. PMID:23969238

  9. Screening for Electrophysiological Abnormalities in Chronic Hepatitis C Infection: Peripheral Neuropathy and Optic Neuropathy

    PubMed Central

    KÖŞKDERELİOĞLU, Aslı; ORTAN, Pınar; ARI, Alpay; GEDİZLİOĞLU, Muhteşem

    2016-01-01

    Introduction To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Methods Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Results Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Conclusion Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients

  10. Using Arrays of Microelectrodes Implanted in Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis

    DTIC Science & Technology

    2015-10-01

    Design and drawings of micro-electrode arrays complete. 2 • Measure impedances on all electrodes in each array prior to sterilization, and if...allow them to compliantly move with the peripheral nerves and resist mechanical damage. Figure 1 – CAD drawings of the poly-LIFE. Top panel: A...week of implantation due to the array/ wire being crushed/broken by the patient likely during performance of their job. The second array failure

  11. Expression of Semaphorins, Neuropilins, VEGF, and Tenascins in Rat and Human Primary Sensory Neurons after a Dorsal Root Injury

    PubMed Central

    Lindholm, Tomas; Risling, Mårten; Carlstedt, Thomas; Hammarberg, Henrik; Wallquist, Wilhelm; Cullheim, Staffan; Sköld, Mattias K.

    2017-01-01

    Dorsal root injury is a situation not expected to be followed by a strong regenerative growth, or growth of the injured axon into the central nervous system of the spinal cord, if the central axon of the dorsal root is injured but of strong regeneration if subjected to injury to the peripherally projecting axons. The clinical consequence of axonal injury is loss of sensation and may also lead to neuropathic pain. In this study, we have used in situ hybridization to examine the distribution of mRNAs for the neural guidance molecules semaphorin 3A (SEMA3A), semaphorin 3F (SEMA3F), and semaphorin 4F (SEMA4F), their receptors neuropilin 1 (NP1) and neuropilin 2 (NP2) but also for the neuropilin ligand vascular endothelial growth factor (VEGF) and Tenascin J1, an extracellular matrix molecule involved in axonal guidance, in rat dorsal root ganglia (DRG) after a unilateral dorsal rhizotomy (DRT) or sciatic nerve transcetion (SNT). The studied survival times were 1–365 days. The different forms of mRNAs were unevenly distributed between the different size classes of sensory nerve cells. The results show that mRNA for SEMA3A was diminished after trauma to the sensory nerve roots in rats. The SEMA3A receptor NP1, and SEMA3F receptor NP2, was significantly upregulated in the DRG neurons after DRT and SNT. SEMA4F was upregulated after a SNT. The expression of mRNA for VEGF in DRG neurons after DRT showed a significant upregulation that was high even a year after the injuries. These data suggest a role for the semaphorins, neuropilins, VEGF, and J1 in the reactions after dorsal root lesions. PMID:28270793

  12. Permanent reorganization of Ia afferent synapses on motoneurons after peripheral nerve injuries

    PubMed Central

    Alvarez, Francisco J.; Bullinger, Katie L.; Titus, Haley E.; Nardelli, Paul; Cope, Timothy C.

    2010-01-01

    After peripheral nerve injuries to a motor nerve the axons of motoneurons and proprioceptors are disconnected from the periphery and monosynaptic connections from group I afferents and motoneurons become diminished in the spinal cord. Following successful reinnervation in the periphery, motor strength, proprioceptive sensory encoding, and Ia afferent synaptic transmission on motoneurons partially recover. Muscle stretch reflexes, however, never recover and motor behaviors remain uncoordinated. In this review, we summarize recent findings that suggest that lingering motor dysfunction might be in part related to decreased connectivity of Ia afferents centrally. First, sensory afferent synapses retract from lamina IX causing a permanent relocation of the inputs to more distal locations and significant disconnection from motoneurons. Second, peripheral reconnection between proprioceptive afferents and muscle spindles is imperfect. As a result, a proportion of sensory afferents that retain central connections with motoneurons might not reconnect appropriately in the periphery. A hypothetical model is proposed in which the combined effect of peripheral and central reconnection deficits might explain the failure of muscle stretch to initiate or modulate firing of many homonymous motoneurons. PMID:20536938

  13. Prevention of NKCC1 phosphorylation avoids downregulation of KCC2 in central sensory pathways and reduces neuropathic pain after peripheral nerve injury.

    PubMed

    Mòdol, Laura; Cobianchi, Stefano; Navarro, Xavier

    2014-08-01

    Neuropathic pain after peripheral nerve injury is characterized by loss of inhibition in both peripheral and central pain pathways. In the adult nervous system, the Na(+)-K(+)-2Cl(-) (NKCC1) and neuron-specific K(+)-Cl(-) (KCC2) cotransporters are involved in setting the strength and polarity of GABAergic/glycinergic transmission. After nerve injury, the balance between these cotransporters changes, leading to a decrease in the inhibitory tone. However, the role that NKCC1 and KCC2 play in pain-processing brain areas is unknown. Our goal was to study the effects of peripheral nerve injury on NKCC1 and KCC2 expression in dorsal root ganglia (DRG), spinal cord, ventral posterolateral (VPL) nucleus of the thalamus, and primary somatosensory (S1) cortex. After sciatic nerve section and suture in adult rats, assessment of mechanical and thermal pain thresholds showed evidence of hyperalgesia during the following 2 months. We also found an increase in NKCC1 expression in the DRG and a downregulation of KCC2 in spinal cord after injury, accompanied by later decrease of KCC2 levels in higher projection areas (VPL and S1) from 2 weeks postinjury, correlating with neuropathic pain signs. Administration of bumetanide (30 mg/kg) during 2 weeks following sciatic nerve lesion prevented the previously observed changes in the spinothalamic tract projecting areas and the appearance of hyperalgesia. In conclusion, the present results indicate that changes in NKCC1 and KCC2 in DRG, spinal cord, and central pain areas may contribute to development of neuropathic pain.

  14. Mechanical Properties of Axons

    NASA Astrophysics Data System (ADS)

    Bernal, Roberto; Pullarkat, Pramod A.; Melo, Francisco

    2007-07-01

    The mechanical response of PC12 neurites under tension is investigated using a microneedle technique. Elastic response, viscoelastic relaxation, and active contraction are observed. The mechanical model proposed by Dennerll et al. [J. Cell Biol. 109, 3073 (1989).JCLBA30021-952510.1083/jcb.109.6.3073], which involves three mechanical devices—a stiff spring κ coupled with a Voigt element that includes a less stiff spring k and a dashpot γ—has been improved by adding a new element to describe the main features of the contraction of axons. This element, which represents the action of molecular motors, acts in parallel with viscous forces defining a global tension response of axons T against elongation rates δ˙k. Under certain conditions, axons show a transition from a viscoelastic elongation to active contraction, suggesting the presence of a negative elongation rate sensitivity in the curve T vs δ˙k.

  15. The Number of Alphaherpesvirus Particles Infecting Axons and the Axonal Protein Repertoire Determines the Outcome of Neuronal Infection

    PubMed Central

    Koyuncu, Orkide O.; Song, Ren; Greco, Todd M.; Cristea, Ileana M.

    2015-01-01

    ABSTRACT Infection by alphaherpesviruses invariably results in invasion of the peripheral nervous system (PNS) and establishment of either a latent or productive infection. Infection begins with long-distance retrograde transport of viral capsids and tegument proteins in axons toward the neuronal nuclei. Initial steps of axonal entry, retrograde transport, and replication in neuronal nuclei are poorly understood. To better understand how the mode of infection in the PNS is determined, we utilized a compartmented neuron culturing system where distal axons of PNS neurons are physically separated from cell bodies. We infected isolated axons with fluorescent-protein-tagged pseudorabies virus (PRV) particles and monitored viral entry and transport in axons and replication in cell bodies during low and high multiplicities of infection (MOIs of 0.01 to 100). We found a threshold for efficient retrograde transport in axons between MOIs of 1 and 10 and a threshold for productive infection in the neuronal cell bodies between MOIs of 1 and 0.1. Below an MOI of 0.1, the viral genomes that moved to neuronal nuclei were silenced. These genomes can be reactivated after superinfection by a nonreplicating virus, but not by a replicating virus. We further showed that viral particles at high-MOI infections compete for axonal proteins and that this competition determines the number of viral particles reaching the nuclei. Using mass spectrometry, we identified axonal proteins that are differentially regulated by PRV infection. Our results demonstrate the impact of the multiplicity of infection and the axonal milieu on the establishment of neuronal infection initiated from axons. PMID:25805728

  16. Enhanced noradrenergic axon regeneration into schwann cell-filled PVDF-TrFE conduits after complete spinal cord transection.

    PubMed

    Lee, Yee-Shuan; Wu, Siliang; Arinzeh, Treena Livingston; Bunge, Mary Bartlett

    2017-02-01

    Schwann cell (SC) transplantation has been utilized for spinal cord repair and demonstrated to be a promising therapeutic strategy. In this study, we investigated the feasibility of combining SC transplantation with novel conduits to bridge the completely transected adult rat spinal cord. This is the first and initial study to evaluate the potential of using a fibrous piezoelectric polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) conduit with SCs for spinal cord repair. PVDF-TrFE has been shown to enhance neurite growth in vitro and peripheral nerve repair in vivo. In this study, SCs adhered and proliferated when seeded onto PVDF-TrFE scaffolds in vitro. SCs and PVDF-TrFE conduits, consisting of random or aligned fibrous inner walls, were transplanted into transected rat spinal cords for 3 weeks to examine early repair. Glial fibrillary acidic protein (GFAP)(+) astrocyte processes and GFP (green fluorescent protein)-SCs were interdigitated at both rostral and caudal spinal cord/SC transplant interfaces in both types of conduits, indicative of permissivity to axon growth. More noradrenergic/DβH(+) (dopamine-beta-hydroxylase) brainstem axons regenerated across the transplant when greater numbers of GFAP(+) astrocyte processes were present. Aligned conduits promoted extension of DβH(+) axons and GFAP(+) processes farther into the transplant than random conduits. Sensory CGRP(+) (calcitonin gene-related peptide) axons were present at the caudal interface. Blood vessels formed throughout the transplant in both conduits. This study demonstrates that PVDF-TrFE conduits harboring SCs are promising for spinal cord repair and deserve further investigation. Biotechnol. Bioeng. 2017;114: 444-456. © 2016 Wiley Periodicals, Inc.

  17. Dopamine modulates Ih in a motor axon

    PubMed Central

    Ballo, Aleksander W.; Keene, Jennifer C.; Troy, Patricia J.; Goeritz, Marie L.; Nadim, Farzan; Bucher, Dirk

    2010-01-01

    We studied the axons of the pyloric dilator (PD) neurons in the stomatogastric nervous system of the lobster. The several centimeters long portions of these axons in the motor nerves depolarize in response to low concentrations of dopamine (DA) and exhibit peripheral spike initiation in the absence of centrally generated activity. This effect is inhibited by blockers of hyperpolarization-activated inward current (Ih). We show here that peripheral spike initiation was also elicited by D1-type receptor agonists and drugs that increase cAMP. This suggests that DA acts through a D1-type receptor mechanism to modulate hyperpolarization-activated cyclic nucleotide-gated channels. We used two- electrode voltage clamp of the axon to directly study the effect of DA on Ih. Surprisingly, DA decreased the maximal conductance. However, due to a shift of the activation curve to more depolarized potentials, and a change in the slope, conductance was increased at biologically relevant membrane potentials. These changes were solely due to modulation of Ih, as DA had no discernible effect when Ih was blocked. In addition, they were not induced by repeated activation and could be mimicked by application of drugs that increase cAMP concentration. DA modulation of Ih persisted in the presence of a protein kinase A inhibitor and is therefore potentially mediated by a phosphorylation-independent direct effect of cAMP on the ion channel. A computer model of the axon showed that the changes in maximal conductance and voltage-dependence were not qualitatively affected by space clamp problems. PMID:20573890

  18. TRPA1 insensitivity of human sural nerve axons after exposure to lidocaine.

    PubMed

    Docherty, Reginald J; Ginsberg, Lionel; Jadoon, Saqiba; Orrell, Richard W; Bhattacharjee, Anupam

    2013-09-01

    TRPA1 is an ion channel of the TRP family that is expressed in some sensory neurons. TRPA1 activity provokes sensory symptoms of peripheral neuropathy, such as pain and paraesthesia. We have used a grease gap method to record axonal membrane potential and evoked compound action potentials (ECAPs) in vitro from human sural nerves and studied the effects of mustard oil (MO), a selective activator of TRPA1. Surprisingly, we failed to demonstrate any depolarizing response to MO (50, 250 μM) in any human sural nerves. There was no effect of MO on the A wave of the ECAP, but the C wave was reduced at 250 μM. In rat saphenous nerve fibres MO (50, 250 μM) depolarized axons and reduced the C wave of the ECAP but had no effect on the A wave. By contrast, both human and rat nerves were depolarized by capsaicin (0.5 to 5 μM) or nicotine (50 to 200 μM). Capsaicin caused a profound reduction in C fibre conduction in both species but had no effect on the amplitude of the A component. Lidocaine (30 mM) depolarized rat saphenous nerves acutely, and when rat nerves were pretreated with 30 mM lidocaine to mimic the exposure of human nerves to local anaesthetic during surgery, the effects of MO were abolished whilst the effects of capsaicin were unchanged. This study demonstrates that the local anaesthetic lidocaine desensitizes TRPA1 ion channels and indicates that it may have additional mechanisms for treating neuropathic pain that endure beyond simple sodium channel blockade.

  19. Platelet-rich plasma, an adjuvant biological therapy to assist peripheral nerve repair

    PubMed Central

    Sánchez, Mikel; Garate, Ane; Delgado, Diego; Padilla, Sabino

    2017-01-01

    Therapies such as direct tension-free microsurgical repair or transplantation of a nerve autograft, are nowadays used to treat traumatic peripheral nerve injuries (PNI), focused on the enhancement of the intrinsic regenerative potential of injured axons. However, these therapies fail to recreate the suitable cellular and molecular microenvironment of peripheral nerve repair and in some cases, the functional recovery of nerve injuries is incomplete. Thus, new biomedical engineering strategies based on tissue engineering approaches through molecular intervention and scaffolding offer promising outcomes on the field. In this sense, evidence is accumulating in both, preclinical and clinical settings, indicating that platelet-rich plasma products, and fibrin scaffold obtained from this technology, hold an important therapeutic potential as a neuroprotective, neurogenic and neuroinflammatory therapeutic modulator system, as well as enhancing the sensory and motor functional nerve muscle unit recovery. PMID:28250739

  20. Tadalafil Promotes the Recovery of Peripheral Neuropathy in Type II Diabetic Mice

    PubMed Central

    Wang, Lei; Chopp, Michael; Szalad, Alexandra; Lu, XueRong; Jia, LongFei; Lu, Mei; Zhang, Rui Lan; Zhang, Zheng Gang

    2016-01-01

    We previously demonstrated that treatment of diabetic peripheral neuropathy with the short (4 hours) half-life phosphodiesterase 5 (PDE5) inhibitor, sildenafil, improved functional outcome in diabetic db/db mice. To further examine the effect of PDE5 inhibition on diabetic peripheral neuropathy, we investigated the effect of another potent PDE5 inhibitor, tadalafil, on diabetic peripheral neuropathy. Tadalafil is pharmacokinetically distinct from sildenafil and has a longer half-life (17+hours) than sildenafil. Diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 20 weeks were treated with tadalafil every 48 hours for 8 consecutive weeks. Compared with diabetic mice treated with saline, tadalafil treatment significantly improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal sensitivity. Tadalafil treatment also markedly increased local blood flow and the density of FITC-dextran perfused vessels in the sciatic nerve concomitantly with increased intraepidermal nerve fiber density. Moreover, tadalafil reversed the diabetes-induced reductions of axon diameter and myelin thickness and reversed the diabetes-induced increased g-ratio in the sciatic nerve. Furthermore, tadalafil enhanced diabetes-reduced nerve growth factor (NGF) and platelet-derived growth factor-C (PDGF-C) protein levels in diabetic sciatic nerve tissue. The present study demonstrates that tadalafil increases regional blood flow in the sciatic nerve tissue, which may contribute to the improvement of peripheral nerve function and the amelioration of diabetic peripheral neuropathy. PMID:27438594

  1. Importance of the pineal gland, endogenous prostaglandins and sensory nerves in the gastroprotective actions of central and peripheral melatonin against stress-induced damage.

    PubMed

    Brzozowski, Tomasz; Konturek, Peter C; Zwirska-Korczala, Krystyna; Konturek, Stanislaw J; Brzozowska, Iwona; Drozdowicz, Danuta; Sliwowski, Zbigniew; Pawlik, Michal; Pawlik, Wieslaw W; Hahn, Eckhart G

    2005-11-01

    Melatonin attenuates acute gastric lesions induced by topical strong irritants because of scavenging of free radicals, but its role in the pathogenesis of stress-induced gastric lesions has been sparingly investigated. In this study we compared the effects of intragastric (i.g.) or intracerebroventricular (i.c.v.) administration of melatonin and its precursor, L-tryptophan, with or without concurrent treatment with luzindole, a selective antagonist of melatonin MT2 receptors, on gastric lesions induced by water immersion and restraint stress (WRS). The involvement of pineal gland, endogenous prostaglandins (PG) and sensory nerves in gastroprotective action of melatonin and L-tryptophan against WRS was studied in intact or pinealectomized rats or those treated with indomethacin or rofecoxib to suppress cyclooxygenase (COX)-1 and COX-2, respectively, and with capsaicin to induce functional ablation of the sensory nerves. In addition, the influence of i.c.v. and i.g. melatonin on gastric secretion was tested in a separate group of rats equipped with gastric fistulas. At 3.5 hr after the end of WRS, the number of gastric lesions was counted, the gastric blood flow (GBF) was determined by H2-gas clearance technique and plasma melatonin and gastrin levels were measured by specific radioimmunoassay (RIA). Biopsy mucosal samples were taken for determination of expression of mRNA for COX-1 and COX-2 by reverse transcriptase-polymerase chain reaction (RT-PCR) and of the mucosal generation of prostaglandin E2 (PGE2) by RIA. Melatonin applied i.g. (1.25-10 mg/kg) or i.c.v. (1.25-10 microg/kg) dose-dependently inhibited gastric acid secretion and significantly attenuated the WRS-induced gastric damage. This protective effect of melatonin was accompanied by a significant rise in the GBF and plasma melatonin and gastrin levels and in mucosal generation of PGE2. Pinealectomy, which suppressed plasma melatonin levels, aggravated the gastric lesions induced by WRS and these effects

  2. Myelination and node of Ranvier formation on sensory neurons in a defined in vitro system

    PubMed Central

    Das, Mainak; Bhalkikar, Abhijeet; Wilson, Kerry; Stancescu, Maria; Lambert, Stephen; Hickman, James J.

    2016-01-01

    One of the most important developmental modifications of the nervous system is Schwann cell myelination of axons. Schwann cells ensheath axons to create myelin segments to provide protection to the axon as well as increase the conduction of action potentials. In vitro neuronal systems provide a unique modality to study a variety of factors influencing myelination as well as diseases associated with myelin sheath degradation. This work details the development of a patterned in vitro myelinating dorsal root ganglion culture. This defined system utilized a serum-free medium in combination with a patterned substrate, utilizing the cytophobic and cytophilic molecules (poly)ethylene glycol (PEG) and N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), respectively. Directional outgrowth of the neurites and subsequent myelination was controlled by surface modifications, and conformity to the pattern was measured over the duration of the experiments. The myelinated segments and nodal proteins were visualized and quantified using confocal microscopy. This tissue-engineered system provides a highly controlled, reproducible model for studying Schwann cell interactions with sensory neurons, as well as the myelination process, and its effect on neuronal plasticity and peripheral nerve regeneration. It is also compatible for use in bio-hybrid constructs to reproduce the stretch reflex arc on a chip because the media combination used is the same we have used previously for motoneurons, muscle and for neuromuscular junction (NMJ) formation. This work could have application for the study of demyelinating diseases such as diabetes induced peripheral neuropathy and could rapidly translate to a role in the discovery of drugs promoting enhanced peripheral nervous system (PNS) remyelination. PMID:23949775

  3. Increases in Retrograde Injury Signaling Complex-Related Transcripts in Central Axons following Injury

    PubMed Central

    Pathak, Gunja K.; Ornstein, Hannah; Aranda-Espinoza, Helim; Karlsson, Amy J.

    2016-01-01

    Axons in the peripheral nervous system respond to injury by activating retrograde injury signaling (RIS) pathways, which promote local axonal protein synthesis (LPS) and neuronal regeneration. RIS is also initiated following injury of neurons in the central nervous system (CNS). However, regulation of the localization of axonal mRNA required for LPS is not well understood. We used a hippocampal explant system to probe the regulation of axonal levels of RIS-associated transcripts following axonal injury. Axonal levels of importin β1 and RanBP1 were elevated biphasically at 1 and 24 hrs after axotomy. Transcript levels for β-actin, a prototypic axonally synthesized protein, were similarly elevated. Our data suggest differential regulation of axonal transcripts. At 1 hr after injury, deployment of actinomycin revealed that RanBP1, but not importin β1, requires de novo mRNA synthesis. At 24 hrs after injury, use of importazole revealed that the second wave of increased axonal mRNA levels required importin β-mediated nuclear import. We also observed increased importin β1 axonal protein levels at 1 and 6 hrs after injury. RanBP1 levels and vimentin levels fluctuated but were unchanged at 3 and 6 hrs after injury. This study revealed temporally complex regulation of axonal transcript levels, and it has implications for understanding neuronal response to injury in the CNS. PMID:27847648

  4. Rodent spinal cord injury models for studies of axon regeneration.

    PubMed

    Steward, Oswald; Willenberg, Rafer

    2017-01-01

    For over a century, axon regeneration has been considered the Holy Grail for spinal cord injury (SCI) repair. Although there are other factors that could contribute to improving function, restoring the long motor and sensory tracts that are interrupted by SCI has the greatest potential for actually reversing paralysis, restoring the brain's control of autonomic functions mediated by sympathetic and parasympathetic circuits of the spinal cord and restoring sensation. Accordingly and in keeping with the overall theme of this special issue, this review focuses narrowly on rodent SCI models for studies of axon regeneration.

  5. Laminin-based Nanomaterials for Peripheral Nerve Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Neal, Rebekah Anne

    Peripheral nerve transection occurs commonly in traumatic injury, causing motor and sensory deficits distal to the site of injury. One option for surgical repair is the nerve conduit. Conduits currently on the market are hollow tubes into which the nerve ends are sutured. Although these conduits fill the gap, they often fail due to the slow rate of regeneration over long gaps. To facilitate increased speed of regeneration and greater potential for functional recovery, the ideal conduit should provide biochemically relevant signals and physical guidance cues, thus playing an active role in peripheral nerve regeneration. In this dissertation, I fabricated laminin-1 and laminin-polycaprolactone (PCL) blend nanofibers that mimic the geometry and functionality of the peripheral nerve basement membrane. These fibers resist hydration in aqueous media and require no harsh chemical crosslinkers. Adhesion and differentiation of both neuron-like and neuroprogenitor cells is improved on laminin nanofibrous meshes over two-dimensional laminin substrates. Blend meshes with varying laminin content were characterized for composition, tensile properties, degradation rates, and bioactivity in terms of cell attachment and axonal elongation. I have established that 10% (wt) laminin content is sufficient to retain the significant neurite-promoting effects of laminin critical in peripheral nerve repair. In addition, I utilized modified collector plate design to manipulate electric field gradients during electrospinning for the fabrication of aligned nanofibers. These aligned substrates provide enhanced directional guidance cues to the regenerating axons. Finally, I replicated the clinical problem of peripheral nerve transection using a rat tibial nerve defect model for conduit implantation. When the lumens of conduits were filled with nanofiber meshes of varying laminin content and alignment, I observed significant recovery of sensory and motor function over six weeks. This recovery was

  6. The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia.

    PubMed

    de Castro, Fernando

    2016-01-01

    The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield's famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today.

  7. The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia

    PubMed Central

    de Castro, Fernando

    2016-01-01

    The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920’s, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield’s famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today. PMID:27147984

  8. Peripheral Neuropathy in Spinocerebellar Ataxia Type 1, 2, 3, and 6.

    PubMed

    Linnemann, Christoph; Tezenas du Montcel, Sophie; Rakowicz, Maryla; Schmitz-Hübsch, Tanja; Szymanski, Sandra; Berciano, Jose; van de Warrenburg, Bart P; Pedersen, Karine; Depondt, Chantal; Rola, Rafal; Klockgether, Thomas; García, Antonio; Mutlu, Gurkan; Schöls, Ludger

    2016-04-01

    Spinocerebellar ataxias (SCAs) are characterized by autosomal dominantly inherited progressive ataxia but are clinically heterogeneous due to variable involvement of non-cerebellar parts of the nervous system. Non-cerebellar symptoms contribute significantly to the burden of SCAs, may guide the clinician to the underlying genetic subtype, and might be useful markers to monitor disease. Peripheral neuropathy is frequently observed in SCA, but subtype-specific features and subclinical manifestations have rarely been evaluated. We performed a multicenter nerve conduction study with 162 patients with genetically confirmed SCA1, SCA2, SCA3, and SCA6. The study proved peripheral nerves to be involved in the neurodegenerative process in 82 % of SCA1, 63 % of SCA2, 55 % of SCA3, and 22 % of SCA6 patients. Most patients of all subtypes revealed affection of both sensory and motor fibers. Neuropathy was most frequently of mixed type with axonal and demyelinating characteristics in all SCA subtypes. However, nerve conduction velocities of SCA1 patients were slower compared to other genotypes. SCA6 patients revealed less axonal damage than patients with other subtypes. No influence of CAG repeat length or biometric determinants on peripheral neuropathy could be identified in SCA1, SCA3, and SCA6. In SCA2, earlier onset and more severe ataxia were associated with peripheral neuropathy. We proved peripheral neuropathy to be a frequent site of the neurodegenerative process in all common SCA subtypes. Since damage to peripheral nerves is readily assessable by electrophysiological means, nerve conduction studies should be performed in a longitudinal approach to assess these parameters as potential progression markers.

  9. Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats.

    PubMed

    Reidelberger, Roger; Haver, Alvin; Anders, Krista; Apenteng, Bettye

    2014-10-15

    Cholecystokinin (CCK)-induced suppression of feeding is mediated by vagal sensory neurons that are destroyed by the neurotoxin capsaicin (CAP). Here we determined whether CAP-sensitive neurons mediate anorexic responses to intravenous infusions of gut hormones peptide YY-(3-36) [PYY-(3-36)] and glucagon-like peptide-1 (GLP-1). Rats received three intraperitoneal injections of CAP or vehicle (VEH) in 24 h. After recovery, non-food-deprived rats received at dark onset a 3-h intravenous infusion of CCK-8 (5, 17 pmol·kg⁻¹·min⁻¹), PYY-(3-36) (5, 17, 50 pmol·kg⁻¹·min⁻¹), or GLP-1 (17, 50 pmol·kg⁻¹·min⁻¹). CCK-8 was much less effective in reducing food intake in CAP vs. VEH rats. CCK-8 at 5 and 17 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 39 and 71% in VEH rats and 7 and 18% in CAP rats. In contrast, PYY-(3-36) and GLP-1 were similarly effective in reducing food intake in VEH and CAP rats. PYY-(3-36) at 5, 17, and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 15, 33, and 70% in VEH rats and 13, 30, and 33% in CAP rats. GLP-1 at 17 and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 48 and 60% in VEH rats and 30 and 52% in CAP rats. These results suggest that anorexic responses to PYY-(3-36) and GLP-1 are not primarily mediated by the CAP-sensitive peripheral sensory neurons (presumably vagal) that mediate CCK-8-induced anorexia.

  10. Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury

    PubMed Central

    Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-01-01

    Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury. PMID:27229176

  11. Ciguatoxin reduces regenerative capacity of axotomized peripheral neurons and delays functional recovery in pre-exposed mice after peripheral nerve injury.

    PubMed

    Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-05-27

    Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury.

  12. Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics

    PubMed Central

    Demir, Mahmut; Gorur-Shandilya, Srinivas; Kunst, Michael; Nitabach, Michael N.

    2016-01-01

    Contrast enhancement mediated by lateral inhibition within the nervous system enhances the detection of salient features of visual and auditory stimuli, such as spatial and temporal edges. However, it remains unclear how mechanisms for temporal contrast enhancement in the olfactory system can enhance the detection of odor plume edges during navigation. To address this question, we delivered to Drosophila melanogaster flies pulses of high odor intensity that induce sustained peripheral responses in olfactory sensory neurons (OSNs). We use optical electrophysiology to directly measure electrical responses in presynaptic terminals and demonstrate that sustained peripheral responses are temporally sharpened by the combined activity of two types of inhibitory GABA receptors to generate contrast-enhanced voltage responses in central OSN axon terminals. Furthermore, we show how these GABA receptors modulate the time course of innate behavioral responses after odor pulse termination, demonstrating an important role for temporal contrast enhancement in odor-guided navigation. PMID:27588305

  13. Electromagnetic induction between axons and their schwann cell myelin-protein sheaths.

    PubMed

    Goodman, G; Bercovich, D

    2013-12-01

    Two concepts have long dominated vertebrate nerve electrophysiology: (a) Schwann cell-formed myelin sheaths separated by minute non-myelinated nodal gaps and spiraling around axons of peripheral motor nerves reduce current leakage during propagation of trains of axon action potentials; (b) "jumping" by action potentials between successive nodes greatly increases signal conduction velocity. Long-held and more recent assumptions and issues underlying those concepts have been obscured by research emphasis on axon-sheath biochemical symbiosis and nerve regeneration. We hypothesize: mutual electromagnetic induction in the axon-glial sheath association, is fundamental in signal conduction in peripheral and central myelinated axons, explains the g-ratio and is relevant to animal navigation.

  14. Regulation of axon guidance and extension by three-dimensional constraints.

    PubMed

    Francisco, Herbert; Yellen, Benjamin B; Halverson, Derek S; Friedman, Gary; Gallo, Gianluca

    2007-08-01

    Axons in vivo are guided by molecular signals acting as attractants and repellents, and possibly by physical constraints encountered in the extracellular environment. We analyzed the ability of primary sensory axons to extend and undergo guidance in three-dimensional (3-D) environments generated using photolithography. Confinement of neurons in fully enclosed square chambers decreased the percentage of neurons establishing axons as a function of chamber width. However, the ability to extend an axon in one or more directions allowed axons to form and extend similarly to those on two-dimensional (2-D) substrata. Live imaging of growth cones interacting with the walls of chambers or corridors revealed that growth cones respond to contact with a 3-D constraint by decreasing surface area, and circumvent constraints by repeated sampling of the constraint until an unobstructed path is encountered. Analysis of the ability of axons to turn around corners in corridors revealed that the angle of the corner and corridor width determined the frequency of turning. Finally, we show that the length of axons can be controlled through the use of 3-D constraints. These data demonstrate that 3-D constraints can be used to guide axons, and control the extent of axon formation and the length of axons.

  15. Sensory neuropathy attributable to loss of Bcl-w.

    PubMed

    Courchesne, Stephanie L; Karch, Christoph; Pazyra-Murphy, Maria F; Segal, Rosalind A

    2011-02-02

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small-diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w(-/-) mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w(-/-) sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w(-/-) mice as an animal model of small fiber sensory neuropathy and provide new insight regarding the role of Bcl-w and of mitochondria in preventing axonal degeneration.

  16. Sensory Neuropathy Due to Loss of Bcl-w

    PubMed Central

    Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.

    2010-01-01

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171

  17. Functional coupling between motor and sensory nerves through contraction of sphincters in the pudendal area of the female cat.

    PubMed

    Lagunes-Córdoba, Roberto; Hernández, Pablo Rogelio; Raya, José Guadalupe; Muñoz-Martínez, E J

    2010-01-01

    The question of whether skin receptors might help in the perception of muscle contraction and body movement has not been settled. The present study gives direct evidence of skin receptor firing in close coincidence with the contraction of the vaginal and anal sphincters. The distal stump of the sectioned motor pudendal nerve was stimulated. Single shocks induced a wavelike increase in the lumen pressure of the distal vagina and the anal canal, as well as constriction of the vaginal introitus and the anus. The constriction pulls on and moves the surrounding skin, which was initially detected visually. In the present experiments, a thin strain gauge that pressed on the skin surface detected its displacement. Single shocks to the motor nerve induced a wave of skin movement with maximal amplitude at 5 mm from the anus and propagated with decrement beyond 35 mm. The peripheral terminals of the sensory pudendal nerve and the posterior femoral nerve supply the skin that moves. Sensory axons from both nerves fired in response to both tactile stimulation and the skin movement produced by the constriction of the orifices (motor-sensory coupling). In cats with all nerves intact, a single shock to the sensory nerves induced reflex waves of skin movement and lumen pressure (sensory-motor coupling). Both couplings provide evidence for a feedforward action that might help to maintain the female posture during mating and to the perception of muscle contraction.

  18. A novel technique using hydrophilic polymers to promote axonal fusion.

    PubMed

    Bamba, Ravinder; Riley, D Colton; Kelm, Nathaniel D; Does, Mark D; Dortch, Richard D; Thayer, Wesley P

    2016-04-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  19. Distribution of voltage-gated potassium (Kv) and hyperpolarization-activated (HCN) channels in sensory afferent fibers in the rat carotid body

    PubMed Central

    Buniel, Maria; Glazebrook, Patricia A.; Ramirez-Navarro, Angelina; Kunze, Diana L.

    2008-01-01

    The chemosensory glomus cells of the carotid body (CB) detect changes in O2-tension. Carotid sinus nerve fibers, which originate from peripheral sensory neurons located within the petrosal ganglion, innervate the CB. Release of transmitter from glomus cells activates the sensory afferent fibers to transmit information to the nucleus of the solitary tract in the brainstem. The ion channels expressed within the sensory nerve terminals play an essential role in the ability of the terminal to initiate action potentials in response to transmitter-evoked depolarization. However, with a few exceptions, the identity of ion channels expressed in these peripheral nerve fibers is unknown. This study addresses the expression of voltage-gated channels in the sensory fibers with a focus on channels that set the resting membrane potential and regulate discharge patterns. Using immunohistochemistry and fluorescence confocal microscopy, potassium channel subunits and HCN (hyperpolarization-activated) family members were localized both in petrosal neurons that expressed tyrosine hydroxylase, and the CSN axons within the carotid body. Channels contributing to resting membrane potential including HCN2, responsible in part for Ih current, and the KCNQ2 and KCNQ5 subunits thought to underlie the neuronal “M current” were identified in the sensory neurons and their axons innervating the carotid body. In addition, the results presented here demonstrate expression of several potassium channels that shape the action potential and the frequency of discharge including Kv1.4, Kv1.5, Kv4.3, KCa (BK). The role of these channels should be considered in interpretation of the fiber discharge in response to perturbation of the carotid body environment. PMID:18668683

  20. Peripheral neuropathy associated with mitochondrial disease in children.

    PubMed

    Menezes, Manoj P; Ouvrier, Robert A

    2012-05-01

    Mitochondrial diseases in children are often associated with a peripheral neuropathy but the presence of the neuropathy is under-recognized because of the overwhelming involvement of the central nervous system (CNS). These mitochondrial neuropathies are heterogeneous in their clinical, neurophysiological, and histopathological characteristics. In this article, we provide a comprehensive review of childhood mitochondrial neuropathy. Early recognition of neuropathy may help with the identification of the mitochondrial syndrome. While it is not definite that the characteristics of the neuropathy would help in directing genetic testing without the requirement for invasive skin, muscle or liver biopsies, there appears to be some evidence for this hypothesis in Leigh syndrome, in which nuclear SURF1 mutations cause a demyelinating neuropathy and mitochondrial DNA MTATP6 mutations cause an axonal neuropathy. POLG1 mutations, especially when associated with late-onset phenotypes, appear to cause a predominantly sensory neuropathy with prominent ataxia. The identification of the peripheral neuropathy also helps to target genetic testing in the mitochondrial optic neuropathies. Although often subclinical, the peripheral neuropathy may occasionally be symptomatic and cause significant disability. Where it is symptomatic, recognition of the neuropathy will help the early institution of rehabilitative therapy. We therefore suggest that nerve conduction studies should be a part of the early evaluation of children with suspected mitochondrial disease.

  1. Sensory development.

    PubMed

    Clark-Gambelunghe, Melinda B; Clark, David A

    2015-04-01

    Sensory development is complex, with both morphologic and neural components. Development of the senses begins in early fetal life, initially with structures and then in-utero stimulation initiates perception. After birth, environmental stimulants accelerate each sensory organ to nearly complete maturity several months after birth. Vision and hearing are the best studied senses and the most crucial for learning. This article focuses on the cranial senses of vision, hearing, smell, and taste. Sensory function, embryogenesis, external and genetic effects, and common malformations that may affect development are discussed, and the corresponding sensory organs are examined and evaluated.

  2. Dose and age-dependent axonal responses of embryonic trigeminal neurons to localized NGF via p75NTR receptor.

    PubMed

    Ozdinler, P Hande; Ulupinar, Emel; Erzurumlu, Reha S

    2005-02-05

    Nerve growth factor (NGF) and related neurotrophins are target-derived survival factors for sensory neurons. In addition, these peptides modulate neuronal differentiation, axon guidance, and synaptic plasticity. We tested axonal behavior of embryonic trigeminal neurons towards localized sources of NGF in collagen gel assays. Trigeminal axons preferentially grow towards lower doses of localized NGF and grow away from higher concentrations at earlier stages of development, but do not show this response later. Dorsal root ganglion axons also show similar responses to NGF, but NGF-dependent superior cervical ganglion axons do not. Such axonal responses to localized NGF sources were also observed in Bax-/- mice, suggesting that the axonal effects are largely independent of cell survival. Immunocytochemical studies indicated that axons, which grow towards or away from localized NGF are TrkA-positive, and TrkA-/- TG axons do not respond to any dose of NGF. We further show that axonal responses to NGF are absent in TG derived from mice that lack the p75 neurotrophin receptor (p75NTR). Collectively, our results suggest that localized sources of NGF can direct axon outgrowth from trigeminal ganglion in a dose- and age-dependent fashion, mediated by p75NTR signaling through TrkA expressing axons.

  3. Thyroid hormone reduces the loss of axotomized sensory neurons in dorsal root ganglia after sciatic nerve transection in adult rat.

    PubMed

    Schenker, Michel; Kraftsik, Rudolf; Glauser, Liliane; Kuntzer, Thierry; Bogousslavsky, Julien; Barakat-Walter, Ibtissam

    2003-11-01

    We have shown that a local administration of thyroid hormones (T3) at the level of transected rat sciatic nerve induced a significant increase in the number of regenerated axons. To address the question of whether local administration of T3 rescues the axotomized sensory neurons from death, in the present study we estimated the total number of surviving neurons per dorsal root ganglion (DRG) in three experimental group animals. Forty-five days following rat sciatic nerve transection, the lumbar (L4 and L5) DRG were removed from PBS-control, T3-treated as well as from unoperated rats, and serial sections (1 microm) were cut. The physical dissector method was used to estimate the total number of sensory neurons in the DRGs. Our results revealed that in PBS-control rats transection of sciatic nerve leads to a significant (P < 0.001) decrease in the mean number of sensory neurons (8743.8 +/- 748.6) compared with the number of neurons in nontransected ganglion (mean 13,293.7 +/- 1368.4). However, administration of T3 immediately after sciatic nerve transection rescues a great number of axotomized neurons so that their mean neuron number (12,045.8 +/- 929.8) is not significantly different from the mean number of neurons in the nontransected ganglion. In addition, the volume of ganglia showed a similar tendency. These results suggest that T3 rescues a high number of axotomized sensory neurons from death and allows these cells to grow new axons. We believe that the relative preservation of neurons is important in considering future therapeutic approaches of human peripheral nerve lesion and sensory neuropathy.

  4. Differential effects of NGF and NT-3 on embryonic trigeminal axon growth patterns.

    PubMed

    Ulupinar, E; Jacquin, M F; Erzurumlu, R S

    2000-09-18

    We examined the effects of neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) on trigeminal axon growth patterns. Embryonic (E13-15) wholemount explants of the rat trigeminal pathway including the whisker pads, trigeminal ganglia, and brainstem were cultured in serum-free medium (SFM) or SFM supplemented with NGF or NT-3 for 3 days. Trigeminal axon growth patterns were analyzed with the use of lipophilic tracer DiI. In wholemount cultures grown in SFM, trigeminal axon projections, growth patterns, and differentiation of peripheral and central targets are similar to in vivo conditions. We show that in the presence of NGF, central trigeminal axons leave the tract and grow into the surrounding brainstem regions in the elongation phase without any branching. On the other hand, NT-3 promotes precocious development of short axon collaterals endowed with focal arbors along the sides of the central trigeminal tract. These neurotrophins also affect trigeminal axon growth within the whisker pad. Additionally, we cultured dissociated trigeminal ganglion cells in the presence of NGF, NT-3, or NGF+NT-3. The number of trigeminal ganglion cells, their size distribution under each condition were charted, and axon growth was analyzed following immunohistochemical labeling with TrkA and parvalbumin antibodies. In these cultures too, NGF led to axon elongation and NT-3 to axon arborization. Our in vitro analyses suggest that aside from their survival promoting effects, NGF and NT-3 can differentially influence axon growth patterns of embryonic trigeminal neurons.

  5. Interspecies variation in axon-myelin relationships.

    PubMed

    Fraher, J P; O'Sullivan, A W

    2000-01-01

    The primary objective of this paper was to determine the extent and nature of interspecies differences in axon calibre and myelin sheath thickness and in the various relationships between these. Morphometric analysis of the axon perimeter-myelin sheath thickness relationship was performed on an equivalent nerve fibre population in a mammal, the rat, a bird, the chicken, an amphibian, the frog, a bony fish, the trout, and a cartilaginous fish, the dogfish. The abducent nerve was studied. It is especially suitable for this purpose because its fibres are closely similar in type and in peripheral distribution across the species studied. The relationship differed substantially between species. Differences were present in its setting, as described by the positions of the scatterplots, in the g ratio and in the regression and correlation data relating the parameters. Both parameters were markedly larger in the fish species than in all of the others. In addition, in rat, chicken, frog and trout, where large and small fibre classes could be differentiated clearly, the setting of the relationship between the two parameters was different for the two classes. In the main, variation in each of the parameters was greater between than within species. The larger fibres in the fish species were closely similar in axon perimeter and sheath thickness despite their long evolutionary separation. From this study and from others in the series, it may be concluded that there is no fixed or constant relationship between axon calibre and the thickness of the surrounding myelin sheath. Each nerve tends to have its own particular relationship and this differs between species.

  6. 6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration

    PubMed Central

    Lin, Rachel; Rosahl, Thomas W.; Whiting, Paul J.; Fawcett, James W.; Kwok, Jessica C. F.

    2011-01-01

    Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury. PMID:21747937

  7. Axonal Noise as a Source of Synaptic Variability

    PubMed Central

    Neishabouri, Ali; Faisal, A. Aldo

    2014-01-01

    Post-synaptic potential (PSP) variability is typically attributed to mechanisms inside synapses, yet recent advances in experimental methods and biophysical understanding have led us to reconsider the role of axons as highly reliable transmission channels. We show that in many thin axons of our brain, the action potential (AP) waveform and thus the Ca++ signal controlling vesicle release at synapses will be significantly affected by the inherent variability of ion channel gating. We investigate how and to what extent fluctuations in the AP waveform explain observed PSP variability. Using both biophysical theory and stochastic simulations of central and peripheral nervous system axons from vertebrates and invertebrates, we show that channel noise in thin axons (<1 µm diameter) causes random fluctuations in AP waveforms. AP height and width, both experimentally characterised parameters of post-synaptic response amplitude, vary e.g. by up to 20 mV and 0.5 ms while a single AP propagates in C-fibre axons. We show how AP height and width variabilities increase with a ¾ power-law as diameter decreases and translate these fluctuations into post-synaptic response variability using biophysical data and models of synaptic transmission. We find for example that for mammalian unmyelinated axons with 0.2 µm diameter (matching cerebellar parallel fibres) axonal noise alone can explain half of the PSP variability in cerebellar synapses. We conclude that axonal variability may have considerable impact on synaptic response variability. Thus, in many experimental frameworks investigating synaptic transmission through paired-cell recordings or extracellular stimulation of presynaptic neurons, causes of variability may have been confounded. We thereby show how bottom-up aggregation of molecular noise sources contributes to our understanding of variability observed at higher levels of biological organisation. PMID:24809823

  8. Sensory mononeuropathies.

    PubMed

    Massey, E W

    1998-01-01

    The clinical neurologist frequently encounters patients with a variety of focal sensory symptoms and signs. This article reviews the clinical features, etiologies, laboratory findings, and management of the common sensory mononeuropathies including meralgia paresthetica, cheiralgia paresthetica, notalgia paresthetica, gonyalgia paresthetica, digitalgia paresthetica, intercostal neuropathy, and mental neuropathy.

  9. Microchannel-based regenerative scaffold for chronic peripheral nerve interfacing in amputees

    PubMed Central

    Srinivasan, Akhil; Tahilramani, Mayank; Bentley, John T.; Gore, Russell K.; Millard, Daniel; Mukhatyar, Vivek J.; Joseph, Anish; Haque, Adel; Stanley, Garrett B.; English, Arthur W.; Bellamkonda, Ravi V.

    2015-01-01

    Neurally controlled prosthetics that cosmetically and functionally mimic amputated limbs remain a clinical need because state of the art neural prosthetics only provide a fraction of a natural limb’s functionality. Here, we report on the fabrication and capability of polydimethylsiloxane (PDMS) and epoxy-based SU-8 photoresist microchannel scaffolds to serve as viable constructs for peripheral nerve interfacing though in vitro and in vivo studies in a sciatic nerve amputee model where the nerve lacks distal reinnervation targets. These studies showed microchannels with 100 μm × 100 μm cross-sectional areas support and direct the regeneration/migration of axons, Schwann cells, and fibroblasts through the microchannels with space available for future maturation of the axons. Investigation of the nerve in the distal segment, past the scaffold, showed a high degree of organization, adoption of the microchannel architecture forming ‘microchannel fascicles’, reformation of endoneurial tubes and axon myelination, and a lack of aberrant and unorganized growth that might be characteristic of neuroma formation. Separate chronic terminal in vivo electrophysiology studies utilizing the microchannel scaffolds with permanently integrated microwire electrodes were conducted to evaluate interfacing capabilities. In all devices a variety of spontaneous, sensory evoked and electrically evoked single and multi-unit action potentials were recorded after five months of implantation. Together, these findings suggest that microchannel scaffolds are well suited for chronic implantation and peripheral nerve interfacing to promote organized nerve regeneration that lends itself well to stable interfaces. Thus this study establishes the basis for the advanced fabrication of large-electrode count, wireless microchannel devices that are an important step towards highly functional, bi-directional peripheral nerve interfaces. PMID:25522974

  10. Microchannel-based regenerative scaffold for chronic peripheral nerve interfacing in amputees.

    PubMed

    Srinivasan, Akhil; Tahilramani, Mayank; Bentley, John T; Gore, Russell K; Millard, Daniel C; Mukhatyar, Vivek J; Joseph, Anish; Haque, Adel S; Stanley, Garrett B; English, Arthur W; Bellamkonda, Ravi V

    2015-02-01

    Neurally controlled prosthetics that cosmetically and functionally mimic amputated limbs remain a clinical need because state of the art neural prosthetics only provide a fraction of a natural limb's functionality. Here, we report on the fabrication and capability of polydimethylsiloxane (PDMS) and epoxy-based SU-8 photoresist microchannel scaffolds to serve as viable constructs for peripheral nerve interfacing through in vitro and in vivo studies in a sciatic nerve amputee model where the nerve lacks distal reinnervation targets. These studies showed microchannels with 100 μm × 100 μm cross-sectional areas support and direct the regeneration/migration of axons, Schwann cells, and fibroblasts through the microchannels with space available for future maturation of the axons. Investigation of the nerve in the distal segment, past the scaffold, showed a high degree of organization, adoption of the microchannel architecture forming 'microchannel fascicles', reformation of endoneurial tubes and axon myelination, and a lack of aberrant and unorganized growth that might be characteristic of neuroma formation. Separate chronic terminal in vivo electrophysiology studies utilizing the microchannel scaffolds with permanently integrated microwire electrodes were conducted to evaluate interfacing capabilities. In all devices a variety of spontaneous, sensory evoked and electrically evoked single and multi-unit action potentials were recorded after five months of implantation. Together, these findings suggest that microchannel scaffolds are well suited for chronic implantation and peripheral nerve interfacing to promote organized nerve regeneration that lends itself well to stable interfaces. Thus this study establishes the basis for the advanced fabrication of large-electrode count, wireless microchannel devices that are an important step towards highly functional, bi-directional peripheral nerve interfaces.

  11. The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula

    NASA Technical Reports Server (NTRS)

    Fernandez, C.; Goldberg, J. M.; Baird, R. A.

    1990-01-01

    1. Nerve fibers supplying the utricular macula of the chinchilla were labeled by extracellular injection of horseradish peroxidase into the vestibular nerve. The peripheral terminations of individual fibers were reconstructed and related to the regions of the end organ they innervated and to the sizes of their parent axons. 2. The macula is divided into medial and lateral parts by the striola, a narrow zone that runs for almost the entire length of the sensory epithelium. The striola can be distinguished from the extrastriolar regions to either side of it by the wider spacing of its hair cells. Calyx endings in the striola have especially thick walls, and, unlike similar endings in the extrastriola, many of them innervate more than one hair cell. The striola occupies 10% of the sensory epithelium; the lateral extrastriola, 50%; and the medial extrastriola, 40%. 3. The utricular nerve penetrates the bony labyrinth anterior to the end organ. Axons reaching the anterior part of the sensory epithelium run directly through the connective tissue stroma. Those supplying more posterior regions first enter a fiber layer located at the bottom of the stroma. Approximately one-third of the axons bifurcate below the epithelium, usually within 5-20 microns of the basement membrane. Bifurcations are more common in fibers destined for the extrastriola than for the striola. 4. Both calyx and bouton endings were labeled. Calyces can be simple or complex. Simple calyces innervate individual hair cells, whereas complex calyces supply 2-4 adjacent hair cells. Complex endings are more heavily concentrated in the striola than in the extrastriola. Simple calyces and boutons are found in all parts of the epithelium. Calyces emerge from the parent axon or one of its thick branches. Boutons, whether en passant or terminal, are located on thin collaterals. 5. Fibers can be classified into calyx, bouton, or dimorphic categories. The first type only has calyx endings; the second, only bouton

  12. Loss of Innervation and Axon Plasticity Accompanies Impaired Diabetic Wound Healing

    PubMed Central

    Cheng, Chu; Kan, Michelle; Martinez, Jose A.; Zochodne, Douglas W.

    2013-01-01

    Loss of cutaneous innervation from sensory neuropathy is included among mechanisms for impaired healing of diabetic skin wounds. The relationships between cutaneous axons and their local microenvironment during wound healing are challenged in diabetes. Here, we show that secondary wound closure of the hairy dorsal skin of mice is delayed by diabetes and is associated with not only a pre-existing loss of cutaneous axons but substantial retraction of axons around the wound. At 7d following a 3mm punch wound, a critical period of healing and reinnervation, both intact skin nearby the wound and skin directly at the wound margins had over 30-50% fewer axons and a larger deficit of ingrowing axons in diabetics. These findings contrasted with a pre-existing 10-15% deficit in axons. Moreover, new diabetic ingrowing axons had less evidence of plasticity. Unexpectedly, hair follicles adjacent to the wounds had a 70% reduction in their innervation associated with depleted expression of hair follicular stem cell markers. These impairments were associated with the local upregulation of two established axon regenerative ‘roadblocks’: PTEN and RHOA, potential but thus far unexplored mediators of these changes. The overall findings identify striking and unexpected superimposed cutaneous axon loss or retraction beyond that expected of diabetic neuropathy alone, associated with experimental diabetic skin wounding, a finding that prompts new considerations in diabetic wounds. PMID:24098736

  13. Response of olfactory axons to loss of synaptic targets in the adult mouse

    PubMed Central

    Ardiles, Yona; de la Puente, Rafael; Toledo, Rafael; Isgor, Ceylan; Guthrie, Kathleen

    2007-01-01

    Glomerular convergence has been proposed to rely on interactions between like olfactory axons, however topographic targeting is influenced by guidance molecules encountered in the olfactory bulb. Disruption of these cues during development misdirects sensory axons, however little is known about the role of bulb-derived signals in later life, as new axons arise during turnover of the olfactory sensory neuron (OSN) population. To evaluate the contribution of bulb neurons in maintaining topographic projections in adults, we ablated them with N-methyl-D-aspartate (NMDA) in P2-IRES-tauLacZ mice and examined how sensory axons responded to loss of their postsynaptic partners. NMDA lesion eliminated bulb neurons without damage to sensory axons or olfactory ensheathing glia. P2 axons contained within glomeruli at the time of lesion maintained convergence at these locations; there was no evidence of compensatory growth into the remnant tissue. Delayed apoptosis of OSNs in the target-deprived epithelium led to declines in P2 neuron number as well as the gradual atrophy, and in some cases complete loss, of P2 glomeruli in lesioned bulbs by three weeks. Increased cell proliferation in the epithelium partially restored the OSN population, and by eight weeks, new P2 axons distributed within diverse locations in the bulb remnant and within the anterior olfactory nucleus. Prior studies have suggested that initial development of olfactory topography does not rely on synapse formation with target neurons, however the present data demonstrate that continued maintenance of the sensory map requires the presence of sufficient numbers and/or types of available bulbar synaptic targets. PMID:17674970

  14. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.

    PubMed

    Schlachetzki, Johannes C M; Pizzo, Donald P; Morrissette, Debbi A; Winkler, Jürgen

    2014-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  15. Electro-acupuncture on functional peripheral nerve regeneration in mice: a behavioural study

    PubMed Central

    2012-01-01

    Background The improvement of axonal regeneration is a major objective in the treatment of peripheral nerve injuries. The aim of this study was to evaluate the effects of electro-acupuncture on the functional recovery of sensorimotor responses following left sciatic nerve crush in mice. Methods Sciatic nerve crush was performed on seven week old female mice. Following the injury, the control group was untreated while the experimental group received an electro-acupuncture application to the injured limb under isoflurane anesthesia at acupoints GB 30 and GB 34. Mechanical and heat sensitivity tests were performed to evaluate sensory recovery. Gait analysis was performed to assess sensorimotor recovery. Results Our results show that normal sensory recovery is achieved within five to six weeks with a two-week period of pain preceding the recovery to normal sensitivity levels. While electro-acupuncture did not accelerate sensory recovery, it did alleviate pain-related behaviour but only when applied during this period. Application before the development of painful symptoms did not prevent their occurrence. The analysis of gait in relation to the sensory tests suggests that the electro-acupuncture specifically improved motor recovery. Conclusions This study demonstrates that electro-acupuncture exerts a positive influence on motor recovery and is efficient in the treatment of pain symptoms that develop during target re-innervation. PMID:22937957

  16. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs.

    PubMed

    Pasterkamp, R Jeroen; Peschon, Jacques J; Spriggs, Melanie K; Kolodkin, Alex L

    2003-07-24

    Striking parallels exist between immune and nervous system cellular signalling mechanisms. Molecules originally shown to be critical for immune responses also serve neuronal functions, and similarly neural guidance cues can modulate immune function. We show here that semaphorin 7A (Sema7A), a membrane-anchored member of the semaphorin family of guidance proteins previously known for its immunomodulatory effects, can also mediate neuronal functions. Unlike many other semaphorins, which act as repulsive guidance cues, Sema7A enhances central and peripheral axon growth and is required for proper axon tract formation during embryonic development. Unexpectedly, Sema7A enhancement of axon outgrowth requires integrin receptors and activation of MAPK signalling pathways. These findings define a previously unknown biological function for semaphorins, identify an unexpected role for integrins and integrin-dependent intracellular signalling in mediating semaphorin responses, and provide a framework for understanding and interfering with Sema7A function in both immune and nervous systems.

  17. Pili canaliculi as manifestation of giant axonal neuropathy*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Garcias, Gilberto; Silva, Ricardo Marques e; Batista, Stela Laner; Pasetto, Fernanda

    2016-01-01

    Giant axonal neuropathy is a rare autosomal recessive neurodegenerative disease. The condition is characterized by neurons with abnormally large axons due to intracellular filament accumulation. The swollen axons affect both the peripheral and central nervous system. A 6-year old female patient had been referred to a geneticist reporting problems with walking and hypotonia. At the age of 10, she became wheelchair dependent. Scanning electron microscopy of a curly hair classified it as pili canaliculi. GAN gene sequencing demonstrated mutation c.1456G>A (p.GLU486LYS). At the age of 12, the patient died due to respiratory complications. Dermatologists should be aware of this entity since hair changes are considered suggestive of GAN. PMID:28300918

  18. Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich’s ataxia

    PubMed Central

    Mollá, Belén; Riveiro, Fátima; Bolinches-Amorós, Arantxa; Muñoz-Lasso, Diana C.; González-Cabo, Pilar

    2016-01-01

    ABSTRACT Frataxin (FXN) deficiency causes Friedreich’s ataxia (FRDA), a multisystem disorder with neurological and non-neurological symptoms. FRDA pathophysiology combines developmental and degenerative processes of dorsal root ganglia (DRG), sensory nerves, dorsal columns and other central nervous structures. A dying-back mechanism has been proposed to explain the peripheral neuropathy and neuropathology. In addition, affected individuals have non-neuronal symptoms such as diabetes mellitus or glucose intolerance. To go further in the understanding of the pathogenic mechanisms of neuropathy and diabetes associated with the disease, we have investigated the humanized mouse YG8R model of FRDA. By biochemical and histopathological studies, we observed abnormal changes involving muscle spindles, dorsal root axons and DRG neurons, but normal findings in the posterior columns and brain, which agree with the existence of a dying-back process similar to that described in individuals with FRDA. In YG8R mice, we observed a large number of degenerated axons surrounded by a sheath exhibiting enlarged adaxonal compartments or by a thin disrupted myelin sheath. Thus, both axonal damage and defects in Schwann cells might underlie the nerve pathology. In the pancreas, we found a high proportion of senescent islets of Langerhans in YG8R mice, which decreases the β-cell number and islet mass to pathological levels, being unable to maintain normoglycemia. As a whole, these results confirm that the lack of FXN induces different pathogenic mechanisms in the nervous system and pancreas in the mouse model of FRDA: dying back of the sensory nerves, and pancreatic senescence. PMID:27079523

  19. Study of Autophagy and Microangiopathy in Sural Nerves of Patients with Chronic Idiopathic Axonal Polyneuropathy

    PubMed Central

    Samuelsson, Kristin; Osman, Ayman A. M.; Angeria, Maria; Risling, Mårten; Mohseni, Simin; Press, Rayomand

    2016-01-01

    Twenty-five percent of polyneuropathies are idiopathic. Microangiopathy has been suggested to be a possible pathogenic cause of chronic idiopathic axonal polyneuropathy (CIAP). Dysfunction of the autophagy pathway has been implicated as a marker of neurodegeneration in the central nervous system, but the autophagy process is not explored in the peripheral nervous system. In the current study, we examined the presence of microangiopathy and autophagy-related structures in sural nerve biopsies of 10 patients with CIAP, 11 controls with inflammatory neuropathy and 10 controls without sensory polyneuropathy. We did not find any significant difference in endoneurial microangiopathic markers in patients with CIAP compared to normal controls, though we did find a correlation between basal lamina area thickness and age. Unexpectedly, we found a significantly larger basal lamina area thickness in patients with vasculitic neuropathy. Furthermore, we found a significantly higher density of endoneurial autophagy-related structures, particularly in patients with CIAP but also in patients with inflammatory neuropathy, compared to normal controls. It is unclear if the alteration in the autophagy pathway is a consequence or a cause of the neuropathy. Our results do not support the hypothesis that CIAP is primarily caused by a microangiopathic process in endoneurial blood vessels in peripheral nerves. The significantly higher density of autophagy structures in sural nerves obtained from patients with CIAP and inflammatory neuropathy vs. controls indicates the involvement of this pathway in neuropathy, particularly in CIAP, since the increase in density of autophagy-related structures was more pronounced in patients with CIAP than those with inflammatory neuropathy. To our knowledge this is the first report investigating signs of autophagy process in peripheral nerves in patients with CIAP and inflammatory neuropathy. PMID:27662650

  20. Effects of cytotoxic deletions of somatic sensory cortex in fetal rats.

    PubMed

    Yurkewicz, L; Valentino, K L; Floeter, M K; Fleshman, J W; Jones, E G

    1984-01-01

    Pregnant rats were injected on the 14th day of gestation with the cytotoxic drug methylazoxymethanol acetate. This compound causes the death of neural precursor cells that were synthesizing DNA at the time of injection. After birth, the progeny of treated mothers grew to maturity with a neocortex that was greatly reduced in area by the death of all cells, particularly at the frontal and occipital poles but at medial and lateral margins of neocortex as well. In the remaining cortex layers II through IV failed to develop. The experiment deprived growing thalamocortical axons, which innervate the somatic sensory cortex late in development, of part of their normal target area and of a substantial number of their definitive target cells. It also deprived them of any cues they might have received from these target cells migrating through them as the axons accumulate beneath the cortical plate. Anatomical experiments indicated that, despite these defects, thalamocortical axons could still colonize the sensorimotor areas and form synapses in their typically bilaminar pattern, though the outer, denser lamina of terminations occurred abnormally at the level of the apices of layer V pyramidal cell bodies. Receptive field mapping of single and multiunit responses in the somatic sensory region showed brisk responses and receptive fields of normal size. It also indicated the formation of a body map that was topographically intact except for deletions at its periphery; that is, a total map was not compressed into a smaller area. This suggests that somatic sensory thalamocortical fibers recognize only remaining cortical target cells in appropriate fields. Moreover, successful ones among them seem to recognize neighborhood relations and conserve synaptic space at the expense of those that would have innervated the deleted peripheral parts of the area. Pyramidal neurons in the remaining cortical layers and in ectopic islands of cells that had incompletely migrated from the

  1. A new paradigm of electrical stimulation to enhance sensory neural function.

    PubMed

    Breen, Paul P; ÓLaighin, Gearóid; McIntosh, Caroline; Dinneen, Sean F; Quinlan, Leo R; Serrador, Jorge M

    2014-08-01

    The ability to improve peripheral neural transmission would have significant therapeutic potential in medicine. A technology of this kind could be used to restore and/or enhance sensory function in individuals with depressed sensory function, such as older adults or patients with peripheral neuropathies. The goal of this study was to investigate if a new paradigm of subsensory electrical noise stimulation enhances somatosensory function. Vibration (50Hz) was applied with a Neurothesiometer to the plantar aspect of the foot in the presence or absence of subsensory electrical noise (1/f type). The noise was applied at a proximal site, on a defined region of the tibial nerve path above the ankle. Vibration perception thresholds (VPT) of younger adults were measured in control and experimental conditions, in the absence or presence of noise respectively. An improvement of ∼16% in VPT was found in the presence of noise. These are the first data to demonstrate that modulation of axonal transmission with externally applied electrical noise improves perception of tactile stimuli in humans.

  2. Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus

    PubMed Central

    Shanks, James A.; Ito, Shinya; Schaevitz, Laura; Yamada, Jena; Chen, Bin; Litke, Alan

    2016-01-01

    Retinal ganglion cells (RGCs) relay information about the outside world to multiple subcortical targets within the brain. This information is either used to dictate reflexive behaviors or relayed to the visual cortex for further processing. Many subcortical visual nuclei also receive descending inputs from projection neurons in the visual cortex. Most areas receive inputs from layer 5 cortical neurons in the visual cortex but one exception is the dorsal lateral geniculate nucleus (dLGN), which receives layer 6 inputs and is also the only RGC target that sends direct projections to the cortex. Here we ask how visual system development and function changes in mice that develop without a cortex. We find that the development of a cortex is essential for RGC axons to terminate in the dLGN, but is not required for targeting RGC axons to other subcortical nuclei. RGC axons also fail to target to the dLGN in mice that specifically lack cortical layer 6 projections to the dLGN. Finally, we show that when mice develop without a cortex they can still perform a number of vision-dependent tasks. SIGNIFICANCE STATEMENT The dorsal lateral geniculate nucleus (dLGN) is a sensory thalamic relay area that receives feedforward inputs from retinal ganglion cells (RGCs) in the retina, and feed back inputs from layer 6 neurons in the visual cortex. In this study we examined genetically manipulated mice that develop without a cortex or without cortical layer 6 axonal projections, and find that RGC axons fail to project to the dLGN. Other RGC recipient areas, such as the superior colliculus and suprachiasmatic nucleus, are targeted normally. These results provide support for a new mechanism of target selection that may be specific to the thalamus, whereby descending cortical axons provide an activity that promotes feedforward targeting of RGC axons to the dLGN. PMID:27170123

  3. Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerve injury

    PubMed Central

    He, Qian-ru; Cong, Meng; Chen, Qing-zhong; Sheng, Ya-feng; Li, Jian; Zhang, Qi; Ding, Fei; Gong, Yan-pei

    2016-01-01

    The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration. PMID:28197202

  4. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury.

    PubMed

    Witzel, Christian; Reutter, Werner; Stark, G Björn; Koulaxouzidis, Georgios

    2015-06-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  5. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    PubMed Central

    Witzel, Christian; Reutter, Werner; Stark, G. Björn; Koulaxouzidis, Georgios

    2015-01-01

    Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp) increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg) or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection). ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005) and the number of arborizing axons (21% vs. 16%; P = 0.008) 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration. PMID:26199617

  6. Axon specification in hippocampal neurons.

    PubMed

    Fukata, Yuko; Kimura, Toshihide; Kaibuchi, Kozo

    2002-08-01

    Neurons are the most highly polarized cells, comprised of two structurally and functionally distinct parts, axons and dendrites. This asymmetry enables a vectorial flow of signaling within neurons. One of the most fundamental questions still to be answered in neuroscience is how these two specialized processes initially develop. The first manifestation of polarization occurs when one of the immature neurites acquires axonal characteristics. We review recent advances that have highlighted the involvement of several cellular events in the initial formation of the axon, including membrane traffic and cytoskeletal rearrangement. We then discuss the molecular mechanisms underlying axon formation, focusing on the Rho family small GTPases and an axon-inducing neuronal protein, CRMP-2.

  7. Sensory Input-Dependent Changes in Glutamatergic Neurotransmission- Related Genes and Proteins in the Adult Rat Trigeminal Ganglion.

    PubMed

    Fernández-Montoya, Julia; Buendia, Izaskun; Martin, Yasmina B; Egea, Javier; Negredo, Pilar; Avendaño, Carlos

    2016-01-01

    Experience-dependent plasticity induces lasting changes in the structure of synapses, dendrites, and axons at both molecular and anatomical levels. Whilst relatively well studied in the cortex, little is known about the molecular changes underlying experience-dependent plasticity at peripheral levels of the sensory pathways. Given the importance of glutamatergic neurotransmission in the somatosensory system and its involvement in plasticity, in the present study, we investigated gene and protein expression of glutamate receptor subunits and associated molecules in the trigeminal ganglion (TG) of young adult rats. Microarray analysis of naïve rat TG revealed significant differences in the expression of genes, coding for various glutamate receptor subunits and proteins involved in clustering and stabilization of AMPA receptors, between left and right ganglion. Long-term exposure to sensory-enriched environment increased this left-right asymmetry in gene expression. Conversely, unilateral whisker trimming on the right side almost eliminated the mentioned asymmetries. The above manipulations also induced side-specific changes in the protein levels of glutamate receptor subunits. Our results show that sustained changes in sensory input induce modifications in glutamatergic transmission-related gene expression in the TG, thus supporting a role for this early sensory-processing node in experience-dependent plasticity.

  8. Sensory Input-Dependent Changes in Glutamatergic Neurotransmission- Related Genes and Proteins in the Adult Rat Trigeminal Ganglion

    PubMed Central

    Fernández-Montoya, Julia; Buendia, Izaskun; Martin, Yasmina B.; Egea, Javier; Negredo, Pilar; Avendaño, Carlos

    2016-01-01

    Experience-dependent plasticity induces lasting changes in the structure of synapses, dendrites, and axons at both molecular and anatomical levels. Whilst relatively well studied in the cortex, little is known about the molecular changes underlying experience-dependent plasticity at peripheral levels of the sensory pathways. Given the importance of glutamatergic neurotransmission in the somatosensory system and its involvement in plasticity, in the present study, we investigated gene and protein expression of glutamate receptor subunits and associated molecules in the trigeminal ganglion (TG) of young adult rats. Microarray analysis of naïve rat TG revealed significant differences in the expression of genes, coding for various glutamate receptor subunits and proteins involved in clustering and stabilization of AMPA receptors, between left and right ganglion. Long-term exposure to sensory-enriched environment increased this left–right asymmetry in gene expression. Conversely, unilateral whisker trimming on the right side almost eliminated the mentioned asymmetries. The above manipulations also induced side-specific changes in the protein levels of glutamate receptor subunits. Our results show that sustained changes in sensory input induce modifications in glutamatergic transmission-related gene expression in the TG, thus supporting a role for this early sensory-processing node in experience-dependent plasticity. PMID:27965535

  9. Sensory and autonomic function and structure in footpads of a diabetic mouse model

    PubMed Central

    Liu, Ying; Sebastian, Blessan; Liu, Ben; Zhang, Yiyue; Fissel, John A.; Pan, Baohan; Polydefkis, Michael; Farah, Mohamed H.

    2017-01-01

    Sensory and autonomic neuropathy affects the majority of type II diabetic patients. Clinically, autonomic evaluation often focuses on sudomotor function yet this is rarely assessed in animal models. We undertook morphological and functional studies to assess large myelinated and small unmyelinated axons in the db/db type II diabetes mouse model. We observed that autonomic innervation of sweat glands in the footpads was significantly reduced in db/db mice compared to control db/+ mice and this deficit was greater compared to reductions in intraepidermal sensory innervation of adjacent epidermis. Additionally, db/db mice formed significantly fewer sweat droplets compared to controls as early as 6 weeks of age, a time when no statistical differences were observed electrophysiologically between db/db and db/+ mice studies of large myelinated sensory and motor nerves. The rate of sweat droplet formation was significantly slower and the sweat droplet size larger and more variable in db/db mice compared to controls. Whereas pilocarpine and glycopyrrolate increased and decreased sweating, respectively, in 6 month-old controls, db/db mice did not respond to pharmacologic manipulations. Our findings indicate autonomic neuropathy is an early and prominent deficit in the db/db model and have implications for the development of therapies for peripheral diabetic neuropathy. PMID:28128284

  10. Transcriptional networks in the early development of sensory-motor circuits.

    PubMed

    Dasen, Jeremy S

    2009-01-01

    The emergence of coordinated locomotor behaviors in vertebrates relies on the establishment of selective connections between discrete populations of neurons present in the spinal cord and peripheral nervous system. The assembly of the circuits necessary for movement presumably requires the generation of many unique cell types to accommodate the intricate connections between motor neurons, sensory neurons, interneurons, and muscle. The specification of diverse neuronal subtypes is mediated largely through networks of transcription factors that operate within progenitor and postmitotic cells. Selective patterns of transcription factor expression appear to define the cell-type-specific cellular programs that govern the axonal guidance decisions and synaptic specificities of neurons, and may lay the foundation through which innate motor behaviors are genetically predetermined. Recent studies on the developmental programs that specify two highly diverse neuronal classes-spinal motor neurons and proprioceptive sensory neurons-have provided important insights into the molecular strategies used in the earliest phases of locomotor circuit assembly. This chapter reviews progress toward elucidating the early transcriptional networks that define neuronal identity in the locomotor system, focusing on the pathways controlling the specific connections of motor neurons and sensory neurons in the formation of simple reflex circuits.

  11. Somatic and axonal LIGHT signaling elicit degenerative and regenerative responses in motoneurons, respectively

    PubMed Central

    Otsmane, Belkacem; Moumen, Anice; Aebischer, Julianne; Coque, Emmanuelle; Sar, Chamroeun; Sunyach, Claire; Salsac, Céline; Valmier, Jean; Salinas, Sara; Bowerman, Melissa; Raoul, Cédric

    2014-01-01

    A receptor–ligand interaction can evoke a broad range of biological activities in different cell types depending on receptor identity and cell type-specific post-receptor signaling intermediates. Here, we show that the TNF family member LIGHT, known to act as a death-triggering factor in motoneurons through LT-βR, can also promote axon outgrowth and branching in motoneurons through the same receptor. LIGHT-induced axonal elongation and branching require ERK and caspase-9 pathways. This distinct response involves a compartment-specific activation of LIGHT signals, with somatic activation-inducing death, while axonal stimulation promotes axon elongation and branching in motoneurons. Following peripheral nerve damage, LIGHT increases at the lesion site through expression by invading B lymphocytes, and genetic deletion of Light significantly delays functional recovery. We propose that a central and peripheral activation of the LIGHT pathway elicits different functional responses in motoneurons. PMID:24668263

  12. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury*

    PubMed Central

    van Niekerk, Erna A.; Tuszynski, Mark H.; Lu, Paul; Dulin, Jennifer N.

    2016-01-01

    Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system. PMID:26695766

  13. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    PubMed

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998). In the present study, 20 mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent of functional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration.

  14. Cutaneous collateral axonal sprouting re-innervates the skin component and restores sensation of denervated Swine osteomyocutaneous alloflaps.

    PubMed

    Ibrahim, Zuhaib; Ebenezer, Gigi; Christensen, Joani M; Sarhane, Karim A; Hauer, Peter; Cooney, Damon S; Sacks, Justin M; Schneeberger, Stefan; Lee, W P Andrew; Polydefkis, Michael; Brandacher, Gerald

    2013-01-01

    Reconstructive transplantation such as extremity and face transplantation is a viable treatment option for select patients with devastating tissue loss. Sensorimotor recovery is a critical determinant of overall success of such transplants. Although motor function recovery has been extensively studied, mechanisms of sensory re-innervation are not well established. Recent clinical reports of face transplants confirm progressive sensory improvement even in cases where optimal repair of sensory nerves was not achieved. Two forms of sensory nerve regeneration are known. In regenerative sprouting, axonal outgrowth occurs from the transected nerve stump while in collateral sprouting, reinnervation of denervated tissue occurs through growth of uninjured axons into the denervated tissue. The latter mechanism may be more important in settings where transected sensory nerves cannot be re-apposed. In this study, denervated osteomyocutaneous alloflaps (hind- limb transplants) from Major Histocompatibility Complex (MHC)-defined MGH miniature swine were performed to specifically evaluate collateral axonal sprouting for cutaneous sensory re-innervation. The skin component of the flap was externalized and serial skin sections extending from native skin to the grafted flap were biopsied. In order to visualize regenerating axonal structures in the dermis and epidermis, 50 um frozen sections were immunostained against axonal and Schwann cell markers. In all alloflaps, collateral axonal sprouts from adjacent recipient skin extended into the denervated skin component along the dermal-epidermal junction from the periphery towards the center. On day 100 post-transplant, regenerating sprouts reached 0.5 cm into the flap centripetally. Eight months following transplant, epidermal fibers were visualized 1.5 cm from the margin (rate of regeneration 0.06 mm per day). All animals had pinprick sensation in the periphery of the transplanted skin within 3 months post-transplant. Restoration of

  15. Cutaneous Collateral Axonal Sprouting Re-Innervates the Skin Component and Restores Sensation of Denervated Swine Osteomyocutaneous Alloflaps

    PubMed Central

    Ibrahim, Zuhaib; Ebenezer, Gigi; Christensen, Joani M.; Sarhane, Karim A.; Hauer, Peter; Cooney, Damon S.; Sacks, Justin M.; Schneeberger, Stefan; Lee, W. P. Andrew

    2013-01-01

    Reconstructive transplantation such as extremity and face transplantation is a viable treatment option for select patients with devastating tissue loss. Sensorimotor recovery is a critical determinant of overall success of such transplants. Although motor function recovery has been extensively studied, mechanisms of sensory re-innervation are not well established. Recent clinical reports of face transplants confirm progressive sensory improvement even in cases where optimal repair of sensory nerves was not achieved. Two forms of sensory nerve regeneration are known. In regenerative sprouting, axonal outgrowth occurs from the transected nerve stump while in collateral sprouting, reinnervation of denervated tissue occurs through growth of uninjured axons into the denervated tissue. The latter mechanism may be more important in settings where transected sensory nerves cannot be re-apposed. In this study, denervated osteomyocutaneous alloflaps (hind- limb transplants) from Major Histocompatibility Complex (MHC)-defined MGH miniature swine were performed to specifically evaluate collateral axonal sprouting for cutaneous sensory re-innervation. The skin component of the flap was externalized and serial skin sections extending from native skin to the grafted flap were biopsied. In order to visualize regenerating axonal structures in the dermis and epidermis, 50um frozen sections were immunostained against axonal and Schwann cell markers. In all alloflaps, collateral axonal sprouts from adjacent recipient skin extended into the denervated skin component along the dermal-epidermal junction from the periphery towards the center. On day 100 post-transplant, regenerating sprouts reached 0.5 cm into the flap centripetally. Eight months following transplant, epidermal fibers were visualized 1.5 cm from the margin (rate of regeneration 0.06 mm per day). All animals had pinprick sensation in the periphery of the transplanted skin within 3 months post-transplant. Restoration of

  16. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration.

    PubMed

    Jiang, Xu; Mi, Ruifa; Hoke, Ahmet; Chew, Sing Yian

    2014-05-01

    Fibre structures represent a potential class of materials for the formation of synthetic nerve conduits due to their biomimicking architecture. Although the advantages of fibres in enhancing nerve regeneration have been demonstrated, in vivo evaluation of fibre size effect on nerve regeneration remains limited. In this study, we analyzed the effects of fibre diameter of electrospun conduits on peripheral nerve regeneration across a 15-mm critical defect gap in a rat sciatic nerve injury model. By using an electrospinning technique, fibrous conduits comprised of aligned electrospun poly (ε-caprolactone) (PCL) microfibers (981 ± 83 nm, Microfiber) or nanofibers (251 ± 32 nm, Nanofiber) were obtained. At three months post implantation, axons regenerated across the defect gap in all animals that received fibrous conduits. In contrast, complete nerve regeneration was not observed in the control group that received empty, non-porous PCL film conduits (Film). Nanofiber conduits resulted in significantly higher total number of myelinated axons and thicker myelin sheaths compared to Microfiber and Film conduits. Retrograde labeling revealed a significant increase in number of regenerated dorsal root ganglion sensory neurons in the presence of Nanofiber conduits (1.93 ± 0.71 × 10(3) vs. 0.98 ± 0.30 × 10(3) in Microfiber, p < 0.01). In addition, the compound muscle action potential (CMAP) amplitudes were higher and distal motor latency values were lower in the Nanofiber conduit group compared to the Microfiber group. This study demonstrated the impact of fibre size on peripheral nerve regeneration. These results could provide useful insights for future nerve guide designs.

  17. Peripheral Neuropathy

    MedlinePlus

    Peripheral neuropathy Overview By Mayo Clinic Staff Peripheral neuropathy, a result of damage to your peripheral nerves, often causes weakness, numbness and pain, usually in your hands and feet. It can also ...

  18. Selective decrease of small sensory neurons in lumbar dorsal root ganglia labeled with horseradish peroxidase after ND:YAG laser irradiation of the tibial nerve in the rat

    SciTech Connect

    Wesselmann, U.; Lin, S.F.; Rymer, W.Z. )

    1991-02-01

    Recent electrophysiological evidence indicates that Q-switched Nd:YAG laser irradiation might have selective effects on neural impulse transmission in small slow conducting sensory nerve fibers as compared to large diameter afferents. In an attempt to clarify the ultimate fate of sensory neurons after laser application to their peripheral axons, we have used horseradish peroxidase (HRP) as a cell marker to retrogradely label sensory neurons innervating the distal hindlimb in the rat. Pulsed Nd:YAG laser light was applied to the tibial nerve at pulse energies of 70 or 80 mJ/pulse for 5 min in experimental rats. Seven days later HRP was applied to the left (laser-treated) and to the contralateral (untreated) tibial nerve proximal to the site of laser irradiation. In control animals the numbers of HRP-labeled dorsal root ganglion cells were not significantly different between the right and the left side. In contrast, after previous laser irradiation labeling was always less on the laser-treated side (2183 +/- 513 cells, mean +/- SEM) as compared to the untreated side (3937 +/- 225). Analysis of the dimensions of labeled cells suggested that the reduction of labeled cells on the laser-treated side was mainly due to a deficit in small sensory neurons. Since the conduction velocity of nerve fibers is related to the size of their somata, our histological data imply that laser light selectively affects retrograde transport mechanisms for HRP in slow conducting sensory nerve fibers.

  19. Persistence of PAD and presynaptic inhibition of muscle spindle afferents after peripheral nerve crush.

    PubMed

    Enríquez-Denton, M; Manjarrez, E; Rudomin, P

    2004-11-19

    Two to twelve weeks after crushing a muscle nerve, still before the damaged afferents reinnervate the muscle receptors, conditioning stimulation of group I fibers from flexor muscles depolarizes the damaged afferents [M. Enriquez, I. Jimenez, P. Rudomin, Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush. Exp. Brain Res., 107 (1996), 405-420]. It is not known, however, if this primary afferent depolarization (PAD) is indeed related to presynaptic inhibition. We now show in the cat that 2-12 weeks after crushing the medial gastrocnemius nerve (MG), conditioning stimulation of group I fibers from flexors increases the excitability of the intraspinal terminals of both the intact lateral gastrocnemius plus soleus (LGS) and of the previously damaged MG fibers ending in the motor pool, because of PAD. The PAD is associated with the depression of the pre- and postsynaptic components of the extracellular field potentials (EFPs) evoked in the motor pool by stimulation of either the intact LGS or of the previously damaged MG nerves. These observations indicate, in contrast to what has been reported for crushed cutaneous afferents [K.W. Horch, J.W. Lisney, Changes in primary afferent depolarization of sensory neurones during peripheral nerve regeneration in the cat, J. Physiol., 313 (1981), 287-299], that shortly after damaging their peripheral axons, the synaptic efficacy of group I spindle afferents remains under central control. Presynaptic inhibitory mechanisms could be utilized to adjust the central actions of muscle afferents not fully recovered from peripheral lesions.

  20. Effect of pulsed infrared lasers on neural conduction and axoplasmic transport in sensory nerves

    NASA Astrophysics Data System (ADS)

    Wesselmann, Ursula; Rymer, William Z.; Lin, Shien-Fong

    1990-06-01

    Over the past ten years there has been an increasing interest in the use of lasers for neurosurgical and neurological procedures. Novel recent applications range from neurosurgical procedures such as dorsal root entry zone lesions made with argon and carbon dioxide microsurgical lasers to pain relief by low power laser irradiation of the appropriate painful nerve or affected region1 '2 However, despite the widespread clinical applications of laser light, very little is known about the photobiological interactions between laser light and nervous tissue. The present studies were designed to evaluate the effects of pulsed Nd:YAG laser light on neural impulse conduction and axoplasmic transport in sensory nerves in rats and cats. Our data indicate that Q-switched Nd:YAG laser irradiation can induce a preferential impairment of (1) the synaptic effects of small afferent fibers on dorsal horn cells in the spinal cord and of (2) small slow conducting sensory nerve fibers in dorsal roots and peripheral nerves. These results imply that laser light might have selective effects on impulse conduction in slow conducting sensory nerve fibers. In agreement with our elecirophysiological observations recent histological data from our laboratory show, that axonal transport of the enzyme horseradish peroxidase is selectively impaired in small sensory nerve fibers. In summary these data indicate, that Q-switched Nd:YAG laser irradiation can selectively impair neural conduction and axoplasmic transport in small sensory nerve fibers as compared to fast conducting fibers. A selective influence of laser irradiation on slow conducting fibers could have important clinical applications, especially for the treatment of chronic pain.

  1. Selective control of small versus large diameter axons using infrared laser light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.

    2016-03-01

    Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.

  2. HCV-related central and peripheral nervous system demyelinating disorders.

    PubMed

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered.

  3. HCV-Related Central and Peripheral Nervous System Demyelinating Disorders

    PubMed Central

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered. PMID:25198705

  4. Different effects of astrocytes and Schwann cells on regenerating retinal axons.

    PubMed

    Campbell, Gregor; Kitching, Juliet; Anderson, Patrick N; Lieberman, A Robert

    2003-11-14

    Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.

  5. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy.

    PubMed

    Viader, Andreu; Sasaki, Yo; Kim, Sungsu; Strickland, Amy; Workman, Cayce S; Yang, Kui; Gross, Richard W; Milbrandt, Jeffrey

    2013-03-06

    Mitochondrial dysfunction is a common cause of peripheral neuropathy. Much effort has been devoted to examining the role played by neuronal/axonal mitochondria, but how mitochondrial deficits in peripheral nerve glia (Schwann cells [SCs]) contribute to peripheral nerve diseases remains unclear. Here, we investigate a mouse model of peripheral neuropathy secondary to SC mitochondrial dysfunction (Tfam-SCKOs). We show that disruption of SC mitochondria activates a maladaptive integrated stress response (ISR) through the actions of heme-regulated inhibitor (HRI) kinase, and causes a shift in lipid metabolism away from fatty acid synthesis toward oxidation. These alterations in SC lipid metabolism result in depletion of important myelin lipid components as well as in accumulation of acylcarnitines (ACs), an intermediate of fatty acid β-oxidation. Importantly, we show that ACs are released from SCs and induce axonal degeneration. A maladaptive ISR as well as altered SC lipid metabolism are thus underlying pathological mechanisms in mitochondria-related peripheral neuropathies.

  6. Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration.

    PubMed

    Kwon, Min Jung; Yoon, Hyuk Jun; Kim, Byung Gon

    2016-09-01

    Axons in central nervous system (CNS) do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord injury. Both intrinsic and extrinsic factors are responsible for the regeneration failure. Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in vivo still remains elusive. Recent experimental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neurons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of enhanced regeneration capacity. Neuron-derived chemokine (C-C motif) ligand 2 (CCL2) seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs). Manipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries.

  7. The axon reaction in spinal ganglion neurons of acrylamide-treated rats.

    PubMed

    Jones, H B; Cavanagh, J B

    1986-01-01

    Rats were given acrylamide in doses of either 30 or 50 mg/kg (5 days each week) for up to 3 weeks and killed at weekly intervals. The right sciatic nerve was tied tightly at the level of the major trochanter 4 days before killing the animals by perfusion fixation when ipsilateral and contralateral sensory ganglia (L5 and L6) were removed. The effects on neuronal perikarya of axotomy alone, of acrylamide alone and of these combined were studied by light and electron microscopy. The responses to axotomy and to acrylamide intoxication shared certain features, namely peripheral Nissl substance and to a lesser degree nuclear eccentricity, nucleolemmal crenation and mitochondrial enlargement. Neurofilament loss was present only with acrylamide. In combined axotomy and acrylamide all these five features were prominent. These findings indicate firstly that the individual responses to axotomy and to acrylamide, while sharing several features, are subtly different and secondly that acrylamide appears to impede the vital neuronal responses directed towards repair of the axon.

  8. Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration

    PubMed Central

    Kwon, Min Jung; Yoon, Hyuk Jun; Kim, Byung Gon

    2016-01-01

    Axons in central nervous system (CNS) do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord injury. Both intrinsic and extrinsic factors are responsible for the regeneration failure. Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in vivo still remains elusive. Recent experimental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neurons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of enhanced regeneration capacity. Neuron-derived chemokine (C-C motif) ligand 2 (CCL2) seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs). Manipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries. PMID:27857723

  9. Contribution of semaphorins to the formation of the peripheral nervous system in higher vertebrates.

    PubMed

    Masuda, Tomoyuki; Taniguchi, Masahiko

    2016-11-01

    Semaphorins are a large family of proteins characterized by sema domains and play a key role not only in the formation of neural circuits, but in the immune system, angiogenesis, tumor progression, and bone metabolism. To date, 15 semaphorins have been reported to be involved in the formation of the peripheral nervous system (PNS) in higher vertebrates. A number of experiments have revealed their functions in the PNS, where they act mainly as axonal guidance cues (as repellents or attractants). Semaphorins also play an important role in the migration of neurons and formation of sensory-motor connections in the PNS. This review summarizes recent knowledge regarding the functions of higher vertebrate semaphorins in the formation of the PNS.

  10. Contribution of semaphorins to the formation of the peripheral nervous system in higher vertebrates

    PubMed Central

    Masuda, Tomoyuki; Taniguchi, Masahiko

    2016-01-01

    ABSTRACT Semaphorins are a large family of proteins characterized by sema domains and play a key role not only in the formation of neural circuits, but in the immune system, angiogenesis, tumor progression, and bone metabolism. To date, 15 semaphorins have been reported to be involved in the formation of the peripheral nervous system (PNS) in higher vertebrates. A number of experiments have revealed their functions in the PNS, where they act mainly as axonal guidance cues (as repellents or attractants). Semaphorins also play an important role in the migration of neurons and formation of sensory-motor connections in the PNS. This review summarizes recent knowledge regarding the functions of higher vertebrate semaphorins in the formation of the PNS. PMID:27715392

  11. Variability and Reliabiltiy in Axon Growth Cone Navigation Decision Making

    NASA Astrophysics Data System (ADS)

    Garnelo, Marta; Ricoult, Sébastien G.; Juncker, David; Kennedy, Timothy E.; Faisal, Aldo A.

    2015-03-01

    The nervous system's wiring is a result of axon growth cones navigating through specific molecular environments during development. In order to reach their target, growth cones need to make decisions under uncertainty as they are faced with stochastic sensory information and probabilistic movements. The overall system therefore exhibits features of whole organisms (perception, decision making, action) in the subset of a single cell. We aim to characterise growth cone navigation in defined nano-dot guidance cue environments, by using the tools of computational neuroscience to conduct ``molecular psychophysics.'' We start with a generative model of growth cone behaviour and we 1. characterise sensory and internal sources of noise contributing to behavioural variables, by combining knowledge of the underlying stochastic dynamics in cue sensing and the growth of the cytoskeleton. This enables us to 2. produce bottom-up lower limit estimates of behavioural response reliability and visualise it as probability distributions over axon growth trajectories. Given this information we can match our in silico model's ``psychometric'' decision curves with empirical data. Finally we use a Monte-Carlo approach to predict response distributions of axon trajectories from our model.

  12. Misdirection and guidance of regenerating axons after experimental nerve injury and repair.

    PubMed

    de Ruiter, Godard C W; Spinner, Robert J; Verhaagen, Joost; Malessy, Martijn J A

    2014-02-01

    Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin, and vice versa-that is, sensory axons projecting toward muscle. In the repair of motor nerves innervating different distal targets, misdirection may result in reinnervation of the wrong target muscle, which might function antagonistically. In sensory nerve repair, misdirection might give an increased perceptual territory. After median nerve repair, for example, this might lead to a dysfunctional hand. Different factors may be involved in the misdirection of regenerating axons, and there may be various mechanisms that can later correct for misdirection. In this review the authors discuss these different factors and mechanisms that act along the pathway of the regenerating axon. The authors review recently developed evaluation methods that can be used to investigate the accuracy of regeneration after nerve injury and repair (including the use of transgenic fluorescent mice, retrograde tracing techniques, and motion analysis). In addition, the authors discuss new strategies that can improve in vivo guidance of regenerating axons (including physical guidance with multichannel nerve tubes and biological guidance accomplished using gene therapy).

  13. Myanmarese Neuropathy: Clinical Description of Acute Peripheral Neuropathy Detected among Myanmarese Refugees in Malaysia.

    PubMed

    Fu Liong, Hiew; Santhi, Datuk Puvanarajah; Shanthi, Viswanathan; Mohd Hanip, Rafia

    2014-01-01

    Background. Since 2008, we have observed an increasing number of Myanmarese refugees in Malaysia being admitted for acute/subacute onset peripheral neuropathy. Most of them had a preceding history of starvation. Methods. We retrospectively studied the clinical features of all Myanmarese patients admitted with peripheral neuropathy from September 2008 to January 2014. Results. A total of 24 patients from the Chin, Rohingya, and Rakhine ethnicities (mean age, 23.8 years; male, 96%) had symmetrical, ascending areflexic weakness with at least one additional presenting symptom of fever, lower limb swelling, vomiting, abdominal pain, or difficulty in breathing. Twenty (83.3%) had sensory symptoms. Ten (41.6%) had cranial nerve involvement. Nineteen patients had cerebrospinal fluid examinations but none with evidence of albuminocytological dissociation. Neurophysiological assessment revealed axonal polyneuropathy, predominantly a motor-sensory subtype. Folate and vitamin B12 deficiencies were detected in 31.5% of them. These findings suggested the presence of a polyneuropathy related to nutrition against a backdrop of other possible environmental factors such as infections, metabolic disorders, or exposure to unknown toxin. Supportive treatment with appropriate vitamins supplementation improved functional outcome in most patients. Conclusion. We report a spectrum of acquired reversible neurological manifestations among Myanmarese refugees likely to be multifactorial with micronutrient deficiencies playing an important role in the pathogenesis.

  14. [Axon-reflex based nerve fiber function assessment in the detection of autonomic neuropathy].

    PubMed

    Siepmann, T; Illigens, B M-W; Reichmann, H; Ziemssen, T

    2014-10-01

    Axon-reflex-based tests of peripheral small nerve fiber function including techniques to quantify vasomotor and sudomotor responses following acetylcholine iontophoresis are used in the assessment of autonomic neuropathy. However, the established axon-reflex-based techniques, laser Doppler flowmetry (LDF) to assess vasomotor function and quantitative sudomotor axon-reflex test (QSART) to measure sudomotor function, are limited by technically demanding settings as well as interindividual variability and are therefore restricted to specialized clinical centers. New axon-reflex tests are characterized by quantification of axon responses with both temporal and spatial resolution and include "laser Doppler imaging (LDI) axon-reflex flare area test" to assess vasomotor function, the quantitative direct and indirect test of sudomotor function (QDIRT) to quantify sudomotor function, as well as the quantitative pilomotor axon-reflex test (QPART), a technique to measure pilomotor nerve fiber function using adrenergic cutaneous stimulation through phenylephrine iontophoresis. The effectiveness of new axon-reflex tests in the assessment of neuropathy is currently being investigated in clinical studies.

  15. Sensory perineuritis.

    PubMed Central

    Matthews, W B; Squier, M V

    1988-01-01

    A case of sensory perineuritis is described, affecting individual cutaneous nerves in the extremities and with a chronic inflammatory exudate confined to the perineurium in a sural nerve biopsy. No cause was found. The condition slowly resolved on steroid treatment. Images PMID:3379419

  16. The response of spinal microglia to chemotherapy-evoked painful peripheral neuropathies is distinct from that evoked by traumatic nerve injuries

    PubMed Central

    Zheng, F. Y.; Xiao, W.-H.; Bennett, G. J.

    2011-01-01

    Painful peripheral neuropathies produced by nerve trauma are accompanied by substantial axonal degeneration and by a response in spinal cord microglia that is characterized by hypertrophy and increased expression of several intracellular and cell-surface markers, including ionizing calcium-binding adapter molecule 1 (Iba1) and Cd11b (a complement receptor 3 antigen recognized by the OX42 antibody). The microglia response has been hypothesized to be essential for the pathogenesis of the neuropathic pain state. In contrast, the painful peripheral neuropathies produced by low doses of cancer chemotherapeutics do not produce degeneration of axons in the peripheral nerve, although they do cause partial degeneration of the sensory axons’ distal-most tips, i.e. the intraepidermal nerve fibers that form the axons’ terminal receptor arbors. The question thus arises as to whether the relatively minor and distal axonal injury characterizing the chemotherapy-evoked neuropathies is sufficient to evoke the microglial response that is seen after traumatic nerve injury. We examined the lumbar spinal cord of rats with painful peripheral neuropathies due to the anti-neoplastic agents, paclitaxel, vincristine, and oxaliplatin, and the anti-retroviral agent, 2′,3′-dideoxycytidine (ddC), and compared them to rats with a complete sciatic nerve transection and the partial sciatic nerve injury produced in the chronic constriction injury model (CCI). As expected, microglia hypertrophy and increased expression of Iba1 were pronounced in the nerve transection and CCI animals. However, there was no microglia hypertrophy or increased Iba1 staining in the animals treated with paclitaxel, vincristine, oxaliplatin, or ddC. These results suggest that the mechanisms that produce neuropathic pain after exposure to chemotherapeutics may be fundamentally different than those operating after nerve trauma. PMID:21195745

  17. Immunocytochemical Localization of Monoamine Oxidase Type B in Rat's Peripheral Nervous System.

    PubMed

    Chen, Qiang; Xu, Yang; Zhang, Hui; Tan, Xiao; Liu, Shu Hui; Yan, Fen

    2015-11-01

    Immunohistochemistry is used to investigate subcellular localization of monoamine oxidase type B (MAOB) in the axon of the rat's peripheral nervous system. Through light and electron microscopy, the presence of MAOB-immunoreactive structures in the propria lamina of tongue and on the outer membranes of mitochondria in both myelinated and unmyelinated axons can be detected. As a result, MAOB may potentially play a crucial role in the axons of the rat's peripheral nervous system and may be closely associated with both axonal transport and nerve conduction.

  18. Molecular microdomains in a sensory terminal, the vestibular calyx ending.

    PubMed

    Lysakowski, Anna; Gaboyard-Niay, Sophie; Calin-Jageman, Irina; Chatlani, Shilpa; Price, Steven D; Eatock, Ruth Anne

    2011-07-06

    Many primary vestibular afferents form large cup-shaped postsynaptic terminals (calyces) that envelope the basolateral surfaces of type I hair cells. The calyceal terminals both respond to glutamate released from ribbon synapses in the type I cells and initiate spikes that propagate to the afferent's central terminals in the brainstem. The combination of synaptic and spike initiation functions in these unique sensory endings distinguishes them from the axonal nodes of central neurons and peripheral nerves, such as the sciatic nerve, which have provided most of our information about nodal specializations. We show that rat vestibular calyces express an unusual mix of voltage-gated Na and K channels and scaffolding, cell adhesion, and extracellular matrix proteins, which may hold the ion channels in place. Protein expression patterns form several microdomains within the calyx membrane: a synaptic domain facing the hair cell, the heminode abutting the first myelinated internode, and one or two intermediate domains. Differences in the expression and localization of proteins between afferent types and zones may contribute to known variations in afferent physiology.

  19. Molecular microdomains in a sensory terminal, the vestibular calyx ending

    PubMed Central

    Lysakowski, Anna; Gaboyard-Niay, Sophie; Calin-Jageman, Irina; Chatlani, Shilpa; Price, Steven D.; Eatock, Ruth Anne

    2011-01-01

    Many primary vestibular afferents form large cup-shaped postsynaptic terminals (calyces) that envelope the basolateral surfaces of type I hair cells. The calyceal terminals both respond to glutamate released from ribbon synapses in the type I cells and initiate spikes that propagate to the afferent’s central terminals in the brainstem. The combination of synaptic and spike initiation functions in these unique sensory endings distinguishes them from the axonal nodes of central neurons and peripheral nerves, such as the sciatic nerve, which have provided most of our information about nodal specializations. We show that rat vestibular calyces express an unusual mix of voltage-gated Na and K channels and scaffolding, cell adhesion, and extracellular matrix proteins, which may hold the ion channels in place. Protein expression patterns form several microdomains within the calyx membrane: a synaptic domain facing the hair cell, the heminode abutting the first myelinated internode, and one or two intermediate domains. Differences in the expression and localization of proteins between afferent types and zones may contribute to known variations in afferent physiology. PMID:21734302

  20. Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury

    PubMed Central

    Li, Ping; Teng, Zhao-Qian

    2016-01-01

    Spinal cord injury is a devastating disease which disrupts the connections between the brain and spinal cord, often resulting in the loss of sensory and motor function below the lesion site. Most injured neurons fail to regenerate in the central nervous system after injury. Multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration after injury. MicroRNAs can modulate multiple genes' expression and are tightly controlled during nerve development or the injury process. Evidence has demonstrated that microRNAs and their signaling pathways play important roles in mediating axon regeneration and glial scar formation after spinal cord injury. This article reviews the role and mechanism of differentially expressed microRNAs in regulating axon regeneration and glial scar formation after spinal cord injury, as well as their therapeutic potential for promoting axonal regeneration and repair of the injured spinal cord. PMID:27818801